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ABSTRACT

In the developing field of nonlinear plasmonics, it is important to understand the nonlinear

responses of the metallic nanostructures. In the present thesis, rigorous electrodynamical sim-

ulations based on the fully vectorial three-dimensional nonlinear hydrodynamic Drude model

describing metal coupled to Maxwell’s equations are performed to investigate linear and nonlin-

ear responses of the plasmonic materials and their coupling with quantum emitters.

The first part of this thesis is devoted to analyzing properties of the localized surface plas-

mon resonances of metallic nanostructures and their nonlinear optical responses. The behavior

of the second harmonic is investigated as a function of various physical parameters at different

plasmonic interfaces, revealing highly complex dynamics. By collaborating with several research

teams, simulations are proven to be in close agreement with experiments, both quantitative and

qualitative.

The second part of the thesis explores the strong coupling regime and its influence on the sec-

ond harmonic generation. Considering plasmonic systems of molecules and periodic nanohole

arrays on equal footing in the nonlinear regime is done for the first time. The results obtained

are supported by a simple analytical model.
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Chapter 1

INTRODUCTION

1.1 Motivation

Plasmonics is a subfield of nanophotonics. It studies the interaction of light and matter

through Surface PlasmonResonances (SPRs), either localized or propagating. Those resonances

correspond to collective oscillations of the conduction electrons inmetal. Collectively oscillating

free electrons result in highly localized electromagnetic energy build-up on a surface of the inter-

face. The size of localization is comparable to or smaller than thewavelength of the excited optical

pulse. It is a very powerful tool to study fundamental properties of light and its interaction with

matter well below the diffraction limit (Martin-Moreno 2009).

Nanoscale structures are studied by nanoplasmonics. There are a lot of various fascinating

applications as an optical data storage (Black et al. 2000; Mansuripur et al. 2009; Sato, Oike,

and Hanashima 2009; Zou et al. 2012), biosensing and imaging (Alagiri, Rameshkumar, and

Pandikumar 2017; Bengali and Giri 2018; Rodrigues et al. 2018; Jain et al. 2008; Lee and El-

Sayed 2006), photoinduced and heat-assisted drug delivery (Medici et al. 2015; Jain, El-Sayed,

and El-Sayed 2007; Zhang 2015; Tran et al. 2017).

Moreover, SPRs are very sensitive to tuning the shape, roughness of the edges, incident pulse,

etc. bringing a great difference to the response (Sarychev and Shalaev 2007). That provides flexi-

bility in the desired resonant frequency. The resulting resonance can range from the visible part

of the spectrum to the deep infrared (Taliercio and Biagioni 2019).

The interaction between matter and light can result in strong coupling when the coupling

strength becomes larger than at the highest energy damping rate. The emitted photon from the
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matter excites opticalmodes in the environment, which in turn excites again thematter, initiating

a coherent and reversible exchange of energy between the two systems (Törmä and Barnes 2015).

When this is the case, it opens a wide range of optical phenomena to study. But the strong cou-

pling regime remained a theoretical topic for a long time. It required cryogenic temperatures to

have an energy exchange faster than any other relaxations or loss mechanisms in matter. Eventu-

ally it was experimentally observed (Goy et al. 1983; Kaluzny et al. 1983; Haroche and Kleppner

1989; Thompson, Rempe, and Kimble 1992; Rempe, Walther, and Klein 1987). But still, there

are a lot of possibilities for the applications that are not investigated yet because of the complexity

of the experimental setup.

The scope of this work is twofold:

1. To investigate properties of the Second Harmonic (SH) generation at various metal inter-

faces;

2. To study the strong coupling between quantum emitters and plasmons in the nonlinear

regime.

In this thesis, optical properties of structures with experimentally realizable parameters are

considered, both qualitative and quantitative comparisons of the numerical simulations and ex-

perimentally obtained results are presented, the sensitivity of the second harmonic generation to

the shapes of the nanostructures, to the incident polarization is discussed, the interaction of the

plasmonic interfaces with quantum emitters under strong coupling conditions is shown and sup-

ported by the analytical model. Also, a detailed overview of the theoretical aspects and numerical

approaches is provided.
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1.2 Optical Constants

The optical response of a material to the incident light is expressed as the complex refractive

index𝛮 since some part of the light will be absorbed:

𝛮 = 𝑛 + 𝑖𝑘, (1.1)

where 𝑛 is the refractive index that indicates the phase velocity, 𝑘 is the extinction or absorption

coefficient that shows the amount of attenuationwhen the light propagates through thematerial.

Another form to describe this response is through the complex dielectric function 𝜖:

𝜖 = 𝜖′ + 𝑖𝜖″, (1.2)

where 𝜖′ is the real part of the permittivity and 𝜖″ is the imaginary part of the permittivity that

shows absorption losses if it is positive and gains if it is negative.

Equations (1.1) and (1.2) are totally equivalent. Recalling that 𝜖 = 𝛮2, one can obtain the

relation between the real and imaginary parts of𝛮 and 𝜖. In other words:

𝜖′ + 𝑖𝜖″ = 𝑛2 − 𝑘2 + 2𝑖𝑛𝑘. (1.3)

Equating the real and imaginary parts, one can obtain the following relationships:

𝜖′ = 𝑛2 − 𝑘2,

𝜖″ = 2𝑛𝑘.
(1.4)

Expressing𝑛 and 𝑘 through 𝜖′ and 𝜖″, one can get these formulas (Bohren andHuffman1983;

Jackson 2012):

𝑛 = √√𝜖
′2 + 𝜖″2 + 𝜖′

2 ,

𝑘 = √√𝜖
′2 + 𝜖″2 − 𝜖′

2 .
(1.5)
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The material is assumed to be not magnetic so that the permeability 𝜇 = 𝜇0. The dielectric

constant can be determined by observing the optical power reflected and transmitted from the

matter.

Different classes of materials have been explored for plasmonics applications, including ce-

ramics, semiconductors, and metals, depending on the desired wavelength range of operation

(Naik et al. 2014). The optical properties ofmetals are not the same as for the standard dielectrics.

The presence of free conduction electrons results in large electrical conductivity. Especially no-

ble metals such as Ag (silver) and Au (gold) have been extensively explored. Their real part 𝜖′ is

negative (Palik 1998), which is the origin of their plasmon-related effects. That is why their local-

ized SPRs and surface plasmon-polariton waveguiding properties throughout the visible range

are still of great interest in plasmonics (Maier 2007).

1.3 Theory of Plasmonic Materials

Looking into the original definition of the term ‘plasmon’, one can find (Pines 1956):

The valence electron collective oscillations resemble closely the electronic plasma
oscillations observed in gaseous discharges. We introduce the term ‘plasmon’ to
describe the quantum of elementary excitation associated with this high-frequency
collective motion.

Thus, a plasmon is a quantum quasi-particle representing the elementary excitations, or

modes, of the charge density oscillations in a plasma. Froman electromagnetic point of view,met-

als are plasmas, comprising fixed, positive ion cores and mobile conduction electrons. It was pre-

dicted (Ritchie 1957) that bulk plasmas can sustain longitudinal plasma oscillations – plasmons,

oscillationswhose resonant frequency arises from the restoring force that the altered charge distri-

bution exerts on themobile charges when they are displaced from equilibrium (Powell and Swan

1959; Yamamoto, Araya, and García de Abajo 2001). For a bulk plasma, this plasmon frequency,
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𝜔𝑝, is given by (Kittel 1956):

𝜔2𝑝 =
𝑛𝑒2
𝜖0𝑚

, (1.6)

where 𝑛 is the number density of mobile charge carriers, 𝑒 is their charge,𝑚 is their mass, and 𝜖0
is the relative permittivity of free space.

Electromagnetic radiation (light) incident on the plasma at a frequency below the plasma fre-

quency induces motion in the charge carriers that acts to screen out the incident field – incident

waves are reflected; above the plasma frequency the charges are unable to respondquickly enough

to screen out the incident field and the waves are instead transmitted.

To include dissipation, one can introduce a damping term in addition to the plasma fre-

quency. This results in the Drude model, where the frequency-dependent relative permittivity

of the metal, 𝜖𝑚(𝜔), is given by (Kreibig and Vollmer 1995):

𝜖𝑚(𝜔) = 1 −
𝜔𝑝

𝜔2 + 𝑖𝛾𝜔, (1.7)

where 𝛾 is the relaxation frequency associated with themetal (it is the inverse of the characteristic

time interval between scattering events that dampen the motion of the conduction electrons).

Surface Plasmon-Polaritons (SPPs) are oscillations of charge on a metal-dielectric boundary

that are able to produce intense, highly localized evanescent fields. A quantum of surface charge

oscillation (a plasmon) couples to a quantum of light (a photon), leading to a system that is a

hybrid of the two independent entities.

SPPs allow going beyond the diffraction limit because as can be seen from the dispersion

curve, the wavelength corresponding to the SPP can be made much smaller than that of light for

a given frequency of excitation (Barnes, Dereux, and Ebbesen 2003).

5



Chapter 2

THEORETICAL BACKGROUND

The interaction between light andmatter is very complicated. In order to be able to simulate

it numerically, one shouldunderstand the theoretical aspects of this phenomenon. The following

chapter covers the needed background that is considered later in the numerical simulations.

2.1 Electromagnetic Radiation: Maxwell’s Equations

The electromagnetic radiation is described classically in accordancewithMaxwell’s equations

(Griffiths 2017):

∇ ⋅ E = 𝜌
𝜖0
,

∇ ⋅ B = 0,

𝜇0
𝜕H
𝜕𝑡 = −∇ × E,

𝜖0
𝜕E
𝜕𝑡 = ∇ ×H − J,

(2.1)

where𝜌 and J are the total charge and current densities, respectively, 𝜖0 and𝜇0 are the permittivity

and permeability of free space. J = 𝜕P
𝜕𝑡 is the current density in spatial regions occupied by metal.

The fundamental law of conservation of charge (the net charge of an isolated system will

always remain constant) could be derived from (2.1). The corresponding equation is called ‘con-

tinuity equation’:
𝜕𝜌
𝜕𝑡 + ∇ ⋅ J = 0. (2.2)

This equation implies that the change in some particular volumewill be equal to the amount

coming into this volume minus outgoing flux of charge.

6



It is also useful to introduce the definition of dipole moment and polarization since Section

4.1 highly relies on them. An electric dipole moment represents the separation of the positive

and negative charges in the media. To characterize dipoles, electric dipole moment is used. It is

a vector quantity that points from the negative charge towards the positive one. In a toy model,

there are two point charges with the same value 𝑞 of the charge but with different signs. Those

charges are separated by a distance 𝑑. Then the electric dipole moment can be calculated as:

𝑝 = 𝑞𝑑. (2.3)

Under an external electric field, applied to amedia, the internal charges obtain electric dipole

moments. Their presence leads to amacroscopic polarization densityP (dipolemoment per unit

volume). Together they are connected by the following equation:

𝜌𝑏 = −∇ ⋅ P, (2.4)

where 𝜌𝑏 is the bound charges.

In the present thesis, both linear and nonlinear polarizations will be under the scope. If the

media is homogeneous and isotropic, the polarization is aligned with and proportional to the

electric field E:

P = 𝜒𝜖0E, (2.5)

where 𝜒 is the electric susceptibility of the media.

Going into a more complicated case, where the media is no longer isotropic, 𝜒 becomes a

tensor 𝜒𝑖𝑗 and the expression for polarization is:

𝛲𝑖 = ∑
𝑗
𝜖0𝜒𝑖𝑗𝛦𝑗. (2.6)

So one can see that polarization is no longer linearly proportional to the electric field E. For

a better understanding of equation (2.6), it is broken down using a Taylor series:

𝛲𝑖
𝜖0
= ∑

𝑗
𝜒(1)𝑖𝑗 𝛦𝑗 +∑

𝑗𝑘
𝜒(2)𝑖𝑗𝑘𝛦𝑗𝛦𝑘 +∑

𝑗𝑘𝑙
𝜒(3)𝑖𝑗𝑘𝑙𝛦𝑗𝛦𝑘𝛦𝑙 + … , (2.7)
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where 𝜒(1) is the linear susceptibility, 𝜒(2) is the second-order susceptibility, and 𝜒(3) is the third-

order susceptibility.

2.2 Metal: DrudeModel

Once a strong platform is established for how to characterize radiation around, the next ques-

tion that should be addressed is how to describe the interactions inside the medium. The Drude

model can be used. There, it is assumed that metal is an electron gas, with electrons moving in

straight lines until they collide with each other, or with the positive background particles that

must be there to compensate for charge neutrality. Here is the list of basic assumptions:

• Electron-electron interaction between collisions is ignored;

• Electron-ion interaction is also neglected;

• Collisions happen instantaneously and mostly with ions;

• Electrons move along a straight line between the collisions;

• Electrons achieve thermal equilibrium with their environment only through collisions.

To derive the Drude dielectric function, the equation of motion for the momentum p per

electron can be used:
𝑑p
𝑑𝑡 = −p𝜏 − 𝑒E, (2.8)

where 𝜏 is the relaxation time.

The equation for the current density is:

J = −𝑛𝑒v = −𝑛𝑒p𝑚𝑒
, (2.9)

where𝑚𝑒 is the electron mass, 𝑛 is the electron density, and v is the electron velocity.
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Combining (2.8) with (2.9) and assuming that there is a steady-state solution of the form

p(𝑡) = 𝑅𝑒 [p(𝜔)𝑒𝑥𝑝(−𝑖𝜔𝑡)], one can get:

J(𝜔) = 𝑛𝑒2
𝑚𝑒(1/𝜏 − 𝑖𝜔)

E(𝜔). (2.10)

Recalling Ohm’s law:

J(𝜔) = 𝜎(𝜔)E(𝜔), (2.11)

where Drude conductivity is:

𝜎(𝜔) = 𝑛𝑒2𝜏
𝑚𝑒(1 − 𝑖𝜔𝜏)

. (2.12)

Introducing the current density into Maxwell’s equations, the wave equation is:

∇2E(r) + 𝜔2
𝑐2 𝜖(𝜔)𝜇E(r) = 0, (2.13)

where 𝜖(𝜔) is:

𝜖(𝜔) = 1 + 𝑖𝜎(𝜔)
𝜖0𝜔

. (2.14)

Combining this equation of 𝜖(𝜔) with Drude conductivity, one can obtain the following

result:

𝜖(𝜔) = 1 −
𝜔2𝑝

𝜔(𝜔 + 𝑖𝛾) , (2.15)

where 𝛾 = 1
𝜏 is the Drude damping rate, 𝜔𝑝 = √ 𝑒2𝑛

𝑚𝑒𝜖0 is the plasma frequency. This dielectric

expression only considers free electrons. If the response of both bound and free electrons in a

metal is combined in one dielectric dependence, one can get the following:

𝜖(𝜔) = 𝜖∞(𝜔) −
𝜔2𝑝

𝜔(𝜔 + 𝑖𝛾) , (2.16)

where 𝜖∞(𝜔) is the contribution of the bound electrons.

9



2.3 Metal: Drude-Lorentz Model

One simple way to introduce the Drude model is by using the Lorentz model for the atomic

polarizability (Jackson 2012; Dressel, Gruner, and Grüner 2002). It treats the interaction of

an electromagnetic wave with a specific electronic state as a classical harmonic oscillator. The

equation of motion for the coordinate r representing a small perturbation of the electrons from

the ground state in an external electric field E is (Landau and Lifshitz 1982):

𝑚(𝑑
2r
𝑑𝑡2 + 𝜔

2
0r + 𝛾

𝑑r
𝑑𝑡) = −𝑒E, (2.17)

where 𝛾 is the dissipation coefficient and 𝜔0 is the resonance frequency.

Equation (2.17) is similar to a classical forced harmonic oscillator with damping. This can

be solved easily using complex notations for harmonic fields. In a first approximation, it can be

assumed that the conduction electrons in a metal are not bound and can be described by the

Lorentz model without restoring force. Since the free electrons are distributed uniformly in the

metal, their contributions to the total optical susceptibility are the sum of their individual polar-

izabilities, without any local field correction:

−𝜔2r = −𝜔20r + 𝑖𝛾𝜔r +
𝑒E
𝑚 . (2.18)

Assuming that the displacement is along x-axis, it can be solved as:

𝑥 = 𝑒
𝑚

1
𝜔20 − 𝜔2 − 𝑖𝜔𝛾

𝛦0. (2.19)

Using the dipole moment definition as 𝑝 = 𝑒𝑥, the polarization density becomes:

𝛲 = 𝑛𝑒𝑥 = 𝑛𝑒2
𝑚

1
𝜔20 − 𝜔2 − 𝑖𝜔𝛾

𝛦0, (2.20)

where n is the density of oscillators.
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So the Drude-Lorentz permittivity can be obtained as:

𝜖(𝜔) = 1 + 𝑛𝑒2
𝜖0𝑚

1
𝜔20 − 𝜔2 − 𝑖𝜔𝛾

(2.21)

And the plasma frequency 𝜔𝑝 is defined as:

𝜔𝑝 = √ 𝑛𝑒2
𝑚𝜖0

. (2.22)

A factor 𝜖∞ can substitute the constant in (2.21) to account for other contributions. Thedamping

term, 𝛾, corresponds to the collision rate of free electrons with the crystal or impurities. It is

usually small compared to 𝜔 in the regions of interest. The optical response of the positive ions

in the crystal has so far been ignored. In a first approximation (which is at least correct at long

wavelengths), this contributes to a constant background real dielectric function 𝜖∞ ≥ 1. It affects

the optical response of the crystal and the dynamics of the free electrons.

To describe real and imaginary parts of the dielectric function better, one can adopt another

model: the Drude function with the more general Lorentz function (Rakić et al. 1998):

𝜖(𝜔) = 𝜖𝑟,∞ −
𝜔2𝑝

𝜔2 − 𝑖𝛾0𝜔
−

𝛮
∑
𝑛=1

𝛥𝜖𝑟,𝑛𝜔2𝑛
𝜔2 − 𝑖𝛾𝑛𝜔 − 𝜔2𝑛

, (2.23)

where the third term is the sum over contributions arising from the 𝑛th Lorentz oscillator. It can

include interband transitions and motions of the ionic cores.

2.4 Metal: Hydrodynamic DrudeModel

The hydrodynamic model extends the Drude description by introducing some kind of inter-

actions in the electron gas. To describe this motion, the Euler equation is used:

𝜕v
𝜕𝑡 + (v ⋅ ∇)v + 𝛾v = − 𝑒

𝑚𝑒
(E + v × B) − ∇𝑝

𝑛𝑚𝑒
, (2.24)
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where 𝑛 is the electron density, v is their velocity, and 𝑝 is the electron gas pressure. Defining the

current density as J = 𝑛𝑒v, the equation of motion for free electrons (2.24) becomes:

J̇ − �̇�
𝑛J + (J ⋅ ∇)

J
𝑛 + 𝛾J = 𝑛𝑒2

𝑚𝑒
E + 𝑒

𝑚𝑒
J × B − 𝑒∇𝑝

𝑚𝑒
. (2.25)

For free electrons, the continuity equation is:

𝜕𝑛
𝜕𝑡 + ∇ ⋅ (𝑛v) = 0. (2.26)

Substituting the current density there, it becomes:

𝜕𝑛
𝜕𝑡 +

1
𝑒∇ ⋅ J = 0. (2.27)

Integration by time gives:

𝑛 = 𝑛0 −
1
𝑒∇ ⋅ ∫ J𝑑𝑡, (2.28)

where 𝑛0 is the background equilibrium charge density in the absence of any applied field. Intro-

ducing macroscopic polarization density as Ṗ = J, equation (2.28) becomes:

𝑛 = 𝑛0 −
1
𝑒∇ ⋅ P. (2.29)

Assuming �̇� ≪ 𝑛, the ratio �̇�
𝑛 may be expanded in powers of 1

𝑛0𝑒 :

�̇�
𝑛 = − 1

𝑛0𝑒
∇ ⋅ Ṗ (1 − 1

𝑛0𝑒
∇ ⋅ P)

−1
= −∇ ⋅ Ṗ

𝑒𝑛0
− 1
𝑛20𝑒2

(∇ ⋅ Ṗ) (∇ ⋅ P) + 𝒪 ( 1
𝑛30𝑒3

) . (2.30)

Substituting equation (2.30) into (2.25) and neglecting quadratic and higher order terms,

one can get (Scalora et al. 2010):

P̈ + 𝛾Ṗ = 𝑛0𝑒2
𝑚𝑒

E − 𝑒
𝑚𝑒

E (∇ ⋅ P) + 𝑒
𝑚𝑒

Ṗ × B − 1
𝑛0𝑒

[(∇ ⋅ Ṗ) Ṗ + (Ṗ ⋅ ∇) Ṗ] − 𝑒∇𝑝
𝑚𝑒

. (2.31)

The specific impact of pressure is seldom considered in the dynamics (Sipe et al. 1980; Agra-

novich 2012). But in order to archive a higher precision of the numerical calculations, the pres-

sure term should be considered. Pressure might be defined as 𝑝 = 𝑛𝑘𝛣𝛵, where 𝑘𝛣 is the Boltz-

mann constant and 𝛵 is the temperature.
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Using the continuity equation (2.30), one can obtain:

−𝑒∇𝑝𝑚𝑒
= − 𝑒

𝑚𝑒
𝑘𝛣𝛵∇ (𝑛0 −

1
𝑒∇ ⋅ P) = 𝑘𝛣𝛵

𝑚𝑒
∇ (∇ ⋅ P) . (2.32)

The quantum pressure is usually described as:

𝑝 = 𝑝0 (
𝑛
𝑛0
)
𝛾𝑝
, (2.33)

where 𝛾𝑝 = 𝐷+2
𝐷 and𝐷 is the dimensionality of the problem.

2.4.1 Two Dimensional Case

Here𝐷 = 2 and 𝛾𝑝 = 2. The quantum pressure becomes:

𝑝 = 𝑝0𝑛2
𝑛20

(2.34)

and its gradient is:

∇𝑝 = 𝑝0
𝑛20
2𝑛∇𝑛. (2.35)

The pressure terms could be transformed as:

−𝑒∇𝑝𝑚 = − 2𝑒𝑝0𝑚𝑒𝑛20
𝑛∇𝑛 = − 𝑒𝑝0

𝑚𝑒𝑛20
∇ (𝑛2) = − 𝑒𝑝0

𝑚𝑒𝑛20
∇ (𝑛0 −

∇ ⋅ P
𝑒 )

2
=

−𝑒𝑝0𝑚𝑒
∇(1 − 2∇ ⋅ P

𝑒𝑛0
+ 2 ⋅ 1 ⋅ 12! (

∇ ⋅ P
𝑒𝑛0

)
2
+ …) ≃

−𝑒𝑝0𝑚𝑒
(− 2

𝑒𝑛0
∇ (∇ ⋅ P) + 1

(𝑒𝑛0)2
2 (∇ ⋅ P) ∇ (∇ ⋅ P)) =

2𝛦𝐹
𝑚𝑒

∇ (∇ ⋅ P) − 2𝛦𝐹
𝑚𝑒𝑛0𝑒

(∇ ⋅ P) ∇ (∇ ⋅ P) .

(2.36)

2.4.2 Three Dimensional Case

Here𝐷 = 3 and 𝛾𝑝 = 5/3. The quantum pressure equals:

𝑝 = 𝑝0 (
𝑛
𝑛0
)
5/3

(2.37)
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and its gradient is:

∇𝑝 = 5
3
𝑝0
𝑛5/30

𝑛2/3∇𝑛. (2.38)

Substituting everything into the pressure term, one can obtain:

−𝑒∇𝑝𝑚 = − 𝑒
𝑚𝑒

5
3
𝑝0𝑛2/3

𝑛5/30
∇𝑛 = − 𝑒

𝑚𝑒

5
3 (

𝑛
𝑛0
)
2/3

𝛦𝐹∇𝑛 = − 𝑒
𝑚𝑒

5
3𝑛

−2/3
0 𝛦𝐹 (𝑛2/3∇𝑛) =

− 𝑒
𝑚𝑒

𝑛−2/30 𝛦𝐹 (∇𝑛5/3) = − 𝑒
𝑚𝑒

𝑛−2/30 𝛦𝐹∇ (𝑛0 −
∇ ⋅ P
𝑒 )

5/3
= − 𝑒

𝑚𝑒
𝑛0𝛦𝐹∇ (1 − ∇ ⋅ P

𝑒𝑛0
)
5/3

=

− 𝑒
𝑚𝑒

𝑛0𝛦𝐹∇ [1 + 5
3 (−

∇ ⋅ P
𝑒𝑛0

) + 5
3
2
3
1
2! (−

∇ ⋅ P
𝑒𝑛0

)
2
+ 5
3
2
3 (−

1
3)

1
3! (−

∇ ⋅ P
𝑒𝑛0

)
3
+

𝒪 ((−∇ ⋅ P
𝑒𝑛0

)
4
)] = − 𝑒

𝑚𝑒
𝑛0𝛦𝐹 [−

5
3
1
𝑒𝑛0

∇ (∇ ⋅ P) + 5
9

1
(𝑒𝑛0)2

2 (∇ ⋅ P) ∇ (∇ ⋅ P) +

5
813 (∇ ⋅ P)2 ∇ (∇ ⋅ P) 1

(𝑒𝑛0)3
+ 𝒪 ((−∇ ⋅ P

𝑒𝑛0
)
4
)] = 5

3
𝛦𝐹
𝑚𝑒

∇(∇ ⋅ P)−

10
9
𝛦𝐹
𝑚𝑒

1
𝑛0𝑒

(∇ ⋅ P)∇(∇ ⋅ P) − 5
27

𝛦𝐹
𝑚𝑒

1
(𝑛0𝑒)2

(∇ ⋅ P)2∇(∇ ⋅ P) − 𝒪 ((−∇ ⋅ P
𝑒𝑛0

)
4
) .

(2.39)

Retaining all the terms up to the third-order (Minh Ngo et al. 2022), equation (2.31) be-

comes:

P̈ + 𝛾Ṗ = 𝑛0𝑒2
𝑚𝑒

E − 𝑒
𝑚𝑒

E (∇ ⋅ P) + 𝑒
𝑚𝑒

Ṗ × B − 1
𝑛0𝑒

[(∇Ṗ) Ṗ + (Ṗ∇) Ṗ] −

5
3
𝛦𝐹
𝑚𝑒

∇ (∇ ⋅ P) − 10
9
𝛦𝐹
𝑚𝑒

1
𝑛0𝑒

(∇ ⋅ P) ∇ (∇ ⋅ P) − 5
27

𝛦𝐹
𝑚𝑒

1
(𝑛0𝑒)2

(∇ ⋅ P)2 ∇ (∇ ⋅ P)
(2.40)

The quantum model intrinsically contains a first-order classical ideal electron gas contribu-

tion and nonlinear quantum corrections. It is easy to see the impact of pressure if the equations

are scaled in response to dimensionless time and longitudinal and transverse coordinates:

𝜏 = 𝑐𝑡
𝜆0
,

𝜉 = 𝑧
𝜆0
,

𝑦 = 𝑦
𝜆0
,

(2.41)

where 𝜆0 = 1 𝜇m is arbitrarily chosen as the reference wavelength.
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As a result of this scaling, the following equation is obtained:

P̈ + �̃�Ṗ = 𝑛0𝑒
𝑚𝑒

𝜆20
𝑐2 E −

𝑒
𝑚𝑒

𝜆0
𝑐2 E (∇ ⋅ P) + 𝑒

𝑚𝑒

𝜆0
𝑐 Ṗ × B−

1
𝑛0𝑒

1
𝜆0

[(∇ ⋅ Ṗ) Ṗ + Ṗ (∇ ⋅ Ṗ)] + 5
3
𝛦𝐹
𝑚𝑒

1
𝑐2∇ (∇ ⋅ P) −

10
9
𝛦𝐹
𝑚𝑒

1
𝑛0𝑒

1
𝑐2𝜆0

(∇ ⋅ P) ∇ (∇ ⋅ P) − 5
27

𝛦𝐹
𝑚𝑒

1
𝑛20𝑒2

1
𝑐2𝜆20

(∇ ⋅ P)2 ∇ (∇ ⋅ P) ,

(2.42)

where �̃� = 𝜆0
𝑐 𝛾.

Equation (2.42) shows explicitly the impact of each phenomenon, such as:

• 𝑒
𝑚𝑒

𝜆0
𝑐 Ṗ × B represents the magnetic Lorentz force;

• − 𝑒
𝑚𝑒

𝜆0
𝑐2 E (∇ ⋅ P) is the quadrupole-like Columb term;

• − 1
𝑛0𝑒𝜆0 [(∇ ⋅ Ṗ) Ṗ + Ṗ (∇ ⋅ Ṗ)] indicates the convective term;

• 5
3

𝛦𝐹
𝑚𝑒𝑐2 (∇ (∇ ⋅ P) − 2

3
1

𝑛0𝑒𝜆0 (∇ ⋅ P) ∇ (∇ ⋅ P) − 1
9

1
𝑛20𝑒2𝜆20

(∇ ⋅ P)2 ∇ (∇ ⋅ P)) is electron pres-

sure.

If all the nonlinear terms are neglected, (2.42) becomes:

P̈ + �̃�Ṗ = 𝑛0𝑒
𝑚𝑒

(𝜆0𝑐 )
2
E + (𝜆0𝑐 )

2 5
3
𝛦𝐹
𝑚𝑒

( 1𝜆0
)
2
∇ (∇ ⋅ P) . (2.43)

Even in the linear case, there is still a pressure term. It could directly impact the linear dielec-

tric function of themetal near its walls if the fields are strong enough (i.e., on sharp edges, corners,

etc.).

2.5 Molecular System: Rate Equations

Another system that should be considered before going into simulations details is molecular

emitters. They can be described as a collection of quantum mechanical entities (in a mean-field

approximation). To describe this system, one can start with the Hamiltonian (Sukharev and
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Nitzan 2017):

𝛨 = 𝛨𝛭 + 𝛨𝑅 + 𝛨𝛭𝑅, (2.44)

where𝛨𝛭 = ∑𝑚 ℎ̂𝑚 is a sum of molecular part,𝛨𝑅 is the radiation part, and𝛨𝛭𝑅 = ∑𝑚 ℎ̂𝑚𝑅
represents their interaction.

The molecular density matrix is denoted according to the Liouville equation:

𝑑�̂�
𝑑𝑡 = − 𝑖ℏ [𝛨, �̂�] . (2.45)

Assuming �̂� = ∏𝑚 �̂�𝑚 with 𝛵𝑟𝑚�̂�𝑚 = 1 and𝛨𝑚𝑅 = −E(rm) ⋅ �̂�𝑚, one can take a trace over

all molecules except𝑚th:

𝑑𝜌𝑚
𝑑𝑡 = − 𝑖ℏ [ℎ̂𝑚 − ⟨E(r𝑚)⟩ ⋅ �̂�𝑚, �̂�𝑚] , (2.46)

where ⟨E(r𝑚)⟩ = 𝛵𝑟′ (E ∏
𝑚′≠𝑚

�̂�𝑚′). 𝛵𝑟′ represents trace over the states of all molecules except𝑚th.

Equation (2.46) represents the dynamics of a single molecular dipole under the influence of the

local average electric field at the position of this dipole. The latter includes the incident field and

the average field of all other molecules. For a single molecule within an ensemble of two-level

molecules, equation (2.46) yields:

𝑑𝜌11
𝑑𝑡 = −𝑖E𝜇12ℏ (𝜌12 − 𝜌∗12) ,
𝑑𝜌12
𝑑𝑡 = −𝑖 [E𝜇12ℏ (𝜌22 − 𝜌11) + 𝛺12𝜌12] ,
𝑑𝜌22
𝑑𝑡 = −𝑖E𝜇12ℏ (𝜌12 − 𝜌∗12),

(2.47)

where indices 1 and 2 denote the ground and the excited state, respectively, 𝜇12 is the correspond-

ing transition dipole moment (assumed real), and𝛺12 = (𝜖2 − 𝜖1)/ℏ is the transition frequency.

Defining 𝛸 = 𝜌12 + 𝜌∗12, 𝑌 = 𝜌12 − 𝜌∗12 and noting that 𝑑𝛸/𝑑𝑡 = 𝑖𝛺12𝑌, equation (2.47)
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changes to:

𝑑𝜌11
𝑑𝑡 = − 1

𝛺12

𝑑𝛸
𝑑𝑡

E𝜇12
ℏ ,

𝑑𝜌22
𝑑𝑡 = 1

𝛺12

𝑑𝛸
𝑑𝑡

E𝜇12
ℏ ,

𝑑2𝛸
𝑑𝑡2 = −𝛺2

12 + 2𝛺12
E𝜇12
ℏ (𝜌11 − 𝜌22) .

(2.48)

The densities ofmolecules in state 1 and 2 can be denoted as 𝑛1 = 𝑛𝛭𝜌11, 𝑛2 = 𝑛𝛭𝜌22, where

𝑛1 + 𝑛2 = 𝑛𝛭. Then polarization is defined as P = 𝛸𝑛𝛭𝜇12. After multiplying (2.48) by the

molecular density 𝑛𝛭 and only the last equation also by 𝜇12, assuming an isotropic system, and

averaging over all orientations of the molecular dipole to get ⟨𝜇𝑥𝜇𝑦⟩ = ⟨𝜇𝑥𝜇𝑧⟩ = ⟨𝜇𝑦𝜇𝑧⟩ = 0 and

⟨𝜇2𝑗⟩ = (1/3)𝜇2 for 𝑗 = 𝑥, 𝑦, 𝑧, one can get:
𝑑𝑛1
𝑑𝑡 = − 1

ℏ𝛺12
E ⋅ 𝑑P𝑑𝑡 ,

𝑑𝑛2
𝑑𝑡 = 1

ℏ𝛺12
E ⋅ 𝑑P𝑑𝑡 ,

𝑑2P
𝑑𝑡2 = −𝛺2

12P + 2
3ℏ𝛺12𝜇212E(𝑛1 − 𝑛2).

(2.49)

This form of the Liouville–vonNeumann equations, written in terms of macroscopic polar-

ization, is identical in the absence of relaxation processes to the kinetic equations. Sometimes it is

referred to as rate equations. To account for population relaxation and dephasing, one typically

introduces phenomenological decay constants (Tempel and Aspuru-Guzik 2011). Here, how-

ever, different practices have been used. For the two-level molecular model under discussion, the

standard scheme uses Bloch-type equations, such as (Sukharev and Nitzan 2017):

𝑑𝜌11
𝑑𝑡 = −𝑖E𝜇12ℏ (𝜌12 − 𝜌∗12) + 𝛾21𝜌22,
𝑑𝜌12
𝑑𝑡 = −𝑖 [E𝜇12ℏ (𝜌22 − 𝜌11) + 𝛺12𝜌12] −

𝛤
2 𝜌12,

𝑑𝜌22
𝑑𝑡 = −𝑖E𝜇12ℏ (𝜌12 − 𝜌∗12) − 𝛾21𝜌22,

(2.50)

where 𝛾21 is the population relaxation rate. The coherence 𝜌12 decays with the rate 𝛤
2 = 𝛾21

2 +

𝛾𝑑, which takes into account pure dephasing rate 𝛾𝑑. These rates are related to the population
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relaxation time 𝛵1, decoherence time 𝛵2, and the pure dephasing time 𝛵∗
2 :

1
𝛵2

= 1
2𝛵1

+ 1
𝛵∗
2
. (2.51)

2.6 Interaction: Strong Coupling

Usually, the environment and matter interact through the spontaneous radiation. But the

emission frequency doesn’t change. If the interaction is strong enough, it brings changes in the

resulting behavior. The energy levels of the emission change. They become inextricably linked

with the levels of the environment. This case is called ‘strong coupling’.

Figure 1. Two Coupled Oscillators

The paradigm model of coupling is two harmonic oscillators (see Fig. 1). The dynamics of

the system is influenced by the original frequencies of the oscillators and by the exchange pro-

cess. Thus, the energy levels of the system are modified. The difference between the original

frequencies and the modified ones depends on the strength of the coupling.

There are two possible regimes (Hümmer et al. 2013):

• Weak coupling – the coupling is very small, so themodifications of the original frequencies

are negligible;

• Strong coupling – the coupling is large, so the modifications become noticeable enough,

and the energy spectrum of emission changes.
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There are two coupled harmonic oscillators in Fig. 1. It is assumed that the resonant frequencies

of the oscillators are the same and equal to 𝜔. The dynamics of the system can be described as

(Novotny 2010):

𝑑2𝑥1
𝑑𝑡2 = 𝜔2𝑥1 + 𝛺2(𝑥1 − 𝑥2) = 0,
𝑑2𝑥2
𝑑𝑡2 = 𝜔2𝑥2 + 𝛺2(𝑥2 − 𝑥1) = 0.

(2.52)

Here 𝛺 characterizes the strength of the coupling between the two oscillators. Equations

(2.52) can be solved in a general form as:

𝑥1(𝑡) = 𝛢 sin(𝜔+𝑡 + 𝐶) + 𝛣𝑠𝑖𝑛(𝜔−𝑡 + 𝐷),

𝑥2(𝑡) = −𝛢𝑠𝑖𝑛(𝜔+𝑡 + 𝐶) + 𝛣𝑠𝑖𝑛(𝜔−𝑡 + 𝐷),
(2.53)

where A, B, C, and D are the constants that could be found from the initial conditions. 𝜔+ and

𝜔− are the normal modes of the coupled oscillator system:

𝜔2+ = 𝜔2𝑐 + 𝛺2,

𝜔2− = 𝜔2𝑐 − 𝛺2,

𝜔2𝑐 = 𝜔2 + 𝛺2,

(2.54)

where 𝜔2𝑐 is the frequency that one of the oscillators would have if the other one was held fixed.

Combining equations in (2.53), one can get:

𝑥1(𝑡) − 𝑥2(𝑡) = 𝛢𝑠𝑖𝑛(𝜔+𝑡 + 𝐶) + 𝛣𝑠𝑖𝑛(𝜔−𝑡 + 𝐷) + 𝛢𝑠𝑖𝑛(𝜔+𝑡 + 𝐶) − 𝛣𝑠𝑖𝑛(𝜔−𝑡 + 𝐷),

𝑥1(𝑡) + 𝑥2(𝑡) = 𝛢𝑠𝑖𝑛(𝜔+𝑡 + 𝐶) + 𝛣𝑠𝑖𝑛(𝜔−𝑡 + 𝐷) − 𝛢𝑠𝑖𝑛(𝜔+𝑡 + 𝐶) + 𝛣𝑠𝑖𝑛(𝜔−𝑡 + 𝐷).
(2.55)

After some simplifications, the following set of equations is obtained:

1
2𝛢 (𝑥1(𝑡) − 𝑥2(𝑡)) = 𝛢𝑠𝑖𝑛(𝜔+𝑡 + 𝐶),
1
2𝛣 (𝑥1(𝑡) + 𝑥2(𝑡)) = 𝛣𝑠𝑖𝑛(𝜔−𝑡 + 𝐷).

(2.56)

The normal modes 𝜔+ and 𝜔− are not related to the motion of either of the oscillators. To

find them, one needs to observe both oscillators at once.

19



Metal

Figure 2. Metal Structure Under Electromagnetic Radiation

Going closer to the subject that is the focus of this thesis, the setupwhere the electromagnetic

radiation is shining from the top of a metal is considered (see Fig. 2).

Electrons in the metal can be treated as a harmonic damped oscillator driven under the elec-

tromagnetic field 𝛦(𝑟, 𝑡). The equation of motion of the following system is:

𝑚(�̈� + 𝛾�̇� + 𝜔20𝑟) = −𝑒𝛦(𝑟, 𝑡), (2.57)

where 𝑒 is the electron charge,𝑚 is the electronmass, 𝜔0 is the frequency of the harmonic oscilla-

tor, and 𝛾 is the damping coefficient.

Assuming that electromagnetic field is harmonic, i.e. 𝛦(𝑟, 𝑡) = 𝛦0𝑒−𝑖𝜔𝑡, one can obtain the

steady-state solution as:

𝑟 = − 𝑒
𝑚

1
𝜔20 − 𝜔2 − 𝑖𝛾𝜔

𝛦0𝑒𝑖𝜔𝑡. (2.58)

The macroscopic polarization 𝛲 is the average dipole moment per unit volume 𝑉. The av-

erage dipole moment is the product of the electron charge and its position. In other words, it

is:

𝑝 = −𝑒𝑟 = −𝑒
2

𝑚
1

𝜔20 − 𝜔2 − 𝑖𝛾𝜔
𝛦0𝑒𝑖𝜔𝑡. (2.59)

Then macroscopic polarization becomes:

𝛲 = 𝛮𝑒2
𝑉𝑚

1
𝜔20 − 𝜔2 − 𝑖𝛾𝜔

𝛦0𝑒𝑖𝜔𝑡. (2.60)
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The linear susceptibility is:

𝜒(𝜔) = 𝛲
𝜖0𝛦

= 𝛮𝑒2
𝑉𝜖0𝑚

1
𝜔20 − 𝜔2 − 𝑖𝛾𝜔

. (2.61)

One can set 𝜒(𝜔) = 𝜒′(𝜔) + 𝑖𝜒″(𝜔), where 𝜒′(𝜔) = 𝛮𝑒2
𝑉𝜖0𝑚

𝜔20−𝜔2
(𝜔20−𝜔2)2+(𝛾𝜔)2

is the real part of

the susceptibility and 𝜒″(𝜔) = 𝛮𝑒2
𝑉𝜖0𝑚

𝛾𝜔
(𝜔20−𝜔2)2+(𝛾𝜔)2

is the imaginary part of the susceptibility that

describes dissipation.

Taking a limit that 𝜔 ≫ 𝛾, the real and imaginary parts of the susceptibility become:

𝜒′(𝜔) ≃ − 𝛮𝑒2
2𝑉𝜖0𝑚𝜔0

𝜔 − 𝜔0
(𝜔 − 𝜔0)2 +

𝛾2
4
,

𝜒″(𝜔) ≃ − 𝛮𝑒2𝛾
4𝑉𝜖0𝑚𝜔0

1
(𝜔 − 𝜔0)2 +

𝛾2
4
.

(2.62)

The dispersion relation for SPP that propagates along the interface between a metal and a dielec-

tric is (Raether 1988):

𝑘𝑆𝛲𝛲 =
𝜔
𝑐 √

𝜖1𝜖2
𝜖1 + 𝜖2

, (2.63)

where 𝜖1 and 𝜖2 are the relative permittivities of a metal and a dielectric.

Then the momentum 𝜅 is:

𝜅2 = 𝜔2(1 + 𝜒(𝜔)) = 𝜔2 (1 + 𝛮𝑒2
𝑉𝜖0𝑚

1
𝜔20 − 𝜔2 − 𝑖𝛾𝜔

) . (2.64)

Equation (2.64) is called ‘dispersion relation’. It can be rewritten as:

(𝜅 + 𝜔)(𝜅 − 𝜔)
𝜔2 = 𝛮𝑒2

𝑉𝜖0𝑚
1

(𝜔0 + 𝜔)(𝜔0 − 𝜔)
. (2.65)

Assuming 𝜔 ≃ 𝜔0, the following assumptions can be made: (𝜅 + 𝜔) ≃ 2𝜔0, (𝜔0 + 𝜔) ≃ 2𝜔0,

𝜔2 ≃ 𝜔20 . Then the dispersion relation becomes:

(𝜅 − 𝜔)(𝜔0 − 𝜔) =
𝛮𝑒2
4𝑉𝜖0𝑚

. (2.66)
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The solution to this equation is:

𝜔± =
𝜅
2 +

𝜔0
2 ± 1

2√
𝛮𝑒2
𝑉𝜖0𝑚

+ (𝜅 − 𝜔0)2. (2.67)

When 𝜅 = 𝜔0, the difference in the energies 𝜔− and 𝜔+ is √ 𝛮𝑒2
𝑉𝜖0𝑚 . It is called ‘normal mode

splitting’ and denoted as𝛺. The analogy for this splitting is Rabi splitting. The quantum theory

gives exactly this dependence on the concentration of the emitters. Interesting to note, that it is

not possible to distinguish between classical and quantum emitters by knowing just the size of

the splitting. It is important to add that the splitting in frequencies implies the energy exchange

between the SPP field and the emitters.
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Chapter 3

NUMERICALMETHODS

Maxwell’s equations (2.1) are used to describe the propagation of electromagnetic waves.

Since they are partial differential equations, analytical solutions exist in only a few simple cases.

Hence, many electromagnetic wave interaction problems are solved by numerical methods.

The Finite-Difference Time-Domain (FDTD) method (Yee 1966) was the first technique in

this class. Since about 1990, when engineers in the general electromagnetic community became

aware of the modeling capabilities afforded by FDTD and related techniques, the interest in this

area has been rapidly expanded (Taflove 1998).

3.1 FDTD

The method employs finite differences as approximations of the spatial and temporal deriva-

tives that contain in Maxwell’s equations.

Taking the Taylor series expansions of the function 𝑓(𝑥) expanded about the point 𝑥0 with

an offset of ± 𝛿
2 :

𝑓 (𝑥0 −
𝛿
2) = 𝑓(𝑥0) −

𝛿
2𝑓

′(𝑥0) +
1
2! (

𝛿
2)

2
𝑓″(𝑥0) −

1
3! (

𝛿
2)

3
𝑓‴(𝑥0) + … , (3.1a)

𝑓 (𝑥0 +
𝛿
2) = 𝑓(𝑥0) +

𝛿
2𝑓

′(𝑥0) +
1
2! (

𝛿
2)

2
𝑓″(𝑥0) +

1
3! (

𝛿
2)

3
𝑓‴(𝑥0) + … . (3.1b)

Subtracting equation (3.1b) from (3.1a) and dividing by 𝛿, one can obtain:

𝑓 (𝑥0 + 𝛿
2) − 𝑓 (𝑥0 − 𝛿

2)
𝛿 = 𝑓′(𝑥0) +

1
3!
𝛿2
22𝑓

‴(𝑥0) + … . (3.2)
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After some simple transformations, one can come up with the following expression:

𝑑𝑓(𝑥)
𝑑𝑥 ∣

𝑥=𝑥0
=
𝑓 (𝑥0 + 𝛿

2) − 𝑓 (𝑥0 − 𝛿
2)

𝛿 + 𝒪(𝛿2). (3.3)

If 𝛿 is sufficiently small, then 𝛿2 is neglectfully small. Thus, the central-difference approxima-

tion is given by:
𝑑𝑓(𝑥)
𝑑𝑥 ∣

𝑥=𝑥0
≃
𝑓 (𝑥0 + 𝛿

2) − 𝑓 (𝑥0 − 𝛿
2)

𝛿 (3.4)

FDTD employs second-order central differences. It solves electric and magnetic fields to-

gether in time and space.

Figure 3. FDTDCell Structure

As shown in Fig. 3, the Yee algorithm centers its E andH components in three-dimensional

space, so that every E component is surrounded by four circulatingH components, and everyH

component is surrounded by four circulating E components. Continuity of tangential E andH

is naturally maintained across an interface of dissimilar materials if the interface is parallel to one

of the coordinate axes.

Employing a leapfrogmethod, all theE values in themodeled space are computed and stored

in memory for a particular time point using previously storedH values. ThenH values are com-
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puted and stored in memory using E values just computed. The cycle begins again with the re-

computation of the E components based on the newly obtainedH. This process continues until

time-stepping is concluded.

Diving into more details of the following approach, it can be shown how the problem could

be solved for the electromagnetic radiation.

Let Yee computational cell be defined by three indices (𝑖, 𝑗, 𝑘):

• Evaluate three components of both E and J at the locations of (𝑖 + 1
2 , 𝑗, 𝑘), (𝑖, 𝑗 + 1

2 , 𝑘),

(𝑖, 𝑗, 𝑘 + 1
2), respectively;

• Evaluate three components of H at the locations of (𝑖, 𝑗 + 1
2 , 𝑘 + 1

2), (𝑖 + 1
2 , 𝑗, 𝑘 + 1

2),

(𝑖 + 1
2 , 𝑗 + 1

2 , 𝑘), respectively;

• Discretize all the derivatives in Ampere’s and Faraday’s laws with finite differences;

• Solve the resulting difference equations to obtain ‘update equations’ that express the fu-

ture fields in terms of past fields;

• Evaluate the magnetic fields one time-step into the future, so they are now known;

• Evaluate the electric fields one time-step into the future, so they are now known;

• Repeat the previous two steps until the fields have been obtained over the desired duration.

A similar approach is used once one includes equations for the hydrodynamic model to describe

the motion of electrons in the metal.

Faraday’s and Ampere’s laws are:

−𝜇0
𝜕H
𝜕𝑡 = ∇ × E = ∣

x0 y0 z0
𝜕
𝜕𝑥

𝜕
𝜕𝑦

𝜕
𝜕𝑧

𝛦𝑥 𝛦𝑦 𝛦𝑧

∣ (3.5)
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J + 𝜖0
𝜕E
𝜕𝑡 = ∇ ×H = ∣

x0 y0 z0
𝜕
𝜕𝑥

𝜕
𝜕𝑦

𝜕
𝜕𝑧

𝛨𝑥 𝛨𝑦 𝛨𝑧

∣ (3.6)

The components of equations (3.5) and (3.6) can be rewritten as:

−𝜇0
𝜕𝛨𝑥
𝜕𝑡 = 𝜕𝛦𝑧

𝜕𝑦 −
𝜕𝛦𝑦
𝜕𝑧 ,

−𝜇0
𝜕𝛨𝑦
𝜕𝑡 = 𝜕𝛦𝑥

𝜕𝑧 − 𝜕𝛦𝑧
𝜕𝑥 ,

−𝜇0
𝜕𝛨𝑧
𝜕𝑡 =

𝜕𝛦𝑦
𝜕𝑥 − 𝜕𝛦𝑥

𝜕𝑦 ,

(3.7)

𝐽𝑥 + 𝜖0
𝜕𝛦𝑥
𝜕𝑡 = 𝜕𝛨𝑧

𝜕𝑦 −
𝜕𝛨𝑦
𝜕𝑧 ,

𝐽𝑦 + 𝜖0
𝜕𝛦𝑦
𝜕𝑡 = 𝜕𝛨𝑥

𝜕𝑧 − 𝜕𝛨𝑧
𝜕𝑥 ,

𝐽𝑧 + 𝜖0
𝜕𝛦𝑧
𝜕𝑡 =

𝜕𝛨𝑦
𝜕𝑥 − 𝜕𝛨𝑥

𝜕𝑦 .

(3.8)

Yee’s scheme assumes that E and H are shifted in space by half a cell and in time by half a

time step when considering a central difference approximation of the derivatives. In such case,

equations (3.7) and (3.8) become:

−𝜇0
𝛨𝑛+1
𝑥 (𝑖, 𝑗 + 1/2, 𝑘 + 1/2) − 𝛨𝑛

𝑥 (𝑖, 𝑗 + 1/2, 𝑘 + 1/2)
𝛥𝑡 =

𝛦𝑛+1/2
𝑧 (𝑖, 𝑗 + 1, 𝑘) − 𝛦𝑛+1/2

𝑧 (𝑖, 𝑗, 𝑘)
𝛥𝑦 −

𝛦𝑛+1/2
𝑦 (𝑖, 𝑗, 𝑘 + 1) − 𝛦𝑛+1/2

𝑦 (𝑖, 𝑗, 𝑘)
𝛥𝑧 ,

−𝜇0
𝛨𝑛+1
𝑦 (𝑖 + 1/2, 𝑗, 𝑘 + 1/2) − 𝛨𝑛

𝑦 (𝑖 + 1/2, 𝑗, 𝑘 + 1/2)
𝛥𝑡 =

𝛦𝑛+1/2
𝑥 (𝑖, 𝑗, 𝑘 + 1) − 𝛦𝑛+1/2

𝑥 (𝑖, 𝑗, 𝑘)
𝛥𝑧 − 𝛦𝑛+1/2

𝑧 (𝑖 + 1, 𝑗, 𝑘) − 𝛦𝑛+1/2
𝑧 (𝑖, 𝑗, 𝑘)

𝛥𝑥 ,

−𝜇0
𝛨𝑛+1
𝑧 (𝑖 + 1/2, 𝑗 + 1/2, 𝑘) − 𝛨𝑛

𝑧 (𝑖 + 1/2, 𝑗 + 1/2, 𝑘)
𝛥𝑡 =

𝛦𝑛+1/2
𝑦 (𝑖 + 1, 𝑗, 𝑘) − 𝛦𝑛+1/2

𝑦 (𝑖, 𝑗, 𝑘)
𝛥𝑥 − 𝛦𝑛+1/2

𝑥 (𝑖, 𝑗 + 1, 𝑘) − 𝛦𝑛+1/2
𝑥 (𝑖, 𝑗, 𝑘)

𝛥𝑦 ,

(3.9)
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𝐽𝑥 + 𝜖0
𝛦𝑛+1/2
𝑥 (𝑖 + 1/2, 𝑗, 𝑘) − 𝛦𝑛−1/2

𝑥 (𝑖 + 1/2, 𝑗, 𝑘)
𝛥𝑡 =

𝛨𝑛
𝑧 (𝑖 + 1/2, 𝑗 + 1/2, 𝑘) − 𝛨𝑛

𝑧 (𝑖 + 1/2, 𝑗 − 1/2, 𝑘)
𝛥𝑦 −

𝛨𝑛
𝑦 (𝑖 + 1/2, 𝑗, 𝑘 + 1/2) − 𝛨𝑛

𝑦 (𝑖 + 1/2, 𝑗, 𝑘 − 1/2)
𝛥𝑧 ,

𝐽𝑦 + 𝜖0
𝛦𝑛+1/2
𝑦 (𝑖, 𝑗 + 1/2, 𝑘) − 𝛦𝑛−1/2

𝑦 (𝑖, 𝑗 + 1/2, 𝑘)
𝛥𝑡 =

𝛨𝑛
𝑥 (𝑖, 𝑗 + 1/2, 𝑘 + 1/2) − 𝛨𝑛

𝑥 (𝑖, 𝑗 + 1/2, 𝑘 − 1/2)
𝛥𝑧 −

𝛨𝑛
𝑧 (𝑖 + 1/2, 𝑗 + 1/2, 𝑘) − 𝛨𝑛

𝑧 (𝑖 − 1/2, 𝑗 + 1/2, 𝑘)
𝛥𝑥 ,

𝐽𝑧 + 𝜖0
𝛦𝑛+1/2
𝑧 (𝑖, 𝑗, 𝑘 + 1/2) − 𝛦𝑛−1/2

𝑧 (𝑖, 𝑗, 𝑘 + 1/2)
𝛥𝑡 =

𝛨𝑛
𝑦 (𝑖 + 1/2, 𝑗, 𝑘 + 1/2) − 𝛨𝑛

𝑦 (𝑖 − 1/2, 𝑗, 𝑘 + 1/2)
𝛥𝑥 −

𝛨𝑛
𝑥 (𝑖, 𝑗 + 1/2, 𝑘 + 1/2) − 𝛨𝑛

𝑥 (𝑖, 𝑗 − 1/2, 𝑘 + 1/2)
𝛥𝑦 .

(3.10)

Equations (3.9) and (3.10) show the usefulness of FDTD approach in finding a central dif-

ference approximation for the derivatives. In particular, the left term in (3.9) means that the

derivative ofH field at time (𝑛 + 1
2)𝛥𝑡 can be expressed as a central difference usingH field val-

ues at times (𝑛 + 1)𝛥𝑡 and 𝑛𝛥𝑡. The right term in (3.9) approximates the derivative of E field at

points (𝑖 + 1
2)𝛥𝑥, (𝑗 + 1

2)𝛥𝑦, and (𝑘 + 1
2)𝛥𝑧 as a central difference using E field values at points

(𝑖 + 1)𝛥𝑥 and 𝑖𝛥𝑥, (𝑗 + 1)𝛥𝑦 and 𝑗𝛥𝑦, (𝑘 + 1)𝛥𝑧 and 𝑘𝛥𝑧, respectively. Similarly, the left term

in (3.10) shows that the derivative of E field at time 𝑛𝛥𝑡 can be expressed as a central difference

using E field values at times (𝑛 + 1
2)𝛥𝑡 and (𝑛 − 1

2)𝛥𝑡. The right term in (3.10) approximates the

derivative of H field at points 𝑖𝛥𝑥, 𝑗𝛥𝑦, and 𝑘𝛥𝑧 as a central difference using H field values at

points (𝑖 + 1
2)𝛥𝑥 and (𝑖 − 1

2)𝛥𝑥, (𝑗 + 1
2)𝛥𝑦 and (𝑗 − 1

2)𝛥𝑦, (𝑘 + 1
2)𝛥𝑧 and (𝑘 − 1

2)𝛥𝑧, respectively.

This scheme is known as ‘leap-frog’ algorithm. In order to approximateMaxwell’s equations

in space and time using this algorithm, one should calculate first allH field values, then all E field

values, remembering always that E andH are shifted in space by half of the discretization𝛥𝑥,𝛥𝑦,

𝛥𝑧.
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The explicit FDTD equations can be derived from equations (3.9) and (3.10):

𝛨𝑛+1
𝑥 (𝑖, 𝑗 + 1/2, 𝑘 + 1/2) = 𝛨𝑛

𝑥 (𝑖, 𝑗 + 1/2, 𝑘 + 1/2)−

𝛥𝑡
𝜇0

(𝛦
𝑛+1/2
𝑧 (𝑖, 𝑗 + 1, 𝑘) − 𝛦𝑛+1/2

𝑧 (𝑖, 𝑗, 𝑘)
𝛥𝑦 −

𝛦𝑛+1/2
𝑦 (𝑖, 𝑗, 𝑘 + 1) − 𝛦𝑛+1/2

𝑦 (𝑖, 𝑗, 𝑘)
𝛥𝑧 ) ,

𝛨𝑛+1
𝑦 (𝑖 + 1/2, 𝑗, 𝑘 + 1/2) = 𝛨𝑛

𝑦 (𝑖 + 1/2, 𝑗, 𝑘 + 1/2)−

𝛥𝑡
𝜇0

(𝛦
𝑛+1/2
𝑥 (𝑖, 𝑗, 𝑘 + 1) − 𝛦𝑛+1/2

𝑥 (𝑖, 𝑗, 𝑘)
𝛥𝑧 − 𝛦𝑛+1/2

𝑧 (𝑖 + 1, 𝑗, 𝑘) − 𝛦𝑛+1/2
𝑧 (𝑖, 𝑗, 𝑘)

𝛥𝑥 ) ,

𝛨𝑛+1
𝑧 (𝑖 + 1/2, 𝑗 + 1/2, 𝑘) = 𝛨𝑛

𝑧 (𝑖 + 1/2, 𝑗 + 1/2, 𝑘)−

𝛥𝑡
𝜇0

(
𝛦𝑛+1/2
𝑦 (𝑖 + 1, 𝑗, 𝑘) − 𝛦𝑛+1/2

𝑦 (𝑖, 𝑗, 𝑘)
𝛥𝑥 − 𝛦𝑛+1/2

𝑥 (𝑖, 𝑗 + 1, 𝑘) − 𝛦𝑛+1/2
𝑥 (𝑖, 𝑗, 𝑘)

𝛥𝑦 ) ,

(3.11)

𝛦𝑛+1/2
𝑥 (𝑖 + 1/2, 𝑗, 𝑘) = 𝛦𝑛−1/2

𝑥 (𝑖 + 1/2, 𝑗, 𝑘)+
𝛥𝑡
𝜖0
(−𝐽𝑥 +

𝛨𝑛
𝑧 (𝑖 + 1/2, 𝑗 + 1/2, 𝑘) − 𝛨𝑛

𝑧 (𝑖 + 1/2, 𝑗 − 1/2, 𝑘)
𝛥𝑦 −

𝛨𝑛
𝑦 (𝑖 + 1/2, 𝑗, 𝑘 + 1/2) − 𝛨𝑛

𝑦 (𝑖 + 1/2, 𝑗, 𝑘 − 1/2)
𝛥𝑧 ) ,

𝛦𝑛+1/2
𝑦 (𝑖, 𝑗 + 1/2, 𝑘) = 𝛦𝑛−1/2

𝑦 (𝑖, 𝑗 + 1/2, 𝑘)+
𝛥𝑡
𝜖0
(−𝐽𝑦 +

𝛨𝑛
𝑥 (𝑖, 𝑗 + 1/2, 𝑘 + 1/2) − 𝛨𝑛

𝑥 (𝑖, 𝑗 + 1/2, 𝑘 − 1/2)
𝛥𝑧 −

𝛨𝑛
𝑧 (𝑖 + 1/2, 𝑗 + 1/2, 𝑘) − 𝛨𝑛

𝑧 (𝑖 − 1/2, 𝑗 + 1/2, 𝑘)
𝛥𝑥 ) ,

𝛦𝑛+1/2
𝑧 (𝑖, 𝑗, 𝑘 + 1/2) = 𝛦𝑛−1/2

𝑧 (𝑖, 𝑗, 𝑘 + 1/2)+
𝛥𝑡
𝜖0
(−𝐽𝑧 +

𝛨𝑛
𝑦 (𝑖 + 1/2, 𝑗, 𝑘 + 1/2) − 𝛨𝑛

𝑦 (𝑖 − 1/2, 𝑗, 𝑘 + 1/2)
𝛥𝑥 −

𝛨𝑛
𝑥 (𝑖, 𝑗 + 1/2, 𝑘 + 1/2) − 𝛨𝑛

𝑥 (𝑖, 𝑗 − 1/2, 𝑘 + 1/2)
𝛥𝑦 ) .

(3.12)

These equations can be directly implemented in a computer code.

For stability reasons, a field component cannot propagate more than one cell size in the time

step𝛥𝑡. Thismeans that in general, the stability condition (Courant, Friedrichs, andLewy 1967)
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is:

𝛥𝑡 ≤ 𝛥
𝑐0√𝑑

, (3.13)

where 𝑐0 is the speed of light, 𝑑 = 3 for three-dimensional problem, and𝛥 is theminimal distance

between the cells.

A common choice for 𝛥𝑡 is given by:

𝛥𝑡 = 𝛥
2𝑐0

. (3.14)

3.2 Perfectly Matched Layers

One of the greatest challenges of the FDTDmethod has been the efficient and accurate solu-

tionof electromagneticwave interactionproblems inunbounded regions. AnAbsorbingBound-

ary Condition (ABC) should be introduced at the outer lattice boundary to simulate the exten-

sion of the lattice to infinity (Taflove 1998). An alternative approach to implement an ABC is

to terminate the outer boundary of the space lattice in an absorbing material medium. The lossy

mediumhas beenusedwith limited success as an absorbing layer to terminate the outer boundary

of the FDTD space lattice. A major difficulty is that this medium is matched to the interior of

the lattice only for normally incident waves. Therefore, oblique waves partially reflect back into

the computation region and corrupt the solution. As a result, this absorber is not useful formost

problems of practical interest.

Since 1994, a new fervor in this area has been created by Berenger’s introduction of a highly

effective absorbing-material ABC designated the Perfectly Matched Layers (PML) (Berenger

1994).

The innovation of Berenger’s PML is that plane waves of arbitrary incidence, polarization,

and frequency are matched at the boundary.
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In his pioneering work, Berenger derived a novel split-field formulation of Maxwell’s equa-

tionswhere each vector field component is split into twoorthogonal components. Maxwell’s curl

equations were also appropriately split, leading to a set of 12 coupled first-order partial differen-

tial equations. Then a perfectly matched planar interface is derived by choosing loss parameters

consistent with a dispersionless medium.

There are several equivalent formulations of PML. Berenger’s original formulation is called

the split-field PML because he artificially split the wave solutions into the sum of two new ar-

tificial field components. Nowadays a more frequently used formulation is the Uniaxial PML

(UPML), which expresses the PML region as the ordinary wave equation with a combination

of artificial anisotropic absorbing materials. Both of these formulations were originally derived

by laboriously computing the solution for a wave incident on the absorber interface at an arbi-

trary angle (and polarization, for vector waves), and then solving for the conditions in which

the reflection is always zero. It turns out that both the split-field and UPML formulations can

be derived in a much more elegant and general way, by viewing them as the result of a complex

coordinate stretching. It is a complex-coordinate approach, which is essentially based on the an-

alytic continuation ofMaxwell’s equations into complex spatial coordinates, where the fields are

exponentially decaying.

3.3 Total/Scattered Field Approach

An efficient technique to compute scattered fields in the context of FDTD modeling is the

Total-Field/Scattered-Field (TF/SF) incident wave source (Taflove 1998). Fundamentally, the

TF/SF technique is an application of the well-known electromagnetic field equivalence principle

(Stratton 2007; Harrington 1961; Balanis 2012).

By this principle, the original incident wave of infinite extent and arbitrary propagation di-
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boundary
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Figure 4. Equivalence Principle for Wave Scattering by a Target

Note: Original problem (a); equivalent problem (b).

rection, polarization, and time waveform is replaced by electric and magnetic current sources,

appropriately defined on a finite closed surface containing the object of interest (Taflove, Oskooi,

and Johnson 2013).

The reformulated problem confines the incident illumination to a compact total-field region

and provides a finite scattered-field region external to the total-field region that is terminated by

an ABC to simulate the FDTD grid extending to infinity.

Fig. 4 illustrates the application of the equivalence principle to electromagnetic wave scatter-

ing by an arbitrary target located in an unbounded region. Here the incident wave is generated

by the electric and magnetic current sources, J𝑠𝑜𝑢𝑟𝑐𝑒 and M𝑠𝑜𝑢𝑟𝑐𝑒. In Fig. 4a, the interaction of

the incident wave with the target results in the formation of a total electric field E𝛵 and a total

magnetic fieldH𝛵 that fills all space. Each of these fields can be viewed as a sum of an incident

component and a scattered component, i.e., E𝛵 = E𝑖𝑛𝑐 + E𝑆 andH𝛵 = H𝑖𝑛𝑐 +H𝑆.

Using the equivalence principle, the reformulated problem shown in Fig. 4b separates space

into two regions: an interior regionwhere total fields exist, and an exterior regionwhere only scat-

tered fields exist. Here the original incident field is generated only within the total field region by

equivalent electric andmagnetic current sources, J𝑖𝑛𝑐 andM𝑖𝑛𝑐, existing on the TF/SF boundary,
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𝜕𝛺. TF/SF approach provides several advantages that enhance the computational power and

dynamic range of the FDTD method (fewer restrictions for the incident field, presence of two

regions simplifies the implementation of ABC, easy far-field detection, etc.).

3.4 MPI

Message Passing Interface (MPI) is a specification for developers and users ofmessage passing

libraries. By itself, it is not a library, but the specification of what such a library should be.

MPI primarily addresses the message-passing parallel programming model: data is moved

from the address space of one process to that of another process through cooperative operations

on each process (Pacheco 1997).

Figure 5. 3DDomain Decomposition Using a 4 × 2 × 3Grid

Simply, the goal of MPI is to provide a widely used standard for writing message passing

programs.

The approach consists of the following steps:

1. Break up the lattice into boxes in accordance with howmany processes can be used;

2. Assign boxes to MPI processes one-to-one (each process updates only a single box);
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3. Add subroutine calls to places where data from different boxes is needed (each process

should have a ‘map’ of its neighbors).

In the present thesis, the codes are parallelized using the domain decompositionmethod and

MPI. In the case of 2D structures, all simulations are performed at the local computer cluster. A

typical number of computing cores used for a single run is 64 with an average execution time of

10-20 minutes. As for the 3D structures, for convergence test runs a local computer cluster was

utilized. To obtain the results, the following high performance computing services were used:

Agave supercomputer (Arizona State University) and U.S. Air Force research laboratory Depart-

ment of Defense supercomputing resource center. Typical execution time of the codes varied

between 10 - 20 minutes for linear regime and 80 - 90 minutes to obtain nonlinear results. A

typical number of computing cores used for a single production run varied between 12 × 12 × 8

= 1152 and 12 × 12 × 16 = 2304.

The numerical convergence in both linear and nonlinear regimes is achieved for a spatial res-

olution from 1.0 nm to 1.5 nm and a time step from 2.0 as to 2.5 as.

To probe the system under consideration, the TF/SF approach is employed. The open

boundaries are terminated via convolutional PML. Linear spectra are simulated using the short

pulse method, which allows one to obtain reflection/transmission spectra in a single FDTD run.

The nonlinear power spectra are simulated using 100 fs and 200 fs incident pulse.
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Chapter 4

SECONDHARMONICGENERATION

Discovery of the SecondHarmonic Generation (SHG) process (Franken et al. 1961) is often

considered as the birth of nonlinear optics. This process is very important because of the var-

ious applications: nonlinear microscopy, shifting the output frequency of lasers, investigating

the surface properties of various structures and materials.

(a) (b)

Figure 6. Concept of SHG

Note: Process of SHG (a); energy level diagram (b).

The basic process of SHG is illustrated in Fig. 6. If an external electric field at a frequency𝜔 is

applied to amedia, then the output radiation will be at frequency of𝜔 as well as 2𝜔. The transfer

of energy from the incident field to the output radiation can be imagined in terms of the energy

level diagram (see Fig. 6). Two photons are lost to the input beam and one photon at frequency

2𝜔 is created.

The polarization can be expanded in terms of the applied electric field, i.e.:

P(𝑡) = 𝜖0 (𝜒(1)E(𝑡) + 𝜒(2)E2(𝑡) + 𝜒(3)E3(𝑡) + …) , (4.1)

where the coefficients 𝜒(𝑛) are the 𝑛th order susceptibilities of the medium.
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The following chapter is dedicated to the SH investigation. It is shown that the second-order

optical response can be significantly changed under the different polarization of the incident

pulse, the shape of the medium, etc. Also, a comparison of the simulated data and the experi-

mental results, quantitatively and qualitatively, is presented.

4.1 High Yield Synthesis andQuadratic Nonlinearities of GoldNanoprisms in Solution: the

Role of Corner Sharpness

Strong harmonic emission of the metallic nanoprisms has been already discussed (Salomon

et al. 2014). But there is a lack of data on the values of hyperpolarizabilities𝛽 for gold nanoprisms.

And to the best of my knowledge, there is no detailed investigation of the dependence of 𝛽 on

the particle surface area or corner sharpness. In the present chapter, the gold nanoprisms have

been investigated. By varying their parameters (the radii curvature, side size), the influences on

the hyperpolarizability is analyzed. Also, the comparison of the experimental data and numerical

results is provided. It has been shown that by utilizing the hydrodynamic Drude model only, a

good agreement between experiments and calculations is achieved not only qualitatively, but also

quantitatively.

4.1.1 Analytical Derivation of the Hyperpolarizability

A finite structure of the nanosprisms is considered. To account for its nonlinear response,

the hydrodynamic model (2.31) is used. The electromagnetic response of the plasmonic system

is accounted for byMaxwell’s equations (2.1). Those equations are discretized in space and time

following the FDTD approach.

To describe gold, the following parameters are used: the equilibrium number density of con-
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duction electrons 𝑛0 = 5.9 × 1028 m−3, Fermi energy 𝛦𝐹 = 5.53 eV, effective electron mass𝑚∗ =

1.64 × 𝑚𝑒, the phenomenological decay constant 𝛾𝑒 = 0.18 eV.

Starting offwith the analytical investigation, the proposed approach includes the calculations

of the scattering cross-section defined as:

𝐶𝑠𝑐𝑎 =
1
𝛪𝑖𝑛𝑐

"
𝛢
S𝑠𝑐𝑎 × 𝑑A, (4.2)

where 𝛪𝑖𝑛𝑐 = |S𝑖𝑛𝑐| = |[E𝑖𝑛𝑐 × H∗
𝑖𝑛𝑐]| is the incident irradiance. It corresponds to the outgoing

electromagnetic energy flux integrated over a Gaussian surface. The Poynting vector S𝑠𝑐𝑎 is the

scattered electromagnetic field. In order to treat the nanoprism as a point dipole, it is assured that

the Gaussian surface is in the far-field zone. After that, the linear response can be defined as:

𝑝(𝜔) = 𝜖0𝜖𝑚𝛼(𝜔)𝛦0(𝜔), (4.3)

where 𝜖𝑚 is the relative permittivity of the media, in which the nanostructure is embedded, 𝛼 is

the linear polarizability, and 𝛦0 is the peak amplitude of the pump.

Combining (4.2) with (4.3) and using the analytical solution for a point dipole (Greiner

2012), the scattering cross-section becomes:

𝐶𝑠𝑐𝑎(𝜔) =
𝜔4
6𝜋𝑐4 |𝛼(𝜔)|

2. (4.4)

Then the absolute value of the polarizability can be extracted directly from the numerical

integration ofMaxwell’s equations coupled to the equations describing the dynamics of conduc-

tion electrons in the metal interface.

One can consider a dipole moment as a summation of harmonic frequencies of the incident

field, i.e.:

𝑝 = 𝑝1(𝜔)𝑒𝑖𝜔𝑡 + 𝑝2(2𝜔)𝑒2𝑖𝜔𝑡 + 𝑝3(3𝜔)𝑒3𝑖𝜔𝑡 + … , (4.5)

where 𝑝1(𝜔)𝑒𝑖𝜔𝑡 is the linear term that directly corresponds to (4.3).
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The second- and third-order terms could be derived in the form similar to (4.3):

𝑝2(2𝜔) = 𝜖0𝜖𝑚
1
2𝛽(2𝜔) ∶ 𝛦0(𝜔)𝛦0(𝜔),

𝑝3(3𝜔) = 𝜖0𝜖𝑚
1
3𝛾(3𝜔) ∶ 𝛦0(𝜔)𝛦0(𝜔)𝛦0(𝜔),

(4.6)

where 𝛽 and 𝛾 are the first and second hyperpolarizabilities, respectively.

The scattering cross-section calculated at the SH of the pump is:

𝐶𝑠𝑐𝑎(2𝜔) =
2𝜔4
3𝜋𝑐4 |𝛽(2𝜔)|

2𝛦2
0 . (4.7)

Direct calculation of the scattering cross-section at the SH and subsequent comparison with

equation (4.7) allow extracting hyperpolarizabilities directly.

4.1.2 Experimental and Numerical Analysis of Gold Nanoprisms

 

 

(a) (b)

Figure 7. Initial Setup of the Gold Nanoprism

Note: TEM image (a); numerical representation (b).

Fig. 7 presents pictures of the nanoprisms in both experimental and computational setups.

The size and shape of particles were determined by Transmission Electron Microscopy (TEM)
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imaging (see Fig. 7a). The average thickness of the nanoprisms is 25 nm. This completely

matches the simulation data.

In order to investigate the structures with different edge lengths and corner curvature radii,

the relevant criterion for ‘sharpness’ is required for a quantitative analysis. A simple definition

of sharpness with curvature radius is not enough. The relative effect of triangle tips rounding

on their optical response, referred to as a ‘snipping effect’ (Shuford, Ratner, and Schatz 2005),

ought to be more pronounced for small particles, whereas for large ones sharpness effects would

be diluted with respect to other contributions, such as from the bulk.

Thus, a more sophisticated term to describe the sharpness of the nanoprisms should be in-

troduced. It is called ‘Sharpness Factor’ (SF) and is defined as:

𝑆𝐹 = 𝐿𝑒𝑥𝑡 − 2𝑅
𝐿𝑒𝑥𝑡

, (4.8)

where 𝐿𝑒𝑥𝑡 is the external nanoprism side length and 𝑅 is the triangle corner curvature radius.

Figure 8. Experimental (orange) and Calculated (blue) 𝛽Values as a Function of the Total
Surface Area of the Nanoprisms
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Once the 𝑆𝐹 is identified, it is beneficial to evaluate the dependence of 𝛽 on this term. Using

the parameters sketched at Fig. 7b, one can easily derive the prism surface area𝛢:

𝛢 = 3 [ 𝐿2𝑒𝑥𝑡
4𝑡𝑎𝑛𝜋3

+ (𝜋3 − √3)𝑅2] . (4.9)

The dependence of 𝛽 on 𝛢 is shown at Fig. 8. Dots show the values of 𝛽 collected experi-

mentally (orange) and numerically (blue) for different values of 𝛢. First, one can note that the

experimental data exhibit similar dependence as the simulated ones. Second, the presented re-

sults are in satisfactory agreement. Even though there is a significant mismatch at larger 𝛢, a

good agreement is archived for smaller𝛢. Especially when one considers experimental errors on

𝑅 and 𝐿𝑒𝑥𝑡 values inferred from TEM images and also difficulties to measure 𝛽. The mismatch

on bigger 𝛢 can be explained by the difficulties to stay in the far-field zone while the size of the

nanoprism is increased. But it is numerically challenging since the expansion in the computation

domain brings an increase of the execution time: time grows as 2𝛮, where𝛮 is the total amount

of the grid points.

Since 𝑆𝐹 and 𝛢 depend on two parameters 𝑅 and 𝐿𝑒𝑥𝑡, it is useful to fix one of them and

observe how 𝛽 is changing by tuning another one. The next set of graphs (see Fig. 9) has 𝑅 fixed

at 4.4 nm, 10 nm, 15 nm, and 25 nm and shows the dependence of 𝛽 on𝛢 (slopes 𝑠 are expressed

in 10−36 nm−2). There is a clear linear fit for all cases. Values of 𝛽 noticeably decrease when 𝑅

is increased. It confirms the strong influence of the corner curvature radius 𝑅 on the nonlinear

optical response of nanoprisms.

Fig. 10 displays the 𝑆𝐹 dependence of hyperpolarizability 𝛽 on various values of 𝑅 (slopes 𝑠

are expressed in 10−36 nm−2). Those plots confirm the strong influence of triangle corner radii

on hyperpolarizability values. The slope of these plots decreases regularly and very rapidly when

increasing 𝑅.

The linear dependence for 𝑆𝐹 is valid only when𝑅 is fixed. A narrow dispersion of curvature

radii restricts the possibility to account for 𝛽 dependence with 𝑆𝐹.
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Figure 9. Total Surface Area Dependence of Calculated 𝛽Values for Different Curvature Radii

To sum up, systematic calculations were performed on gold nanoprisms with various edge

lengths and corner radii. It has been shown that the influence of corner sharpness dominates over

centrosymmetry breaking. These results shed new light on the SH properties of the structures

with sharp corners. More investigation of this matter might open a new way to build new metal

interfaces with the high nonlinear response coming from the particular geometrical setup, i.e.

sharpness of the edges, etc.
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Figure 10. Sharpness Factor Dependence of Calculated 𝛽Values for Different Curvature Radii

4.2 Wavelength and Polarization Dependence of Second Harmonic Generation from Gold

Nanocrescent Arrays

This section provides theoretical and experimental analysis of SH response from the gold

(Au) nanocrescents. To fabricate Au nanocrescents (NCs), nanosphere template lithography

was used (Cooper et al. 2014; Bukasov and Shumaker-Parry 2007). The Scanning Electron Mi-

croscope (SEM) images of the fabricated samples are provided in Fig. 11a, b. The difference

between them is the size of the nanocrescents. The first one (see Fig. 11a) has an average tip-to-

tip length 𝐿 = 220 nm and an average width 𝑤 = 85 nm. This sample is labeled as NC1. The
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second nanocrescent NC2 (see Fig. 11b) is almost two times longer, but the width is almost the

same, i.e., 𝐿 = 430 nm and an average width 𝑤 = 90 nm.

Figure 11. Initial Setup of NCs

Note: SEM images of NC1 (a) and NC2 (b); simulated unit cell (c).

From the computational side, a periodic array of Au NCs is considered with two different

sets of parameters for 𝐿 and 𝑤 that match completely with the experimental setups, i.e.:

• NC1′: 𝐿 = 220 nm, 𝑤 = 85 nm;

• NC2′: 𝐿 = 430 nm, 𝑤 = 90 nm;

where apostrophe ′ stands for computational results. The schematic computational cell is de-

picted in Fig. 11c.

Thedescribed structures are placedon topof a semi-infinite nondispersive dielectric slabwith

refractive index 𝑛= 1.456. The input side of the structure is covered by a thin layer of𝛢𝑙2𝛰3 with

refractive index 𝑛 = 1.765. To simulate the dynamics of the light-matter interaction, Maxwell’s

equations (2.1) and the hydrodynamicmodel to describe themotion of the electrons in themetal

interface (2.31) are used. Equations (2.1) and (2.31) are coupled and propagated in space and

time. The following parameters are used to describe gold: the equilibrium number density of

conduction electrons 𝑛0 = 5.9 × 1028 m−3, the plasma frequency𝛺𝑝 = √ 𝑛0𝑒2
𝜖0𝑚∗ = 7.71 eV, and the

phenomenological decay constant 𝛾 = 8.23 × 10−2 eV.

42



In the simulations, the short pulse method is used to obtain the spectrum of the considered

system. Fig. 12 summarizes the linear optical response, absorbance, from NC1 (see Fig. 12a, c)

and NC2 (see Fig. 12b, d). The top row depicts the experimental data, the bottom row presents

the simulated results. Different colors correspond to different polarization of the incident pulse:

• Blue line – incident light is polarized along Short Axis (SA) of NCs or 0∘;

• Red line – incident light is polarized along Long Axis (LA) of NCs (perpendicular to SA)

or 90∘;

• Black line – incident light is polarized in between SA and LA or 45∘.

The black dashed line in Fig. 12a shows the excitation pulse spectrum used in the SH spec-

troscopy measurements when the near-infrared output is tuned to 1300 nm.

Figure 12. Experimental and Numerical Linear Absorbances for NC1 and NC2
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Looking at Fig. 12, one can note that the responses under different polarizations change a

lot. It means that the wavelength and polarization of the incident light play an important role in

selectively exciting a specific NC plasmon resonance band. When the incident light is polarized

along LA, there are two peaks for NC1 (at 1300 and 684 nm) due to the dipole and quadrupole

resonances. In the case ofNC2, the similar resonances are at 2190 and 1001 nm. For the polariza-

tion along SA, the dipole band is located at 840 nm for NC1 and at 1277 nm for NC2. Peaks at

around 550-560 nm are insensitive to polarization and are assigned to out-of-plane dipolemodes

in the previous study (Shumaker-Parry, Rochholz, and Kreiter 2005). There is a clear redshift

for NC2 resonances since it is larger than NC1.

Table 1. Comparison of Resonances for NC1

Dipole Quadrupole
LA, nm SA, nm LA, nm

Simulations 1300 840 684
Experiment 1237 815 661

Table 2. Comparison of Resonances for NC2

Dipole Quadrupole
LA, nm SA, nm LA, nm

Simulations 2190 1277 1001
Experiment 2270 1333 1065

To compare the experimental and computational results, tables (1) and (2) are provided. The

agreement between the experimental results and the simulations is pretty remarkable. Small de-

viations might come from a small discrepancy in the initial parameters.
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4.2.1 Nonlinear Regime

The surface symmetry of theNCs is𝐶1ℎ – a symmetrywith onemirror plane andwithout any

rotational axis. Under the electric dipole approximation, the nonvanishing second-order nonlin-

ear susceptibility elements are 𝜒(2)𝑥𝑥𝑥, 𝜒(2)𝑥𝑦𝑦, and 𝜒(2)𝑦𝑥𝑦 = 𝜒(2)𝑦𝑦𝑥 (Lancaster and Shumaker-Parry 2016).

The induced second-order nonlinear polarization 𝛲(2)
𝑖 (2𝜔) along i-axis (i = x, y) is described as:

𝛲(2)
𝑥 (2𝜔) ∝ 𝜒(2)𝑥𝑥𝑥𝑐𝑜𝑠2𝜃 + 𝜒(2)𝑥𝑦𝑦𝑠𝑖𝑛2𝜃,

𝛲(2)
𝑦 (2𝜔) ∝ 𝜒(2)𝑦𝑥𝑦𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃,

(4.10)

where 𝜃 is the angle between x-axis (SA of NCs) and the incident light polarization. This set

of equations doesn’t fully describe nonlinear effects in the system. Previous studies analyzed the

incident polarization angle dependence of SH responses (Valev et al. 2009; Zdanowicz et al. 2011)

on metallic nanostructures by the equation provided below:

𝛲(2)
𝑖 (2𝜔) ∝ 𝜉(2)𝑖𝑥𝑥 𝑐𝑜𝑠2𝜃 + 𝜉

(2)
𝑖𝑥𝑦 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 + 𝜉

(2)
𝑖𝑦𝑦 𝑠𝑖𝑛2𝜃, (4.11)

for i = x, y.

Here additional terms are added that are forbidden under the electric dipole approximation.

They are needed to include nonlinear polarization effects induced by quadrupole and magnetic

dipole interactions.

Fig. 13a, b show the polarization dependence of SH response onNC1 andNC2, respectively.

The plots have been normalized to the maximal intensity. The polarization direction of the in-

cident pulse is shown by the angle of those polar diagrams. For instance, the polar angle of 0∘

(180∘) corresponds to the polarization along SA of the NCs, while the polar angle of 90∘ (270∘)

indicates the polarization along LA. Themeasured value is the SH amplitude along SA (top row)

and along LA (bottom row). The pumping wavelengths of the incident light are at 1250, 1300,

1380, and 1550 nm for NC1 since they cover LA dipole resonance band for NC1. A similar idea
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is used for Fig. 13b. The values of the pumpingwavelengths of 1280 nm, 1400 nm, and 1540 nm

represent the region of SA resonance forNC2. Blue arrows indicate the polarization direction of

detected SH signals. Black dots represent experimental data acquired with the polarization angle

varying from 0∘ to 360∘ with a step of 10∘. Fitting results using equation (4.11) are overlaid in

the polar plots as red solid lines. It is clear that the SH signal strongly depends on the pumping

frequency of the incident pulse and its polarization.

Figure 13. Incident Polarization Angle Dependence of SH Signals of NCs (experimental data)

Note: Measured for NC1 (a) and NC2 (b).

The two-lobe pattern presents on all SH intensities along SA of NC1 (Fig. 13a, top). When

the incident polarization is along SA, the intensity is the weakest. Moving towards the polariza-

tion along LA, the intensity is increasing. So, when the polarization is along LA, it is two orders

bigger than it is for SA. The four-lobe patterns are seen when the polarization is traced along 90∘

(Fig. 13a, bottom). Their presence and asymmetry suggest that the used macroscopic formal-

ism can’t adequately describe the SH response of the plasmonic NC emitters. The asymmetry

becomes more noticeable for NC2 (Fig. 13b). A two-lobe pattern is oriented along SA at the

incident wavelength of 1280 nm, indicating that the SH intensity became strongest (weakest) for

the horizontally (vertically) polarized excitation light. There are two clean lobes at 1280 and 1540

nm, and one more at 1400 nm, significantly distorted. Noticeable asymmetry problems appear

for the SH polarized along LA. Amplitudes of the diagonal and antidiagonal lobes are different
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(Fig. 13b, bottom). The ratio of antidiagonal to diagonal lobe size decreases with increasing the

excitation wavelength. Also, the orientation of the larger two-lobe changes from 45∘ at 1280 nm

to 60∘ at 1540 nm.

To have a better fit for the observed polarization, (4.11) could be used over (4.10). Resultant

fitting coefficients 𝜉(2)𝑖𝑗𝑘 for the different polarization components are shown in Fig. 13. To repro-

duce the incident polarization angle dependence of SH signals in Fig. 13, fitting coefficients 𝜉(2)𝑖𝑗𝑘

from equation (4.11) are used. The polarization direction of the detected SH signals is along SA

(top) or LA (bottom). Polarization components, 𝑖𝑗𝑘, are indicated by the labels. Polarization

components that are allowed under the dipole approximation for𝐶1ℎ symmetry aremarked with

rectangular boxes.

Figure 14. Fitting Coefficients 𝜉(2)𝑖𝑗𝑘 from Equation (4.11)

The main impact for the SH polarized along SA of NC1 comes from the 𝑥𝑦𝑦 term with tiny

contributions from 𝑥𝑥𝑥 and 𝑥𝑥𝑦. The same behavior is for the SH intensity along SA of NC2,

only at 1540 nm. The contribution of 𝑥𝑥𝑥 increases with decreasing the wavelength, and at 1280
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nm it almost exclusively dominates the observed SH response. The four-lobe patterns, acquired

for the SH intensity along LA, are mainly caused by the dipole-allowed 𝑦𝑥𝑦 component. The

other two dipole forbidden terms, 𝑦𝑦𝑦 and 𝑦𝑥𝑥, distort the symmetry of the four-lobe pattern,

and their contributions depend on the incident light wavelength. The fitting results suggest that

dipole allowed polarization tensors are the main contributors to the SH response for both sam-

ples. However, dipole forbidden components for 𝐶1ℎ symmetry are also important, especially

for the SH intensity along LA. The observed pattern for NC2 at 1540 nm (Fig. 13b) may be a

manifestation of this transition between a four-lobe and two-lobe pattern, and the SH intensity

is strongest at 60∘.

Another possible reason for the asymmetric four-lobe patternsmay be related to amarginally

distorted NC shape as discussed below with numerical results.

Figure 15. Incident Polarization Angle Dependence of SH Signals of NCs (simulations)

Note: Measured for NC1 (a) and NC2 (b).

Several additional simulations are performed for both NC1′ and NC2′ at different pump

wavelengths. The results are shown in Fig. 15a, b, where the characteristic wavelengths are ex-

amined: the peak wavelengths of SA/LA mode and the wavelength at which linear absorbance

calculated for the incident polarization along SA and LA intersect (Fig. 12c, d). Firstly, the

SH signal polarized along LA has four lobes as in the experiments. Secondly, as expected, SA

polarized signal is oriented either along SA or LA, depending on which plasmonic mode is dom-
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inant at a given pump wavelength. These results reproduce the expected angular properties of

SH as obtained from the second-order nonlinear polarization in equation (4.10). Thirdly, the

four-lobe pattern oriented along SA and LA is seen for both NC1′ and NC2′ at wavelengths for

which both plasmonic modes are being pumped (943 nm for NC1′ and 1560 nm for NC2′).

This shows which component of the corresponding second-order susceptibility tensor is larger.

Although the model qualitatively describes angular properties of the observed results, one im-

portant piece is still missing, namely, the experimental angular diagrams show clear asymmetry

of LA polarized SH signal (Fig. 13).

4.2.2 Effect of Broken Symmetry on Second Harmonic

In using nanosphere template lithography to fabricate an NC array, not every structure is

perfectly symmetric. A distorted structure breaks the symmetry, which makes the incident po-

larization angle dependence of SH not theoretically reproduced by equation (4.10). Also, the

fitted coefficients of (4.11) would have no clear physical meaning in that case because their rela-

tionships with the structural distortion cannot be straightforwardly predicted. The advantage

of the used model is that it allows to further investigate how the SH response is sensitive to the

symmetry of NCs.

Two possible scenarios are considered that may alter the symmetric angular patterns seen in

Fig. 15 to become asymmetric. Schematic setups that have been investigated are shown in Fig.

17a, b. Twowayshowmirror symmetry couldbebroken are considered. Firstly, theNC is rotated

counterclockwise by a small angle 𝜃 and the surface of the NC is altered by adding extra pixels.

In Fig. 17a, blue and red colors correspond to pixels added to the upper and lower parts of the

particle in a non-symmetric fashion (each pixel does not have its mirror image on the other side

of the dashed line). It is important to emphasize that the described extra-pixelization may alter
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Figure 16. Broken Symmetry of NCs

Note: Schematic setup of extra-pixelization (a); schematic setup of asymmetrization (b);
incident polarization angle dependence of SH signals (c).

the volume of the particle if the total number of pixels is large, which in turn affects plasmonic

properties. On the other hand, it should be ensured that numerical convergence is achieved, i.e.,

when adding a fewpixels, one should not observe any changes in the SHG signal. Thus, a delicate

balanceneeds tobe found, inwhich, ononehand, the volumeof theparticle doesnot significantly

depart from the volume that the symmetric particle has, and also the surface is altered just enough

to observe breaking of the mirror symmetry. After extensive numerical tests, it was found that

the angular properties of SHG noticeably change for the total number of extra-pixels exceeding

1000 for the spatial resolution of 1.5 nm.

Secondly, in order to break themirror symmetry of the crescent, an ellipse superimposed on a

circle (rather than a circle on a circle) is used, as depicted in Fig. 16b. In this case, when the ellipse
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is shifted, the resulting crescent does not longer maintain mirror symmetry. When the ellipse is

moved down, the crescent becomes thicker at the top and thinner below the dashed line.

The results of both approaches that break the mirror symmetry are summarized in Fig. 16c.

The obtained angular diagrams qualitatively show similar patterns to the ones seen experimen-

tally with highly non-symmetric LA polarized SH signals (see Fig. 13b). The total number of

extra pixels added to NC1′ and NC2′ in Fig. 16c is 1088 and 1972, correspondingly. There are

two important observations:

1. The SA polarized signal rotates exactly by 𝜃 although maintains symmetric two-lobe pat-

terns;

2. The LA polarized signal is significantly altered by the symmetry breaking.

The observed asymmetry in LA polarized SH signals for NC1′ shows another feature – two

smaller lobes become shorter when the upper part of the non-symmetric crescent has less extra-

pixels, compared to the lower part. Also, extra-pixelization that alters the surface of the nanocres-

cent making it non-mirror symmetric can also explain which of the four lobes in LA SH become

shorter/longer. For the calculations NC1′ has total of 1088 extra pixels (731 pixels at the outer

surface and 357 pixels at the inner surface 357), as shown in Fig. 16c. However, when the sym-

metry is broken using the ellipse-on-circle procedure, the four-lobe pattern exhibits completely

opposite behavior. This occurs because the resulting NC has a thicker upper part. Even more

noticeable changes occur for the NC2′ geometry, where the symmetry breaking influences the

angular properties of SHG while pumping SA plasmonic mode. The four-lobe pattern exhibits

remarkable transformations with two lobes being nearly completely gone.
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4.2.3 Wavelength Dependence of Second Harmonic Response

Fig. 17 shows measured and calculated excitation wavelength dependence of SH signals of

Au NC array. Open circles and squares in Fig. 17a show integrated spectral intensity of NC1

and NC2, respectively, normalized with that of z-cut quartz. The polarization direction of the

excitation pulse and the SH signal is indicated by a red and a blue arrow. Blue and red lines repre-

sent the absorbance spectra measured with the incident light polarized along LA and SA ofNCs,

respectively. In Fig. 17b, the same SH data set is plotted against one-half of the incident wave-

length together with the absorbance spectra. The top panel of Fig. 17c shows results of NC1′

calculated with the pump polarized along LA and SH signal polarized along SA (blue circles).

In the same panel linear absorbance is plotted, where the red line indicates absorbance obtained

when the excitation is polarized alongLA, and the blue linewith the incident field polarized along

SA. The bottom panel of Fig. 17c shows the data for NC2′ obtained with the pump polarized

along SA. Both polarizations of SHG are plotted (SA is shown as blue squares, and LA is shown

as red squares after multiplying by 10). In Fig. 17d, the same data set is plotted against one-half

of the incident wavelength together with the calculated absorbance spectra.

The wavelength dependence of the SH light intensity does not follow the spectral shapes of

the dipole localized SPRs resonances of Au NC. For NC1, the SH intensity exhibits a dip at

around 1275 nm, and the maximum response occurs at ∼ 1375 nm. For NC2, the SH intensity

monotonically increases with decreasing the incident wavelength with a small bump at 1425 nm.

To elucidate the effects of higher-order plasmon resonances on the SH enhancement, it is

useful to compare the excitation wavelength dependence of SH on plasmon band shapes at half

of the incident wavelength. Fig. 17b shows the SH intensities together with the absorbance

spectra in thewavelength range from400 to1000nm. ForNC1, the dependence is quite different

from the absorbance spectrum observed with the light polarized along SA (blue curve) in this
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Figure 17. Experimental and Calculated ExcitationWavelength Dependence of SH Signals of
of NCs

wavelength range, but it shows a similar trace to the ‘merged’ shape of LAdipolar band (red curve

in Fig. 16a) and the dipole and multipole band (blue curve in Fig. 16b). Fig. 17c exhibits the

calculated SHG efficiency ofNC1′ andNC2′ as a function of the pumpwavelength. Blue circles

(top) show the result for SA polarized SH signal when the NC1′ nanocrescent is pumped along

its LA. Here SHG efficiency and linear absorbance (blue and red lines) are plotted as functions

of the incident wavelength. The SH response peaks at LA plasmonmode at 1237 nm (Fig. 17c),

indicating that the dipole plasmon is a major reason for enhancing SH efficiency. At the same
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time, the SH response is broad and intense in the wavelength range > 1237 nm. It appears that

both SA dipolar band (blue in Fig. 17d) and LA quadrupolar/multipolar bands (red in Fig. 17d)

can contribute to enhancing SH response in this range. More interesting results are obtained

for NC2′ (bottom). The system is excited along SA direction and the SH efficiency along the

same axis is plotted (blue squares). Additionally, the linear absorbance calculated for SA and LA

polarized incident pump is overlapped in the samepanel. Firstly, one cannotice that SApolarized

SH has one extremumnear the peak wavelength of the corresponding dipole plasmon resonance.

Secondly, one can see that the efficiency curve has a remarkably strong extremum at ∼ 1160 nm.

Although it is near the peak of LA quadrupole resonance (1065 nm), one does not expect LA

quadrupole band to contribute to the enhancement because the incident light is polarized along

SA. Further observation shows that this SH peak is at the edge of a broadmultipole resonance, as

shown in Fig. 17d. The shape of the SH trace is similar to the merged shape of SA dipolar band

(blue curve in Fig. 17c) and the broad multipole band (blue curve in Fig. 17d).

The results of the numerical calculation indicate that the SHG efficiency is affected not only

by thefield enhancement at the fundamentalwavelength, but also at the SHwavelength. Depend-

ing on the size of the nanocrescent and the excitation wavelength, different localized SPRs will

couple with the induced SH field and render additional enhancement of signal intensity. For ex-

ample, in the case of NC2′, the highest SHG efficiency is obtained at ∼ 1160 nm, which is about

170 nm off from the peak of SA dipole resonance. To further demonstrate that the multipole

plasmon enhances the SHG at 1160 nm, the simulations for NC2′ were performed by pumping

the nanocrescent at 1160 nm and varying the in-plane incident field polarization. The results are

shown in Fig. 15c where a four-lobe pattern is observed for SA polarized SHG. This pattern in-

dicates that 𝛲(2)
𝑥 (𝜔) ∼ 𝜉(2)𝑥𝑥𝑦𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 and 𝜉(2)𝑥𝑥𝑦 is non-zero at this wavelength. This tensor element

is dipole forbidden. Hence, the multipole localized SPR at the SH wavelength has enhanced the

induced field. The calculatedmultipole localized SPR forNC2′ has a very broad line shape below
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600 nm. However, the field enhancement by SA dipole resonance is much weaker for the funda-

mental light below 1000 nm, so the SHG efficiency would not monotonically increase at shorter

wavelengths. To further illustrate the effects of higher-order localized SPR, the SH efficiency of

NC2′ was calculated along LA (red squares in Fig. 17c, d). The efficiency of LA polarized SH is

about 10 times lower than that of SA polarized SH because LA multipole is much weaker than

SA multipole resonance. The peak of LA polarized SH is red-shifted from that of SA polarized

SH toward LA quadrupole band at 1065 nm, suggesting the contribution of LA quadrupole

band to SHG.

Summarizing the results, experimental and theoretical measurements of the wavelength and

polarization dependent SH responses of two different Au NCs were conducted. It is shown

that the incident polarization angle dependence of SH signals is strongly sensitive to nanoscale

variations in the NC’s shape.

4.3 Fano Resonances

(a) (b)

Figure 18. Schematic Setup of a Nanodolmen Structure
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Another system to investigate the behavior of SH is a nanodolmen. It consists of three gold

nanorods positioned in the way it is shown at Fig. 18a. 𝐺1 represents the distance between the

top nanorod and two bottom ones. 𝐺2 shows how two bottom parallel nanorods are far away

from each other. The light polarized along x-axis and under normal incidence excites the longi-

tudinal mode of the horizontal nanorod (see Fig. 18b). It is also called ‘bright’ mode since it was

excited directly from the incident pulse. On the opposite side, the bottom two nanorods exhibit

a darkmode since they have oscillations of the conduction electrons out-of-phase. The geometry

matters a lot since the strengths of the coupling change if 𝐺1 and 𝐺2 are shifted. The following

parameters are used to simulate gold: the equilibrium number density of conduction electrons

𝑛0 = 5.9 × 1028 m−3, Fermi energy 𝛦𝐹 = 5.53 eV, effective electron mass𝑚∗ = 1.66 × 𝑚𝑒, and the

phenomenological decay constant 𝛾 = 0.181 eV.

Here the SH is under investigation one more time. Also, the influence of Fano-type modes

generated by the nanodolmens on the SH is discussed. The resonances are called ‘Fano reso-

nances’ because of their non-symmetric shape arising from scattering.

Figure 19. Linear Optical Properties of a Periodic Array of Nanodolmens

Note: Linear absorption spectra for different values of𝐺1 (a); absorption spectra for different
values of𝐺2 (b).
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Fig. 19a shows linear absorption spectra when varying gap 𝐺1: 15 nm (black line), 30 nm

(red line), 45 nm (blue line), and 60 nm (green line). Parameter 𝐺2 is fixed at 30 nm. Fig. 19b

depicts absorption spectra for different 𝐺2: only horizontal nanorod is considered (black line),

15 nm (red line), 30 nm (blue line), and 60 nm (green line). 𝐺1 is fixed at 15 nm. The rest of the

parameters for Fig. 19a, b are: periodicity is 405 nm,𝑊= 40 nm, 𝐿 = 110 nm, and thickness of

each nanorod is 60 nm.

Standalone nanorod has a resonance around 1.75 eV (see black line, Fig. 19b). And with

two parallel nanorods, two peaks in the spectrum appear. The investigation of the linear regime

is based on the adjustment of the parameters𝐺1 and𝐺2 and the observation of how it changes the

coupling of the bright and the dark mode. Looking closer at Fig. 19a, one can see that changes

in𝐺1 values show how the near-field coupling weakens at larger values of𝐺1. When𝐺1 = 15 nm

(black line) and𝐺1 =30nm(red line), there is a clear splitting. But the bigger the distance between

the nanorods, the smaller the coupling (drops by over 60%). The changes are evenmore dramatic

for 𝐺1 = 45 nm (blue line) and 𝐺1 = 60 nm (green line). The second peak is barely pronounced

on the blue line and disappears for the green line completely. A similar investigation is conducted

when parameter 𝐺2 is varying and 𝐺1 is fixed. Here 𝐺2 controls the frequency of the dark mode

and its linewidth. Contrary to increasing𝐺1, higher values of the gap between two parallel wires

increase the splitting between the observed modes and enhance the signal at the low frequency

normal mode.

4.3.1 Nonlinear Regime

To investigate the nonlinear response, the system is pumpedwith a high intense pulse (ampli-

tude is 0.05 V/nm and the duration is 500 fs). The outgoing electromagnetic flux is detected at

the doubled pumped frequency (SH). From it, the second-order susceptibility can be calculated
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(more details regarding the calculations are available in 4.1.1):

𝜒(2) = 𝛽
2𝑉, (4.12)

where𝑉 is the volume of the nanodolmen and 𝛽 is the hyperpolarizability per unit cell.

Figure 20. SHG of Nanodolmens

Note: Angular diagrams of SH signal polarized horizontally (a) and vertically (b) at the pumped
frequency of 1.45 eV (blue lines) and at 1.82 eV (red lines); second-order susceptibility (black
line), linear absorption (solid red line), and absorption plotted at half the frequency
(dash-dotted red line) (c); second-order susceptibility for different values of𝐺2 (d).

First, the angular distributions of the SH signal are investigated. As it was done for the pre-

vious case (for NCs), horizontal and vertical components of the macroscopic polarization are

separated and results are presented at Fig. 20a, b. Simulations are performed for the nanodol-

men with 𝐺1 = 15 nm and 𝐺2 = 30 nm with the other parameters, as it is indicated in Fig. 18.

Blue lines show results obtained at the pumped frequency of 1.45 eV. It corresponds to the an-

tisymmetric normal mode. Red lines show data for the driving frequency 1.82 eV, which is the
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symmetric normal mode. The angle on the polar diagrams indicates the polarization of the in-

cident pulse: 0∘ corresponds to the pump polarized along the upper nanorod or along x-axis. If

the system is pumped at 1.45 eV, the following behavior is expected from the SH:

𝛲(2)
𝑥 ∼ 𝜒(2)𝑥𝑥𝑦𝑠𝑖𝑛(2𝜃),

𝛲(2)
𝑦 ∼ 𝜒(2)𝑦𝑥𝑥𝑐𝑜𝑠2(𝜃),

(4.13)

where the off-diagonal elements 𝜒(2)𝑥𝑥𝑦 and 𝜒(2)𝑦𝑥𝑥 impact the SHG the most. In other words, the

dark mode contributes a lot at the chosen frequency since it mixes the x and y polarizations.

If the system is pumped at 1.82 eV, the following dependencies are expected:

𝛲(2)
𝑥 ∼ 𝜒(2)𝑥𝑥𝑥𝑐𝑜𝑠2(𝜃),

𝛲(2)
𝑦 ∼ 𝜒(2)𝑦𝑥𝑥𝑠𝑖𝑛2(𝜃).

(4.14)

In this case, the diagonal elements dominate more in the SH signal.

Moving on to the next set of pictures at Fig. 20. Here the second-order susceptibility is under

the scope. Fig. 20c compares the second-order susceptibility (black line) with a linear absorption

(red line). The same absorption is plotted by the dash-dotted line, but at half the frequency, to

explore two-photon processes due to the high frequency modes. Firstly, the shift between peaks

of the second-order susceptibility and the linear response is noticeable: 1.82 eV for 𝜒(2) and 1.75

eV for the absorption. Secondly, resonances at 1.4 eV and 1.53 eV exhibited by𝜒(2) are due to the

SH contributions from the high energy quadrupole mode and Wood’s anomaly corresponding

to the periodicity of the nanodolmen array. The period used in the simulations is 405 nm or

frequency-wise it is 2 × 1.53 eV.

To see the change in 𝜒(2) behavior under different strength of coupling of the bright and

dark modes, parameter𝐺2 is varied (see Fig. 20d). There are three distances between the vertical

nanorods considered: 𝐺2 = 15 nm (black line), 𝐺2 = 30 nm (red line), and 𝐺2 = 60 nm (blue

line). The closer the nanorods are, the more increase of the intensity for the lower frequency and
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the more suppression for the higher frequency. It can be explained by lower dissipation at the

lower frequencies. Also, the local field enhancement for such a mode can reach several orders of

magnitude, which in turn leads to more efficient SHG (Gallinet andMartin 2011).

4.3.2 Analytical Model of Two Coupled Nonlinear Oscillators

It is also useful to have a straight analogy between the second-order nonlinear response from

a Fano type nonlinear plasmonic system and two coupled oscillators.

Figure 21. Two Coupled Nonlinear Oscillators

The toy model is sketched in Fig. 21. Each oscillator has a second-order nonlinearity. Also,

oscillator A is coupled to B which is directly driven by the external force 𝐹0. Both oscillators have

a third-order nonlinearity in potential energy 𝑈𝛢,𝛣 (i.e., the second-order in the corresponding

restoring force). The equations of motion can be written as:

�̈�𝛢 + 𝛾𝛢�̇�𝛢 + 𝜔2𝛢𝑥𝛢 + 𝛼𝛢𝑥2𝛢 + 𝑔2𝑥𝛣 = 0,

�̈�𝛣 + 𝛾𝛣�̇�𝛣 + 𝜔2𝛣𝑥𝛣 + 𝛼𝛣𝑥2𝛣 + 𝑔2𝑥𝛢 = 𝐹0𝑒𝑖𝜔𝑡,
(4.15)

where 𝑔 is the coupling coefficient that indicates the strength of coupling between A and B os-

cillators, 𝛼𝛢,𝛣 are the parameters that characterize the strength of nonlinearity. Here oscillator A

is the dark mode (with a higher frequency and lower damping rate) and oscillator B is the bright

mode corresponding to the longitudinal plasmon mode of the top nanorod.
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Using the solution of equations (4.15) in the form of a perturbation series 𝑥𝛢,𝛣 = ∑𝑛 𝑥
(𝑛)
𝛢,𝛣

and equating the same perturbation orders, one can obtain a set of coupled differential equations:

�̈�(1)𝛢 + 𝛾𝛢�̇�(1)𝛢 + 𝜔2𝑥(1)𝛢 + 𝑔2𝑥(1)𝛣 = 0,

�̈�(1)𝛣 + 𝛾𝛣�̇�(1)𝛣 + 𝜔2𝑥(1)𝛣 + 𝑔2𝑥(1)𝛢 = 𝐹0𝑒𝑖𝜔𝑡,

�̈�(1)𝛢 + 𝛾𝛢�̇�(1)𝛢 + 𝜔2𝑥(1)𝛢 + 𝛼𝛢(𝑥(1)𝛢 )2 + 𝑔2𝑥(1)𝛣 = 0,

�̈�(1)𝛣 + 𝛾𝛣�̇�(1)𝛣 + 𝜔2𝑥(1)𝛣 + 𝛼𝛣(𝑥(1)𝛣 )2 + 𝑔2𝑥(1)𝛢 = 0,

…

(4.16)

Solution of equations (4.16) corresponding to the linear case (i.e., at the fundamental fre-

quency of the driven force) can be obtained by substituting 𝑥(1) → 𝑥(1)𝑒𝑖𝜔𝑡 and equating terms

with 𝑒𝑖𝜔𝑡:

𝑥(1)𝛢 = 𝑔2
𝑔4 − 𝐷𝛢(𝜔)𝐷𝛣(𝜔)

𝐹0,

𝑥(1)𝛣 = − 𝐷𝛢(𝜔)
𝑔4 − 𝐷𝛢(𝜔)𝐷𝛣(𝜔)

𝐹0,
(4.17)

where𝐷𝛢(𝜔) = 𝜔2𝛢 − 𝜔2 + 𝑖𝛾𝛢𝜔 and𝐷𝛣(𝜔) = 𝜔2𝛣 − 𝜔2 + 𝑖𝛾𝛣𝜔. The assumption 𝛾𝛣 ≫ 𝛾𝛢 that is

the driven oscillator B has a higher rate of dissipation than oscillator A, gives rise to the Fano-like

resonances. It can be explained by the interference between the direct excitation of oscillator B

being the driving force and the excitation of oscillator B via coupling through oscillator A.

Fig. 22a shows ∣𝑥(1)𝛣 ∣
2
as a function of the pumping frequency for different coupling coeffi-

cients: 𝑔 = 0.3 eV (black line), 𝑔 = 0.5 eV (red line), and 𝑔 = 0.7 eV (blue line). The higher the

values of 𝑔, themore shape of the Fano-like resonances is pronounced. When 𝑔 > 𝛾𝛢, two normal

modes (arising from the symmetric and antisymmetric combinations of 𝑥(1)𝛢 and 𝑥(1)𝛣 ) are formed

at the following frequency:

𝛺± = (𝜔
2
𝛢 + 𝜔2𝛣 + 𝛾𝛢𝛾𝛣

2 ∓ 1
2√4𝑔

4 + (𝜔2𝛢 − 𝜔2𝛣)2 + 2𝛾𝛢𝛾𝛣(𝜔2𝛢 + 𝜔2𝛣) + 𝛾2𝛢𝛾2𝛣 )
1/2

. (4.18)
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Figure 22. Analytical Solution for Two Coupled Oscillators

Note: First-order signal by oscillator B (a); second-order signal for different values of the
coupling strength 𝑔 (b).

The second-order displacement oscillates at the SH of the driving force. Substituting 𝑥(2) →

𝑥(2)𝑒𝑖𝜔𝑡 and inserting (4.17) into (4.16) give:

𝑥(2)𝛢 (2𝜔) = 𝛼𝛢𝑔4𝐷𝛣(2𝜔) − 𝛼𝛣𝑔2𝐷2
𝛢(𝜔)

(𝑔4 − 𝐷𝛢(𝜔)𝐷𝛣(𝜔))
2 (𝑔4 − 𝐷𝛢(2𝜔)𝐷𝛣(2𝜔))

𝐹20 ,

𝑥(2)𝛣 (2𝜔) = 𝛼𝛣𝐷2
𝛢(𝜔)𝐷𝛢(2𝜔) − 𝑔6𝛼𝛢

(𝑔4 − 𝐷𝛢(𝜔)𝐷𝛣(𝜔))
2 (𝑔4 − 𝐷𝛢(2𝜔)𝐷𝛣(2𝜔))

𝐹20 .
(4.19)

Second-order solution (4.19) has two distinct contributions from one-, 𝐷(𝜔), and two-

photon,𝐷(2𝜔), emission.

In other words, the emission signal from the coupled oscillators A and B can be written as:

𝑆2𝜔 ∼ ∣𝑥(2)𝛢 (2𝜔)∣
2
+ ∣𝑥(2)𝛣 (2𝜔)∣

2
, (4.20)

since the prime interest is to investigate the SH.

Fig. 22b shows the dependence of the second-order signal 𝑆2𝜔 on the pump frequency for

three different values of the coupling coefficient: 𝑔 = 0.3 eV (black line), 𝑔 = 0.5 eV (red line),

and 𝑔 = 0.7 eV (blue line). It is interesting to note that each peak in case 𝑔 = 0 splits into two

peaks. The antisymmetric mode 𝛺− results in a significant enhancement of the SH response,
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while the contribution to 𝑆2𝜔 by the symmetric mode𝛺+ becomes weaker with an increased cou-

pling. Since oscillator A has considerably lower losses compared to B, it can store higher amounts

of energy, which in turn leads to stronger emission.

Theproposed analyticalmodel of couplednonlinear oscillators predicts a noticeable enhance-

ment of the second-order response at the frequency of the antisymmetric mode and the suppres-

sion of the signal by the symmetric mode. The primary source of the enhancement and suppres-

sion is the sub/superradiant nature of the normal modes of coupled oscillators.

Summarizing the computational results, the conducted simulations are also in close agree-

ment with the main prediction – the SHG process driven at the frequency corresponding to a

narrow resonant mode with a Fano-like profile leads to the strong enhancement of the nonlinear

response. The behavior of the SH signal generated by an individual nanodolmen is also analyzed.

It is shown that the angular properties of the SH are very sensitive to changes in the initial ge-

ometrical parameters. The nonlinear signal enhancement due to local field enhancement is less

pronounceable, but it is still observed.
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Chapter 5

STUDIES OF THE STRONGCOUPLING

Two examples of strong coupling between two nonlinear interfaces are discussed here. The

first work is done for 2Dmaterials, where the silver wires are coupled to𝑊𝑆2. The second work

focuses on the triangular nanoholes that are coupled to molecules. The noticeable Rabi splitting

is shown for both cases and the nature of the observed phenomenon is discussed.

5.1 Harmonic Generation by Metal Nanostructures Strongly Coupled to Few-Layer Thin

TransitionMetal Dichalcogenides

Transition Metal Dichalcogenides (TMDs) are 2D materials. They have been investigated

for nonlinear optical applications, including broadbandoptical devices, nonlinear frequency con-

version processes, mid-infrared photonics, and THz sources and detectors (Autere et al. 2018).

Tungsten disulfide (𝑊𝑆2) is chosen here as a model compound for a few-layer 2D-material. The

nonlinear optical response of 𝑊𝑆2 with both second- and third-order susceptibilities coupled

to a periodic plasmonic grating is shown to have a significant effect on the SHG of the metal.

To achieve the strong coupling regime, the combination of excitons supported by 𝑊𝑆2 and

SPPs supported by 2D periodic plasmonic interfaces is considered. It is shown how the exciton-

plasmon strong coupling influences the nonlinear optical responses of hybrid nanomaterials in

2D.

The plasmonic system consists of a flat metal film of thickness 𝑑 placed on the glass substrate

and metal wires of the width𝑅𝑥 and the height𝑅𝑦 on top of the flat metal film (see Fig. 23a). To

avoid lightning rod effects due to sharp corners, smooth corners of the wire with the curvature𝑅
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(a) (b)

(c) (d)

Figure 23. Linear Optics of the Metal Nanostructure

Note: Schematic setup (a); reflection spectra without𝑊𝑆2 for different values of the 𝑅𝑥 (b);
reflection spectra without𝑊𝑆2 for different values of the period (c); reflection coefficient
evaluated at the corresponding plasmon frequency (black line) and the value of the plasmon
frequency in eV (red line) (d).

are used. The nonlinear material is placed on the input side at a distance 𝐿 above the metal wire.

In all simulations the thickness of the silver film, 𝑑, is 100 nm, wire’s height, 𝑅𝑦, is 50 nm, and

the curvature of the corners, 𝑅, is 10 nm.

The electrodynamics of the plasmonic system under consideration is simulated by numer-

ically integrating Maxwell’s equations (2.1). To account for the nonlinear optical response of
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metal the classical theory based on the nonlinear Drude model (2.31) was adopted and coupled

to (2.1). For silver, the following parameters are used: plasma frequency𝛺𝑝 = 9.04 eV and the

phenomenological decay constant 𝛾 = 0.02125 eV.

When investigating the dynamics of plasmons coupled to a thin dispersivematerial (schemat-

ically depicted as𝑊𝑆2 at Fig.23a), the latter is described by the linear Lorentz dielectric function

with experimental parameters corresponding to a few-layer thin 𝑊𝑆2. The nonlinear part of

the response is simulated by adding second- and third-order susceptibilities, 𝜒(2) and 𝜒(3), corre-

spondingly, and implementing the efficient numerical procedure, allowing to account for both

linear dispersion and the nonlinear effects.

Fig. 23 explores themain linear optical properties of the periodic plasmonic grating. Fig. 23b,

c show the reflection spectra of the system without𝑊𝑆2 as a function of the incident photon

energy. In Fig. 23b different colors correspond to different values of wire’s width 𝑅𝑥 keeping

other parameters constant. The period is set at 550 nm. The blue line corresponds to 𝑅𝑥 = 540

nm, the red line is for 𝑅𝑥 = 520 nm, and the green line is for 𝑅𝑥 = 270 nm. In Fig. 23c different

colors correspond to different values of the period and 𝑅𝑥 = 520 nm. The blue line is for the

period of 650 nm, the red line corresponds to the period of 600 nm, and the green line is for the

period of 550 nm. The SPP mode is seen because the low energy minimum highly dependent

on the width of metal wires (Fig. 23b) and the periodicity (Fig. 23c). When the value 𝑅𝑥 is close

to the period, the reflection reaches nearly 35%, making the coupling of the incident light to the

plasmon mode very efficient. One may use 𝑅𝑥 as a tuning knob to adjust the position of the

mode to the desired frequency, making it very useful when trying to couple it to another optical

oscillator, such as a molecular aggregate or a 2Dmaterial.

One can see fromFig. 23b that increasing𝑅𝑥 results in the red shift of the plasmon resonance

with the reflection going frommerely 90% to 35%. For a fixed value of 𝑅𝑥, decreasing the period

66



leads to a predictable blue shift of the mode, as shown in Fig. 23c. The efficiency of the coupling

to the plasmon mode also varies with both the period and wire’s width.

Fig. 23d shows the dependence of the reflection (black line) and the corresponding plasmon

frequency (red line) on𝑅𝑥 for the period of 550 nm. For the large values of𝑅𝑥 (i.e., small gaps be-

tween wires) the plasmon mode becomes highly spatially localized near/inside the gaps between

wires. Although the reflection becomes significantly small, such localization is not desirable since

the goal is to be able to couple the plasmonmode to a 2Dmaterial placed in proximity of thewires.

Thus, 𝑅𝑥 is kept large enough for the incident field to couple to the plasmon, but small enough,

so the plasmon mode spatially extends to about 15-50 nm above wire’s surface.

5.1.1 Nonlinear Regime of the Metal Nanostructure

Fig. 24 summarizes the nonlinear response of a bare plasmonic system without 2Dmaterial.

Here the dependencies of the SH and third harmonic (TH) are explored on various geometrical

parameters. The frequency resolved signal obtained from100 fs intense pulse excitation is shown

in Fig. 24a at three incident pump amplitudes: 𝛦0 = 106V/m (green line),𝛦0 = 107V/m (red line),

and𝛦0 = 108 V/m (blue line). The pump frequency is 2 eV, corresponding to the plasmonmode

for the period of 550 nm and wire’s width 𝑅𝑥 = 520 nm. The signal is normalized with respect

to the pump intensity. The SH is clearly visible at all pump intensities, while TH signal can be

seen only at 108 V/m.

To check the numerical convergence of the model and to ensure that peaks exhibited in Fig.

24a correspond to harmonics generation, SH and TH signals are integrated over frequencies to

account for losses and dispersion and plotted as functions of the pump intensity in Fig. 24b. The

slopes of both SH (black line) and TH (red line) are nearly ideal 2 and 3, respectively.
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(a) (b)

(c) (d)

Figure 24. Nonlinear Optics of the Metal Nanostructure

Note: Harmonics spectra for different pump amplitudes (a); SH signal (black line) and TH
signal (red line) as functions of the pump intensity (b); SH (c) and TH (d) signals when
pumped at the fixed plasmon resonance (black line) and when pumped at the resonant
frequency evaluated for each value of 𝑅𝑥 (red line).

Next, the influence of structural parameters and the effect of the plasmon resonance on SH

(Fig. 24c) and TH (Fig. 24d) signals is explored. Two scenarios are considered:

• When varying 𝑅𝑥, the pump frequency is fixed at 2 eV (black lines);

• When varying 𝑅𝑥, the pump frequency is adjusted to a given geometry (red lines).
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It is expected that when pumped at the plasmon resonance, the efficiency of SH and TH gener-

ation would be prominently higher due to local electromagnetic field enhancement. However,

the results suggest a more complex behavior of the SHG process. As seen from Fig. 24c, the SH

signal exhibits two maxima for a fixed pump frequency:

1. The enhancement at 𝑅𝑥 = 520 nm, as it corresponds to the resonant conditions;

2. The SH signal for 𝑅𝑥 = 320 nm is observed almost as high as in case 1.

When comparing SH signals off (black) and on (red) resonance, both conditions result in nearly

the same SH efficiency for values of 𝑅𝑥 above 300 nm. The TH signal (Fig. 24d) depends on 𝑅𝑥,

as one expects, with the signal nearly monotonically increasing with 𝑅𝑥.

5.1.2 Nonlinear Regime of the Strongly Coupled System

After exploring the high harmonic generation by the plasmonic system, a hybrid construct is

considered, combining the plasmonic gratingwith a few-layer thin 2Dmaterial, placing the latter

on the input side (see Fig. 23a).

In order toquantitatively explore thenonlinear optical response of such a system, theLorentz

model for the 2D material with parameters describing𝑊𝑆2 is used. Fig. 25a shows linear reflec-

tion spectra of the hybrid system with𝑊𝑆2 placed 15 nm above the grating for the periods of

530 nm (red line) and of 550 nm (blue line). The strong coupling regime between SPR mode

supported by the grating and𝑊𝑆2 is achieved for the period of 550 nm and 𝑅𝑥 = 520 nm. The

rest of Fig. 25 discusses the high harmonic generation by the hybrid systemwith𝑊𝑆2modeled as

a dispersive material with an instantaneous Kerr nonlinearity. The complete model, which also

includes the second-order susceptibility, is presented in Fig. 26. The goal of simulations shown

in Fig. 25 is to understand how a dispersivematerialmay affect even harmonics generation (solely

produced by metal) in the strong coupling regime.
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(a) (b)

(c) (d)

Figure 25. Nonlinear Optics of the Strongly Coupled System

Note: Linear reflection spectra for𝑊𝑆2 (green line), for𝑊𝑆2 placed above the grating for the
periods of 530 nm (red line) and of 550 nm (blue line) (a); harmonics spectra with (black line)
and without (red line)𝑊𝑆2 (b); SH signal when pumped at 1.97 eV (black line) and at 2.03 eV
(red line) (c); normalized real part of the second-order contribution 𝑥(2)1 (d).

Fig. 25b shows the harmonics spectra with (black line) and without (red line)𝑊𝑆2 at the

distance of 15 nm above the grating. The pump amplitude is𝛦0 = 108 V/m, the pump frequency

is 1.97 eV, the period of the grating is 550 nm, and 𝑅𝑥 is 520 nm. One can notice two important

effects:

1. Odd harmonics are significantly enhanced by𝑊𝑆2;
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2. Even harmonics are greatly affected by the very presence of𝑊𝑆2, even though the model

does not directly include the second-order susceptibility for𝑊𝑆2.

In order to further elucidate and understand this effect, a simplemodel of two coupled oscillators

with one being externally driven and having a second-order nonlinearity is considered:

�̈�1 + 𝛾1�̇�1 + 𝜔21𝑥1 + 𝑎𝑥21 − 𝑔2𝑥2 = 𝐹0,

�̈�2 + 𝛾2�̇�2 + 𝜔22𝑥2 − 𝑔2𝑥1 = 0,
(5.1)

where 𝑥1, 𝑥2 correspond to displacements of two oscillators that are coupled through the dipole-

dipole coupling proportional to the parameter 𝑔2, the first oscillator is driven by the external force

𝐹0 and has a second-order nonlinearity characterized by the parameter 𝑎. To show the analogy

with the hybrid system, one can note that the first oscillator represents metal and the second one

is the 2Dmaterial. When the incidentfield is small, the second-ordernonlinearity in thefirst equa-

tion is significantly smaller compared to other terms. One can apply the Rayleigh-Schrödinger

perturbation theory (Boyd 2008) to find the second-order contribution for the process of the

SHG:

𝑥(2)1 = − 𝑎𝐹20
𝜔21 + 𝑖𝛾1(2𝜔) − (2𝜔)2

( 𝜔22 + 𝑖𝛾2𝜔 − 𝜔2
𝑔4 − (𝜔21 + 𝑖𝛾1𝜔 − 𝜔2) (𝜔22 + 𝑖𝛾2𝜔 − 𝜔2)

)
2

. (5.2)

Equation (5.2) shows that SH is significantly influenced by the presence of another dispersive

material (even though this material does not have its own second-order nonlinearity), as long as

the coupling is strong enough. The corresponding second-order susceptibility, associated with

(5.2), peaks at two well-defined frequencies:

𝜔2± =
𝜔21 + 𝜔22

2 ± √(𝜔
2
1 − 𝜔22)

2

4 + 𝑔4, (5.3)

corresponding to the upper and lower polaritonic states of two coupled oscillators (Novotny

2010).
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Figure 26. SH Signal for the Plasmonic Grating (black line), the Grating Coupled to 2D
Material with Only the Third-Order Nonlinearity (red line), and with Both Second and Third
Order Susceptibilities (blue line)

In the numerical model, the system is pumped using the frequency corresponding to either

lower or upper polaritonic states. The SHsignal for the lower polaritonpumpdrops as a function

of the distance 𝐿, while the pumping at the upper polariton leads to an increase of the SH signal

with the distance between𝑊𝑆2 and the metal. It can be noted that the SH signal is higher when

𝑊𝑆2 is absent (see Fig. 25b, red vs black lines for the SH).

Fig. 25c shows the SH signal as a function of the distance between the grating and𝑊𝑆2, 𝐿,

(see Fig. 24a) when pumped at the lower (black lines) and upper (red lines) polariton energies

(1.97 eV and 2.03 eV), respectively. One may expect that both lines in Fig. 25c need to reach an

asymptotic value at very large distances 𝐿. However, it does not happen in the simulations. It

means that𝑊𝑆2 is not directly coupled to the surface plasmons at large values of 𝐿, but it still
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influences the electromagnetic field that is driving the plasmonic grating. Since𝑊𝑆2 is located

on the input side, it results in a filtering effect.

The analytical model can be used to explain the difference between different pumping fre-

quencies for the SH signal seen in Fig. 25c. Fig. 25d shows the real part of the second-order con-

tribution 𝑥(2)1 for the case when the eigenfrequencies of each oscillator are slightly displaced rela-

tive to one another. When the coupling strength increases (i.e.,𝑊𝑆2 is placed closer to the plas-

monic array), the hybrid states are clearly visible. The SH signal is significantly non-symmetric,

exhibiting higher values at the lower polaritonic brunch since two oscillators have both different

damping parameters (as in the case of the real system, where the metal is significantly lossier than

the exciton mode of𝑊𝑆2) and different eigenfrequencies.

Since 𝑊𝑆2 is noncentrosymmetric, it also has a second-order susceptibility, 𝜒(2), which

was shown experimentally to reach remarkably high values due to a large joint density of states

(Janisch et al. 2014). Fig. 26 shows the SH signal as a function of the pump frequency, comparing

three models:

• Periodic plasmonic grating only;

• Plasmonic grating with𝑊𝑆2 taking into account only its 𝜒(3);

• Plasmonic grating coupled to𝑊𝑆2 with both 𝜒(2) and 𝜒(3).

The bare metal generates the SH more efficiently if pumped at the corresponding plasmon fre-

quency, as it was pointed out earlier. When the second-order nonlinearity of𝑊𝑆2 is included in

simulations, the maximum of the SH signal is red-shifted to 1.94 eV, which is not the exciton ab-

sorption peak of bare𝑊𝑆2 (2.01 eV), but rather the lower polariton state of the coupled system.

When 𝜒(2) is neglected, the SH signal has a signature of the strong coupling with two well-seen

resonant peaks corresponding to the upper and lower polaritonicmodes. It should be noted that

the frequency shift observed in the calculations has been experimentally observed for a system

comprised of c-Porphyrin and a metal cavity (Chervy et al. 2016).
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To sum up, self-consistent calculations combining the nonlinear optical response of a peri-

odic plasmonic system coupled to a thin nonlinear material exhibiting instantaneous second and

third-order nonlinearities (with parameters corresponding to tungsten disulfide) are presented.

It is demonstrated that under strong coupling conditions the SH signal solely generated by the

metal is significantly influenced by the dispersion of𝑊𝑆2, even when the second-order nonlin-

earity for𝑊𝑆2 is neglected. A simple analytical model of two coupled oscillators is presented to

explain this effect.

5.2 Plasmon Enhanced Second Harmonic Generation by Periodic Arrays of Triangular

Nanoholes Strongly Coupled to Quantum Emitters

Optical properties of periodic arrays of nanoholes of a triangular shape with experimentally

realizable parameters are discussed below. The electromagnetic radiation is described classically

in accordance with Maxwell’s equations (2.1). The optical response in spatial regions occupied

by metal is considered using classical hydrodynamics describing conduction electrons (2.31). To

study the strong coupling between plasmons and molecular assemblies and its consequences on

SHG, rate equations that govern the dynamics of the macroscopic polarization in spatial regions

with molecules are employed (2.50).

The resulting set of coupled equations (2.1), (2.25), and (2.50) constitutes the basis for con-

sidering molecules and plasmonic materials on equal footing and combining their response to

external excitation in both linear and nonlinear regimes. In the simulations, the following pa-

rameters are used to describe silver: plasma frequency 𝛺𝑝 = 8.28 eV, effective electron mass

𝑚∗ = 0.99𝑚𝑒, andphenomenological decay constant𝛾=0.048 eV. In order to describemolecules,

the transition frequency and number density are varied and other parameters are fixed: transition

dipole 𝜇𝑒𝑔 = 10 D, radiationless decay rate of the excited state 𝛤 = 4.1 × 10−3 eV, and the pure
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dephasing rate 𝛾∗ = 5.9 × 10−3 eV. The periodic arrays of triangular holes in a thin silver film are

schematically depicted in the inset of Fig. 27a.

Figure 27. Linear Optics of Triangular Nanoholes

Note: Schematics of a unit cell and linear absorption for different values of 𝑅 (a); linear
transmission (black line), reflection (red line), and absorption (blue line) (b); intensity at
different frequencies (c); linear transmission (dashed lines) and reflection (solid lines) at
different incident field polarizations (d).

The SHG from circular holes is noticeably lower, compared to the one generated by non-

symmetric holes (Barnes, Dereux, and Ebbesen 2003; Salomon, Wang, et al. 2013; Salomon,

Zielinski, et al. 2013). 280 nm thick silver metal film is placed on a semi-infinite glass substrate

with a refractive index of 1.5 and is covered by a 100 nm thick polyvinyl alcohol (PVA) layer with

75



the same refractive index (Segal, Haleva, and Salomon 2019). It is also assumed that the areas

inside holes are not filled with any dielectric. The square arrays have a periodicity of 346.5 nm.

The triangular holes have a side of 220 nm and a base of 200 nm. The system is excited by a plane

wave at normal incidence emanating from the air side.

Fig. 27 summarizes the main results on linear optical response. First, the influence of sharp

corners of holes on linear absorption is examined, as shown in Fig. 27a. The linear absorption

as a function of frequency is presented for three values of the curvature 𝑅 that define how sharp

the corners of the hole are. There, the black line is for 𝑅 = 1 nm, the red line is for 𝑅 = 10 nm,

and the blue line is for 𝑅 = 20 nm. The incident field is x-polarized. One can notice a blue shift

of all resonant modes. It can be explained by the decrease in the volume of the hole since the

curvature 𝑅 increases. Another feature one can observe is the mode near 1.75 eV, which appears

for sharp corners and is hardly noticeable for 𝑅 = 20 nm. The sharp edges lead to knee-type

resonances (Sukharev and Seideman 2007; Sukharev et al. 2007). So the observed feature is due

to the lightning rod effect. Additionally, the enhancement andblue shift of the high energymode

seen near 2.7 eV are observed.

The linear spectra (transmission, reflection, and absorption) are plotted in Fig. 27b for the

incident field polarized along x-axis and 𝑅 = 20 nm is fixed. Three resonant modes are seen at

1.99 eV, 2.54 eV, and 2.71 eV (values are extracted from the absorption spectrum). Two low fre-

quency resonances are in both transmission and reflection spectra. That indicates the plasmonic

character of those modes. One can note that the mode at 2.71 eV has nearly 0 transmission. The

mode at 2.54 eV is associated with the substantial transmission, but the reflection reaches a very

low value of 3 × 10−3. Spatial distributions of the observed modes are examined to understand

their physical nature. The in-plane intensity distributions exhibit complex spatial characterswith

the energy localized mainly in between the holes at 2.54 eV and 2.71 eV. The electromagnetic in-

tensity calculated at 1.99 eV is predominantly localized at the edges of the holes and inside the
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metal. The longitudinal dependence at three frequencies: 1.99 eV (black line), 2.54 eV (red line),

and 2.71 eV (blue line) is shown in Fig. 27c. Here the steady-state intensities computed at res-

onant frequencies corresponding to maxima of the absorption (Fig. 27b) as functions of the

longitudinal coordinate, z, are plotted. Two other coordinates are fixed at x = -55 nm and y =

0 nm (measuring from the center of the hole). The initial enhancement is observed for all three

modes near the boundary between the PVA and the hole. They are exponentially decreasing

when going through the hole to the substrate. Another enhancement is seen on the output side

near the substrate.

For the square array of holes at normal incidence, the expression for the resonant wavelength

of the Bragg plasmon can be used (Ghaemi et al. 1998):

𝜆𝑆𝛲𝛲 =
𝑝𝑒𝑟𝑖𝑜𝑑
√𝑖2 + 𝑗2

√ 𝜖𝑑𝑖𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝜖𝑚𝑒𝑡𝑎𝑙
𝜖𝑑𝑖𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 + 𝜖𝑚𝑒𝑡𝑎𝑙

, (5.4)

to give a rough estimate for the lowest diffraction order (𝑖, 𝑗) = (1, 0) resonant frequency. For

the interface with glass/PVA, it is 2.1 eV. To explore this dependence, simulations are performed

varying the incident polarization and tracking corresponding resonances, as shown in Fig. 27d.

Firstly, the lowest frequencymode at 1.99 eV is merely affected. It exhibits small variations of the

resonance shape and its frequency. That happens because of the non-symmetric shape of holes.

The simulations are repeated for holes having an equilateral triangular shape. It is observed that

the lowest frequency resonance is nearly independent of the incident polarization. Thus, the

lowest frequency mode at 1.99 eV (x-polarization) is a Localized Surface Plasmon Resonance

(LSPR) associated with the individual hole. Secondly, two other modes are noticeably depen-

dent on the incident polarization (see Fig. 27d). There, linear transmission (dashed lines) and

reflection (solid lines) are shown as functions of frequency calculated at different incident field

polarizations defined by the angle between the electric field and x-axis: 0∘ (i.e., x-polarization;

black), 30∘ (red), 45∘ (blue), 60∘ (green), 90∘ (i.e., y-polarization; magenta). Two plasmon reso-

nances at 2.54 eV and 2.67 eV correspond to the first-order Bragg plasmons. They have different
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frequencies since the shape of the holes is not symmetric. In summary, as seen in Fig. 27b, the

x-polarized incident field leads to excitation of the LSPR mode (1.99 eV), the first-order Bragg

plasmon (2.54 eV), and the mode localized inside PVA with no surface plasmon character (2.71

eV), which may be interpreted as a waveguide mode in the PVA layer.

5.2.1 Linear Regime of the Strongly Coupled System

Here the focus is on molecular emitters embedded in the PVA layer and how they interact

with either of the three resonant modes discussed above.

Fig. 28 summarizes the results with molecules. The optical absorption calculated for the

array without emitters (black) and with emitters resonant at the LSPR frequency of 1.99 eV

with the molecular concentration of 2 × 1025 m−3 (red) and 4 × 1025 m−3 (blue) is shown at

Fig. 28a. It is seen that the absorption significantly increases at the resonant frequency with

increasing molecular concentration. One can observe the hybrid molecular-plasmon modes due

to the strong coupling, which becomes more pronounceable at the molecular concentration of

4 × 1025 m−3.

Fig. 28b shows absorption with molecules resonant at the first-order Bragg plasmon fre-

quency of 2.54 eV and Fig. 28c shows absorption for the molecules resonant at the frequency of

2.71 eV (the corresponding resonant mode is localized inside the PVA layer). The color scheme

is the same as in Fig. 28a. TheRabi splitting due to themolecule-plasmon hybridization is signif-

icantly higher when the molecules are resonant at 2.54 eV (Bragg plasmon) and 2.71 eV (waveg-

uide mode), as seen in Figs. 28b and 28c, respectively. In both cases, the Rabi splitting reaches

135 meV at the molecular concentration of 4 × 1025 m−3.

The polarization dependence of the absorption at the Bragg plasmon frequency is explored

in Fig. 28d with the molecules resonant at 2.54 eV (Bragg mode). The dashed lines correspond
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Figure 28. Linear Absorption of Triangular Nanohole Arrays with Two-Level Molecular
Emitters

Note: Absorption of the array without emitters (black line) and with emitters resonant at 1.99
eV with the molecular concentration of 2 × 1025 m−3 (red line) and 4 × 1025 m−3 (blue line) (a);
absorption with molecules resonant at 2.54 eV (b), at 2.71 eV (c), the color scheme is the same
as at (a); absorption of the array without molecules (dashed lines) and with molecules (solid
lines) for different incident field polarization (d).

to the arraywithoutmolecules, the solid lines show the response of the arraywithmolecules. Dif-

ferent incident field polarizations are defined by the angle between the electric field and x-axis: 0∘

(i.e., x-polarization; black), 30∘ (red), 45∘ (blue), 60∘ (green), 90∘ (i.e., y-polarization; magenta).

The molecular density is 4 × 1025 m−3. Here the in-plane polarization of the incident field is

gradually changed, keeping molecules resonant at 2.54 eV. There are several features discussed
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below. Firstly, the central absorption peak near 2.54 eV is blue-shifted for all polarizations if

one compares it with the array without molecules. Secondly, there is no change in Rabi splitting

for different polarization because the incident polarization does not change the molecular con-

centration. The absorption for upper/lower polaritonmodes becomes smaller with the incident

polarization rotating from x to y direction since the first-order Bragg plasmon along x has lower

frequency compared to its counterpart excited at y-polarization. Thirdly, one can observe the

absorption peak at 2.51 eV which becomes more noticeable as the incident polarization turns

more toward y. Both x- and y-Bragg plasmons are excited for 30∘, 45∘, and 60∘ polarizations.

One can notice the polaritonic states associated with the strong coupling betweenmolecules and

x-Bragg plasmon. Also, the lower polariton state at 2.51 eV is due to the coupling with y-Bragg

plasmon. Since the latter is far from the molecular resonance (2.54 eV), only a small portion of

it is hybridized. The upper polariton part of this coupling is buried under the large absorption

peak at 2.54 eV. Themodes near 2.7 eV are shifted to higher frequencies compared to the case of

the array without molecules as it was discussed above.

5.2.2 Nonlinear Regime of the Strongly Coupled System

Now triangular hole arrays response is examined if it is subjected to an intense resonant laser

pulse excitation.

Fig. 29a shows the normalized power spectrum of the array without molecules. The trans-

mitted and reflected energies are combined. The black line shows the complete model based on

equation (2.31) with all terms included but pressure. The red line shows the results of simula-

tions when theCoulomb term (the third term in (2.31)) and pressure are dropped. The blue line

shows results when the convective term and pressure (the last term in (2.31)) are neglected. The

excitation pulse has an amplitude of 107 V/m, is at the frequency of 1.99 eV, and is polarized
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Figure 29. Nonlinear Response of Triangular Nanoholes without and with theMolecular Layer

Note: Power spectra of the array without molecules where all terms of equation (2.31) are
included (black line), no Coulomb term and pressure (red line), no convective term and
pressure (blue line) (a); power spectra without molecules for different pump frequencies (b);
power spectra with molecules with different number densities (b); power spectra with
molecules for different pump frequencies (d).

along x. Interesting to note that turning on and off themagnetic part of the Lorentz force, Ṗ ×B,

has no feasible effect on the spectrum. Contrary, the Coulomb term, E (∇ ⋅ Ṗ), and the convec-

tive term, [(∇ ⋅ Ṗ) Ṗ + (Ṗ∇) Ṗ], have a noticeable impact on the signal for the SH and the third

harmonic. The spectrum where only Lorentz term is kept is not plotted since it shows a small

tincture of the SH only. One can conclude that the main contributors to the nonlinear response

are terms with spatial derivatives. It is seen that the polarization is governed by the magnetic part
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of the Lorentz force and the gradients that depend on the free electron susceptibility and local

electric field at the fundamental frequency. As Fig. 28a demonstrates, the gradients play the

leading role in nanoscale systems and thus geometry becomes the major contributing factor.

Fig. 29b compares power spectra obtained by pumping the plasmonic array at four different

resonant frequencies: 1.99 eV (black line), 2.54 eV (red line), 2.67 eV (blue line; the pump is

y-polarized), and 2.71 eV (green line). The pump amplitude is the same as in Fig. 29a. The in-

tensities of the second and third harmonics are significantly enhanced when the array is pumped

at the LSPR frequency (1.99 eV). Pumping at either x- or y-Bragg plasmon resonances (2.54 eV

and2.67 eV, correspondingly) also leads to the SHG,but the third harmonic is greatly suppressed.

Interestingly, y-Bragg plasmon does show a clear signal at the third harmonic, while x-Bragg plas-

mon does not. When the array is pumped at the frequency of the guiding mode (2.71 eV), only

the SH is observed, which is not surprising since the resonant mode is mainly localized inside the

PVA layer with a very small local field enhancement near the metal interface.

Figs. 29c and 29d explore the SHG by triangular hole arrays with molecules uniformly dis-

tributed inside the PVA layer. Fig. 29c shows the power spectrumnear the SHof the pump. The

spectrum is calculated for the array with molecules uniformly distributed inside the PVA layer.

The black line shows results for the number density ofmolecules of2×1025m−3 and the red line is

for the density of 4×1025m−3. Themolecular transition frequency is set at 1.99 eV. The incident

pump is resonant at 1.99 eV, has the amplitude of 107 V/m, and is polarized along x. Fig. 29d

shows results of simulations similar to that in Fig. 29c but for three different pump frequencies:

the black line is for the pump at 2.54 eV (the first-order Bragg plasmon), the red line is for the

pump at 2.49 eV (lower polariton), and the blue line is for the pump at 2.58 eV (upper polariton).

The pump amplitude and the polarization are the same as in Fig. 29c. Molecular concentration

is 2 × 1025 m−3. The molecular transition frequency is 2.54 eV. A simple two-level model for

molecular emitters (2.50) is considered, which supports only odd harmonic generation due to

82



the dipole selection rule. When molecules are not strongly coupled to any resonant modes of

the array, the even harmonic generation is solely due to metal. However, when the system enters

the strong coupling regime, there are significant changes to the lineshape of the SH, as seen in

Fig. 29c. Here the system is pumped at the LSPR frequency with the molecules being resonant

to that as well. A tincture of the SH signals produced by the exciton-plasmon states at the con-

centration of 2 × 1025 m−3 is seen in Fig. 29c (black line). When the molecular concentration is

increased, three peaks are clearly visible. These correspond to the SH of the lower polariton, the

LSRP mode, and the upper polariton. When pumped at 2.54 eV, one can observe three peaks

in the SH signals. Two different scenarios are considered. First, if pumped at the frequency of

the lower polariton (Fig. 29d, red line), its SH is noticeably enhanced and the SH of the Bragg

plasmon is seen as well. Secondly, when the system is driven at the upper polariton frequency in

addition to its SH and the corresponding plasmon peak, one can see a small contribution from

the lower polariton as well.

5.2.3 Polarization Dependence of the Second Harmonic Generation

Horizontally and vertically polarized SH signals were separately calculated in order to explore

angular dependence and the physical nature of the SHG enhanced by the LSPR mode. The

measurement of those is performed in the far field zone along a circular detection contour (see

the red line at Fig. 30a). The red dashed circle with a radius of 100 nm is placed 588 nm above

the PVA layer. It consists of 36 detection points equally spread along the circle with an angular

displacement of 10∘.

Fig. 30b shows calculated angular diagrams: horizontally, |𝛦𝑥(2𝜔)|2, (black line) and verti-

cally, |𝛦𝑦(2𝜔)|2, (red line) polarized SH signals for the triangular hole arrays without molecules

detected along the contour shown in Fig. 30a. The pump pulse has an amplitude of 107 V/m

83



Figure 30. Polarization Dependence of SH of Triangular Nanoholes

Note: Top view of the unit cells of the simulation domain with red detection points indicated
(a); |𝛦𝑥(2𝜔)|2 (black line) and |𝛦𝑦(2𝜔)|2 (red line) (b).

with a duration of 100 fs, and is polarized along x. The pump frequency is 1.99 eV. One can

note that the horizontally polarized SH signal is left-right symmetric due to themirror symmetry

of the triangular shape. Also, the vertical polarization exhibits highly enhanced directional radia-

tion in the direction of the upper corner of the triangular hole. That indicates that the hole acts

as a directional nonlinear antenna.

To conclude, linear and nonlinear responses of periodic arrays of nanoholes of a triangular

shape using experimentally realizable parameters were investigated. It is shown how the arrays

with and without molecules optically respond when driven by intense resonant laser pulses.
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Chapter 6

CONCLUSIONS

The presented thesis summarizes the results of the following publications: (Drobnyh,

Pachter, and Sukharev 2019; Drobnyh and Sukharev 2020; Maekawa et al. 2020; Minh Ngo et

al. 2022; Sukharev, Drobnyh, and Pachter 2022). The combination of numerical electrodynam-

ics methods and the nonlinear hydrodynamic Drude model for conduction electrons in metals

served as a very powerful tool that was utilized to study nonlinear responses generated at plas-

monic interfaces.

Generation of the second harmonic radiation was investigated, quantitatively and qualita-

tively, in periodic arrays of nanoprisms, nanocrescents, and nanodolmens. In particular, the great

sensitivity of the secondharmonic to the shapes of the nanoparticles, their surface roughness, and

incident field polarization was confirmed for all the nanostructures mentioned above. To charac-

terize the second harmonic quantitatively, the values of second-order susceptibility are reported

for nanodolmens as a function of the pump frequency. Moreover, the values of hyperpolarizabil-

itywere extracted from the numericalmodeling and thenwere compared and found in consistent

agreement with experimental results.

Exploration of nonlinear plasmonic materials strongly coupled to quantum systems was

done in two and three dimensions. It was shown that under the strong coupling condition, the

second harmonic signal solely generated by the periodic plasmonic systemwas significantly influ-

enced by the 2D few-layer material even when the second-order nonlinearity of this 2Dmaterial

is neglected. In the 3D case, when the plasmonic interface is strongly coupled to molecules, the

second harmonic lineshapes were shown to be substantially modified exhibiting three peaks that

correspond to the second harmonic signals at a driving frequency and upper and lower polari-

85



tons. The numerical results were supported by a simple analytical model of a driven anharmonic

oscillator coupled to a Lorentz oscillator via dipole-dipole coupling.

To summarize, second harmonic responses from a variety of metal nanostructures have been

vigorously investigated in this thesis. The strong coupling regime is discussed, and a theoretical

model is applied to explain the numerical findings. A possible extension of this work could be

an exploration of higher orders harmonics in exciton-plasmon systems and their interactionwith

quantum emitters under strong coupling conditions.
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