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ABSTRACT

Calculus as a math course is important subject students need to succeed in, in order

to venture into STEM majors. This thesis focuses on the early detection of at-risk

students in a calculus course which can provide the proper intervention that might

help them succeed in the course. Calculus has high failure rates which corroborates

with the data collected from Arizona State University that shows that 40% of the

3266 students whose data were used failed in their calculus course.

This thesis proposes to utilize educational big data to detect students at high

risk of failure and their eventual early detection and subsequent intervention can be

useful. Some existing studies similar to this thesis make use of open-scale data that

are lower in data count and perform predictions on low-impact Massive Open Online

Courses(MOOC) based courses. In this thesis, an automatic detection method of

academically at-risk students by using learning management systems(LMS) activity

data along with the student information system(SIS) data from Arizona State Uni-

versity(ASU) for the course calculus for engineers I (MAT 265) is developed. The

method will detect students at risk by employing machine learning to identify key

features that contribute to the success of a student.

This thesis also proposes a new technique to convert this button click data into

a button click sequence which can be used as inputs to classifiers. In addition, the

advancements in Natural Language Processing field can be used by adopting methods

such as part-of-speech (POS) tagging and tools such as Facebook Fasttext word em-

beddings to convert these button click sequences into numeric vectors before feeding

them into the classifiers. The thesis proposes two preprocessing techniques and eval-

uates them on 3 different machine learning ensembles to determine their performance

across the two modalities of the class.
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Chapter 1

INTRODUCTION

1.1 Overview

In education, data mining is the method to explore the various types of unique data

that are generated by students so that they can be used to aid their learning. Data

mining can determine new patterns in students which will benefit them. Researchers

Hooshyar et al. (2020), Shin and Shim (2020) have used data mining techniques to

model, predict and learn about the various patterns that students usually exhibit.

The collection of data by the LMS does not require any administration or intrusion

from staff or faculty making it easy to collect also. Thus the study by Villegas-Ch

et al. (2020) had concluded that LMS in conjunction with data mining techniques

can improve student performance in a course.

Macfadyen and Dawson (2010) concluded in their study that time as a feature

played a key role in the success of a student in a course. Study patterns, student

data engagements, participation criterion, etc are various key factors that can be

represented using the data mined from an LMS. The goal of this thesis is to thus

identify and determine if there is any pedagogical meaning for a feature such as

student activity to detect the success of a student in a calculus course.
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1.2 Problem Statement

The number of students entering and completing science, technology, engineer-

ing, and mathematics (STEM) related subjects in the U.S. has received increased

attention from education researchers. Part of the reason for this increased focus is

the high failure/drop rate in these courses (Seymour and Hewitt, 1997). The success

of students in fields such as STEM is seen as a key feature for the U.S. to remain

strong in the global markets (Chen, 2009). However, many students are unable to

succeed. The calculus requirement of STEM courses is often perceived as a ‘filter’

rather than a ‘pump’ (Steen, 1988). High failure rates in calculus classes aimed at

freshman engineering and science students are not new.

Arizona State University uses LMS as an infrastructure system of the organiza-

tion which can help keep an attendance record of students, grading the assignment,

or broadcasting any messages or information vital to students (Pongpaichet et al.,

2020). A study conducted by Maor and Volet (2007), concluded that interactivity

with an LMS is an essential environment and constitutes an important factor in on-

line learning. Generally speaking, an LMS is a self-contained system consisting of

educational resources to direct the teaching and learning process by retaining, pur-

suing, and utilizing student interaction records within the LMS. The data generated

in educational settings such as LMS, traditional classroom-based interactions, etc.

are utilized in understanding the student’s academic performance, and this process is

commonly known as Educational Data Mining (EDM). It is relatively a new research

area where methods are studied, developed, and tested to enhance the standard of

teaching and learning. To this effect, in literature, there exist several notable reviews

on the application of algorithms on the educational dataset to derive patterns (un-

supervised approach) (Dutt et al., 2017) or predictions (supervised approach) (Baker

2



and Yacef, 2009).

This thesis will utilize the supervised approach to predict student performance

from interaction within an LMS for a calculus course. Furthermore, the primary

focus will be on the LMS activity data which consists of the button click information

within an LMS. Dutt and Ismail (2019) in their research used different classifiers on

the LMS dataset to obtain their results. Pongpaichet et al. (2020) is the base paper

upon which this thesis builds. Instead of limiting ourselves to just the online classes,

we delved into the predictive capabilities of LMS data on Face-2-Face classes as well

as the course’s online counterpart. The use of activity data from LMS and its impact

on student success will be another focus of this study. Also, the quality of the dataset

being used comes from actual student data sourced from Arizona State University

students and the major criteria of the study will focus on identifying At-risk students

early on into their Calculus course.

Tran and Sato (2017) in 2017 conducted a study using API sequences to develop

malware detecting classifiers using Natural Language Processing techniques. They

use API call sequence as their input because it is how a program communicates

with the infected OS, thus acting as a language of communication for interaction.

The study shows promising results in predicting malware from normal programs and

works well as a proof of concept in the application of NLP in the field of classification

of natural language sequences. This method of interpreting sequence meaning can

thus be extrapolated to other fields where sequences are generated such as Education.

This thesis also aims to make use of the same technique in the field of learning

analytics by converting student button click data into student button click sequence

and eventually building a classifier that can predict the success of a student in a course.

The student button click data generally follows caliper instructions and hence is made

up of natural language. Sequencing of button variables can thus create patterns of

3



student workflow within an LMS. This is the data upon which the thesis strives to

build its classifiers.
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Chapter 2

BACKGROUND LITERATURE

2.1 Calculus and high failure rates

Pilgrim (2010) in 2010 observed that close to 40% of those who took Calculus

for Physical Scientists course I (MATH 160) needed to repeat it. This mirrored the

national average of failure rates at that time. The situation is similar even at Arizona

State University, this cementing the issue deeply. The effects of failing a course can

take its toll financially and with respect to time as the student needs to retake the

course in order to achieve their degree. There can also be a mental aspect to the toll

due to stress.

Worthley (2013) concluded in their paper that the difference between success and

failure of a student in a calculus course lies with the amount of time spent and its

quality within a course. The successful students had more study strategies and means

rather than spending time just keeping up with their due assignments. Their paper

also mentions that if those that need extra guidance can be advised appropriately,

then there may be an improvement in the pass rate for the calculus course that they

worked with. The main goal thus becomes the detection of students at risk, whose

information after which can be used to improve their quality of education.

5



2.2 Early Warning Systems using LMS

The analysis of LMS data is often described as learning analytics, which is defined

as “the measurement, collection, analysis, and reporting of data about learners and

their context, for purposes of understanding and optimizing learning and the environ-

ments in which it occurs” (Siemens and Long, 2011). There is a large concentration of

research within learning analytics where LMS data have been used for the purposes of

predicting student success in a class either by gauging their performance to determine

whether they would be at risk of failing the course (Wolff et al., 2014; Kondo et al.,

2017; Cui et al., 2020). This follows the natural progression of the works in learning

analytics which involve the eventual implementation of interventions and personal-

ized feedback. Purdue University (Pistilli and Arnold, 2010) in 2009 developed a

Course Management System (CMS) to alert students grade and action plan. This

was implemented by the instructors by analyzing their past academic performances

spanning two semesters.

Such a system can then be used to identify the impact of new teaching methods,

growth and dips in the learning activity, and other various observations that can be

derived. Instructors currently are unable to gauge the success of a student as they

did previously due to factors such as, increase in class size, slow rate of engagement

amongst students and the instructors, student absentees, and the struggle of inter-

acting with the student who might be in need of help as concluded by the studies of

Macfadyen and Dawson (2010).

Instructors, therefore, require better tools or strategies that will allow them to

identify probable students who are at-risk, in order to help them succeed. Based

on some preliminary findings by Wang and Newlin (2002) proposed in 2002 that

data on student online activity in a web-based Learning Management System (LMS)

6



may provide an early indicator of student academic performance. More recently a

study by Campbell et al. (2007) stated that the application of academic analytics to

institutional LMS data can offer broader insights into student success and in identi-

fying students at-risk of failure. For example in the paper by Campbell et al. (2006),

they conducted a regression analysis of online-based student activity and performance

data. They then demonstrated that while student SAT scores are mildly predictive of

student success, the inclusion of an additional variable such as LMS login information

ended with increasing the predictive power of the model by three. This shows the

effect of LMS data on boosting predictive analysis for gauging student success.

This thesis will focus on two approaches in using LMS data to develop an early

warning system that can help identify students at risk. Approach A will use a more

general approach in handling the LMS activity data whereas approach B will elaborate

on a newer means of transforming LMS data to capture more information.
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Chapter 3

RELATED WORKS

3.1 Related works to approach A

LMS is the go-to software solution for eLearning these days. A study conducted

by Maor and Volet (2007), concluded that interactivity with an LMS is an essential

environment and constitutes an important factor in online learning, this validates

the usage of LMS data for predictive analysis as they have causation to the susses

of a student in a class. The LMS used for this study is Canvas (Instructure, 2016).

They have been part of ASU’s curriculum since 2018 and have played a key part in

transitioning fully online during the time of the pandemic of 2020 (COVID-19). The

key dataset that this study will focus on is the Canvas Activity dataset, which records

every button lick activity of a student on the Canvas platform.

Macfadyen and Dawson (2010) in 2010 found that time spent on assignments,

time spent online, and a number of discussion messages posted were key features

that derived the success of a student in a course. Similar research by Kupczynski

et al. (2011) stated that the time spent online and login frequency have also been

key factors that failed to contribute to the success of a student in a course, which

frays from the expectations. This provides us with the notion that the quality of time

spent learning contributed better to the quantity of time spent to learn. Utilizing

LMS data however allows the identification of changes in student interaction patterns,

performance in tests, etc. Kadoić and Oreški (2018) in their research performed a

correlation analysis between the key LMS logs activity variable and student’s final

grades. They then conclude by stating that students who often opening the file will

8



have a higher grade, and students who have a higher grade will do more activities

before they study one day. Yet there hasn’t been any usage of such activity indicator

variables used as features in predictive analysis, which is what this thesis hopes to

achieve.

The goal of this study is to make use of the Canvas LMS activity dataset and its

predictive capabilities on Arizona State university student data for MAT 265 that

has both an Online and a Face-2-Face modality. In our study, we want to identify the

relationship of student button click activity on the LMS to the success of a student

in a class. This type of behavior matching can set arise new ways to improve existing

early warning predictive systems by making use of these features.

3.2 Related works to Approach B

There are a majority of institutions that use the tools such as Learning Manage-

ment Systems (LMSs) in teaching. Some of the most commonly equipped LMS are

Moodle (Moodle, 2012), Blackboard (Blackboard, 2015), Canvas (Instructure, 2016),

and Absorb (Inc., 2015) LMS. A study conducted by Maor and Volet (2007), con-

cluded that interactivity with an LMS is an essential environment and constitutes an

important factor in online learning, this validates the usage of LMS data for predictive

analysis as they have causation to the susses of a student in a class.

Morris et al. (2005) found that the number of content pages viewed was a signif-

icant predictor in three fully online courses in eCore with 354 students. They used

eight duration and frequency variables, and no measurements of performance. Fur-

ther analysis using these predictors with the final grade as the target feature, 284

students who completed showed a variance of 31 percent in their final grades which

were accounted for by the number of discussion posts and content pages viewed, and

the overall time spent on viewing discussion posts. Moreover, they found that those
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who withdrew had a significantly lower frequency of activities and eventually spent

less time spent online, compared to those who completed. Macfadyen and Dawson

(2010) also found that the number/frequency of links and files viewed had a positive

correlation with the final grade.

NLP has been used widely for the purposes of classification in the field of Machine

Learning. Razno (2019) demonstrated in their paper the applications of NLP for the

purpose of text classification. NLP also shows promise in identifying the sentiment

of a text which has proven to be useful in the field of recommendation systems and

sentiment analysis. Ghorpade and Ragha (2012) in 2012 produced a study that

achieved an accuracy of 96% when identifying the sentiment of hotel reviews. They

were also able to overcome the problem of loss of text information by using well-

trained training sets.

Tran and Sato (2017), Nagano and Uda (2017) uses natural language processing

to transform data and then uses machine learning classifiers to distinguish between

malware and benignware. This technique of using NLP to transform data sequence in

order to identify patterns and meaning shows promising results in the field of malware

detection and could be adopted for use in learning analytics. Ki et al. (2015) made

use of DNA sequence alignment algorithms for their analysis. These patterns in

combination with the critical API sequences were made use to decide whether an

examined program is malware or not. They arrived at an accuracy of about 99.8%

for this method. This thesis would like to make use of the same technique of prediction

using sequence data by generating activity sequence for all students in a course using

their event trigger activity data from the LMS. This sequence would be a collection

of all the labeled buttons and clicks within an LMS for a course.
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The goal of this thesis is to take inspiration from the works of Tran and Sato

(2017) and make use of the same sequence prediction techniques for the domain of

learning analytics to predict students at risk early in a course such as that proper

intervention can be administered. The dataset used for this purpose is a combination

of the LMS activity dataset and student information system (SIS) dataset, in the

capacity for both the online and offline modality of the same course.
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Chapter 4

DATASET

There are two sources of data that will be used in this project. They are the

LMS activity dataset from Canvas for ASU for the course MAT 265 and the Student

Information System (SIS) dataset. MAT 265 is Calculus for engineers 1. This class

has both an online and a F2F modality which will be useful in identifying trends in

both areas. For the Online classes, both the teaching and the regular LMS activities

such as group discussions exams, etc occur via Canvas. For the F2F classes, the

learning materials are hosted on Canvas but general discussions and exams may be

conducted F2F also.

4.1 Canvas Activity Dataset

The canvas activity dataset is a collection of every instance of a button click

activity recorded on Canvas. Since canvas is still an integral part of the F2F version

of the class there are significant records for the activity of students on Canvas even for

F2F classed. The dataset used contains the records of students from 2018 fall till 2020

spring, with a total of 3261 student information for both online and F2F combined.

Table 4.1 contains the Canvas activity dataset features and their descriptions. These

will be the primary features upon which data preprocessing will take place.
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Table 4.1: Canvas Activity Dataset Features and Their Description

Features Description

eventtime Records the time of the event

eventtype Unique identifier for event type

actiontype Unique identifier for action type

objecttype Unique identifier for object type

detail Contains the name of the button clicked

4.2 Student Information System (SIS)

The SIS dataset is a general student information dataset maintained by ASU.

this contains various demographic and course-related features which will be used by

our models. Table 4.2 contains the SIS dataset features and their descriptions. This

dataset will further be merged with the preprocessed Canvas activity dataset upon

which modeling will take place. The data will be merged on the unique student

identifier such that every row contains the student system information and their

associated canvas activity data. Some unique features part of this dataset include

faculty difficulty index score and Starbucks affiliate feature.

The dataset contains details about 3266 students. The composition is made up

of 2440 male students, 822 female students, and 4 undefined students. There are

a total of 986 students who transferred. The online student composition contains

1195 students whereas the offline modality contains 2071 which constitutes a ratio

of 1:3 ratio of the overall dataset. From table 2, we can observe features such as

ethnicity and gender which are controversial features in the applications of machine

learning. This is usually due to the biased nature in which the dataset is formed

historically. But this absolute use of this tool is to provide students with external
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Table 4.2: SIS Dataset Features and Their Description

Features Description

age at class start Contains the age of the student at the start of the class

course load Sum of credit hours taken in a term by a student

ever pell Has the student ever been Pell Grant eligible?

fac diff index Average grade rated by the professor in the previous 2 years

first gen Indicates whether a student is a first generation college stu-

dent

incoming gpa Incoming GPA of a student. Transfer first, if null then High

School

part time offi Label for if a full-time academic load is not taken

prev term gpa Cumulative GPA of previous term

starbucks Binary indicating whether a student is a Starbucks affiliate

stud modality Indicates whether the student is a face-to-face learner, on-

line, or other

transfer Binary that indicates whether the student is a transfer stu-

dent

acad level Academic level at the beginning of the term (BOT).

ethnicity Student’s ethnicity

gender Gender of the student

help such as tutoring or additional support which do not necessarily discriminate

against any student.
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Table 4.3 and Table 4.4 show the frequency composition of the academic level

and the ethnicity features. The dataset contains a majority of students from the

Freshman academic level. In terms of ethnicity, the majority of the student falls

under the Caucasian category.

Table 4.3: Academic Level Frequency

Academic Levels Count

Freshman 1436

Sophomore 855

Junior 511

Senior 229

Post-Bacc Undergraduate 188

Graduate 30

Non-degree Undergraduate 17
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Table 4.4: Ethnicity Frequency

Ethnicity Count

White 1751

Hispanic 620

Asian 419

2 or More 163

Black 140

NR 129

American I 36

Haw/Pac 8
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Chapter 5

METHODOLOGY AND IMPLEMENTATION

Figure 5.1: Process Workflow

To develop a machine learning model, we have followed the process flow as shown

in Fig. 5.1 .
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5.1 Approach A

Approach A describes the use of generating frequency count of various button

click features for the purpose of modelling.

5.1.1 Data Processing

Table 4.1 shows us the data format for the Canvas activity dataset. the eventtype,

actiontype, objecttype, and the detail features are caliper data and are interpreted in

the following manner.

eventtype + actiontype + objecttype + detail

But the detail column is a feature that is highly inconsistent in nature. This is

because its content is named by the user who sets up the canvas course shell, either

the professor or his teaching assistant, etc. Due to the inconsistencies, we decided to

drop the details column and use the following setup.

eventtype + actiontype + objecttype

The above formula generated 17 unique strings as shown in table 5.1, which is

the intermediate form of the data. Table 5.1 also shows the count of the available 17

unique strings. The ideal data form would be to generate one row per student and

to capture all their button click activities for a select period. Thus these generated

17 unique strings were then converted into features for each student and a frequency

of use counter was set up to capture these event activation across multiple weeks.

This dataset was then merged on unique ID and class start date with the SIS

dataset, which contains the student demographic information. The merged dataset

will be the actual data upon which modeling occurs. This concludes the preprocessing

for approach A.
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Table 5.1: Caliper Features From Canvas Activity Dataset

Features count

NavigationEvent NavigatedTo Entity 1127896

NavigationEvent NavigatedTo Page 229906

NavigationEvent NavigatedTo Thread 125339

NavigationEvent NavigatedTo AssignableDigitalResource 81961

Event Modified Attempt 32325

AssessmentEvent Submitted Attempt 12633

AssignableEvent Submitted Attempt 5792

MessageEvent Posted Message 684

MessageEvent Posted Message 684

Event Modified AssignableDigitalResource 72

Event Modified Entity 55

Event Created Document 37

Event Created AssignableDigitalResource 35

Event Modified Page 8

Event Created Page 4

Event Deleted Page 4

Event Created Entity 2

ThreadEvent Created Thread 2

Figures A.1 - A.3 shows us the selective code for data preprocessing Approach A.

Due to the unavailability of the details columns as a result of data inconsistencies,

a new approach is proposed which utilizes 100% of the data available by generating a

student activity sequence and using advanced natural language processing techniques
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to perform classification upon.

5.2 Approach B

Approach B capitalizes on the downfalls present in Approach A. It makes use

of feature generation by converting the button click activity into student activity

sequence, which is then transformed using various NLP techniques.

5.2.1 Data Processing

Because of the exclusion of the details feature from the Canvas activity dataset,

we are losing valuable information that could be extracted. To solve this ordeal we

will be employing two Natural language processing techniques to help make use of the

details column, namely Part of speech tagging (POS), and Facebook fasttext word

embedding.

To make use of both the NLP techniques, we need to generate an intermediate

state for the data. Since the goal for the dataset generation is to form one row per

student entry, we decided to concatenate all the button click caliper information onto

a single string and save it for each student based on their timely activation. The

formula below shows us the composition of each button click entry.

eventtype + actiontype + objecttype + detail

The intermediate data will have one row per student and a feature that holds a

string with all the activity for a given time frame within the same sting. This string

will hence represent the activity sequence that the student follows within the time

frame. This helps with the usage of POS tagging and Facebook fasttext embedding.
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5.2.2 Parts-of-speech Tagging

Parts-of-Speech (POS) Tagging is a process of labeling words in a sentence. The

labels are part of speech tags such as nouns, verbs, adjectives, etc. As per our un-

derstanding, POS is the first step in any Natural Language Processing (NLP) system

or experimentation(NLTK, 2019). For our experimentation, we used the NLTK POS

Tagger. The POS tagger uses the preceding as well as the next tag contexts to tag an

individual word. It uses Penn Treebank tagset for Parts of speech tags. An example

of one of the tagged questions is shown below:

Navigation/NNP Event/NNP Navigated/NNP To/TO Entity/NNP Home/NNP

The tags are then converted into a series of one-hot vector encodings.

5.2.3 FastText

FastText is a way of representing vectors (Facebook, 2017). We use FastText

representation because it handles vocabulary words better. FastText uses an approach

based on the skip-gram model. Here, each word is represented as a bag of character

n-grams. The dataset had over 32000 unique tokens which were compressed into word

vectors of dimensions 300 x 1 using the FastText word embedding model.

This dataset was then merged on unique ID and class start date with the SIS

dataset, which contains the student demographic information. The merged dataset

will be the actual data upon which modeling occurs. This concludes the preprocessing

for approach B.

Table 5.2 list the different pre-processing techniques compared in our study along

with their dimensionality and description.

The reason why the 300 length word embedding array is flattened as features

for the approach is due to the input nature of the models being used. No three-
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Table 5.2: Post Processing Dataset Dimension

Pre-Processing

technique
Dimensionality Description

Approach A (A) 47X1

Merge between SIS and

Canvas button frequency

count

Approach B (B) 369X1

Both POS tagging with

Facebook Fasttext embed-

ding merged with the SIS

dataset

dimensional data is allowed as an input for the models and hence the need for flat-

tening the word embedding array into 300 features.

Figures A.4 - A.6 shows us the selective code for data preprocessing Approach B.

5.3 Oversampling of Minority Class

Due to the nature of the problem, the class which categorizes student success as

pass or fail is highly imbalanced as most students tend to pass a class. As a result,

Oversampling of the minority class was equipped to avoid this problem. The most

widely used approach to synthesizing new examples is called the Synthetic Minority

Oversampling Technique or SMOTE for short Chawla et al. (2002). This procedure

can be used to create as many synthetic examples for the minority class as are re-

quired. It first uses random under-sampling to trim the number of examples in the

majority class, then uses SMOTE to over-sample the minority class to balance the

class distribution. After Oversampling of the minority class the number of rows for
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the ASUO dataset becomes 1282 and for the F2F dataset becomes 2598.

5.4 Modelling

The two preprocessing techniques are then subjected to various machine learn-

ing ensembles upon which our analysis will be based. The three machine learning

techniques are Random Forest, XGBoost, and CatBoost.

5.4.1 Random Forest Classifier:

Random forest, like its name implies, consists of a large number of individual

decision trees that operate as a collection (Kho, 2018).To classify any object based

on newer attributes each tree gives a classification and then maps the vote of the tree

to that class. The forest then chooses the classifications having the most votes of all

the other trees. Each individual tree in the random forest generates a class prediction

and the class with the most votes becomes the model’s prediction (Lee et al., 2010).

The advantages of using a random forest classifier are that it is versatile, has quick

prediction/training speed, handles unbalanced data, and has low bias and moderate

variance. All decision trees in Random Forrest have a low bias and a high variance

since all trees are averaged out the resultant bias is low and the variance is moderate

for the model.

The random forest model being used has the following parameters as depicted in

table 5.3. This model was then run with 2 different pre-processing approaches on 2

different datasets (ASUO and F2F). The pre-processed dataset was split into train

and test datasets with a split of 75% training and 25% test data.
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Table 5.3: Random Forest Classifier Parameters

Parameters Value

n estimators 1000

max features ’auto’

max depth 140

criterion ”gini”

random state (42)

5.4.2 XGBoost Classifier:

XGBoost is a decision-tree-based ensemble Machine Learning algorithm that uses

a gradient boosting framework. XGBoost stands for eXtreme Gradient Boosting.

It is a software library that you can download and install on your machine, then

access it from a variety of interfaces. The implementation of the algorithm was

engineered for the efficiency of computing time and memory resources (Brownlee,

2021). A design goal was to make the best use of available resources to train the model.

Some key algorithm implementation features include: (i) sparse aware implementation

with automatic handling of missing data values; (ii) block structure to support the

parallelization of tree construction; (iii) continued training so that you can further

boost an already fitted model on new data.

XGBoost and Gradient Boosting Machines (GBMs) are both ensemble tree meth-

ods that apply the principle of boosting weak learners (CARTs generally) using the

gradient descent architecture. However, XGBoost improves upon the base GBM

framework through systems optimization and algorithmic enhancements.

The XGBoost model being used has the following parameters as depicted in table

5.4. This model was then run with 2 different pre-processing approaches on 2 different
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datasets (ASUO and F2F). The pre-processed dataset was split into train and test

datasets with a split of 75% training and 25% test data.

Table 5.4: XGBoost Classifier Parameters

Parameters Value

base score 0.5

booster ’gbtree’

colsample bylevel 1

colsample bynode 1

colsample bytree 1

gamma 0

gpu id -1

importance type ’gain’

interaction constraints ”

learning rate 0.300000012

max delta step 0

max depth 6

min child weight 1

missing nan

monotone constraints ’()’

n estimators 100

n jobs ()

num parallel tree 1

objective ’multi:softprob’

random state ()

reg alpha 1

reg lambda None

scale pos weight None

subsample -1

tree method ’exact’

validate parameters 1

verbosity None
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5.4.3 CatBoost Classifier:

CatBoost is a machine learning algorithm that uses gradient boosting on deci-

sion trees. It is available as an open-source library. “CatBoost” name comes from

two words “Category” and “Boosting”. The advantages of CatBoost (Ray, 2017)

are as follows: (i) Performance: CatBoost provides state-of-the-art results and it is

competitive with any leading machine learning algorithm on the performance front.

(ii) Handling Categorical features automatically: We can use CatBoost without any

explicit pre-processing to convert categories into numbers. CatBoost converts cat-

egorical values into numbers using various statistics on combinations of categorical

features and combinations of categorical and numerical features. (iii) Robust: It

reduces the need for extensive hyper-parameter tuning and lowers the chances of

overfitting also which leads to more generalized models. (iv) Easy-to-use: You can

use CatBoost from the command line, using a user-friendly API for both Python and

R.

Data is generally of two types; homogeneous or Heterogeneous. Data that is am-

biguous with uncertainty, poor quality, and high data redundancy are called Heteroge-

neous data. They usually have a high data type and format variability. Homogeneous

data is a dataset that is made up of the same data type and format.

Credit card information is heterogeneous whereas image or text dataset is homo-

geneous.

CatBoost Works well on Heterogeneous data. Thus for a classification problem

with Heterogeneous data using CatBoost will outperform the majority of the Boosting

algorithms.

The CatBoost model being used has the following parameters as depicted in table

5.5 and table 5.6. This model was then run with 2 different pre-processing approaches
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on 2 different datasets (ASUO and F2F). The pre-processed dataset was split into

train and test datasets with a split of 75% training and 25% test data.

Table 5.5: CatBoost Classifier Parameters - 1

Parameters Value

nan mode ’Min’

eval metric ’Logloss’

iterations 1000

sampling frequency ’PerTree’

leaf estimation method ’Newton’

grow policy ’SymmetricTree’

penalties coefficient 1

boosting type ’Plain’

model shrink mode ’Constant’

feature border type ’GreedyLogSum’

bayesian matrix reg 0.10000000149011612

l2 leaf reg 3

random strength 1

rsm 1

boost from average False

model size reg 0.5

subsample 0.800000011920929

use best model True

class names [0,1]

random seed 0
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Table 5.6: CatBoost Classifier Parameters - 2

Parameters Value

depth 6

posterior sampling False

border count 254

classes count 0

auto class weights ’None’

sparse features conflict fraction 0

custom metric [’Logloss’, ’AUC:hints=skip train false’]

leaf estimation backtracking ’AnyImprovement’

best model min trees 1

model shrink rate 0

min data in leaf 1

loss function ’Logloss’

learning rate 0.029999999329447743

score function ’Cosine’

task type ’CPU’

leaf estimation iterations 10

bootstrap type ’MVS’

max leaves 64

Figures A.7 - A.9 shows us the selective code for data modelling.
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Chapter 6

EXPERIMENTAL RESULTS

This chapter consolidates all the models generated for this research.

6.1 ASUO - Online Dataset

This section holds all the models on the ASUO Dataset.

6.1.1 Approach A

This section holds all the models that make use of Approach A using ASUO

dataset.

Random Forest

Figure 6.1 represents the classification report of the Random forest model whose

data uses approach A on the ASUO dataset. There are a total of 1282 students in

the dataset post oversampling using SMOTE, who take the online modality of the

calculus course.

This model generates a report whose accuracy ranks 5th and whose AUC score

ranks 5th amongst all models using the ASUO dataset.
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Figure 6.1: Random Forest Model on Approach A(ASUO modality)

XGBoost

Figure 6.2 represents the classification report of the XGBoost model whose data uses

approach A on the ASUO dataset. There are a total of 1282 students in the dataset

post oversampling using SMOTE, who take the online modality of the calculus course.

This model generates a report whose accuracy ranks 4th and whose AUC score

ranks 6th amongst all models using the ASUO dataset.
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Figure 6.2: XGBoost Model on Approach A(ASUO modality)

CatBoost

Figure 6.3 represents the classification report of the CatBoost model whose data uses

approach A on the ASUO dataset. There are a total of 1282 students in the dataset

post oversampling using SMOTE, who take the online modality of the calculus course.

This model generates a report whose accuracy ranks 3rd and whose AUC score

ranks 3rd amongst all models using the ASUO dataset.
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Figure 6.3: CatBoost Model on Approach A(ASUO modality)

6.1.2 Approach B

This section holds all the models that make use of Approach B using ASUO

dataset.

Random Forest

Figure 6.4 represents the classification report of the Random forest model whose

data uses approach B on the ASUO dataset. There are a total of 1282 students in

the dataset post oversampling using SMOTE, who take the online modality of the

calculus course.

This model generates a report whose accuracy ranks 1st and whose AUC score

ranks 2nd amongst all models using the ASUO dataset.
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Figure 6.4: Random Forest Model on Approach B(ASUO modality)

XGBoost

Figure 6.5 represents the classification report of the XGBoost model whose data uses

approach B on the ASUO dataset. There are a total of 1282 students in the dataset

post oversampling using SMOTE, who take the online modality of the calculus course.

This model generates a report whose accuracy ranks 6th and whose AUC score

ranks 4th amongst all models using the ASUO dataset.
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Figure 6.5: XGBoost Model on Approach B(ASUO modality)

CatBoost

Figure 6.6 represents the classification report of the CatBoost model whose data uses

approach B on the ASUO dataset. There are a total of 1282 students in the dataset

post oversampling using SMOTE, who take the online modality of the calculus course.

This model generates a report whose accuracy ranks 2nd and whose AUC score

ranks 1st amongst all models using the ASUO dataset.
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Figure 6.6: CatBoost Model on Approach B(ASUO modality)

6.2 F2F - Offline Dataset

This section holds all the models on the F2F Dataset.

6.2.1 Approach A

This section holds all the models that make use of Approach A using F2F dataset.

Random Forest

Figure 6.7 represents the classification report of the Random Forest model whose

data uses approach A on the F2F dataset. There are a total of 2598 students in

the dataset post oversampling using SMOTE, who take the offline modality of the

calculus course.

This model generates a report whose accuracy ranks 3rd and whose AUC score

ranks 3rd amongst all models using the F2F dataset.
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Figure 6.7: Random Forest Model on Approach A(F2F modality)

XGBoost

Figure 6.8 represents the classification report of the XGBoost model whose data uses

approach A on the F2F dataset. There are a total of 2598 students in the dataset post

oversampling using SMOTE, who take the offline modality of the calculus course.

This model generates a report whose accuracy ranks 2nd and whose AUC score

ranks 2nd amongst all models using the F2F dataset.
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Figure 6.8: XGBoost Model on Approach A(F2F modality)

CatBoost

Figure 6.9 represents the classification report of the XGBoost model whose data uses

approach A on the F2F dataset. There are a total of 2598 students in the dataset post

oversampling using SMOTE, who take the offline modality of the calculus course.

This model generates a report whose accuracy ranks 1st and whose AUC score

ranks 1st amongst all models using the F2F dataset.
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Figure 6.9: CatBoost Model on Approach A(F2F modality)

6.2.2 Approach B

This section holds all the models that make use of Approach B using F2F dataset.

Random Forest

Figure 6.10 represents the classification report of the Random Forest model whose

data uses approach B on the F2F dataset. There are a total of 2598 students in

the dataset post oversampling using SMOTE, who take the offline modality of the

calculus course.

This model generates a report whose accuracy ranks 6th and whose AUC score

ranks 6th amongst all models using the F2F dataset.
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Figure 6.10: Random Forest Model on Approach B(F2F modality)

XGBoost

Figure 6.11 represents the classification report of the XGBoost model whose data uses

approach B on the F2F dataset. There are a total of 2598 students in the dataset post

oversampling using SMOTE, who take the offline modality of the calculus course.

This model generates a report whose accuracy ranks 5th and whose AUC score

ranks 5th amongst all models using the F2F dataset.
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Figure 6.11: XGBoost Model on Approach B(F2F modality)

CatBoost

Figure 6.12 represents the classification report of the XGBoost model whose data uses

approach B on the F2F dataset. There are a total of 2598 students in the dataset post

oversampling using SMOTE, who take the offline modality of the calculus course.

This model generates a report whose accuracy ranks 4th and whose AUC score

ranks 4th amongst all models using the F2F dataset.
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Figure 6.12: CatBoost Model on Approach B(F2F modality)
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Chapter 7

ANALYSIS OF RESULTS

The final dataset contains, 3266 students out of which 1195 were ASU Online(ASUO)

and 2071 were Face-2-Face(F2F) students. A total of 12 models were developed, 6

for each class of students (ASUO and F2F), using Random Forest, XGBoost, and

CatBoost models using the two approaches mentioned in the method section. The

week in which the dataset was accumulated and the models were build was determined

using the course length for ASUO and F2F classes. ASUO classes were typically 7.5

weeks long which meant an ideal week for early predictions would be week 3, which

is slightly under the halfway course, whereas for F2F classes the ideal week chosen

was week 6.

7.1 Evaluation Metrics

The metrics mentioned below are the main metrics upon which the overall analysis

was made.

7.1.1 Precision:

Precision is the ratio of correctly predicted positive resources to the total predicted

positive resources. High precision relates to the low false-positive rate.

Precision = TP/TP + FP

where TP is True Positive and FP is False Positive
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7.1.2 Recall:

Recall is the ratio of correctly predicted positive resources to all resources in the

actual class.

Recall = TP/TP + FN

7.1.3 F1 Score:

F1 Score is the weighted average of Precision and Recall. This score takes both

false positives and false negatives into account. F1 score is usually more useful than

accuracy, especially if you have an uneven class distribution. Accuracy works best if

false positives and false negatives have similar costs. If this is not the case it’s better

to look at both Precision and Recall.

F1 = 2 ∗ (Recall ∗ Precision)/(Recall + Precision)

7.1.4 Area under curve(AUC) score:

AUC - Receiver Operating Characteristics(ROC) curve is a performance measure-

ment for the classification problems at various threshold settings. ROC is a proba-

bility curve and AUC represents the degree or measure of separability. It tells how

much the model is capable of distinguishing between classes. The higher the AUC,

the better the model is at predicting the classes as is. By analogy, the higher the

AUC, the better the model is at distinguishing between students who pass or fail

their calculus course.

43



7.1.5 Accuracy:

Accuracy is the most understandable performance measure and it is simply a ratio

of correctly predicted resources to the total resources.

Accuracy = TP + TN/TP + FP + FN + TN

7.2 Approach A

The results of approach A can be viewed in table 7.1. This table provides an

overview of the scores obtained by each model based on the evaluation metrics. Based

on the results it can be determined that the CatBoost model for pre-processing A on

F2F and ASUO provides the best predictions. They have the highest Precision, recall,

F1 score, and accuracy of their bunch, which falls within our evaluation metrics.

Table 7.1: Evaluation Metrics for Class Fail on Models with Approach A

Class Fail

Pre-Processing A Models Precision Recall F1 Score
Overall

Accuracy

ASUO -Random Forest 0.76 0.67 0.71 0.725

ASUO -XGBoost 0.77 0.66 0.71 0.729

ASUO -CatBoost 0.76 0.69 0.72 0.735

F2F -Random Forest 0.88 0.82 0.85 0.858

F2F -XGBoost 0.88 0.85 0.87 0.867

F2F -CatBoost 0.80 0.86 0.88 0.878

Figure 7.1 and figure 7.2 represent the model fit using the Area Under the Curve

Graph for ASUO and F2F respectively. With respect to AUC scores, CatBoost
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performs the best amongst all the other models for both ASUO and F2F. Thus the

CatBoost models achieve the best model fit as well on approach A. Figure 7.3 and

figure 7.4 show us the most important features out of the best performing models.

Transfer, prev term gpa, and incoming gpa are the top three most common features

that contribute to prediction making for the best performing CatBoost model.

Figure 7.1: ROC Curve Best Model on Approach A(ASUO modality)

Figure 7.2: ROC Curve Best Model on Approach A(F2F modality)
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Figure 7.3: Feature Importance for CatBoost Model on ASUO for Approach A

7.3 Approach B

The results of approach B can be viewed in table 7.2. This table provides an

overview of the scores obtained by each model based on the evaluation metrics. Based

on the results it can be determined that the CatBoost model for approach A on F2F

provides the best predictions. They have the highest Precision, recall, F1 score, and

accuracy of their bunch, which falls within our evaluation metrics. In the case of

ASUO, the best results were observed from the random forest model with the best

scores on precision, recall, F1 scores as well as their accuracies. Figure 7.5 represents

the model fit using the Area Under the Curve Graph for ASUO, where the random

forest model falls short in the AUC score whereas the CatBoost model on approach

B for the ASUO dataset shines.
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Figure 7.4: Feature importance for CatBoost Model on F2F for Approach A

Table 7.2: Evaluation metrics for class fail on models with Approach B

Class Fail

Pre-Processing B Models Precision Recall F1 Score
Overall

Accuracy

ASUO -Random Forest 0.82 0.70 0.76 0.775

ASUO -XGBoost 0.73 0.67 0.70 0.713

ASUO -CatBoost 0.79 0.70 0.74 0.757

F2F -Random Forest 0.83 0.78 0.80 0.811

F2F -XGBoost 0.85 0.84 0.84 0.845

F2F -CatBoost 0.86 0.84 0.85 0.848
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Figure 7.6 represents the model fit using the Area Under the Curve Graph for the

F2F dataset. With respect to the AUC scores, CatBoost performs the best amongst

all the other models for both ASUO and F2F. Thus the CatBoost model achieves the

best model fit as well. As are 369 features that will be tough to represent with a

feature importance graph.

Figure 7.5: ROC Curve Best Model on Approach B(ASUO modality)

Figure 7.6: ROC Curve Best Model on Approach B(F2F modality)
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7.4 Best Model Analysis

Table 7.3 depicts the model accuracies for all the models generated. From the

results of table 7.3, we can infer that the CatBoost model with approach A performs

the best on the F2F dataset. Similarly, the Random Forest model on approach A

performs the best on the ASUO dataset. The results were arrived at by focusing on

our evaluation metrics for the class Fail for each model as the use-case for this thesis

is to identify AT-Risk students. Approach A on the CatBoost model provided the

best score for the Face-2-Face Model with an accuracy of 87.8% and an AUC score

of 0.941. Further analysis with respect to the precision, recall, and F1 scores also

corroborate with the findings. Approach B on the Random Forest model provided

the best score for the ASU Online Model with an accuracy of 77.5%. Further analysis

with respect to the precision, recall, and F1 scores also corroborate with the findings.

Table 7.3: Accuracy for All Models

Pre-Processing Model
Random

Forest
XGBoost CatBoost

Approach A on ASUO(A) 72.5% 72.8% 73.5%

Approach A on F2F(A) 85.8% 86.7% 87.8%

Approach B on ASUO(B) 77.5% 71.3% 74.1%

Approach B on F2F(B) 81.1% 84.4% 84.8%
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Chapter 8

CONCLUSIONS AND FUTURE WORK

8.1 Conclusion

This Thesis compares 2 datasets(ASUO and F2F) with 2 pre-processing tech-

niques(A and B) on 3 machine learning models(Random Forest, XGBoost, CatBoost)

to determine which is the best model for their respective dataset. The thesis concludes

that the CatBoost model with approach A performed best on the F2F dataset, and

the Random Forest model with approach B performed best on the ASUO dataset.

They each contributed the best evaluation metrics to solve the problem statement

which is to provide an early warning system to detect students at risk. Furthermore

due to the inconsistency of the details feature present in the Canvas Activity dataset

approach B was developed to handle it.

Pre-processing A avoids the usage of the inconsistent details column and generates

a frequency count for each student in a weekly fashion. Pre-processing B makes

use of the details column by subjecting the entire dataset to two Natural Language

base processing which are: (i) Part of speech tagging (ii) Facebook FastText word

embeddings. The dataset is further split into two types: (i) Asu Online dataset where

the entire class span is 7.5 weeks (ii) Face-2-Face classes where the class span is 15

weeks. Due to the nature of the problem, there is a class imbalance with the target

columns for each dataset ie. students who pass and students who fail. In order to

overcome this issue oversampling of the minority class as a technique was used. This

was employed using SMOTE which oversamples the minority class. Further, it was

decided that for early detection week 3 for ASUO and week 6 for the F2F dataset
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provided the ideal outcomes for the problem statement. These datasets were then

subjected to modeling to generate 12 models.

The thesis was not able to arrive at a single approach as the best to model both

the ASUO and F2F datasets on. The reason for this lies in the nature of the datasets.

ASUO dataset is rich in canvas activities due to the online modality of the class. But

F2F dataset which is the offline modality of the course has much lower counts for

canvas activity when compared to the ASUO dataset. Also, the size of the ASUO

dataset half when compared to the size of the F2F dataset.

The nature of approach A is to determine the classes based on the gap in the

activity frequency. This gap is much more pronounced in the F2F dataset due to

its large size. This claim can be corroborated by analyzing the AUC scores for the

models built on approach A for the F2F datasets. ROC is a probability curve and

AUC represents the degree or measure of separability. It tells how much the model is

capable of distinguishing between classes. Higher the AUC, the better the model is at

predicting 0s as 0s and 1s as 1s. By analogy, the higher the AUC, the better the model

is at distinguishing between students who pass or fail their calculus course. Thus the

best model for predicting the F2F dataset was the CatBoost model on approach A

with an accuracy of 87.8% and an AUC score of 0.941.

The nature of approach B is to analyze the activity sequence being generated

by the student. The output of the Natural Language preprocessing on the activity

sequence will always be a word embedding vector of size 300. Hence approach B

concentrates on the pattern for student success whereas approach A concentrates

on the gap between successful and unsuccessful students. Thus the best model for

predicting the F2F dataset was the CatBoost model on approach A with an accuracy

of 77.5% and an AUC score of 0.836.

Furthermore, the Canvas activity dataset shows us the validity and its applicability
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in the area of predicting student success. This thesis has presented sample findings

investigating the potential for LMS (Canvas) activity data variables to be used as

predictors and lead indicators of student academic success early in a course. We are

mindful that correlations do not necessarily indicate causality but the significance of

this study lies not in causation but in correlation.

8.2 Future Direction

There are a couple of enhancements that will be explored in the future. Some of

them are described below:

• Hyper-parameter Tuning: After deciding to fix on a single machine learning

ensemble, a proper K-fold cross validation can be evaluated on that ensemble.

This will ensure that the model chosen will be hyper-parameter tuned to achieve

the best result possible.

• Additional LMS Data: Combinations of various other LMS datasets along with

the activity dataset used in this research can be explored for the creation of

more robust models. Data points such as gradebook data as well as the login

frequency may provide additional support from which the model may adapt

better.

• One Model for All Weeks: The current preprocessing technique makes use of

data from the start till the week of prediction. Therefore based on this form on

data pruning a separate model will be required to run predictions for every week

throughout the duration of the course. Converting multiple weekly model into

a single model to run all weeks might be production viable and may improve

the overall accuracy of the system
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APPENDIX A

CODE

Figure A.1: Data Preprocessing for Approach A - 1
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Figure A.2: Data Preprocessing for Approach A - 2
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Figure A.3: Data Preprocessing for Approach A - 3
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Figure A.4: Data Preprocessing for Approach B - 1
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Figure A.5: Data Preprocessing for Approach B - 2
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Figure A.6: Data Preprocessing for Approach B - 3
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Figure A.7: All Models
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Figure A.8: Runner for All Models on ASUO dataset at Week 3

Figure A.9: Runner for All Models on F2F dataset at Week 6
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