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ABSTRACT 
   

Microbial Potentiometric Sensors (MPS) utilize endemic biofilms to generate a 

signal using a measurable potentiometric difference, without the use of cleaning, 

maintenance, and reagents of conventional sensor monitoring methods. These advantages 

are suitable for monitoring bioreactions in water distribution systems, soils, and 

wastewater treatment. In controlled fermentation processes, monitoring seeks to avoid 

contamination and degradation, which results in loss of productivity. MPS have yet to be 

applied to monitor the fermentation of milk to yogurt. This study examined the feasibility 

of using MPS technology to monitor the progress of milk fermentation in real-time with a 

bench-scale model bioreactor. Signal data obtained by the MPS was analyzed and 

assessed for the ability to model and predict the time of complete fermentation. Analysis 

of complete fermentation times in conjunction with pH and MPS signal values found 

characteristics indicative of complete fermentation. The method detection limit was 

assessed to inform of the method’s capacity to distinguish complete fermentation time. A 

sensitivity analysis was conducted to develop a more robust method for predicting 

complete fermentation time. At this proof-of-concept scale, MPS successfully performed 

in this capacity to monitor bioreaction conditions continuously. MPS captured 

information as fermentation progressed, was completed, and as the yogurt product 

naturally began to decay. Analysis of the data obtained with the technology found 

predictions of complete fermentation time within a two hour range, with further 

assessment in the sensitivity analysis narrowing this timeframe to less than 45 minutes. 

This study revealed the challenges in precisely predicting complete fermentation; 
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however, advancement of a robust analytical method and demonstration of technical 

feasibility promotes further MPS technology applications that seek to monitor conditions 

in real-time to preserve health and production.   
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CHAPTER 1 

INTRODUCTION 

 Microbial Potentiometric Sensors (MPS) utilize environmental microorganisms 

on the surface of graphite electrodes, generating a signal using measurable microbial 

potentiometric difference (Burge et al., 2020). MPS technology provides an ideal 

environmental or process monitoring tool by leveraging their simplicity and durability; 

operation without additional equipment, cleaning or maintenance; and lower cost of 

manufacture and operation in comparison to traditional monitoring methods (Wilson et 

al., 2019). A knowledge gap remains that limits the further advancement of potential 

MPS applications. Previous developments and similarly related studies provide relevant 

documentation to inform this research, including demonstrated parameters MPS can 

measure (Saboe et al., 2021), continual collection of real-time data (Burge et al., 2020), 

comparison of performance against traditional analytical instruments (Saboe et al., 

2021b), and the development and processing of signal analysis to interpret data (Saboe et 

al., 2021a; Winquist et al., 1998).   

 With this detailed history of advancement, MPS and similar sensor technologies 

can advance further applications of electrochemical sensor technologies and approaches. 

Equipped with demonstrated ability of obtaining data, understanding the real-time state of 

an environment or monitored process allows for management to appropriately respond 

and safeguard health, production, and proper functioning of a process. Quantifiable 

multivariate information allows for the characterization and identification of a biological 

process using parameters including pH, oxidation-reduction potential (ORP), open-circuit 
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potential (OCP), dissolved oxygen (DO), turbidity and bioactivity (Burge et al., 2020; 

Favre et al., 2009; Holtmann et al., 2006). These parameters have been obtained using 

MPS technology in settings including water (Brown et al., 2020), soil (Burge et al., 

2021), representative surface water (Saboe et al., 2021a), water distribution networks 

(Saboe et al., 2021b), and wastewater (Burge et al., 2020).  

In this study, the fermentation of milk into a yogurt product served as a model 

fermentation process. Of the most direct relevance to this study, Winquist and colleagues 

explicitly suggest the paring of a similar electrochemical monitoring sensor in milk 

culturing while obtaining additional parameters (Winquist et al., 1998). The pH of a milk 

mixture has been measured using a similar voltametric method while culturing kefir 

(Casimero et al., 2018), a related fermented dairy product. Also of particular relevance, 

Ahari and coworkers as well as Favre and colleagues have experimented with 

electrochemical and microbial activity sensors in bacterial (Ahari et al., 2017) and fungi 

(Favre et al., 2009) applications, respectively. Chinnathambi and Euverink and further 

directly impose pH monitoring via a graphite sensor during the production of lactic acid 

from bacterial fermentation (Chinnathambi & Euverink, 2019).  

 In the expanding interest of microbial sensing technology and the monitoring this 

enables, additional capabilities of these sensors have yet to be tested. The results of 

testing new applications will advance their deployments into additional environmental 

settings to obtain and characterize environmental quality parameters and indicators. With 

the demonstrated detection capabilities in previous research, further study was designed 

to inform and assess sensitivities of MPS systems in additional media. This targeted study 
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tested the ability of the MPS to perform in a L. acidophilus, L. bulgaricus, and S. 

thermophilus produced yogurt culture of organic whole milk. By applying the same 

systematic tools of previous MPS technology, observing the produced signals in this new 

yogurt medium enables the assessment of the technology to perform in the same behavior 

as in previous mediums.  

 

Goal and Hypothesis of the Study  

 The ability of MPS to determine microbial health indicators that are incongruent 

from predicted values or in greater resolution than those obtained by traditional sensing 

methods is sufficient for operational managers to identify health risks and take action. 

Traditional probes and sensors are limited, retrieving unreliable readings, requiring 

maintenance and cleaning, manual collection and potential laboratory processing, 

utilizing additional materials, recalibration procedures, and the potential to contaminate 

or consume a sample (Chinnathambi & Euverink, 2019). Delated data does not reflect 

current conditions (Chinnathambi & Euverink, 2019; Draz et al., 2021), limiting the 

usefulness of obtained information.  

The real-time and continuous data collected by MPS provides operators with 

information of current conditions, allowing for adjustments to be made based on these 

observations. The lower cost and simple deployment of MPS in a variety of settings and 

situations is ideal to protect health and safety. Biofilm infections may be quickly realized 

before posing a threat to health (Jamal et al., 2018), including when contaminating food 

products (Draz et al., 2021). Equipped with MPS data, considerations of health and 
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safety, productivity, processing conditions and controls, and optimal management are 

more readily made using the real-time information.  

 To evaluate the performance of MPS in the yogurt fermentation process, the goal 

of this study was to test the ability of MPS to monitor the temporal changes in open-

circuit potential during the yogurt fermentation process. Behind this goal, the underlying 

hypothesis was that the yogurt fermentation could be monitored by temporal change in 

open-circuit potential by microorganisms at different stages of the fermentation process. 

The sensitivity of the MPS technology was selected so as to predict with 95% confidence 

the time at which fermentation is completed. By selecting the 95% confidence, a 

precision assessment was performed to answer the research question and assess whether 

the MPS technology could be used to determine the time of complete yogurt 

fermentation.   

 

Research Objectives  

 To address the goal of this study, four research objectives were established. First, 

a systematic literature review was performed to assist the design of a targeted 

experimental setup investigating the relationship between biological activity and MPS 

signal generation. The process and method of obtaining the literature is outlined in 

Appendix A. The targeted relationship was examined with MPS which was used to 

characterize a profile of MPS signal and pH over time. For this signal analysis to be 

performed, the second research objective was to obtain these quantifiable data targets, 

including MPS signal and pH. From here, the third research objective analyzed 
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representative signals with pH to determine indicators of fermentation completion. Signal 

analysis formed the primary result analysis of this research. The fermentation process 

was considered complete when the experimental mixture’s pH stabilized around pH = 4.6 

(de Oliveira, 2014), which was simultaneously identified using MPS signals.  

At last, the fourth research objective was to analyze the sensitivity of the MPS 

technology by calculating a method detection limit (MDL). The MDL informs the 

analytical method’s precision and confidence in determining the minimal amount of time 

the calculation may report (U.S. EPA, Office of Water, 2016). The fourth research 

objective includes the sensitivity analysis (Thabane et al., 2013), accounting for and 

adjusting different metrics produced from the experimental trials to examine if 

statistically significantly different results occur from alterations in the experimental 

method, data computation, and modeling to support the robustness of the obtained results. 

The same data used in the primary analysis of the third research objective yet through 

different analytical methods in this sensitivity analysis was compared. The effect of 

changing the analytical method in this sensitivity analysis serves to determine the most 

robust method of analysis and the confidence of the results. The sensitivity analysis may 

examine the effects on results when definitions are slightly changed, such as complete 

fermentation time cut-offs, inclusion or exclusion of outlier trials, or the grouping of 

similar experimental trial clusters (Thabane et al., 2010). Combined with the MDL, the 

feasibility of using MPS technology and the paring with the most robust analytical 

method to determine complete fermentation may at last be determined.    
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Assumptions and Limitations 

 This research was limited in scope and abilities to a bench-scale experiment. It 

was a known limitation that redox potentials are unreliable without constant, standard 

equilibrium conditions (Burge et al., 2020) that would only be found under precisely 

controlled experimental settings. However, this is the case of true-to-life environmental 

conditions of which this technology is suggested to be utilized. Environmental biofilms 

are variable and always in flow (Thomen et al., 2017), not in a static and clinical 

condition. Commercial manufacture of yogurt is a carefully controlled process, with 

temperature a determining parameter of the final product’s characteristics, stable shelf 

life, and health and safety (de Oliveira, 2014). While effort was made to control the 

temperature of the reaction in this study within ± 1 ⁰C, it was assumed that the study 

occurred under approximately constant temperature. Temperature was recorded as an 

additional parameter. However, in face of potential temperature fluctuations, a 10 ⁰C 

optimal temperature range (Ahari et al., 2017) provides an adequate margin for this study 

to capture this microbial process. Additionally, the method used to culture the model 

yogurt in this study was assumed to be completely mixed. While effort was made to 

ensure homogenous distribution of the lyophilized inoculating culture blend at the start of 

each experiment, the mixture was not continually stirred. In turn, this resembles the 

process for the production of set yogurt, where yogurt obtains the characteristic gel 

structure by fermenting the starting milk within the final product vessel (de Oliveira, 

2014). This is in contrast to another yogurt production method, stirred yogurt, where the 
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mixture is stirred and this gel structure is broken, repackaged, and allowed to solidify 

again following fermentation (de Oliveira, 2014).  

  While this study utilizes bacteria that is adapted for growth in milk at moderate 

temperatures (de Oliveira, 2014), it is also estimated that 95% of all microorganism form 

biofilm structures (Flemming et al., 2002), the biological component that enables the 

functionality of MPS in any environment. With these assumptions known, they may in 

turn play a role in the results of the experimental trials; as such, the sensitivity analysis 

will examine and document different outcomes that result from approaching the research 

and these assumptions differently.  
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CHAPTER 2 

LITERATURE REVIEW 

Introduction of Data Applications  

 Acquisition and control of data has the power to significantly improve wastewater 

treatment plant operations and management (Pereira et al., 2019). In advancing analytical 

methods to monitor real-time processes, expenses should be reduced and long-term 

reliability assured (Hall & Szabo, 2009; Jiang et al., 2019; Shao et al., 2020; Stoianov et 

al., 2008; U.S. EPA, 2015). The role of biofilms in the onset of infection suggests the 

need to advance early detection technologies (Poma et al., 2020). The real-time reporting 

offered by MPS allows management to be equipped with data that can predict incoming 

changes (Burge et al., 2020). Monitoring of food safety control to maintain food quality 

drives development of such sensors (Draz et al., 2021). Detection of biofilm should 

combine high sensitivity, rapid response time, low cost, and the ability for 

miniaturization- all of which are achieved by MPS.  

 

Conventional Field Probes: Applications, Limitations, and Standard Expectations  

 Field probes are used to capture a measurement or environmental characteristic, 

often requiring laboratory processing before a final result can be produced. Typical 

monitoring systems use data collected from sensors and probes that measure dissolved 

oxygen, pH, and oxidation-reduction potential (Burge et al., 2020). These probes are 

subject to regular maintenance, recalibration, and replacement (T. Nguyen et al., 2012), 
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as well as cleaning to remove accumulated biofilm and sediments (Blaen et al., 2016; 

Meyer et al., 2019; Wiranto et al., 2015).  

 Probes that measure physicochemical parameters are limited by the 

interdependence of electrochemical potential and pH (Bohrerova et al., 2004; Dowley et 

al., 1998; Hinsinger et al., 2006; Husson, 2013; Liptzin et al., 2011; Mansfeldt, 2003; 

Mueller et al., 2001; Rabenhorst et al., 2009; Rice et al., 2018; Sophocleous & Atkinson, 

2017; Wanzek et al., 2018). U.S. regulations mandate continuous and real-time 

monitoring of residual free chlorine at the point of water discharge (40 CFR § 141.74 - 

Analytical and Monitoring Requirements). However, monitoring is often practiced 

manually. The lack of reliable chlorine sensors that are appropriate for long-term 

monitoring in drinking water distribution systems poses a challenge to continuous and 

real-time monitoring (Wilson et al., 2019). In batch-driven processes, discharges of 

exotoxins may be characterized in pulses, a challenge to operators to monitor and control 

processing. Monitoring is typically dependent on intermittent grab sampling followed by 

laboratory analysis, which does not characterize the profile of an operation’s composition 

due to low sampling frequency and irregular discharges (Brown et al., 2020). Accurate 

monitoring of the composition of a process and its contents allows for greater regulatory 

and enforcement power to prevent undesired releases.  

 There is often a disparity between supposed and actual chlorine residuals, with 

measured levels lower than predicted due to low demand in dead-end distribution points 

and extremities of supply systems (Abokifa et al., 2016). Biofilm growth proliferates as 

inadequate free chlorine residuals are coupled with high disinfection biproducts.  
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 Further, traditional sensors read erratic measurements as the detection and 

quantification limits are strained, loosing accuracy and precision at low observation 

levels (Saboe, et al., 2021a). Traditional glass pH probes are often incompatible with 

miniaturized and biomedical systems (Casimero et al., 2018). Traditional pH electrode 

probes of this variety are glass-based and fragile, relatively large, and may leak an 

electrolyte solution into a sample (Chinnathambi & Euverink, 2019). An advantage of 

alternative pH measurement would allow for site-specific application and measurement at 

the electrode, despite the shape or size of deployment. Alternative pH electrodes may be 

deployed in environments where the diffusion of traditional sensor solutions is to be 

avoided, such as in food and health processes, as the electrode does not contain internal 

solutions that can diffuse into a sample (Chinnathambi & Euverink, 2019). Rapid and 

direct determination of the content in a food product using a potentiometric method, in 

contrast to chromatographic or other traditional methods, is simple as it saves chemicals, 

solvents, time and resources, and produces fewer wastes (Draz et al., 2021).  

 Microbial detection techniques including culture-based and molecular-based 

methods provide information about the nature of the biofilm, yet are not suitable for real-

time monitoring (Azeredo et al., 2017). Culture-based approaches combined with 

molecular DNA methods are used to identify and quantify microorganisms within 

biofilms (Wi & Patel, 2018). Despite this identification, these methods are affected by 

low sensitivity and do not allow for the real-time monitoring of biofilms (Hall-Stoodley 

et al., 2012). Culture-based techniques rely on the growth of viable microorganisms in a 

culture media. However, not all microorganisms are able to grow on laboratory media 
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(Nivens et al., 2009). Further, some microorganisms embedded in biofilms are present in 

different physiological states, so they may be viable but not-culturable (VBNC) (Azeredo 

et al., 2017). Molecular methods of detecting biofilm DNA are not informative about the 

viability of detected microorganisms, as positive detections may be from extracellular or 

non-viable elements (Hall-Stoodley et al., 2012).  

 Microscopy is the most common technique to characterize biofilm structure 

(Azeredo et al., 2017; Lewandowski & Beyenal, 2013). Electron microscopy techniques, 

including transmission electron microscopy and scanning electron microscopy, produce a 

higher resolution of microbial cell imaging and the surrounding environment (Poma et 

al., 2021). Both of these microscopy techniques, however, do not allow for in vivo and in 

situ measurements as they are vacuum techniques, requiring extensive sample treatment 

that may damage the biofilm’s structure (Surman et al., 1996). As a result, these 

approaches are not appropriate for the sensing desires of this research.  

 Previous potentiometric reference electrodes, composed of silver- silver-chloride, 

glass, or platinum require an internal electrolyte solution (Burge et al., 2020; Vonau et 

al., 2010). When this electrode is placed in an environmental medium, such as dry soil, 

the solution is lost, preventing many reference electrodes from being deployed in 

additional mediums (Fiedler et al., 2007). In comparison, graphite MPS performs with 

greater long-term consistency and invariability of patterns (Burge et al., 2021).  
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Common Water Quality and Environmental Parameters: Health-Based Regulatory 

Considerations   

 Collection of data is required for regulatory compliance; however, due to manual 

sampling and subsequent laboratory processing, data is discrete and often insufficient to 

address real-time operation and management (Spellman, 2003; Trussell et al., 2007). 

Chlorination is the dominant disinfectant for drinking water, used by over 80% of public 

water utilities (U.S. EPA, Office of Water, 1999). Residual chlorine in pipelines prevents 

the expansion of microorganisms through storage and distribution. Residual free chlorine 

is low cost and serves to protect drinking water quality through to distribution (American 

Chlorine Chemistry Council, 2003). Monitoring and control of pH is an important 

parameter in regard to its effects to biochemical processes (Chinnathambi & Euverink, 

2019).  

 

Public Health Impacts of Biofilm  

 Biofilm growth presents a threat to public health. Biofilms are responsible for 

approximately 80% of human microbial infections in the medical field (Jamal et al., 

2018; Khatoon et al., 2018). An estimated 8% of water utilities in the United States report 

health-based standard violations (Allaire et al., 2018), which are frequently attributed to 

excessive total coliforms and disinfection byproducts. 

 Culture-based diagnosis is time-consuming, requires specialized personnel, and 

cannot monitor biofilm in real-time (Hall-Stoodley et al., 2012). This presents a need for 

real-time monitoring and in situ biofilm detection (Vertes et al., 2012).  



 

13 

 Monitoring for food safety quality is designed to safeguard consumer health and 

maintain food industry welfare. Chemical and biological hazards result from 

contamination of food products, as well as adulteration, mishandling, and improper 

storage (Draz et al., 2021). Analytical methods should provide accurate and reliable 

information in a cost-effective and timely manner. This information is then referenced by 

authorities when making decisions (FAO, 2018).  

 Quality control of food products may be assessed by microbial diagnosis. The 

presence of exotoxins can be determined by measuring electrode potential (Ahari et al., 

2017). In quality control tests, the ability of biosensors to detect exotoxins can assist 

research and health, yet are affected by temperature and acidity (Ahari et al., 2017). This 

directly informs this research to monitor pH and temperature in tandem to MPS signal. 

Bacterial detection speed increases as the size of the nanoparticle decreases (Tang et al., 

2008).  

 The demonstrated ability of a MPS to determine critical microbial health 

indicators that are incongruent from predicted levels or those obtained by traditional 

sensing techniques is sufficient for operators to identify health risks and take action. The 

lower cost and simple deployment of MPS is ideal for systems to readily protect human 

health.  

 

Formation of Biofilm: Elements and Factors of Attachment and Development  

 Establishment of biofilms in water distribution systems can advance on freshly 

cleaned pipelines within two weeks, even with residual chlorine present (Fish & Boxall, 
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2018). Once established, biofilms are difficult to remove, as even chlorine concentrations 

above the maximum targeted 4 mg/L cannot eradicate the biofilm, further accelerating 

the formation of carcinogenic disinfection biproducts (X. Bai et al., 2015; LeChevallier et 

al., 1990). Biofilm develops in two distinct phases: first, a reversible and irreversible 

attachment to a surface, followed by the formation of microcolonies, before the biofilm 

matures and disperses (Monds & O’Toole, 2009).  

The initial attachment of microorganisms to abiotic surfaces is dependent on the 

properties of the material and the microbial cell surface (Poma et al., 2021). This is 

generally mediated by non-specific phenomena, including hydrophobic, electrostatic, 

steric interactions, and van der Waals forces (Dunne, 2002). Colony growth begins 

irreversibly following the accumulation of an initial layer of cell clusters called 

microcolonies. During biofilm maturation, microorganisms actively proliferate (Dunne, 

2002). Molecules, enzymes and nutrients accumulate as biofilms form complex three-

dimensional structures populated by different microenvironments and different metabolic 

activities (Stewart & Franklin, 2008). As the biofilm disperses, cells and cell clusters 

spread to new locations (Kaplan, 2010), which may be in response to environmental 

condition changes including the accumulation of metabolites, depletion of nutrients or 

oxygen (McDougald et al., 2012).  

The formation of biofilm is typically irreversible; once established, the biofilm 

cannot be easily removed (Poma et al., 2020). As such, the formation of biofilm may be 

detrimental to public health and the productivity of an industry (Macià et al., 2018; 

Mattila‐Sandholm & Wirtanen, 1992). In industry, contamination with pathogenetic 
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organisms leads to poor end-product quality (Mattila‐Sandholm & Wirtanen, 1992; 

Telegdi et al., 2017). This presents the need for on-site detection and real-time 

monitoring of biofilm formation to promptly help direct operational measures.  

Body tissues infected by biofilms or medical devices infected with biofilm may be 

required to be removed (Wu et al., 2015), highlighting the irreversible severity of biofilm 

infections. Bacterial infections from Staphylococcus epidermidis, S. aureus, 

Pseudomonas aeruginosa and Escherichia coli are most common (Mermel, 2000). The 

occurrence of infection is dependent on these microorganisms, substrate characteristics, 

and nutrient availability (Donlan, 2001; Jamal et al., 2018).  

 An estimated 95% of all microorganisms affix to the inner surfaces of pipes and 

vessels as biofilms (Flemming et al., 2002). These walls offer refuges that protect the 

biofilm from disinfection agents. Biofilms may grow in areas that are challenging to 

access, such as water pipes (Hall-Stoodley et al., 2012). The ability of biofilms to form 

on many substrates in many environment poses them to be a serious threat to health and 

industrial productivity (Poma et al., 2021). Several systems advanced thus far may 

monitor the growth of biofilms, however the future development of MPS sensors and 

applicable deployment settings have yet to be fully realized. MPS utilize the ubiquitous 

survival capabilities of existing environmental biofilms, allowing for increased efficacy 

of antimicrobial operations and advance control measures to be informed.  
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Biofilm Composition: Physical Accumulation in Water Environments   

Biofilms are complex and dynamic structures, heterogeneous as a result of 

interactions of nutrient availability, varying surface topography, sheer stress, microbial 

species, and metabolism (Flemming et al., 2016; Lopez et al., 2010). Biofilms are 

stratified into layers, with anabolic activity decreasing as the distance from an electrode 

increases (Chadwick et al., 2019). The structural, chemical, and physiological 

characteristics of biofilm are subject to minute adjustments in pH which may alter a 

biochemical process, adversely affecting the outcome (Chinnathambi & Euverink, 2019).  

 Most toxic metals interfere with biochemical processes that impact the 

functioning of both microbial and multicellular organisms (Zeng et al., 2020). Toxic 

metal pollutants harm proper biological conditions and disrupt the proper functioning of 

water treatment processes (Bhat et al., 2020; Kumar et al., 2020).  Toxic metals are 

presumed to therefore decrease metabolic activity of biofilm microorganisms, including 

the microbes populating the surface of a MPS (Brown et al., 2020). The change in open-

circuit potential generated by the biofilm could be associated with microbial activity on 

the sensor, linking toxic metal effects on environmental microbes to a measurable 

microbial potentiometric difference.  

 Microbial respiration using extracellular substrates may be harnessed for 

technologies including water desalination (Brastad & He, 2013; Schievano et al., 2016), 

wastewater treatment (Logan & Rabaey, 2012), and of most interest to this research, 

fermentation, (Moscoviz et al., 2016; Schievano et al., 2016). The streamlining of 

extracellular electron transfer accelerates the per-cell respiration rate, altering the biofilm 



 

17 

structure to improve the efficiency of electron transfer (Jiménez Otero et al., 2021). As 

biofilms are typically diverse microbial structures; a MPS does not have to be selective, 

rather the lack of sensitivity is advantageous in applications where microbial composition 

may change (Poma et al., 2020).  

 

Biofilm Self-Communication and Synchronization  

 Biofilms have the ability to communicate metabolism via electrochemical 

signaling. This is achieved as the production of ammonium is directed by electrochemical 

signaling, where inner and peripheral biofilm membrane potentials oscillate as potassium 

ion gradients shift (Saboe, et al., 2021b). Bacterial ion channels propagate these 

potassium ion waves, which in turn triggers the release of intracellular potassium that 

then depolarizes adjacent cells (Prindle et al., 2015). The function of this ability 

distributes nutrients across the biofilm as needed for growth, achieved by synchronizing 

the biofilm’s resting membrane potential (Liu et al., 2015). This allows bacterial cells to 

rapidly communicate their metabolic state across relatively long distances. The 

oscillation of this ion diffusion enables biofilms to synchronize and coordinate their 

metabolism by exchanging the potassium ions between the inner and outer biofilm layers 

(Prindle et al., 2015). This symbiotic relationship of the microbial communities that 

compose biofilms provides the hardiness of biofilms (LeChevallier et al., 1990).  

 The electrochemical potential of biofilms is akin to a transmembrane potential; 

the metabolic state of both the individual cells and biofilm composite defines a voltage 

potential. At the microorganism community size, biofilm-coated electrodes have 
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measured positive linear trends in capacitance and negative linear trends in open circuit 

potential (Bimakr et al., 2018). This has been confirmed by previous studies; pH has been 

demonstrated to shape cell activity within biofilm (Franks et al., 2009; Logan, 2009; 

Torres et al., 2008), and electrical potential dependencies similarly shape cell activity 

(Levar et al., 2014; Li et al., 2019; Rimboud et al., 2015; Snider et al., 2012; Yoho et al., 

2014, 2015; Zacharoff et al., 2016). Only recently was a robust and direct method used to 

obtain spatially resolved cell data (He et al., 2021). This method finds that the first 5 μm 

of a biofilm that is closest to an electrode contributes between 61% and 79% of the total 

current density at high or low anode potential, respectively (He et al., 2021). Further, 

83% and 98% of the current is produced within 10 μm of the anode and between 98% 

through 100% is produced from within 15 μm of the anode (He et al., 2021).  

 

MPS Technology: Principles, Development and Previous Advances, and 

Demonstrated Successes   

 Potentiometry is an electrochemical technique that measures the open-circuit 

potential between a working electrode and a reference electrode when there is no current 

flowing (Bagotsky, 2005). Devices that measure this potential to monitor biofilm 

continue to be developed (Janknecht & Melo, 2003; Nivens et al., 1995).  

As environmental biofilm regenerates on the surface of a MPS (Hyde, 2019; Rice 

et al., 2018), limitations typically associated with sensing probes are avoided. These 

limitations include changes in oxygen or nitrogen content (Whisler et al., 1974), high 

temporal variability within small horizontal distances (Fiedler, 2000), and attributions of 
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irreversible redox reactions, slow reaction kinetics, and mixed redox process potentials 

(Fiedler et al., 2007). Using endemic microbial biofilms as the active surface of non-

oxidizable material enables the measurement of electrochemical potential (Burge et al., 

2021). This enables the continual deployment of the sensor in the environment as the 

endemic microorganisms self-replicate on the sensing surface of the MPS (Hyde, 2019). 

The potentiometric measurements of MPS technology uses an indicator electrode, a 

reference electrode, and a high-impedance measurement circuit system to measure the 

open circuit potential of the electrodes (Burge et al., 2019). This allows the relation of pH 

and oxidation-reduction potential with solid state electrodes that measure the potential 

difference between the sensing and reference electrodes (Burge et al., 2020).  

 When the MPS electrodes are coated in biofilm, capacitance and open circuit 

potential from microbial electrochemical signaling can be measured (Bimakr et al., 2018; 

Xu et al., 2010). Biofilm is capable of detecting minute changes in the aquatic 

environment, responding with an associated open circuit potential, measured with a 

reference electrode (Saboe, et al., 2021a). As measurements are collected using the 

electric potential of an open circuit in which electrons are not flowing, sensor arrays may 

be referenced against a single reference electrode (Burge et al., 2020). The growth of 

biofilm on an electrode surface alters the electrochemical properties: charge transfer 

resistance decreases, which can occur with direct electron transfer from nanowires of 

cytochromes to the surface of the electrode (Xu et al., 2010). This sensing ability has 

been applied to measure many characteristics: the accumulation of biomass and 

contaminants in aquatic environments (Bimakr et al., 2018); pH (Ahari et al., 2017; 
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Burge et al., 2021; Chinnathambi & Euverink, 2019; Saboe et al., 2021a); oxidation-

reduction potential (Brown et al., 2020; Burge et al., 2020, 2021); free residual chlorine 

in water (Brown et al., 2020; Burge et al., 2020; Saboe, et al., 2021a); blue-green algae, 

turbidity, and chlorophyll (Saboe et al., 2021a); toxic metals (Brown et al., 2020; Di 

Natale et al., 1997); and conductivity of water and soil (Burge et al., 2021; Favre et al., 

2009; Saboe et al., 2021a). This multimetric sensing capability of MPS monitoring 

relieves the need for several probes, manual grab sampling, and dilatory laboratory 

analysis. The multivariate electrochemical parameters may be monitored continuously 

and in real time, such as the conductivity of water and soil matrices (Burge et al., 2021; 

Favre et al., 2009). Further, MPS do not consume a sample itself (Chinnathambi & 

Euverink, 2019), preserving the original sample from being lost. MPS also avoid the 

additional equipment, biofoul cleaning, maintenance, and higher per unit costs of existing 

sensors (Wilson et al., 2019).  

 Electrodes exposed to biofilms therefore have the potential to monitor biomass 

accumulation and contaminants in an environmental matrix. The coating of biofilm over 

graphite electrodes can thus be combined with a reference electrode to form microbial 

potentiometric sensors, capable of measuring open circuit potential generated by biofilm 

(Brown et al., 2020; Burge et al., 2020; Saboe et al., 2021b). Logging continuous and 

real-time data of oxidation-reduction processes monitored by MPS can then be correlated 

to biofilm activity (Saboe et al., 2021b). As the microbial composition of biofilms is 

dynamic, responses to contaminants, nutrients, and temperature can be closely observed 
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by MPS, used to characterize biofilm over time rather than representing a single capture 

as traditional grab sampling would yield. 

 When operating in an open-circuit mode, microbial activity does not cease. 

Metabolically generated electrons flow to electron acceptors, however the open-circuit 

does not transport electrons to an acceptor near the cathode. As such, the transport of 

electrons from anode to cathode is interrupted. A more accurate description of this open-

circuit mode is with the anode serving as a sensing electrode and the cathode as the 

reference electrode. The pair of electrodes cannot be used to create a signal based on 

electrical current flow, however the electrons generated from substrate metabolism can be 

stored in temporary electron acceptors (Magnuson et al., 2001; Myers & Myers, 2001). 

Electrons generated from organic carbon metabolism, for example, may be stored in 

cytochromes within the biofilm, especially in the absence of oxygen or nitrate as an 

electron acceptor (Bonanni et al., 2012; Esteve-Núñez et al., 2008; Rabaey et al., 2007; 

Schrott et al., 2011; Shi et al., 2007). The generation and storage of electrons in the 

biofilm creates a difference in open-circuit potential that may be measured between the 

sensing and reference electrodes. This is achieved as differential voltage increased when 

the concentration of dissolved organic compounds increases near the electrode, and 

similarly, when reducing concentrations of dissolved organic compounds in the constant 

presence of oxygen result in a falling differential voltage.   

 In water, microbial response signals have been seen to take over one month to 

develop and stabilize on the surface of the MPS sensor electrodes (Saboe, et al., 2021a). 

In soils, the deployment of MPS is limited by the quality and reliability of the 
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technology, which results in limited reliability of measurements (Burge et al., 2021). 

However, an experiment using MPS measurements found statistically different patterns 

in open circuit potential, suggesting that the conductivity and open circuit potential of soil 

is independent of water and carbon content (Burge et al., 2021). This primes the MPS 

technology to be deployed in a setting where these components would otherwise be 

dynamic and potentially interfere with other sensing methods.  

 In any sensing environment, factors including nutrients, temperature, and 

exotoxins can impact reaction kinetics and thus impact the differential voltages of sensing 

technology (Burge et al., 2020). It is anticipated that the growth of microbes that generate 

cytochromes will proliferate within the MPS biofilm, which readily responds to 

environmental fluctuations, making this sensor ideal for measuring changes in redox 

conditions. The biofilm surface serves as the active site of the sensor and also can 

regenerate (Rice et al., 2018), eliminating the requirement of routine cleaning and 

maintenance. Signals from MPS have been demonstrated to not decay over a two-year 

duration of deployment with no maintenance performed (Burge et al., 2020), 

demonstrating the long-term durability and reliability of the sensors.  

 

Related Sensing Technologies: Electrochemical, Voltammetric, Potentiometric, and 

Bioactive Sensors  

Electrochemical sensors are a method of detecting and monitoring biofilms. These 

sensors typically consist of an electrochemical cell with three electrodes: a working 

electrode, a reference electrode, and the counter electrode. These are immersed in an 
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electrolyte solution (Bagotsky, 2005; A. J. Bard & Faulkner, 2001; 1948- Wang Joseph, 

2006). The sensing reaction occurs at the working electrode, which is typically 

constructed of platinum or gold (L. R. Bard & Faulkner, 2001). Electrochemical sensors 

provide a short response time, are low-cost, have high sensitivity, and are scalable (Thet 

et al., 2016).  The low manufacturing costs of an electrode allow for the application of the 

technology where many pH electrodes are necessary, illustrating the scalability of this 

technology (Chinnathambi & Euverink, 2019).  

 Biofilm monitoring devices are currently focused on the application to water 

distribution systems (Strathmann et al., 2013). However, in most settings, oxidation-

reduction potentials are unreliable without constant equilibrium conditions (Burge et al., 

2020). In contrast, biofilm development is typically subjected to variable flow conditions, 

which is known to control and favor microbial adhesion, and may also serve as an 

environmental signal to influence biofouling (Manuel et al., 2007; Thomen et al., 2017; 

Weaver et al., 2012). The optimum pH range where potentials have been observed to 

remain significantly constant are between 5.0 and 8.5, with optimum temperatures 

between 15 ⁰C and 25 ⁰C (Ahari et al., 2017).  

 Voltammetric approaches of indirectly determining pH offers greater selectivity 

and faster response in comparison of conventional potentiometric sensors (Lafitte et al., 

2008; Streeter et al., 2004). This approach measures current as a function of applied 

potential to an electrochemical cell, which is then plotted on a voltammogram (A. J. Bard 

& Faulkner, 2001; Eggins, 2002; Vivaldi et al., 2020). Voltammetric peaks are generated 

from the occurrence of electrochemical reactions at the working electrode (Scholz, 2015). 
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Voltammetry has been used to detect bacterial colonization on a surface as detected by a 

change in the electroreactive area (J. Kang et al., 2012). As a result, voltommetry may 

help to characterize the surface modifications of biofilm by evaluating the electroactive 

area, the presence of electroactive species at the working electrode, or the exchange of 

electrons between the biofilm and the electrode (Poma et al., 2021).  

 Redox reactions generate electrons that are used by cellular mediators, such as 

NADPH (Favre et al., 2009). Electrons can be transferred to extracellular surfaces after 

electrons cross through the cell membrane. This process occurs during anaerobic 

respiration (Bond & Lovley, 2003). Using this electron mechanism, electrochemical 

detection allows for the observation of microbial activity. Such activity is utilized in 

biological oxygen demand (BOD) sensors, where the reduction of oxygen is recorded by 

the anode (K. H. Kang et al., 2003). Similar sensors are used by wastewater treatment and 

can operate without maintenance for at least five years (Kim et al., 2003).  

All bioactivity sensors allow for the measurement of microbial activity by 

recording potentiometric signals from aerobic and anerobic fermentation of glucose 

(Holtmann et al., 2006). Potentiometric sensors that detect and characterize biofilm are 

advantageous as they do not need an external power source (Poma et al., 2020). The 

open-circuit potential is measured between a working and reference electrode to assess 

the analyte’s concentration and activity (Janknecht & Melo, 2003; Nivens et al., 1995). A 

change in the open-circuit potential may be associated to the biomass of biofilm (Gümpel 

et al., 2006; Mattila et al., 1997). Potentiometric sensors have also monitored pH 

gradients within a biofilm (Guimerà et al., 2019).  
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Data Analysis: Interpretation of Data via Assembly, Computation, Algorithms, and 

Machine Learning/Artificial Intelligence Methods   

 When MPS sensor data is collected, electrical current is not flowing, leaving the 

biofilm undisturbed. This allows for the direct observation of the biofilm (Burge et al., 

2020). At the same time, measurement does not draw current from the sensors, which 

enables large arrays of sensors to be referenced against a single reference electrode. In 

development, an increasing concentration of oxygen measured by the dissolved oxygen 

probe and an increase in oxidation-reduction potential signal was paralleled by the data 

acquired by the MPS (Burge et al., 2020). An extremely low p value suggests a 

statistically strong and significant correlation between dissolved oxygen concentrations 

and the MPS signals. A pattern may be determined when compared to baseline signals, 

revealing information relevant for optimization of any process or condition where 

microbes are present.  

The complexity of different water quality parameters interacting cannot be 

described using simple mathematical relationships, however machine learning tools can 

be trained to interpret these relationships. Continuous data collected with MPS 

technology can be disaggregated via machine learning, artificial intelligence, and 

software algorithms (Di Natale et al., 1997; Saboe et al., 2021a; Syafrudin et al., 2018; 

Winquist et al., 1998). Machine learning and artificial intelligence may optimize water 

quality management as data is collected and predicting additional parameters in real time 

(Syafrudin et al., 2018). While first needing sufficient data to train these tools, supplying 

data to these methods generates predictive power of a model, leveraging extrapolated 
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patterns from collected measurement. This is useful for environmental management to 

anticipate dynamic conditions and implement operational measures in real time (Pereira 

et al., 2019; Spellman, 2003; Trussell et al., 2007), providing advance anticipation of 

infections, exotoxins, or algal blooms with adequate time to apply operational measures. 

For example, data may be used to monitor metabolic activity in real time (Burge et al., 

2020; Chinnathambi & Euverink, 2019; Favre et al., 2009). Early investigations 

monitoring microbial metabolic activity have deployed this capability during anaerobic 

respiration and fermentation (Ahari et al., 2017; Chinnathambi & Euverink, 2019; Favre 

et al., 2009; Holtmann et al., 2006; Winquist et al., 1998). An electronic sensor array, 

combined with a pattern-recognizing algorithm, has been used to measure metal ions in 

surface water (Di Natale et al., 1997). Here, working and reference electrodes were 

applied to a voltage, generating data that contains a large amount of information that may 

be interpreted by multivariate calibration methods. With this voltametric method, the 

multivariate analysis searches for a structure in the data which then is correlated to the 

data using a model (Winquist et al., 1998). Data is compared to a set of calibration data, 

and when combined, yield the model’s predictive power. The measured data series 

contained high resolution, and despite many redundant values and an unknown detection 

limit of the sensor, this does not pose an issue at this concentration of bacterial content 

(Winquist et al., 1998).   

 A specific artificial intelligence approach, long short-term memory, has been used 

in a previous study to train machine learning tools (Saboe et al., 2021a). This neural 

network enables the tracking of long time-series data (Sak et al., 2014), which is suitable 
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for forecasting a series as desired for this application of MPS technology. This approach 

revealed a unique pattern of MPS data collected from water containing blue-green algae, 

illustrating a day and night cycle attributed to algae’s exposure to sunlight. The synthesis 

of carbonaceous nutrients in algae requires electron transfer to a final electron donating 

oxygen, and at night in absence of sunlight, algae utilizes synthetic nutrients rather than 

carbon nutrients (Cuhel et al., 1984). The ability of machine learning and artificial 

intelligence to recognize this from the collected data and thus predict the concentration of 

blue-green algae with a high degree of precision demonstrates the function of this data 

analysis approach.  

 A relationship between open circuit potential and MPS signal output can be 

determined by assessing these patterns. Significant amounts of information can be 

leveraged from the analysis of the open circuit potential and signal patterns. Open circuit 

potential has been indicated to be directly resultant from reductions in microbial density 

and vitality, evidenced by the homogenous oxidation of biofilm on MPS and the 

elimination of electrons contained in cellular membranes (Saboe et al., 2021b). Another 

benefit of modeling results in a smaller error than that of commercially available 

amperometric sensors (Hach, 2018; Sensorx, 2011). In tandem with a smaller error, 

machine learning and artificial intelligence processing of MPS collected data is capable 

of predicting parameters below the level of readability of traditional analytical sensors 

(Saboe et al., 2021a). Deviations in data between MPS and traditional probes illustrates 

the capability of a MPS system to oversee the performance and detect the potential 

failures of other analytical equipment.  
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 Assembling multiple arrays of MPS enables increased precision or predictive 

power. Connections of sensors to a wireless electronic circuit allows for further 

applications using wireless sensing (Azzarelli et al., 2014; Gou et al., 2015). At the same 

time, this constructs a multidimensional spatial characterization of a monitored 

environment (Saboe et al., 2021a). In soils, the assembly of an array of multiple sensors 

connected to a single reference electrode allows data generated to characterize both two-

dimensional and three-dimensional unsaturated soil qualities (Burge et al., 2021). 

Deployment of sensors at multiple spatial and temporal settings allows the sensor array to 

document accurate data and support field usage to resolve thermodynamic conditions and 

dynamic metabolic processes (Burge et al., 2020). This capability may be then applied 

beyond water and soil; approaches in biomedical, agricultural, and climate research are 

associated to this MPS technology approach that characterizes various environmental 

fluctuations.  

   While this research will not employ comparable machine learning or artificial 

intelligence tools, this review illustrates the capacity for these tools to be paired with 

sensing and monitoring technologies. With the rich data produced by MPS technology 

and similar sensors, advanced computational approaches including machine learning and 

artificial intelligence will be equipped with burgeoning data to analyze and further refine 

the capabilities of producing extrapolated data from these sensing systems. As a result, 

combining MPS technology with these advanced approaches brings greater predictive 

power and informative depictions of the sensing environment.  
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Current and Future Deployment for MPS and Sensing Technologies: Water 

Monitoring, Fermented Food Production, and Health Monitoring   

 Biofilm monitoring devices are currently focused on the application to water 

distribution systems (Strathmann et al., 2013). However, other deployment applications 

are emerging. Such monitoring is applicable to many fields, including: cell health 

monitoring in bioreactors (O’Mara et al., 2018); noninvasive monitoring of cell growth in 

bioreactors (Reinecke et al., 2017); online biofilm monitoring of cell density (Qiu et al., 

2014); and micro-biosensors for batch-fed fermentation with integrated online monitoring 

(Buchenauer et al., 2009). Similar deployment of this technology is used by 

environmental microbial sensors. These produce utilize microbial electrochemical cell 

technologies, producing energy from water that contains high organic content (Du et al., 

2007; Logan et al., 2006; Logan & Regan, 2006a, 2006b). This technology relies on 

microbes that establish biofilm on electrode surfaces, typically graphite or titanium (Bond 

& Lovley, 2003; Logan, 2009). Electrons are transferred from microbes to an anode in 

biochemical mechanisms (Reguera et al., 2006; Schröder, 2007). When operating with a 

closed circuit, electrons flow from the anode to the cathode, with the ultimate electron 

acceptor commonly atmospheric oxygen near the cathode.  

This electrical current serves as a metric to determine the concentration of a 

substrate near the anode, useful in the development of microbial sensors that measure 

electrical currents in an aquatic environment (Kara et al., 2009; Lei et al., 2007; 

Mulchandani et al., 2006). In wastewater applications, organic carbon concentration can 

be determined by correlating the electric current between the anode and the cathode 
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(Dhall et al., 2008; Kim et al., 2003). However, these closed-circuit technologies result in 

accumulated internal resistance, decreasing the sensitivity and reliability of the sensor 

(Cai & Wang, 2010; Punter et al., 2013).  

 In wastewater treatment facilities, the operation performance may be evaluated 

using MPS. The relationship between carbon loading, oxidation-reduction potential, and 

dissolved oxygen can be monitored to evaluate the reduction in biological oxygen 

demand. An increase in MPS signal indicates an increase in biological oxygen demand 

(Burge et al., 2020). Patterns from MPS were more repeatable and defined than those of 

the dissolved oxidation and oxidation-reduction potential sensors (Burge et al., 2020). 

The communication of increasing biological oxygen demand is useful to operators of the 

wastewater treatment facility, and when one of the MPS did not follow the same pattern 

as the others (Burge et al., 2020), this indicates the spatial capability of the technology to 

assess homogenous treatment.  

 The effect of toxic metals on biofilms has been observed with MPS. Selenium, 

lead, arsenic, nickel, silver, cadmium, and zinc solutions were introduced into a model 

bioreactor, where response data was assessed using MPS signal generation and inhibition 

of signal (Brown et al., 2020). These metals were selected as they are representative of 

toxic metal compositions entering the international wastewater treatment facility at the 

United States/Mexico border (Lester & van Riper III, 2014). Electron generation and 

cytochrome storage is inhibited by toxic metal constituents (Burge et al., 2020). When the 

toxic metals were eliminated from the system, the inhibitory effects were removed, 

allowing normal metabolic activities to resume. This can be observed by an increase in 
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the microbial open-circuit potential. The high correlation between metal concentrations 

and microbial response indicates the potential for the sensors to quantify metal 

concentrations. While the sensitivity of the electrodes may vary due to the surface biofilm 

composition, each sensor is capable of responding to conditions in the same manner 

(Brown et al., 2020). The ability of MPS to detect changes in toxic metal concentrations 

in real-time assists enforcement and operators to prevent and mitigate toxins in 

processing. Water resources and the systems that rely upon them are threatened by toxic 

metal pollution (S.-L. Wang et al., 2013), and many operations that use toxic metals do 

not utilize treatment to prevent the discharge of these metals (Geng et al., 2014; Pareek, 

1992).  

 Another similar sensor technology utilizing flavin-phenol composite film has 

measured pH in situ (Casimero et al., 2018). The redox chemistry of the flavin group 

serves as an electrochemical mediator in a range of chemical (Radzevič et al., 2016) and 

microbial systems (Bao et al., 2016; Si et al., 2016; Wu et al., 2015; Yu et al., 2017). This 

sensor is an advancement of small, flexible, and robust in situ pH sensor predecessors 

(Salvo et al., 2017; J. Yang et al., 2016). Electrochemical responses were compared to 

observations made with a conventional glass electrode (Casimero et al., 2018). In a fresh 

pH buffer of 7, redox processes were stable. This is as expected at constant equilibrium 

conditions (Burge et al., 2020). The relationship between peak position and pH was found 

to be near Nernstian with a slope of 55 mV/pH unit. The pH of the fermentation medium 

fell from a pH of 6.18 to a pH of 3.68 when complete. Despite abnormalities, the flavin 

pH recordings followed those obtained with the conventional glass probe. Significant 
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deviations occurred only after the electrode was dormant for over 12 hours. It was 

suspected that during this dormancy, microbial colonization on the probe compromises 

the pH response within the biofilm interface (Casimero et al., 2018). Biofilm formation is 

apparent after 51 hours, which may be problematic when transferring results to other 

microbial systems (Y. Yang et al., 2015) and should not be used as a direct reference for 

this research.  

 In cultivating Saccharomyces cerevisiae, a single-celled fungal microbe of yeast, 

Favre and colleagues utilized a graphite electrode for biosensing (Favre et al., 2009). 

Graphite was selected as it was an inexpensive, disposable, and sufficiently conductive 

material without further surface treatment; all desirable characteristics in developing 

biosensors (Favre et al., 2009; Stoianov et al., 2008). An abiotic cathode is used for 

biosensing as it ensures stable potential as microbes grow. The cathode serves as a 

working or reference electrode, creating a different potential from the sensing electrode. 

The yeast’s ability to process glucose and fructose into ethanol was monitored with 

potentiometric and conductivity measurements recorded with a datalogger every four 

minutes. Glucose and fructose concentrations were measured as well. A bioreactor was 

constructed to contain the experiment, with two sensing electrodes integrated into the 

reactor’s design. Using multiple potentiometric sensors to record signals, one electrode 

was used as the working reference electrode. Conductivity was found to remain steady 

and low for the duration of the experiment, with the end of the fermentation process and 

microbial cultivation noted by a decrease in voltage and current values (Favre et al., 

2009). The amperometric signal decreased to a nadir then increased, indicating the yeast 
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microbes began to consume other nutrients. This indicates that the sensor is capable of 

recording microbial metabolism and metabolic activity, determining when metabolism is 

complete. The experimentation yielded good reproducibility for the bioelectrochemical 

measurements, demonstrating microbial fuel-cell-type activity sensors to be a valuable 

tool for monitoring a microbial culture. The potentiometric signals indicating real-time 

microbial activity and the progression of carbohydrate conversion by the microbes is 

directly relevant to this research.  

 Another study monitored the growth of biofilms with a graphite potentiometric 

sensor (Poma et al., 2020). Here, E. coli and P. aeruginosa have been reported as 

electrochemically active (Sydow et al., 2014), electrons transferred through electron 

mediators and phenazine derivatives, respectively. All tested strains of E. coli, P. 

aeruginosa, and S. aureus were able to form biofilm in the presence of a culture media. 

The open-circuit potential changed over time, shifting towards a negative potential value 

as the bacteria grew. A significant negative correlation with the optical density value and 

bacterial growth was observed (Poma et al., 2020). Furthermore, the potentiometric 

sensor system was able to distinguish the different phases of bacterial growth. The open-

circuit potential in the negative control did not change over time, validating the 

association with the bacterial growth process. The presence of defects on the chemical 

reduction graphene oxide sensor did not impair the electrical conductivity, and may 

potentially provide reactive sites for biofilm adhesion and electron transfer (Poma et al., 

2020). The low current flowing between the working and reference electrode allows 

open-circuit potential measurement to be an ideal electrochemical transduction technique 
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for biofilm monitoring due to the negligible effects on bacteria (Janknecht & Melo, 

2003). A significant positive correlation between bacterial growth, in colony forming 

units (CFUs) per cubic centimeter and the optical density was found (Poma et al., 2020). 

The bacterial concentrations detected on the electrode surface is close to the non-healing 

threshold of skin wounds (Bowler, 2003). As such, the bacterial concentrations on the 

electrode may provide a good approximation of the bacterial colonization that would 

occur as a wound is infected. This allows for monitoring and early detection of microbial 

colonization and may therefore avoid the undesired effects of infections. The sensor may 

be embedded into clinical and medical applications for rapid detection of biofilms formed 

by bacterial species of importance.  

 An electrochemically reduced graphene oxide electrode was operated as a pH 

sensor during experimental fermentation of L. lactis, used in the production of dairy 

products (Chinnathambi & Euverink, 2019). The culture medium was prepared, 

inoculated, and cultured with pH measured continually until the optical density of the 

culture was constant, indicating no growth of the bacteria. With the electrode in the 

culture, current initially decreased before reaching a stable value. Once bacterial growth 

began, current gradually decreased. The current decrease was accelerated during the 

exponential growth phase of L. lactis until a stable end value was reached and growth 

stopped. This informs of a pH pattern related to bacterial growth in this fermentation 

process that may be observed in this research.  

 To sense the content of tyramine in dairy products, Draz and coworkers 

developed and optimized a sensor to rapidly test these products for quality and safety 
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(Draz et al., 2021). Tyramine is a vasoactive biogenic amine in food products that may 

result in life-threatening physiological reactions when consumed in high levels. Potential 

measurements were recorded using a potentiometric model, consisting of a double 

electrode system: a working electrode and a silver-silver chloride reference electrode. 

This system measures the difference in potentials, and is combined with a pH glass 

electrode. Responsiveness of the sensor was determined by consecutive changes in 

tyramine concentrations. The time required for the sensor to reach a stable response was 

determined. The effect of pH on the measured potential was monitored through a known 

tyramine solution. The pH of the solution was altered, with pH and mV monitored after 

each minute alteration. Measured potential in mV was then correlated to the pH.  

 The presence of absence of the exotoxin staphylococcus aureus was determined 

by measuring the potential difference between a silver-silver chloride electrode and a 

PVC electrode of the sensor system developed by Ahari and colleagues (Ahari et al., 

2017). This system indicates the sensor’s response to the presence of the bacterial 

exotoxin (Z. Bai et al., 2016; Domenech et al., 2013; Singh et al., 2014). The potential of 

each dilution was recorded by a potentiometer. The Nernst relationship applies when the 

potential difference between two dilutions is 59 mV, and the reading of the electrode will 

become higher in the next dilution (Ahari et al., 2017). If the potential difference between 

two dilutions is 59 mV, then the standard Nernst slope applies, indicating that the sensor 

registered the presence of the exotoxin in that dilution. Should the potential difference 

between two successive dilutions be less than 59 mV, then the sensor would be 

determined to not be sensitive enough to detect the presence of the exotoxin (Yoo et al., 
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2016). Similarly, the effect of temperature on the sensor’s response is based on the Nernst 

equation; temperature was measured between 2 ⁰C and 35 ⁰C (Ahari et al., 2017). Results 

were plotted by recording the signals (Eftekhari-Sis et al., 2016). This sensor was unable 

to distinguish between one dilution and more-diluted solutions (Ahari et al., 2017). 

Potential differences remained constant in the pH range of 5.0 – 8.5. The sharp change in 

potentials at higher pH may be attributed to the deprotonation of free carboxyl groups 

(Ahari et al., 2017). Changes in potential at lower pH values is related to the protonation 

of the amine groups of the exotoxin. From this, it may be inferred that the charge-

transport process of the sensor due to a higher concentration of hydronium ions lowers 

pH. Despite an inherent detection limit for this sensor, the sensor could be employed to 

determine the presence of S. aureus without interference. 

 Electron transfer itself was investigated by Otero and associates with a working 

electrode, a graphite counter electrode, and silver-silver chloride reference electrode 

(Jiménez Otero et al., 2021; Yates et al., 2018). Response time of the biofilm was also 

calculated from the Nernst equation, where conductivity was characterized to describe the 

degree to which the biofilm conducts electrical current by redox electron transfer 

(Jiménez Otero et al., 2021).  

 A lack of research remains in the field of bacterial-toxin detectors using 

biosensors. A variety of health deployment opportunities remain for these. For example, 

similar sensors were able to detect the West Nile virus protein at a pH of 7 (B. T. T. 

Nguyen et al., 2009).  
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MPS have yet to be directly applied to the real time monitoring of microbial 

activity in anerobic fermentation, such as the culturing of yogurt. In this process, 

potentiometric signals may be interpreted to determine microbial bioactivity. 

Nonetheless, Casimero and coworkers tested pH monitoring in a complex and changing 

system (Casimero et al., 2018). The solid-state pH sensor was demonstrated to be capable 

of operating in a microbial reactor. Clear signals with redox peaks were produced, from 

which pH can be computed. The system is reagent-less and inexpensive, features shared 

with MPS (Favre et al., 2009; Stoianov et al., 2008).  

 

Microbial Fermentation Reactions and Yogurt Production  

 Fermented milk products are obtained by the fermentation of milk by specific 

microorganisms. According to the International Food Standards published from the Food 

and Agriculture Organization (FAO), fermented milk is a product that is obtained by the 

fermentation of milk, which may be manufactured from products obtained from milk 

with or without compositional modification by the action of microorganisms and 

resulting in the reduction of pH (FAO, 2018). This change in pH will be monitored in this 

research. A fermentation medium is a chemical environment that includes peptides, salts, 

and redox molecules that interfere with a sensor’s surface (Ambrosi et al., 2014; Z. Wang 

et al., 2016; F. Xie, Cao, et al., 2018; F. Xie, Liu, et al., 2018; L. Xie et al., 2017). 

Beyond microbial growth, milk is also subjected to oxidation of fatty acids and the 

evaporation of volatile organic compounds that may have had an unmeasured effect on an 

experimental system (Winquist et al., 1998). Starting microorganisms should be viable, 
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active, and abundant in the product. The starting milk itself must be fresh and sanitary, 

with low bacterial counts and absent of pathogens and antibiotics, sanitization residues, 

and other inhibitors (de Oliveira, 2014).  

Kefir is produced by culturing milk with kefir grains, a heterogeneous mixture of 

lactic acid bacteria, acetic acid bacteria, and yeasts contained in an exopolysaccharide 

matric (Rosa et al., 2017). The probiotic nature of kefir has numerous health benefits 

(Bourrie et al., 2016; Fiorda et al., 2017; Gul et al., 2015; Laureys & De Vuyst, 2014, 

2017; Rosa et al., 2017; Satir & Guzel-Seydim, 2016) with a long history of production 

and consumption.  

The resulting beneficial health properties of fermented milk products have been 

known for years; Russian bacteriologist Elie Metchnikoff was the first to explain  the 

beneficial effects of lactic acid bacteria that is present in fermented milks (de Oliveira, 

2014). However, Metchnikoff showed that L. bulgaricus, a bacteria used in this research, 

does not survive and does not colonize the gastrointestinal tract. Other probiotics in 

fermented products have been documented to have a beneficial effect through the growth 

and action in the gastrointestinal tract (de Oliveira, 2014). In yogurt, this is achieved with 

the living probiotic microorganisms, nondigestible prebiotic carbohydrates, and bioactive 

metabolites. Probiotic microorganisms belong to the genera Lactobacillus, 

Bifidobacterium, Streptococcus, and Saccharomyces. Benefits of probiotic 

microorganisms include increased immune modulation and prevention of disease and 

infections, especially related to intestinal, breathing, and urinary infections (de Oliveira, 

2014). As such, probiotic bacteria should be present in final yogurt products at high 
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viable counts for the duration of the yogurt’s shelf life. At the same time, it is evident that 

in heat treatment of yogurt, L. bulgaricus and S. thermophilus starter cultures are 

destroyed. Therefore, yogurt must contain an abundant and viable population of these 

bacteria, or the final product cannot be called yogurt according to these standards.  

Dairy product fermentation has recently been aided by scientifically-based 

manufacture and controlled fermentation. This process has been further aided by the 

improvement of knowledge in microbiology, enzymology, physics, engineering, 

chemistry, and biochemistry (de Oliveira, 2014). Processing conditions including pH, 

temperature, and fermentation time influence the nutritional characteristics of the 

products (Ntsame Affane et al., 2011; Satir & Guzel-Seydim, 2016). Lactic acid is 

produced by microbes during the fermentation process (Fiorda et al., 2017). During 

culturing, the mixture composed of molecules, minerals, proteins, and fats exchange with 

the growing kefir grain biomass (Casimero et al., 2018). The monitoring and control of 

pH during production thus allows for greater control over some aspects of the final 

product characteristics and qualities (Ntsame Affane et al., 2011; Satir & Guzel-Seydim, 

2016). Yogurt itself may take on a variety of these different final characteristic structural 

properties. Of these, set yogurt is where fermentation takes place inside a package (de 

Oliveira, 2014) and is most similar to the process used in this research.  

 As the bacterial communities transform the milk, pH will decrease, typically from 

a pH of 6.5 to a pH of 3.5 (Bause et al., 2018). At the same time, viscosity will increase, 

which may result in surface fouling (Casimero et al., 2018). These microbial interactions 

in food processing affect the final product (Dantism et al., 2019). Similarly, 
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microorganisms in soy sauce enhance the aroma and flavor profile of the final product 

during the fermentation process (Devanthi & Gkatzionis, 2019). In the fermentation of 

coffee, mucilage is degraded into alcohols, acids, and enzymes by microorganisms, 

impacting the product’s final quality (Haile & Kang, 2019). During the shelf life of 

yogurt, the number of bacteria decreases as the product’s acidity increases (de Oliveira, 

2014), which frequently leads to undesired off-flavors.  

 Yogurt products in particular have expanded as a result of food technology and 

research, including the development of new ingredients. Yogurt products may have better 

market acceptance, and thus greater profit and safety, if manufacturers invest more into 

understanding characteristics of the product, including texture, taste, and health-related 

probiotics (de Oliveira, 2014). Yogurt is classified as a product that includes the 

fermentation of probiotic cultures of yogurt, including fermentation products that take 

place with photosymbiotic cultures of S. thermophilus and L. delbrueckii subsp. 

Bulgaricus (de Oliveira, 2014). These cultures may be accompanied by other lactic acid 

bacteria that may contribute to the activity and determine final product characteristics.  

Streptococcus thermophilus and L. bulgaricus are yogurt bacteria adapted for 

growth in milk. Milk provides a good matrix for these microorganisms, containing 

approximately 47 g/mL carbohydrates, 36 g/mL fats, and 33 g/mL proteins (de Oliveira, 

2014), as well as a variety of vitamins and minerals. Each of these components are 

critical for the production of fermented milk. Calcium and phosphorous, for example, are 

essential minerals for the formation of the characteristic gel structure of yogurt (de 

Oliveira, 2014). These microorganisms have enzymes and metabolic pathways that use 
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lactose as an energy source for the starter culture, as well as proteinases and peptidases 

that enable the assimilation of nitrogen for cell growth (de Oliveira, 2014). The addition 

of other ingredients affects the final yogurt product as well. For example, the 

incorporation of sugar increases the time it takes to reach the final pH, due to an 

inhibitory effect of bacteria with an adverse osmotic effect as well as low water activity 

(de Oliveira, 2014). For this reason, sugar or any other additional ingredients will not be 

added to the yogurt that is produced in this research.  

A series of heating and cooling standardizes milk before culturing to provide an 

appropriate environment for fermentation. This homogenizes milk and milk solids to 

promote the uniform dispersion of fat in the milk mixture. In turn, this increases the 

viscosity and improves the characteristic qualities of yogurt (de Oliveira, 2014). Heat 

treatment is thus one of the main parameters that effects the texture, structure, and 

rheology of the final yogurt product. Milk is heated to a temperature between 85 ⁰C and 

95 ⁰C, depending on the desired final texture. Following heat treatment, the milk is 

cooled to a temperature appropriate for the inoculating bacteria to proliferate, typically 

lower than 42 ⁰C (de Oliveira, 2014). Then, an inoculum concentration between 1% and 

5% is added depending on the starter’s manufacturer, however minimum inoculations are 

recommended to prevent an intense acidification (de Oliveira, 2014). This research will 

follow a lower inoculum concentration to avoid this acidification.  

Fermentation time varies between 4 and 20 hours until a final pH of around 4.3, 

the isoelectric point where the milk’s casein becomes unstable and coagulates, forming 

yogurt’s distinctive firm gel (de Oliveira, 2014). Whey protein is trapped within this gel 
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matrix, with higher whey protein milk yielding stronger gel yogurt. Fermentation is 

stopped by finally cooling the yogurt to 5 ⁰C. This cooling reduces metabolic activity of 

the culture and controls further acidification of the product. 

In a previous study, a solid-state pH sensing element with a microbial reactor was 

designed for use in kefir fermented milk products (Casimero et al., 2018). Before this, an 

electronic tongue was used to monitor the freshness of milk (Winquist et al., 1998). This 

electronic sensor monitored the deterioration of milk quality due to microbial growth at 

room temperature. Milk serves as an ideal growth medium for several groups of bacteria, 

of which the selected microbes for this research will be selected. Winquist and colleagues 

placed working and reference electrodes of the electronic sensor into the milk reactor. 

This sensor array, however, required an electrochemical procedure to clean the working 

electrode, which is not required when using MPS. Samples were measured around room 

temperature, between 21 ⁰C and 25.5 ⁰C (Winquist et al., 1998), which will be used to 

inform this research. At different temperatures, different microbial constituents may be 

promoted, and as such, measurements of the total bacteria content may be made without 

identifying the individual composition of bacteria (Winquist et al., 1998). Further, no 

precautions were made to prevent microbial growth in the milk samples. Interestingly, 

despite using different packages of milk, samples at the same temperature were observed 

to have similar microbial measurements, and likely contained different starting bacterial 

contents (Winquist et al., 1998). Winquist and colleagues conclude that the simplicity and 

durability of the voltametric sensing system provides a potential that may be further 

paired with other electrochemical parameters, namely conductivity, furthering the 
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possible applications of such sensors and ushering the expectations of MPS and other 

developed sensor technologies.  

Similar to this research, Chinnathambi and associates developed an 

electrochemically reduced graphene oxide electrode that operated as a pH sensor during 

the fermentation of L. lactis (Chinnathambi & Euverink, 2019). This bacteria produces 

lactic acid and is used to ferment food. During fermentation, the production of this lactic 

acid lowers the pH of the process, until the bacterium stops growing at a low pH (Britton 

& Robinson, 1931; Hols et al., 1999; Luedeking & Piret, 1959). During L. lactis growth, 

glucose is converted into biomass and lactic acid that decreases the pH of the 

fermentation process. Growth ends when the pH of fermentation is too low to support 

proper growth or when no glucose remains to be converted (Chinnathambi & Euverink, 

2019).  
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CHAPTER 3 

METHODOLOGY 

Experimental Design and Methods  

 Organic whole milk (WinCo Foods, USA) was fermented in an open-top 500 mL 

glass reactor vessel. This type of milk was selected as it would be free of excess 

antibiotics, which may interfere with or impede proper microbial culturing (de Oliveira, 

2014). Two 50 mm long cylindrical carbon (fiberglass reinforced) MPS electrodes with a 

diameter of 5 mm (Burge et al., 2019) were placed in the vessel parallel to each other at 

the bottom of the reactor. A traditional oxidation-reduction potential (ORP) probe was 

placed between the two electrodes was connected to the MPS data collection system to 

obtain simultaneous reference data. The spatial positioning of these probes and MPS 

electrodes prevents contact with each other while also capturing the entire vessel’s 

contents, as seen in Figure 1. Further, using two electrodes allows the average of the 

recorded signal to be calculated for a more representative capture of the process. The 

ORP probe also functioned with a secondary silver-silver chloride reference electrode, 

which would serve as the reference electrode for both the MPS and ORP electrodes.  
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Figure 1. Electrode Setup. The open-top vessel containing the grey (left) and red (right) 

carbon tube MPS electrodes and the silver-silver chloride reference electrode in the ORP 

probe (center).  

 

The OCP data collection system was developed by Dr. Dragan Boscovic and his 

team (Vizcore LLC, Scottsdale, AZ, USA). The system  automatically collected data at a 

frequency of every 69 seconds. This frequency ensures the system captures a snapshot of 

the process every minute to provide a true and real-time profile of the reaction. An 

independent pH probe (Beckman Coulter, Brea, CA, USA) was used to obtain pH 

reference data at regular intervals, typically capturing an average of 23 pH readings 

during each fermentation experiment. pH is also obtained to use in tandem with MPS 

signals to distinguish fermentation completion, where the decrease of pH from the 
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production of lactic acid, continuing fermentation until the bacteria stops growing at a 

low pH (Britton & Robinson, 1931). Photographs were taken to observe visible changes 

in the milk’s structure and the development of biofilm on the sensors at various stages of 

the fermentation process. Before each experiment, all electrodes and probes were washed 

with reverse-osmosis treated water, as well as gently brushed to remove any accumulated 

biofilm, yogurt gel, or milk solids. This would ensure standardized measurements for 

each experimental run. The pH probe was calibrated using a standard 3-point buffer 

calibration method. Further, the pH probe was rinsed with reverse-osmosis treated water 

between readings. A log containing the inoculation amount, time, pH, and temperature 

was maintained for each experiment to be paired with the MPS and ORP collected data.  

 A set of four experiments were conducted. In each experiment, 200 mL of milk 

was first subjected to a heat treatment. Heat treatment was conducted in a hot water bath 

to reach a temperature of at least 75 ⁰C (de Oliveira, 2014). This step results in a 

modification of the physical-chemical properties of denatured casein and whey proteins, 

releasing products that stimulate the growth of the cultures, removing dissolved oxygen 

in the milk, improving the growth of microaerophilic cultures, and killing potential 

pathogenic microorganisms that may be present in the milk (de Oliveira, 2014). Next, the 

milk was cooled to 42 ⁰C for the inoculation of the cultures (de Oliveira, 2014). A 10mL 

aliquot of milk was measured to weigh 10.3 grams, as such the density of the milk used 

was found to be approximately 1.03 g/mL. This density was used to determine the 

inoculation dose for a 1% inoculation mass/volume ratio. For 200mL of milk, 2.04 g of a 

lyophilized culture blend containing L. acidophilus, L. bulgaricus, and S. thermophilus 
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was completely mixed into the milk, achieving the 1% inoculum-to-milk concentration 

(de Oliveira, 2014). This is the recommended minimum inoculation ratio, selected to 

prevent intense acidification of the mixture (de Oliveira, 2014). The mixture was kept at 

23 ± 2 ⁰C during the fermentation process and monitored using a traditional glass 

thermometer. pH was recorded regularly until the a of pH = 4.3 approached and 

stabilized. The isoelectric point of the inoculated milk is where acidity of the 

fermentation mixture reaches 1.0 g of lactic acid per 100 mL of the mixture (de Oliveira, 

2014), destabilizing the milk’s casein and coagulating the mixture to form yogurt’s 

characteristic gel structure. Depending on the milk’s protein content, the isoelectric point 

may vary from a pH of 4.7 to as low as a pH of 4.0 (de Oliveira, 2014); however, using 

pH = 4.3 is an approximate midpoint and would ensure the pH of the mixture would 

proceed beyond the upper reach of this typical isoelectric point range. At the end of each 

experiment, all electrodes and probes were removed and washed with reverse-osmosis 

treated water, as well as gently brushed to remove any accumulated biofilm, yogurt gel, 

or milk solids. The glass reactor vessel was also completely washed between experiments 

and rinsed with reverse-osmosis treated water.  

 

Preparation and Assembly of Data for Primary Analysis  

 Data collected by the automatic data collection system was assembled into a 

database for analysis and interpretation. The timestamped data was extracted for each 

experimental run, starting with the initial time of inoculation and ending with the last 

recorded pH reading. The open-circuit potential measured by the red carbon tube (1) and 
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grey carbon tube (2), in volts (V) was determined by subtracting the output of the 

resulting average (3) of the two carbon MPS electrodes from the time-corresponding 

output of the secondary silver-silver chloride reference electrode of the ORP probe.  

 

∆𝐸𝐸𝑂𝑂𝑂𝑂𝑂𝑂,   𝑅𝑅𝑅𝑅𝑅𝑅 =  ∆𝐸𝐸𝑂𝑂𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 −  ∆𝐸𝐸𝑅𝑅𝑅𝑅𝑅𝑅,   𝐴𝐴𝐴𝐴/𝐴𝐴𝐴𝐴𝑂𝑂𝐴𝐴                             (1) 

∆𝐸𝐸𝑂𝑂𝑂𝑂𝑂𝑂,   𝐺𝐺𝐶𝐶𝑅𝑅𝐺𝐺 =  ∆𝐸𝐸𝑂𝑂𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝐺𝐺𝐶𝐶𝑅𝑅𝐺𝐺 −  ∆𝐸𝐸𝑅𝑅𝑅𝑅𝑅𝑅,   𝐴𝐴𝐴𝐴/𝐴𝐴𝐴𝐴𝑂𝑂𝐴𝐴                            (2)  

where 

∆𝐸𝐸𝑂𝑂𝑂𝑂𝑂𝑂  = Open-circuit potential measured by the carbon tube electrode in volts 

∆𝐸𝐸𝑂𝑂𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅  = Data value recorded by the carbon tube electrode  

∆𝐸𝐸𝑅𝑅𝑅𝑅𝑅𝑅,   𝐴𝐴𝐴𝐴/𝐴𝐴𝐴𝐴𝑂𝑂𝐴𝐴  = Theoretically constant value recorded by the silver-silver 

chloride reference electrode, approximately 1.67 volts  

 

∆𝐸𝐸𝑀𝑀𝑂𝑂𝑀𝑀,   𝐴𝐴𝐴𝐴𝑅𝑅𝐶𝐶𝐶𝐶𝐴𝐴𝑅𝑅 =  ∆𝑅𝑅𝑂𝑂𝑂𝑂𝑂𝑂,   𝑅𝑅𝑅𝑅𝑅𝑅 + ∆𝑅𝑅𝑂𝑂𝑂𝑂𝑂𝑂,   𝐺𝐺𝐺𝐺𝑅𝑅𝐺𝐺 

2
× 1000 𝑚𝑚𝑚𝑚

1 𝑚𝑚
                (3)  

where 

∆𝐸𝐸𝑀𝑀𝑂𝑂𝑀𝑀,   𝐴𝐴𝐴𝐴𝑅𝑅𝐶𝐶𝐶𝐶𝐴𝐴𝑅𝑅  (𝑚𝑚𝑚𝑚) = The average MPS signal of the red and grey carbon tube 

electrodes in millivolts  

∆𝐸𝐸𝑂𝑂𝑂𝑂𝑂𝑂,   𝑅𝑅𝑅𝑅𝑅𝑅  = Open-circuit potential measured by the red carbon tube electrode in 

volts 

∆𝐸𝐸𝑂𝑂𝑂𝑂𝑂𝑂,   𝐺𝐺𝐶𝐶𝑅𝑅𝐺𝐺  = Open-circuit potential measured by the grey carbon tube electrode 

in volts 

 



 

49 

This calculation was performed for each recorded time before voltage was 

converted to millivolts (mV). Each data point’s logged time was converted into seconds 

(s) and minutes (min), with the initial inoculation time becoming t = 0 sec. The pH values 

were entered into the database at the corresponding timestamps. Temperature was 

assembled at the appropriate timestamps alongside the pH capture points.   

 This assembly of MPS mV output, pH, temperature, and time was thus prepared 

for graphical analysis. A scatter chart was plotted, with time in minutes on the x-axis and 

the MPS signal (ΔE, in mV) on the y-axis. Recorded pH measurements were added at 

their respective timestamps. This presented a graph that displays the change in MPS 

signal output over time with the related pH measurements. Each experiment was graphed 

in this manner, with all experiments then colligated into a single graph to determine the 

average MPS signal over time.  

 Guided by this assembly, fermentation completion times were determined. Slope 

was calculated (4) in consecutive groupings of 15, 10, and 5 timestamped data points to 

provide different resolutions, corresponding to approximately groupings of 15, 10, and 5 

minutes, respectively. Equation (4) will result in a value of zero when there is no change 

in the averaged MPS signal throughout the consecutive grouping’s timeframe.  

 

𝑏𝑏 =  
(𝑡𝑡−𝑥𝑥𝑥𝑡𝑡) × (∆𝑅𝑅𝑀𝑀𝑂𝑂𝑀𝑀,   𝐴𝐴𝐴𝐴𝑅𝑅𝐺𝐺𝐴𝐴𝐴𝐴𝑅𝑅 − 𝑥𝑥𝑥𝑀𝑀𝑂𝑂𝑀𝑀)  

∑(𝑡𝑡−𝑥𝑥𝑥𝑡𝑡)2
                                       (4) 

where 

𝑏𝑏 = slope  

𝑡𝑡 = the single timestamp of each data measurement  

𝑥𝑥𝑥𝑡𝑡 = the average of the 15, 10, or 5 minute grouping  
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∆𝐸𝐸𝑀𝑀𝑂𝑂𝑀𝑀,   𝐴𝐴𝐴𝐴𝑅𝑅𝐶𝐶𝐶𝐶𝐴𝐴𝑅𝑅 = the average MPS signal as calculated in (3) of each data 

measurement in millivolts 

𝑥𝑥𝑥𝑀𝑀𝑂𝑂𝑀𝑀 = the average MPS signal of the 15, 10, or 5 minute grouping  

 

When the slope result approaches zero and often results in the minimum value of 

the slope calculation, fermentation was determined to be complete at a moment where the 

signal does not change. This equation will result in a zero value for each instance there is 

no change between consecutive MPS signal recordings; as such, there may be multiple 

regions of zero values. Consideration as complete fermentation would thus be limited to 

the data with a pH below 5.0 and a slope resulting in relative zero values.  

 In the absence of pH data between two recorded pH points, the previous and 

following pH measurements were linearized to calculate an estimated pH within this 

range (5). This was performed as needed in areas with no recorded pH to assist in 

determining the pH during a timeframe where fermentation was potentially complete. 

 

pH𝑡𝑡𝑥𝑥 = �pHt2− pHt1
𝑡𝑡2− 𝑡𝑡1

� × (𝑡𝑡𝑥𝑥 −  𝑡𝑡1) +  pH𝑡𝑡1                       (5) 

where 

pH𝑡𝑡𝑥𝑥 = the estimated pH at the desired time 𝑥𝑥 

𝑡𝑡𝑥𝑥 = time 𝑥𝑥 in minutes  

𝑡𝑡1 = time of pH1 in minutes  

𝑡𝑡2 = time of pH2 in minutes 

pHt1 = pH at time 1 
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pHt2 = pH at time 2 

 

Using calculated or measured pH and the plotted time vs. MPS signal graph 

would further limit the range where fermentation was expected to be complete, visually 

with a plateau in MPS signal. This range would then be examined with the calculated 

slopes and average MPS output to precisely determine a time of complete fermentation.  

With no change in open-circuit potential as reported by the averaged MPS signal, 

there is no electron exchange sufficient to induce a change in the ΔE (OCP) value 

(Hristovski et al., 2022). In this instance of stable OCP, fermentation is complete and the 

isoelectric point has been reached. This temporal region is where the redox processes 

associated with the transfer and movement of electrons of the redox fermentation 

metabolic processes have slowed to nearly nothing (Hristovski et al., 2022). With the 

slope calculated for each consecutive recorded measurement, identification of these 

points of no change informs completed fermentation. However, beyond a range of this 

isoelectric behavior, MPS and thus calculated slope will no longer be zero as the yogurt 

mixture is subjected to decomposing microorganisms that will proliferate in absence of 

protective measures including sealing and cooling (de Oliveira, 2014).  

 

Primary Analysis 

 Following the identification of the approximately zero slopes of change in MPS 

signal over time, complete fermentation times were determined. These time points were 

then assembled in a separate log, containing each experiment’s inoculum mass, 
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timestamp of complete fermentation as described above, the corresponding 

approximately zero slope for that time point, the MPS signal for that time, and the pH of 

this complete fermentation time. pH was calculated as above using a linear function 

where pH was not captured at the time determined to be complete fermentation. This 

assembly allowed for convenient comparison across experimental trials, as well as 

serving as the guiding information for the primary analysis.  

 With the determined information organized in this method, simple initial 

comparison between experiments is possible. This data indicates a time snapshot of the 

MPS signal and pH of the reaction at the moment at which fermentation was deemed to 

be complete for each experiment and at with each inoculum masses. From here, the 

average values for time (6), MPS signal (7), and pH (8) at each experiment’s time of 

complete fermentation were calculated from the four experiments.  

 

𝑥𝑥𝑥𝑡𝑡 =  ∑(𝑡𝑡1+ 𝑡𝑡2+⋯ 𝑡𝑡𝑛𝑛)
𝐶𝐶𝑡𝑡

                                                (6)  

where 

𝑥𝑥𝑥𝑡𝑡= average time of complete fermentation  

𝑡𝑡1 = time of complete fermentation in one experiment  

𝑛𝑛𝑡𝑡 = number of experiment times to be averaged   

 

𝑥𝑥𝑥∆E =  ∑(∆𝑅𝑅1+ ∆𝑅𝑅2+⋯∆𝑅𝑅𝑛𝑛 )
𝐶𝐶∆𝐸𝐸

                                         (7) 

where 

𝑥𝑥𝑥∆E = average MPS signal at the time of complete fermentation  
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∆𝐸𝐸1 = MPS signal at the time of complete fermentation in one experiment  

𝑛𝑛∆𝑅𝑅  = number of experiment MPS signals to be averaged   

 

 

𝑥𝑥𝑥pH =  ∑(pH1+ pH2+⋯ pHn)
npH

                                                   (8)  

where 

𝑥𝑥𝑥pH = average pH at the time of complete fermentation  

pH1 = pH value at the time of complete fermentation in one experiment  

npH = number of experiment pH values to be averaged   

 

Standard deviation was calculated in the same manner for time (9), MPS signal 

(10), and pH (11). The average provides an overall range for time, MPS signal, and pH 

when fermentation is complete.  

 

𝜎𝜎𝑡𝑡 =  �∑(𝑡𝑡𝑖𝑖−𝑥𝑥𝑥t)2

𝐶𝐶𝑡𝑡
                                                (9) 

where 

𝜎𝜎𝑡𝑡 = standard deviation of complete fermentation time, in minutes  

𝑡𝑡𝑖𝑖 = time of complete fermentation for each experiment  

𝑥𝑥𝑥t = average time of complete fermentation as calculated in (6)  

𝑛𝑛𝑡𝑡 = number of experiment times  
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𝜎𝜎𝑀𝑀𝑂𝑂𝑀𝑀 =  �
∑(𝑀𝑀𝑂𝑂𝑀𝑀 𝑀𝑀𝑖𝑖𝐴𝐴𝐶𝐶𝐶𝐶𝐴𝐴𝑖𝑖 − 𝑥𝑥𝑥∆E)2

𝐶𝐶𝑀𝑀𝑂𝑂𝑀𝑀 𝑀𝑀𝑖𝑖𝐴𝐴𝑛𝑛𝐴𝐴𝑆𝑆
                                       (10) 

where 

𝜎𝜎𝑀𝑀𝑂𝑂𝑀𝑀 = standard deviation of MPS Signal at complete fermentation time, in mV    

𝑀𝑀𝑀𝑀𝑀𝑀 𝑀𝑀𝑆𝑆𝑆𝑆𝑛𝑛𝑆𝑆𝑆𝑆𝑖𝑖 = MPS signal at the time of complete fermentation for each 

experiment  

 𝑥𝑥𝑥∆E = average MPS signal at the time of complete fermentation as calculated in 

(7)  

𝑛𝑛𝑀𝑀𝑂𝑂𝑀𝑀 𝑀𝑀𝑖𝑖𝐴𝐴𝐶𝐶𝐶𝐶𝐴𝐴 = number of experiment MPS signals  

 

𝜎𝜎pH =  �
∑(pHi− 𝑥𝑥𝑥pH)2

𝐶𝐶pH
                                           (11)  

where 

𝜎𝜎pH = standard deviation of pH at complete fermentation time  

pH𝑖𝑖 = pH at the time of complete fermentation for each experiment  

𝑥𝑥𝑥pH = average pH at the time of complete fermentation as calculated in (8)  

𝑛𝑛pH = number of experiment pH values  

 

Using the standard deviation, simple 95% confidence intervals were calculated, in 

which based on the four sets of experimental data as assembled in this primary analysis, 

may be interpreted to contain the true values at complete fermentation with 95% 

confidence. With less than 30 experiments, the confidence intervals were constructed by 

first obtaining the product of the t-value of 3.182 (for 95% confidence, α = 0.025) and the 
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quotient of the standard deviation divided by the square root of the number of 

observations. These confidence intervals were done under the assumption of normal 

distribution. With four experiments used in the confidence interval calculation, there 

were n = 4 observations, and three degrees of freedom, df = 3. Next, the average value 

would then add or subtract this product to obtain the upper and lower range of 

confidence, respectively. An identical confidence interval was be calculated for time (12), 

MPS signal (13), and pH (14) using the respective average values and standard deviations 

for these items.  

 

𝐶𝐶𝐶𝐶𝑡𝑡 = 𝑥𝑥𝑥t  ± 3.182 � 𝜎𝜎𝑡𝑡
�𝐶𝐶𝑡𝑡𝑖𝑖𝑡𝑡𝑅𝑅

�                                   (12) 

 where 

𝐶𝐶𝐶𝐶𝑡𝑡 = lower and upper bounds of the confidence interval for time, assuming 

normal distribution  

𝑥𝑥𝑥t = average time of complete fermentation as calculated in (6) 

𝜎𝜎𝑡𝑡 = standard deviation of complete fermentation times as calculated in (9)  

𝑛𝑛𝑡𝑡𝑖𝑖𝑚𝑚𝑅𝑅 = number of experiment times  

 

𝐶𝐶𝐶𝐶∆𝑅𝑅 = 𝑥𝑥𝑥∆E ±  3.182 � 𝜎𝜎∆𝐸𝐸
√𝐶𝐶∆𝐸𝐸

�                                  (13) 

where 

𝐶𝐶𝐶𝐶∆𝑅𝑅 = lower and upper bounds of the confidence interval for MPS signal at the 

complete fermentation time, assuming normal distribution   
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𝑥𝑥𝑥∆E = average MPS signal at the time of complete fermentation as calculated in 

(7) 

𝜎𝜎∆𝑅𝑅 = standard deviation of MPS signals in millivolts at the time of complete 

fermentation, as calculated in (10)  

𝑛𝑛∆𝑅𝑅= number of experiment MPS signals  

𝐶𝐶𝐶𝐶pH = 𝑥𝑥𝑥pH  ± 3.182 � 𝜎𝜎pH
�𝐶𝐶pH

�                                (14)  

where 

𝐶𝐶𝐶𝐶pH = lower and upper bounds of the confidence interval for pH at the complete 

fermentation time   

𝑥𝑥𝑥pH  = average pH value at the time of complete fermentation as calculated in (8) 

𝜎𝜎pH = standard deviation of pH values at the time of complete fermentation, as 

calculated in (11)  

𝑛𝑛pH= number of experiment pH values  

 

Method Detection Limit Calculation 

The MDL was calculated using a similar data assembly as used in the primary 

analysis. For each of the four experiments, the inoculum mass and time of complete 

fermentation were organized. Next, the standard deviation of complete fermentation time 

across the experiments was calculated. In this case, the MDL uses the Students’ two-

sided distribution t-value for 95% confidence, four observations, and three degrees of 

freedom was 3.182 (α = 0.025). At last, the MDL is calculated (16) by multiplying this t-

value by the standard deviation (U.S. EPA, Office of Water, 2016), here producing the 
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minimum amount of time that can be calculated and reported so as to have 95% 

confidence that the experiment’s complete fermentation time is measured.  

 

 

 

𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑡𝑡(𝐶𝐶−1,   0.95) × 𝜎𝜎𝑡𝑡                                        (16)  

 where 

𝑀𝑀𝑀𝑀𝑀𝑀 = the calculated Method Detection Limit for time, in minutes  

𝑡𝑡(𝐶𝐶−1,   0.95) = Students’ t-value appropriate for 𝑛𝑛 observations and 95% 

confidence  

𝜎𝜎𝑡𝑡 = standard deviation of complete fermentation time, in minutes, as calculated 

in (9)   

 

Sensitivity Analysis  

 A series of sensitivity analyses were conducted to assess the degree of confidence 

in the results of this research. A sensitivity analysis would examine how the results 

change when different analytical considerations are used of as changing the assembly of 

data (Thabane et al., 2013). The sensitivity analysis is incorporated into the fourth 

research objective and allows for additional interpretations of the data collected that may 

have different degrees of confidence.  

 For the first component of the sensitivity analysis, extreme outliers in any of the 

experiments were identified. Here, outlier experimental trials were identified as 
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containing numerically distant variables of inoculum mass from the remaining 

experimental trials. By identifying these outliers, the data was analyzed again excluding 

these observations that were included in the primary analysis. An outlier trial may deflate 

or inflate averages or other calculated values of a data series (Thabane et al., 2013), thus 

skewing the remaining data series and altering the resulting interpretation. Comparing the 

results of including any outlier trials in the primary analysis with the results of excluding 

these trials in the sensitivity analysis would indicate the effect of these outliers on the 

analysis of data.  

 Also related to the examination of the experimental trials for outliers, minor 

protocol deviations were identified. Between experiments, deviations from the standard 

protocol may have the potential impact of altering the experimental treatment and 

reducing the ability to compare data sets (Thabane et al., 2013).  

 Another aspect used for the sensitivity analysis was the impact of defining the 

point of complete fermentation differently. For the primary analysis, the exact recorded 

timestamp that captured an approximately zero slope of MPS signal over time in minutes, 

as described in the data assembly section of this chapter. In addition to defining this time 

as the exact moment of complete fermentation, the sensitivity analysis would examine an 

approximately 10-minute range that includes the timestamp previously determined to be 

the time of complete fermentation. By redefining this threshold of the experiment’s 

outcome, time of complete fermentation, the sensitivity of the method was examined 

(Thabane et al., 2013). The sensitivity analysis was then interpreted as how much the 

time may vary within a range where the exact determination of complete fermentation is 
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contained yet still predict complete fermentation time with 95% confidence. To compare, 

the MPS signal change slopes of 10-minute time ranges where fermentation was 

completed as previously identified were calculated. In these time ranges, the original time 

of complete fermentation became the mean time of complete fermentation. These times 

were then when analyzed as a range rather than a single timepoint as in the primary 

analysis.  

 Additionally, the sensitivity analysis would also consider clustering. Clusters 

were identified as naturally occurring groups based on the inoculum mass used. Within 

these determined clusters, the data was expected to resemble a degree of relative 

homogeneity (Thabane et al., 2013) and experiments were collectively grouped as this 

cluster. By grouping experiments to compare between clusters, interpretation of results 

using this approach differ than those reached by examining each experiment individually. 

Sensitivity analysis by cluster was extended to congruent analysis of the previously 

described sensitivity analyses of outliers and the redefinition of complete fermentation as 

an exact time versus a timespan.   

 The last consideration in performing sensitivity analyses would be the impact of 

distributional assumptions (Thabane et al., 2013). By using the same inoculum mass in 

each trial, it was assumed that the resulting complete fermentation time should be 

approximately the same. Following the assembly of data for the primary analysis, it may 

quickly be determined if this assumption is valid. As the data for time and MPS signal is 

continuous, a sensitivity analysis would be conducted for time, MPS signal, and pH when 

compared as exact timestamp data. When examining slope data of the sensitivity analysis 
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as a 10-minute time range, considering the exact time of complete fermentation to be the 

mean, the time range was also standardized. Standardization using Z-scores is displayed 

in (17). The same equations were used to calculate the values of complete fermentation 

time, ΔE, and pH (18). This allows for comparison across experimental trials to obtain 

confidence intervals of the cluster (19), with each time range then calculated back to 

exact times following analysis (20). Clustering also examined the effect of standardizing 

time ranges. With each time range containing 10 data entries, combining time ranges 

from each experiment would allow for multiples of 10 observation sets to be analyzed. A 

larger data set size may be more insightful, and in turn lead to more robust results than 

those found in the primary analysis.  

 

𝑍𝑍 =  𝑋𝑋𝑡𝑡/pH/∆𝐸𝐸 − 𝜇𝜇𝑐𝑐𝑆𝑆𝑐𝑐𝑐𝑐𝑡𝑡𝑅𝑅𝐺𝐺
𝜎𝜎𝑐𝑐𝑆𝑆𝑐𝑐𝑐𝑐𝑡𝑡𝑅𝑅𝐺𝐺

                                      (17)  

 where 

𝑍𝑍 = the calculated Z-score of the value  

𝑋𝑋𝑡𝑡/pH/∆𝑅𝑅  = original value of time, pH, or ΔE  

𝜇𝜇𝑐𝑐𝐴𝐴𝐶𝐶𝑐𝑐𝑡𝑡𝑅𝑅𝐶𝐶 = average value of time, pH, or ΔE of the cluster   

𝜎𝜎𝑐𝑐𝐴𝐴𝐶𝐶𝑐𝑐𝑡𝑡𝑅𝑅𝐶𝐶 = standard deviation for time, pH, or ΔE of the cluster   

 

𝜇𝜇𝑍𝑍 =  ∑(𝑍𝑍1+𝑍𝑍2+⋯𝑍𝑍𝑛𝑛)
𝐶𝐶𝑍𝑍

                                                   (18)  

 where 

𝜇𝜇𝑍𝑍 = the calculated average Z-score of the cluster   

𝑍𝑍 = Z-scores of the cluster   
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𝑛𝑛𝑍𝑍 = number of Z-scores in the cluster    

 

𝐶𝐶𝐶𝐶Z = 𝜇𝜇𝑍𝑍 ± 𝑡𝑡(𝐶𝐶−1,   0.95) �
𝜎𝜎𝑍𝑍
√𝐶𝐶Z

�                                                   (19)  

where 

𝐶𝐶𝐶𝐶Z = lower and upper bounds of the confidence interval for the Z-scores of time, 

pH, or ΔE   

𝜇𝜇𝑍𝑍  = average Z-score of time, pH, or ΔE as calculated in (18) 

𝑡𝑡(𝐶𝐶−1,   0.95) = Students’ t-value appropriate for 𝑛𝑛 observations and 95% 

confidence  

𝜎𝜎Z = standard deviation of Z-scores  

𝑛𝑛Z= number of Z-scores    

 

𝐶𝐶𝐶𝐶cluster = 𝜇𝜇𝑐𝑐𝐴𝐴𝐶𝐶𝑐𝑐𝑡𝑡𝑅𝑅𝐶𝐶 ± (𝐶𝐶𝐶𝐶Z ×  𝜎𝜎𝑐𝑐𝐴𝐴𝐶𝐶𝑐𝑐𝑡𝑡𝑅𝑅𝐶𝐶)                                         (20)  

where 

𝐶𝐶𝐶𝐶cluster = lower and upper bounds of the confidence interval for the clustered 

time, pH, or ΔE values  

𝜇𝜇𝑐𝑐𝐴𝐴𝐶𝐶𝑐𝑐𝑡𝑡𝑅𝑅𝐶𝐶  = average value for time, pH, or ΔE in the cluster  

𝐶𝐶𝐶𝐶Z = confidence interval for time, pH, or ΔE as calculated in (19) 

𝜎𝜎cluster = standard deviation of time, pH, or ΔE in the cluster 
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CHAPTER 4 

RESULTS AND DISCUSSION 

Description of Open Circuit Potential and pH Trends  

 Figure 2 depicts the obtained average ΔE and pH patterns from the first 

experimental trial using 0.508 grams of inoculum. This experimental trial tested the 

design and proper operation of the system. ΔE (in mV) increases slightly before dropping 

significantly after approximately 480 minutes, reaching a minimum of -266 mV at 700 

minutes. From here, MPS signal increased slightly before stabilizing around -336 mV at 

1070 minutes. Beyond this area, MPS signals varied, trending slightly higher. pH 

similarly increased from 6.44 at the start of the trial to 6.50, before gradually decreasing. 

The general pattern illustrates what is expected in subsequent trials and satisfies the 

second research objective by clearly providing MPS signal outputs and performance as 

hypothesized.  
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Figure 2. Initial Experimental Test with 0.508 g Inoculum Mass- Averaged MPS 

signal (ΔE, mV) and pH. Error bars represent the original two MPS sensor values as 

minimum and maximum before the average was calculated. The area where the change in 

energy over 10 minutes was approximately constant (zero slope) is boxed.  

 

 Figure 3 illustrates the data from the second experimental trial using 2.027 grams 

of inoculum. MPS signal (ΔE, mV) quickly increases slightly before dropping 

significantly after approximately 103 minutes before reaching a minimum of -372 mV at 

432 minutes. MPS signals then steadily increased before stabilizing around -323 mV at 

1468 minutes, the highest MPS signal stability value of all experiments. From here, MPS 

signals gradually increased. pH followed a similar pattern, increasing from 6.45 to 6.48 

before steadily decreasing to 4.55. At the isoelectric point, the pH is estimated to be 4.64 

using equation (5). Again this experiment supports the second research objective by 

confirming MPS performance and obtaining data in the yogurt medium.   
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Figure 3. Average MPS Signal (ΔE, mV) and pH using 2.027 g Inoculum Mass. Error 

bars represent the original two MPS sensor values as minimum and maximum before the 

average was calculated. The area where the change in energy over 10 minutes was 

approximately constant (zero slope) is boxed. 

 

 Figure 4 displays the data from the third experimental trial using 2.041 g of 

inoculum. MPS signal (ΔE, mV) increases slightly before rapidly decreasing after 123 

minutes, coming to a minimum of -362 mV at 573 minutes. MPS signal increased 

gradually, stabilizing around -328 mV at 1402 minutes. MPS signal remained relatively 

stable for the remainder of this trial. pH was closely monitored in this trial, especially 

nearing the stable MPS signal area. pH is estimated to be approximately 4.37 at the 

isoelectric point using equation (5), and was measured 4.36 less than 10 minutes later.  
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Figure 4. Average MPS Signal (ΔE, mV) and pH using 2.041 g Inoculum Mass. Error 

bars represent the original two MPS sensor values as minimum and maximum before the 

average was calculated. The area where the change in energy over 10 minutes was 

approximately constant (zero slope) is boxed. 

 

 Figure 5 illustrates the calculated average MPS signal (ΔE, mV) and pH patterns 

from the fourth experimental trial using 2.042 g of inoculum. Again, MPS signal 

followed a typical pattern, first increasing slightly to a maximum of 13 mV at 48 minutes, 

before rapidly decreasing to a minimum of -367 mV at 547 minutes. However, 

experiment 4 has a unique MPS signal pattern around 428 minutes, increasing slightly 

during the otherwise rapidly decreasing MPS signal trend. MPS signal stabilized at -333 

mV around 1330 minutes before varying. The pH was observed to again slightly increase 

before gradually decreasing from 6.37 to 4.39, with a pH of 4.57 recorded at the end of 

the stable MPS signal area.  
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Figure 5. Average MPS Signal (ΔE, mV) and pH using 2.042 g Inoculum Mass. Error 

bars represent the original two MPS sensor values as minimum and maximum before the 

average was calculated. The area where the change in energy over 10 minutes was 

approximately constant (zero slope) is boxed. 

 

 Figure 6 depicts the calculated average MPS signal (ΔE, mV) and pH patterns 

from the eleventh experimental trial using 2.041 g of inoculum. In this experiment, MPS 

signals did not increase at the start as have been observed in previous trials, rather only 

increasing by at most 7 mV before decreasing dramatically to a minimum of -375 mV at 

800 minutes. MPS signal then gradually increased before stabilizing around -333 mV, 

very similar to experiment four, at 1642 minutes. Beyond this area, MPS signals became 

sporadic, increasing slightly but rapidly before decreasing and repeating this pattern 

again. This may be the MPS signal capturing microbial degradation activity beyond the 

completion of fermentation. pH remained stable at the beginning of the experiment, 
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reaching a relative maximum of 6.59 before steadily decreasing to a minimum of 4.46. 

pH was again closely monitored at the beginning and end of this experimental trial. The 

pH is estimated to be 4.81 as calculated by equation (5) at the stable MPS signal range, 

yet continually decreased beyond this area.  

 

 

Figure 6. Average MPS Signal (ΔE, mV) and pH using 2.041 g Inoculum Mass. Error 

bars represent the original two MPS sensor values as minimum and maximum before the 

average was calculated. The area where the change in energy over 10 minutes was 

approximately constant (zero slope) is boxed. 

 

 Figure 7 displays the data from the twelfth experimental trial using 2.043 g of 

inoculum. Calculated average MPS signals (ΔE, mV)  briefly increased before decreasing 

after 24 minutes. ΔE then gradually declined to -365 mV at 607 minutes, similar to the -

367 mV of experiment 4. From here, MPS signal slowly increased before stabilizing 
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around -331 mV at 1244 minutes. Beyond this stable region, MPS signal slightly 

decreased slowly. pH was closely recorded during the rapid decrease in pH for this 

experiment, decreasing from 6.58 to 4.39, and measured to be 4.45 in the stable MPS 

signal range.  

 

 

Figure 7. Average MPS Signal (ΔE, mV) and pH using 2.043 g Inoculum Mass. Error 

bars represent the original two MPS sensor values as minimum and maximum before the 

average was calculated. The area where the change in energy over 10 minutes was 

approximately constant (zero slope) is boxed. 

 

Compared Results   

 Figure 8 illustrates the MPS signal (in mV), and pH values compiled from all four  

experimental trials with a mass of 2.042 ± 0.001 g. MPS signal and pH values across all 

experimental trials are seen to follow similar patterns: pH gradually decreasing and 
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approaching a value near 4.6. MPS signals all slightly increase in a short time period 

before rapidly decreasing to a minimum value, followed by a gradual increase, 

stabilization at the isoelectric point, then continuing to slightly increase unpredictably. 

Depicted in this form, it is clear that the MPS signals follow a progressive set of 

characteristics, often overlapping and crossing at similar points and with the 

approximately zero slope area occurring at similar regions.  

 

 

Figure 8. Combined Experimental Data. Error bars represent the two MPS signal (mV) 

values for each experiment as minimum and maximum values before the average was 

calculated. The area where the change in energy over 10 minutes was approximately 

constant (zero slope) is boxed. 

 

 Table 1 contains the critical information obtained from each experimental trial. 

Included is the time of complete fermentation, the slope of MPS signal over time used to 
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determine this complete fermentation time, the stable MPS signal where fermentation 

was considered complete, and the pH at this time. Using this information, an average 

across all trials was calculated to provide the average values of complete fermentation. 

This results in a pH average of 4.64, which is within the isoelectric range that was 

expected between 4.0 and 4.7 (de Oliveira, 2014) and well above the targeted pH of 4.3. 

The stable MPS signal in this range has an average of -329.7 mV, and as seen in Figure 8, 

across all experiments, MPS signals are most similar in this range.  

 

Table 1. Complete Fermentation Data. Each experimental trial’s MPS signal and pH at 

the isoelectric point, used to consider complete fermentation.  

Experiment 
Mass (g) 

Complete 
Fermentation 

Time (min) 

10-Minute 
Slope  

MPS Signal (mV) pH 

2.041 1402.05 3.03 × 10-6 -328 4.38 
2.042 1330.20 1.51 × 10-5 -323 4.41 
2.041 1641.95 2.61 × 10-4 -333 4.65 
2.043 1244.68 4.54 × 10-6 -331 4.54 

Average 1404.72 7.09 × 10-5 -331 4.49 
 

 With data organized in this manner, the primary analysis of all four experiments 

then used the mean complete fermentation time, MPS signal, and pH to produce 95% 

confidence intervals. This information is displayed in Table 2. Here, using the time of 

complete fermentation and the MPS signal and pH at that time for each experiment, an 

average value across all experiments was calculated. With four observations each for 

complete fermentation time, MPS signal, and pH, a 95% confidence interval was 

constructed, with the lower and upper bounds of the interval listed.  
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Table 2. Average Complete Fermentation Time Analysis. The determined time of 

complete fermentation (in minutes) and the MPS signal (in mV) and pH at that time from 

each experiment.  

Experiment Mass (g)  Complete 
Fermentation 

Time (min) 

MPS Signal 
(mV) 

pH 

2.041 1402.05 -328.6 4.38 
2.042 1330.20 -332.9 4.41 
2.041 1641.95 -333.2 4.65 
2.043 1244.68 -331.3 4.54 

Standard Deviation  147.8 1.765 0.266 
95% Confidence 

Interval 
165.7 1.978 0.11 

Lower Bound  1239.0 -333.4 4.37 
Mean 1404.7 -331.4 4.49 

Upper Bound 1570.4 -329.4 4.61 
 

In Table 2, the experiment using 2.041 g of inoculum mass and a complete 

fermentation time of 1641.95 minutes is longer than the other experiments. In this 

experiment, it took over 200 minutes longer to reach complete fermentation than in the 

other experiment using 2.041 g of inoculum mass. This longer fermentation time may be 

a result of multiple factors. First, the moisture content of the inoculum may have affected 

the suspension of the culture into the milk, altering the initial mixing and proliferation of 

the yogurt culture. An assumption of complete mixing, however, was acknowledged as a 

limitation yet may here be seen to have an effect on results. Also, the temperatures of the 

longer fermentation time ran about 1 ⁰C lower for the duration of the experiment than in 

the shorter fermentation time experiment. Again, temperature was acknowledged to be 

assumed constant, however when acting uniformly for the entire experiment, aggregate 
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effects may result in a longer fermentation time at a slightly lower fermentation 

temperature.  

Using the intervals displayed in Table 2, it is evident that the duration of time to 

reach complete fermentation may vary by over two hours. This is an undesirably large 

range of time that complete fermentation may be reached within, yet using the times from 

four experiments may be reported with 95% confidence. In contrast, MPS signal is more 

limited in range, within less than 2 mV above and below the mean MPS signal value. At 

last, pH results in the smallest variance in range, with the upper confidence around the 

hypothesized pH target of 4.6. With the upper confidence bound of pH = 4.61, this may 

be where complete fermentation just begins, and the lower range of pH = 4.37 well into 

complete fermentation.  

 

Method Detection Limit  

 The method detection limit was calculated to assess the limit, in this case the 

minimum amount of time, that may confidently be reported using the prescribed method. 

Using all four experimental trials, there are four times of complete fermentation used for 

this MDL calculation. This results in three degrees of freedom and a corresponding 

Student’s t-value of 2.353 for 95% confidence (U.S. EPA, Office of Water, 2016). At 

last, using the standard deviation in complete fermentation times and this t-value, an 

MDL of 347.9 minutes was calculated. This may be interpreted as using the currently 

outlined analytical method of MPS signals used to determine complete fermentation time 

is confidently accurate down to a minimum of 347.9 minutes. The calculation of the 
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MDL is organized in Table 4 and displayed as MDL in time versus inoculum mass in 

Figure 9.  

 

Table 3. Calculation of the Method Detection Limit (MDL). The time of complete 

fermentation (in minutes) of four observations and the standard deviation of these times 

were used to calculate the MDL. The statistical values used in the calculation of the MDL 

are listed.  

Experiment Mass (g) and Time (min) Statistical Values 
2.041 : 1402.05 Number of Observations = 4 (df = 3) 
2.042 : 1330.20 Confidence Level = 95% 
2.041 : 1641.95 Student’s t-value = 2.353 
2.043 : 1244.68 Standard Deviation = 147.8 (min) 

MDL = 347.9 (min) 
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Figure 9. Method Detection Limit (MDL) for Time. Time (in minutes) calculated from 

all four experiments. With an average mass of 2.042 g, vertical error bars of 0.001 g 

capture the mass of all experiments. Horizontal error bars capture with 95% confidence 

the MDL using the four experiment’s complete fermentation times and resulting standard 

deviation. 

  

Sensitivity Analysis  

 First, the data obtained was screened for outliers. As the inoculum mass used in 

the initial experiment, 0.508 g, was significantly different than the inoculum masses used 

in the remaining experiments, the first experimental trial was considered an outlier trial. 

Data from this initial experiment may in turn not be comparable across trials as the data 

obtained from the other experiments. As such, the sensitivity analysis would exclude this 

trial to assess the effects of including or excluding these data would have on the results. 

Similarly, the second experiment’s mass of 2.027 g was more than 0.01 grams below the 
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remaining experiments, this trial was considered an outlier and excluded from further 

analysis.  

 The experiments themselves were identified to have naturally occurring groups 

based on the inoculum mass used. Experiments were grouped into clusters for further 

sensitivity analysis. The first cluster consists of two experiments which both had the same 

inoculum mass of exactly 2.041 g, which were then grouped together as a cluster. The 

next cluster contained the remaining two experiments of 2.042 g and 2.043 g, grouped as 

an average mass of 2.0425 ± 0.0001 g. All four of these experiments are all within 0.001 

grams of 2.042 g, and would be grouped as 2.042 ± 0.001 g. These three cluster 

groupings were then used in the sensitivity analysis to assess differences when 

considering grouping by this method.  

 Using these clusters, a similar analysis was performed to that in the primary 

analysis and Table 2. The primary analysis results were compared to the cluster analysis 

in this sensitivity analysis. In the first identified cluster with a mass of 2.041 grams, the 

same calculation methods were used to obtain the mean, standard deviation, and then 

95% confidence interval. The results of this cluster analysis are found in Table 4.   
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Table 4. First Clustered Complete Fermentation Time Analysis- 2.041 g Inoculum 

Mass. The determined time of complete fermentation (in minutes) is used with the 

corresponding MPS signal (in mV) and pH at that time from each experiment. 

Inoculum Mass (g)  Complete 
Fermentation 

Time (min) 

MPS Signal (ΔE, 
mV) 

pH 

2.041 1402.05 -328.6 4.38 
2.041 1641.95 -333.2 4.64 

Standard Deviation  119.95 2.275 0.13 
95% Confidence 

Interval 190.11 3.605 0.21 
Lower Bound  1331.8 -334.5 4.30 

Mean 1522.00 -330.9 4.51 
Upper Bound 1712.11 -327.3 4.72 

 

 While using only two experiments results in fewer observations, the resulting 

confidence intervals from this cluster are different than those calculated in the primary 

analysis. The time range in complete fermentation time captured with 95% confidence is 

larger than that of the primary analysis by about 45 minutes. At the same time, the MPS 

signal and pH confidence intervals are higher than those of the primary analysis, and may 

be concluded to be less precise in confidently containing the most likely MPS signal and 

pH value when fermentation is complete despite analyzing the same inoculum mass. 

With the upper bound of pH = 4.72, this is highly likely before complete fermentation 

occurs, yet the mean and lower bound well below the hypothesized pH target of 4.6. 

These large confidence intervals are potentially the result of limited observations that all 

are relatively distinct, rather than closely similar values as hypothesized. This is 

evidenced in the upper bound of pH = 4.72, well above the pH where the yogurt mixture 
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is completely fermented, with predictions of complete fermentation that would be 

premature.   

 The next cluster investigated contained an average inoculum mass of 2.0425 ± 

0.0001 grams. The same method used in the previous cluster and in the primary analysis 

for all experiments was followed. The result of analyzing by this cluster is presented in 

Table 5.  

 

Table 5. Second Clustered Complete Fermentation Time Analysis- 2.0425 ± 0.0001 g 

Inoculum Mass. The determined time of complete fermentation (in minutes) is used with 

the corresponding MPS signal (in mV) and pH at that time from each experiment. 

Inoculum Mass (g) Complete 
Fermentation 

Time (min) 

MPS Signal (mV) pH 

2.042 1330.2 -332.7 4.410 
2.043 1244.6 -331.35 4.54 

Standard Deviation  42.758 0.675 0.065 
95% Confidence 

Interval 67.76 1.06 0.10 
Lower Bound  1219.6 -333.0 4.37 

Mean 1287.4 -332.0 4.47 
Upper Bound 1355.2 -330.9 4.57 

 

 Analysis of this second cluster has the same number of observations as the 

previous cluster, yet yields different results. By analyzing this cluster, the confidence 

interval for time of complete fermentation decreases in range to about a third the time of 

the previous cluster, remaining smaller than that of the primary analysis at just over an 

hour range. The confidence interval for MPS signal and pH are smaller than in the 

previous cluster analysis. All pH values are below the pH target of 4.6, and this range 
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may be inferred to most confidently contain the pH of complete fermentation. With these 

results, it may be reported that this average and 95% confidence interval construction 

method is fairly robust across these analyzed clusters. While the variance in time range 

that may confidently be reported to contain the time of complete fermentation is reduced 

to approximately one hour long, the significantly different results between clusters 

informs analysis of similar, but limited, experiments bring more stringent results using 

this sensitivity analysis method.  

 To assess the robustness of the results of determining an exact time of complete 

fermentation, 10-minute ranges were constructed for each experiment. This range would 

center around the previously determined time as complete fermentation, with 

approximately five minutes before and five minutes after to provide a time range. This 

redefined threshold was used to assess the sensitivity of selecting an individual time 

considered to be complete fermentation that may vary within the range. With these ranges 

constructed identically for each experiment, the confidence in using the same MPS signal 

analysis methodology to determine the complete fermentation time may be compared 

more directly across experimental trials. When clustering these 10-minute ranges, this 

also presents more data that may be analyzed than used in the primary analysis, which 

may lead to more accurate results.  

 The critical information of these 10-minute ranges is included in Table 6. The 

time, MPS signal, and pH values at the start and end of each experiment’s range is 

included, with the complete time as previously determined and used in the primary 

analysis. Next, the mean of the values contained in the 10-minute range is listed. Because 
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the range consists of the same time span for each trial, the standard deviations of time, 

MPS signal, and pH were approximately the same between trials and are excluded from 

this table. From here, a 95% confidence interval may be constructed, with the lower and 

upper bounds provided based on the data set. With this level of confidence and using 10 

minutes of data, this results in capturing the complete fermentation time and that time’s 

MPS signal and pH within five minutes and 95% confidence. This is a greater accuracy 

of confidence in each experimental trial than that of the primary analysis. Each 

experiment’s 10-minute range represents less than 1% of the entire experiment’s data; 

this limits the experiment’s complete data to be bound by the time area of interest where 

complete fermentation is most likely captured and reduces variance. Further, the mean 

values of time, MPS signal, and pH as calculated from the complete data contained in the 

10-minute range are very close to the previously considered timestamp values of 

complete fermentation as in the primary analysis. Using 10 data points rather than one for 

each trial results in a more representative complete fermentation time, and the MPS 

signal and pH value at this point than used in the primary analysis.  
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Table 6. Complete Fermentation Ranges. The beginning of the time range is five 

minutes before the previously determined complete fermentation time, and end of the 

range five minutes after. The percentage of time this 10-minute range represents is 

included. The MPS signal and pH at all times is listed. Lower and upper confidence 

interval bounds are included for 95% confidence about the mean of the entire 10-minute 

range of values.  

Experiment 
and Mass 

(Range 
Percentage) 

Target Time (min) MPS Signal 
(mV) 

pH 

3: 2.041 g         
(0.66%) 

Range Start  1397.4 -328.8 4.38 
Complete Time 1402.0 -328.6 4.38 

Range End  1407.8 -328.6 4.38 
Lower Bound 1400.1 -328.7 4.38 

Mean 1402.6 -328.6 4.38 
Upper  Bound  1405.1 -328.6 4.38 

4: 2.042 g        
(0.70%) 

Range Start  1326.7 -332.8 4.41 
Complete Time 1330.2 -332.7 4.41 

Range End  1337.1 -332.9 4.40 
Lower Bound 1328.2 -333.0 4.40 

Mean 1330.7 -332.9 4.41 
Upper  Bound  1645.0 -333.1 4.64 

11: 2.041 g     
(0.49%) 

Range Start  1637.3 -333.2 4.65 
Complete Time 1641.9 -333.2 4.64 

Range End  1647.7 -333.2 4.63 
Lower Bound 1640.0 -333.2 4.64 

Mean 1642.5 -333.2 4.64 
Upper  Bound  1645.0 -333.1 4.64 

12: 2.043 g 
(0.67%) 

Range Start  1240.0 -331.4 4.54 
Complete Time 1244.6 -331.3 4.54 

Range End  1250.4 -331.4 4.53 
Lower Bound 1242.7 -331.5 4.53 

Mean 1245.2 -331.4 4.53 
Upper  Bound  1247.7 -331.3 4.54 

 



 

81 

 With the 10-minute ranges organized, the previously described clusters were be 

examined. To directly compare the ranges, each experiment’s 10-minute range was 

transformed using a standard distribution, setting the mean as the originally determined 

time of complete fermentation and standard deviation of one. The data contained in each 

10-minute range was converted into a Z-score using these mean and standard deviation 

values allowing data to be compared across ranges. Z-scores were then reverted to time, 

MPS signal, and pH values using the original mean and standard deviation of the 

combined data set.  

 To assess the use of these time ranges to calculate confidence intervals, the same 

clustering of experiments was used. First, the cluster with experiments of the same mass 

2.041 g was assembled using the standardized Z-scores. This range now has 20 

observations. The mean Z-score for complete fermentation time, MPS signal, and pH was 

then calculated. 95% confidence intervals for complete fermentation time, MPS signal, 

and pH were then constructed using the Z-scores before these values were reverted to the 

corresponding original unit. Results of analyzing the first cluster are displayed in Table 7.  
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Table 7. First Clustered Complete Fermentation Time Range Analysis- 2.041 g 

Inoculum Mass. The 10-minute range for complete fermentation (in minutes) and the 

corresponding MPS signal (in mV) and pH at that time from each experiment’s 10-

minute time range. The 95% confidence interval lower and upper bounds are listed for 

each value. Using two 10-minute ranges, 20 total observations are used in this cluster.   

2.041 g 
N = 20 

Complete 
Fermentation 

Time (min) 

MPS Signal 
(mV) 

pH 

Lower Bound  1482.9 -333.0 4.41 
Mean 1522.0 -330.9 4.51 

Upper Bound 1603.1 -331.0 4.55 
Range  120.2 2.0 0.14 

  

 Analysis of this first cluster results in the smallest confidence interval range for 

MPS signal. Interestingly, the time range of the upper and lower bounds of the 95% 

confidence interval is approximately the same as the standard deviation obtained by 

analyzing complete fermentation as a single time point. This lends support to the 

confidence in this result as via both a time range and single time point method to 

calculate this interval, a relatively similar time range results.  

The second cluster containing with an average inoculum mass of 2.0425 grams 

and a standard deviation of 0.0001 grams was analyzed in the same manner. The results 

of this cluster analysis are presented in Table 8.  
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Table 8. Second Clustered Complete Fermentation Time Range Analysis- 2.0425 ± 

0.0001 g Inoculum Mass. The 10-minute range for complete fermentation (in minutes) 

and the corresponding MPS signal (in mV) and pH at that time from each experiment’s 

10-minute time range. The 95% confidence interval lower and upper bounds are listed for 

each value. Using two 10-minute ranges, 20 total observations are used in this cluster.    

2.0425 ± 0.0001 g         
N = 20 

Complete 
Fermentation 

Time (min) 

MPS Signal 
(mV) 

pH 

Lower Bound  1273.4 -333.1 4.43 
Mean 1287.4 -332.0 4.47 

Upper Bound 1316.3 -331.5 4.50 
Range  42.9 1.6 0.07 

 

 Analysis of the second cluster containing 20 observations results in the smallest 

range in the confidence interval for complete fermentation time and is less than one hour 

in range. While the entire range of pH is below 4.6 as expected for complete 

fermentation, this pH range is the half that of the first; this garners support that this 

analytical method is more stringent as more precise results are produced when similar but 

not identical experimental inoculum masses are analyzed by cluster.  

The third cluster containing all four experiments with an average inoculum mass 

of 2.042 grams and a standard deviation of 0.001 grams was analyzed in the same 

manner. The results of this cluster analysis are presented in Table 9.  
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Table 9. All Experiments Clustered Complete Fermentation Time Range Analysis- 

2.042 ± 0.001 g Inoculum Mass. The 10-minute range for complete fermentation (in 

minutes) and the corresponding MPS signal (in mV) and pH at that time from each 

experiment’s 10-minute time range. The 95% confidence interval lower and upper 

bounds are listed for each value. Using all four 10-minute ranges, 40 total observations 

are used in this cluster.    

2.042 ± 0.001 g  
N = 40 

Complete 
Fermentation 

Time (min) 

MPS Signal 
(mV) 

pH 

Lower Bound  1378.2 -333.5 4.44 
Mean 1404.7 -331.4 4.49 

Upper Bound 1482.0 -330.6 4.51 
Range  103.8 2.9 0.07 

 

 Analysis of the third cluster containing all four experiments and 40 observations 

results in a confidence interval for complete fermentation time slightly larger than the 

second cluster yet smaller than that of the first cluster analysis. The pH range for this 

cluster is the same as the previous cluster, suggesting this is a robust result and the pH of 

complete fermentation is indeed contained within 0.07 pH-points.  
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CHAPTER 5 

CONCLUSION  

Research Advancement 

This study tested the ability of MPS to produce signals in a medium that was not 

previously evaluated. Using the same system tools and analytical methods as previous 

developments of MPS technology, this research serves as a proof-of-concept 

investigation (Thabane et al., 2010) of using MPS technology to monitor a model yogurt 

fermentation process. Processing conditions mimicked those of commercial yogurt 

production. Under these conditions, measurable and quantifiable information was 

obtained. The multimetric data continuously collected by the MPS technology in this 

yogurt medium validates the simple-to-use feasibility of the technology and supports 

future developments of this technology similarly in additional mediums.   

The MPS technology produced signals as hypothesized, allowing for analytical 

methods to predict the time where fermentation of the yogurt is complete. However, a 

challenge remains in refining the accuracy of the predicted complete fermentation time. 

A desirable five minute range which contains the time fermentation is complete was 

hypothesized to be feasibly predicted by the analytical method; yet this current 

hypothesis is not supported by the results reached in this study. While progress toward 

this desired goal was made, over a one-hour window of accuracy remains.  

A systematic literature review informed the progress and remaining challenges of 

applying MPS and similar sensor technologies to a variety of mediums, including food 

products that undergo fermentation reactions. This literature review advised the 
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anticipated relationships between pH, oxidation-reduction states, temperature, and 

microbial biofilm that underpin the MPS technology and the desired operation of MPS in 

yogurt fermentation. These relationships were then observed in a series of experiments 

which produced insightful quantified data. Data was then analyzed through previous 

methods to assess the abilities and remaining difficulties in adapting MPS technology in 

this new medium.  

As hypothesized, and supported in previous literature, the isoelectric range of the 

yogurt fermentation mixture was observed to be reached around a pH of 4.6. Data was 

captured continuously during this range, which further aided in the selection of complete 

fermentation times. The MPS technology, by continuously recording beyond this range, 

successfully captured the natural degradation of the completely fermented yogurt 

product. This untargeted success doubles as a food product safety test, as detection of 

MPS signal activity beyond the time of complete fermentation indicates bacterial 

colonization or contamination which must be avoided (de Oliveira, 2014) at larger 

production scales.  

 Despite the different bacterial inoculum masses used to ferment the staring dairy 

material to yogurt product, MPS signals were captured. These signals followed similar 

and predictable patterns which could all be used to predict the complete fermentation 

time of the mixture. Even administering the same inoculum dose in different 

experimental trials, the complete fermentation times were not the same; further, simple 

correlative analysis indicates the relationship between inoculum mass and the time to 

reach complete fermentation is not a strong linear relationship as it was expected to 
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produce. As the fermentation end time varied despite using the same dose, it was 

concluded as supported by the obtained results that this metric is not as reliable as 

anticipated in this study.  

 By determining the MDL, the analytical method’s limitations in determining the 

times of complete fermentation are indicated to not be as low and precise as desired. Yet 

through alternative reanalysis using this study’s sensitivity analysis, the MDL remains 

fairly robust; providing confidence that the current method of determining the complete 

fermentation time is valid despite resulting in an undesirably high MDL (U.S. EPA, 

Office of Water, 2016).  

 

Reflections 

Reassessment by the sensitivity analysis performed in this study allows for 

examination of the analytical method’s effectiveness (Thabane et al., 2013). In most 

cases, the sensitivity analysis included more comprehensive analysis and calculated more 

stringent results, whereas the primary analysis quickly revealed more relaxed results for 

further interpretation. The sensitivity analysis determined a method of clustering time 

ranges from each experiment with similar, but not exactly the same, inoculum masses 

rendered the most precise results. This method used in the sensitivity analysis pruned the 

variance of predicted complete fermentation times from about two hours to around 45 

minutes. While this range remains undesirably large, this method may be identified as a 

preferred analytical method for obtaining a more stringent resulting timeframe.  
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At the same time, MPS signal and pH reanalysis in the sensitivity analysis were 

found to remain relatively similar to the results of the primary analysis, supporting the 

simple primary analysis to be a robust method of predicting these values at the complete 

fermentation time. Similarly, results of correlating inoculum mass and complete 

fermentation time were nearly the same in both the primary analysis and the sensitivity 

analysis. This indicates the method of correlating these two values is very robust, despite 

a moderate degree of linear correlation as supported by the obtained data.  

The sensitivity analysis most importantly reveals that analyzing data in clusters 

centered around similar, but not exactly the same, inoculum mass produces results with 

the smallest confidence interval ranges. This modulation of data is more restrictive, yet 

incorporates more data than would be included in using the exact same inoculum mass. 

From this conclusion, it may be inferred that a greater quantity of data that is centered 

closely around the identified clustering, here inoculum mass, presents the results that may 

be more confidently interpreted as precise.  

The limitations of this study must be once again discussed for consideration. 

While temperature was assumed to be approximately constant, and monitoring confirmed 

temperatures remained within a 3 ⁰C range while culturing, variance within this range 

was recorded. As previously reported, a 10 ⁰C optimal temperature range exists (Ahari et 

al., 2017), and while well within this range, an incubator would provide consistent and 

constant temperatures. In industrial settings, temperature is similarly consistent and 

constant. Temperature is importantly related to microbial activity, pH, and reaction 

kinetics (Burge et al., 2020). Another limitation is the assumption of complete mixing of 
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the culture into the staring milk material. While in an industrial setting an inoculum 

would be thoroughly blended, at the bench scale of this project, mixing was sufficient. 

Continually mixing was not continued as the yogurt was cultured, which is a 

consideration of reaction kinetics. Nonetheless, the culturing method used remains a 

viable yogurt production method (de Oliveira, 2014) as a set yogurt rather than stirred. 

Additionally, the cultures used in this method were not pure cultures, and no work was 

performed to quantify and ensure their viability. While yogurt was successfully produced, 

it is likely the inoculum cultures were viable; in any case, biofilm was able to develop on 

the MPS surface and produce signals of use. Given these limitations, they may be 

negligible at this bench scale as a method to assess the feasibility of the MPS technology 

and following analytical methods.  

Interpreting the results of this study focuses on the feasibility of utilizing MPS 

technology in this previously untested medium and the quality of the results produced as 

assessed and compared using a sensitivity analysis. Despite recurrent imprecisions, MPS 

successfully produced signals which resulted in data rich in information. In this small 

study, multiplicity challenges were faced as repeated identical experimental treatments 

resulted in multiple outcomes. However, as this work incorporates natural biological 

components and given the conditions and assumptions, this is acceptable. This 

multiplicity should not prevent further work in developing MPS technology yet rather 

proposes additional testing. Analytical methods were adapted and work remains to further 

optimize these methods to have greater sensitivity. Greater sensitivity, as indicated by a 

lower MDL, would promote the MPS technology to further applications and larger scales. 
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Even at the undesirable levels of precision in this work, MPS technology again 

successfully demonstrated the ability to monitor reaction progress in continuous real-

time; this remains valuable to identify undesired microbial contamination, natural product 

decomposition, and the associated losses of time, materials, and productivity that would 

result from these production issues.  

 

Recommendations  

Despite the limitations and considerations of this study, performance of MPS as 

hypothesized and in support of the research objectives demonstrates the facile 

deployment of the technology and readiness for this technology to be applied to 

additional settings. As such, future research of MPS technology may be recommended. 

Additional work may seek to confirm the results of this study; further research may also 

build upon additional analytical methods to interpret the data obtained from MPS. Most 

importantly, the completion of additional experimental trials would provide additional 

data that may further refine the methods and bring more desirable results. This study 

completed six experiments; to reach a method that may predict complete fermentation 

time within five minutes with 95% confidence and the same standard deviation observed 

in this work, it is calculated that 4,900 experiments would be needed to obtain the 

number of complete fermentation times to obtain this goal. While this is an obvious 

estimate and does not account for a potentially smaller standard deviation resulting from 

this many trials, this is an unrealistic task; nonetheless, additional trials would obtain a 

more comprehensive perspective of the targeted relationships to be analyzed.  
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In performing additional experiments, the use of different inoculum masses would 

set up for more comprehensive correlations between inoculum mass and time for 

complete fermentation. This study utilized the inoculum masses near the minimum ratios 

as recommended (de Oliveira, 2014), however, incrementing inoculum masses linearly 

between 0.5 grams through 5.0 grams would allow for additional correlation points. 

Using this, a standard curve may be developed and serve as a calibration proof of concept 

in this setting.  

This study did not include a blank, control experimental trial. While the MPS 

technology uses microbial biofilm on the sensor’s surface for measurements, 

understanding a baseline condition in the absence of the inoculating bacteria may also be 

of benefit in future research.  

The repeatable patterns obtained in this research lend well to machine learning 

and artificial intelligence. These advanced computational modeling methods, when 

trained with an appropriate amount of data, offer far greater precision in predicting 

complete fermentation times using inoculum mass, MPS signal, and pH value variables. 

Alternatively, greater precision in predictive power may be reached by adjusting the level 

of confidence in conjunction with compiling additional data.  

 

Field Contributions  

Finally, previous advances in sensing technologies and the current state of MPS 

technology were reviewed. A gap was identified where food safety is at risk from 

decomposition or lost productivity, as well as the inability to expose food products to 
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reagents or contamination as in other sensing approaches that may diffuse internal 

solutions. MPS was prepared for testing in a new application, accomplishing similar 

feasibilities as in previous demonstrations: generation of signal outputs, no maintenance, 

continuous and real-time monitoring data, no additional reagents, and ease of use. This 

feasibility further prompts MPS technology for further investigation in this capacity as 

well as for deployment in new settings and environments.  

The underlying theory of the MPS technology’s operation was validated in this 

study. Biofilm covered the sensor surfaces, interacting with the conditions of the yogurt 

medium as it undergoes a redox fermentation process. These interactions and changes in 

bioactivity were measurable and recorded by the MPS, producing insightful data. With 

this demonstrated success, further applications where these reactions are present may 

investigated by using MPS monitoring. Fermentation processes occurs for the production 

of many food products: soy products including soy sauce and tempeh, coffee beans, beer, 

wine, kombucha, vinegars, other dairy products (Winquist et al., 1998) including cheeses 

(Casimero et al., 2018; Chinnathambi & Euverink, 2019; Draz et al., 2021), and pickled 

vegetables.  

Outside the range of food products, redox processes may be further monitored by 

MPS technology. In health, many applications are possible for similar deployment: 

electrochemical detection of viral elements in blood (B. T. T. Nguyen et al., 2009), 

bacterial infections of clinical importance (Poma et al., 2020; Wu et al., 2015), 

noninvasive cell monitoring (Reinecke et al., 2017), and many types of bioreactors 

(O’Mara et al., 2018). Further, starch and vegetable sugars are fermented to produce fuel 
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ethanol, a biofuel alternative to traditional fossil fuels (Ramos et al., 2016). Even beyond, 

as 95% of microbes form biofilms (Flemming et al., 2002), the applicability of the 

technology is expansive in many environmental contexts. 
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 A systematic literature review was commenced. Sixteen primary publications 

were reviewed, comprised entirely of peer-reviewed articles. Publications to review then 

were identified from citation database searches and obtained directly from publishers or 

through the Arizona State University Library’s Interlibrary Library Loan system. Search 

criteria included (“microbial potentiometric” OR “potentiometric sensor” OR “microbial 

potentiometric sensor” OR “microbial sensor” OR “electrical potential” OR 

“potentiometric”), AND (“biofilm” OR “milk” OR “yogurt” OR “water” OR “soil”). 

Literature focusing on the health aspect of biofilms and including clinical trials were 

excluded if not supportive of background information, importance, or methodology. 

Duplicate results were removed. The systematic search frequently returned cross-

referenced conference proceedings, book chapters, review articles, and peer-reviewed 

papers, which were then included for further review.  

 Following this collection, the obtained items were screened using the available 

title and abstract. Literature relevant to electrical potential, biofilm, health and safety, 

data analysis, and fermentation were then selected for full review. This literature review 

search resulted in a total of 206 items included that would inform this research in some 

capacity. While much of the literature was concerned with technology similar to MPS, 

including voltametric, potentiometric, and amperometric sensing methods, these studies 

would inform the previous development, challenges, and potential applications of this 

research. A select few papers investigate monitoring milk in some capacity, yet none 

have directly applied MPS as a method of monitoring the culturing of yogurt. Regardless, 

previous research documenting the development and importance of using monitoring 
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technologies in a variety of biochemical processes, including food and fermentation, 

assist this research and its methodology.   


