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ABSTRACT

Soft continuum robots with the ability to bend, twist, elongate, and shorten, similar to 

octopus arms, have many potential applications, such as dexterous manipulation and nav-

igation through unstructured, dynamic environments. Novel soft materials such as smart 

hydrogels, which change volume and other properties in response to stimuli such as tem-

perature, pH, and chemicals, can potentially be used to construct soft robots that achieve 

self-regulated adaptive reconfiguration through on-demand dynamic control of local prop-

erties. However, the design of controllers for soft continuum robots is challenging due 

to their high-dimensional configuration space and the complexity of modeling soft actuator 

dynamics. To address these challenges, this dissertation presents two different model-based 

control approaches for robots with distributed soft actuators and sensors and validates the 

approaches in simulations and physical experiments. It is demonstrated that by choosing 

an appropriate dynamical model and designing a decentralized controller based on this 

model, such robots can be controlled to achieve diverse types of complex configurations.

The first approach consists of approximating the dynamics of the system, including its 

actuators, as a linear state-space model in order to apply optimal robust control techniques 

such as H∞ state-feedback and H∞ output-feedback methods. These techniques are de-

signed to utilize the decentralized control structure of the robot and its distributed sensing 

and actuation to achieve vibration control and trajectory tracking. The approach is vali-

dated in simulation on an Euler-Bernoulli dynamic model of a hydrogel-based cantilevered 

robotic arm and in experiments with a hydrogel-actuated miniature 2-DOF manipulator.

The second approach is developed for soft continuum robots with dynamics that can be 

modeled using Cosserat rod theory. An inverse dynamics control approach is implemented 

on the Cosserat model of the robot for tracking configurations that include bending, torsion, 

shear, and extension deformations. The decentralized controller structure facilitates its 

implementation on robot arms composed of independently-controllable segments that have

i



local sensing and actuation. This approach is validated on simulated 3D robot arms and

on an actual silicone robot arm with distributed pneumatic actuation, for which the inverse

dynamics problem is solved in simulation and the computed control outputs are applied to

the robot in real-time.
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Chapter 1

INTRODUCTION

1.1 Problem Definition

This research is primarily motivated by the ongoing development of a soft continuum

robot composed of a smart hydrogel material with local sensing, actuation, and control.

The robot is being designed to reproduce the highly flexible bending, elongation, short-

ening, and twisting movements of octopus arms, in order to perform tasks such as object

grasping and manipulation and underwater propulsion via crawling or swimming. This

dissertation describes my research on modeling the dynamics of this soft continuum robot

and its components and designing control strategies for configuration tracking, trajectory

tracking, and disturbance rejection, which are validated in simulation and on experimen-

tal prototypes with individually-controllable cubical hydrogel actuators. The configuration

tracking controller is also validated experimentally on a pneumatically actuated robotic arm

composed of multiple silicone segments.

1.2 Background

Soft continuum robots are fabricated from soft materials (Rus and Tolley, 2015) and

are designed with a continuous backbone (Walker, 2013b). Webster III and Jones (2010a)

point out that due to their hyper-redundant kinematics, these robots have high dexterity

(infinite degrees of freedom) and compliance, with the ability to grasp objects and per-

form manipulation tasks that rigid-link robots cannot. Soft continuum robots can be used

in manufacturing, surgery, and other applications requiring flexible manipulators that can

operate safely in close proximity to humans. They can also be used to perform unstructured

1



Figure 1.1: Examples of hydroskeletons and muscular hydrostats from Trivedi et al.

(2008b): (a) tube feet in starfish, (b) octopus arms, (c) colonial anemone, (d) mammalian

tongue, (e) squid, (f) elephant trunk, (g) echinoid, (h) Illex illecebrosus, (i) inchworm, and

(j) snail foot.

manipulation and locomotion tasks in uncertain, dynamic environments.

The natural world demonstrates the potential capabilities of soft robots. There are many

examples in nature of compliant, flexible structures made from soft materials, as shown in

Fig. 1.1. Muscular hydrostats such as elephant trunks, mammal and lizard tongues (Ko-

lachalama and Lakshmanan, 2020), and octopus arms are soft structures that can bend,

extend, and twist. Exact mimicry of these complex structures is neither necessary nor prac-

tical for the development of soft robots. However, a fundamental understanding of the

morphology and functionality of these soft structures in nature can provide insight and lead

to new design concepts in soft robotics, as discussed in Trivedi et al. (2008b).
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1.2.1 Inspiration From Octopuses

Octopuses in particular have been a rich source of inspiration for roboticists, as dis-

cussed in Cianchetti et al. (2011), due in part to the dexterity and flexibility of their

continuously deformable arms, which are capable of four primary deformations: bend-

ing, twisting, shortening, and elongation (Kier and Smith, 1985). The octopus employs

unique neuromuscular mechanisms to coordinate and control its eight arms for a diverse

set of behaviors, including reaching and fetching, grasping, manipulation, walking, swim-

ming, mimicry, squeezing through narrow passages, opening clam shells, unscrewing jar

lids, and even building fortified dens. Due to this versatility, Chirikjian (1994) claims

that octopus arms provide a source of inspiration for the design of soft extensible hyper-

redundant robotic manipulators, also called continuum robots by Walker (2013b). The

high-dimensional configuration space of a continuum robot enables it to navigate and per-

form dexterous manipulations in unstructured environments. However, this high degree of

reconfigurability poses challenges for the modeling and control of such robots.

The octopus arm is a muscular hydrostat comprised of three major muscle groups: lon-

gitudinal, transverse, and oblique, discussed in more detail by Kier (2016) and illustrated in

Fig. 1.2 in a cross-sectional view. These muscles produce fundamental arm motions such

as elongation, shortening, bending, and twisting. The octopus has the ability to elongate its

arm to approximately twice its original length, as studied by Margheri et al. (2009). The

arm elongates when its transverse muscles contract, decreasing the circumference of the

arm, and the arm shortens when its longitudinal muscles contract, increasing the circum-

ference. Bending is achieved by contracting the longitudinal muscles along one side of the

arm while simultaneously contracting the transverse muscles along the opposite side of the

arm. The arm is also capable of complex twisting motions, which are generated by the

oblique muscles.
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Figure 1.2: Schematic diagram of an octopus arm, showing the three-dimensional arrange-

ment of muscle fibers and connective tissue fibers. AN, axial nerve cord; AR, artery;

CM, circumferential muscle layer; CT, connective tissue; DCT, dermal connective tissue;

EP, epidermis; IN, intramuscular nerve; LM, longitudinal muscle fibers; OME, external

oblique muscle layer; OMI, internal oblique muscle layer; OMM, median oblique mus-

cle layer; SU, sucker; TM, transverse muscle fibers; TR; trabeculae; V, vein. From Kier

(1988).

The octopus uses combinations of these motions to perform more complicated tasks,

e.g., reaching and fetching. During a reaching movement, the octopus extends one of

its arms such that the tip of the arm arrives at a target object. This can be achieved by

propagating a wave of muscle stiffening from the base of the arm to its tip, as discussed

in Yekutieli et al. (2005a,b). As studied in Richter et al. (2015), reaching is often followed

by fetching, during which the octopus retrieves a grasped object to its mouth. Reaching

is accomplished mostly by simultaneous arm elongation and bending, while fetching is

achieved through simultaneous arm shortening and bending.

In order to observe typical arm deformations during reaching and fetching movements

4



Figure 1.3: Two sequences of snapshots of a live octopus (Octopus bimaculoides) reaching

toward (1 to 5) and fetching (6 to 10) a crab with one of its arms. (Photo credit: Hosain

Bagheri, BIRTHLab, Arizona State University)

that we could then qualitatively reproduce through kinematic models and simulations, we

recorded images of a live octopus (O. bimaculoides) that was housed in a vivarium at

Arizona State University (ASU) and cared for by staff of ASU’s Department of Animal

Care and Technologies. Snapshots of the octopus reaching toward and fetching a live fiddler

crab are shown in Fig. 1.3. Soft continuum robotic arms could be controlled to perform

similar motions, for instance to direct their end-effector to a target location or to grasp and

transport an object.

The octopus has a complex interconnected nervous system. In addition to the centrally
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Figure 1.4: The in vitro preparation of the axial nerve cord from Gutfreund et al. (2006).

(A) A lateral view of the isolated nerve cord (dorsal side up). Each swelling is a single

brachial ganglion. The numerous ventral roots are clearly seen projecting from each gan-

glion (arrows). (B) Dorsal roots originate from the borderline of the axonal tract (some

marked by arrowheads). (C) Unstained transverse section of the axial nerve cord at the

level of a brachial ganglion, showing the two dorsally located bundles of the axonal tract

(AT), the cell body or perikaryal layer (NCL), and the internal neuropil (NP) of the gan-

glion.

located brain, the octopus has peripheral nerves distributed through its mantle and arms

that act as a decentralized network of interconnected neurons. Within each arm, there is

an axial nerve cord, and these nerve cords are connected to each other via the interbrachial

commissure shown in Fig. 1.4. This decentralized nervous system is organized into mul-

tiple segments along the length of the arm, as illustrated in Fig. 1.5 from Grasso (2014).
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Figure 1.5: The organization of ganglia in the octopus arm, illustrated by Grasso (2014).

Around each sucker is a section of the arm whose neural and muscular structure repeats

along the length of the arm. The central segment, N, shows a complete set of brachial and

sucker ganglia and the connections.

Chemoreceptors on the sucker rims and propioceptors embedded in the tissues of the arm

provide sensory inputs to the sucker and brachial ganglia, respectively. The brachial gan-

glion also receives neuronal signal inputs from the sucker ganglion in its segment, descend-

ing inputs from the cerebral ganglia, and inputs from the other arms and several proximally

and distally positioned brachial ganglia. The brachial ganglia process these sources of in-

put and produce motor commands to the muscles of the arm. A shorter sensory motor loop

exists from the sucker ganglia (which also processes input from the brachial ganglia in its

segment) to the sucker muscles. The proximal and distal segments are included in Fig. 1.5

to indicate that this segmented organization is repeated along the length of the arm. Similar

to the neuromuscular structure of an octopus arm, we consider soft robotic arms with a

segmented design, in which individual segments are capable of both sensing and actuation

and neighboring segments transmit information to each other. We develop dynamic models

7



and decentralized controllers for soft robotic arms with this type of design.

1.2.2 Dynamic Modeling of Continuum Soft Robotic Arms

The kinematics and dynamics of continuum robots has been the subject of much re-

search and has now reached a mature stage, with theoretical results now established that

match most of the corresponding results for rigid-link robots. A widely-used design for

soft robots that provides capabilities beyond the scope of traditional rigid-link robots is a

continuous rod-like curved manipulator. A continuum robotic arm is an inherently infinite-

dimensional (distributed parameter) system. Due to the segmented nature of the robot’s

design, the number of states or degrees of freedom of the system is limited only by the

number of segments. Some examples of these soft continuum robots (Rus and Tolley,

2015), which resemble biological trunks and tentacles, are shown in Fig. 1.6. While there

are many scalable and compliant soft robot designs, these designs are typically model-

independent or use simplified models which do not accurately reflect either the nonlinear

dynamics of highly deformable robots or the practical issues of sensor and actuator design

and placement, as discussed in Kim et al. (2013); Laschi and Cianchetti (2014); Rus and

Tolley (2015).

Dynamic models of continuum robots would facilitate a variety of control techniques.

Although researchers have done some limited demonstrations of the control of soft struc-

tures, this has typically been done either through scripting or by doing kinematic rather than

dynamic control. Many of the control-oriented models developed by Godage et al. (2015);

Matsuno and Suenaga (2003); Webster III and Jones (2010b) for these types of robots have

thus far been governed by kinematic equations describing rigid links and hence are not

useful for designing feedback controllers when both the forces produced by the actuators

and the motion of the robot are distributed throughout the structure.

A general dynamical theory of rods, which undergo large deformations in space by
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Figure 1.6: Soft continuum robots. (a) The Octarm grasping a cylindrical object (Kapadia

and Walker, 2011). (b) OctArm, a pneumatically actuated continuum manipulator with

three sections (Wang et al., 2020). (c) Modeling an octopus arm as a special Cosserat

rod (Chang et al., 2020b). (d) Soft robot interaction with environment (Della Santina et al.,

2020). (e) The PCC (piecewise constant curvature) model of the soft robotic arm in (d).
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Figure 1.7: Soft robotic manipulator modeled using the Cosserat rod approach from Trivedi

et al. (2008b), with the backbone position (r) and orientation (d1,d2,d3) parametrized by

a single variable s. The manipulator is acted upon by distributed force (fext) and discrete

forces (F) and moments (M).

bending, torsion, extension, and shear, can be employed for modeling continuum robots.

This dynamical modeling approach is called the special Cosserat theory of rods (Antman,

1995). The geometrically exact models using Cosserat rod theory have been widely applied

to static and dynamic modeling of soft continuum robots. The Kirchhoff model, a special

case of the Cosserat model, can only describe bending and torsion movements; in other

words, it is an unshearable and inextensible Cosserat rod model, as discussed by Till et al.

(2019). Renda et al. (2016) proposed the piecewise constant strain (PCS) model, which is a

continuous Cosserat model that describes shear and torsion. Cosserat theory has also been

widely used in studies of different actuation systems, such as pneumatic muscle-actuated
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multi-section prototype continuum arms presented by Godage et al. (2016), fluidic actuated

legs of the soft crawler FASTT presented by Renda et al. (2016), and tendon-driven robots

by Renda and Laschi (2012). Although Godage et al. (2016) did not consider torsion as

one of the deformations, the novelty of the study is that the model applies to variable-length

multi-section continuum arms with any number of sections. Another straight-tendon robot

is described by a coupled model that combines classical Cosserat rod and Cosserat string

models (Rucker and Webster III, 2011), which has the advantage that it accounts for the

distributed wrenches that tendons apply along the robot.

Figure 1.7 illustrates a soft robotic manipulator modeled using the Cosserat rod ap-

proach. There are examples of using Cosserat theory to model 1D elastic rods (Spill-

mann and Teschner, 2007) and active cannulas (Webster III et al., 2008) with torsion. Lang

et al. (2011) achieved a numerically stable and efficient method for the dynamical analysis

of rods within millisecond accuracy using consistent semi-discretization of the continu-

ous dynamical Cosserat partial differential equations (PDEs) of motion by combining two

staggered spatial grids. From an algorithmic viewpoint, the parameterization of rotations

by quaternions has proved to be very useful, and for time integration, standard ordinary

differential equations (ODEs) and differential algebraic equations (DAEs) solvers can be

applied. Till et al. (2015) presented an efficient numerical solution of the Cosserat kine-

matic model for a 6-DOF parallel continuum robot at rates that enable real-time interac-

tive simulation, motion planning, design optimization, and control. A numerical approach

for forward dynamics simulation of Cosserat-based robot models in real-time is presented

by Till et al. (2019). The approach implicitly discretizes the time derivatives in the PDEs

and then solves the resulting ODE boundary value problem (BVP) in arc length at each

time step. They show that this strategy can encompass a wide variety of robot models and

numerical schemes in both time and space. We have drawn on this body of work and found

the Cosserat model to be applicable to the soft continuum robots that we consider.
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1.2.3 Challenges of Controlling Continuum Soft Robotic Arms

Decentralized control approaches have been extensively employed in the control of

distributed robotic systems such as groups of ground robots (Antonelli et al., 2014) and

Unmanned Aerial Vehicles (UAVs) (Stipanović et al., 2004), as well as hyper-redundant

soft continuum robots (Umedachi and Trimmer, 2016; Kano et al., 2011; Behrens et al.,

2012). Decentralized control methods can be used to avoid the limitations of centralized

control approaches for kinematic control (Ishimura et al., 2002), cooperative control (Liu

and Arimoto, 1998), and fault-tolerant control of multi-segment continuum robots (Kimura

et al., 1995). Moreover, decentralized control approaches can significantly reduce the com-

putational complexity of the control strategy. The implementation of decentralized control

architectures in continuum robots would enable scalability of the robot design, minimize

expensive communication and power overhead, and increase robustness to partial failure,

as discussed in Bakule (2008); Siljak (2011). However, challenges remain in the design of

decentralized controllers for soft continuum robots.

The majority of static and dynamic controllers for continuum robots use the classic La-

grangian or Newton-Euler formulations, as introduced by Siciliano et al. (2010) for mod-

eling such robots, and the Jacobian formulation for closed-loop real-time inverse dynamic

control, implemented by Kapadia and Walker (2011); Godage et al. (2016); George Thu-

ruthel et al. (2020); Wang et al. (2020). Using the Lagrangian formulation, Tatlicioglu

et al. (2007) modeled and simulated the dynamics of a planar extensible continuum ma-

nipulator. Della Santina et al. (2020) applied a closed-loop control approach for trajectory

tracking and surface following using the inverse dynamics of the Lagrangian formulation,

experimentally in 2D for the first time, on a pneumatically actuated soft robotic arm. While

dynamic models have been formulated, e.g. a PDE presented by Ivanescu et al. (2015) for

a model of bending in a hyper-redundant continuum robotic arm, their complexity often
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prevents their practical implementation in controller design and motion planning, as noted

by Walker (2013a); Walker et al. (2016).

Chirikjian (1994) applied a continuum approach to model the dynamics of a snake-

like hyper-redundant manipulator and used this for computed torque control. Gravagne and

Walker (2002) dynamically modeled the Clemson Tentacle Manipulator, a multi-section

continuum robot, and showed that a PD controller plus a feed-forward regulator is suffi-

cient for stabilizing the system. Gravagne et al. (2003) further developed a model that de-

scribes large deflections of the robot and applied a vibration-damping set-point controller

to illustrate the efficacy of their method. Snyder and Wilson (1990) dynamically modeled

polymeric pneumatic tubes subject to tip loading using a bending beam model, but did not

use this for control.

A few real-time control approaches based on reduced-order finite element methods

have been developed and tested on soft robots and manipulators using the Simulation

Open Framework Architecture (SOFA) software framework, introduced and implemented

by Duriez (2013) and Katzschmann et al. (2019).

To address the lack of control methodologies that take full advantage of body com-

pliance, a compliant mechanics environment for controlling soft robots was presented

by Naughton et al. (2020) that uses the recently developed software package Elastica,

an open-source simulation environment for slender rods that can bend, twist, shear, and

stretch. Other studies by Chang et al. (2020a,b), propose methods for controlling an

octopus-inspired soft arm with muscle-like actuation. In these previous studies, only one or

two of the four primary types of deformations (bending, shear, extension, and torsion) are

simulated or experimentally produced in a soft continuum robot, depending on the control

objective or model limitations (Boyer et al., 2011; Niu et al., 2019; Guan et al., 2020).

We develop a decentralized closed-loop control approach for soft continuum robots that

are described by the geometrically exact Cosserat rod model, which enables such robots to
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track 3D configurations that involve any combination of the four primary types of defor-

mations. This approach involves the design of block-diagonal gain matrices that are de-

fined in terms of the physical and material properties of distinct cross-sections of the robot

arm. This structure facilitates its implementation on continuum robot arms composed of

independently-controllable segments that have local sensing and actuation.

In addition, there has been significant research on the question of how to construct stabi-

lizing decentralized feedback laws for a given network and, furthermore, whether there are

necessary and sufficient conditions for the existence of such local feedback laws. Few exist-

ing soft robot designs are able to respond locally to stimuli in a scalable manner, since they

use centralized information processing and the resulting feedback cannot be used to adapt

to local configuration changes. The largest class of systems for which we know the answer

to this question are those systems which are quadratically invariant (Lessard and Lall,

2011; Rotkowitz et al., 2010). While testing quadratic invariance is known to be NP-hard,

in practice, testing quadratic invariance under sparsity constraints for reasonably-sized sys-

tems is not difficult and furthermore, certain well-studied sparsity patterns are known to be

quadratically invariant, with the most well-known case being when the controller is diago-

nal or both the controller and plant are upper- or lower-tridiagonal. Unfortunately, however,

the tridiagonal sparsity constraint generated by discretization of beam-type equations (with

zeros everywhere except the diagonal and first off-diagonal elements) is not quadratically

invariant.

Because the decentralized control problem with tridiagonal structure is difficult, the

literature on vibration control of beams or rods focuses on the case of diagonal decentral-

ization, in which neighboring controllers do not communicate with each other. We were in-

terested in designing decentralized controllers with tridiagonal structure for soft robot arms

replicating the neighboring segment connections inspired by the octopus arm. Since the

tridiagonal structure is not quadratically invariant, we instead considered the non-convex
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Bilinear Matrix Inequality (BMI) formulation of the problem and designed algorithms to

solve this BMI directly using iteration and gradient descent.

Many algorithms have been developed for finding local solutions to BMI problems,

several focusing on Branch and Bound (Goh et al., 1994; Tuan et al., 2000; VanAntwerp

and Braatz, 2000; VanAntwerp et al., 1997, 1999). However, as Liu and Papavassilopoulos

(1996) note, many such global optimization algorithms have high computational complex-

ity, making them impractical for the large state spaces induced by spatial discretization

of a PDE. For high-dimensional problems, Yamada and Hara (1998) suggest a modified

triangle-covering based algorithm which reduces the computational cost. Unfortunately,

however, this approach is restricted to a class of BMIs that does not include the decentral-

ized controller synthesis problem. The method proposed by Kanev et al. (2004) and the

rank minimization approach in Ibaraki and Tomizuka (2001) will both typically converge

to a local optimum, given an initial feasible controller. Other approaches involve lineariza-

tion of the BMI, as studied by Hassibi et al. (1999). Many of these methods can fail to

converge to even locally optimal solutions, as shown by Safonov et al. (1994).

1.2.4 Novel Materials for Building and Controlling Soft Robots

Soft robot arms are usually actuated with tendon, cable, pneumatic, or hydraulic ac-

tuators, as compared by George Thuruthel et al. (2018). However, soft actuators are

lightweight and noiseless, in contrast to pneumatic systems with pumps and motors. Robots

composed of highly deformable matter such as fluids, gels, and elastomers used by Majidi

(2014), with soft actuators such as shape memory alloys (SMAs) and soft sensors such as

artificial skin with touch and temperature receptors, comprise a new generation of robots

reviewed by Pfeifer et al. (2012) that are capable of flexible movements and delicate in-

teractions. Such robots have extensive potential uses in healthcare applications, robotic

exploration tasks, and cooperative human assistance. Potential applications of stimuli-
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responsive materials have been shown by Bacelar et al. (2017); Qin et al. (2019) in micro-

manipulation, sensing, optics and in biomedical applications by Guiseppi-Elie (2010). Fur-

thermore, continuum robots composed of soft materials would exhibit high structural com-

pliance in response to environmental inputs that can enhance the robot’s functionality. Hy-

drogels in particular have the ability to absorb and release water, undergoing reversible

volumetric changes that facilitates their use as soft actuators, as discussed by Mishra et al.

(2020).

Despite extensive research on macroscale robotics and micro-electromechanical sys-

tems, relatively little attention has been paid to the creation of miniature soft robots with

diverse shapes, actuation mechanisms, and integrated functionalities. Robotic manipu-

lation and locomotion in millimeter-scale robots using stimuli-responsive materials has

been previously accomplished by Han et al. (2018); Yeghiazarian et al. (2005); Wang

et al. (2015). Kwon et al. (2008) present miniature (micro- to millimeter) soft aquabots

that combine multiple functionalities to perform multi-functional operations in aqueous

environments, effectively simulating their natural counterparts. Zolfagharian et al. (2018)

achieved substantial improvement in positioning the tip of a bending actuator made of elec-

troactive hydrogels.

Currently, mechanisms that use stimuli-responsive materials in their structures are lim-

ited in terms of the type of motion they can produce. In addition, their motion is dictated by

their geometry and material distribution (e.g., bimorph beams), which cannot be changed

after manufacturing, as mentioned by Ionov (2014). This prevents these mechanisms from

responding to changes in working conditions, which is a requirement in mechanisms made

for exploring unstructured environments. Hines et al. (2017) suggest that the use of electri-

cally responsive soft actuators is more promising, since they are compatible with conven-

tional electronics and batteries and facilitate the integration process. McEvoy and Correll

(2018) developed a soft multi-segment shape-changing robot with integrated sensing, actu-
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ation, and processor modules, and designed a distributed controller for shape control of the

robot. Researchers have tried to control the motion of soft structures by embedding elec-

tronic circuits and locally stimulating material in order to create local deformations, result-

ing in shape change or motion of the structure. Over the past fifteen years, local actuation

for soft robots has advanced, as described by Trivedi et al. (2008a); Cianchetti et al. (2011);

Godage et al. (2016). In some studies like Yu et al. (2013), only the static deformations

were of interest, while in others such as Wang et al. (2018), robot movements were achieved

using open-loop, hard-coded on-off commands, making them incapable of performing pre-

cise, closed-loop controlled movements. He et al. (2012) present the possibility of con-

structing soft continuum robots using smart hydrogels with on-demand dynamic control of

local properties through continuous sensing and actuation that is distributed throughout the

robot. Such robots could offer new capabilities through self-regulated adaptive reconfigu-

ration.

Novel soft materials such as smart hydrogels can change volume and other properties

in response to stimuli such as temperature, pH, and chemicals, as illustrated in Fig. 1.8.

Hydrogels are new materials whose properties make them excellent candidates for soft

robotic and biomedical applications (Guiseppi-Elie, 2010). A hydrogel is composed of a

hydrophilic multiphase polymer mixture that may exhibit properties of both solids and liq-

uids. Its structural framework is formed from 3D networks of randomly cross-linked poly-

meric chains that embody three different phases: solid polymer network matrix, interstitial

water or biological fluid, and ion species (Li, 2009). Hydrogels require water to function

and can be used as deformable actuators that are lightweight and noiseless, in contrast

to pneumatic and hydraulic actuators. There are various types of hydrogels that deform

when they are stimulated with different sources of energy (Peng et al., 2018; Qin et al.,

2019). Poly(N-isopropylacrylamide), or PNIPAAM, is a temperature-responsive hydrogel

that contracts when heated by a laser, electrical resistor, hot water, or other source (Schild,
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Figure 1.8: General design of SMARTS (self-regulated mechanochemical adaptively re-

configurable tunable system), from He et al. (2012). (a) Cross-section schematic. (b)

Three-dimensional schematic. (c) Top-view microscope images of upright and bent mi-

crofins corresponding to on (left) and off (right) reaction states. (d) Forty five-degree

side-view (left) and top-view (right) scanning electron microscope images of 2-mm-wide,

10-mm-long, 18-mm-high microfins with the catalyst particles on tips (inset). (e) Three-

dimensional confocal microscope image of a hydrogel-embedded, 18-mm-tall post array

immersed in a bilayer liquid labelled with fluorescein and rhodamine B, showing the inter-

face height to be 12 mm.

1992). Nano-structured smart hydrogels exhibit rapid stimuli-responsive characteristics,

as well as highly elastic properties that enable them to sustain large compression forces,

resist slicing, and withstand deformations such as bending, twisting, and extensive stretch-

ing (Xia et al., 2013).

Khodambashi et al. (2021) demonstrate the design of millimeter-scale hydrogel cubes

with embedded Joule heaters, called soft voxel actuators (SVAs). As illustrated in Fig.
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Figure 1.9: Illustration of bioinspired heterogeneous hydrogel structures composed of tun-

able and addressable voxels (Khodambashi et al., 2021). (A) Soft voxel actuators (SVAs)

are electrically addressable building blocks whose deformations can be controlled by a mi-

crocontroller unit (MCU). SVAs are analogous to motor units, consisting of a motor neu-

ron and associated muscle fibers, which deform in response to electrical impulses from the

CNS. The micro-structure of the hydrogels used to make SVAs can be altered, resulting in

tunable material properties. (B) i) SVAs without embedded Joule heaters (SVA-I) are used

to create structures with hard-coded shape morphing that respond to a homogeneous tem-

perature field acting globally on the entire structure through the surrounding water bath. ii)

SVAs with embedded heaters (SVA-II) are used to create structures with on-demand shape

morphing by forming an inhomogeneous temperature field throughout the structure.
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1.9, activating the Joule heaters causes the SVAs to shrink, and allowing the SVAs to cool

causes them to expand. SVAs with different material properties, and therefore different de-

formation characteristics, can be produced, which enables the fabrication of heterogeneous

hydrogel structures that can manipulate objects, avoid obstacles, generate traveling waves,

and morph into different shapes. This research paves the way toward tunable, unteth-

ered, high-degree-of-freedom hydrogel-based robots that can adapt and respond to chang-

ing conditions in unstructured environments. The development of local actuators that can

be distributed throughout a soft robot enables the implementation of decentralized control

approaches on such robots, which would display robust performance to individual actuator

failures.

We have experimentally validated our Cosserat rod dynamical model on a millimeter-

scale soft robot arm composed of hydrogel SVAs (Doroudchi et al., 2020). We have also

experimentally identified and validated a linear state-space model of a miniature 2-DOF

manipulator controlled by two hydrogel SVAs and applied an H∞ output feedback ap-

proach for trajectory tracking (Doroudchi et al., 2021).

1.3 Research Contributions and Organization of the Dissertation

The contributions of this dissertation can be summarized as follows. The publications

cited below are listed at the end of this section.

We developed a novel practical approach to designing decentralized state feedback con-

trollers for soft continuum robot arms composed of segments with local sensing, actuation,

and control capabilities [1]. We used a semi-discrete numerical approximation of the Euler-

Bernoulli beam equation, formulated in state space representation, to represent the robot

arm dynamics. We designed three algorithms to solve an H∞ optimal control problem,

defined in terms of a Bilinear Matrix Inequality (BMI), by computing the tridiagonal feed-
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back matrix which minimizes the H∞ norm of the map from disturbances to regulated

outputs. We confirmed through simulations that the controllers successfully dampen the

free vibrations of a cantilever beam. This work is described in Section 2.1.

We also demonstrated, for the first time, the use of active temperature-responsive hy-

drogel actuators (Soft Voxel Actuators, or SVAs) as independently-controllable units for

output-feedback control of a millimeter-scale 2-DOF manipulator in real-time for trajec-

tory tracking [4]. We developed and experimentally identified a linear state-space model

of the manipulator from input-output measurement data, which can be used to implement

a variety of control techniques. This linear model is sufficiently accurate for control pur-

poses, despite the complex nonlinear dynamics of the actuators. The Normalized Mean

Absolute Error (NMAE) between the modeled and measured displacement of the manip-

ulator’s tip was below 10%. We demonstrated an exemplar payload transport application

using an array of four manipulators with this versatile and computationally inexpensive

technique. This work is described in Section 2.2.

To tackle the challenge of developing a dynamic model for continuum robots con-

structed from soft materials, we devised a novel decentralized control approach for con-

figuration tracking by soft continuum robot arms composed of independently-controllable

segments with local sensing and actuation [3]. We proposed a control approach that can

be implemented on continuum robots with dynamics that can be described by the geo-

metrically exact Cosserat rod model and enables such robots to track 3D configurations

that involve any combination of bending, torsion, shear, and extension deformations. We

validated this approach in numerical simulations of both hydrogel-based and silicone con-

tinuum robot arms, which tracked desired configurations with average normalized root-

mean-square errors (NRMSEs) below 7%, indicating effective tracking performance. This

work is described in Section 3.1.

Then, we experimentally identified and validated a Cosserat rod model of a millimeter-
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scale continuum robotic arm, composed of two rows of SVAs [2]. We compared sim-

ulations of the model to measurements of the robot’s tip displacement over time during

open-loop control trials in which subsets of the SVAs were actuated, producing bending

deformations of the robot about a single axis. The NRMSEs between the simulated and

experimentally measured displacements were below 10%. A novel experimental setup was

used to identify the relationship between step input voltages applied to SVAs and their re-

sulting force outputs during contraction and expansion, which resulted in a model of force

over time with NRMSE less than 5%. This work is described in Section 3.2.

Lastly, we implemented our decentralized inverse dynamic control approach, based on

a Cosserat rod model of a soft robotic arm, on an actual silicone multi-segment robotic arm

for the first time [5]. The inverse dynamics problem was solved using a simulation of the

Cosserat rod model, and the computed control output was applied to the actual robot in real-

time. The complexity and computational cost of the controller are reduced by estimating

unmeasured parameters using the simulated model. This approach was used to control the

robot’s configuration in 3D space for desired extension and bending deformations, which

are useful for applications that require complex manipulation and locomotion. This work

is described in Section 3.3.
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Chapter 2

CLOSED-LOOP CONTROL OF HYDROGEL-ACTUATED SOFT ROBOTS AND

MECHANISMS BASED ON LINEAR STATE-SPACE MODELS

This chapter describes research published in Doroudchi et al. (2018, 2021).

2.1 Vibration Control of Soft Continuum Robot Arms Described by the Euler-Bernoulli

Beam Model

In this section, we develop a novel practical approach to designing decentralized state

feedback controllers for soft continuum robot arms composed of segments with local sens-

ing, actuation, and control capabilities. The control objective is to regulate the robot

arm’s displacement in the presence of disturbance inputs; i.e., to dampen its disturbance-

induced vibrations. Our approach does not require the use of a complex nonlinear model

that describes the infinite-dimensional dynamics of the robot. Instead, we represent the

robot arm’s spatiotemporal dynamics using a semi-discrete numerical approximation of

the Euler-Bernoulli beam PDE. This numerical approximation is formulated as an ordinary

differential equation (ODE) state space model for implementation in linear matrix inequal-

ity (LMI) methods. The state space model is used to define an H∞ optimal control problem

in terms of a BMI. We present three algorithms of increasing stability and performance

that solve this problem by computing the tridiagonal feedback matrix which minimizes

the H∞ norm of the map from disturbances to regulated outputs. Finally, we simulate the

controllers computed by each algorithm for the case of a cantilever beam composed of

hydrogel material and compare their performance.
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2.1.1 Dynamic Model

The robot arm is constructed from N identical cylindrical segments that are arranged in

a series configuration, as illustrated in Fig. 2.1. We assume that each segment is equipped

with sensing, actuation, control, and communication elements. We also assume that each

segment can apply local torques and can measure local deformations. For example, He

et al. (2012) explain that when a segment is composed of force-sensitive conductive hy-

drogel, local deformations can be sensed from a resulting change in resistivity across the

segment, and this change in resistivity provides an electrical signal which can be used as an

output to a local feedback controller. The local controller can then induce a current, which

causes local temperature changes in the segment that produce prescribed deformations and

resulting torques.

In this decentralized sensing and actuation model of a soft robot arm, we likewise im-

pose a decentralized communication architecture with a similar chain topology, meaning

that each segment can exchange state measurements only with adjacent segments.

Model definition

To model the segmented robot arm, we will use a discretized version of the cantilever beam,

wherein the beam is composed of material that is elastic, homogeneous, and isotropic. The

beam is composed of material with Young’s modulus E and density ρ. The beam has length

L and a uniform cross-section of area Ac, and area moment of inertia I about the neutral

axis.

Let w(x, t) be the transverse displacement (see Fig. 2.1) of point x ∈ [0, L] on the beam

at time t ∈ [0, T ], where T is a specified final time. The PDE describing a one-dimensional

unforced Euler-Bernoulli beam is given by

b2
∂4w

∂x4
+

∂2w

∂t2
= 0, b2 =

EI

ρAc

. (2.1)
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Figure 2.1: Semi-discrete beam model with N segments.

We define boundary conditions for this model that describe a cantilever beam, in which

the deflection and slope of the fixed end and the bending moment and shear force at the

free end are all set to zero:

w(0, t) = 0,
∂2w

∂x2
(L, t) = 0,

∂w

∂x
(0, t) = 0,

∂3w

∂x3
(L, t) = 0,

(2.2)

where t ∈ [0, T ].

We note that the Euler-Bernoulli beam equation is linear, assumes small shear stresses

and is only accurate for small deflections. However, it has been shown by Bayo (1986) that

for a uniform circular cross-section with diameter D, when L ≥ 20D the Euler-Bernoulli

beam model yields a reasonably accurate approximation of the robot arm dynamics when

the material properties satisfy certain assumptions. Furthermore, we note that the use of

the robust control framework in this section mitigates the effect of inaccuracy in the model.

State space representation

To represent the segmented arm, we construct a discretized approximation of the continuum

PDE beam model (2.1), (2.2), which results in a set of linear ODEs. As done by Bugariu
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et al. (2016), we also apply the central finite difference method with second-order accuracy

to obtain a semi-discrete space approximation of model (2.1), (2.2) (discrete in the spatial

coordinate x and continuous in time t). We define h = L/N as the length of each segment

and xj as the x position of the right boundary of segment j ∈ {1, ..., N}. Then we have

that xj = jh for each segment j, and we define x0 = 0. For the boundary conditions, we

also introduce two external points x−1 = −h and xN+1 = L + h. The semi-discretization

version of model (2.1) is then given by the following system of N linear equations, each

describing the dynamics of the transverse displacement of point xj on the beam at time

t ∈ [0, T ]:

ẅ(xj, t) = −
b2

h4
[w(xj+2, t)− 4w(xj+1, t) + 6w(xj, t)

− 4w(xj−1, t) + w(xj−2, t)], j = 1, ..., N.

(2.3)

Note that the dynamics of each segment’s displacement is approximated as a function

of its own displacement and that of the two closest segments on either side. The boundary

conditions (2.2) are expressed as

w(x0, t) = 0, w(x−1, t) = −w(x1, t),

w(xN+1, t) = w(xN , t), w(xN+2, t) = w(xN−1, t).

(2.4)

We define the system state variables as w(xj, t), ẇ(xj, t), j = 1, ..., N and arrange them

in the vectors w = [w(x1, t) w(x2, t) ... w(xN , t)]
T , ẇ = [ẇ(x1, t) ẇ(x2, t) ... ẇ(xN , t)]

T .

The system of equations (2.3) and the boundary conditions (2.4) can then be represented in

state space form as follows: ẇ
ẅ

 =

A11 A12

A21 A22


w
ẇ

 (2.5)

where

A11 = [0]N×N , A12 = IN×N ,

A21 =
−b2

h4
Ah, A22 = [0]N×N ,
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and the matrix Ah ∈ RN×N is defined as

Ah =



5 −4 1 0 0 0 0 0 · · · 0

−4 6 −4 1 0 0 0 0 · · · 0

1 −4 6 −4 1 0 0 0 · · · 0

0 1 −4 6 −4 1 0 0 · · · 0

0 0 1 −4 6 −4 1 0 · · · 0

...
. . . . . . . . . . . . . . . . . . . . . . . .

...

0 · · · 0 0 1 −4 6 −4 1 0

0 · · · 0 0 0 1 −4 6 −4 1

0 · · · 0 0 0 0 1 −4 6 −3

0 · · · 0 0 0 0 0 1 −3 2



.

Including inputs and outputs, we obtain a state space representation given byẇ
ẅ

 = A

w
ẇ

+Bu, y = C

w
ẇ

+Du, (2.6)

in which the system control input is denoted by u ∈ RN and the output by y ∈ R2N . The

A, B, C, and D matrices are defined as

A =

A11 A12

A21 A22


2N×2N

, B =


[
0

]
N×N

IN×N


2N×N

,

C = I2N×2N , D =


[
0

]
N×N

IN×N


2N×N

.

(2.7)

In Section 2.1.2, we discuss how the decentralized communication constraint leads to struc-

tural constraints on the gain from input to output.
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2.1.2 Controller Synthesis

In this section, we use the linear ODE model developed in Section 2.1.1 to define a

decentralized control problem assuming local full-state feedback. We first impose the mild

assumption that the uncontrolled system is neutrally stable and controllable. To define

the H∞-optimal control problem, we use the standard regulator framework, yielding the

2-input, 2-output system representation R ∈ R7N×7N as:

R =


A B1 B2

C1 D11 D12

C2 D21 D22

 , (2.8)

where

B1 =

[
B 0

]
2N×4N

, B2 = B,

C1 =

C
0


3N×2N

, C2 = C,

D11 =

D 0

0 0


3N×4N

, D12 =

D
I


3N×N

,

D21 =

[
D I

]
2N×4N

, D22 = D.

Because C2 = I , the control problem is one of full-state feedback. The control problem,

then, is to find the feedback controller u = Ky, K ∈ RN×2N , that minimizes the H∞

norm of the map from disturbing inputs u to regulated outputs y. However, we now add a

communication constraint in which we specify the structure of K to be tridiagonal (NOT

block-diagonal). This structure implies that the moment generated by each segment is

based only on measurements of its own state and the states of its two neighboring segments.

Define the set of tridiagonal matrices as
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T := {K ∈ Rn×n :

K =



k1,1 k1,2 0 · · · 0 0 0

k2,1 k2,2 k2,3 · · · 0 0 0

0 k3,2 k3,3 · · · 0 0 0

...
...

...
. . .

...
...

...

0 0 0 · · · kn−2,n−2 kn−2,n−1 0

0 0 0 · · · kn−1,n−2 kn−1,n−1 kn−1,n

0 0 0 · · · 0 kn,n−1 kn,n



,

ki,j ∈ R
}

(2.9)

We now denote the set of admissible controller gains by S, where

S := { [K1 K2] | K1, K2 ∈ T }.

This allows us to represent the controller information constraint as K ∈ S.

We may now formulate the H∞ optimal control problem as a Bilinear Matrix Inequality

(BMI). By using the bounded-real lemma from Boyd et al. (1994), it can be shown that γ

is an H∞ norm bound of the transfer function from input to output if there exists a positive

definite matrix P and controller K which satisfy the BMI constraint (2.10). Consequently,

we can formulate the optimization problem (2.10) below, whose solution is the H∞-optimal

decentralized controller K∗ ∈ S.

minimize γ > 0 such that
(A+B2K)TP + P (A+B2K) ∗T ∗T

BT
1 P −γI ∗T

(C1 +D12K) D11 −γI

 < 0 (2.10)

for some K ∈ S and P > 0.
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In the matrix inequality, “ ∗ ” is used to represent symmetric elements of the matrix.

2.1.3 Proposed Algorithms for Solving the BMI

The optimization problem (2.10) is a BMI in the matrix variables K and P . Solving

BMIs is known to be an NP-hard problem as declared by Toker and Ozbay (1995). In this

section, we evaluate three possible algorithms for obtaining locally optimal solutions to

this BMI, two based on iteration and one based on gradient descent.

2.1.4 Initialization

In all three algorithms, we require an initial feasible solution to the BMI. Furthermore,

the selection of initial values can significantly influence convergence to an optimal solution.

Unfortunately, however, there are no canonical rules for finding an initial feasible solution.

In our algorithm, we address this problem as follows. Under the assumption that the

nominal system is controllable, the following LMI has solution P > 0:

controllability: ATP + PA−BBT < 0 (2.11)

We use this solution as an estimate of the initial value of P (P0). Using this P0 to find the

initial value of K (K0) is problematic, however, because of the additional constraint K ∈ S.

To resolve this, we initialize K without the sparsity constraint and solve the resulting LMI

version of (2.10) for P , and then use this as our new estimate of P0. Given this new value of

P0, we solve the resulting LMI version of (2.10) for K with the relaxed constraint that only

the last row of K is required to have the sparsity structure K ∈ S of the tridiagonal matrix

(2.9). Using this K, we solve the LMI version of (2.10) for P . This procedure is repeated

by progressively constraining more rows of K to have the structure of the corresponding

row of matrix (2.9) until the entire matrix K has the desired tridiagonal structure.

We have developed the following three algorithms to obtain an H∞ optimal solution for
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K. The algorithms all use the initialization procedure described above.

Iterative optimization algorithm

Algorithm 1 is a standard iteration-based method used to solve a bilinear system of equa-

tions. It is similar to our initialization procedure for the variables P and K. Initializing a

value for P (P0) yields the LMI from (2.10), which is solved by optimizing over K. Af-

terward, we fix K in (2.10) and optimize over P . These steps are repeated until the values

of K and P converge to optimal values, at which point the change in γ is minimal. This

algorithm has two drawbacks: it does not converge for certain initial values of P (P0), es-

pecially if the A matrix is numerically ill-conditioned, and the solution for K could have

a large magnitude that makes the feedback controller physically impractical to implement.

However, imposing additional constraints on the magnitude of K could potentially cause

the H∞ norm to diverge. We next propose two modified versions of this algorithm that

address these problems.

Modified iterative optimization algorithm

Algorithm 1, depending on the choice of P0, can end up oscillating between suboptimal

solutions for K. This was observed to happen for poor choices of P0. To reduce these

oscillations, we define P and K at each iteration as weighted averages of their current

values and their optimized values, obtained by solving the optimization problem (2.10)

during the current iteration. The weight factor α is chosen to be a value between 0 and 1.

The α value can be selected to produce small changes in the solution between iterations,

thus preventing the solution from making large jumps in the non-convex subspace. An α

close to 0 would result in very small changes in P and K over successive iterations.
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Gradient descent algorithm

Although both Algorithms 1 and 2 are quick to converge, they do not converge at all when

the matrices A and B are numerically ill-conditioned. In addition, the solution for K

computed by these procedures often has a magnitude that is too large for implementation in

practice. We address this problem in Algorithm 3 by splitting optimization problem (2.10)

into two optimization problems with LMI constraints, shown below. The difference here is

that we can directly restrict changes in the solution over successive iterations and also limit

the values taken by the variables. We redefine the optimization variables as ∆K ∈ RN×2N

and ∆P ∈ R2N×2N , whose L∞-norms are constrained to be small in order to prevent large

changes in K and P between iterations.

minimize γa > 0 such that ∥∆K∥ < ϵ1 and
(A+B2Ka)

TP + P (A+B2Ka) ∗T ∗T

BT
1 P −γaI ∗T

(C1 +D12Ka) D11 −γaI

 < 0 (2.12)

for some Ka ∈ S, where Ka ≡ K +∆K.

minimize γb > 0 such that ∥∆P∥ < ϵ2 and
(A+B2K)TPa + Pa(A+B2K) ∗T ∗T

BT
1 Pa −γbI ∗T

(C1 +D12K) D11 −γbI

 < 0 (2.13)

for some Pa > 0, where Pa ≡ P +∆P .

In these two problems, ϵ1 and ϵ2 are small positive numbers.

The optimization procedure is performed alternately over ∆K and ∆P as follows such

that γ converges to a local minimum. At the beginning of each iteration, problem (2.12)
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Algorithm 1 Standard iterative algorithm
1: Choose a small ϵ > 0. Initialize P to P0.

2: while |γk − γk−1| > ϵ do

3: Use the last known value for P .

4: Solve for K in problem (2.10), minimizing γ.

5: Use the solution for K in the next step.

6: Solve for P in problem (2.10), minimizing γ.

7: γk is the minimized value of γ in step 6.

8: k = k + 1

9: end while

is solved for ∆K using the current values of K and P , and then K is increased by ∆K.

Next, problem (2.13) is solved for ∆P , and P is increased by ∆P .

2.1.5 Simulation Results

We validated our numerical approximation of the beam model and investigated the

performance of our decentralized state feedback controllers in simulation. YALMIP from

Lofberg (2004), an optimization toolbox for MATLAB with the MOSEK solver from ApS

(2017), was used to solve the optimization problems in Algorithms 1, 2, and 3. The beam

model was simulated using the MATLAB lsim command with N = 40 segments and the

parameters listed in Table 2.1, where E and ρ are defined for hydrogel material1.

Validation of semi-discrete approximation of beam model

In order to evaluate the accuracy of the numerical approximation (2.3), (2.4), we compare

it to the analytical solution of the cantilever Euler-Bernoulli beam model (2.1), (2.2). The

1N-isopropylacrylamide, variously abbreviated PNIPA, PNIPAAm, NIPA, PNIPAA or PNIPAm
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Algorithm 2 Modified iterative algorithm

1: Choose a small ϵ > 0 and α ∈ (0, 1). Initialize P to P0.

2: while |γk − γk−1| > ϵ do

3: Use the last known value for P .

4: Solve for K in problem (2.10), minimizing γ.

5: Kk+1 = Kk + α(K −Kk)

6: Use Kk+1 as the current value of K.

7: Solve for P in problem (2.10), minimizing γ.

8: Pk+1 = Pk + α(P − Pk)

9: γk is the optimal value of γ in step 7.

10: k = k + 1

11: end while

initial conditions of the beam model were set to

w(x, 0) = sin

(
3π

2L
x

)
,

∂w

∂t
(x, 0) = 0, x ∈ [0, L]. (2.14)

For these initial conditions, the solution to the beam model (2.1), (2.2) can be obtained

using the separation of variables method:

w(x, t) = sin

(
3π

2L
x

)
cos

(
9π2b

4L2
t

)
, t ∈ [0, T ], x ∈ [0, L]. (2.15)

This solution describes the first mode shape of the beam. In the simulations, we set T = 20.

Figures 2.2(a),(b) plot the vibrations of the beam over time from the analytical solution

(2.15) and the numerical approximation, respectively. Figure 2.2(c) plots the error between

the analytical solution and the numerical approximation. Although this error grows over

time due to numerical approximation error propagation, it remains relatively small (the

magnitude does not exceed 0.08 m within the first 5 s) compared to the maximum amplitude

of the beam vibrations within the first few seconds of the simulation, when the controllers
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Algorithm 3 Gradient descent algorithm
1: Choose a small ϵ > 0. Initialize K to K0 and P to P0.

2: while |γk − γk−1| > ϵ do

3: Solve problem (2.12), minimizing γa.

4: K = K +∆K

5: Solve problem (2.13), minimizing γb.

6: P = P +∆P

7: γk is the optimal value of γb.

8: k = k + 1

9: end while

Table 2.1: Beam Material and Geometric Properties

Parameter Definition Value Units

E Young’s modulus at 25◦C 5.0 kPa

ρ Mass density 1.1 g/cm3

D Diameter 5.0 cm

L Length 1.0 m

Ac Cross-section area 19.6 cm2

I Area moment of inertia 30.7 cm4

effectively damp the vibrations (see next section). Thus, the numerical approximation is

sufficiently accurate for use in our optimization methods to synthesize the controllers. Note

that a relatively coarse spatial discretization (N = 40 segments) was used for the numerical

approximation; a closer match to the analytical solution could be achieved with a finer

discretization.
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Figure 2.2: Euler-Bernoulli cantilever beam free vibrations from (a) the analytical solution

(2.15) and (b) the numerical approximation (2.3), (2.4); (c) error between the analytical

solution and numerical approximation.
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Comparison of optimal decentralized controllers for damping beam vibrations

Decentralized state feedback controllers were synthesized with Algorithms 1, 2, and 3, and

the beam dynamics were simulated for each controller using the numerical approximation

(2.6). All the variables were initialized using the procedure described in Section 2.1.4.

Figures 2.3a, 2.4a, and 2.5a plot the evolution of the closed-loop H∞ norm bound, γ,

over the execution of each algorithm when the optimization is performed alternately over

the variables K and P during each iteration. Figures 2.3b, 2.4b, and 2.5b display the result-

ing closed-loop beam response for each controller given the initial condition (2.14). These

figures show that all controllers successfully dampen the beam vibrations that are induced

by the initial beam displacement within the first 5 seconds. From the convergence rates

of the plots in Fig. 2.3a, 2.4a, and 2.5a, it is evident that Algorithm 1 is the least compu-

tationally intensive procedure, followed by Algorithm 2 and then by Algorithm 3. This

is because K is least constrained in Algorithm 1, which therefore permits large changes

in K between iterations and hence has the fastest convergence, followed by the other two

algorithms. Algorithm 2 shows superior performance to Algorithm 1, in that it converged

to a controller with a smaller H∞ norm bound (γ = 1.05, versus γ = 1.42 for Algorithm

1) at the expense of a slight increase in computational demands. Algorithm 3 converged

to the highest H∞ norm bound (γ = 2.31) of the three methods since the controller gain

values were subject to additional constraints. However, the controller computed by this

algorithm would be the most feasible one to implement in practice, since the constraints

limit the magnitudes of the controller gains.

2.1.6 Discussion

In this section, we developed three algorithms for synthesizing a decentralized con-

troller for the discretized Euler-Bernoulli beam model by solving an H∞ optimal control
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Figure 2.3: (a) H∞ norm bound converging in the two alternating steps of Algorithm 1. (b)

Closed-loop response of the simulated beam with initial conditions (2.14) and the controller

from Algorithm 1.
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Figure 2.4: (a) H∞ norm bound converging in the two alternating steps of Algorithm 2. (b)

Closed-loop response of the simulated beam with initial conditions (2.14) and the controller

from Algorithm 2.
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Figure 2.5: (a) H∞ norm bound converging in the two alternating steps of Algorithm 3. (b)

Closed-loop response of the simulated beam with initial conditions (2.14) and the controller

from Algorithm 3.

41



problem. We found that when the system matrix is numerically ill-conditioned, which is

a common property of discretized beam models, convergence of the H∞ norm is not al-

ways guaranteed. In addition, we found that iterative approaches are in general sensitive

to the initial selections of P and K. The modifications proposed in the algorithms solved

these problems of convergence and sensitivity for the discretized beam model. The itera-

tive and modified iterative methods quickly reach a converged H∞ norm value, but they do

not guarantee convergence for different selections of initial P and K. The gradient descent

approach, while slightly slower at reaching a converged H∞ norm value, is less sensitive

to different choices of initial P and K. It provides a bounded solution for the controller

gains, which is often a necessity in physical systems.

2.2 Development and Validation of a Tracking Controller for a Miniature 2-DOF

Hydrogel-Actuated Manipulator

Due to the nature of the complex spatiotemporal dynamics of stimuli-responsive soft

materials, closed-loop control of hydrogel-actuated mechanisms has remained a challenge.

This section demonstrates, for the first time, closed-loop trajectory tracking control in

real-time of a millimeter-scale, two degree-of-freedom manipulator via independently-

controllable, temperature-responsive hydrogel actuators. Our ability to coordinate inde-

pendently controllable soft actuators with complex internal dynamics in a robotic system

demonstrates progress in the real-time, closed-loop control of mechanisms with this type

of actuator. We expect that researchers will be able to adapt this approach across similar

stimuli-responsive materials as they are developed and optimized. This will also permit

SVAs, manufactured from a variety of materials, to be used for controlled grasping, ma-

nipulation, and locomotion tasks across a variety of new soft robotic platforms, such as our

octopus-inspired continuum robot described in Section 3.2.

A linear state-space model of the manipulator is developed from input-output measure-

42



ment data, enabling the straightforward application of control techniques to the system.

The Normalized Mean Absolute Error (NMAE) between the modeled and measured dis-

placement of the manipulator’s tip is below 10%. We propose an Observer-based controller

and a robust H∞-optimal controller and evaluate their performance in a trajectory track-

ing output-feedback framework, compared with and without sinusoidal disturbances and

noise. We demonstrate in simulation that the H∞-optimal controller, which is computed

using Linear Matrix Inequality (LMI) methods, tracks an elliptical trajectory more accu-

rately than the Observer controller and is more robust to disturbances and noise. We also

show experimentally that the H∞-optimal controller can be used to track different trajec-

tories with an NMAE below 15%, even when the manipulator is subject to a 3 g load, 12.5

times an actuator’s weight. Finally, a payload transport scenario is presented as an exem-

plar application; we demonstrate that an array of four manipulators is capable of moving a

payload horizontally by applying the proposed H∞-optimal trajectory-tracking controller

to each manipulator in a decoupled manner.

We demonstrate our control approach on a millimeter-scale, two degree-of-freedom

(DOF) manipulator actuated by two SVAs, shown in Fig. 2.6. Many prior control-oriented

models developed for similar systems have been governed by the kinematic equations de-

scribing rigid links reviewed by Webster III and Jones (2010c), which are less useful in

the design of feedback controllers for continuously deformable robots with soft actuators

embedded within their structure. To address this, we propose a black-box identified model

based on methods in Ljung (2010) that simplify system dynamics in the form of a linear

state-space representation. Lim et al. (1998) point out that modern control techniques, be-

ing built upon state-space models and state-space system identification, are more practical

in application. We apply system identification methods to obtain a linear state-space model

of the manipulator, which can be used to implement a wide range of controllers for different

applications. We design an H∞-optimal output-feedback tracking controller, similar to the
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Figure 2.6: Experimental setup for tracking control of a 2-DOF manipulator with embedded

hydrogel Soft Voxel Actuators (SVAs) (Section 3.2). (a) Illustration of a manipulator in

a water-filled tank with a camera for vision-based feedback of the manipulator tip. (b)

Camera view of the setup, including a fabricated manipulator prototype and checkerboard

for camera calibration. (c) Illustration of SVA deformation in various activation states (red

= on; black = off).

H∞ output-feedback controller proposed by Farhamfard et al. (2016) for flexible needle

guidance with the difference that their control system is dynamic rather than static. We

then compare it in simulation to an observer-based output-feedback controller. The H∞-

optimal controller is then experimentally validated for planar reference trajectories. Finally,

we show that our approach can be used to control more complex mechanisms actuated by

SVAs through a demonstration of payload transport by four manipulators.

In summary, the contributions of this section are as follows:

• Implementation of active temperature-responsive hydrogel-based actuators (the SVA) as
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independently-controllable units.

• Development and experimental identification of a linear state-space model of the ma-

nipulator that can be used to implement a variety of control techniques. This linear

model is sufficiently accurate for control purposes, despite the complex nonlinear

dynamics of the actuators.

• Demonstration of, for the first time, the ability to control a 2-DOF mechanism with

independently-controllable hydrogel actuators in real time using output-feedback

controllers.

• Demonstration of an exemplar payload transport application using an array of four ma-

nipulators with this versatile and computationally-inexpensive technique.

2.2.1 Manipulator Fabrication

SVAs are fabricated by embedding small Joule heaters within a mold, temperature-

responsive PNIPAAM hydrogel in the shape of a rectangular prism, as illustrated in Fig. 2.6b

and 2.6c. When an electric potential is applied across the embedded Joule heater, the actu-

ator shrinks uniformly. The manipulator, also shown in Fig. 2.6b, consists of two SVAs

affixed to a 3D-printed T-shaped extension, which serves as the end-effector. A stan-

dard PNIPAAM hydrogel precursor solution is used to fabricate the SVAs from thermo-

responsive hydrogel, using a recipe described by Khodambashi et al. (2021). Each SVA

is 8 × 4.5 × 3mm3 in its fully swollen state, with a total weight of 0.12 g, including the

embedded-Joule heater (10Ω SMD resistor 0805), which is connected to microcontrollers

by wires. The T-shaped extension is 3D-printed in nylon using a Markforged M2 3D printer.

A circuit board, which serves as the fixed base of the manipulator, is attached to one side

of the two SVAs; the T-shaped extension is attached to the other side. The circuit board

and extension are attached to the SVAs with superglue to ensure that they remain in con-
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tact with the SVAs during the experiments. Since hydrogels must be immersed in water

to absorb water when cooling, all experiments are conducted in a tank of deionized (DI),

room-temperature water.

2.2.2 Experimental Setup

Figure 2.6 shows the experimental setup used for closed-loop control and tracking of the

manipulator’s trajectory. A Logitech C930e USB Webcam is placed in front of the tank to

send real-time data to the image processing program in MATLAB which tracks the position

of a marker on the manipulator tip. These measurements of the manipulator tip’s position

over time are transmitted back to the controller. We used a black-and-white checkerboard

with 2 mm × 2 mm squares to estimate the camera calibration factors (mm/pixel) along

the x and y axis (Fig. 2.6). White was selected as the color of the tank’s background, and

black was selected as the color of the manipulator tip’s marker to facilitate contrast-based

filtering between the foreground and background. The Camera Calibration Toolbox in

MATLAB was initially used to compensate for lens distortion, but since this increased the

image processing time by 30% without significantly improving the image data, the original

camera images were subsequently used without compensation. All control algorithms are

implemented in MATLAB; the controller output is sent to an Arduino Mega2560, which

acts as the physical communication layer between MATLAB and a PCA9685 MOSFET

board. This MOSFET board, with 16 discrete output channels, receives a PWM signal

from the controller and applies it (maximum: 3.7 V) at higher current to the corresponding

Joule heater.

2.2.3 Manipulator Modeling

In this section, the kinematics of the manipulator are derived in order to compute its

workspace. A two-dimensional linear state-space model of the manipulator is then defined
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Figure 2.7: Schematic and workspace of the manipulator. (a) The 2-DOF parallel mech-

anism model with two prismatic joints. (b), (c) Workspaces for extensions with lengths

d = 25mm and d = 9mm, respectively, with exemplar elliptical trajectories overlaid in

red. Extra loads are added to the longer extension in (b) to test the robustness of the con-

troller in experiment.

using black-box system identification methods.

2.2.4 Kinematics and Workspace

To derive manipulator tip kinematics and workspace, the SVAs are modeled as two

prismatic joints, as illustrated in Fig. 2.7a. The T-shaped extension is assumed to be rigid

compared to the SVAs that are rigidly attached to the extension and circuit board. The SVAs

are modeled as linear contractile elements since only one dimension of their volumetric

shape change influences the displacement of the manipulator. Thus, with two prismatic

actuators connected in parallel, the manipulator may be considered a 2-DOF mechanism.

As shown in Fig. 2.7a, p1 and p2 are defined as the linear height of each SVA. These values

vary between 3 mm in inactivated SVA to 2 mm when activated by the embedded Joule
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heaters; l =6.5 mm is the spacing between SVAs, d is the length of the extension, and ϕ

shows the extension’s angle from the horizontal axis. We assume point M ’s displacement

in the x direction is negligible (Fig. 2.7a). The forward kinematics of the manipulator may

be computed geometrically for the manipulator tip’s, pe, in Cartesian coordinates, xe and

ye, in the reference frame with origin O, according to

pe =

[
xe ye

]T
, ϕ = arctan(

p1 − p2
l

), (2.16)

xe = d sin(ϕ), ye = d cos(ϕ) +
p1 + p2

2
. (2.17)

The polar coordinates ρ and θ of the manipulator’s tip in this reference frame (see Fig. 2.7a)

are given by

ρ =
√

x2
e + y2e , θ = arctan

(
xe

ye

)
. (2.18)

As illustrated in Fig. 2.6c, if both SVAs are activated simultaneously with the same

input voltage, then the manipulator’s tip moves along the ρ-axis at a constant θ; if only the

left or right SVA is activated, then the tip undergoes an angular displacement at a constant

ρ. Other SVA activation patterns produce a combination of displacements in both ρ and

θ. Two different extensions with lengths of d = 25mm and d = 9mm were fabricated

and tested, and their workspaces are shown in Figs. 2.7b and c, respectively. The longer

extension is used to amplify the motion of each actuator, resulting in a larger workspace

and making the controller performance easier to measure and evaluate. Extra loads may be

added to the shaft of the longer extension, as shown in the left image in Fig. 2.7b, in order

to experimentally test the robustness of the controller. The shorter extension, by contrast,

supports higher loads on the tip during trajectory tracking, as demonstrated in the payload

transport application in Section 2.2.12.

48



2.2.5 Linear State-Space Model

As explained in the last section, the displacements of the SVAs and manipulator tip

are not decoupled, since the T-shaped extension connecting the actuators to the tip estab-

lishes a rigid kinematic transformation from the prismatic motion of the actuators to the

2-DOF planar motion of the end-effector. To find and select a model that best represents

the system’s behavior, a number of models were considered including state-space models

of different dimensionalities. We model this control system using a two-dimensional linear

state-space representation, which enables the implementation of a variety of control meth-

ods. Defining x(t) ∈ R4×1 as the vector of unknown system state variables at time t, ẋ(t)

as the vector of time derivatives of the state variables, u(t) = [V1(t) V2(t)]
T as the vector

of inputs, and y(t) = [θ(t) ρ(t)]T as the vector of outputs, the state-space model is given

by

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t) (2.19)

where the matrices A, B, C, and D must be determined for each extension (25 mm

and 9 mm), separately. Since the state variables of the model are not necessarily mea-

surable, Lim et al. (1998) discuss that it is crucial to understand the relationship between

various input-output models and state-space models in order to accurately identify the state-

space model from input-output data. The 2-input 2-output state-space model showed a

good fit to the data and also directly provides the unknown matrices that are required for

designing the controller. A, B, C, and D are identified by applying black-box system

identification to a set of time series input-output data according to method presented by

Ljung (2001a), using the MATLAB System Identification Toolbox. The identified matrices

for the 25 mm extension were found to be:

49



A =



−0.0007 −0.0301 0.0444 6.0548

−0.0016 −0.0623 0.0254 −1.4325

−0.2613 0.6580 7.2633 −374.9846

−0.0243 0.1643 3.0590 −44.3024


,

B =



0.0001 0.0003

−0.0000 −0.0001

−0.0051 −0.0232

−0.0001 −0.0042


,

C =

 1.1446 −0.0046 −0.0020 0.0034

−1.1431 −3.5368 0.0020 −0.0534

 ,

D =

0 0

0 0

 .

Multiple input-output data sets were gathered across various ranges of amplitudes and fre-

quencies to find the unknown matrices. Since the hydrogel-based SVAs have a relatively

slow response compared to electric motors and other actuators, and it has a specific range

of 25◦ to 32◦ from cooling to heating phases, the model is linearized around the fastest

signal that permitted the hydrogel actuators to respond across their full temperature range.

Figure 2.9a plots two selected input voltages among the data set that were experimentally

applied to the SVAs which covers the tip workspace and depicts a 50% shift in the SVAs’

input signal. The signal shift covers the actuation limits in the modeling and provides

an active cooling phase which improves both the speed and tracking performance of the

manipulator; it means that the SVAs were actuated from a starting point of half-actuation

(50%) and then the signal reaches the minimum and maximum values during the cycle and

accordingly the SVA reaches the maximum and minimum volume. Fig. 2.9b displays the
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Figure 2.8: Block diagrams of the proposed output-feedback controllers with state-space

representation in the tracking framework. (a) Observer-based controller. (b) H∞-optimal

controller.

resulting displacement of the manipulator tip and the outputs of the identified model (2.19)

for the same inputs depicted in Fig. 2.9a. These figures are a comprehensive example of

comparison between the actual data and the identified model output which show that the

model outputs ρ and θ follow the corresponding measured output values throughout the du-

ration of the experiment with sufficient accuracy. The average NMAE for ρ and θ in three

repeating cycles from the plotted inputs in Fig. 2.9a are given by 5.5% and 7.5%, respec-

tively. The NMAE value remains below 10% for other tested data sets. Thus, our linear

state-space model of the entire mechanism is sufficiently accurate to use in the design of

controllers for the manipulator, despite the difficult-to-characterize nonlinear dynamics of

the hydrogel actuators themselves.
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2.2.6 Controller Design

It can be shown that the open-loop state-space model (2.19), which has the correspond-

ing transfer function Go(s), is stable, controllable, and observable. In this section, we de-

sign two trajectory tracking controllers based on this state-space model, an observer-based

output-feedback controller and an H∞-optimal output-feedback controller. Block diagrams

of the controllers are illustrated in Fig. 2.8. Both controllers are designed to track a refer-

ence trajectory r(t) ∈ R2×1 while attenuating the effects of noise, denoted by n(t) ∈ R2×1,

and external disturbances, denoted by d(t) ∈ R2×1.

2.2.7 Observer-Based Output-Feedback Controller

In this type of controller, an observer is designed to compute an estimate x̂(t) of the

unknown system state vector x(t) from the control input u(t) and the output y(t). The

control input is defined as

u(t) = −KO (x̂(t)− r(t)) , (2.20)

where KO ∈ R2×4 is the feedback gain matrix, which can be computed as though all state

variables are measurable, depending only on the A and B matrices. With this control input,

the observer is given by

ˆ̇x(t) = Ax̂(t) +Bu(t) +L(y(t)−Cx̂(t)), (2.21)

where L ∈ R4×2, the observer gain matrix, must be defined such that A−LC is a Hurwitz

matrix as explained by Åström and Murray (2010). Since D was identified as a matrix of

zeros, it is not included in the equations, which is a common technique in observer design.

By taking the error between the states and their estimates as x̃(t) = x(t) − x̂(t), the

error dynamic equation for the closed-loop system follows from equations 2.19 and 2.21:

˜̇x(t) = (A−LC)x̃(t). (2.22)
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which leads to x̃(t)→ 0, when t→∞ when A−LC is a Hurwitz matrix.

The following KO and L matrices were computed for the 25 mm extension:

KO =

−3.8929 2.3760 −0.1061 0.2888

3.6672 −0.9670 0.0949 −0.2706

 ,

L =



18.5160 −21.9676

0.1852 −7.7968

−0.0051 0.0232

−0.0649 0.0042


.

2.2.8 H∞-Optimal Output-Feedback Controller

The H∞-optimal controller is designed using Linear Matrix Inequality (LMI) methods

presented by Duan and Yu (2013); Boyd et al. (1994); MATLAB’s YALMIP toolbox of

Lofberg (2004) is then used to solve the optimization problem numerically. The intercon-

nected system S(KH∞ ,Go) of the optimal gain matrix KH∞ ∈ R2×2 and the open-loop

system Go(s), with external input defined as w = [rT dT nT ]T ∈ R6×1 and external

output z = r − y, represents the closed-loop system with the H∞ gain:

∥z∥L2 ≤ ∥S(KH∞ ,Go)∥H∞∥w∥L2 . (2.23)

The optimal gain matrix KH∞ is obtained as the solution to an optimization problem

that minimizes the effect of the external input (w) on the external output (z). We can prove

that the H∞ gain is bounded using the bounded-real lemma from Boyd et al. (1994):

Lemma: Suppose that

G(s) =

 A B

C D

 .

Then, the following statements are equivalent:

1. ∥G(s)∥H∞ ≤ γ
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2. There exists a P > 0 such that

ATP + PA PB

BTP −γI

+
1

γ

CT

DT

[C D

]
< 0

The proof that statement 1 implies 2 requires the Hamiltonian, and the proof that state-

ment 2 implies 1 that uses the global stability conditions of the Lyapunov function which

is defined as V (x) = xTPx, in which xT = [x(t) u(t)] from (2.19).

The control law is designed in the the output-feedback tracking structure:

u(t) = −KH∞(r(t)− y(t)− n(t)). (2.24)

The optimization problem is then solved by using the following theorem from Duan

and Yu (2013) to compute the KH∞ matrix for the closed-loop output-feedback tracking

problem. The gain matrix for the 25 mm extension was computed as

KH∞ =

−1.7371 2.9015

−0.3775 −2.4158

 .

In order to minimize the effect of the external input on the external output while search-

ing for an H∞-optimal controller matrix KH∞ , a new state-space representation for the

tracking framework is given by


ẋ

z

y

 =


A B1 B2

C1 D11 D12

C2 D21 D22



x

w

u

 , (2.25)
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A = A4×4,

B1 =

[
04×2 B4×2 04×2

]
, B2 = B4×2,

C1 = −C2×4, C2 = C2×4, (2.26)

D11 =

[
I2×2 −D2×2 02×2

]
, D12 = −D2×2,

D21 =

[
02×2 D2×2 02×2

]
, D22 = D2×2,

Theorem: Let N o and N c be full-rank matrices whose images satisfy

ImN o = Ker

[
C2 D21

]
,

ImN c = Ker

[
B2

T D12
T

]
.

The following statements are then equivalent.

1. There exists a K such that ∥S(K,Go)∥H∞ < 1.

2. There exist P 1 and P 2 such that P 1 I

I P 2

 > 0,

N o 0

0 I


T


ATP 1 + P 1A ∗T ∗T

BT
1P 1 −I ∗T

C1 D11 −I


N o 0

0 I

 < 0,

N c 0

0 I


T


ATP 2 + P 2A ∗T ∗T

C1P 2 −I ∗T

BT
1 DT

11 −I


N c 0

0 I

 < 0.
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Figure 2.9: Simulation results. (a) 12-bit PWM waveform applied to the SVAs during

training. (b) System output and model fitted from training. (c) The x and y coordinates of

the manipulator tip over time for the H∞-optimal and Observer-based controllers, tracking

an ellipse. (d) The x-y trajectory of the tip during the simulation in (c). (e) H∞-optimal

controller with noise and disturbance. (f) Observer-based controller with noise and distur-

bance.

In the matrix inequalities above, “∗” is used to represent symmetric elements of the matrix.

P 1 and P 2 are positive definite matrices that are used to construct the Lyapunov function

V . Duan and Yu (2013) show that the optimal controller satisfies the Schur stabilizability

and H∞ gain boundedness conditions.

2.2.9 Results

In this section, we study the performance of H∞ and observer controllers for trajectory

tracking. An elliptical reference trajectory is used, defined by

r(t) =

[
α sin

(
2π
60
t
)

β + γ cos
(
2π
60
t
)]T

. (2.27)
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Table 2.2: N(MAE) of Controller Performance in Simulation (in mm).

Controller Noise & x y x− y x− y

disturbance MAE MAE MAE NMAE (%)

H∞ No 0.045 0.006 0.052 3.2

Observer No 0.065 0.008 0.079 4.9

H∞ Yes 0.047 0.005 0.055 3.4

Observer Yes 0.078 0.009 0.096 5.9

where α = 0.8, β = 27.7, and γ = 0.1 for the 25 mm extension, and α = 0.6, β =

11.5, and γ = 0.3 for the 9 mm extension, to ensure that each path lies in the workspace

of its corresponding manipulator (see Fig. 2.7). The manipulator’s tracking performance

degraded at frequencies of higher than one cycle per minute.

2.2.10 Comparison of Controllers in Simulation

The performance of the two controllers is first compared in simulation in the presence

of the following disturbance and noise signals:

d(t) =

[
0.00015 sin

(
3π
60
t
)

0.00045 sin
(
2π
60
t
)]T

, (2.28)

n(t) =

[
0.3 sin

(
π
60
t
)

0.3 sin
(
0.5π
60

t
)]T

. (2.29)

The manipulator with the 25 mm extension was simulated in MATLAB Simulink, using

the output-feedback tracking framework depicted in Fig. 2.8 and the identified model and

controller values designed in the previous section. Figures 2.9c and 2.9d plot the x and y

coordinates and the trajectory of the manipulator tip over time for one cycle (60 s), given an

elliptical reference trajectory, from each controller. To observe the effect of adding noise

and disturbance in simulation, the sinusoidal functions of n and d were input to the 25 mm

manipulator. The tracking trajectories of the manipulator tip produced by each controller
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Figure 2.10: Tracking reference and experimental trajectories of the manipulator tip in

Cartesian coordinates. 25 mm manipulator tracking: (a) an elliptical trajectory; (b) a half-

ellipse; (c) a quarter-ellipse. 9 mm manipulator tracking: (d) an elliptical trajectory; (e) a

half-ellipse; (f) a quarter-ellipse. (g) 25 mm manipulator tracking an elliptical trajectory:

x, y coordinates over time separately. (h) 9 mm manipulator tracking an elliptical trajectory:

x, y coordinates over time separately. (i) 25 mm manipulator tracking an elliptical trajectory

under 1 g, 2 g, and 3 g.

are compared in Figs. 2.9e and 2.9f, separately. Although the simulations are performed

across three cycles, only one cycle is shown in the figures and used in the error comparison

for clarity. The tracking error for each case is reported in Table 2.2. The NMAE values

were computed by dividing the mean absolute error (MAE) over their corresponding range.

All the values are relatively low, under 10%, indicating accurate tracking.
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2.2.11 Experimental Validation of H∞-Optimal Controller

Since the H∞-optimal controller exhibited higher tracking accuracy in simulation both

with and without disturbance and noise, it was selected for experimental implementation.

Using the designed control gain for H∞, we have implemented the output-feedback track-

ing framework depicted in Fig. 2.8b on the hydrogel-based manipulator (Fig. 2.6). Half-

ellipse and quarter-ellipse paths were also used as reference trajectories. Sources of noise

in the experiment arise in the testing environment and vision-based feedback. Disturbances

include modeling and manufacturing errors. The MAE and NMAE values are reported

for one cycle per trajectory in Table 2.3, though three repeating cycles per trajectory were

collected.

Figure 2.10a compares the trajectory of a manipulator with the 25 mm extension driven

by the controller (2.24) along an elliptical reference trajectory. Controller performance

was evaluated using a half-ellipse and quarter-ellipse reference trajectory as well, to ver-

ify the ability of the controlled system to track straight lines and sharp turns (Figs. 2.10b

and 2.10c). Figures 2.10d, 2.10e ,and 2.10f show the controlled position of the 9 mm ex-

tension’s tip using the same reference trajectories. Figures 2.10g and 2.10h illustrate the

time evolution of the x and y coordinates separately for the two extensions.

In order to further characterize our system’s actuation capabilities, the manipulator’s

trajectory-tracking performance under load was studied, as shown in Fig. 2.10i. Loads

(stainless steel nuts) weighing 1 g, 2 g, and 3 g were placed on the 25 mm extension, as

shown in Fig. 2.7b. The manipulator was commanded to follow the same elliptical trajec-

tory as in the unloaded case. The results show that the addition of a weight of up to 3 g

increases the trajectory tracking NMAE from 8.1% to 10.2% (see Table 2.3). Despite the

increase in error, each actuator is still able to function under a load as large as 12.5 times

its own weight (0.12 g). As shown in Table 2.3, the experimental NMAE values are higher
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Table 2.3: (N)MAE of H∞ Controller Performance in Experiment.

d Reference Load x y x− y NMAE

(mm) trajectory (g) (mm) (mm) (mm) %

25 Ellipse - 0.123 0.042 0.131 8.1

25 Half Ellipse - 0.119 0.023 0.123 7.6

25 Quarter Ellipse - 0.112 0.026 0.119 7.4

9 Ellipse - 0.088 0.033 0.099 7.4

9 Half Ellipse - 0.129 0.058 0.132 9.8

9 Quarter Ellipse - 0.161 0.061 0.171 12.8

25 Ellipse 1 0.140 0.022 0.144 8.9

25 Ellipse 2 0.162 0.021 0.162 10.1

25 Ellipse 3 0.164 0.022 0.164 10.2

than the simulation values, but remain below 15%.

2.2.12 Payload Transport Application

Inspired by the way starfish transport food using their tube feet (Figs. 2.11b and 2.11c)

studied by Kerkut (1953); Pentreath (1970), we configured an array of four 9 mm manip-

ulators, as shown in Fig. 2.11e, and applied the proposed H∞-optimal controller in (2.24)

and Fig. 2.8b to each manipulator in order to transport a payload across their tips. The

payload being transported is a clear acrylic plate. The manipulators are commanded to

track reference trajectories as depicted in Fig. 2.11a, with phase shifts between adjacent

manipulators. The payload moves to the right as the manipulators complete repeated cy-

cles of the reference trajectories (“gait cycles”), as shown in Figs. 2.11d and 2.11e. The

data from Fig. 2.11d on the duration of one gait cycle and the payload displacement in each
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Table 2.4: Payload Displacement ∆X with Different Reference Trajectories for The Ma-

nipulators.

Reference Payload weight Time for one ∆X after five

trajectory + load (g) gait cycle (s) gait cycles (mm)

Ellipse 2.7 60 5.66

Half-ellipse 2.7 50 4.55

Quarter-ellipse 2.7 40 7.10

Ellipse 2.7+1 60 4.75

Ellipse 2.7+2 60 4.84

Ellipse 2.7+3 60 2.30

tested scenario including the ones with extra added loads on the payload are reported in Ta-

ble 2.4. The payload’s position is recorded but not controlled in this exemplar application,

since our goal in this section was to demonstrate a use-case for trajectory tracking con-

trol. However, many other platforms and applications are possible, including bio-inspired

ones presented in Section 3.2. Through this example, we have demonstrated how trajectory

tracking control of systems with soft actuators, when applied to even simple platforms such

as this 2-DOF manipulator, may be used to complete complex tasks such as object transport

when used in parallel. This type of design can be used to simplify and decouple the control

structures in future applications to reduce computational expense.

2.2.13 Discussion

In this section, we addressed a trajectory-tracking problem for a millimeter-scale 2-

DOF manipulator with soft hydrogel-based actuators. We defined a linear state-space

model of the manipulator and fit the matrices of this model using input-output measure-
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ment black-box identification. This state-space representation enables the implementa-

tion of a range of controllers on the manipulator; in this section, the performance of an

observer-based controller was compared in simulation to that of an H∞-optimal controller

in an output-feedback framework with and without noise and disturbance. We showed ex-

perimentally that different versions of the manipulator are able to track various reference

trajectories, even under load, using the H∞-optimal controller.

As directions for future work, the speed of the image processing algorithms can be

improved for tracking the manipulator, and the use of the camera for position tracking

could be eliminated and instead, embedded sensor feedback could be used to implement

the current control approach. This would also enable the application of machine learning

techniques to optimize control performance.
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Figure 2.11: Control of four 9 mm manipulators in series for payload transport, in a manner

similar to food transport by starfish tube feet. (a) The manipulators, numbered 1 to 4 from

left to right, are commanded to first follow the cyan dashed lines from their initial positions

to their starting positions on the reference trajectories, and then follow these trajectories,

shown as red dashed lines. Manipulators 1 and 3 have a phase shift of 180◦ compared

to manipulators 2 and 4. (b) Illustration of a starfish-inspired robotic platform with four

hydrogel-actuated manipulators. (c) Real starfish transporting a clam on its tube feet. (d)

Displacement of the payload as a function of time for different reference trajectories and

load weights. (e) Array of four manipulators functioning as described in (a) to transport

the payload. Image was taken when the manipulators completed the first gait cycle. The

payload is a clear flat acrylic plate with a black square on its left side. The positions of the

manipulator tips are marked by triangles at their initial locations, circles at the start of the

gait cycle, squares at the middle of the gait cycle, and diamonds at the end of the gait cycle.
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Chapter 3

DYNAMIC MODELING AND CONTROL OF SOFT CONTINUUM ROBOT ARMS

BASED ON THE COSSERAT ROD MODEL

This chapter describes research published by Doroudchi and Berman (2021); Doroud-

chi et al. (2020), and Doroudchi et al. (2022), a manuscript in preparation on experimental

validation of the configuration tracking controller using a silicone-based multi-segment soft

robotic arm.

3.1 Configuration Tracking using Inverse Dynamic Control of the Cosserat Rod Model

Controlling the configuration of a soft continuum robot arm is challenging due to the

hyper-redundant kinematics of such robots. We propose a new model-based, inverse dy-

namic control approach to this problem that is defined on the configuration state variables

of the geometrically exact Cosserat rod model. Our approach is capable of controlling a

soft continuum robot to track static or time-varying 3D configurations through bending,

torsion, shear, and extension deformations. The controller has a decentralized structure,

in which the gain matrices can be defined in terms of the physical and material properties

of distinct cross-sections of the robot arm. This structure facilitates its implementation on

continuum robot arms composed of independently-controllable segments that have local

sensing and actuation. The controller is validated with numerical simulations in MATLAB

with a hydrogel-based soft robot arm that can produce the four primary types of deforma-

tions. The simulated arm successfully tracks these configurations with average normalized

root-mean-square errors (NRMSE) below 7% in all cases. To demonstrate the generality

of the control approach, its performance is also validated on a larger simulated robot arm

made of silicone.
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3.1.1 Forward Dynamics of a Cosserat Rod Model

We aim to develop a model of the nonlinear dynamics of an octopus-inspired soft con-

tinuum robot arm that accounts for the effects of large deformations due to bending, torsion,

shear, and extension. A suitable candidate is the Cosserat rod model, for which three as-

sumptions are required: a sufficiently large length-to-diameter ratio, material incompress-

ability, and linear elasticity, as stated by Antman (2005).

Figure 3.1 depicts a 3-dimensional uniform Cosserat rod in Cartesian coordinates. The

length of the rod is denoted by L, the density of the rod by ρ, and the area and second

mass moment of inertia tensor of each cross-section by A and J , respectively. The posi-

tion and orientation matrix of each cross-section at arc length s in the global coordinate

frame are denoted by Gp(t, s) ∈ R3 and GR(t, s) ∈ SO(3), respectively. From this point

on, whenever a variable does not have the global frame annotation G, it means that it is

defined with respect to a local coordinate frame that is fixed to the cross-section in which

the variable is defined. In the Cosserat dynamics of a rod whose neutral axis is in the z

direction, the curvature vector u(t, s) = [ux,uy,uz]
T and the rate of change of position

v(t, s) = [vx,vy,vz]
T are directly responsible for deformations of the rod, and we will re-

fer to them as configuration state variables. The vectors ux and uy produce bending about

the x and y axes, and uz creates torsion about the z-axis. The vectors vx and vy cause

shear effects that produce changes in the size of the cross-section, and vz produces exten-

sion along the z-axis. The vectors q(t, s) and w(t, s) define velocity and angular velocity.

The internal force and moment are represented by Gn(t, s) ∈ R3 and Gm(t, s) ∈ R3,

respectively. They are the force and moment that the material at p(t, s + ds) exerts on the

material at p(t, s− ds), for infinitesimal ds.

A set of partial differential equations, differentiated with respect to arc length s and time

t, governs the deformation of each cross-section along the elastic Cosserat rod (Fig. 3.1).

65



x

y z

,x yu u

zu

,x yv v

zv

Bend

Torsion

Shear

Extension

Cosserat rod
x

y

z

0s =

s L=

s

( , ), ( , )p t s R t s

( , ) ( , ) ( , )

( , ) ˆ( , ) ( , )

p t s R t s v t s
s

R t s R t s u t s
s












( , ) (3)R t s SO

3( , )p t s ∈

x

y

x

y

x

y

x

y z

Figure 3.1: Schematic of a Cosserat rod. The equations for the 3-dimensional rod config-

uration describe the relationships between the curvature vector (u), the rate of change of

position with respect to arc length (v), and the resulting bending, torsion, shear, and exten-

sion deformations.

The spatial derivatives of the state variables are calculated at each cross-section of the rod.

The internal force and moment evolve according to the equations:

Gns =
GRρA(ŵq + qt)− Gf ,

Gms =
GRρ(ŵJw + Jwt)− Gp̂s

Gn− Gl,

(3.1)
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and the kinematic variables evolve according to:

Gps =
GRv , Gpt = Rq,

GRs =
GRû , GRt = Rŵ,

qs = vt − ûq + ŵv,

ws = ut − ûw,

(3.2)

where (̂·) is the cross product matrix of a vector. Stoer and Bulirsch (2013) compute the

time derivatives using the Backward Differentiation Formula (BDF) as follows:

vt = c0v
i + vh, vh = c1v

i−1 + c2v
i−2,

ut = c0u
i + uh, uh = c1u

i−1 + c2u
i−2,

qt = c0q
i + qh, qh = c1q

i−1 + c2q
i−2,

wt = c0w
i +wh, wh = c1w

i−1 + c2w
i−2,

(3.3)

in which c0 = 1.5/dt, c1 = −2/dt, and c2 = 0.5/dt are the implicit difference coefficients.

The elements (·)(i) are the values of the corresponding variables at time step i, and the

history elements, (·)h, are the values of the corresponding variables at the two previous

time steps, i− 1 and i− 2.

The equations of an elastic Cosserat rod are written for its central backbone, and any

forces and moments that are applied to this backbone are modeled as external forces and

moments, denoted by Gf and Gl, respectively. In practice, these forces and moments are the

sum of the control inputs applied by the actuators of the continuum robot arm (Gfa,
Gla),

external loads on the arm (Gf l,
Gll), and environmental effects (Gf e,

Gle):

Gf = Gfa + Gf l + Gf e,

Gl = Gla +
Gll +

Gle.

(3.4)

Our approach to numerically solving (3.1) is outlined in Algorithm 4. The implicit fourth-

order Runge-Kutta (RK4) method is implemented to numerically integrate (3.1) with re-

spect to space, and then the standard shooting method (SSM) is used to generate initial
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guesses n0,m0 of n,m at each time step. The following boundary conditions of the fixed

end of the rod are known:

Gp(t, 0) = p0,
GR(t, 0) = R0,

q(t, 0) = 0, w(t, 0) = 0.

(3.5)

The SSM guesses the following unknown boundary conditions of the fixed end of the rod,

Gn(t, 0) = n0,
Gm(t, 0) = m0, (3.6)

while satisfying the known boundary conditions of the free end,

Gn(t, L) = nL = 0, Gm(t, L) = mL = 0. (3.7)

This two-point Boundary Value Problem (BVP), which has been reduced to an Initial Value

Problem (IVP) as explained by Stoer and Bulirsch (2013); Holsapple (2003), is solved by

the SSM guesses at each iteration of Algorithm 4. Then, the guessed values are corrected by

the Levenberg-Marquardt nonlinear optimization algorithm. A unique solution to the BVT

is ensured by using a sufficiently small time step and using the solution at the previous time

step as the initial guess for the current time step as proposed by Till and Rucker (2017).

Then, the configuration state variables, v and u, are found from the computed Gn and Gm

as follows:

v = (Kse + c0Bse)
−1[GRT Gn+Ksev

∗ −Bsevh],

u = (Kbt + c0Bbt)
−1[GRT Gm+Kbtu

∗ −Bbtuh].

(3.8)

The vectors v∗ and u∗ are the values of v and u at the undeformed reference shape. The

effects of shear and extension are characterized by Kse and the effects of bending and

torsion by Kbt, under the assumption that the continuum robot arm is slender, symmetric,

homogeneous, and isotropic:

Kse =


αcG 0 0

0 αcG 0

0 0 E

A, Kbt =


E 0 0

0 E 0

0 0 G

J . (3.9)
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In these equations, G and E are the shear modulus and Young’s modulus, respectively, and

αc is a constant which is equal to 4/3 for circular cross-sections and 3/2 for rectangular

ones. The damping matrices Bse = τKse and Bbt = τKbt in Eq. (3.8) can be calculated

from vibration tests presented by Linn et al. (2013), in which τ is twice the period of

vibrations exhibited by the continuum robot arm’s tip.

3.1.2 A Decentralized Approach to Inverse Dynamic Control

We design a controller with a decentralized structure that has distinct proportional-

derivative (PD) gains at each location along the arc length of the Cosserat rod. For seg-

mented soft continuum robots, this enables the independent control of each segment in

a computationally efficient manner. We have previously developed decentralized control

approaches for segmented soft robot arms with objectives of vibration dampening us-

ing H∞ state feedback control, presented in Section 2.1, and trajectory tracking using a

consensus-based method proposed by Lafmejani et al. (2020b). Here, a desired reference

configuration is tracked (v̄, ū), which may be static or time-varying and results in bend-

ing, twisting, shear, extension, or a combination of these deformations in 3D space. In

another study by Lafmejani et al. (2020a), we developed a kinematic controller for trajec-

tory tracking by the tip of a segmented hyper-redundant robot arm, modeled as a series

of Gough-Stewart platforms, that is capable of producing all four deformations considered

here. In the Lafmejani et al. (2020a) study and this section, we consider robot arms that are

comprised of a series of physically connected segments with local sensing and actuation,

and both control approaches rely on calculations by a central computational unit. However,

we use a kinematic model of the robot demonstrated by Lafmejani et al. (2020a) and a

Cosserat-based dynamic model in this section, and the robot’s segments from Lafmejani

et al. (2020a) are assumed to exchange information with adjacent segments, which is not

assumed here. Moreover, the control approach developed by Lafmejani et al. (2020a) is
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centralized, whereas the approach presented here is decentralized.

The control law is defined to track a reference configuration (v̄, ū) and to compensate

for external loads and environmental effects. The control inputs below are applied by the

actuators of the continuum robot arm to the backbone of the robot:

Gf a =GR[Km1v̄tt +Kv1(v̄t − vt) +Kp1(v̄ − v)]

− Gf l − Gf e,

Gla =GR[Km2ūtt +Kv2(ūt − ut) +Kp2(ū− u)]

− Gll − Gle,

(3.10)

where Km1 ,Km2 are 3 × 3 diagonal matrices whose diagonal entries are proportional to

ρA, ρJ , respectively, and Kv1 ,Kv2 ,Kp1 ,Kp2 are gain matrices defined as:

Kv1 = v1Bse, Kp1 = p1Kse,

Kv2 = v2Bbt, Kp2 = p2Kbt,

(3.11)

where we set the scalar coefficients to v1 = p1 = p2 = v2 = 1. In this way, the con-

troller gains at a specific cross-section of the robot can be defined in terms of the physical

properties (A, J ) of that cross-section, independently of the composition of other cross-

sections. This facilitates its implementation on a segmented continuum robot arm with a

decentralized control structure.

Algorithm 4 briefly describes our implementation of this configuration tracking con-

troller. First, the desired configuration is defined in terms of the variables v̄ and ū (line 1).

We define an outer loop that iterates over time steps (lines 2 to 10) and an inner loop that

iterates over discretized spatial locations (nodes) along the backbone of the robot (lines 4 to

9). In the outer loop, the initial boundary condition values of n0 and m0 are guessed using

SSM; in the first iteration, they are set to zero (line 3). By applying RK4 to (Gnj−1,Gmj−1)

and the derivatives of the internal force and moment with respect to arc length, their values

at the current spatial node on the backbone, j, are computed (line 5). After implementing
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Algorithm 4 Configuration tracking controller
1: Given a desired configuration v̄, ū

2: for i← 0 to T/dt do

3: ni
0,m

i
0 ← SSM (ni

L = 0,mi
L = 0)

4: for j ← 0 to L/ds do

5: ni
j,m

i
j ← RK4 (ni

j−1,n
i
s,j) and (mi

j−1,m
i
s,j)

6: vi
j,u

i
j ← ni

j,m
i
j , Forward dynamics (3.8)

7: f i
a,j, l

i
a,j ← Control law (3.10)

8: ni
s,j,m

i
s,j ← Substitute (3.4) in (3.1)

9: end for

10: end for

11: Note: (n,m,f , l) are defined in the global frame, and (v,u) in the local frame.

the current internal force and moments in (3.8), the values for vj and uj are found (line

6). Then, using the error between the configuration variables and their desired values, the

control law calculates the force and moment (Gfa,Gla) that the actuators must apply to the

corresponding backbone section (line 7), and then Gns and Gms are found for the next

spatial node on the backbone (line 8). To demonstrate that the configuration tracking error

converges to zero under this controller, first the closed-loop system dynamics are derived.

By rearranging the equations in (3.1), we obtain:

Gf = GRρA(ŵq + qt)− Gns,

Gl = GRρ(ŵJw + Jwt)− Gp̂s
Gn− Gms.

(3.12)

Then, by substituting in the sum of external forces and moments from (3.4) and keeping

the actuator control inputs on the left-hand side, we obtain:

Gfa =
GRρA(ŵq + qt)− Gns − Gf l − Gf e,

Gla =
GRρ(ŵJw + Jwt)− Gp̂s

Gn− Gms − Gll − Gle.

(3.13)
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Replacing Gfa and Gla in (3.13) with the control law (3.10), the external loads and envi-

ronmental forces and moments from both sides of the equations cancel out:

GR[Km1v̄tt +Kv1(v̄t − vt) +Kp1(v̄ − v)]

= GRρA(ŵq + qt)− Gns,

GR[Km2ūtt +Kv2(ūt − ut) +Kp2(ū− u)]

= GRρ(ŵJw + Jwt)− Gp̂s
Gn− Gms.

(3.14)

The right-hand sides of these equations are the sums of the internal forces and moments

with respect to the arc length. By defining n′
s and m′

s as the following expressions,

Gn′
s =

GRρA(ŵq + qt)− Gns,

Gm′
s =

GRρ(ŵJw + Jwt)− Gp̂s
Gn− Gms,

(3.15)

and rewriting them in terms of the second time derivatives of the configuration state vari-

ables,

Gn′
s =

GRKm1vtt,

Gm′
s =

GRKm2utt,

(3.16)

the closed-loop configuration dynamics of the robot can be expressed in the following form:

Km1v̄tt +Kv1(v̄t − vt) +Kp1(v̄ − v) = Km1vtt,

Km2ūtt +Kv2(ūt − ut) +Kp2(ū− u) = Km2utt.

(3.17)

Defining the error vector e(t) = (v̄ − v, ū− u)T and writing (3.17) in terms of this error,

the closed-loop system dynamics take the form of standard homogeneous second-order

differential equations:

ett +K′
vet +K′

pe = 0, (3.18)
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where the matrices K′
v and K′

p are defined as

K′
v =

Kv1 ⊘Km1 0

0 Kv2 ⊘Km2

 ,

K′
p =

Kp1 ⊘Km1 0

0 Kp2 ⊘Km2

 ,

(3.19)

in which ⊘ denotes element-wise division of matrices (Hadamard division). The matrices

K′
v and K′

p are symmetric and positive definite. To show that e(t) −→ 0 as t −→ ∞, the

following positive definite quadratic Lyapunov function is chosen,

V =
1

2
eT
t et +

1

2
eTK′

pe, (3.20)

which has the following time derivative:

Vt =
1

2
eT
ttet +

1

2
eT
t ett +

1

2
eT
t K

′
pe+

1

2
eTK′

pet

=
1

2
(eT

tt + eTK′
p)et +

1

2
eT
t (ett +K′

pe)

=
1

2
(−eT

t K
′
v)et +

1

2
eT
t (−K′

vet) = −eT
t K

′
vet.

(3.21)

Since K′
v is positive definite, Vt is a negative definite function. By applying Lyapunov’s

direct method to the closed-loop system dynamics, we can prove that e(t) −→ 0 as t −→ ∞

and the system is globally asymptotically stable (Khalil and Grizzle, 2002).

3.1.3 Simulation Results

In this section, the performance of the decentralized configuration tracking controller

is validated with numerical simulations of a Cosserat rod model of the hydrogel-based seg-

mented continuum robot arm in Section 3.2. The simulated robot must achieve specified

reference configurations through bending, torsion, shear, and extension. In all simulations,

the relatively low values of the average normalized root-mean-square errors (NRMSEs)
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Table 3.1: Parameters in the Numerical Simulations.

Param. Description Value

ds Spatial discretization L/N m

dt Time step 0.1 s

N Number of spatial nodes 80 -

Nv Number of virtual segments 8 -

rp Undeformed radius of proximal segment 3 mm

rd Undeformed radius of distal segment 0.5 mm

L Undeformed length of the hydrogel robot arm 45 mm

ρ Density of hydrogel actuator (Khodambashi et al., 2019) 1300 kg/m3

E Young’s modulus of hydrogel actuator 0.6 MPa

ρS Density of silicone 2330 kg/m3

ES Young’s modulus of silicone 188 GPa

between the simulated and reference configurations over all spatial nodes (discretized loca-

tions along the robot’s backbone) demonstrate effective tracking performance by the con-

troller. These values are stated in figure captions in the following subsections.

As in our work on decentralized control of soft segmented continuum robots presented

in Section 2.1 and by Lafmejani et al. (2020b), we assume that each segment of the robot

has local sensing and actuation capabilities. For each test case, the simulated continuum

robot arm is slender and symmetric about the z-axis, with isotropic material properties and

the parameters listed in Table 3.1.

Although the robot is simulated with circular cross-sections, our control approach can

be applied to continuum robots with other cross-section geometries, as long as they satisfy

the assumptions required for using the Cosserat rod model. Both uniform and tapered robot
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arms were simulated; the cross-section of the uniform arm has a constant radius rp, while

the radius of the cross-section of the tapered arm decreases from rp at the proximal segment

to rd at the distal (tip) segment.

Since hydrogel has a slow response time, in practice, the control input frequencies

must be low enough to give the material enough time to complete its heating and cooling

phases. To demonstrate the applicability of our controller to other types of materials, we

also simulated it on a robot arm composed of silicone, which has a faster response than

hydrogel, with the parameters given in Table 3.1. The dimensions L, rp, and rd of the

simulated silicone robot arm were each 10 times longer than the corresponding dimensions

of the hydrogel-based arm. The reference control inputs for the silicone arm were the same

as the inputs defined for the hydrogel-based arm, except with amplitudes 10 times larger

and, in the case of controlled shear deformations, a frequency 10 times smaller.

For the arm made of hydrogel, which can only deform underwater, the applied force

from the environment was defined as the gravitational force acting on the arm,

Gf e = (ρ− ρw)Ag − GRCq ⊙ |q|, (3.22)

where ρ is the density of the hydrogel, ρw is the density of the surrounding water, g is

gravitational acceleration, and C is the damping coefficient matrix of the arm, which is

used to define the square-law drag force on the arm due to water resistance (⊙ denotes

element-wise multiplication). The remaining forces and moments in (3.4) due to external

loads and environmental effects were set to zero. For the arm made of silicone, which was

assumed to operate in air, the density ρ in (3.22) was set to ρS , the density of silicone, and

the drag force term was set to zero.
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Figure 3.2: Tracking performance for a reference configuration that requires bending defor-

mations. (a)-(d) Simulation snapshots at times t = 30 s, 60 s, 90 s, and 120 s, respectively.

(e),(g) Applied moments about the x and y axes, respectively. (f),(h) Curvature components

ux and uy, respectively, of all segments, and the corresponding reference components ūx

and ūy for segment 5. The average NRMSE over all spatial nodes is (f) 5.0%, (h) 5.3%.

Controlled Bending Deformations

A tapered robot arm was simulated to track the following time-varying reference configu-

ration, which requires bending deformations:

ūx(t, s) =


30
( s
L

)
sin(ωt), k = 1, ..., N/2

30

(
s− L

L

)
sin(ωt), k = N/2 + 1, ..., N,

(3.23)

ūy(t, s) =


40
( s
L

)
cos(ωt), k = 1, ..., N/2

40

(
s− L

L

)
cos(ωt), k = N/2 + 1, ..., N,

(3.24)

and ūz(t, s) = 0, where ω = 2π/120 and s = k · ds.

Figures 3.2a-d show snapshots of the simulated hydrogel-based arm over one cycle of

the reference input. In these figures and in all subsequent simulation snapshots, only the

Nv = 8 virtual segments (bounded by black rings on the arm), rather than all N = 80
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spatial nodes, are displayed for clearer visualization. Each node traces out an ellipse in the

x − y plane while exhibiting bending deformations about lines in this plane. Figures 3.2e

and 3.2g plot the time evolution of the moments applied by the actuators about the x and

y axes. The segments’ curvature vector components ux and uy are plotted over time in

Figs. 3.2f and 3.2h, along with the reference components for segment 5. It is evident that

ux and uy for this segment remain close to their reference profiles.

Controlled Torsion Deformations

Twisting motions about the z-axis of the robot arm can be simulated by applying a moment

about this axis to each spatial node along the arm. We simulated torsion deformation in a

tapered robot arm by applying the time-varying reference configuration

ūz(t, s) = 60
( s
L

)
cos(ωt), ω = 2π/120, (3.25)

and setting ūx(t, s) = ūy(t, s) = 0. Four snapshots of the simulated hydrogel-based arm

over one cycle of the reference input are shown in Figs. 3.3a-d. Fig. 3.3e plots the time

evolution of the moments applied by the actuators about the z axis in the local frame of

each segment. The corresponding curvature vector components uz are plotted in Fig. 3.3f

and compared with the reference component for segment 8.

Controlled Shear Deformations

To our knowledge, shear deformation has not previously been simulated in soft robot arms,

despite the development of models such as the one proposed by Renda et al. (2016) that are

capable of describing shear in such structures. We simulated shear deformation in robot

arms with uniform cross-sectional areas. In these simulations, we defined reference shear

components v̄x and v̄y whose values did not exceed the values of vx and vy produced

during the bending simulation described in Section 3.1.3, to ensure that they did not exceed
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Figure 3.3: Tracking performance for a reference configuration that requires torsion de-

formation. (a)-(d) Simulation snapshots at t = 5 s, 15 s, 30 s, and 45 s, respectively. (e)

Applied moments about the z axis. (f) Curvature components uz for all segments and ūz

for segment 8. The average NRMSE over all spatial nodes is 4.54%.
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Figure 3.4: Average ||e(t)||2 over time of a simulated continuum robot arm undergoing

shear deformation, with exponentially decaying reference inputs v̄x and v̄y for different

values of N , dt, and ρ. The inset figure shows a close-up of the plots during the first 10 s.

values that would result in material failure. Our definitions of these reference components

are based on the kinematic locomotion of a burrowing worm simulated in one dimension

proposed by Boyer et al. (2011) and the elongation motions that octopus arms exhibit when

their transverse muscles contract discussed by Kolachalama and Lakshmanan (2020); Kier

and Smith (1985). The reference components were defined as:

v̄x(t, s) = v̄y(t, s) = 4 sin
(
ω
(
t− 1 +

s

L

))
, ω =

2πc

λ
, (3.26)

and v̄z(t, s) = 0. In order to accurately simulate the shear deformations, the cross-sectional

area of the arm must be updated at each time step of the simulation with the reference

components computed similar to the formula presented by Boyer et al. (2011) as follows:

Ai = A0/
√

v̄x
2 + v̄y

2, i = 1, ..., N, (3.27)

where A0 is the initial cross-section area.
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Figure 3.5: Tracking performance for a reference configuration that requires shear defor-

mations. (a)-(d) Simulation snapshots at t = 1 s, 6 s, 8 s, and 12 s, respectively. (e),(g)

Applied forces along the x and y axes, respectively. (f),(h) Components vx and vy, re-

spectively, for segment 4, and the reference components v̄x and v̄y for this segment. The

average NRMSE over all spatial nodes is (f) 6.15%, (h) 6.3%.

We simulated the responses of hydrogel-based and silicone robot arms to the reference

components v̄x and v̄y. For the hydrogel arm, we set the wave velocity to c = 1/2π m/s

and the wavelength to λ = L m. With these parameters, each spatial node along the robot

arm follows a sinusoidal trajectory with equal amplitudes in the x and y directions and a

frequency of ω ≈ 22 Hz. This frequency was selected in order to visualize the traveling

wave response of the robot arm over a short time period (12 s), although in practice, it

may be too high to be implemented in hydrogel material. In the silicone arm simulation,

the reference input frequency was set to ω ≈ 2 Hz. Figures 3.5a-d plot snapshots of the

simulated hydrogel arm over one cycle of the reference input. The forces applied by the

actuators along the x and y axes are plotted over time in Figs. 3.5e and 3.5g, and the

segments’ components vx and vy and the reference values for segment 4 are plotted over

time in Figs. 3.5f and 3.5h.

To study the effects of the number of spatial nodes N , the time step, dt, and the mate-
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rial density, ρ, on the controller performance, shear deformations were simulated in both

hydrogel and silicone robot arms for different combinations of N and dt values. For each

case, the norm of the shear tracking error, e(t) = (v̄ − v,0)T , is plotted over time in

Fig. 3.4. Although N and dt must be chosen carefully to avoid producing numerical in-

stability, the results show that the numerical solution of the closed-loop dynamics remains

stable over a wide range of N and dt values, without exhibiting a significant variation in

performance. Therefore, we selected dt = 0.1 s and N = 80 to achieve acceptable model

accuracy without excessive simulation times.

Controlled Extension Deformations

A continuum robot arm can extend and contract along its central axis if its material and

design allow the cross-section of the arm to expand and shrink as shown by Guan et al.

(2020); Morales Bieze et al. (2020). These deformations are similar to those produced

by muscular hydrostats such as octopus arms presented by Kolachalama and Lakshmanan

(2020); Kier and Smith (1985), which elongate or shorten by contracting their transverse

or longitudinal muscles while maintaining a constant volume. We simulated extension and

contraction in a tapered robot arm by applying the time-varying reference configuration

v̄z(t, s) = 0.75 + 0.25 cos (ωt) , (3.28)

and setting v̄x(t, s) = v̄y(t, s) = 0. This reference input affects all spatial nodes equally

with the same frequency, ω = 2π/120 Hz. To enforce a constant volume during extension,

mimicking the isovolumetric property of a muscular hydrostat, the cross-sectional area of

the arm is updated at each time step of the simulation as Ai = A0/v̄z, i = 1, ..., N .

Figures 3.6a-d plot snapshots of the simulated hydrogel-based arm over one cycle of the

reference input. Figure 3.6e plots the time evolution of the forces applied by the actuators

along the z axis of the local frame of each segment, and Fig. 3.6f compares the segments’
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Figure 3.6: Tracking performance for a reference configuration that requires extension

deformations. (a)-(d) Simulation snapshots at t = 30 s, 60 s, 90 s, and 120 s, respectively.

(e) Applied forces along the z axis. (f) Components vz and v̄z for all segments. Average

NRMSE over all spatial nodes is 1.3%.
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components vz to the reference input v̄z.

3.1.4 Discussion

We have presented a novel approach to dynamic control of bending, torsion, shear, and

extension deformations in a soft continuum robot arm by applying an inverse dynamics con-

troller combined with a decentralized controller that incorporates the system stiffness and

damping in the gain matrices. This decentralized control approach can be implemented in

a computationally efficient way on a continuum robot arm with independently-controllable

actuators enabling it to perform dexterous motions in three dimensions, and it is robust to

individual actuator failures. To our knowledge, this is the first control approach for soft

continuum robot arms that achieves tracking of configurations which require shear defor-

mations. We validate our controller in simulations of a segmented continuum robot arm

that are based on the geometrically exact Cosserat rod model. Our test cases include sim-

ulations in which the actuators that apply forces and moments on the elastic rod have the

physical properties of a hydrogel material used in Section 3.2. In all simulated test cases,

the controller produces average NRMSEs in configuration tracking below 7%, indicating

effective tracking performance. The controller’s performance is consistent over a wide

range of values for the simulation parameters N and dt.

3.2 Development and Validation of a Cosserat Rod Model of a Miniature

Hydrogel-based Robotic Arm

3.2.1 Robot Design and Fabrication

As illustrated in Fig. 3.7, the soft continuum robot is a cantilevered arm fabricated

from a 3D-printed elastic backbone with orthogonal plates that support 16 cubical soft

voxel actuators (SVAs), which are composed of a smart hydrogel material. Each SVA
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Figure 3.7: Top: Soft continuum robot fabricated from a 3D-printed elastic material that

supports 16 soft voxel actuators (SVAs) with embedded Joule heaters that actuate the robot.

Each segment contains two SVAs. The global coordinate frame is shown in yellow. Bottom:

Illustrations of a single segment in which: a) both SVAs are in the unactuated state; b) the

upper SVA is actuated, causing the backbone to bend upward; c) the lower SVA is actuated,

causing the backbone to bend downward.

contracts when it is heated by its embedded Joule heater, and when the heater is turned

off, it swells back to its initial shape. The SVA’s actuation causes the backbone to bend at

the corresponding segment (outlined in Fig. 3.7), and as a result, the robot’s tip exhibits

a deflection along the x-axis. Multiple SVAs can be configured as elastic beams or rods

with different numbers of degrees of freedom (DoF). Our ultimate goal is to construct

an SVA-acuated robot that can deform in 3D and imitate the four motions of elongation,

shortening, bending, and twisting that occur in an octopus arm (Kier, 2016). Our current
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soft continuum robot has 16 actuators that can produce bending motions in the x− z plane

in Fig. 3.7.

In order to fabricate the SVAs, we used standard PNIPAAM hydrogel precursor solu-

tion, along with a proprietary recipe described by Khodambashi et al. (2019) which was

poured into molds using pipettes while the resistive heater (10Ω SMD resistor 0805) was

held in place using grippers. A UV LED (UV 365nm, 10W, Shenzhen Chanzon Technol-

ogy Co., Ltd., China) was used for curing the gels. After curing, the actuator was placed

in a vessel containing deionized (DI) water. The water was changed several times every

few hours in order to wash away the solvents. Once fully swollen, each SVA has the di-

mensions 4.5×4.5×4.5 mm and weighs 0.125 g. To create the hydrogel-based continuum

robot, a 4.5×11×45 mm elastic backbone with orthogonal plates was 3D-printed, and the

SVAs were affixed to the plates using superglue. When all 16 SVAs are fully swollen, the

total mass of the robot is 3 g, and its density (ρ) is 1346.8 kg/m3.

Each SVA can be selectively commanded as a local actuator. To actuate an SVA,

an input voltage is sent to 0.08 mm-diameter copper wires that protrude from the SVA’s

embedded-Joule heater and are connected to the electrical circuit boards. An Arduino

Mega 2560 acts as a communication hub between MATLAB and a MOSFET board (PCA9685

National Control Devices, Osceola, Missouri, U.S.A.). This board has 16 channels, each

of which activates one of the 16 actuators of the continuum robot (16 output PWM chan-

nels that can produce up to 8 watts of power per channel). The MOSFET board receives

the values of the PWM ratio and the channel number and then activates the corresponding

Joule heater.

3.2.2 Dynamic Modeling

We use Cosserat rod theory to model the nonlinear dynamics of the hyperelastic hydrogel-

based continuum robot. Since this model accounts for the effect of bending, torsion, shear,
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and extension, it can accurately describe all the motions of the soft continuum robot. Al-

though our current robot can only exhibit bending motions, Cosserat rod theory provides

a more accurate dynamic model than the Kirchhoff and Euler-Bernoulli models (O’Reilly,

2017). While the Kirchhoff model is also nonlinear, it only incorporates the effects of shear

and extension, and the Euler-Bernoulli model, which is linear, cannot be used to describe

large deformations. In our previous work (Doroudchi et al., 2018), we used the Euler-

Bernoulli model for decentralized vibration control of a segmented soft continuum robot

in simulation, but specified that the robot’s length-to-diameter ratio was large enough to

satisfy the small-deformation condition.

We use the method presented in Section 3.1 to develop a dynamic model of our contin-

uum robot. Then, similar to the simulated fluidic soft robot considered in Section 5.3 of Till

et al. (2019), which is subject to distributed forces and moments, our robot experiences dis-

tributed forces and moments on its backbone, in part produced by the SVAs when they are

actuated individually. The external forces and moments on the backbone are denoted by f

and l, respectively, and are defined as follows:

f = (ρ− ρw)Ag −RCq ⊙ |q| + f seg + f ext ,

l = lseg + lext .

(3.29)

The first two terms in the equation for f describe the robot’s weight in water and the

drag force, respectively. The matrix C = I ∗ C is calculated from the vibration tests

discussed in Section 3.2.4. The force and moment applied by each SVA to the backbone

of its corresponding segment are denoted by f seg and lseg, respectively. The external force

and moment on this part of the backbone due to environmental disturbances are denoted by

f ext and lext, respectively. We can write f seg and lseg, which are expressed in the global
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frame (OG), in terms of fa, the magnitude of an SVA’s force in the local frame:

f seg = faRse3,

lseg = faR[(v + ûr)× e3 + r × ûe3].

(3.30)

As can be seen from the illustrations in Fig. 3.7, fa is zero when both SVAs in a segment are

unactuated, and it is non-zero when one SVA is actuated. Note that since the robot cannot

undergo elongation or shortening in the axial direction, both SVAs of a segment cannot be

actuated simultaneously. The dependence of the direction of lseg on the direction of the

vector r is determined by the particular SVA that is actuated in the corresponding segment.

In order to numerically solve the above set of equations (3.30) for each segment, the value

of fa is required. In the next section, we identify the relationship between the voltage input

to an SVA and its applied force on the plate that supports it.

3.2.3 Actuator Identification

The free energy of the hydrogel results from two molecular processes: stretching the

hydrogel network and mixing the network with the small hydrogel molecules (Hong et al.,

2008). The hydrogel can undergo large deformation in two modes: a fast process with only

shape change, and a slow process with both shape and volume changes. Hong et al. (2009),

define the chemical potential of the solvent and the deformation gradient of the network

as the independent variables of the free-energy function, and it is shown that the boundary

value problem of the swollen gel is equivalent to that of a hyperelastic solid. To implement

their approach, finite-element packages such as ABAQUS or COMSOL are required to

analyze the hydrogel dynamics (Wang et al., 2018). These software packages cannot solve

the hydrogel dynamic problem in real-time simultaneously with the control program when

the robot is actuated, even when using LiveLinkTM for MATLAB.

In order to solve the hydrogel dynamic equations in real-time, we need to either measure

the force magnitude fa in real-time or estimate it from the input voltage. Toward this
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end, we have designed an experimental setup in order to find the relationship between the

input voltage and output force of an SVA. As shown in Fig. 3.8, we measure the tensile

force applied by an SVA when it is actuated while bounded by two plates, similar to its

configuration on the robot. In this setup, one side of an SVA is glued to a fixed plate at

the bottom of a water chamber, and the other side is glued to a force sensor (load cell).

The copper wires of the Joule heater are connected to grippers, which are connected to the

control board in order to receive an input voltage signal. The data from the force sensor

is sent to the computer using a PhidgetBridge 1046_0B bridge interface and a Micro Load

Cell (0-100 g) - CZL639HD module.

From the properties of the hydrogel, we know that shape and volume changes occur

in the operating region between 25◦C and 32◦C. Considering the resistance of the Joule

heater, the range of voltages that we can use to actuate the SVA in order to stay within

this operating region is 0 V to 3.7 V. We recorded measurements of the SVA output force

over time within this voltage range, at a resolution of 0.18 V, for step input voltages with

amplitude V . Since each SVA is affixed to plates that are orthogonal to the backbone of

the robot, the SVA applies a tensile force of fa to these plates when actuated. We applied

the voltage for a length of time which ensured that the SVA had fully contracted, and was

therefore exerting its maximum possible force.

Figure 3.9 illustrates the measured tensile force produced by the SVA over time when

it was actuated with different step input voltage amplitudes for 40 seconds. During the first

40 seconds, the applied voltage heated the SVA, and thereafter the voltage was set to zero

and the SVA cooled down as a result of convective heat transfer to the surrounding water,

which was kept at a constant temperature of 25◦C. As the figure shows, the SVA force

output fa over time t and the input voltage amplitude V have a proportional relationship:

higher forces are produced when higher voltages are applied. We determined an equation

for fa in terms of t and V , for the 20 values of V that we used in our tests, by applying
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Table 3.2: Values of Coefficients in Eq. (3.32).

Coefficient Value Coefficient Value Coefficient Value

d11 0.0024 d21 0.4900 d31 0.0383

d12 -0.0004 d22 0.1564 d32 0.0002

black-box identification techniques for input-output data (Ljung, 2001b):

fa(V, t) =
b0
b2

(
1 + e−

b1 t
2

(
cosh(

√
b1

2

4
− b2 t)

+
b1 sinh(

√
b1

2

4
− b2 t)

2
√

b1
2

4
− b2

))
, 0 ≤ V ≤ 3.7, t ≥ 0.

(3.31)

We identified the bi coefficients as the following functions of V using the System Identifi-

cation and Curve Fitting Toolboxes in MATLAB:

b0 = d11V + d12,

b1 = d21V
2 + d22,

b2 = d31V + d32.

(3.32)

The values of the identified coefficients dij are listed in Table 3.2.

Figure 3.10 compares the measured force over time to the identified function for fa(V, t)

in Eq. (3.31) for the case where an SVA is actuated with a 1.08 V step input for 40 sec-

onds. The resulting root-mean-square error (RMSE) between the two plots is 0.0026 N. To

compare the RMSE values for the different input voltages, we calculated the normalized

root-mean-square error (NRMSE) for each voltage. This error was relatively low, under

5%, for all input voltage amplitudes that were tested. We leave model validation for more

complicated input voltages for future work on closed-loop control of the robot.
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Figure 3.8: Experimental setup that uses a load cell to measure the force applied by an

SVA.

3.2.4 Experimental Validation and Discussion

In this section, we validate the Cosserat dynamical model from Section 3.2.2 by com-

paring simulations of the model to experimental data for open-loop actuation of the robot.

Some parameters of the model are estimated experimentally using vibration tests.

3.2.5 Vibration Tests

The Young’s modulus and physical damping coefficient of the robot are not readily

available, since the robot is in reality neither homogeneous nor isotropic. Moreover, the

submergence of the robot in water during the experiments affects the damping coefficient.

In order to estimate the unknown parameters in the dynamical model, we make the approx-

imation that the robot is homogeneous and isotropic. We perform the widely-used weight
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Figure 3.9: Measured force applied by an SVA while it is actuated by different step input

voltages for 40 s.

(or force) experiment (Linn et al., 2013) with different values of weights to produce vi-

brations of the robot’s tip until it reaches its equilibrium position. The vibration tests are

performed on the robot with the SVAs in their fully swollen state. Figure 3.11 shows side

and front views of the robot bending when a 0.405 g load is placed on its tip during a vi-

bration test. A Logitech C930e webcam placed in front of the chamber is used to track the

white square marker on the robot’s tip, labeled in Fig. 3.11, in order to measure the tip’s

position over time.

Figure 3.12 plots the robot’s vibrations around equilibrium in five cases. In case 1, it

is deflected upward and then released to vibrate freely, and in cases 2 through 5, a load of

0.122 g, 0.222 g, 0.325 g, and 0.405 g, respectively, is rapidly added to its tip. To clearly

compare the time responses of the robot’s deflection, its equilibrium position along the x-

axis (see Fig. 3.7) for each case is shifted to 0 mm. The actual equilibrium positions for

cases 1 to 5 were -0.29, -4.25, -4.71, -7.39, and -7.89 mm, respectively.

We measured the amplitudes of the vibrations at adjacent peaks for different cases,

and determined the damping ratio from the logarithmic decrements of these measure-
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Figure 3.10: Simulation of the identified force function (3.31) compared to the experimen-

tally measured force for the case of an SVA actuated by a 1.08 V step input for 40 s.

ments (Lang et al., 2011). Using the structural damping equations for cantilevered beams

and spring-mass systems, the damping coefficient and Young’s modulus values were cal-

culated as 0.0262 kg/m2 and 2.005 kPa, respectively.

3.2.6 Verification of the Dynamical Model

Having estimated the unknown parameters and measured the SVA applied tensile forces,

we were able to simulate the robot forward dynamics in MATLAB using Eqs. (3.1)–(3.2)–

(3.32). Every segment’s position and orientation were calculated at each iteration of the

simulation. We tested eight cases in both simulation and experiment, in which the robot

was actuated in an open-loop manner with square signals of voltage that were applied to

different subsets of SVAs. Table 3.3 lists the parameters for our eight test cases, including

the numbers of the particular SVAs that are actuated with their corresponding input volt-

ages, which were all applied for 15 seconds. The RMSE values in the table give the errors

between the robot’s tip position in experiment and simulation during one test for each case,
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Figure 3.11: Side and front views of the continuum robot during a vibration test in which a

0.405 g load is placed on its tip.

and X = Xmax−Xmin indicates the tip’s maximum displacement from its initial position.

Dividing RMSE by |X| yields the NRMSE value, for which the percentages are reported.

These relatively low NRMSE values, which are all under 10%, indicate the accuracy of

the modeling approach. Figures 3.13(a) and 3.13(b) show the simulated and experimental

deformations of the robot for Case 4, where SVAs number 9 to 16 were actuated by 3.6 V

for 15 s.

Figure 3.14(a) plots the simulated and experimentally measured displacement of the

robot’s tip for the case when all SVAs in the top row (numbered 1 to 8) are actuated with

a square wave of amplitude 1.8 V for 60 seconds and then 0 V for 60 seconds. The RMSE

between the plots is 0.68 mm. Figure 3.14(b) plots the simulated and measured displace-

ments for the case when SVA numbers 4, 9, and 15 are actuated with a square wave of

amplitude 3.6 V for 15 seconds. The RMSE between the plots for this case is 0.32 mm.

Since the delay in the hydrogel response is not included in the SVA force model or the

robot dynamical model, at the beginning of the SVA heating state or cooling state and in
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Figure 3.12: Vibrations of the robot’s tip around its equilibrium position (shifted to 0 mm)

for cases with no weight attached and with attached weights of 0.122 g, 0.222 g, 0.325 g,

and 0.405 g. The period of the vibrations is 1.56 s.

general during any change of states, error arises between the simulations and experimental

measurements, as is apparent from the results in Fig. 3.14. Other sources of error between

the simulations and experiments include deviations from the assumption of a homogeneous

and isotropic robot, inconsistencies in SVA fabrication (which can be addressed in future

work), and variable hydrogel stiffness during the contraction and swelling modes.

3.2.7 Discussion

In this section, a new hydrogel-actuated continuum robotic arm is presented, and its

dynamics are modeled based on the Cosserat theory of rods. The robot is designed to bend

when one or more of the actuators located along its length, called SVAs, are actuated by

embedded Joule heaters. To measure the force applied by the SVAs during actuation, an

experimental setup was designed to obtain input-output data on the voltage-to-force rela-
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Figure 3.13: Continuum robot bending when its bottom row of SVAs (numbers 9 to 16)

have been actuated by a square wave with amplitude 3.6 V applied for 15 seconds (Case 4,

Table 3.3): (a) experiment; (b) simulation.

tionship, which was characterized using black-box identification techniques. Experimental

validation results demonstrate that the identified model has an NRMSE of at most 5% over

a range of step input voltages (0 V–3.7 V). The dynamic model was also validated in MAT-

LAB simulations after estimating unknown mechanical parameters of the robot in an ex-

perimental vibration test. By comparing the physical robot’s deformation under open-loop

control with predefined actuation patterns to the corresponding simulation results, we show

that the model accurately reproduces the robot dynamics, with at most 10% NRMSE. In fu-
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Table 3.3: Errors Between Measured and Simulated Robot Tip Displacements.

Case Actuators Voltage RMSE |X| NRMSE

number number (V) (mm) (mm) (%)

1 1-8 1.8 0.28 4.09 6.8%

2 1-8 3.6 0.69 8.96 7.7%

3 9-16 1.8 0.39 6.51 5.9%

4 9-16 3.6 0.63 13.06 4.8%

5 3,4,5 3.6 0.36 4.98 7.2%

6 14,15,16 3.6 0.16 2.01 7.9%

7 7,8,11,12,13 3.6 0.49 5.15 9.5%

8 4,9,15 3.6 0.32 3.52 9.1%

ture work, we will incorporate shear and torsion effects into our models for new designs of

hydrogel-based continuum robots that can deform in 3D. Moreover, we will develop decen-

tralized controllers for such robots, with the goal of performing more complex tasks such

as position control of the tip, trajectory tracking, shape control, and object manipulation.
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(a)

(b)

Figure 3.14: Simulated and measured robot tip displacement along the x-axis when (a)

SVA numbers 1 to 8 are actuated with a square wave of amplitude 1.8 V applied for 60

seconds; (b) SVA numbers 4, 9, and 15 are actuated with a square wave of amplitude 3.6 V

for 15 seconds (Case 8, Table 3.3).

3.3 Decentralized Tracking Control of a Silicone Multi-Segment Robotic Arm using a

Cosserat Rod Model

Controlling soft continuum robotic arms is challenging due to their hyper-redundancy

and dexterity. Controllers for such robots that are based on dynamical models are generally

known to be more accurate compared to other methods; however, their high computa-
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tional and sensing requirements have limited their usage (George Thuruthel et al., 2018;

Webster III and Jones, 2010b). In this section, we demonstrate, for the first time, closed-

loop control of the configuration of a silicone multi-segment robotic arm using a Cosserat

rod model of the robot. Our controller solves the inverse dynamic problem by simulating

the Cosserat rod model in MATLAB using a computationally efficient numerical solution

scheme, and applies the computed control output to the actual robot in real-time. The con-

troller is implemented on a two-segment silicone robotic arm with distributed pneumatic

actuation, using external vision-based feedback on the segments’ configurations. The con-

troller is designed to track a desired reference configuration by independently controlling

each segment of the robotic arm using a decentralized approach. A motion capture system

is used to measure the position and orientation of the tip of each segment in real-time, and

the remaining unknown parameters that are needed to solve the inverse dynamics are esti-

mated simultaneously in the simulation. Thus, this method reduces the complexity of the

dynamic controller by reducing the number of required sensors on the robot. The controller

is used to reshape the robotic arm into configurations that are achieved through different

combinations of bending and extension deformations in 3D space. In all test cases, the con-

troller produces normalized root-mean-square errors (NRMSEs) in configuration tracking

that remain below 9%, which shows the effectiveness of the controller and the accuracy of

the simulated model that is used to estimate the unmeasured parameters.

3.3.1 Silicone Segment Fabrication and Properties

The silicone multi-segment soft arm was fabricated using a process similar to the one

described by Nguyen et al. (2017). Each segment consists of four independent cylindri-

cal fiber-reinforced actuators (FRAs) that are arranged in parallel and are symmetric with

respect to the central axis of the segment. Both clockwise and counterclockwise helically

winded threads allow axial elongation of the FRAs while preventing radial expansion. Once
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Figure 3.15: The multi-segment silicone soft robotic arm. The silicone segments were

fabricated using the method described in Nguyen et al. (2017).

the FRAs are fabricated, a different mold is used to embed all four actuators in a segment.

Both silicone material and dye (blue or red) are poured into the mold to fuse the FRAs into

a blue or red segment, as depicted in Fig. 3.15. The segments are connected with black

3D-printed parts, which are fastened by bolts and nuts. The source of actuation is com-

pressed air, which is applied to each segment through four air tubes that are each connected

to an FRA at one end and to a digital pressure regulator at the other end. The digital pres-

sure regulator measures the air pressure pm in each FRA and drives it to a desired pressure

set-point pd.

The physical properties of each segment are listed in Table 3.4. In order to estimate

the Young’s modulus of a segment, assuming that its value remains constant during actua-

tion, an Instron 5944 universal testing machine was used to exert a force on an unactuated

segment under three loading speeds (1 mm/s, 3 mm/s and 5 mm/s) and measure its corre-

sponding change in length. Three trials were conducted for each loading speed, and the

Young’s modulus was estimated as the average value over all 9 trials.
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Table 3.4: Silicone Segment Properties.

Param. Description Value Units

N Number of segments 2 –

ri Distance from backbone to each FRA 0.3 cm

Ai FRA cap area 3.1 cm2

r0 Undeformed radius of the segment 5.3 cm

L0 Undeformed length of the segment 18.5 cm

M Mass of the segment 0.825 kg

ρ Density of the segment 792.8 kg/m3

G Shear modulus of the segment 0.1 MPa

E Young’s modulus of the segment 0.28 MPa

3.3.2 Forward Dynamics of the Multi-Segment Arm based on the Cosserat Rod Model

As mentioned in Section 3.1.1, the equations of an elastic Cosserat rod are written for

its central backbone, and any forces and moments that are applied to this backbone are

modeled as external forces and moments. In practice, the sources of these external forces

and moments (Gf , Gl) are the control inputs applied by the pneumatic actuators of the

continuum robot arm (Gf p,
Glp) and environmental effects (Gf e,

Gle) such as gravitational

and drag forces:

Gf = Gf p +
Gf e,

Gl = Glp +
Gle.

(3.33)

The only environmental effect here is the gravitational force per unit length:

Gf e = ρAGg, (3.34)

where Gg = [0 0 − 9.81]T m/s2. Thus, the pneumatic actuators’ applied forces and
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Figure 3.16: Schematic block diagram of the controller.

moments to the backbone are defined as:

Gf p =
4∑

i=1

piAi[
GRe3]− ρAGg,

Glp =
4∑

i=1

piAi[(
Gp+ GRri)× GRe3],

(3.35)

where pi is the chamber air pressure of the i-th FRA, Ai is the corresponding chamber cap

area, and ri is the vector from the backbone to the center of the i-th FRA in the local frame

of a segment cross-section (Figure. 3.17). The gravitational effect is subtracted from the

actuation effect to cancel out its effect on the backbone.

By substituting (3.33) into (3.1), the relationship between the applied forces and mo-

ments from the pneumatic actuators and the virtual joint space variables (ns,ms) at each

discretized spatial location (node) is defined. Then, the configuration state variables v and

u are computed from the joint space variables, n and m, using (3.8). The history ele-

ments of the configuration variables, vh and uh, are obtained from experimental data on

the position and orientation of the robot in its task space, as discussed in the following

section.
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3.3.3 Decentralized Approach to Inverse Dynamic Control of the Multi-Segment Arm

Figure 3.16 illustrates a schematic block diagram of our proposed controller for config-

uration tracking control of the soft multi-segment robot arm. The time-varying reference

configuration variables for bending and extension deformations are sent to the control loop

at each time step. The high-level controller computes the control output based on the differ-

ence between the current configuration variables of the robot and the desired values. The

control outputs, which are the desired forces and moments applied by the actuators, are

mapped to the desired air pressure pi in each FRA. Then, the desired pressures are sent to

the robot’s pneumatic actuators using a low-level controller. The position and orientation

of the tip of each segment is measured by an Optitrack motion capture system with Motive

software.

To solve the inverse dynamics problem, the silicone segment’s bending and extension

deformations in the task space are mapped to the configuration state variables vz ,ux, and

uy. Since the task space to configuration space mapping is robot-independent (Webster III

and Jones, 2010b), the Piecewise Constant Curvature (PCC) configuration space variables,

(κ, ϕ, L), are used to complete the mapping. Figure 3.17 illustrates the kinematics of a

constant-curvature segment that approximates the silicone segment under consideration.

The position (x, y, z) of the tip of each segment with respect to the local frame attached

to the base of the segment is related to the corresponding PCC configuration variables as

follows, defined as in (Jiang et al., 2020):

κ =



2x

x2 + z2
, ϕ = 0

2y

y2 + z2
, ϕ = π/2

0, x = 0, y = 0

(3.36)
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L =



1

κ
arctan

(x
z

)
, ϕ = 0

1

κ
arctan

(y
z

)
, ϕ = π/2

z, x = 0, y = 0

(3.37)

Now, a mapping is required between the PCC configuration space variables defined for

the robotic arm and the corresponding configuration state variables in the Cosserat model,

since the (v,u) variables cannot be directly measured from the robot’s task space. The

curvature variable in each fixed plane in the PCC model is equal to the component of the

curvature vector u in the same plane for bending deformations, and the extension variable

vz is given by the extension ratio of the segment:

uy = κ for ϕ = 0,

ux = κ for ϕ = π/2,

vz = 1 +
L− L0

L0

,

(3.38)

where L0 is the undeformed length of the segment.

Using the mapping from (3.38), the configuration state variables are computed from the

measured task space variables. Lastly, the values of the configuration state variables at the

next time step are approximated by the simulation of the Cosserat model forward dynam-

ics, which are numerically solved given the position and orientation measurements and the

high-level controller output. Thus, the inverse dynamics of the robot are solved in the sim-

ulation using the actual robot’s position and orientation measurements and approximations

of the other variables from the Cosserat model forward dynamics solution. The controller

is defined as the controller presented in Section 3.1. It is designed with a decentralized

structure that has distinct proportional-derivative (PD) gains at each location along the arc

length of the Cosserat rod. The controller tracks a static or time-varying reference configu-

ration, (v̄, ū), that results in bending, extension, or a combination of these deformations in
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Figure 3.17: Kinematic representation of a constant-curvature segment. ri is the vector

from the backbone to the center of the i-th FRA chamber, which has cap area Ai, in the

local frame of a segment cross-section, which has area A.

3D space, and compensates for any environmental effects.

The control outputs are defined as:

Gf p =GR[Kv1(v̄t − vt) +Kp1(v̄ − v) +Km1v̄tt]− ρA Gg,

Glp =GR[Kv2(ūt − ut) +Kp2(ū− u) +Km2ūtt],

(3.39)

where Km1 ,Km2 are 3 × 3 diagonal matrices whose diagonal entries are proportional to

ρA, ρJ , respectively, and Kv1 ,Kv2 ,Kp1 ,Kp2 are gain matrices defined as in (3.11) with

the scalar coefficients set to v1 = v2 = 1, p1 = 20, and p2 = 25. The stiffness and damping

variables (Kse, Kbt, Bse, Bbt) are computed from the silicone segment properties in Table

3.4. By substituting the control output from (3.39) into (3.35), the equivalent actuation for

each segment, P = [Px, Py, Pz], can be computed using the mapping below, given that

the silicone segments have only three DOFs: bending about the x-axis, bending about the

104



y-axis, and elongation along the z-axis:

Px = Glp(y) · GlTp (y)/Ai,

Py =
Glp(x) · GlTp (x)/Ai,

Pz =
Gf p(z) · GfT

p (z)/Ai,

(3.40)

where Ai is equal for all the chambers. Then, the equivalent actuation is obtained from the

real actuator pressures, p1, p2, p3, p4, as follows:

Px = −p1 + p2 − p3 + p4,

Py = p1 + p2 − p3 − p4,

Pz = p1 + p2 + p3 + p4.

(3.41)

Since our silicone segment is similar in design to the HPN Arm (Jiang et al., 2021), in

which each segment has two bending DOFs and one elongation DOF, the relation p1+p4 =

p2 + p3 must hold. Therefore, the real actuator pressures are computed as:

p1 = (−Px + Py + Pz)/4,

p2 = (Px + Py + Pz)/4,

p3 = (−Px − Py + Pz)/4,

p4 = (Px − Py + Pz)/4.

(3.42)

Algorithm 5 briefly describes our implementation of this configuration tracking con-

troller on the silicone multi-segment robotic arm. First, the desired time-varying config-

uration (a combination of bending and extension deformations) is defined in terms of the

variables ūi
x, ūi

y, and v̄i
z (line 1). We define an outer loop that iterates over time steps (lines

2 to 11) and an inner loop that iterates over discretized spatial locations (nodes) along the

backbone of the robot (lines 4 to 10). In the outer loop, the initial boundary condition val-

ues of ni
0 and mi

0 are guessed using SSM; in the first iteration, they are set to zero (line

3). By applying RK4 to (ni
j−1,mi

j−1) and the derivatives of the internal force and moment
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Algorithm 5 Configuration tracking controller on the silicone multi-segment robotic arm

1: Given a desired configuration ūi
x, ū

i
y, v̄

i
z

2: for i← 1 to T/dt do

3: ni
0,m

i
0 ← SSM based on (3.7) (ni−1

L = mi−1
L = 0)

4: for j ← 1 to L/ds do

5: ni
j,m

i
j ← RK4 using (ni

j−1,m
i
j−1) and (ni

s,j−1,m
i
s,j−1)

6: vi
j,u

i
j ← Forward dynamics (3.8) using ni

j,m
i
j and vh,j,uh,j

7: f i
p,j, l

i
p,j ← Control law (3.39) using vi

j,u
i
j

8: P i
j ← Segment pressure for actual robot from (3.40)

9: ni
s,j,m

i
s,j ← Substitute (3.39) in (3.1)

10: end for

11: end for

12: Note: (n,m,f , l) are defined in the global frame, and (v,u,P ) in the local frame.

with respect to arc length, their values at the current spatial node on the backbone, j, are

computed (line 5). After implementing the current internal force and moment in (3.8), the

values for vi
j and ui

j are found using ni
j,m

i
j from the simulation and vi

h,j,u
i
h,j from the

actual robot (line 6). Then, using the error between the configuration variables and their

desired values, the control law calculates the force and moment (f i
p,j ,l

i
p,j) that the actuators

must apply to the corresponding backbone section (line 7). The corresponding forces and

moments applied by the pneumatic actuators from (3.35) are then mapped to the desired

actuator pressures to be sent to the actual robot using (3.40), (3.41), and (3.42) (line 8).

Lastly, ni
s,j and mi

s,j are found for the next iteration of the inner loop. (line 9).
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3.3.4 Simulation and Experimental Results

In this section, we compare the performance of the controller at tracking desired con-

figurations in both the actual robotic arm and the simulation of the arm, which runs si-

multaneously in real-time. There are no theoretical limitations imposed by our modeling

and decentralized control approach on the number of segments in the robotic arm. How-

ever, due to the space limitations for the motion capture system in the laboratory of our

collaborator Prof. Wenlong Zhang, we have limited the number of segments in the robotic

arm to two segments. Each segment has local sensing, actuation, and control capabilities,

and they are therefore independently controllable. The simulated robotic arm is slender,

uniform, and symmetric about the z-axis, with isotropic material properties throughout the

arm. Although the simulated robot has a circular cross-section (with radius r0), our control

approach can also be applied to multi-segment robots with other cross-section geometries,

as long as they satisfy the assumptions required for using the Cosserat rod model.

To demonstrate the performance of the decentralized controller in tracking desired

bending and extension configurations, we recorded the position and orientation of the tip

of each segment using the motion capture cameras while the controller is implemented.

The required control input and outputs are available from both the simulation and experi-

ment. As mentioned earlier, the controller can produce any of the four main deformations;

however, due to the robot’s physical design restrictions, we are only able to validate the

performance of the controller for bending and extension deformations.

In Fig. 3.18, we illustrate the tracking performance of the controller for a case in which

both segments experience extension under the following desired reference input:

v̄z(t, s) = 1 + 0.1 sin2 (ωt) , (3.43)

where ω = 2π/100. All the actuators receive the same amount of pressure, which results

in almost equal increases in the lengths of both segments. The initial values of L1 and L2
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Figure 3.18: Controller performance for tracking a reference extension deformation in the

actual multi-segment robotic arm and its simulated model. (a) Component vz and its cor-

responding reference, v̄z, for both segments. (b) The error between components vz and vz.

(c) The applied desired and measured pressure, pd,j(i) and pm,j(i) respectively, for actuator

i of segment j. (d) Position of segment 1 tip along z-axis. (e) Position of segment 2 tip

along z-axis. (f) Length of both segments.
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Figure 3.19: Controller performance for tracking a reference bending deformation about

the y-axis in segment 1 of the robotic arm and its simulated model. (a) Curvature compo-

nent uy and its corresponding reference, ūy. (b) Position of the segment tip. (c) The error

between components uy and ūy. (d) The applied desired and measured pressure, pd(i, j)

and pm(i, j), respectively for actuator pairs (i,j).

are slightly different from L0 due to the locations of the markers on the 3D-printed parts

connecting the segments.

Figure 3.19 plots the curvature, error in curvature from the desired reference value,

input pressures to the actuators, and x position of segment 1 as it tracks a desired bending

deformation about the y-axis. The reference curvature for segment 1 about the y-axis is
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Figure 3.20: Controller performance for tracking a reference bending deformation about

the x-axis in segment 2 of the robotic arm and its simulated model. (a) Curvature compo-

nent ux and its corresponding reference, ūx. (b) Position of the segment tip. (c) The error

between components ux and ūx. (d) The applied desired and measured pressure, pd(i, j)

and pm(i, j), respectively for actuator pairs (i,j).

defined as: (ω = 2π/100)

ūy(t, s) =


−7.5 sin2 (ωt) t ≤ 50s,

9.5 sin2 (ωt) t > 50s,

(3.44)

Figure 3.20 plots the curvature, error in curvature from the desired reference value,

input pressures to the actuators, and y position of segment 2 as it tracks a desired bending

deformation about the x-axis. The reference curvature for segment 2 about the x-axis is

defined as: (ω = 2π/100)
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Table 3.5: NRMSEs From Desired Reference Deformations.

Deformation Segment Simulation Experiment

Extension 1 0.0% 8.8%

Extension 2 0.0% 8.9%

Bending 1 0.1% 8.4%

Bending 2 0.1% 7.7%

ūx(t, s) =


−8 sin2 (ωt) t ≤ 50s,

8 sin2 (ωt) t > 50s.

(3.45)

For all three cases, the normalized root-mean-square errors (NRMSEs) were calculated

between the simulated and reference configurations, and between the approximated curva-

ture and extension measurements of the actual robot segments and their reference values.

These NRMSE values are compared in Table 3.5. The relatively low NRMSEs for the

experimental trials (all below 9%) demonstrate the effectiveness of the controller at config-

uration tracking. The controller’s effective performance is also a validation of the accuracy

of the dynamic Cosserat rod model of the multi-segment soft robotic arm.

3.3.5 Discussion

In this study, a decentralized control approach is implemented on a pneumatically ac-

tuated silicone multi-segment soft robotic arm to track desired configurations in 3D space.

The multi-segment robot can perform bending in two directions (about the x and y axes)

and elongation in the third direction normal to the other two directions (the z axis). In

this control approach, the position and orientation of the tip of each segment are measured

using a motion capture system and are fed back to a simulated Cosserat rod model of the

111



robot, which is used to estimate the unmeasured robot parameters and compute the control

output. This approach is computationally efficient, unlike many other dynamic controllers,

and eliminates the need to equip the robotic arm with additional sensors. The distributed

local sensing and actuation of each segment enables the segments to be controlled inde-

pendently and facilitates tracking of diverse configurations that can potentially be used for

complex manipulation tasks.
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Chapter 4

CONCLUSION AND FUTURE WORK

In this dissertation, we have taken some essential steps to tackle the challenges of con-

trolling soft robotic arms using model-based approaches, which we hope will be useful for

future researchers in soft robotics. We show how decentralized control approaches with

local sensing and actuation can be designed to perform complex manipulation and loco-

motion tasks, drawing on inspiration from invertebrates like octopuses. In recent years, a

variety of soft robotic arms with different sources of actuation have been developed; how-

ever, the sensing technology required to measure soft robots deflection is still far behind.

Therefore, due to experimental and especially sensing limitations, some of the results in this

dissertation have only been demonstrated in simulation. The simulated model is developed

based on the Cosserat theory of rods, which is capable of reproducing large deformations

in slender rods. We have illustrated the accuracy of the simulated model by validating

the forward dynamic solution of a miniature hydrogel-based soft robotic arm, including an

experimentally identified actuation model. We have also presented a decentralized model-

based control approach that is implemented on a pneumatically actuated multi-segment soft

robotic arm made of silicone, enabling it to track desired configurations in 3D space.

Complex manipulation tasks such as those performed by octopuses, like opening a jar

lid, cannot be accomplished by only controlling the position or shape of the tip of a soft

robotic arm; they require control of the configuration of the entire arm throughout the

task. Therefore, we believe that our proposed decentralized control approach based on dis-

tributed sensing and actuation is a promising starting point for controlling soft robotic arms

in applications that require complex manipulation. Defining the desired robot configuration

is not trivial for complicated tasks, and hopefully future biological studies and materials de-
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veloped for soft robots will offer solutions to this problem. In addition, embedded sensors

on the robot will be highly useful for controlling its interaction with the environment and

can enable autonomous whole-arm grasping (similar to an elephant trunk), which has re-

mained a challenge for soft robotic arms.
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