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ABSTRACT

Imitation Learning, also known as Learning from Demonstration (LfD), is a

field of study dedicated to aiding an agent’s learning process by providing access to

expert demonstrations. Within LfD, Movement Primitives is a particular family of

algorithms that have been widely studied and implemented in complex robot scenarios.

Interaction Primitives, a subset of Movement Primitives, have demonstrated notable

success in learning single interactions between humans and robots. However, literature

addressing the extension of these algorithms to support multiple variations of an

interaction is limited.

This thesis presents a physical human-robot interaction algorithm capable of

predicting appropriate robot responses in complex interactions that involve a superpo-

sition of multiple interactions. The proposed algorithm, Blending Bayesian Interaction

Primitives (B-BIP), achieves responsive motions in complex hugging scenarios and

can reciprocate and adapt to the motion and timing of a hug. B-BIP generalizes

prior work, where the original formulation reduces to the particular case of a single

interaction. The performance of B-BIP is evaluated through an extensive user study

and empirical experiments. The proposed algorithm yields significantly better quanti-

tative prediction error and more favorable participant responses concerning accuracy,

responsiveness, and timing compared to existing state-of-the-art methods.
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Chapter 1

INTRODUCTION

Imitation learning (also known as LfD) is a field of study that involves training an

agent to perform a certain task using expert demonstrations (Atkeson and Schaal,

1997; Pomerleau, 1988; Ross et al., 2011; Ho and Ermon, 2016). The agent is typically

a real-life robot or simulated entity with a set of actions. A closely related field,

Reinforcement Learning (RL), also seeks to train an agent to learn how to perform

tasks, but in RL, the agent learns by receiving feedback from the environment in the

form of a reward signal (Kober et al., 2013; Sutton and Barto, 2018; Bertsekas, 2019).

Defining a reward signal can be difficult, especially in complex environments, which

can lead to undesirable agent behaviors when not defined properly. RL algorithms

can also demand significant computational efforts, especially in the case where the

agent’s action space is large and continuous.

This thesis presents an imitation learning algorithm inspired by the work done

in Interaction Primitives (Amor et al., 2014; Campbell and Ben Amor, 2017). The

methodology is based on the work done by Drolet et al. (2023) and involves mathe-

matical and statistical algorithms that form the foundation of the approach. These

algorithms are applied to real-world human-robot interactions for evaluation, and the

results can be extended to other interactions beyond human-robot hugging scenarios.

As data-driven approaches become increasingly important in our world, algorithms

that leverage prior expert demonstrations can be beneficial for learning an action

policy that performs well in complex and noisy environments.
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Chapter 2

PROBLEM FORMULATION

Learning from expert demonstrations is a powerful technique for training robots

to perform complex tasks that would otherwise require significant engineering effort

to manually design. In the context of a human-robot hugging scenario, learning from

demonstration becomes even more important, as the nuances of human interactions

and preferences can be difficult to capture through traditional engineering approaches.

While one might consider using- for example- heuristics and simple feed-forward

control to design a solution for hugging, such an approach would be highly specific

to the particular scenario and would not generalize well to other interactions or

scenarios. Furthermore, creating customized solutions for each interaction quickly

becomes impractical due to the arbitrary number of observation features and degrees

of freedom involved.

By contrast, learning the hugging interaction from expert demonstrations provides

a clearly defined objective: to match the expert behavior as closely as possible.

The expert trajectories contain nuanced and valuable information about the unique

motions of agents, which may not be captured by traditional engineering approaches.

Additionally, by allowing the expert to consist of demonstrations from multiple

participants with varying heights, preferences, and proportions, the generated controls

can adapt to a variety of situations naturally encoded by this distribution of expert

trajectories. This learning-based approach provides a general, platform-agnostic

solution that can be extended to new situations.

Implementing such behaviors in robots is an extremely challenging task and is often

2



circumvented in experimental hugging robots by not reciprocating hugs (Yamazaki

et al., 2016; Sumioka et al., 2013) or executing non-adaptive, pre-defined motions (Block

and Kuchenbecker, 2019; Shiomi et al., 2017; Hedayati et al., 2019). Adaptive hugs

require a robot to anticipate the type of hug performed, the current temporal progress,

and the upcoming motion. Consequently, it has to generate accurate motor behavior to

produce a synchronized motion with the human partner. One challenge in this regard

is that hugs can be initiated anytime. Hence, the starting point is not predetermined

nor easily identifiable. Another challenge is that hugs are typically fast movements

with a duration of only a few seconds. Therefore, we need algorithms that allow

robots to repeatedly (a) replan their motions in response to (b) the predicted behavior

of the human partner. The proposed algorithm entailed in this thesis, B-BIP, aims

to address these challenges by maintaining a list of possible interactions and fluidly

transitioning between them in response to the interaction partner.

Traditional HRI methods classify the interaction first and then proceed with

that classification throughout the interaction (Amor et al., 2014; Ewerton et al.,

2015), or re-classify the interaction at discrete time intervals. This results in stilted

HRI with limited capability to transition smoothly between actions or account for

interactions that involve multiple actions. To overcome this, B-BIP allows for multiple

interactions. At each time step, the likelihood of possible interactions is evaluated

based on observations of the human partner. The models associated with each possible

interaction are then updated based on the observations, with the magnitude of the

update weighted by the likelihood. The intuition here is straightforward: if we are

observing a seemingly unlikely interaction, then we do not want to update the model

significantly because the observation is unlikely to have been generated from the model.

It would only serve to distort it. Aside from being able to responsively transition

3



from one interaction to another at any point in time, this approach has two subtle

advantages: a) by updating all likely interactions at every time step, it avoids a sudden

discontinuous transition between discrete interactions when switching occurs, and b)

it is possible that interaction is a blend of multiple discrete interactions.

The main contributions of this thesis include a generalized form of Bayesian

Interaction Primitives (Campbell and Ben Amor, 2017) that removes the restriction

that a single interaction consists of only a single action, a probabilistic formulation

where action transitions are detected to update a Monte-Carlo state approximation, and

an empirical study demonstrating the successful detection and transitioning between

three discrete sub-actions in a physical hugging scenario, compared to baseline methods.

B-BIP’s ability to adapt to a variety of interaction scenarios and seamlessly transition

between different actions makes it a valuable tool in the design and implementation

of robot behaviors for real-world interactions.

4



Chapter 3

PRELIMINARIES

The following subsections cover the preliminary methods necessary for the imple-

mentation and understanding of the main work in this thesis.

3.1 Kalman Filtering

The Kalman filter (Kalman, 1960; Thrun et al., 2005) is a powerful tool for

estimating the state of a system, especially when dealing with noisy measurements.

In the field of robotics, it is commonly used for localization, which is the process of

determining the position and orientation of a robot in an environment. For this work,

the Kalman filter is used to estimate a latent state which, when projected back to

the observation space, reconstructs the full trajectories of the human and robot. To

motivate the use the Kalman filter for state estimation, consider a simple 2D constant

velocity model. The state representation xt consists of the position (xt, yt) and the

velocities (vxt , vyt) of the robot at time t. The state transition function is given by

xt = Ftxt−1, and the matrices involved can be defined as:

• State transition matrix, Ft:

Ft =



1 0 ∆t 0

0 1 0 ∆t

0 0 1 0

0 0 0 1


(3.1)
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• State vector, xt:

xt =



xt

yt

vxt

vyt


(3.2)

where ∆t is the time step. Along with the state transition update, the covariance

associated with the state vector is updated with an additive process noise.

• Process noise covariance matrix, Qt:

Qt =



q1 0 0 0

0 q2 0 0

0 0 q3 0

0 0 0 q4


(3.3)

• State covariance matrix, Σt:

Σt = FtΣt−1F
T
t +Qt (3.4)

Here, q1, q2, q3, and q4 are the variances for the process noise in the respective

state variables. The equations above define a linear dynamical model for updating the

state estimate recursively. However, this is a simple (first order) approximation of the

system dynamics which does not account for external perturbations; as such, this leads

to compounding errors in a non-idealized setting. To correct the transition update,

we can take advantage of sensor measurements. Often sensors come with a reference

sheet that specifies the precision/uncertatinty associated with the sensor, and these

values can be used to instantiate a measurement noise matrix that is representitive of

6



the true sensor uncertainty. The following sub-section will introduce the machinery

for how this update step is performed. The subscripts for the state variables are

replaced with a more descriptive notation used to indicate the time step with which

the variable is conditioned on.

3.1.1 Linear Kalman Filter

The Kalman filter algorithm consists of two main steps: the prediction step and

the update step. The equations that govern these steps are presented below.

Prediction step:

xt|t−1 = Ftxt−1|t−1 +Btut (3.5)

Σt|t−1 = FtΣt−1|t−1F
⊤
t +Qt (3.6)

Update step:

Kt = Σt|t−1H
⊤
t (HtΣt|t−1H

⊤
t +Rt)

−1 (3.7)

xt|t = xt|t−1 +Kt(yt −Htxt|t−1) (3.8)

Σt|t = (I −KtHt)Σt|t−1 (3.9)

Here, B is the control input matrix which, depending on the context, need not always

be implemented (as in the motivating example); K is the Kalman gain matrix; H

is the measurement matrix; R is the measurement noise covariance matrix; and y is

the measurement vector. The process noise covariance matrix and measurement noise

covariance matrix are defined by the user in the case of B-BIP.

7



3.1.2 Optimal Gain

The motivation for using the Kalman filter comes from the idea that it is optimal

from a least-squares perspective (Gelb et al., 1974). As we will see, the Kalman

Gain minimizes the square of the updated state covariance at time t. Consequently,

the specific choice of the Kalman gain in the state update equation above can be

attributed to minimizing the uncertainty of the state estimate. To show why this

holds, we first start with the Joseph form of the covariance update equation, which can

be derived from the posterior estimate of the covariance matrix as done in Benhamou

(2018):

Σt|t = (I −KtHt)Σt|t−1(I −KtHt)
⊤ +KtRtK

⊤
t (3.10)

This is true for any value of Kt, so this equation can be used to solve for the optimal

Kalman gain. Expanding the terms, we get:

Σt|t = Σt|t−1 −KtHtΣt|t−1 −Σt|t−1H
⊤
t K

⊤
t +KtStK

⊤
t (3.11)

where St = HΣt|t−1H
⊤
t +Rt. Next, we take the derivative of the trace of the state

covariance matrix with respect to the Kalman gain. Setting this expression equal to

zero allows us to solve for the value of Kt that minimizes the state uncertainty (i.e,

the sum of the variances).

δtr(Σt|t)

δKt

= −2(HtΣ
⊤
t|t−1)

⊤ + 2KtSt = 0 (3.12)

Kt = Σt|t−1H
⊤
t S

−1
t (3.13)

=
Σt|t−1H

⊤
t

HΣt|t−1H
⊤
t +Rt

(3.14)

8



We can view the Kalman gain as a ratio (or compromise) of the state uncer-

tainty to the state and measurement uncertainty. When Σt|t−1 is fixed and Rt takes

on higher values (e.g, when the sensors are noisier), then the Kalman gain becomes

smaller.

3.1.3 Ensemble Kalman Filter

The ensemble Kalman filter is a Monte-Carlo approximation of the Kalman filter,

originally introduced by Evensen (2003). It’s important to note that in ensemble

Kalman filter, the prediction step and update step are similar to those of the standard

Kalman filter. The main difference is that in the ensemble Kalman filter, instead of

working with a single estimate of the state and its covariance, we work with a set of

E samples (or ensemble members) that approximate the state distribution.

The ensemble Kalman filter can also improve computational efficiency as it

does not require maintaining a covariance matrix at every iteration, which can be

computationally expensive for high-dimensional systems. This makes the ensemble

Kalman filter suitable method for high-dimensional systems where the traditional

Kalman filter may struggle with computational complexity. Below, the transition

model and observation model, denoted by f(.) and h(.) respectively, are used instead

of the matrix notation above. The superscript j is used to denote the j’th ensemble

member (a state vector) such that when j is omitted, then the whole ensemble (a

matrix) is referred to.

Prediction Step:

Xj
t|t−1 = f(Xj

t−1|t−1) + ϵjQt
s.t. ϵ1Qt

, · · · , ϵEQt

i.i.d∼ N (0,Qt) (3.15)

9



Update Step:

[HtAt]
j = h(Xj

t|t−1)−
1

E

E∑
j=1

h(Xj
t|t−1) (3.16)

Aj
t = Xj

t|t−1 −
1

E

E∑
j=1

Xj
t|t−1 (3.17)

St =
1

E − 1
(HtAt)(HtAt)

⊤ +Rt (3.18)

Kt =
1

E − 1
At(HtAt)

⊤S−1
t (3.19)

Ỹ j
t = yt + ϵjRt

s.t. ϵ1Rt
, · · · , ϵERt

i.i.d∼ N (0,Rt) (3.20)

HtXt|t−1 =
[
h(X1

t|t−1), · · · , h(XE
t|t−1)

]
(3.21)

Xt|t = Xt|t−1 +Kt(Ỹt −HtXt|t−1) (3.22)

In the equations above, the process noise covariance Qt and the measurement

noise covariance Rt are defined by the user. We can see how the sample covariance is

used in the Kalman gain update, i.e, AA⊤

E−1
, as opposed to maintaining a covariance

as in the linear Kalman filter. Another clear difference from the standard Kalman

filter is that the observation function h(.) and transition function f(.) are applied to

each ensemble member iteratively. These functions may be nonlinear, as the update

is no longer confined to matrix operations where linearization is applied. Additionally,

noise is applied to the measurement yt to treat the measurement as random and give

the ensemble a proper variance (Burgers et al., 1998).

10



3.2 BIP

3.2.1 Basis Function Decomposition

First, a primitive is trained using a set of demonstrations of the desired interaction.

Each demonstration consists of observed and controlled degrees of freedom, which are

modeled as the matrix Y ∈ RT×D where D = |Dc|+ |Do| denotes the total number of

degrees of freedom (DoFs) in the interaction (having the sets of DoF indices Dc from

the controlled agent and Do DoFs from the observed agent) and T samples.

These demonstrations are then transformed to a time-invariant latent space w

such that

yd
t = hd(ϕ(t),wd) = Φd

ϕ(t)w
d + ϵy, (3.23)

where Φd
ϕ(t) ∈ R1×Bd is a row vector of Bd basis functions, wd ∈ RBd×1, and ϵy is i.i.d.

Gaussian noise. As is standard (Campbell and Ben Amor, 2017), the basis functions

are dependent on a relative time measure referred to as phase ϕ(t). The Gaussian

basis function is used in this work, although others may be selected if appropriate for

the task domain. The basis functions for a given DoF d are evaluated on a discrete,

linearly-spaced interval of length T from ϕ(1) = 0 to ϕ(T ) = 1. For a given phase ϕ,

the Gaussian basis function evaluations produce a row vector:

Φd
ϕ =

[
η exp (−h(ϕ− c1)

2) , η exp (−h(ϕ− c2)
2) , · · · , η exp (−h(ϕ− cBd)2)

]
(3.24)

where h represents a shared scale (for simplicity), ci is the center of the basis function,

and η is a normalizing constant. These row vectors are stacked to form the matrix

Φ ∈ RT×Bd used to reconstruct the full trajectory yd ∈ RT×1. The normal equation

11



for reconstructing the full trajectory is given by:

wd =
(
Φd⊤Φd

)−1

Φd⊤yd (3.25)

A regularization term can also be added when solving for the weights. Paraschos

et al. (2018) show that this term can also be modified to minimize jerk. Below is the

addition of a ridge regression penalty term:

wd =
(
Φd⊤Φd + λI

)−1

Φd⊤yd (3.26)

The ridge regression estimate can be obtained as the MAP estimate of a Bayesian

linear regression model with a zero-mean Gaussian prior on the weights (O’Hagan

and Forster, 2004). The ridge regression estimate corresponds to the mean of the

posterior distribution, while the L2 penalty controls the variance of the posterior

distribution. In this sense, ridge regression can be seen as a Bayesian approach to

regularization (Toussaint and Goerick, 2010). We are influencing the weights to be

smaller through the zero-mean prior term; importantly, shrinking these weights can

result in desirable properties such as tightening the range of the high-dimensional

state space. Alternatively, using a lasso penalty (L1 regularization) for model selection

could help prune any redundant basis functions if they are over-specified.

During inference, we wish to estimate the latent state w from which the inferred

controlled DoFs can be retrieved, however, it is also necessary to localize both the phase,

ϕ, and phase velocity, ϕ̇, in order to accurately perform inference on demonstrations

done at different speeds. Therefore, the state representation is augmented to be

st = [ϕt, ϕ̇t,wt]. (3.27)

This state representation was introduced in the original BIP work, which makes

an important contribution to the setup of the system by estimating the phase of

12



the interaction jointly. This work shows that the temporal estimation error induces

correlated spatial errors, which can be analogous to Simultaneous Localization and

Mapping (SLAM).

3.2.2 State Space Filtering

Using Bayes rule, the posterior state estimate can be obtained by using the

previous state estimate and the likelihood of the measurement. Given a sequence

of measurements, Y1:t, of all modalities, this gives us the following probabilistic

formulation:

p(st|Y 1:t, s0) ∝ p(yt|st)p(st|Y 1:t−1, s0). (3.28)

As in Campbell et al. (2019b), this posterior density is approximated using a

Monte Carlo method in which an ensemble of samples are used to predict the next

measurement,

Xj
t|t−1 = f(Xj

t−1|t−1) + ϵjQt
s.t. ϵ1Qt

, · · · , ϵEQt

i.i.d∼ N (0,Qt) (3.29)

The predicted ensemble is updated based on the error obtained from the actual

measurement using a gain coefficient Kt, as shown in the EnKF overview section.

Xt|t = Xt|t−1 +Kt(Ỹt −HtXt|t−1) (3.30)

The set of training demonstrations that we start with are used to directly initialize

the ensemble members, such that E demonstrations yields E ensemble members.

This procedure follows the ensemble Kalman filter algorithm detailed in Section 3.

While the Kalman filter is commonly used for modeling a non-latent state space, such

as positions and velocities, BIP distinguishes itself by adopting a different approach.

Instead, BIP’s state space consists of basis function weights that form the latent state.

13



The measurement function, h(xj
t|t−1) transforms this latent state into the measurement

space by applying the basis function matrix (at the given phase) to the weights, such

that the residual from the observation can then be computed. B-BIP builds off of this

work by dividing the state space into discrete sub-ensembles, where we are then able

to update each filter according to the likelihood of the interaction class.

3.3 Discriminant Analysis

Quadratic Discriminant Analysis (QDA) and Linear Discriminant Analysis (LDA)

are commonly employed techniques in classification (Hastie et al., 2009). Both

methods seek to identify decision boundaries that optimize the separation between

classes. QDA is an extension of LDA, permitting the covariance of each class to differ,

whereas LDA presumes that the covariance of every class is identical. The QDA

model assumes that the data for each class follows a normal distribution with distinct

covariance matrices, denoted as Σi. Given a new observation x, the class membership

probability for class k is expressed by:

ŷ = argmax
k

{
−1

2
log |Σk| −

1

2
(x− µk)

T Σ−1
k (x− µk) + log πk

}
(3.31)

On the other hand, LDA assumes that the data for each class follows a normal

distribution with a consistent covariance matrix, denoted as Σ. Under LDA, the class

membership probability for class k is given by:

ŷ = argmax
k

{
xTΣ−1µk −

1

2
µT

kΣ
−1µk + log πk

}
(3.32)

A primary advantage of LDA is its capability to compute a shared subspace for

all classes, facilitating dimensionality reduction. This is not the case with QDA, as

it does not make this assumption and thus does not calculate a common subspace
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for all classes. Section 5.2 provides a demonstration of how LDA is employed within

Blending Bayesian Interaction Primitives to effectively reduce the dimensionality of

the demonstration data and maintain the discriminative information essential for

blending human-robot interactions.
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Chapter 4

RELATED WORK

This section will give an overview of existing methods in imitation learning that

are most similar to this work. In particular, Movement Primitives in general have a

well-established history, starting with Dynamic Movement Primitives (DMPs). The

LSTM (Hochreiter and Schmidhuber, 1997) is a general method used for predicting

time series data and it is adopted as a baseline for comparison; as such, it is not

restricted to imitation learning.

4.1 DMPs

Dynamic Movement Primitives are a popular framework for modeling and generat-

ing movement trajectories (Ijspeert et al., 2013; Schaal, 2006). DMPs were inspired

by the concept of motor primitives, which bear biological connections to humans and

animals. DMPs provide a principled, control-theoretic approach to encode essential

features of a movement, allowing them to accurately reproduce the unique action

trajectories exhibited by robots, humans, or other agents. A DMP consists of a

canonical system that acts as a clock for progressing the phase of the movement

trajectory and a forcing term is responsible for shaping the trajectory toward a desired

goal. A dynamical system is formulated as a damped spring model of the form:

τ ÿ = αy(βy(g − y)− ẏ) + f, (4.1)

where y is the state of the system, τ is the time constant that determines the speed of

the movement, g is the goal position, αy and βy are gain terms, and f is the forcing
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function that can be constructed using an expert trajectory. The dynamics of the

canonical system are given by:

ẋ = −αxx. (4.2)

The forcing term, a function of the canonical system, is formulated as a weighted sum

of basis functions of the form:

f(x) =

∑N
i=1 Φi(x)wi∑N
i=1Φi(x)

x(g − y0), (4.3)

where N is the number of basis functions and wi is the weight of the i-th basis function.

The DMP can be executed in real-time by using the canonical system to generate

the basis signal and the forcing term to shape the trajectory toward the goal. DMPs

have been successfully applied to a wide range of robotic and human movement tasks,

including reaching, grasping, and walking. One of the main advantages of DMPs is

their ability to generate smooth and natural-looking movements that can easily be

adapted to different goal locations.

4.2 ProMPs

The Probabilistic Movement Primitives (ProMPs) alorithm introduced by

Paraschos et al. (2013) is a probabilistic extension of the Dynamic Movement Prim-

itives (DMPs) framework. Like DMPs, ProMPs provide a way to encode motion

trajectories for robots in a low-dimensional and task-specific way. However, ProMPs

go beyond the deterministic framework of DMPs by using a Gaussian distribution over

the trajectory weights, allowing for recursive probabilistic inference and uncertainty

quantification. While BIP differs from DMPs and ProMPs in some key aspects such

as in phase localization and filtering (via the extended and ensemble Kalman filter),
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it utilizes the same concepts related to basis function decomposition and weight space

representation presented in this prior work.

4.3 LSTM Networks

σ σ σtanh

tanh

x

x
x

+

Figure 1. Architecture of LSTM Cell

The Long-Short Term Memory Network (LSTM) is popular for its ability to

model and predict sequential data, particularly in the realm of time series analysis.

This can be attributed to the LSTM’s unique architecture, which facilitates the

"forgetting" and "remembering" of past information to enhance the prediction of

subsequent states. The LSTM’s recurrent architecture is characterized by a series

of interconnected memory cells, wherein each cell’s estimate of the previous state is

supplied as input to the subsequent cell. This iterative process allows the network to

learn and maintain information over extended sequences, effectively overcoming the

limitations of traditional feedforward networks in modeling long-range dependencies.

In spite of the complexity and sophistication of the LSTM’s underlying mecha-
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nisms, its implementation in real-world applications has been made considerably more

accessible through the availability of user-friendly software libraries. These libraries

provide a wealth of tools and resources that allow researchers and practitioners to

develop and deploy LSTM-based models with relative ease, streamlining the process

of adapting the network architecture to the specific requirements of the task at hand.

However, it is important to recognize that the performance of an LSTM model is

heavily contingent upon the configuration of its network architecture. The selection

of appropriate hyperparameters, such as the number of layers, hidden units, and

activation functions, plays a crucial role in determining the model’s capacity to

effectively learn and generalize from the given data. Consequently, it is often necessary

to engage in a process of hyperparameter tuning and optimization to identify the

optimal network settings for a particular problem.
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Chapter 5

METHODOLOGY
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Figure 2. An overview of B-BIP. Top: training demonstrations (left) are decomposed
into a latent space (middle) and transformed into an ensemble of samples (right).
Bottom: observations are collected during a live interaction (left) which is used to
perform filtering with the learned ensemble (middle) and produce a response trajectory
(right).

5.1 Ensemble Partitioning

The BIP framework as described above only supports modeling a single interaction

at a time. In order to extend this model to a set of interactions, we first present a

probabilistic formulation for what this entails. Suppose we have an ensemble X in

which each of the E ensemble members belongs to a class c ∈ C, in which the set of

classes C represents different discrete interactions. This allows us to partition X into

|C| sub-ensembles, such that X = X(1)∪X(2)∪· · ·∪X(|C|) where a sub-ensemble X(c)

contains E(c) members such that E =
∑

c∈C E
(c). We define C as a random variable

over the set C which indicates the class of an interaction. Each sub-ensemble X(c) is

a Monte Carlo approximation of the probability distribution for the c-th interaction,

p(st|Y 1:t, s0, C = c), for which we can marginalize out C to re-obtain the full posterior
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distribution:

p(st|Y 1:t, s0) =
∑
c∈C

p(st|Y 1:t, s0, C = c)p(C = c|Y 1:t, s0). (5.1)

The association of each ensemble member to a class c is static and defined in the

prior distribution s0, as demonstrations must be initially collected for each individual

interaction and hence we have a mapping from demonstrations to classes. This allows

us to calculate the posterior for a specific class, p(st|Y 1:t, s0, C = c), in a similar

manner as Eqs. 3.29-3.30 but limited to the ensemble members x ∈ X(c); this is

covered in Sec. 5.3. We do not restrict ourselves to the case that C is fixed to

a single value c; an interaction may transition between multiple classes over time.

Therefore, the interaction scenarios examined in previous works are special cases of

this formulation and only take on one class value.

5.2 Interaction Classification

In this section, a Reduced-Rank Linear Discriminant Analysis (LDA) method

is proposed for computing the probability of an interaction class, given the current

observations of a human. The method is based on the concept of within-class and

between-class scatter matrices, which are used to perform dimensionality reduction

on the demonstration data.

Given a set of training demonstrations, Y (c)
i ∈ RD×T , for each interaction class

c ∈ C, where 1 ≤ i ≤ N (c), and N (c) denotes the total number of demonstrations for

class c. The within-class demonstration matrix is defined as

M (c) = [(Y
(c)
1 )Do,: , . . . , (Y

(c)

N(c))Do,:] (5.2)

and the between-class demonstration matrix is defined as M =
[
M (1), . . . ,M (|C|)]⊤.
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Multiple Discriminant Analysis is used to find a low-rank representation of M and

perform dimensionality reduction by computing the solution of the Rayleigh coefficient,

which is the ratio of the between-class scatter to within-class scatter. The within-class

scatter matrix is defined as the sum of prior-weighted class covariance matrices:

SW =
∑
c∈C

sN(c)∑
i=1

(M
(c)
:,i − µ(c))(M

(c)
:,i − µ(c))⊤

N (c) − 1

 π(c). (5.3)

The total scatter matrix is defined as:

ST =
∑

m∈rows(M)

(m− µ)(m− µ)⊤, (5.4)

where µ is the total mean vector (defined as the mean over all measurements in

the space) and m is a measurement from the set of all measurements in the space

(i.e, for every row in the M matrix). The between-class scatter matrix is defined

as SB = ST − SW . The s in the summation for SW represents a (fixed) randomly

selected number of samples taken from a training demonstration. By randomly

sampling s points from each demonstration instead of using the full number of samples

for each demonstration, the computational complexity for the scatter matrix is greatly

reduced. Considering the measurements are collected at 120 Hz, sub-sampling the

trajectories does not provide any meaningful loss in information. The eigenvectors,

wi, of the transformation matrix, W , that maximize the ratio of between-class scatter

to within-class scatter are obtained by solving (SB − λiSW )wi = 0.

The eigenvectors corresponding to the k = |C| − 1 largest eigenvalues are selected

to construct the reduced-rank representation of the transformation matrix Wk. The

distribution of samples are subsequently projected onto the k-dimensional subspace

spanned by Wk. For notational simplicity, Z = W⊤
k M and zt = W⊤

k yDo
t are defined.

Finally, the posterior density is computed, taking into account the previous
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observations and the class prior probability. The resulting form is:

log p(C = c | Y1:t, s0) = log p(Y1:t, s0 | C = c) + log p(C = c) + η

= −1

2
(zt − µZ(c))⊤Σ−1

Z (zt − µZ(c)) + log p(C = c) + η. (5.5)

After dropping the quadratic term z⊤
t Σ

−1
Z zt from 5.5, which is independent of c, we

get the resulting form

log p(C = c | Y1:t, s0) = β⊤
c zt + βc0. (5.6)

Here, βc = Σ−1
Z µZ(c) and βc0 = −1

2
µ⊤

Z(c)Σ
−1
Z µZ(c) + log π(c). The posterior can now be

computed by applying the softmax function,

p(C = c | Y1:t, s0) =
eβ

⊤
c zt+βc0∑

j∈C eβ
⊤
j zt+βj0

. (5.7)

5.3 Gain Weigthing

When calculating Eq. 5.1 we must be careful to weight the magnitude of the

ensemble update with the class probability. The intuitive reason is that the standard

ensemble member update of Eq. 3.30 assumes that the observation was generated

from a distribution approximated by that ensemble. However, if there is only a small

probability that the observation was generated from a particular sub-ensemble and

we apply a full-magnitude update then we potentially skew the ensemble members

with an out-of-distribution measurement. Thus, unlike Eq. 3.30, we now weight the

gain coefficient with Eq. 5.7:

xj
t|t = xj

t|t−1 + p(C = c | Y1:t, s0)K(ỹt − h(xj
t|t−1)) (5.8)
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Figure 3. Top left: The observed z positions of the participant’s hands and the
robot’s end effectors during a right-high to left-high interaction. Bottom left: The
corresponding interaction class weights for each hug type, with vertical area equal
to the class probability. Right: The trajectory of the observed DoF (black arrows)
projected to the reduced-rank LDA space, overlaid on the distributions (circles) for
each hug type.
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Chapter 6

EXPERIMENTAL DESIGN

Figure 4. An example of a left-high to right-high interaction. Left: The participant
starts with a left-high interaction. Middle: When switching to the right-high hug, the
robot responds accordingly. Right: The participant hugs the robot.

In order to empirically evaluate B-BIP, an IRB-approved participant study is

conducted which consists of a hugging scenario between a robot and a human.

6.1 Training Data Collection

A motion capture system is utilized to collect data at 120 Hz from participants

wearing a hat and a wristband on each hand, providing a total of three observed

modalities. Although the data contains the 3D positions and orientations for each

modality, the orientation information is not used, as the orientation of the hands and

head is not of interest during the hug interaction. A total of 15 demonstrations of

each interaction type (left-high, middle, and right-high) are collected from 15 different

participants, amounting to 225 demonstration hugs per interaction class and 675 in

total. The term left-high is used to indicate an interaction where the left hand of the

25



robot and the human are raised, such that the human’s left hand approaches the robot

over its right shoulder; the same symmetry holds for the right-high interaction, and

middle is used to denote a hug where the robot hugs with arms at the same height

(see Fig. 4). A response elicitation technique (Campbell et al., 2019a) is applied, in

which the robot actuates according to an open-loop control policy, and the human

responds accordingly. Outlier training demonstrations with any DoF value outside of

four standard deviations from the distribution of demonstrations at the same point in

time are removed from the dataset. Subsequently, an 80-20 percent train-test split is

employed to train and validate the methods for mean-squared error (MSE) comparison.

This results in 439 training demonstrations and 110 validation demonstrations.

6.2 Prediction Methods

The goal of the study is to compare 1) B-BIP, 2) BIP, 3) Probabilistic Movement

Primitives (ProMP) (Ewerton et al., 2015; Maeda et al., 2017; Paraschos et al., 2013),

and 4) a LSTM network, all of which are evaluated on non-switching interactions (left-

high, middle, and right-high hugs) as well as on switching interactions (transitions from

either left-high to right-high or right-high to left-high hugs). The LSTM architecture

contains: 28 hidden units (twice the number of DOFs from the robot), a dropout

layer with rate of 0.2, a batch normalization layer, a fully-connected layer with 28

units, and a fully-connected layer with 14 units at the output. The LSTM was trained

using a sliding window with a queue data structure, wherein the last n (window size)

timesteps are used to predict the next action. This setup allows for a computationally

efficient way of predicting actions during inference, compared to using the full history

at every timestep which becomes slower as time progresses. In the case of ProMP,
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phase estimation is performed via Dynamic Time Warping (DTW) as described in

(Maeda et al., 2017). All methods are trained on the 439 demonstrations previously

described; the alternative methods treat each interaction as one class while Blending

takes into account the interaction class labels.

6.3 Hypotheses

Three critical factors are identified for evaluation when comparing the B-BIP to

alternative methods. After every hug, the following questions are posed:

1. On a scale of 1 to 5, how good was the timing of the robot during the interaction?

2. On a scale of 1 to 5, how well did the robot match your type of hug during the

interaction?

3. On a scale of 1 to 5, how responsive was the robot to your motion?

The main hypotheses are stated below, applying to both non-switching and

switching interactions:

• H1: Proposed method better matches the hug type than baseline methods.

• H2: Proposed method has better timing than baseline methods.

• H3: Proposed method elicits more responsive behavior than baseline methods.

6.4 Participant Study

The participant study was conducted on 22 new participants whose data was

not used to train the methods, including 4 female and 18 male participants between

the ages of 18 and 53. A preliminary power analysis for the Wilcoxon test (which
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is used to conduct the hypotheses, see Section 7) indicates that a sample size of

n = 20 is sufficient to achieve a power level of 0.9, hence the number of participants.

Every participant performed 24 hugs such that each method was deployed on the

three non-switching interactions (totaling 12) and on switching interactions for the

remaining 12. For every hug, the participant is assigned an interaction and the robot

is assigned a method, both of which are randomly drawn without replacement. In the

switching interactions, participants performed left-high to right-high hugs, right-high

to left-high hugs, and a randomly chosen option from the former two interactions.

This setup ensures that both switching and non-switching interactions have the same

number of samples for every hypothesis test.

6.5 Quantitative Performance

In addition to the participant study, offline experiments are conducted to quantita-

tively evaluate the performance of the proposed algorithm against the baseline methods

in terms of MSE. All methods predicted a response for the demonstrations in the

validation set as well as for demonstrations from a set of unseen switching interactions.

To obtain the ground truth dataset for the switching interactions, hug trajectories are

manually designed where the robot transitions from left-high to right-high and from

right-high to left-high. A total of 25 demonstrations of the left-to-right interaction

and 25 demonstrations of the right-to-left interaction are collected. In this case, each

of the 5 participants partake in 5 demonstrations per switching interaction, where

the robot executes the designed trajectories. After which, outliers are removed in the

same manner as the validation set, resulting in 39 demonstrations in total.
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Chapter 7

RESULTS AND DISCUSSION

In the following section, the performance of the proposed method is discussed by

analyzing participant responses and MSE prediction values with regard to the given

hypotheses.

7.1 Survey Responses
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Figure 5. Distribution of scores for the three questions- which are used for hypothesis
tests- after switching interactions.
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Participant survey responses are visualized in Fig. 5 as a histogram, where a

qualitative difference in distributions can be observed. Notably, B-BIP yields the

largest number of survey responses with a maximum score of 5 for each question. When

performing hypothesis tests, the assumption that responses across different treatments

are independent cannot be made; namely, every participant partakes in the same set

of methods. Additionally, given that the variable of interest, score, takes on an integer

value from 1 through 5 (as in the Likert scale) and that the residual of scores differences

do not appear to be normally distributed, a paired non-parametric hypothesis test

is chosen. A one-way repeated measures analysis of variance is conducted to test

for differences in methods across participant responses by using the Friedman test.

After obtaining a p-value of p < 10−5, post-hoc analysis is performed by applying

the two-sided Wilcoxon signed-rank test to every baseline method paired with the

proposed method. To account for multiple comparisons, a Bonferroni correction is

applied. This procedure is performed separately for non-switching and switching

interaction scores. For a given hypothesis test, there are 66 pairs of responses (i.e,

22 participants who perform 3 switching/non-switching interactions), and each pair

contains the participant’s scores to the question of interest for the methods being

compared.
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Switching H1: p-value H2: p-value H3: p-value

B-BIP vs. BIP
B-BIP vs. ProMP
B-BIP vs. LSTM

3.62× 10−7 1.94× 10−6 6.56× 10−8

6.16× 10−7 1.25× 10−7 2.27× 10−7

6.64× 10−4 9.85× 10−2 1.82× 10−4

Supported Yes Partially Yes

Non-Switching H1: p-value H2: p-value H3: p-value

B-BIP vs. BIP
B-BIP vs. ProMP
B-BIP vs. LSTM

1.00 1.21× 10−1 1.00
2.29× 10−1 3.08× 10−3 1.59× 10−2

4.80× 10−4 1.40× 10−4 5.70× 10−5

Supported Partially Partially Partially

Table 1. Top: p-values for Switching Interactions. Bottom: p-values for Non-Switching
Interactions. Grey cells indicate a p-value greater than α = 0.05.

The resulting significance results are shown in Table 1. For switching hugs, it

was found that participants strongly preferred B-BIP over all baseline methods with

respect to hugging type, timing, and responsiveness. Hypotheses H1 and H3 were

fully supported with participants reporting B-BIP to offer improved timing and

responsiveness over BIP, ProMP, and LSTM. Hypothesis H2 was partially supported,

with participants finding B-BIP to yield better timing than BIP and ProMP with

statistical significance, but not to LSTM. Responses are more mixed for non-switching

hugs, as participants did not prefer B-BIP over BIP in any category, while preferring

B-BIP over ProMP only in terms of timing (H2) and responsiveness (H3). These

results are not unexpected, as any given single interaction falls within the prior

distribution modeled by BIP, which means it is not unreasonable for B-BIP to perform

similarly. B-BIP was, however, preferred over the LSTM for all categories, indicating

that LSTM struggled to generalize with the small number of training demonstrations.
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7.2 Responsiveness
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Figure 6. Top: The average of the time lags (in seconds) which maximize the
correlation coefficients (below) between human and robot trajectories over all switching
interactions from the participant study (see Section 7.2).

In order to further assess the responsiveness, an evaluation of how well the robot

matched switching interactions from the group of test participants was performed.

The translation (backwards in time, in seconds) was calculated, which, when applied

to the robot end effector trajectories, maximizes the sum of the Pearson correlation

coefficients from: 1) the z position of the human’s right hand with the z position of

the robot’s eight end effector, and 2) the z position of the human’s left hand with

the z position of the robot’s left end effector. Namely, samples from these matching

modalities (from the recorded test interactions) were paired to compute the correlation

coefficients, and the average was taken over all switching interactions for every method.

These calculations take advantage of the symmetrical nature of the interaction, and

the intuition here is that preferable methods should exhibit strong correlations with
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the participant within a small time lag, especially when the switching occurs- with a

perfect response having zero time delay. Figure 6 shows that B-BIP has a correlation

which is maximized at the smallest time delay of all methods, and B-BIP produces

the highest total correlation (i.e, is the sum of the correlation coefficients from the left

and right matching modalities), with a value of 1.31 out of a maximum value of 2.0.

These findings provide further support toward the hypothesis that B-BIP exhibits

better responsiveness during switching interactions.

7.3 Quantitative Analysis

Switching Non-Switching

BIP 0.127 ± 0.008 0.040 ± 0.002
ProMP 0.128 ± 0.005 0.036 ± 0.001
LSTM 0.107 ± 0.005 0.102 ± 0.004
B-BIP 0.062 ± 0.005 0.018 ± 0.000

Table 2. MSE values of the controlled DoFs (predicted at each time step) compared to
the ground-truth response, using all validation demonstrations. Green cells indicate
the method with the smallest mean values. Tukey’s Range Test indicates statistical
significance for B-BIP in all cases, having p < 10−5 in all cases.

The MSE values for all controlled DoFs in the quantitative offline experiments were

shown in Table 2. It was found that B-BIP yielded significantly lower prediction errors

than all baseline methods for both switching and non-switching hug types. From the

significance in switching hug types, it can be concluded that the interaction detection

mechanism worked as intended and yielded more accurate inference than BIP. The

significance for non-switching hugs was somewhat surprising given the lack of statistical

significance in the survey responses for the non-switching hugs in Sec. 7.1, and it it
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conjectured that error values of this magnitude did not always consistently result in

noticeable behavioral differences. It is clear, however, that despite non-switching hugs

falling within BIP’s prior distribution, the wider distribution resulted in significantly

larger spatio-temporal errors when compared to the per-interaction priors of B-BIP.
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Chapter 8

CONCLUSION

This thesis presents the mathematical foundations for an imitation learning al-

gorithm capable of adapting to a variety of different hugging interaction scenarios

by learning from expert demonstrations. A carefully-designed user study was carried

out to validate whether the method produced more responsive, timely, and suitably-

matching behavior, all of which were supported through qualitative and quantitative

analysis. Notably, Blending BIP achieved 1) statistically significant participant re-

sponses on switching interactions for most hypotheses, 2) a nearly twofold reduction

in mean-squared prediction error compared to the second-best methods, and 3) the

highest correlation and lowest response lag with test participants. These results can

hopefully be extended to novel scenarios outside of the scope of this work, especially

where variations in human-robot interactions are commonly found.
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