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ABSTRACT

The world is filled with systems of entities that collaborate in motion, both natural

and engineered. These cooperative distributed systems are capable of sophisticated

emergent behavior arising from the comparatively simple interactions of their members.

A model system for emergent collective behavior is programmable matter, a physical

substance capable of autonomously changing its properties in response to user input or

environmental stimuli. This dissertation studies distributed and stochastic algorithms

that control the local behaviors of individual modules of programmable matter to

induce complex collective behavior at the macroscale. It consists of four parts.

In the first, the canonical amoebot model of programmable matter is proposed. A

key goal of this model is to bring algorithmic theory closer to the physical realities of

programmable matter hardware, especially with respect to concurrency and energy

distribution. Two protocols are presented that together extend sequential, energy-

agnostic algorithms to the more realistic concurrent, energy-constrained setting without

sacrificing correctness, assuming the original algorithms satisfy certain conventions.

In the second part, stateful distributed algorithms using amoebot memory and

communication are presented for leader election, object coating, convex hull formation,

and hexagon formation. The first three algorithms are proven to have linear runtimes

when assuming a simplified sequential setting. The final algorithm for hexagon

formation is instead proven to be correct under unfair asynchronous adversarial

activation, the most general of all adversarial activation models.

In the third part, distributed algorithms are combined with ideas from statistical

physics and Markov chain design to replace algorithm reliance on memory and

communication with biased random decisions, gaining inherent self-stabilizing and
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fault-tolerant properties. Using this stochastic approach, algorithms for compression,

shortcut bridging, and separation are designed and analyzed.

Finally, a two-pronged approach to “programming” physical ensembles is presented.

This approach leverages the physics of local interactions to pair theoretical abstractions

of self-organizing particle systems with experimental robot systems of active granular

matter that intentionally lack digital computation and communication. By physically

embodying the salient features of an algorithm in robot design, the algorithm’s

theoretical analysis can predict the robot ensemble’s behavior. This approach is

applied to phototaxing, aggregation, dispersion, and object transport.
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Chapter 1

INTRODUCTION

1.1 Introduction & Motivation

Our world is filled with systems of entities that collaborate in motion. From biolog-

ical cells to social insects to human societies and nanorobotics to Bluetooth devices to

autonomous vehicular networks, this fundamental paradigm spans a diverse array of

sizes, form factors, and functions. These cooperative distributed systems are capable

of sophisticated and surprising emergent behavior arising from the comparatively

simple interactions of their members. For nearly thirty years, researchers spanning

biology, physics, materials science, robotics, and computer science have worked toward

a model system for emergent collective behavior known as programmable matter [186].

The grand vision for programmable matter is to design fundamental “particles” that

collectively form a substance capable of changing its physical properties in response

to user input or stimuli from its environment. If realized, programmable matter could

be deployed in numerous domain spaces to address a wide gamut of problems: in

construction, smart materials could self-monitor structural integrity and self-repair

minor damage; in environmental science, smart particles could locate and metabolize

air and water pollutants at the micro-scale; and in healthcare, smart medicine could

deliver and apply treatment where it is most needed.

This dissertation primarily focuses on advancing programmable matter’s formal

algorithmic underpinnings, investigating how simple, local interactions can induce

emergent, macroscopic behavior. Abstracting away from any particular instantiation
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of programmable matter, we model these systems as collectives of computational

“particles” that are strictly limited in terms of actuation, sensing, memory, communi-

cation, and computation. Although individually incapable of meaningful behavior,

these particles can cooperate by executing distributed algorithms that, when designed

carefully, can produce useful system-level behaviors. Formal algorithmic research on

programmable matter is not unique to this dissertation — as we will discuss in the

related work of Section 1.2 — but this work contributes significant advancements in

the modeling, algorithm design and analysis, and robotic applications of programmable

matter systems.

The first results in this dissertation address critical gaps between existing theoretical

models of programmable matter and its practical implementations. In particular, we

focus on concurrency and energy. Most models of programmable matter restrict or

abstract from the inherent concurrency of simultaneously acting particles to make

algorithm design and analysis simpler. Similarly, nearly all existing works only analyze

programmable matter algorithms’ time and (occasionally) space complexities — the

usual computer science metrics of efficiency — while entirely ignoring energy harvesting,

distribution, and usage. This dissertation research focuses on addressing these issues

in the context of the amoebot model for programmable matter [52, 59]. We introduce

the canonical amoebot model as a new generalization that formalizes all amoebot

communication and cooperation in the tradition of message passing systems, enabling

a fine-grained treatment of time, concurrency, and algorithm executions (Chapter 2).

As a case study in concurrent algorithm design, we revisit the classical problem of

shape formation in the canonical amoebot model and give an algorithm that correctly

forms a regular hexagon even under unfair asynchronous adversarial activation, the

most general of all adversarial models. We next focus on two black box enhancements
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of existing amoebot results: concurrency control (Chapter 3) and energy distribution

(Chapter 4). Our concurrency control protocol transforms correct sequential algorithms

that satisfy certain conventions into algorithms that remain correct in the concurrent

setting. We then achieve an analogous goal for energy-agnostic algorithms, providing

a worst-case asymptotically optimal protocol for energy distribution that can be

composed with existing algorithms to ensure their correct behavior even under energy

constraints. These advancements not only bring theoretical work closer to physical

reality, but emphasize rich areas for further rigorous analysis.

We next develop and analyze stateful distributed algorithms under the amoebot

model, i.e., those that utilize amoebot memory and communication. The first is a

randomized algorithm for leader election that uses the geometry of the underlying

lattice and amoebot communication to elect a unique leader amoebot for any static

(non-moving), connected system with high probability (Chapter 5). The second is

an algorithm for object coating that organizes an amoebot system in even layers

around a given object. While this algorithm was the subject of earlier work [61],

this dissertation research contributes its runtime analysis that leverages a careful

dominance argument between sequential and parallel executions to prove that this

algorithm has a worst-case asymptotically optimal runtime (Chapter 6). The third

amoebot algorithm presented is for convex hull formation where an amoebot system

must enclose an object using the minimum number of amoebots (Chapter 7). Our

algorithm achieves a linear runtime and — to our knowledge — is the first distributed

approach to computing convex hulls that uses entities that do not have any global

information or coordinates and use strictly local sensing and constant-size memory.

All three of these algorithms predate the canonical amoebot model and the work on
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concurrency described above, instead using the less realistic sequential setting where

only one amoebot acts per time.

We continue the dissertation’s algorithmic results with stochastic distributed algo-

rithms under the amoebot model. The amoebot model was formulated with imple-

mentation by micro-scale robots in mind: it limits amoebots to constant-size memory,

communication with immediate neighbors, and strictly local information (e.g., no

orientation, sense of position, estimate of system size, etc.). To investigate what

behaviors can be achieved by even less capable entities, our stochastic approach to

programmable matter algorithm design uses design principles from statistical physics

and Markov chain and Monte Carlo methods to shift algorithm reliance away from

memory and communication to biased random decisions that, when designed carefully,

cause the system to converge to desirable configurations. We present and analyze

three algorithms in this stochastic paradigm: one for compression, where the system

must gather as compactly as possible while remaining simply connected (Chapter 8);

another for shortcut bridging, where the system forms a connected bridge over a gap

that optimizes a structural tradeoff inspired by the bridging behavior of army ants

(Chapter 9); and finally one for separation, where a system of heterogeneous amoebots

must compress not only as a collective but also in monochromatic clusters (Chapter 10).

Compared to the stateful algorithms of Chapters 5–7, algorithms developed using this

stochastic approach require only a few bits of memory per amoebot and have inherent

self-stabilizing and fault-tolerant properties. This inherent robustness makes these

stochastic algorithms more readily adapted to experimental systems of swarm robots

with minimal capabilities, as we demonstrate in the next chapter.

The final technical chapter of this dissertation focus on the implementation of our

algorithms by swarm robotic systems (Chapter 11). In particular, we demonstrate
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how our stochastic algorithms enable the reinterpretation of digital, logic-based

programming as physical, analog features of robot design. We preserve only the most

salient features of the algorithms and do not require that the robots adhere all that

closely to the model’s assumptions; nevertheless, we can establish tight relationships

between the swarm’s behaviors and those predicted by the theory. Inspired by the

group dynamics of three-link robots called smarticles (“smart active particles”), we

investigate a variant of the compression algorithm where amoebots on one side of

the system are activated more often than the rest. We find that, just like the

supersmarticle collectives, the amoebot systems exhibit noisy, directed locomotion

towards the less active side (Section 11.1). We then establish a tight feedback loop

between the theoretical predictions of separation and the robot ensemble behaviors of

aggregation, dispersion, and collective transport in swarms of analog robots known as

BOBbots (Section 11.2). We obtain a tight mapping between the bias parameter in

our algorithm and the force of attraction between BOBbots that accurately predicts

when the BOBbot collectives will aggregate or disperse.

Altogether, this dissertation spans the full spectrum of modeling, algorithmic

theory, and swarm robotic applications for programmable matter. With advancements

towards designing concurrent, energy-constrained algorithms that are compatible with

minimally capable robots — some of which are entirely analog and dependent on

the physics of local interactions — this research brings algorithmic theory closer to

realistic systems. We conclude in Chapter 12 with several open problems and exciting

directions for future work.
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1.2 Related Work

In 1991, Toffoli and Margolus [186] defined programmable matter as a physical

computing medium composed of simple, homogeneous modules that can be (i) as-

sembled into “lumps” of arbitrary size, (ii) dynamically reconfigured into any regular

structure, (iii) interactively controlled by user input or environmental stimuli, and

(iv) accessed in real time for observation, analysis, or modification. Over the last three

decades, many organic, synthetic, and theoretical systems have been proposed that

meet these criteria to varying degrees. In this related work, we give a brief survey

of some of these systems; each technical section in Chapters 2–11 will provide more

thorough and specific reviews of relevant literature.

A useful distinguishing feature of a programmable matter system is the degree

to which its members self-determine and enact their local behaviors, ranging from

passive to active. Members of fully passive systems depend entirely on the environment

and their physical structure to determine their interactions. Prominent examples

include DNA self-assembly, molecular computing, chemical reaction networks, and tile

self-assembly models [37, 74, 157]. Wireless sensor networks and the corresponding

population protocols model [10] are also passive with respect to their movement, but

engage in active communication and computation during interactions. Slime molds also

fall in the in-between of passive and active systems, as their decisions and movements

are self-enacted but their behavior is largely defined by the environment [26, 169].

Swarm robot systems whose ensemble behaviors rely on passive physical interactions as

opposed to active digital sensing and computation, such as the supersmarticles [43, 177,

178] and BOBbots [128] considered in this dissertation and other recent examples [124,

129, 195], also belong in this in-between.
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Our algorithmic work primarily focuses on fully active systems, where individual

modules self-enact interactions and movements to cooperatively achieve some task.

Most systems in swarm robotics (or at least, those utilizing microcontrollers) are

active [20, 27, 73, 101, 176]. Of particular relevance is the subfield of self-reconfigurable

modular robotics [197] that studies “robots made of robots.” Each individual modular

robot is its own active entity, and must cooperate with the other modules to achieve

system-level tasks. While many modular robot systems use robots that have signifi-

cantly more powerful sensing, communication, and computational capabilities than

would be available at small scales (see, e.g., [77, 81, 93, 175]), a notable exception

is the Claytronics project [160] that takes seriously the limitations of micro-scale

robotics. Our amoebot model for programmable matter [52, 59] addresses this min-

imally capable setting by ensuring each module is strictly limited and capable of

only local interactions and movements. The closely related model of autonomous

mobile robots [87] — which we discuss at length in Section 2.1 — also examines

this restricted setting. Other theoretical models of programmable matter include the

nubot model [194] and metamorphic robots [42, 189], but these models each include

non-local capabilities that prohibit a direct translation of results to our setting.
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Chapter 2

THE CANONICAL AMOEBOT MODEL

The amoebot model is an abstract computational model of programmable matter

intended to enable rigorous algorithmic analysis of collective systems at the micro-

and nano-scales. Originally proposed as “amoeba-inspired self-organizing particle

systems” [71], the model was polished and formally announced as the amoebot model

in 2014 [59]. From 2015–2020, the amoebot model was used to study both fundamental

problems — such as leader election [21, 54, 60, 66, 78, 92] and shape formation [32, 58,

62, 66] — as well as more complex behaviors including object coating [55, 61], convex

hull formation [53], bridging [8], spatial sorting [31], and fault tolerance [51, 67]. With

this growing body of amoebot model literature, it is evident that the model has evolved

— and, to some extent, fractured — during its lifetime as assumptions were updated to

support individual results, capture more realistic settings, or better align with other

models of programmable matter. This makes it difficult to conduct any systematic

comparison between results under the amoebot model (see, e.g., the overlapping but

distinct features used for comparison of leader election algorithms in [21] and [78]),

let alone between amoebot model results and those of related models (e.g., those from

the established autonomous mobile robots literature [87]). To address the ways in

which the amoebot model has outgrown its original rigid formulation, we propose

the canonical amoebot model [50] that includes a standardized, formal hierarchy of

assumptions for its features to better facilitate comparison of its results. Moreover,

such standardization will more gracefully support future model generalizations by

distinguishing between core features and assumption variants.
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A key area of improvement addressed by the canonical amoebot model is concur-

rency. The original model treats concurrency at a high level, implicitly assuming an

isolation property that prohibits concurrent amoebot actions from interfering with

each other. Furthermore, amoebots are usually assumed to be reliable; i.e., they

cannot crash or exhibit Byzantine behavior. Under these simplifying assumptions,

most existing algorithms — including the majority of those in this dissertation —

are analyzed for correctness and runtime as if they are executed sequentially, with

at most one amoebot acting at a time. Notable exceptions include the recent work

of Di Luna et al. [66, 67] that adopt ideas from the “look-compute-move” paradigm

used in autonomous mobile robots to bring the amoebot model closer to a realistic,

concurrent setting. Our canonical amoebot model furthers these efforts by formalizing

all communication and cooperation between amoebots as message passing while also

addressing the complexity of potential conflicts caused by amoebot movements. This

careful formalization allows us to use standard adversarial activation models from the

distributed computing literature to describe concurrency [5].

2.1 Relationship to Other Models of Programmable Matter

There are many theoretical models of programmable matter in the literature,

ranging from the non-spatial population protocols [10] and network constructors [145]

to the tile-based models of DNA computing and molecular self-assembly [37, 157,

194]. Most closely related to the amoebot model is the well-established literature on

autonomous mobile robots, and in particular those using discrete, graph-based models

of space (see Chapter 1 of [87] for a recent overview). Both models assume anonymous

individuals that can actively move, lacking a global coordinate system or common
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orientation, and having strictly limited computational and sensing capabilities. In

addition, stronger capabilities assumed by the amoebot model also appear in more

recent variants of mobile robots, such as persistent memory in the F-state model [14,

88] and limited communication capabilities in luminous robots [47, 48, 68].

There are also key differences between the amoebot model and the standard

assumptions for mobile robots, particularly around their treatment of physical space,

the structure of individuals’ actions, and concurrency. First, while the discrete-space

mobile robots literature abstractly envisions robots as agents occupying nodes of a

graph — allowing multiple robots to occupy the same node — the amoebot model

assumes physical exclusion that ensures each node is occupied by at most one amoebot

at a time, inspired by the real constraints of self-organizing micro-robots and colloidal

state machines [106, 124, 132, 195, 196]. Physical exclusion introduces conflicts of

movement (e.g., two amoebots concurrently moving into the same space) that must

be handled carefully in algorithm design.

Second, mobile robots are assumed to operate in look-compute-move cycles, where

they take an instantaneous snapshot of their surroundings (look), perform internal

computation based on the snapshot (compute), and finally move to a neighboring

node determined in the compute stage (move). While it is reasonable to assume robots

may instantaneously snapshot their surroundings due to all information being visible,

the amoebot model — and especially the canonical version presented in this work —

treats all inter-amoebot communication as asynchronous message passing, making

snapshots nontrivial. Moreover, amoebots have read and write operations allowing

them to access or update variables stored in the persistent memories of their neighbors

that do not fit cleanly within the look-compute-move paradigm.

Finally, the mobile robots literature has a well-established and carefully studied
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hierarchy of adversarial schedulers capturing assumptions on concurrency that the

amoebot model has historically lacked. In fact, other than notable recent works that

adapt look-compute-move cycles and a semi-synchronous scheduler from mobile robots

for the amoebot model [66, 67], most amoebot literature assumes only sequential

activations. A key contribution of our canonical amoebot model presented in this

chapter is a hierarchy of concurrency and fairness assumptions similar in spirit to that

of mobile robots, though our underlying message passing design and lack of explicit

action structure require different formalizations.

2.2 Model Description

We introduce the canonical amoebot model as an update to the model’s original

formulation [52, 59]. This update has two main goals. First, we model all amoebot

actions and operations using message passing, leveraging this finer level of granularity

for a formal treatment of concurrency. Second, we clearly delineate which assumptions

are fixed features of the model and which have stronger and weaker variants, providing

unifying terminology for future amoebot model research. Unless variants are explicitly

listed, the following description of the canonical amoebot model details its core, fixed

assumptions. The variants are summarized in Table 1; we anticipate that this list will

grow as future research develops new adaptations and generalizations of the model.

In the canonical amoebot model, programmable matter consists of individual,

homogeneous computational elements called amoebots. Any structure that an amoebot

system can form is represented as a subgraph of an infinite, undirected graphG = (V,E)

where V represents all relative positions an amoebot can occupy and E represents all

atomic movements an amoebot can make. Each node in V can be occupied by at most
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Assumption Variants
Space ∗General. G is any infinite, undirected graph.

∗Geometric. G = G∆, the triangular lattice.
Orientation ∗Assorted. Assorted direction and chirality.

∗Common Chirality. Assorted direction but common chirality.
Common Direction. Common direction but assorted chirality.
Common. Common direction and chirality.

Memory Oblivious. No persistent memory.
∗Constant-Size. Memory size is O(1).
Finite. Memory size is O(f(n)), i.e., some function of the system size.
Unbounded. Memory size is unbounded.

Concurrency Asynchronous. Arbitrary sets of amoebots can be simultaneously active.
∗Synchronous. Arbitrary sets of amoebots can be simultaneously active, but all
active amoebots must return to idle before the next arbitrary set is activated.
k-Isolated. No amoebots within distance k are simultaneously active.
∗Sequential. At most one amoebot is active per time.

Fairness Unfair. Some enabled amoebot is eventually activated.
∗Weakly Fair. Every continuously enabled amoebot is eventually activated.
Strongly Fair. Every amoebot that is enabled infinitely often is activated
infinitely often.

Table 1. Assumption Variants in the Canonical Amoebot Model. Summary of
assumption variants, each organized from least to most restrictive. Variants marked
with ∗ have been considered in existing literature.

one amoebot at a time. There are many potential variants with respect to space; the

most common is the geometric variant that assumes G = G∆, the triangular lattice

(Figure 1a).

An amoebot has two shapes: contracted, meaning it occupies a single node

in V , or expanded, meaning it occupies a pair of adjacent nodes in V (Figure 1b).

For a contracted amoebot, the unique node it occupies is considered to be its head ;

for an expanded amoebot, the node it has most recently come to occupy (due to

movements) is considered its head and the other is its tail. Each amoebot keeps a

collection of ports — one for each edge incident to the node(s) it occupies — that are

labeled consecutively according to its own local orientation. An amoebot’s orientation

depends on its direction — i.e., which axis direction it perceives as “north” — and

its chirality, or sense of clockwise and counter-clockwise rotation. Different variants
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Figure 1. The Canonical Amoebot Model. (a) A section of the triangular lattice G∆

used in the geometric variant; nodes of V are shown as black circles and edges of E
are shown as black lines. (b) Expanded and contracted amoebots; G∆ is shown in
gray, and amoebots are shown as black circles. Amoebots with a black line between
their nodes are expanded. (c) Two amoebots that agree on their chirality but not on
their direction, using different offsets for their clockwise-increasing port labels.

may assume that amoebots share a common orientation with respect to both, one, or

neither of their directions and chiralities (see Table 1); Figure 1c gives an example of

the common chirality variant where amoebots share a sense of clockwise rotation but

have different directions.

Two amoebots occupying adjacent nodes are said to be neighbors. Although each

amoebot is anonymous, lacking a unique identifier, we assume an amoebot can locally

identify its neighbors using their port labels. In particular, we assume that amoebots

A and B connected via ports pA and pB each know one another’s labels for pA and

pB, whether or not they agree on chirality, and — in the case A or B are expanded

— in which local direction they are expanded. This is sufficient for an amoebot to

reconstruct which adjacent nodes are occupied by the same neighbor, but is not so

strong so as to collapse the hierarchy of orientation assumptions. More details on an

amoebot’s anatomy are given in Section 2.2.1.

An amoebot’s functionality is partitioned between a higher-level application layer

and a lower-level system layer. Algorithms controlling an amoebot’s behavior are

designed from the perspective of the application layer. The system layer is responsible
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for an amoebot’s core functions and exposes a limited programming interface of

operations to the application layer that can be used in amoebot algorithms. The

operations are defined in Section 2.2.2 and their organization into algorithms is

described in Section 2.2.3.

2.2.1 Amoebot Anatomy

Each amoebot has persistent memory whose size is a model variant; the standard

assumption is constant-size memories. An amoebot’s memory consists of two parts: a

public memory that is read-writeable by the system layer but only accessible to the

application layer via communication operations (discussed in the next section), and

a private memory that is inaccessible to the system layer but read-writeable by the

application layer. The public memory of an amoebot A contains (i) the shape of A,

denoted A.shape ∈ {contracted,expanded}, and (ii) publicly accessible copies

of the variables used in the distributed algorithm being run by the application layer.

An amoebot’s private memory contains private copies of the distributed algorithm’s

variables that the application layer can modify as needed.

Neighboring amoebots (i.e., those occupying adjacent nodes) form connections

via their ports facing each other. An amoebot’s system layer receives instantaneous

feedback whenever a new neighbor connects to it or an existing neighbor disconnects

from it as these are physical, local interactions. Communication between connected

neighbors is achieved via message passing. To facilitate message passing communica-

tion, each of an amoebot’s ports has a FIFO outgoing message buffer managed by the

system layer that can store up to a fixed (constant) number of messages waiting to be

sent to the neighbor incident to the corresponding port. If two neighbors disconnect
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Operation Return Value on Success
Connected(p) true iff a neighboring amoebot is connected via port p.

Read(p, x)
The value of x in the public memory of this amoebot if p = ⊥ or of the
neighbor incident to port p otherwise.

Write(p, x, xval)
Confirmation that the value of x was updated to xval in the public memory
of this amoebot if p = ⊥ or of the neighbor incident to port p otherwise.

Contract(v) Confirmation of the contraction out of node v ∈ {head,tail}.
Expand(p) Confirmation of the expansion into the node incident to port p.
Pull(p) Confirmation of the pull handover with the neighbor incident to port p.
Push(p) Confirmation of the push handover with the neighbor incident to port p.
Lock() Local identifiers of the amoebots that were successfully locked.
Unlock(L) Confirmation that the amoebots of L were unlocked.

Table 2. Amoebot Operations in the Canonical Amoebot Model. Summary of
operations exposed by an amoebot’s system layer to its application layer.

due to some movement, their system layers immediately flush the corresponding

message buffers of any pending messages. Otherwise, we assume that any pending

message is sent to the connected neighbor in FIFO order in finite time.

2.2.2 Amoebot Operations

Operations provide the application layer with a programming interface for con-

trolling the amoebot’s behavior; the application layer calls operations and the system

layer executes them. We assume the execution of an operation is blocking for the

application layer; that is, the application layer can only execute one operation at a

time. Each operation is designed to (i) send at most a constant number of messages

per neighbor at a time and (ii) terminate — either successfully or in failure — in

finite time. Combined with the blocking assumption, these design principles prohibit

message buffer overflow, among other desirable properties. The communication, move-

ment, and concurrency control operations are summarized in Table 2 and are formally

defined in the following sections.
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Communication Operations (Algorithm 1). An amoebot can check for the presence

of a neighbor using the Connected operation and exchange information with its

neighbors using the Read and Write operations. When the application layer calls

Connected(p), the system layer simply returns true if there is a neighbor connected

via port p and false otherwise. The application layer can call Read(p, x) to issue

a request to read the value of a variable x in the public memory of the neighbor

connected via port p. Analogously, the application layer can call Write(p, x, xval)

to issue a request to update the value of a variable x in the public memory of the

neighbor connected via port p to a new value xval. Read and Write can also be

called with p = ⊥ to access an amoebot’s own public memory instead of a neighbor’s.

Algorithm 1 Communication Operations for Amoebot A
1: function Connected(p)
2: if there is a neighbor connected via port p then return true.
3: else return false.
4: function Read(p, x)
5: On being called:
6: if p = ⊥ then return the value of x in the public memory of A; success.
7: else if Connected(p) then send read_request(x) via port p.
8: else throw disconnect-failure.
9: On receiving read_request(x) via port p′:

10: Let xval be the value of x in the public memory of A.
11: Send read_ack(x, xval) via port p′.
12: On receiving read_ack(x, xval) via port p:
13: return xval; success.
14: On disconnection via port p:
15: throw disconnect-failure.
16: function Write(p, x, xval)
17: On being called:
18: if p = ⊥ then update the value of x in the public memory of A to xval; return success.
19: else if Connected(p) then send write_request(x, xval) via port p.
20: else throw disconnect-failure.
21: On write_request(x, xval) being sent:
22: return success.
23: On disconnection via port p:
24: throw disconnect-failure.
25: On receiving write_request(x, xval) via port p′:
26: Update the value of x in the public memory of A to xval.
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Figure 2. The Communication Operations. Execution flows of the Read and Write
operations for the calling amoebot A.

Suppose that the application layer of an amoebot A calls Read(p, x), illustrated

in Figure 2a. If p = ⊥, the system layer simply returns the value of x in the public

memory of A to the application layer and this Read succeeds. Otherwise, the system

layer checks if there is a neighbor connected via port p: this Read fails if there is no

such neighbor, but if there is, the system layer enqueues m = read_request(x) in the

message buffer on p. Let B be the neighbor connected to A via port p. Eventually, m

is sent in FIFO order and the system layer of B receives it, prompting it to access

variable x with value xval in its public memory and enqueue m′ = read_ack(x, xval)

in the message buffer on its port facing A. Message m′ is eventually sent in FIFO

order by B and received by the system layer of A, prompting it to unpack xval and

return it to the application layer, successfully completing this Read. If A and B are

disconnected (i.e., due to a movement) any time after A enqueues message m but

before A receives message m′, this Read fails.

A Write(p, x, xval) operation is executed analogously, though it does not need to

wait for an acknowledgement after its write request is sent (see Figure 2b).

Movement Operations (Algorithms 2 and 3). The application layer can direct the
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system layer to initiate movements using the four movement operations Contract,

Expand, Pull, and Push. An expanded amoebot can Contract into either node

it occupies; a contracted amoebot occupying a single node can Expand into an

unoccupied adjacent node. Neighboring amoebots can coordinate their movements

in a handover, which can occur in one of two ways. A contracted amoebot A can

Push an expanded neighbor B by expanding into a node occupied by B, forcing it

to contract. Alternatively, an expanded amoebot B can Pull a contracted neighbor

A by contracting, forcing A to expand into the neighbor it is vacating. We give the

details of each of these movement operations below.

Algorithm 2 Movement Operations for Amoebot A: Contract and Expand
1: function Contract(v)
2: On being called:
3: if A.shape 6= expanded then throw shape-failure.
4: else if A is involved in a handover then throw handover-failure.
5: else release all connections via ports on v and begin contracting out of v.
6: On completing the contraction:
7: Update A.shape← contracted; return success.

1: function Expand(p)
2: Let vp denote the node that port p faces.
3: On being called:
4: if A.shape 6= contracted then throw shape-failure.
5: else if A is involved in a handover then throw handover-failure.
6: else wait for a delay of 0.
7: After waiting for a delay:
8: if ¬Connected(p) then begin expanding into vp.
9: else throw occupied-failure.

10: On collision with another amoebot:
11: Retract back out of vp and wait for a delay chosen u.a.r. from a sufficiently large interval.
12: On connection via port p:
13: throw occupied-failure.
14: On completing the expansion:
15: Establish connections with any new neighbors adjacent to vp.
16: Update A.shape← expanded; return success.

Suppose that the application layer of an amoebot A calls Contract(v), where

v ∈ {head,tail} (see Figure 3a). The system layer of A first determines if this
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Figure 3. The Contract and Expand Operations. Execution flows of the Contract
and Expand operations for the calling amoebot A.

contraction is valid: if A.shape 6= expanded or A is currently involved in a han-

dover, this Contract fails. Otherwise, the system layer releases all connections

to neighboring amoebots via ports on node v and begins contracting out of node v.

Once the contraction completes, the system layer updates A.shape← contracted,

successfully completing this Contract.

Next suppose an amoebot A calls Expand(p) for one of its ports p (see Figure 3b);

let vp denote the node A is expanding into. If A.shape 6= contracted, A is already

involved in a handover, or vp is already occupied by another amoebot, this Expand

fails. Otherwise, A begins its expansion into node vp. Once this expansion completes,

the system layer establishes connections with all new neighbors adjacent to vp, updates

A.shape← expanded, successfully completing this Expand.

However, A may collide with other amoebots while expanding into vp. We assume

that the system layer can detect when a collision has occurred. When A detects a

collision, it retracts into its original node and then retries its expansion after a random

time delay. If the delay is chosen uniformly at random from a sufficiently large time
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Figure 4. The Handover Operations. Execution flows of the Pull and Push operations
for the calling amoebot A.

interval, then exactly one competing amoebot will successfully expand into vp within

O(log n) expansion attempts, with high probability.1 In [50], we show that for the

geometric variant of the model on the triangular lattice, a time interval of [5T, 10T ]

— where T is an upper bound on the time required for an amoebot to complete an

expansion or retraction — is sufficient for this w.h.p. result. We omit the proof here

as the analysis is a straightforward application of randomized backoff mechanisms for

contention resolution in wireless networks [28, 33].

Finally, suppose an amoebot A calls Pull(p) for one of its ports p (see Fig-

ure 4a); let vp denote the node A intends to vacate in this pull handover. If

1An event occurs with high probability (w.h.p.) if it occurs with probability at least 1 − 1/nc,
where n is the number of amoebots in the system and c > 0 is a constant.
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Algorithm 3 Movement Operations for Amoebot A: Pull and Push
For convenience, let vp denote the node that port p faces.

1: function Pull(p)
2: On being called:
3: if A.shape 6= expanded then throw shape-failure.
4: else if A is involved in a handover then throw handover-failure.
5: else if ¬Connected(p) then throw disconnect-failure.
6: else send pull_request() via port p.
7: On receiving pull_request() via port p′:
8: if A.shape = contracted and A is not involved in a move then set m′ ← pull_ack().
9: else set m′ ← pull_nack().

10: Send m′ via port p′.
11: On sending pull_ack():
12: Begin expanding into vp.
13: On completing the expansion into vp:
14: Establish connections with any new neighbors adjacent to vp.
15: Update A.shape← expanded.
16: On receiving pull_ack() via port p:
17: Release all connections via ports on vp except p and begin contracting out of vp.
18: On receiving pull_nack() via port p or on a disconnection via port p:
19: throw nack-failure.
20: On completing the contraction out of vp:
21: Update A.shape← contracted; return success.
22: function Push(p)
23: On being called:
24: if A.shape 6= contracted then throw shape-failure.
25: else if A is involved in a handover then throw handover-failure.
26: else if ¬Connected(p) then throw disconnect-failure.
27: else send push_request() via port p.
28: On receiving push_request() via port p′:
29: if A.shape = expanded and A is not involved in a move then set m′ ← push_ack().
30: else set m′ ← push_nack().
31: Send m′ via port p′.
32: On sending push_ack():
33: Release all connections via ports on vp except p and begin contracting out of vp.
34: On completing the contraction out of vp:
35: Update A.shape← contracted.
36: On receiving push_ack() via port p:
37: Begin expanding into vp.
38: On receiving push_nack() via port p or on a disconnection via port p:
39: throw nack-failure.
40: On completing the expansion into vp:
41: Establish connections with any new neighbors adjacent to vp.
42: Update A.shape← expanded; return success.
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A.shape 6= expanded, A is already involved in a handover, or A is not connected to

a neighbor via port p, this Pull fails. Otherwise, the system layer of A enqueues

m = pull_request() in the message buffer on port p. Let B be the neighbor connected

to A via port p. Eventually, message m is sent in FIFO order and the system layer of B

receives it. If B is not involved in another movement and B.shape = contracted, its

system layer prepares message m′ = pull_ack(); otherwise, it sets m′ = pull_nack().

In either case, the system layer of B enqueues m′ in the message buffer on its port

facing A. If A and B are disconnected any time after A enqueues message m but

before A receives message m′, this Pull fails; otherwise, message m′ is eventually

sent in FIFO order by B and received by the system layer of A. If m′ = pull_nack(),

this Pull fails. Otherwise, if m′ = pull_ack(), A disconnects from all ports on

node vp (except for p) and A and B begin their coordinated handover of node vp.

When A completes its contraction, it updates A.shape← contracted; analogously,

when B completes its expansion, it updates B.shape← expanded and establishes

connections to its new neighbors adjacent to node vp. This successfully completes this

Pull. A Push(p) operation is executed analogously (see Figure 4b).

Concurrency Control Operations. The concurrency control operations Lock

and Unlock address a variant of the mutual exclusion problem where an amoebot

attempts to gain exclusive control over itself and its immediate neighborhood. In

particular, all amoebots A have a variable A.lock ∈ {true, false} in public memory

that is true if and only if A was locked by some amoebot’s application layer calling

Lock(). A successful Lock operation performed by A returns the set L of amoebots

that were locked in this operation. Amoebot A can then call Unlock(L′) for any

L′ ⊆ L to release its locks on amoebots in L′.
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At a high level, our Lock operation realizes mutual exclusion in the asynchronous,

anonymous, dynamic, constant-size memory message passing setting of the canonical

amoebot model by combining the classical α-synchronizer [12] with a 2-phase locking

mechanism. In the preparation phase, the amoebot A performing the Lock operation

chooses a priority prioA ∈ {1, . . . , K} independently and uniformly at random for a

fixed and sufficiently large constant K and then sends prioA to all its neighbors. In the

competition phase, if prioA is the highest priority received by any of the neighbors of

A, then A sets A.lock← true and instructs its neighbors to do the same; otherwise,

this Lock fails. Of course, this high-level description neglects many issues. For

example, some neighbors of A may already be locked by other Lock operations

or two amoebots may pick the same highest priority. While these issues are easily

addressed, more severe are complications caused by amoebots moving during the

competition, questions of when to close a competition so that it can be evaluated, and

the implementation of an α-synchronizer using a constant-size round counter which

might create deadlocks. Moreover, continuously running the α-synchronizer might

cause an unnecessarily high message overhead. The details of this mutual exclusion

algorithm underlying the Lock operation are beyond the scope of this dissertation

but can be found in [49]; we summarize its main properties in the following theorem.

Theorem 2.2.1. Every execution of the Lock operation eventually terminates. When-

ever a Lock operation by an amoebot A succeeds, there exists a subset N of the

neighbors A had at the start of this operation for which all amoebots B ∈ N ∪ {A}

have B.lock = true; whenever it fails, some other amoebot in the 3-neighborhood of

A executed a Lock operation that succeeded.

The execution of an Unlock(L) call by the application layer ofA is straightforward,

behaving like a parallel version of the Write operation where unlock() messages are
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sent to all amoebots in L and failure occurs if any intended recipient disconnects from

A during its execution.

2.2.3 Amoebot Actions, Algorithms, and Executions

Following the message passing literature, we specify distributed algorithms in the

amoebot model as sets of actions to be executed by the application layer, each of the

form 〈label〉 : 〈guard〉 → 〈operations〉. An action’s label specifies its name. Its guard

is a Boolean predicate determining whether an amoebot A can execute it based on

the ports A has connections on — i.e., which nodes adjacent to A are (un)occupied

— and information from the public memories of A and its neighbors. An action is

enabled for an amoebot A if its guard is true for A, and an amoebot is enabled if it

has at least one enabled action. An action’s operations specify the finite sequence of

operations and computation in private memory to perform if this action is executed.

The control flow of this private computation may optionally include randomization

to generate random values and error handling to address any operation executions

resulting in failure.

Each amoebot executes its own algorithm instance independently and — as an

assumption for the majority of this dissertation — reliably, meaning there are no

crash or Byzantine faults. An amoebot is said to be active if its application layer is

executing an action and is idle otherwise. An amoebot can begin executing an action

if and only if it is idle; i.e., an amoebot can execute at most one action at a time. On

becoming active, an amoebot A first evaluates which of its actions αi : gi → opsi are

enabled. Since each guard gi is based only on the connected ports of A and the public

memories of A and its neighbors, each gi can be evaluated using the Connected
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and Read operations. If no action is enabled, A returns to idle; otherwise, A chooses

the highest priority enabled action αi : gi → opsi — where action priorities are set

by the algorithm — and executes the operations and private computation specified

by opsi. Recall from Section 2.2.2 that each operation is guaranteed to terminate

(either successfully or with a failure) in finite time. Thus, since A is reliable and

opsi consists of a finite sequence of operations and finite computation, each action

execution is also guaranteed to terminate in finite time after which A returns to idle.

An action execution fails if any of its operations’ executions result in a failure that is

not addressed with error handling and succeeds otherwise.

We adopt standard terminology from the distributed computing literature (see,

e.g., [5]) to characterize assumptions on the executions of distributed algorithms in

the canonical amoebot model. In particular, we assume an adversary (or daemon)

controls the timing of amoebot activations and the resulting action executions. The

power of an adversary is determined by its concurrency and fairness. We distinguish

between four concurrency variants: sequential, in which at most one amoebot can

be active at a time; k-isolated, in which any set of amoebots for which no two are

within distance k can be simultaneously active; synchronous, in which any set of

amoebots can be simultaneously active but all active amoebots must return to idle

before another set is activated; and asynchronous, in which any set of amoebots can

be simultaneously active. Fairness restricts how often the adversary must activate

enabled amoebots. We distinguish between three fairness variants: strongly fair, in

which every amoebot that is enabled infinitely often is activated infinitely often; weakly

fair, in which every continuously enabled amoebot is eventually activated; and unfair,

in which an amoebot may never be activated unless it is the only one with an enabled

action. An algorithm execution is said to terminate if eventually all amoebots are
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idle and no amoebot is enabled; note that since an amoebot can only become enabled

if something changes in its neighborhood, termination is permanent.

The majority of the algorithms in this dissertation assume a sequential adversary,

under which an active amoebot knows that all other amoebots are idle and thus its

evaluation of a guard with Connected and Read operations must be correct since

the operations cannot fail or have their results be outdated due to concurrent changes

in the system. In the concurrent settings, however, these issues may lead to guards

being evaluated incorrectly, potentially causing a disabled action to be executed or an

enabled action to be skipped. We address these issues in two ways. In Section 2.5, we

give an algorithm whose actions are carefully designed so that their guards are always

evaluated correctly under any adversary, even without using locks. In Chapter 3, we

present a concurrency control protocol that uses locks to ensure that guards can be

evaluated correctly even in the asynchronous setting.

2.2.4 Time Complexity

It is difficult to apply standard measurements of time from the distributed com-

puting literature to the canonical amoebot model since our model mixes message

passing, movements, and action semantics. For example, a common unit of time in

pure message passing systems is the delay of the slowest message. This measurement

could be extended to instead consider the delay of the slowest message or movement.

However, this fine-grained measurement of time is awkward when applied to amoebot

algorithms defined at the application layer where no message passing is explicitly

modeled. Distributed computing models that work at the equivalent of our application

layer (e.g., the atomic-state model [70] or autonomous mobile robots [87]) that use the

26



concepts of enabled actions and guards usually make stronger assumptions about the

structure of a process’s actions or time itself, partitioning time into “steps” or “rounds”

that abstract from the lower level details of guard evaluation. This suggests that the

canonical amoebot model may need to be revised from its current formulation to make

clearer distinctions between the low-level message passing mechanics at its system

layer and the high-level algorithm executions at its application layer before an elegant

measurement of time can be defined.

For consistency with the runtime results presented in this dissertation under the

original amoebot model, we conclude our model description with a grandfathered

definition of time complexity. Here, we assume a sequential adversary (i.e., there can

be at most one active amoebot at a time), though the adversary can activate any

amoebot, not just those with enabled actions. We further assume that the adversary is

fair, which in this context means that it must activate every amoebot infinitely often.

Under these assumptions, a (fair sequential) round is complete once every amoebot

has been activated at least once.

2.3 Rationale

Connectivity. An amoebot system is connected if the subgraph of G induced by

the occupied nodes of V is also connected. This notion does not imply any particular

kind of connectivity in a physical programmable matter system; connections could

be physical bonds, points of contact between neighboring units, or even wireless

communication links. Although the amoebot model does not require that a system

remain connected, this is often a desirable property that its algorithms maintain.
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(a) (b) (c)

Figure 5. Lattice Movements. An amoebot moving “around” a neighbor to get to the
next position on the system’s boundary, depicted as a gray star, on the (a) triangular
lattice G∆, (b) square lattice, and (c) hexagonal lattice.

Since amoebots can only interact with their immediate neighbors and exist on an

infinite graph G, disconnection must be handled very carefully for there to be any

hope that the resulting components could ever reconnect.

Space. It is well known that the only regular polygons that tile the two-dimensional

plane are triangles, squares, and hexagons. The geometric amoebot model uses the

triangular lattice G∆ (corresponding to the hexagonal tiling) to represent space because

it best supports system connectivity. In the other regular two-dimensional lattices,

amoebots are forced to disconnect from the system even to perform moves as simple

as shifting around another amoebot by one position (see Figure 5).

Movement. Modeling movements as expansions, contractions, and handovers also

has roots in connectivity. Splitting an amoebot’s movement from one node to another

into an expansion and a contraction can be thought of as a look-ahead mechanism

in which the amoebot reserves a space and examines its new surroundings before

deciding whether or not to go through with the movement. This is vaguely similar to

bipedal walking, where an organism puts one foot forward before shifting its weight

to take another step. By looking ahead, an amoebot can try to determine whether
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its move might break system connectivity before committing to it. Handovers help

maintain system connectivity by transferring occupancy of a node between neighboring

amoebots without changing the set of occupied nodes. Without handovers, system

behaviors such as moving in a line while preserving connectivity would be impossible.

2.4 Extensions

Many amoebot algorithms use techniques and assumptions that extend the core

model described in Section 2.2. These extensions can be thought of as modules that

combine and repackage core model features into useful, higher-level functionalities.

Leader Amoebot. Some amoebot algorithms assume the existence of a unique leader

amoebot (or seed) at initialization that is used to coordinate the rest of the system.

This assumption is reasonable under in certain settings since any of the existing

leader election algorithms under the amoebot model (see Chapter 5) could be used

as a preprocessing step for obtaining this leader amoebot. In particular, the recent

algorithm by Emek et al. can elect a leader amoebot deterministically in polynomial

time assuming geometric space, assorted orientations, constant-size memory, and a

sequential, weakly fair adversary [78].

Static Objects. An object is a finite, connected, static set of nodes O ⊂ V

representing some fixed surface or entity in the amoebot system’s environment. For

example, the coating algorithm in Chapter 6 assumes the existence of an object to be

coated, and the stochastic algorithm for shortcut bridging in Chapter 9 considers two

objects that the amoebot system must bridge between. Object nodes do not move,
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communicate, or perform any computation throughout the execution of an algorithm.

Amoebots can differentiate between neighboring amoebots and objects.

Token Passing. A token is a convenient abstraction used in algorithm design for

passing information from amoebot to amoebot. More specifically, an amoebot A can

pass a token t to a neighbor B by writing a copy of t into the memory of B and

deleting its own copy. Rules governing how amoebots pass and process tokens may

vary by each algorithm’s need. In general, token passing is used to relay information

beyond an amoebot’s immediate neighborhood.

Random Number Generation. The canonical amoebot model assumes that an

action’s private computation may optionally include randomization; i.e., each amoebot

has access to random bits with which it can generate random values. The only

additional constraint is that the number of random bits available to an amoebot must

be compatible with the memory size assumption; e.g., under constant-size memory,

each amoebot can only have a constant number of random bits and thus can only

generate constant precision random values. It is left to the algorithm designer to

ensure that the available precision is sufficient for their application.

2.5 Asynchronous Hexagon Formation

In this section, we present an algorithm for hexagon formation as a concrete case

study for algorithm design, pseudocode, and analysis in the canonical amoebot model.

Our Hexagon-Formation algorithm is formulated in terms of actions, as specified

in Section 2.2.3. Under the assumptions of geometric space, assorted orientation, and
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constant-size memory, we first prove that this algorithm correctly forms a hexagon

under any unfair sequential adversary (Lemma 2.5.1). We then demonstrate that

while locks are useful tools for designing correct amoebot algorithms under concurrent

adversaries — as will be our approach in our concurrency control protocol (Chapter 3)

— they are not always necessary. In particular, our Hexagon-Formation algorithm

does not use locks but is guaranteed to correctly form a hexagon under any unfair

asynchronous adversary, the most general of all possible adversaries (Theorem 2.5.6).

2.5.1 The Hexagon Formation Problem

The hexagon formation problem was originally proposed by Derakhshandeh et

al. [58] and was later generalized as basic shape formation [52, 95]. This problem

tasks an arbitrary, connected system of initially contracted amoebots with forming a

regular hexagon (or as close to one as possible, given the number of amoebots in the

system). We assume that there is a unique seed amoebot in the system and all other

amoebots are initially idle. Note that the seed amoebot immediately collapses the

hierarchy of orientation assumptions as it can impose its own local orientation on the

rest of the system; thus, we will assume the amoebots share a common chirality (i.e.,

sense of clockwise orientation).

2.5.2 The Hexagon-Formation Algorithm

Following the sequential algorithm given by Derakhshandeh et al. [52, 58], the

basic idea of our Hexagon-Formation algorithm is to form a hexagon by extending

a spiral of amoebots counter-clockwise from the seed (see Figure 6). In addition
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(a) (b) (c)

(d) (e) (f)

Figure 6. The Hexagon-Formation Algorithm. An example run with 19 amoebots.
(a) All amoebots are initially idle (black dots), with the exception of a unique seed
amoebot (large black dot). (b) Amoebots adjacent to the seed become roots (gray
circles), and followers form parent-child relationships (black arcs) with roots and other
followers. (c)–(f) Roots traverse the forming hexagon clockwise, becoming retired
(black circles) when reaching the position marked by the last retired amoebot.

Variable Domain Initialization
state {seed, idle, follower,root,retired} one seed, all others idle
parent {null, 0, 1, . . . , 9} null
dir {null, 0, 1, . . . , 9} 0 if seed, all others null

Table 3. Local Variables for Hexagon-Formation.

to the shape variable assumed by the amoebot model, Table 3 lists the variables

each amoebot keeps in public memory. At a high level, the amoebot system first

self-organizes as a spanning forest rooted at the seed amoebot using their parent

ports. Follower amoebots follow their parents until reaching the surface of retired

amoebots that have already found their place in the hexagon. They then become roots,

traversing the surface of retired amoebots in a clockwise direction. Once they become
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Algorithm 4 Hexagon-Formation for Amoebot A
1: α1 : (A.state ∈ {idle, follower}) ∧ (∃B ∈ N(A) : B.state ∈ {seed,retired})→
2: Write(⊥, parent,null).
3: Write(⊥, state,root).
4: Write(⊥, dir,GetNextDir(counter-clockwise)). . See Algorithm 5.
5: α2 : (A.state = idle) ∧ (∃B ∈ N(A) : B.state ∈ {follower,root})→
6: Find a port p for which Connected(p) = true and Read(p, state) ∈ {follower,root}.
7: Write(⊥, parent, p).
8: Write(⊥, state, follower).
9: α3 : (A.shape = contracted) ∧ (A.state = root) ∧ (∀B ∈ N(A) : B.state 6= idle)

10: ∧ (∃B ∈ N(A) : (B.state ∈ {seed,retired}) ∧ (B.dir is connected to A))→
11: Write(⊥, dir,GetNextDir(clockwise)).
12: Write(⊥, state,retired).
13: α4 : (A.shape = contracted) ∧ (A.state = root) ∧ (the node adjacent to A.dir is empty)→
14: Expand(A.dir).
15: α5 : (A.shape = expanded) ∧ (A.state ∈ {follower,root}) ∧ (∀B ∈ N(A) : B.state 6= idle)
16: ∧ (A has a tail-child B : B.shape = contracted)→
17: if Read(⊥, state) = root then Write(⊥, dir,GetNextDir(counter-clockwise)).
18: Find a port p ∈ TailChildren() s.t. Read(p, shape) = contracted. . See Algorithm 5.
19: Let p′ be the label of the tail-child’s port that will be connected to p after the pull handover.
20: Write(p, parent, p′).
21: Pull(p).
22: α6 : (A.shape = expanded) ∧ (A.state ∈ {follower,root}) ∧ (∀B ∈ N(A) : B.state 6= idle)
23: ∧ (A has no tail-children)→
24: if Read(⊥, state) = root then Write(⊥, dir,GetNextDir(counter-clockwise)).
25: Contract(tail).

connected to a retired amoebot’s dir port, they also retire and set their dir port to

the next position of the hexagon. Algorithm 4 describes Hexagon-Formation in

terms of actions. We assume that if multiple actions are enabled for an amoebot, the

enabled action with smallest index is executed. For conciseness and clarity, we write

action guards as logical statements as opposed to their implementation with Read

and Connected operations. In action guards, we use N(A) to denote the neighbors

of amoebot A and say that an amoebot A has a tail-child B if B is connected to the

tail of A via port B.parent.
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Algorithm 5 Helper Functions for Hexagon-Formation
1: function GetNextDir(c) . c ∈ {clockwise, counter-clockwise}
2: Let p be any head port.
3: try:
4: while (Connected(p) = false) ∨ (Read(p, state) 6∈ {seed,retired}) do
5: p← the next head port in orientation c.
6: catch disconnect-failure do p← the next head port in orientation c; go to Step 4.
7: try:
8: while (Connected(p) = true) ∧ (Read(p, state) ∈ {seed,retired}) do
9: p← the next head port in orientation c.

10: catch disconnect-failure do p← the next head port in orientation c; go to Step 8.
11: return p.
12: function TailChildren( )
13: Let P ← ∅.
14: for each tail port p do
15: try:
16: if (Connected(p) = true) ∧ (Read(p, parent) points to A) then
17: P ← P ∪ {p}.
18: catch disconnect-failure do nothing.
19: return P .

2.5.3 Analysis

We begin our analysis of the Hexagon-Formation algorithm by showing it is

correct under any sequential adversary. While the related hexagon formation algorithm

of Derakhshandeh et al. has already been analyzed in the sequential setting in previous

works [52, 58], Hexagon-Formation must be proved correct with respect to its

action formulation and the unfair adversary.

Lemma 2.5.1. Any unfair sequential execution of the Hexagon-Formation algo-

rithm terminates with the amoebot system forming a hexagon.

Proof. We first show that the system remains connected throughout the execution.

Recall that the amoebot system is assumed to be initially connected. A disconnection

can only result from a movement, and in particular, a Contract movement. Expand

movements only enlarge the set of nodes occupied by the system and handovers only
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change which amoebot occupies the handover node, not the fact that the node remains

occupied. So it suffices to consider action α6, the only action involving a Contract

operation. Action α6 only allows an expanded follower or root amoebot to contract

its tail if it has no idle neighbors or neighbors pointing at its tail as their parent. The

only other possible tail neighbors are the seed, roots, or retired amoebots; however, all

of these neighbors are guaranteed to be connected to the forming hexagon structure.

Thus, the system remains connected throughout the algorithm’s execution.

Now, suppose to the contrary that the Hexagon-Formation algorithm has

terminated — i.e., no amoebot has an enabled action — but the system does not form

a hexagon. By inspection of action α3, the retired amoebots form a hexagon extending

counter-clockwise from the seed. Thus, for the system to not form a hexagon, there

must exist some amoebot that is neither the seed nor retired.

First of all, there cannot be any idle amoebots remaining in the system; in

particular, we argue that so long as there are idle amoebots in the system, there exists

an idle amoebot for which α1 or α2 is enabled, and thus the algorithm cannot have

terminated. Suppose to the contrary that there are idle amoebots in the system but

none of them have non-idle neighbors, yielding α1 and α2 disabled. Then the idle

amoebots must be disconnected from the rest of the system, since we assumed that

the system contains a unique seed amoebot initially, a contradiction of connectivity.

Thus, if the algorithm has terminated, all idle amoebots must have already become

roots or followers.

For all remaining root or follower amoebots to not have enabled actions, we have

the following chain of observations:

(i) No follower can have a seed or retired neighbor; otherwise, action α1 would be

enabled for that follower.
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(ii) Since we have already established that there are no idle amoebots in the system,

there must not be a contracted root occupying the next hexagon node; otherwise,

action α3 would be enabled for that root.

(iii) Every contracted root amoebot must have its clockwise traversal of the forming

hexagon’s surface blocked by another amoebot; otherwise, action α4 would be

enabled for some contracted root. Moreover, since there are no followers on

the hexagon’s surface by (i) and no contracted root has yet reached the next

hexagon node by (ii), each contracted root must be blocked by another root.

(iv) By (iii), there must exist at least one expanded root amoebot A. Since actions

α5 and α6 must be disabled for A by supposition — and, again, there are no

idle amoebots remaining in the system — A must have one or more tail-children

that are all expanded.

(v) By the same argument, actions α5 and α6 can only be disabled for the expanded

tail-children of A if they also each have at least one tail-child, all of which are

expanded.

The chain of expanded tail-children established by (iv) and (v) cannot continue ad

infinitum since the amoebot system is finite. There must eventually exist an expanded

root or follower amoebot that either has a contracted tail-child or no tail-children,

enabling α5 or α6, respectively. In all cases, we reach a contradiction: so long as the

amoebot system does not yet form a hexagon, there must exist an amoebot with an

enabled action. The execution of any enabled action brings the system monotonically

closer to forming a hexagon: turning idle amoebots into followers, bringing followers

to the hexagon’s surface, turning followers into roots, bringing roots closer to their

final position, and finally turning roots into retired amoebots. Therefore, regardless of

the (potentially unfair) sequential adversary’s choice of enabled amoebot to activate,
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the system is guaranteed to reach and terminate in a configuration forming a hexagon,

as desired.

We now consider the behavior of Hexagon-Formation under an unfair asyn-

chronous adversary, the most general of all possible adversaries. The Hexagon-

Formation algorithm maintains the following invariants:

1. The state variable of an amoebot A can only be updated by A itself. This

follows from actions α1, α2, and α3.

2. Only follower amoebots have non-null parent variables. An idle amoebot sets

its own parent variable when it becomes a follower. While an amoebot A is a

follower, the only amoebot that can update A.parent is the amoebot indicated

by A.parent. Finally, when a follower becomes a root, it updates its own parent

variable back to null, after which its parent variable never changes again. This

follows from actions α1, α2, and α5.

3. Only root and retired amoebots have non-null dir variables. The dir variable

of an amoebot A can only be updated by A itself. Once a dir variable is set by

a retired amoebot, it never changes again. This follows from actions α1, α3, α5,

and α6.

4. Seed, idle, and retired amoebots are always contracted and never move. Moreover,

seed and retired amoebots never change their state.

5. The shape variable of a root or expanded follower A can only be updated by a

movement operation initiated by A itself, while the shape variable of a contracted

follower A can only be updated by a Pull operation initiated by the amoebot

indicated by A.parent. This follows from actions α4, α5, and α6.

6. No amoebot can disconnect from an idle neighbor. Moreover, a root will not
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change its state if it has an idle neighbor. This follows from actions α3, α5, and

α6.

7. Root amoebots traverse the surface of the forming hexagon clockwise while

follower amoebots are pulled by their parents. This follows from actions α1, α4,

α5, and α6.

In an asynchronous execution of an algorithm that does not use locks, it is possible

that an amoebot evaluates its guards based on outdated information. Nevertheless, in

the following two lemmas, we show that Hexagon-Formation has the key property

that whenever an amoebot thinks an action is enabled, it remains enabled and will

execute successfully, even when other actions are executed concurrently.

Lemma 2.5.2. For any asynchronous execution of the Hexagon-Formation algo-

rithm, if an action αi is enabled for an amoebot A, then αi will remain enabled for A

until A executes an action’s operations.

Proof. We use the invariants to prove the claim on an action-by-action basis.

α1 : If A evaluates the guard of α1 as true, then it must be an idle or follower

amoebot with a seed or retired neighbor. Invariant 1 ensures that A remains

an idle or follower amoebot, and Invariant 4 ensures its seed or retired neighbor

does not move or change state.

α2 : If A evaluates the guard of α2 as true, then it must be an idle amoebot with a

follower or root neighbor. Invariant 1 ensures that A remains an idle amoebot,

and Invariant 6 ensures that any neighbor A has must remain its neighbor while

it is idle. A follower neighbor of A can concurrently change its state to root by

α1; however, a root neighbor of A will not change its state while A is idle by

Invariant 6.

38



α3 : If A evaluates the guard of α3 as true, then it must be a contracted root with

no idle neighbors and a seed or retired neighbor that indicates that the node A

occupies is the next hexagon node. Invariants 1 and 5 ensure that A remains a

contracted root, Invariant 4 ensures that A cannot gain any idle neighbors, and

Invariants 3 and 4 ensure that the seed or retired neighbor continues to indicate

the node A occupies as the next hexagon node.

α4 : If A evaluates the guard of α4 as true, then it must be a contracted root with

no neighbor connected via A.dir. Invariants 1 and 5 ensure that A remains a

contracted root, and Invariant 7 ensures that no amoebot but A can move into

the node adjacent to A.dir.

α5 : If A evaluates the guard of α5 as true, then it must be an expanded follower or

root with no idle neighbors and some contracted tail-child. Invariants 1 and 5

ensure that A remains an expanded follower or root, Invariant 4 ensures that A

cannot gain any idle neighbors, and Invariants 2 and 5 ensure that any contracted

tail-child of A remains so.

α6 : If A evaluates the guard of α6 as true, then it must be an expanded follower or

root with no idle neighbors and no tail-children. Invariants 1 and 5 ensure that

A remains an expanded follower or root, and Invariants 2 and 4 ensure that A

cannot gain any idle neighbors or tail-children.

Therefore, any action that A evaluates as enabled must remain enabled, as claimed.

Lemma 2.5.3. For any asynchronous execution of the Hexagon-Formation algo-

rithm, any execution of an enabled action is successful and unaffected by any concurrent

action executions.

Proof. We once again consider each action individually.
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α1 : Action α1 first executes two Write operations to A’s own public memory which

cannot fail. It then executes a helper function GetNextDir(counter-clockwise)

which involves a sequence of Connected and Read operations. Connected

operations always succeed, so it suffices to consider the Read operations. While

it is possible that Read operations issued to follower or root neighbors may fail if

those neighbors disconnect, these failures are caught by error handling and thus

do not cause the action to fail. Moreover, the critical Read operations issued to

seed or retired neighbors that the function depends on for calculating the correct

direction must succeed by the guard of α1 and Lemma 2.5.2. Once this direction

is computed, α1 then executes a Write operation to A’s own memory which

cannot fail.

α2 : Action α2 first executes Connected and Read operations to find a follower

or root neighbor. Such a neighbor must exist and the corresponding Read

operations must succeed by the guard of α2 and Lemma 2.5.2. Action α2 then

executes two Write operations to A’s own public memory which cannot fail.

α3 : Action α3 first executes helper function GetNextDir(clockwise) which must

succeed by an argument analogous to that of α1. Once this direction is computed,

α3 executes two Write operations to A’s own public memory which cannot fail.

α4 : Action α4 executes an Expand operation toward port A.dir which must succeed

because A is contracted and the node adjacent to A.dir must remain unoccupied,

as ensured by the guard of α4 and Lemma 2.5.2.

α5 : Action α5 first executes a conditional based on a Read operation issued to

A’s own public memory which cannot fail. It then executes helper function

GetNextDir(counter-clockwise) which must succeed by an argument analogous

to that of α1. The computed direction is then used in a Write operation to A’s
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own public memory which cannot fail. Action α5 then executes a helper function

TailChildren() which, like GetNextDir, involves Connected and Read

operations. It must succeed for similar reasons: any failed Read operations are

caught by error handling, and the critical Read operations issued to tail-children

must succeed by the guard of α5 and Lemma 2.5.2. Once the ports connected to

tail-children are computed, Read operations are executed to find a contracted

tail-child B which once again must succeed by the guard of α5 and Lemma 2.5.2.

Finally, α5 executes a Write to the public memory of B and performs a Pull

handover with B; both operations must succeed because B remains connected to

A and cannot be involved in another movement by Invariant 5.

α6 : Action α6 first executes the same conditional operation as α5 and thus succeeds for

an analogous reason. It then executes a single Contract operation which must

succeed because A is expanded, as ensured by the guard of α6 and Lemma 2.5.2.

Therefore, any execution of an enabled action must be successful and unaffected by

concurrent action executions, as claimed.

We next show that the Hexagon-Formation algorithm is serializable. We

denote the execution of an action α by an amoebot A in an execution of the algorithm

as a pair (A,α).

Lemma 2.5.4. For any asynchronous execution of the Hexagon-Formation algo-

rithm, there exists a sequential ordering of its action executions producing the same

final configuration.

Proof. Argue by induction on i, the number of action executions in the asynchronous

execution of Hexagon-Formation. Clearly, if i = 1, the asynchronous execution

of a single action is also a sequential execution, and we are done. So suppose that
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any asynchronous execution of Hexagon-Formation consisting of i > 1 action

executions can be serialized, and consider any asynchronous execution S consisting

of i+ 1 action executions. One can partially order the action executions (A,α) of S

according to the ideal wall-clock time the asynchronous adversary activated A; note

that this is only used for this analysis, and the wall-clock time is never available to the

amoebots. Let (A∗, α∗) be any action execution with the latest activation time; if there

are multiple such executions because the asynchronous adversary activated multiple

amoebots simultaneously, choose any such execution. If (A∗, α∗) was removed from S

to produce a new asynchronous execution S−, we have by Lemmas 2.5.2 and 2.5.3 that

the remaining i action executions must still be enabled and successful since all other

action executions either terminated before (A∗, α∗) was initiated or were concurrent

with it. By the induction hypothesis, there must exist a sequential ordering of the

i action executions in S− producing the same final configuration as S−. Append

(A∗, α∗) to the end of this sequential execution to produce S∗, a sequential execution of

i+ 1 action executions. Any actions that were concurrent with (A∗, α∗) in S have now

terminated before (A∗, α∗) in S∗. However, by Lemmas 2.5.2 and 2.5.3, this does not

change the fact that α∗ is enabled for A∗ and its execution is successful and produces

the same outcome in S∗. Therefore, we conclude that there exists a sequential ordering

of the action executions of S producing the same final configuration.

Finally, we show that the Hexagon-Formation algorithm is correct under any

unfair asynchronous adversary.

Lemma 2.5.5. Any unfair asynchronous execution of the Hexagon-Formation

algorithm terminates with the amoebot system forming a hexagon.

Proof. First suppose to the contrary that there exists an asynchronous execution of
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Hexagon-Formation that does not terminate; i.e., there are an infinite number of

executions of enabled actions. By Lemmas 2.5.2 and 2.5.3, any such action execution

must succeed and do exactly what it would have in a sequential execution where

there are no other concurrent action executions. But Lemma 2.5.1 implies that

there can only be a finite number of successful action executions before no amoebot

has any enabled actions left, a contradiction. So all asynchronous executions of

Hexagon-Formation must terminate.

Now suppose to the contrary that there exists an asynchronous execution of

Hexagon-Formation that has terminated but the system does not form a hexagon.

By Lemma 2.5.4, there must exist a sequential execution that also produces this non-

hexagon final configuration. However, this is a contradiction of Lemma 2.5.1 which

states that every sequential execution of Hexagon-Formation must terminate with

the system forming a hexagon.

Since asynchronous adversaries are the most general (i.e., any sequential, k-

isolated, or synchronous adversary is also an asynchronous adversary) and we made

no assumptions on fairness, we obtain the following theorem.

Theorem 2.5.6. Under the assumptions of geometric space, assorted orientations,

and constant-size memory, the Hexagon-Formation algorithm solves the hexagon

formation problem under any adversary.

2.5.4 Discussion

We note that Lemmas 2.5.4 and 2.5.5 are in fact algorithm-agnostic to an extent,

independent of the specific details of Hexagon-Formation. The proofs of these

lemmas show that any algorithm for which one could prove statements analogous
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to Lemmas 2.5.1–2.5.3 must be both serializable and correct under any (unfair)

asynchronous adversary. Thus, these three lemmas establish a set of sufficient con-

ditions for amoebot algorithm correctness under asynchronous adversaries without

the use of locks: correctness under any sequential adversary (Lemma 2.5.1), enabled

actions remaining enabled despite concurrent action executions (Lemma 2.5.2), and

enabled actions executing successfully and invariant from their sequential executions

(Lemma 2.5.3). We are hopeful that these sufficient conditions can be applied to the

analysis of existing amoebot algorithms under the new canonical amoebot model.
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Chapter 3

CONCURRENCY CONTROL

Under a sequential adversary where only one amoebot is active at a time, operation

failures are necessarily the fault of the algorithm designer: e.g., attempting to Read

on a disconnected port, attempting to Expand when already expanded, etc. Barring

these design errors, it suffices to focus only on the correctness of the algorithm — i.e.,

whether the algorithm’s actions always produce the desired system behavior under

any sequential execution — not whether the individual actions themselves execute as

intended. This is the focus of most existing amoebot works [8, 31, 32, 53, 54, 58, 60,

61, 62, 78, 92, 162] and the majority of the results in this dissertation.

In this chapter, we focus is on asynchronous executions where concurrent action

executions can mutually interfere, affect outcomes, and cause failures far beyond those

of simple designer negligence. Ensuring algorithm correctness in spite of concurrency

thus appears to be a significant burden for the algorithm designer, especially for

problems that are challenging even in the sequential setting due to the constraints of

constant-size memory, assorted orientation, and strictly local interactions. What if

there was a way to ensure that correct, sequential amoebot algorithms could be lifted

to the asynchronous setting without sacrificing correctness? This would give the best

of both worlds: the relative ease in design from the sequential setting and the correct

execution in a more realistic concurrent setting.

We introduce and rigorously analyze a concurrency control protocol [50] for trans-

forming an algorithm A that works correctly for every sequential execution into an

algorithm A′ that works correctly for every asynchronous execution. We prove that our
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protocol achieves this goal so long as the original algorithms satisfy certain conventions.

These conventions limit the full generality of the amoebot model in order to provide a

common structure to the algorithms. We discuss interesting open problems regarding

what algorithms are compatible with this protocol and whether it can be extended

beyond these conventions in Section 3.4.

3.1 Algorithm Conventions

The first of these conventions requires that all actions of the given algorithm are

executed successfully under a sequential adversary. For sequential executions, the

system configuration is defined as the mapping of amoebots to the node(s) they occupy

and the contents of each amoebot’s public memory. Certainly, this configuration is

well-defined whenever all amoebots are idle, and we call a configuration valid whenever

the requirements of our amoebot model are met, i.e., every position is occupied by at

most one amoebot, each amoebot is either contracted or expanded, its shape variable

corresponds to its physical shape, and its lock variable is true if and only if it has

been locked in a Lock operation. Whenever we talk about a system configuration in

the following, we assume that it is valid.

Convention 3.1.1. All actions of an amoebot algorithm should be valid, i.e., for all

its actions α and all system configurations in which α is enabled for some amoebot A,

the execution of α by A should be successful whenever all other amoebots are idle.

The second convention keeps an algorithm’s actions simple by controlling the order

and number of operations they perform.
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Convention 3.1.2. Each action of an amoebot algorithm should structure its opera-

tions as:

1. A compute phase, during which an amoebot performs a finite amount of com-

putation in private memory and a finite sequence of Connected, Read, and

Write operations.

2. A move phase, during which an amoebot performs at most one movement opera-

tion decided upon in the compute phase.

In particular, no action should use Lock or Unlock operations.

Convention 3.1.2 is similar in spirit to the look-compute-move paradigm used in the

mobile robots literature (see, e.g., [87]), though message passing communication via

Read and Write operations adds additional complexity in the amoebot model. As

discussed in Section 2.1, the instantaneous snapshot performed in the mobile robots’

look phase is not trivially realizable in the amoebot model where amoebots’ public

memories are included in the neighborhood configuration. Moreover, the amoebot

model distinguishes between Connected and Read operations that are performed

during the evaluation of an action’s guards and those that are performed during the

action’s execution (see Section 2.2.3).

Finally, due to our approach of using a serializability argument to show the

correctness of algorithms using our protocol, we need one last convention. This final

convention is significantly more technical and limits the generality of the model more

strictly than the first two, which we discuss further in Section 3.4. Consider any action

α : g → ops of an algorithm A being executed by an amoebot A. Recall that the

guard g is a Boolean predicate based on the local configuration of A; i.e., the ports

A has established connections on and the contents of the public memories of A and
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Figure 7. The Monotonicity Convention. We examine the local configuration c of
amoebot A, an extension c+ of c, and the corresponding outcomes cα and c+

α reached
by sequential executions of α. The nodes with black circles denote the N(·) sets of
nodes adjacent to A. Neighbors occupying the “non-extended neighborhood” O(c) are
shown in blue and neighbors occupying the “extended neighborhood” O(c+) \O(c) are
shown in pink. Monotonicity requires that the executions of α make the same updates:
in (a), amoebot A updates the public memory of B, shown in green; in (b), amoebot
A updates the public memory of B (green) and pulls neighbor C in a handover.

its neighbors. For a local configuration c of A, let N(c) = (v1, . . . , vk) be the nodes

adjacent to A; note that k = 6 if A is contracted and k = 8 if A is expanded. Let

O(c) ⊆ N(c) be the nodes adjacent to A that are occupied by neighboring amoebots.

LettingMA denote the set of all possible contents of an amoebot’s public memory w.r.t.

algorithm A, we can write c as a tuple c = (c0, c1, . . . , ck) ∈ MA × (MA ∪ {null})k

where c0 ∈MA is the public memory contents of A and, for i ∈ {1, . . . , k}, ci ∈MA

is the public memory contents of the neighbor occupying node vi ∈ N(c) if vi ∈

O(c) and ci = null otherwise. Thus, we can express the guard g as a function

g : MA × (MA ∪ {null})k → {true, false}.

A local configuration c is consistent if ci = cj whenever nodes vi, vj ∈ N(c) are

occupied by the same expanded neighbor. Local configurations c and c′ are said to

agree on amoebots X if for all nodes vi occupied by an amoebot in X, we have ci = c′i.

A local configuration c+ is an extension of local configuration c if c+ is consistent

and c and c+ agree on A and the neighbors occupying O(c); intuitively, an extension
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c+ has all the same amoebots in the same positions with the same public memory

contents as c, but may also have additional neighbors occupying nodes of N(c) \O(c).

An extension c+ of c is expansion-compatible with an execution of an action on c if

any Expand operation in this execution would also be successful in c+. An action

α : g → ops is monotonic (see Figure 7) if for any consistent local configuration c with

g(c) = true, any local configuration cα reachable by a sequential execution of α on c,

and any extension c+ of c that is expansion-compatible with the execution reaching cα

and is reachable by a sequential execution of A, then g(c+) = true and there exists

a local configuration c+
α reachable by a sequential execution of α on c+ such that:

1. N(cα) = N(c+
α ); i.e., both executions of α yield the same set of nodes adjacent

to A.

2. cα and c+
α agree on A and the amoebots that occupied O(c); i.e., both executions

of α make identical updates w.r.t. A and its non-extended neighborhood.

3. c+ and c+
α agree on the amoebots that occupied O(c+) \O(c); i.e., the execution

of α on c+ does not make any updates to the extended neighborhood of A.

Convention 3.1.3. All actions of an amoebot algorithm should be monotonic.

3.2 The Concurrency Control Protocol

Our concurrency control protocol (Algorithm 6) takes as input any amoebot

algorithm A = {[αi : gi → opsi] : i ∈ {1, . . . , k}} satisfying Conventions 3.1.1–3.1.3

and produces a corresponding algorithm A′ = {[α′ : g′ → ops′]} composed of a single

action α′. The core idea of our protocol is to carefully incorporate locks in α′ as

a wrapper around the actions of A, ensuring that A′ only produces outcomes in

concurrent settings that A can produce in the sequential setting. With locks, action
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guards that in general can only be evaluated reliably in the sequential setting can now

also be evaluated reliably in concurrent settings.

To avoid any deadlocks that locking may cause, our protocol adds an activity bit

variable A.act ∈ {true, false} to the public memory of each amoebot A indicating if

any changes have occurred in the memory or neighborhood of A since it last attempted

to execute an action. The single action α′ of A′ has guard g′ = (A.act = true),

ensuring that α′ is only enabled for an amoebot A if changes in its memory or

neighborhood may have cause some actions of A to become enabled. As will become

clear in the presentation of the protocol, Write and movement operations may enable

actions of A not only for the neighbors the acting amoebot, but also for the neighbors

of those neighbors (i.e., in the 2-neighborhood of the acting amoebot). The acting

amoebot cannot directly update the activity bits of amoebots in its 2-neighborhood,

so it instead sets its neighbors’ awaken bits A.awaken ∈ {true, false} to indicate

that they should update their neighbors’ activity bits in their next action. Initially,

A.act = true and A.awaken = false for all amoebots A.

Under our protocol, algorithm A′ only contains one action α′ : g′ → ops′ where

g′ requires that an amoebot’s activity bit is set to true (Step 1). If α′ is enabled

for an amoebot A, A first attempts to lock itself and all its neighbors (Steps 2–3).

Given that it locks successfully, there are two cases. If A.awaken = true, then A

must have previously been involved in the operation of some acting amoebot that

changed the neighborhood of A but could not update the corresponding neighbors’

activity bits (Steps 14, 17, 24, or 28). So A updates the intended activity bits to true,

resets A.awaken, releases its locks, and aborts (Steps 4–6). Otherwise, A obtains the

necessary information to evaluate the guards of all actions in algorithm A (Steps 7–9).

If no action from A is enabled for A, A sets A.act to false, releases its locks, and
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Algorithm 6 Concurrency Control Protocol for Amoebot A
Input: Algorithm A = {[αi : gi → opsi] : i ∈ {1, . . . , k}} following Conventions 3.1.1–3.1.3.

1: Set g′ ← (A.act = true) and ops′ ← “Do:
2: Perform a Lock operation to lock amoebots L = {A} ∪ {all neighbors of A}.
3: if the Lock operation fails then abort.
4: if A.awaken = true then
5: for all amoebots B ∈ L do Write B.act← true.
6: Write A.awaken← false, Unlock each amoebot in L, and abort.
7: for all actions [αi : gi → opsi] ∈ A do
8: Perform Read and Connected operations to evaluate guard gi w.r.t. L.
9: Evaluate gi in private memory to determine if αi is enabled.

10: if no action is enabled then Write A.act← false, Unlock each amoebot in L, and abort.
11: Choose an enabled action αi ∈ A and perform its compute phase in private memory.
12: Let Wi be the set of Write operations and Mi be the movement operation in opsi based on

its compute phase; set Mi ← null if there is none.
13: if Mi is Expand (say, from node u into node v) then perform the Expand operation.
14: if the Expand operation succeeds then Write A.awaken← true.
15: else reset private memory, Unlock each amoebot in L, and abort.
16: for all amoebots B ∈ L do Write B.act← true.
17: for all (B.x← xval) ∈Wi do Write B.x← xval and Write B.awaken← true.
18: if Mi is null or Expand then Unlock each amoebot in L.
19: else if Mi is Contract (say, from nodes u, v into node u) then
20: Unlock each amoebot in L that is adjacent to node v but not to node u.
21: Perform the Contract operation.
22: Unlock each remaining amoebot in L.
23: else if Mi is Push (say, A is pushing B) then
24: Write A.awaken← true and B.awaken← true.
25: Perform the Push operation.
26: Unlock each amoebot in L.
27: else if Mi is Pull (say, A in nodes u, v is pulling B into node v) then
28: Write B.awaken← true.
29: Unlock each amoebot in L (except B) that is adjacent to node v but not to node u.
30: Perform the Pull operation.
31: Unlock each remaining amoebot in L.”
32: return A′ = {[α′ : g′ → ops′]}.

aborts; this disables α′ for A until some future change occurs in its neighborhood

(Step 10). Otherwise, A chooses any enabled action and executes its compute phase

in private memory (Step 11). As a result of this computation, A knows which Write

and movement operations, if any, it wants to perform (Step 12).

Before enacting these operations (thereby updating the system’s configuration)

amoebot A must be certain that no operation of α′ will fail. It has already passed its
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first point of failure: the Lock operation in Step 2. But α′ may also fail during an

Expand operation if it conflicts with some other concurrent expansion (Step 13). In

either case, A resets its private memory, releases its locks, and aborts (Steps 3 and 15).

As we will show in Lemma 3.3.5, these are the only two cases where α′ can fail.

Provided neither of these failures occur, A can now perform operations that —

without locks on its neighbors — could otherwise interfere with its neighbors’ actions

or be difficult to undo. This begins with A setting the activity bits of all its locked

neighbors to true since it is about to cause activity in its neighborhood (Step 16).

It then enacts the Write operations it decided on during its computation, writing

updates to its own public memory and the public memories of its neighbors. Since

writes to its neighbors can change what amoebots in its 2-neighborhood see, it must

also set the awaken bits of the neighbors it writes to to true (Step 17).

The remainder of the protocol handles movements and releases locks. If A did not

want to move or it intended to Expand — which, recall, it already did in Step 13

— it can simply release all its locks (Step 18). If A wants to contract, it must first

release its locks on the neighbors it is contracting away from; it can then Contract

and, once contracted, release its remaining locks (Step 20–22). If A wants to perform

a Push handover, it does so and then releases all its locks (Steps 24–26). Finally,

pull handovers are handled similarly to contractions: A first releases its locks on the

neighbors it is disconnecting from; it can then Pull and, once contracted, release its

remaining locks (Steps 28–31).
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3.3 Analysis

Let A be any amoebot algorithm satisfying Conventions 3.1.1–3.1.3 and A′ be the

amoebot algorithm produced fromA by our concurrency control protocol (Algorithm 6).

Informally, we will show that if any sequential execution of A terminates, then any

asynchronous execution of A′ must also terminate and will do so in a configuration

that was reachable by a sequential execution of A (Theorem 3.3.12). This analysis is

broken into two stages: analyzing A′ under sequential executions and then leveraging

a serialization argument for the analysis of A′ under asynchronous executions. In each

stage, we show that executions of A′ are finite; i.e., they must terminate (Lemmas 3.3.1

and 3.3.11). Since all executions of A′ terminate, it suffices to show that the final

configurations reachable by asynchronous executions of A′ are contained in those

reachable by sequential executions of A′ (Lemma 3.3.10) which in turn are contained

in those reachable by sequential executions of A (Lemma 3.3.3), yielding the desired

result.

We say that an amoebot is A-enabled if it has at least one enabled action α ∈ A.

Note that under this definition, an amoebotA isA′-enabled if and only ifA.act = true.

Using this terminology, an execution of an algorithm A has terminated if there are no

longer any A-enabled amoebots.

We first analyze algorithm A′ under sequential executions. Define a sequential

schedule S = ((A1, α1), (A2, α2), . . .) as the sequence of actions executed in a sequential

execution, where αi is the i-th action executed by the system and Ai is the amoebot

that executed it. For a sequential schedule to be valid, αi must be enabled for Ai

in the configuration produced by executions (A1, α1), . . . , (Ai−1, αi−1), for all i ≥ 1.

Certainly, sequential schedules obfuscate various details; e.g., they ignore the precise
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timing of an action’s operations and the specific choices produced by randomness or

nondeterminism in an action’s computation. So while a single sequential schedule

may in fact represent a family of sequential executions, this abstraction suffices for

our purposes.

Throughout this analysis, let C0 be any (valid) initial system configuration such

that all (valid) sequential schedules of A starting in C0 are finite. Let Fs(C0) be

the set of configurations in which A might terminate under any sequential schedule

starting in C0. Analogously, let C ′0 be the corresponding initial configuration for A′

that extends C0 by adding A.act = true and A.awaken = false for all amoebots A,

and let F ′s(C ′0) be the set of configurations in which A′ might terminate under any

sequential schedule starting in C ′0. We will show that all sequential schedules of A′

starting in C ′0 are finite — making F ′s(C ′0) well-defined — and that F ′s(C ′0) ⊆A Fs(C0),

where ⊆A denotes containment when restricting configurations to only the variables

used in A (i.e., when ignoring amoebots’ activity and awaken bits used in A′).

Lemma 3.3.1. If every sequential schedule of A starting in C0 is finite, then every

sequential schedule of A′ starting in C ′0 is also finite.

Proof. Suppose to the contrary that there exists an infinite sequential schedule S of

A′ starting in configuration C ′0. When ignoring the handling of amoebots’ activity and

awaken bits, any execution of action α′ of A′ either makes no change to the system

configuration or makes changes identical to those of some action α ∈ A. First suppose

that S contains an infinite number of executions of α′ executing actions of A. Then by

constructing a sequential schedule of A composed of only these A action executions,

we obtain an infinite schedule of A starting in C0, a contradiction.

It remains to consider the case that S contains only a finite number of executions

of α′ executing actions of A. Since there are only a finite number of such executions,
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there must exist a time after which no amoebot is A-enabled and the remaining infinite

executions of α′ only involve updates to amoebots’ activity and awaken bits. Any

activation of an amoebot A with A.awaken = true results in A setting the activity

bits of its neighbors to true — of which there can be at most 8 — and resetting

A.awaken to false (Steps 4–6). Otherwise, an activation of A with A.awaken = false

must result in A resetting A.act to false since it is not A-enabled (Step 10). Then the

potential function Φ(C) =
∑

A IA.act + 9IA.awaken over system configurations C where

IA.act ∈ {0, 1} (resp., IA.awaken ∈ {0, 1}) is equal to 1 if and only if A.act = true (resp.,

A.awaken = true) is both lower bounded by 0 and strictly decreasing. Therefore,

S can only contain a finite number of executions of α′ only involving updates to

amoebots’ activity and awaken bits, a contradiction of S being infinite.

We next establish a key property for characterizing configurations reachable by A′.

Lemma 3.3.2. Consider any initial configuration C0 and any sequential schedule

S. Then any A-enabled amoebot A in the final configuration reached by A′ under S

starting in C ′0 must either (i) be A′-enabled or (ii) have an A′-enabled neighbor B

with B.awaken = true.

Proof. Argue by induction on the length of S = ((A1, α1), . . . , (Ak, αk)). If k = 0,

then the lemma trivially holds since all amoebots A initially have A.act = true in C ′0

and thus are all A′-enabled. So suppose the lemma holds for schedules of any length

k ≥ 0, and consider any schedule Sk+1 = ((A1, α1), . . . , (Ak+1, αk+1)) of length k + 1.

Let schedule Sk = ((A1, α1), . . . , (Ak, αk)) be obtained by removing (Ak+1, αk+1) from

Sk+1. Consider any A-enabled amoebot A at the end of Sk+1.

We first suppose that A was also A-enabled at the end of Sk. By the induction

hypothesis, there are two cases to consider. If A is A′-enabled at the end of Sk, then
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the only scenario in which A.act is updated to false is if A = Ak+1 and A is not

A-enabled (Step 10), contrary to our supposition. So A must remain A′-enabled at

the end of Sk+1, satisfying (i). Otherwise, A must have an A′-enabled neighbor B

with B.awaken = true at the end of Sk. The only scenario in which B.awaken is

updated to false is if B = Ak+1 and B sets all of its neighbors’ activity bits, including

that of A, to true (Steps 4–6). So either B satisfies (ii) by remaining an A′-enabled

neighbor with B.awaken = true or A is A′-enabled at the end of Sk+1, satisfying (i).

Now suppose that A was not A-enabled at the end of Sk; i.e., the execution of

action αk+1 by amoebot Ak+1 causes a change in the neighborhood of A such that

A becomes A-enabled by the end of Sk+1. Note that because A was not A-enabled

at the end of Sk, we must have Ak+1 6= A. If A and Ak+1 were neighbors at the end

of Sk, then Ak+1 must update A.act to true during its execution of αk+1 (Step 16),

satisfying (i). Otherwise, if A and Ak+1 were not neighbors at the end of Sk, there

are still two ways Ak+1 could change the neighborhood of A by executing αk+1. First,

Ak+1 could move into the neighborhood of A via an Expand or Push; in this case,

Ak+1 remains A′-enabled and updates its own awaken bit to true (Steps 14 and 24),

satisfying (ii). Second, Ak+1 could update the memory of a neighbor B of A via a

Write; in this case, Ak+1 must also update B.act and B.awaken to true (Steps 16

and 17), also satisfying (ii).

The following lemma concludes our analysis of sequential executions.

Lemma 3.3.3. For any sequential schedule under which A′ terminates when starting

in C ′0, the configuration C that A′ terminates in must satisfy C ∈A Fs(C0).

Proof. Consider any valid sequential schedule S ′ of A′ under which A′ terminates and

let C be the configuration it terminates in. By Convention 3.1.1, the executions of
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action α′ in S ′ that involve executing actions of A form a valid sequential schedule S

of A that makes the same sequence of changes to the system configuration w.r.t. the

variables used in A. So S certainly also reaches C. Moreover, S must terminate in

C; otherwise, there exists an A-enabled amoebot in C that, by Lemma 3.3.2, implies

that there exists an A′-enabled amoebot in C. But this contradicts A′ terminating in

C, so we conclude C ∈A Fs(C0).

Lemmas 3.3.1 and 3.3.3 yield the following corollary.

Corollary 3.3.4. If every sequential execution of A starting in C0 terminates, then

every sequential execution of A′ starting in C ′0 also terminates. Moreover, F ′s(C ′0) ⊆A

Fs(C0).

We now consider the behavior of A′ under asynchronous executions. Recall from

Section 2.2.3 that while each amoebot executes at most one action at a time and

executes that action’s operations sequentially to completion, asynchronous executions

allow arbitrarily many amoebots to execute actions simultaneously. We once again

define an appropriate abstraction for our analysis. For this abstraction, we assume an

ideal wall-clock that can be used to assign precise timing to each event associated with

an algorithm’s execution; however, we emphasize that this ideal time is only used in this

analysis and is unavailable to the amoebots. An asynchronous schedule is an assignment

of precise timing to every message sending and receipt, variable update in public

memory, movement start and end, and operation failure in an asynchronous execution.

Thus, in contrast to sequential schedules, we model asynchronous computation at the

message passing level to capture all possible ways concurrent operation executions

can interleave. In keeping with Sections 2.2.2 and 2.2.3, we make no assumptions

on timing other than (i) the delay between every message’s sending and receipt as
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well as every movement’s start and end must be positive, and (ii) the time taken by

every operation execution must be finite. We also assume that at any time while the

asynchronous schedule has not yet terminated, there is at least one amoebot executing

an action; note that any positive delay where all amoebots are idle could be truncated

so that the last action execution’s end time coincides with the next action execution’s

start time without changing the system configuration. In addition to timing, an

asynchronous schedule must specify the operations, contents of all messages, and

variable values accessed and updated; i.e., all details except private computations.

To ensure that an asynchronous schedule captures the actual system behavior

of an amoebot system under an asynchronous adversary, we introduce the concept

of validity. An asynchronous schedule is valid if there is an asynchronous execution

of (enabled) actions producing the same events (timing and content wise) as in the

given asynchronous schedule. In the remainder of our analysis, whenever we refer

to an asynchronous schedule, we assume its timing is in the control of an adversary

constrained by validity unless otherwise specified.

Recall that if C0 is the initial configuration for A, then C ′0 is its extension for A′

with amoebot activity and awaken bits. Let F ′a(C ′0) be the set of configurations in

which A′ might terminate under any asynchronous schedule starting in C ′0. We will

show that all asynchronous schedules of A′ starting in C ′0 are finite (i.e., requiring

finite time) — making F ′a(C ′0) well-defined — and that F ′a(C ′0) ⊆ F ′s(C
′
0). Combined

with Corollary 3.3.4, this will yield our desired result. We first identify the points of

failure in action α′ of A′.

Lemma 3.3.5. An execution of action α′ can only fail in its Lock or Expand

operations.

Proof. Consider any execution of α′ by an amoebot A. We begin with an observation
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that follows immediately from the design of A′ and Convention 3.1.2: (∗) whenever

an amoebot B is locked by A in an execution of α′, only A can initiate a movement

with or update the public memory of B.

Recall from Section 2.2.3 that an action execution fails if the execution of any of

its operations results in a failure that is not caught by error handling. As α′ does not

include any error handling, it suffices to show that all operations in α′ other than the

initial Lock operation and the possible Expand operation are guaranteed to succeed.

The first operation A executes is a Lock of itself and its neighbors which may fail, as

claimed. If it fails, then α′ immediately aborts, so no further operations are executed.

Hence, suppose that the initial Lock succeeds, and let LA denote the set of

amoebots locked by A. Recall from Section 2.2.2 that a Read or Write operation

by A can only fail if A is accessing a variable in the public memory of an amoebot

B 6= A that is disconnected from A at some time in that operation’s execution. By

(∗), no amoebot in LA can change its shape outside of a movement operation initiated

by A. By inspection of α′, A only executes Read and Write operations involving

amoebots in LA and does so before its movement operation; thus, they must succeed.

Finally, Unlock operations cannot fail because they only involve locked amoebots,

and Connected operations always succeed.

It remains to consider the movement operations, all of which are determined by

the execution of an enabled action α ∈ A. An Expand operation may fail, as claimed.

A Contract operation by A only fails if A.shape 6= expanded or A is already

involved in a handover. By Convention 3.1.1, this contraction would succeed if all

other amoebots were idle, so A must have been expanded when it evaluated the

guard of α. Action α′ does not contain any operations that change the shape of A

between the guard evaluations and this Contract operation, and by (∗) no other
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action executions could have involved A in a handover and changed its shape since

A ∈ LA. So A is still expanded and cannot be involved in a handover when starting

this contraction, so the Contract operation succeeds.

A Pull operation by A with a neighbor B only fails if A.shape 6= expanded,

B.shape 6= contracted, A and B are not connected, or A or B is already involved

in another handover. By Convention 3.1.1, this pull handover would succeed if all other

amoebots were idle, so A must have been expanded, B must have been contracted,

and A and B must have been connected when A evaluated the guard of α. Once

again, α′ does not contain any operations that change the shape of A between the

guard evaluations and this Pull operation. Moreover, by (∗) neither A nor B can

be involved in another handover or could have changed their shape since A,B ∈ LA.

So A is still expanded, B is still contracted, A and B are still neighbors, and neither

A nor B are involved in another handover during this pull handover, so the Pull

operation succeeds. An analogous argument holds for Push operations.

Therefore, an execution of α′ can only fail in its Lock or Expand operations.

We say that an execution of α′ by an amoebot A is relevant in an asynchronous

schedule of A′ if it is successful and either A.awaken = true or at least one action of

A is enabled in α′. The next two lemmas show that we can sanitize any asynchronous

schedule of A′ by removing all timed events (i.e., message transmissions, variable

updates, movement starts and ends, and operation failures) associated with irrelevant

executions of α′ — i.e., those that fail or have A.awaken = false and have no action

of A enabled — without changing the system’s final configuration.

Lemma 3.3.6. Let S be any asynchronous schedule of A′ and let SL be the asyn-

chronous schedule obtained from S by removing all events except those associated with

Lock and Unlock operations and successful movements. Then SL is valid w.r.t. its
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Lock operations. Moreover, for any set S of successful Lock operations in SL, the

asynchronous schedule SS obtained from SL by removing all events associated with

Lock operations not in S is valid and all Lock operations of S are successful and

lock the same amoebots they did in SL.

We omit the details of this proof as it relies on the message passing implementation

of the Lock operation. The full proof can be found in [50].

Lemma 3.3.7. Let S be any asynchronous schedule of A′ and let S∗ be its sanitized

version keeping only the events associated with relevant executions of α′. Then S∗ is a

valid asynchronous schedule that changes the system configuration exactly as S does

except w.r.t. amoebots’ activity bits, which have the property that the set of amoebots

A with A.act = true in S∗ is always superset of those in S.

Proof. Let S be the set of Lock operations executed by relevant action executions

in S. By Lemma 3.3.6, when removing all events associated with irrelevant action

executions from S to obtain S∗, all Lock operations of S remain valid and successful

in S∗ and lock the same amoebots as they did in S. By Lemma 3.3.5, an execution of

α′ by an amoebot A is irrelevant if and only if either (i) α′ fails in its Lock or Expand

operations or (ii) α′ is successful in its Lock operation but A.awaken = false and

no action in A is enabled in α′. In both cases, the only change α′ can make to the

system configuration is updating A.act to false. So the set of amoebots A with

A.act = true in S∗ must be a superset of those in S, implying that any relevant

action execution of α′ stays enabled in S∗.

Since relevant executions of α′ only issue Read and Write operations to the

executing amoebot or its locked neighbors, the success and identical outcome of all

Lock operations in S∗ ensures that all Read and Write operations in S∗ also succeed.
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Moreover, because irrelevant executions of α′ never perform Write operations, all

Read and Write operations in S∗ must access or update the same variable values

as they did in S since the event timing is preserved. Connected operations in S∗

are also guaranteed to return the same results as in S since failed Expand operations

discarded from S do not change amoebot connectivity.

It remains to show that all movement operations in S∗ are successful. Any

Contract, Pull, or Push operations in S∗ must have succeeded in S, implying

that they were unaffected by any failed Expand operations in S that are now removed.

So the only movement operations in S∗ that could have interacted with failed Expand

operations in S are concurrent Expand operations that contended with failed Expand

operations for the same nodes. But the fact that these Expand operations are in S∗

implies that they succeeded in S, completing their expansion into the contended nodes

before all other competitors. This event timing is preserved in S∗ and all contending

expansions are removed, so these remain successful.

Lemma 3.3.7 shows that it suffices to study algorithm A′ under sanitized asyn-

chronous schedules. Our next goal is to show that any sanitized asynchronous schedule

S of A′ can be serialized ; i.e., the executions of action α′ in S (and, by extension,

the events therein) can be totally ordered while still producing the same final system

configuration as S. Our formalization of asynchronous schedules already totally orders

the updates to any single variable in an amoebot’s public memory and the occupancy

of any single node in G∆; here, we focus on ordering entire action executions. Denote

the (successful) executions of α′ in S as pairs (Ai, α
′
i), where amoebot Ai executes

α′i. Construct a directed graph D with nodes {(A1, α
′
1), . . . , (Ak, α

′
k)} representing all

executions of α′ in S and directed edges (Ai, α
′
i) → (Aj, α

′
j) for i 6= j if and only if

one of the following hold:
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1. Both (Ai, α
′
i) and (Aj, α

′
j) lock some amoebot B in their Lock operations, and

(Aj, α
′
j) is the first execution to lock B after B is unlocked by (Ai, α

′
i).

2. (Ai, α
′
i) executes a movement operation that overlaps in time with the Lock

operation in (Aj, α
′
j) and involves a node adjacent to Aj.

3. (Aj, α
′
j) is the first execution to Expand into some node v after v is vacated by

a Contract operation in (Ai, α
′
i).

Lemma 3.3.8. The directed graph D corresponding to the executions of α′ in a

sanitized asynchronous schedule of A′ is a directed, acyclic graph (DAG).

Proof. We will show that for any edge (Ai, α
′
i)→ (Aj, α

′
j) in D, (Ai, α

′
i) completes its

Lock operation (i.e., all locks in Ai.Nα are set) before (Aj, α
′
j) does. This immediately

implies that D is acyclic; otherwise, the Lock operations of any two executions in a

cycle of D must complete both before and after each other, a contradiction.

First suppose that (Ai, α
′
i) → (Aj, α

′
j) is an edge in D because both executions

lock an amoebot B and (Aj, α
′
j) is the first execution to lock B after B is unlocked by

(Ai, α
′
i). Clearly, Aj can only lock B after Ai has unlocked B and Ai can only unlock

B after it locks B in its own Lock operation. Since these operations all involve

message transfers requiring positive time, (Ai, α
′
i) must complete its Lock operation

before (Aj, α
′
j) does.

Next suppose that (Ai, α
′
i)→ (Aj, α

′
j) is an edge in D because (Ai, α

′
i) executes a

movement operation that overlaps in time with the Lock operation in (Aj, α
′
j) and

involves a node adjacent to Aj. Any movement operation in (Ai, α
′
i) must start after

its Lock operation completes; thus, (Ai, α
′
i) must complete its Lock operation before

(Aj, α
′
j) does.

Finally, suppose that (Ai, α
′
i)→ (Aj, α

′
j) is an edge in D because (Aj, α

′
j) is the

first execution to Expand into some node v after v is vacated by a Contract
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operation in (Ai, α
′
i). It suffices to consider the case where the Lock operation of

(Ai, α
′
i) does not lock Aj; otherwise, there exists a directed path of lock-based edges

from (Ai, α
′
i) to (Aj, α

′
j) in D and the first case proves the claim. For (Ai, α

′
i) to not

lock Aj, Aj cannot be a neighbor of Ai at the time the Lock operation of (Ai, α
′
i)

starts. We know that the Lock operation of (Ai, α
′
i) is successful, so Ai is locked

and occupies v until the start of its Contract operation out of v. But Aj must

occupy a node adjacent to v at the start of (Aj, α
′
j) and must succeed in its own Lock

operation in order to Expand into v. Thus, the Lock operation of (Aj, α
′
j) cannot

complete until after Ai has started contracting out of v, which occurs strictly after

the completion of the Lock operation of (Ai, α
′
i).

Now we are ready to prove the following lemma.

Lemma 3.3.9. Consider any sanitized asynchronous schedule S of A′ and let (Ai, α
′
i)

be any sink in the corresponding DAG D. Let S−i be the asynchronous schedule

obtained by removing all events associated with (Ai, α
′
i) from S. Then S−i is valid and

the final configuration of S−i is expansion-compatible with (Ai, α
′
i) and identical to that

of S except for the amoebots locked by (Ai, α
′
i) in S, which appear exactly as they did

just after the Lock operation of (Ai, α
′
i) completed in S.

Proof. Consider any action execution (Aj, α
′
j) with j 6= i. We first show that (Aj, α

′
j)

must remain enabled in S−i ; i.e., Aj.act = true at the time of this execution. This

must have been the case in S, so the only way for (Aj, α
′
j) to not be enabled in S−i is

if (Ai, α
′
i) was responsible for enabling it in S. But (Ai, α

′
i) could only have updated

Aj.act to true if (Ai, α
′
i) locked Aj, implying that (Aj, α

′
j) could not have started

until after (Ai, α
′
i) unlocked Aj. Thus, there must exist a directed path in D from

(Ai, α
′
i) to (Aj, α

′
j), contradicting the assumption that (Ai, α

′
i) is a sink.
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The remainder of this proof establishes that (Aj, α
′
j) remains valid in S−i . Let

Lj(S) (resp., Lj(S−i )) denote the set of amoebots locked by (Aj, α
′
j) in S (resp., in

S−i ); we begin by showing Lj(S) = Lj(S−i ). Suppose that there is a directed path

in D from (Aj, α
′
j) to (Ai, α

′
i). By the proof of Lemma 3.3.8, (Aj, α

′
j) must complete

its Lock operation before (Ai, α
′
i) does, implying that (Aj, α

′
j) completes its Lock

operation before (Ai, α
′
i) completes any operation. Since the timing of (Aj, α

′
j) in S

is preserved in S−i , it follows that Lj(S) = Lj(S−i ). Now suppose that there is no

directed path in D from (Aj, α
′
j) to (Ai, α

′
i). Then the amoebots locked by (Aj, α

′
j)

and (Ai, α
′
i) in S are disjoint, so certainly (Aj, α

′
j) can lock any amoebot in S−i that

it did in S; i.e., Lj(S) ⊆ Lj(S−i ). But suppose to the contrary that (Aj, α
′
j) is able

to lock some additional amoebot B in S−i that it did not lock in S. This is only

possible if (Ai, α
′
i) caused B to move out of the neighborhood of Aj in S. But then

(Ai, α
′
i)→ (Aj, α

′
j) must be a directed edge in D, contradicting the assumption that

(Ai, α
′
i) is a sink. Therefore, in all cases, (Aj, α

′
j) locks the same set of amoebots in S

and S−i .

After completing its Lock operation, (Aj, α
′
j) does one of two things. If

Aj.awaken = true, then it updates the activity bits of all the amoebots it locked

to true, updates its own awaken bit to false, releases its locks, and aborts. Since

Lj(S) = Lj(S−i ) and timing is preserved, these updates occur identically in S and S−i .

Otherwise, if Ak.awaken = false, Aj evaluates the guards of actions in the original

algorithm A which depend only on the positions, shapes, and public memories of the

locked amoebots. Suppose to the contrary that there is an amoebot B locked by Aj

whose position, shape, or public memory is different in S−i than it was in S. Then

(Ai, α
′
i) must have locked B to perform the corresponding update in S, implying that

there is a directed path from (Ai, α
′
i) to (Aj, α

′
j) in D, contradicting the assumption
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that (Ai, α
′
i) is a sink. So the outcomes of the guard evaluations must be identical in

S and S−i .

Since (Aj, α
′
j) is in the sanitized schedule S, it must be relevant, and thus there

must exist an enabled action of A. Whatever enabled action of A is chosen to perform,

any Write, Contract, Pull, or Push operations involved must occur identically in

S and S−i since the locked amoebots and their positions, shapes, and public memories

are the same in both schedules. The only remaining possibility is that (Aj, α
′
j) causes

Aj to Expand into an adjacent node v in S that is occupied in S−i , causing the

Expand operation to fail in S−i . This implies that (Ai, α
′
i) causes Ai to Contract

out of v. But then (Ai, α
′
i) → (Aj, α

′
j) must be a directed edge in D, contradicting

the assumption that (Ai, α
′
i) is a sink. Therefore, we conclude that S−i is valid and all

action executions (Aj, α
′
j) for which j 6= i execute identically in S and S−i .

Next, we show that the final configuration of S−i is expansion-compatible with

(Ai, α
′
i). Suppose to the contrary that (Ai, α

′
i) performs a successful Expand operation

into a node v in S but v is occupied by another amoebot at the end of S−i . Since all

executions other than (Ai, α
′
i) are valid and execute identically in S and S−i , another

amoebot can only have come to occupy v at the end of S−i if Ai vacated v in some

later execution in S. But Ai can only change its shape if it is locked, contradicting

the assumption that (Ai, α
′
i) is a sink in D. So v must be unoccupied at the end of

S−i and thus it is expansion-compatible with (Ai, α
′
i).

It remains to show that the amoebots in Li(S) — i.e., those locked by (Ai, α
′
i)

in S — appear in S−i exactly as they did after the Lock operation of (Ai, α
′
i) in

S. But this follows immediately from the assumption that (Ai, α
′
i) is a sink: for an

execution (Aj, α
′
j) with j 6= i to change the position, shape, or public memory of an
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amoebot B ∈ Li(S), it would first have to lock B, implying that (Ai, α
′
i)→ (Aj, α

′
j)

is a directed edge in D.

Lemma 3.3.9 and Convention 3.1.3 allow us to prove the following central result.

Lemma 3.3.10. Any sanitized asynchronous schedule S of A′ can be serialized;

i.e., there exists a sequential ordering of its executions of α′ that reaches a final

configuration that is identical to that of S with the exception that the set of amoebots A

with A.act = true or A.awaken = true is a superset of those in the final configuration

reached by S.

Proof. Consider any sanitized asynchronous schedule S of A′ and let D be its corre-

sponding DAG (Lemma 3.3.8). We argue by induction on k, the number of executions

of α′ in S, that any sequential ordering of the executions of α′ in S consistent with a

topological ordering of D satisfies the lemma.

The lemma trivially holds for k = 1, so suppose the lemma holds for any sanitized

asynchronous schedule of A′ with k ≥ 1 executions of α′. Let S be any sanitized

asynchronous schedule of A′ consisting of k + 1 executions of α′ and let (Ai, α
′
i) be

any sink in the corresponding DAG D. By Lemma 3.3.9, the sanitized asynchronous

schedule S−i obtained by removing all events associated with (Ai, α
′
i) from S is valid

and reaches a final configuration that is expansion-compatible with (Ai, α
′
i) and is

identical to that of S except for the amoebots locked by (Ai, α
′
i) in S, which appear

exactly as they did just after the Lock operation of (Ai, α
′
i) completed in S. By

the induction hypothesis, there exists a sequential schedule S̄i that reaches a final

configuration identical to that of S−i with the exception that the set of amoebots A with

A.act = true or A.awaken = true is a superset of those in the final configuration
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reached by S−i . This implies that (Ai, α
′
i) is enabled in the final configuration reached

by S̄i since it was also enabled in that of S−i .

The amoebots Li(S) locked by (Ai, α
′
i) in S must still be neighbors of Ai at the end

of S̄i by Lemma 3.3.9 and the induction hypothesis, but Ai may also have additional

neighbors at the end of S̄i that were not originally present at the time of its Lock

operation in S. Thus, we have Li(S) ⊆ Li(S̄i). There are three cases for the behavior

of (Ai, α
′
i); in each, we show that we can produce a sequential schedule S̄ combining

S̄i and (Ai, α
′
i) whose final configuration satisfies the lemma.

Case 1. Ai.awaken = true in both S and S̄i. Let S̄ be the sequential schedule

obtained by appending (Ai, α
′
i) to the end of S̄i. In both S and S̄i, (Ai, α

′
i) updates

B.act to true for all amoebots B that it locks, updates Ai.awaken to false, releases

its locks, and aborts. Since Li(S) ⊆ Li(S̄i), the only difference between the final

configurations of S and S̄ is that the latter may have additional amoebots with their

activity or awaken bits set to true, so the lemma holds.

Case 2. Ai.awaken = false in S but Ai.awaken = true in S̄i. Let S̄ be the

sequential schedule obtained by activating Ai twice at the end of S̄i. The first

activation has the same effect as Case 1, potentially yielding more amoebots with

their activity or awaken bits set to true. It also resets the awaken bit of Ai, yielding

Ai.awaken = false in both S and S̄i + (Ai, α
′
i). We address this in the following case.

Case 3. Ai.awaken = false in both S and S̄i. Let S̄ be the sequential schedule

obtained by appending (Ai, α
′
i) to the end of S̄i. Since (Ai, α

′
i) is an execution of

S, a sanitized schedule, we know that (Ai, α
′
i) is relevant and thus must have an

enabled action α ∈ A in S. However, because the amoebots it locks in S and S̄i are

not necessarily the same — indeed, we only know that Li(S) ⊆ Li(S̄i) — it is not

immediately obvious that α is still enabled in S̄i or that it would make the same
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changes to the system configuration as it did in S. But recall that by Convention 3.1.3,

all actions of algorithm A are assumed to be monotonic. The remainder of this proof

will show that the differences between the local configurations of Ai in S and S̄i

are exactly those addressed by monotonicity, allowing us to use its guarantees when

comparing the final configurations reached by S and S̄.

Let c be the local configuration of Ai with neighbors Li(S) and Ai appearing as

they did when the Lock operation of (Ai, α
′
i) completed in S and let c̄ be the local

configuration of Ai at the end of S̄i. Let α ∈ A be the enabled action executed in

(Ai, α
′
i) in S, and let cα be the local configuration of Ai reached by the execution of

α on the locked neighborhood Li(S). Since Li(S) ⊆ Li(S̄i), we know that c and c̄

agree on Li(S), making c̄ an extension of c. Moreover, c̄ is clearly reachable by the

sequential schedule of A contained within S̄i and, by Lemma 3.3.9 and the induction

hypothesis, is expansion-compatible with the execution reaching cα from c. Thus,

because α is monotonic by Convention 3.1.3, we conclude that α is also enabled for c̄

and there is an execution of α on c̄ that makes the same move (if any) and performs

the same updates to the amoebots of Li(S) as it did to reach cα from c; moreover,

it performs no updates to the amoebots of Li(S̄i) \ Li(S). The only other change

(Ai, α
′
i) makes in reaching the final configuration of S̄ from the end of S̄i is updating

the activity bits of all amoebots that it locked to true, but as we saw in the previous

case, this can only cause additional amoebots to have their activity or awaken bits set

to true since Li(S) ⊆ Li(S̄i). Therefore, in all cases, the lemma holds.

It remains to show that all asynchronous schedules of A′ are finite in a sense that

they only require a finite amount of time.

Lemma 3.3.11. If every sequential schedule of A′ starting in C ′0 is finite, then every

asynchronous schedule of A′ starting in C ′0 is also finite.
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Proof. Suppose to the contrary that S is an infinite asynchronous schedule of A′

starting in C ′0. If S contains an infinite sanitized asynchronous schedule, then — since

every execution of a relevant action requires only finite time — S must consist of

an infinite number of relevant action executions. Let D be the corresponding DAG

(Lemma 3.3.8) with an infinite number of nodes. By supposition, there exists a finite

upper limit f on the number of action executions in any sequential schedule of A′

starting in C ′0. By iteratively applying Lemma 3.3.9, there must exist a sub-DAG

D′ ⊆ D on f + 1 nodes corresponding to a valid sanitized asynchronous schedule S ′

obtained from S by removing all events associated with action executions that are

nodes in D but not in D′. By Lemma 3.3.10, S ′ can be serialized to obtain a sequential

schedule of A′ starting in C ′0 and consisting of the same f + 1 action executions,

contradicting the fact that f is the upper limit on the number of action executions

contained in any sequential schedule of A′ starting in C ′0.

So instead suppose that S only contains finite sanitized asynchronous schedules.

Then there must exist a finite time later than any event associated with a relevant

action execution. Let t be the earliest such time; observe that for S to be infinite,

there must be an infinite number of irrelevant action executions after t. Recall that

an execution of α′ is irrelevant if it fails or if it determines that no actions of A are

enabled, causing it to set its activity bit to false. By Lemma 3.3.5, executions of α′

can only fail in their Lock or Expand operations.

We first show that there exists a finite time t′ ≥ t such that after time t′, no

execution of α′ in S can fail in its Lock operation because an A-disabled execution

succeeds in its own Lock operation. Suppose to the contrary that there exists an

infinite number of pairs (A,α′), (B,α′) such that (A,α′) fails in its Lock operation

because (B,α′) succeeded in its own. Because B is A-disabled, it completes its
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execution (B,α′) by resetting B.act to false and releasing its locks. No irrelevant

execution can ever set an amoebot’s activity bit to true because the corresponding

Write operations occur after the points of failure in α′ and do not occur for those that

are A-disabled. Thus, the number of enabled A-disabled executions is monotonically

decreasing and there are only a finite number of amoebots that may have them, so

there cannot be an infinite number of these pairs, a contradiction.

So let t′ ≥ t be the earliest time after which no execution of α′ can fail in its Lock

operation due to an A-disabled execution, and let (A,α′) be the earliest execution

(or, in the case of a tie, any of the earliest) in S that starts after time t′ and results in

failure. First suppose that (A,α′) fails in its Lock operation. Then by Theorem 2.2.1,

there exists an amoebot B in the 3-neighborhood of A that succeeds in the Lock

operation of its own execution, say (B,α′). Since all relevant executions complete and

release their locks before time t and since (A,α′) starts after time t′ ≥ t, (B,α′) must

also result in failure. Execution (B,α′) has already succeeded in its Lock operation,

so by Lemma 3.3.5 it must fail in its Expand operation, say, into an adjacent node v.

Convention 3.1.1 ensures that B could not have called Expand if it was expanded or

if v was occupied at the time of the corresponding guard evaluation, and B cannot be

involved in a movement initiated by some other amoebot because it is locked. So the

only remaining way for the Expand operation of (B,α′) to fail is if another amoebot

C successfully moves into v during an execution (C, α′) that is concurrent with (B,α′).

But if (C, α′) succeeds in its movement operation, then the entire execution must be

successful by Lemma 3.3.5; therefore, (C, α′) is a successful execution that completes

after time t, a contradiction. Therefore, in all cases, S cannot be infinite.

Recall that if C0 is the initial configuration for A, then C ′0 is its extension for

A′ with amoebot activity and awaken bits. Recall also that Fs(C0) is the set of
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configurations in which A might terminate under any sequential schedule starting in

C0 and F ′a(C ′0) is the set of configurations in which A′ might terminate under any

asynchronous schedule starting in C ′0. Combining Corollary 3.3.4 with Lemmas 3.3.11,

we obtain the following theorem.

Theorem 3.3.12. Let A be any amoebot algorithm satisfying Conventions 3.1.1–

3.1.3 and A′ be the amoebot algorithm produced from A by the concurrency control

protocol (Algorithm 6). If every sequential execution of A starting in C0 terminates,

then every asynchronous schedule of A′ starting in C ′0 also terminates. Moreover,

F ′a(C
′
0) ⊆A Fs(C0).

3.4 Discussion and Open Problems

The goal of our concurrency control protocol is to combine the convenience of

sequential algorithm design with the realism of asynchronous executions. It is our

hope that designing a correct sequential algorithm and then proving it satisfies the

conditions of Theorem 3.3.12 to automatically obtain a correct asynchronous algorithm

is easier than designing a correct asynchronous algorithm directly. Here, we discuss

the degree to which our protocol achieves this goal and the degree of difficulty involved

in showing a sequential algorithm is compatible with our protocol.

Theorem 3.3.12 provides a set of sufficient conditions for which a correct sequential

algorithm A can be transformed into a correct asynchronous algorithm A′. First, for

any initial configuration C0 that A may start in, A must be guaranteed to terminate

under any unfair sequential adversary. This immediately renders algorithms that

never terminate — such as the stochastic algorithms of Chapters 8–10 — incompatible

with the protocol; thus, we instead focus on algorithms that do terminate. Unfair
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adversaries are the most powerful with respect to the fairness assumptions (see Table 1),

since an adversary is never forced to activate an amoebot unless it is the only one

in the system with an enabled action. Despite this challenge, there is some evidence

indicating that termination under an unfair sequential adversary is not very restrictive.

We know that the set of algorithms satisfying this condition is non-empty as it contains

the Hexagon-Formation algorithm presented in Section 2.5. Moreover, it is likely

that at least some of the existing algorithms in the amoebot literature would also

satisfy this condition once translated from their current formulations into action

semantics. Many of these algorithms are proven correct under a sequential adversary

that activates all amoebots (enabled or not) infinitely often; one would only need

to show that when these algorithms are formulated in terms of actions, the set of

enabled amoebots shrinks such that an unfair adversary would be forced to activate

any amoebot that would otherwise stall progress.

Second, A must satisfy Conventions 3.1.1–3.1.3. The validity convention (Con-

vention 3.1.1) is trivially satisfied by any algorithm that is correct under an unfair

sequential adversary. The phased action structure (Convention 3.1.2) that forces

any movement operation to occur last and prohibits the use of Lock or Unlock

operations is also relatively easy to satisfy. Moving last seems to be a common design

paradigm in the literature. Additionally, the Lock and Unlock operations were

only introduced in the canonical amoebot model (Section 2.2), so none of the existing

algorithms use them.

The monotonicity convention (Convention 3.1.3), however, is significantly more

restrictive. The serializability argument critically relies on it to show that when an

action execution is removed from its place in an asynchronous schedule and moved

into the future so that it is not concurrent with any other execution, it makes exactly
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the same changes to the system configuration that it did originally, regardless of

any new amoebots that may have moved into its neighborhood in the meantime.

In that light, it is easy to see that static algorithms that do not use movement

trivially satisfy monotonicity. These include many of the existing algorithms for leader

election [21, 54, 60, 66, 92] and the Energy-Sharing algorithm presented in the next

chapter (Chapter 4, [51]). However, the majority of interesting collective behaviors for

programmable matter require movement, and it is not clear if any of these algorithms

satisfy monotonicity. In particular, even the relatively simple Hexagon-Formation

algorithm of Section 2.5 which can be directly proven to be correct under any unfair

asynchronous adversary is not monotonic.

Therefore, the monotonicity convention appears to be the convention that most

severely limits the applicability of our concurrency control protocol. This highlights

two critical open questions. Do there exist algorithms that are not correct under an

asynchronous adversary but are compatible with our concurrency control protocol?

Are there other, less restrictive sufficient conditions for correctness in spite of asyn-

chrony? We are hopeful that this first step towards generalized concurrency control for

programmable matter and answers to these open problems will advance the analysis

of existing and future algorithms for programmable matter in the concurrent setting.
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Chapter 4

ENERGY DISTRIBUTION

The composing modules of active programmable matter are often envisioned and

designed to be simple, homogeneous units capable of internal computation, inter-

module communication, and movement. These modules require a constant supply

of energy to function, but as the number of modules per collective increases and

individual modules are miniaturized from the centimeter/millimeter-scale [94, 100,

160] to the micro- and nano-scale [72, 124], traditional methods of robotic power

supply such as internal battery storage and tethering become infeasible.

Programmable matter systems instead make use of an external energy source

accessible by at least one module and rely on module-to-module power transfer to

supply the system with energy [30, 94, 99, 160]. This external energy can be supplied

directly to one or more modules in the form of electricity, as in [94], or may be

ambiently available as light, heat, sound, or chemical energy in the environment [136,

152]. Since energy may not be uniformly accessible to all modules in the system, a

strategy for energy distribution — or sharing energy between modules such that all

modules eventually obtain the energy they need to function — is imperative but does

not come for free. Significant energy loss can occur in module-to-module transfer

depending on the method used, and even with perfect transfer successive voltage drops

between modules can limit the number of modules that can be powered from a single

source [94]. Module geometry may further complicate the problem by introducing

short circuits, adding further constraints to power routing algorithms [30].

Algorithmic theory for programmable matter has largely ignored the role of energy
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(with notable exceptions, such as [72, 160]), focusing primarily on characterizing the

minimal capabilities individual modules need to collectively achieve desired system-

level self-organizing behaviors. Across models of active programmable matter —

including population protocols [10], the nubot model [194], mobile robots [87], hybrid

programmable matter [96, 97], and the amoebot model [52, 59] — most works

either develop algorithms for a desired behavior and bound their time complexity

or, on the negative side, prove that a given behavior cannot be achieved within

the given constraints. To the extent of our knowledge, papers on these models

have only mentioned energy to justify constraints (e.g., why a system should remain

connected [144]) and have never directly treated the impact of energy usage and

distribution on an algorithm’s efficiency. In contrast, both programmable matter

practitioners and the modular and swarm robotics literature view energy constraints

as influential aspects of algorithm design [15, 120, 151, 159, 191].

In this chapter, we present an algorithm for energy distribution in the amoebot

model [51] that is loosely inspired by the growth behavior of Bacillus subtilis bacterial

biofilms [133, 163]. We assume that all amoebots in the system require energy to

perform their actions but only some have access to an external energy source. Naive

distribution strategies such as fully selfish or fully altruistic behaviors have obvious

problems: in the former, amoebots with access to energy use it all and starve the

others, while in the latter no amoebot ever knows when it is safe to use its stored

energy. This necessitates a strategy in which amoebots shift between selfish and

altruistic energy usage depending on the needs of their neighbors. Our algorithm

mimics the way bacteria use long-range communication of their metabolic stress to

temporarily inhibit the biofilm’s energy consumption, allowing for nutrients to reach

starving bacteria and effectively solving the energy distribution problem.
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The remainder of this chapter is organized as follows. We begin with some details

on the bacterial biofilms that inspired our approach in Section 4.1, followed by a

formal statement of the energy distribution problem in Section 4.2. In Section 4.3,

we present Energy-Sharing: a local, distributed algorithm that solves the energy

distribution problem in O(n) sequential rounds (Theorem 4.3.8), where n is the

number of amoebots in the system. This algorithm is asymptotically optimal when the

number of external energy sources is fixed (Theorem 4.3.9). We then show simulation

results in Section 4.4, demonstrating that without the biofilm-inspired communication

of amoebots’ energy states, Energy-Sharing fails to distribute sufficient energy

throughout the system.

In Section 4.5, we consider the impact of crash faults on the correctness and

runtime of our algorithm. Our fault mitigation strategy relies on a new algorithmic

primitive called Forest-Prune-Repair that locally repairs the system’s underlying

communication structure after an amoebot crashes. This repair primitive is in fact

of independent interest, as it extends the amoebot model’s well-established spanning

forest primitive [52] to be self-stabilizing in the presence of crash failures. Finally, we

show how Forest-Prune-Repair can be used to compose other amoebot algorithms

with our Energy-Sharing algorithm. This effectively generalizes all previous work

on the amoebot model to also consider energy constraints.

4.1 Biological Inspiration

Our strategy of shifting between selfish and altruistic energy usage to achieve

energy distribution is loosely inspired by the work of Liu and Prindle et al. [133, 163]

on the growth behavior of colonies of Bacillus subtilis bacteria, which we summarize

77



here for the sake of completeness. These bacteria form densely packed biofilm colonies

when they become metabolically stressed (i.e., when they become nutrient scarce

and begin to starve). These bacteria consume glutamine, which is produced from a

combination of substrates glutamate and ammonium. Glutamate is sourced from the

environment outside of the biofilm, whereas ammonium is produced by individual

bacterium. However, because ammonium can freely diffuse across a bacterium’s cell

membrane and be lost to its surroundings, production of ammonium is known as the

futile cycle. The futile cycle is detrimental for bacteria on the biofilm’s periphery,

as they lose all their ammonium to the external medium. Once a biofilm colony is

formed, however, bacteria in the biofilm’s interior are shielded from the futile cycle

by those on the periphery. This creates a symbiotic co-dependence: bacteria in the

interior are reliant on glutamate passed from the periphery, while bacteria on the

periphery are reliant on ammonium produced by the interior.

As the biofilm grows, overall glutamate consumption in the periphery increases,

limiting the amount of glutamate that permeates into the interior of the colony.

This causes interior bacteria to become metabolically stressed. Thus, in order to

regulate glutamate consumption on the periphery, interior bacteria communicate their

metabolic states to the peripheral bacteria via a long-range electrochemical process

known as potassium ion-channel-mediated signaling [163]. This sudden influx of

potassium inhibits a bacterium’s glutamate intake and ammonium retention, allowing

more nutrients to pass into the biofilm’s interior. As a result, the biofilm grows at an

oscillating rate rather than a constant one, despite the fact that there is plentiful glu-

tamate in the environment. This emergent oscillation enables continuous distribution

of nutrients throughout the colony, effectively solving the energy distribution problem.
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ebat

Figure 8. Amoebot Energy Anatomy. Energy is transferred between amoebots at their
contact points, shown as green markers on the amoebot’s periphery. An amoebot’s
battery ebat stores energy for its own use and for sharing with its neighbors.

4.2 The Energy Distribution Problem

For this chapter, we assume the simplified sequential amoebot model in which

at most one amoebot is active at a time and the adversary activates every amoebot

infinitely often. We further assume geometric space, assorted orientations, and

constant-size memory (see Table 1). Here, we introduce terminology specific to the

problem of energy distribution. Each amoebot A has an energy battery denoted A.ebat

with constant capacity κ > 0 (see Figure 8). The battery represents stored energy

A can use for performing actions or for sharing with its neighbors. Amoebots with

access to an external energy source can harvest energy into their batteries directly,

while those that do not depend on their neighbors to share with them. In either case,

each amoebot can transfer at most a constant α > 0 units of energy per activation.

An instance of the energy distribution problem has the form (S, κ, δ) where S is a

finite connected amoebot system, κ is the capacity of each amoebot’s battery, and

energy demand δ(A, i) denotes the energy cost for an amoebot A to perform its i-th
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action. For convenience, we will use δ(A) to refer to the energy cost for A to perform

its next action. An instance is valid if (i) S contains one or more “root” amoebots with

access to external energy sources and all non-root amoebots are initially “idle” and

(ii) for all amoebot actions, δ(·, ·) ≤ κ; i.e., no energy demand exceeds the batteries’

energy capacity. An amoebot A is stressed if the energy level of its battery is strictly

less than the demand for its next action, i.e., if A.ebat < δ(A). An action a of an

amoebot A is enabled if, barring any energy considerations, A is able to perform action

a. A local, distributed algorithm A solves a valid instance of the energy distribution

problem in time t if, when each amoebot executes A individually, no amoebot remains

stressed for more than t sequential rounds and at least one amoebot performs an

enabled action every t sequential rounds.

4.3 The Energy-Sharing Algorithm

In this section, we present algorithm Energy-Sharing for energy distribution

under the amoebot model. At a high level, this algorithm works as follows. After some

initial setup, each amoebot continuously loops through a sequence of three phases: the

communication phase, the sharing phase, and the usage phase. In the communication

phase, amoebots propagate signals to communicate the energy states of stressed

amoebots, analogous to the long-range electrochemical signaling via potassium ion

channels in the biofilms. Amoebots then attempt to harvest energy from an external

energy source or transfer energy to their neighbors in the sharing phase. Finally,

amoebots spend their stored energy to perform actions according to their collective

behavior in the usage phase. Note that the system is not synchronized and each

amoebot progresses through these phases independently. Section 4.3.1 details the
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Parameter Notation Constraints
Battery Capacity κ ∈ R κ > 0
Energy Demand δ : S × Z+ → R δ(·, ·) ≤ κ
Transfer Rate α ∈ R α > 0

Table 4. Parameters for Energy-Sharing.

Variable Notation Domain Initialization
Battery Energy ebat [0, κ] 0
Parent Pointer parent {null, 0, . . . , 5} null
Stress Flag stress {true, false} false
Inhibit Flag inhibit {true, false} false
Prune Flag prune {true, false} false

Table 5. Local Variables for Energy-Sharing.

setup and phases of Energy-Sharing. We then analyze this algorithm’s correctness

and runtime in Section 4.3.2.

4.3.1 Algorithm Description

Tables 4 and 5 list the parameters and local variables used by the Energy-

Sharing algorithm. Complete distributed pseudocode is given in Algorithm 7.

The Setup Phase. Recall that amoebot system S is connected. Amoebots with

access to an external energy source are roots, and the rest are idle. This phase organizes

S as a spanning forest F of trees rooted at the root amoebots. These trees facilitate an

analogy to the potassium ion signaling that the bacteria use to communicate when they

are metabolically stressed (discussed further in the communication phase). To form

F , we make use of the well-established spanning forest primitive [52]. If an amoebot

A is idle, it checks if it has a root or active neighbor B. If so, A becomes active and
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Algorithm 7 Energy-Sharing for Amoebot A
1: if A is idle then
2: if A has a neighbor B that is a root or is active then
3: A becomes active.
4: A.parent← B.
5: else (i.e., A is active or a root)
6: Communicate( )
7: ShareEnergy( )
8: UseEnergy( )
9: function Communicate( )

10: if A is active then
11: if A.ebat < δ(A) ∨ (A has a child B with B.stress = true) then
12: A.stress← true.
13: else A.stress← false.
14: A.inhibit← A.parent.inhibit.
15: else (i.e., A is a root)
16: if A.ebat < δ(A) ∨ (A has a child B with B.stress = true) then
17: A.inhibit← true.
18: else A.inhibit← false.
19: function ShareEnergy( )
20: if A is a root then A.ebat ← min{A.ebat + α, κ}.
21: if A.ebat ≥ α and A has a child B with B.ebat < κ then
22: Choose an arbitrary child B with B.ebat < κ.
23: A.ebat ← A.ebat −min{α, κ−B.ebat}.
24: B.ebat ← min{B.ebat + α, κ}.
25: function UseEnergy( )
26: Let a be the next action of P and let δ(P ) be its energy cost.
27: if P.ebat ≥ δ(P ) and ¬P.inhibit (i.e., P is not inhibited) then
28: Spend the required energy with P.ebat ← P.ebat − δ(P ).
29: Perform action a.

updates its parent pointer to A.parent ← B. This repeats until all amoebots are

active, yielding a spanning forest F .

The Communication Phase. The communication phase facilitates the long-range

communication of amoebots’ energy states analogous to the biofilm’s potassium ion

signaling. This is achieved by sending signals along an amoebot’s tree in the spanning

forest F constructed in the setup phase. In particular, any active amoebot A that is

stressed — i.e., A.ebat < δ(A) — sets a stress flag that remains until A is no longer

stressed. Any amoebot that has a child in its tree with their stress flag set also sets
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their stress flag, effectively propagating this signal up to its tree’s root amoebot. When

the root amoebot receives this stress signal (or if it is itself stressed), it sets an inhibit

flag, initiating a broadcast to the rest of the tree. Any amoebot whose parent in the

tree has their inhibit flag set also sets their inhibit flag, propagating this inhibition

signal throughout the tree. In the usage phase, inhibited amoebots are prohibited

from spending their energy to perform actions, allowing more energy to pass on to

the stressed amoebots. As we will show in the simulations of Section 4.4, omitting

this phase can result in the indefinite starvation of many of the system’s amoebots.

Signal resets behave analogously to how they are set. Any non-root amoebot that

is not stressed — i.e., A.ebat ≥ δ(A) — and has no children with their stress flags set

will reset its stress flag. Once a root no longer has any children with stress flags (and

it is itself not stressed), it resets its inhibit flag. Any amoebot whose parent does not

have its inhibit flag set resets its own inhibit flag, and so on.

The Sharing Phase. During the sharing phase, amoebots harvest energy from

external energy sources and transfer energy to their neighbors, if possible. A root

amoebot A begins the sharing phase by harvesting min{α, κ−A.ebat} units of energy

from its external energy source. Any amoebot A — root or active — then checks

to see if it has sufficient energy to share (i.e., A.ebat ≥ α) and if any of its children

in the spanning forest F , say B, need energy (i.e., B.ebat < κ). If so, A transfers

min{α, κ−B.ebat} units of energy to B in keeping with the assumption from Section 4.2

that each amoebot can transfer at most α units of energy per activation.

The Usage Phase. In the usage phase, amoebots spend their energy to perform

actions as required by their collective behavior. Suppose that a is the next action an
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amoebot A wants to perform; recall that its energy cost is given by δ(A). If A has

sufficient stored energy to perform this action — i.e., A.ebat ≥ δ(A) — and A does

not have its inhibit flag set, then A can spend the required energy and perform action

a. Otherwise, A forgoes any action in this activation.

4.3.2 Analysis

We now prove the correctness and bound the runtime of the Energy-Sharing

algorithm. We begin with two straightforward results regarding the setup and com-

munication phases.

Lemma 4.3.1. All idle amoebots in the system become active and join the spanning

forest F within n sequential rounds, where n is the number of amoebots in the system.

Proof. This follows directly from the analysis of the spanning forest primitive [52]. The

amoebot system is connected, so as long as there are still idle amoebots in the system,

at least one idle amoebot A must have an active or root amoebot as a neighbor. When

A is next activated, it will become active and join the spanning forest by choosing

one of its active or root neighbors as its parent. This is guaranteed to happen within

one sequential round since every amoebot is activated at least once per round. Thus,

at least one idle amoebot becomes active each round, and there are at most n− 1 idle

amoebots since there is at least one root in the system initially.

For the remainder of the analysis it suffices to focus on a single tree T ∈ F since

each tree in the spanning forest acts independently of the others.
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Lemma 4.3.2. Suppose an amoebot A in tree T ∈ F is stressed; i.e., A.ebat < δ(A).

If tree T has depth dT , then all amoebots in T will have their inhibit flags set within

2dT sequential rounds.2

Proof. Within one sequential round, amoebot A will be activated and will set its

stress flag since A.ebat < δ(A). Recall that stress flags are propagated up to the root

by parents setting their stress flags when they see a child with its stress flag set. There

can be at most dT − 2 ancestors of A strictly between A and the root. At least one

more ancestor will set its stress flag per sequential round, so in at most dT − 2 rounds

a child of the root will have its stress flag set.

Within one additional round, the root will be activated and will set its inhibit

flag. Inhibit flags are then propagated from the root to all its descendants: in each

round, any child that sees its parent’s inhibit flag set will also set its own inhibit flag.

The longest root-to-descendant path in T is of length dT , so in at most dT rounds all

amoebots in T will have their inhibit flags set.

Lemma 4.3.2 shows that when a tree contains at least one stressed amoebot, every

amoebot in the tree eventually becomes inhibited. This inhibition remains until all

stressed amoebots recharge, i.e., until they receive the energy they need to perform

their next action. The usage phase prohibits any inhibited amoebot from spending

its energy on actions, so it suffices when bounding the recharge time to analyze how

energy is shared within the tree.

In particular, we want to bound the worst case time for a stressed amoebot in

a given tree T to recharge once all amoebots in T are inhibited. We make three

2The depth of an amoebot A in a tree T rooted at an amoebot R is the number of nodes
in the (R,A)-path in T (i.e., the root R is at depth 1, and so on). The depth of a tree T is
maxA∈T {depth of A}.
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observations that make this analysis more tractable. First, we assume that all amoebots

in T begin this recharging process with empty batteries and need to meet maximum

energy demand; i.e., we assume P.ebat = 0 and δ(A) = κ for all A ∈ T . Although

the amoebots of T may have obtained some energy before becoming inhibited, this

assumption can only make recharging slower since more energy is needed. Second,

we assume κ/α ∈ N, allowing us to assume all energy is transferred in units of size

exactly α. This can be easily realized by rounding any given capacity κ up to the

next multiple of α, as this can only increase the energy required in recharging. Third,

we show in the following lemma that the recharge time in T is at most the recharge

time in a simple path with the same number of amoebots.

Lemma 4.3.3. Suppose T is a tree of k amoebots rooted at an amoebot R with

access to external energy. If all k amoebots are inhibited and initially have no energy

in their batteries, then the worst case number of sequential rounds to recharge all

amoebots’ batteries in T is at most the worst case number of rounds to do so in a path

L = (A1, . . . , Ak) in which A1 has access to external energy and Ai.parent = Ai−1 for

all 1 < i ≤ k.

Proof. Given any tree U of k inhibited amoebots rooted at an amoebot R with access

to external energy and an activation sequence S of the amoebots in U , let tS(U) denote

the number of sequential rounds required to recharge all amoebots’ batteries in U with

respect to activation sequence S. We use t(U) = maxS{tS(U)} to denote the worst

case recharge time for U . With this notation, our goal is to show that t(T ) ≤ t(L).

Consider the maximal “non-branching” path (R = A1, . . . , A` = A) in tree T

starting at the root R such that Ai+1 is the only child amoebot of Ai in T for all

1 ≤ i < `. We argue by (reverse) induction on `, the total number of amoebots

in the maximal non-branching path of T . If ` = k, then T is already a path L
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of k amoebots and we have t(T ) = t(L) trivially. So suppose that ` < k and for

all possible trees U composed of the same k amoebots as T that are rooted at R

and have at least `+ 1 amoebots in their maximal non-branching paths starting at

R, we have t(U) ≤ t(L). Our goal is to modify T to form another tree T ′ that is

composed of the same amoebots, is rooted at R, and has exactly one more amoebot

in its maximal non-branching path such that t(T ) ≤ t(T ′). Since T ′ has exactly `+ 1

amoebots in its maximal non-branching path, we have by the induction hypothesis

that t(T ) ≤ t(T ′) ≤ t(L).

With maximal non-branching path (R = A1, . . . , A` = A) of T , A = A` is the

“closest” amoebot to R with multiple children, say B1, . . . , Bc for c ≥ 2; note that

such an amoebot A must exist since ` < k. Form the tree T ′ by reassigning Bi.parent

from A to B1 for each 2 ≤ i ≤ c. Then B1 is the only child of A in T ′, and thus

(R = A1, . . . , A` = A,B1) is the maximal non-branching path of T ′ which has length

`+ 1. So it suffices to show that t(T ) ≤ t(T ′).

Consider any activation sequence S = (s1, . . . , sf ) where sf is the first activation

after which all amoebots in T have finished recharging; we must show that there

exists an activation sequence S ′ such that tS(T ) ≤ tS′(T ′). We construct S ′ from S

so that the flow of energy through T ′ mimics that of T . Consider each si ∈ S, for

1 ≤ i ≤ f . In most cases, si has the same effect in both T and T ′ and thus s′i = si can

be appended to S ′. However, any activations si in which A passes energy to a child

Bj, for 2 ≤ j ≤ c, cannot be performed directly in T ′ since Bj is a child of B1 — not

of A — in T ′. We instead add a pair of activations s′i = (s1
i , s

2
i ) to S ′ that have the

effect of passing energy from A to Bj but use B1 as an intermediary. There are two

cases. If B1 has a full battery (i.e., B1.ebat = κ) at the beginning of si, then B1 passes
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energy to Bj in s1
i and A passes energy to B1 in s2

i . Otherwise, A passes energy to B1

in s1
i and B1 passes energy to Bj in s2

i .

Under this construction of S ′, if all amoebots start with empty batteries, the value

of A.ebat after each si ∈ S and s′i ∈ S ′ is the same in T and T ′, respectively, for all

1 ≤ i ≤ f . Thus, the amoebots in T and T ′ only finish recharging after activations

sf and s′f , respectively. Moreover, S ′ was obtained from S by adding activations

which can only increase the number of sequential rounds in S ′. Therefore, we have

tS(T ) ≤ tS′(T ′), and since the choice of S was arbitrary, we have t(T ) ≤ t(T ′).

By Lemma 4.3.3, it suffices to analyze the case where T is a simple path of k

amoebots. To bound the recharge time in this setting, we use a dominance argument

between sequential and parallel executions which is structured as follows. First, we

prove that for any sequential execution, there exists a parallel execution that makes at

most as much progress towards recharging the system in the same number of rounds.

We then upper bound the recharge time in parallel rounds. Combining these results

gives a worst case upper bound on the recharge time in sequential rounds, as desired.

Remark 1 gives background on dominance arguments independent of the present focus

on energy distribution.

Remark 1. Dominance Arguments.

The concept of dominance appears in many areas of mathematics. Perhaps

the most ubiquitous examples in computer science are asymptotic dominating

functions that give us big-O, Ω, and Θ notation [122]. In that context, we say

that a function f dominates a function g if there exist constants c > 0 and n0 ≥ 0

such that for all n ≥ n0, it holds that cf(n) ≥ g(n). Another example comes from

game theory, where dominating strategies are investigated for games between
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two individuals or parties with competing interests [141, 185]. Just as for the

asymptotic dominating functions, invariant inequalities are sought to show that

one strategy always outperforms the other.

In this dissertation, we leverage dominance to bound the runtime of our

algorithms by comparing sequential executions to parallel executions. Because a

sequential adversary may activate any amoebot in arbitrary order — so long as

each amoebot is activated infinitely often — it can be difficult to directly measure

progress, even within sequential rounds where each amoebot is guaranteed to be

activated at least once. In contrast, a parallel execution activates all amoebots in

lock-step, providing rigid structure that is more amenable to runtime analysis.

Informally, our dominance arguments prove two results: (i) for any sequential

execution S of an algorithm A, there exists a parallel execution P of A that

is dominated by S; i.e., S always makes at least as much progress as P in the

same number of rounds, and (ii) the parallel execution P of A is guaranteed to

terminate in O(f(n)) rounds, where n is the number of amoebots in the system.

Combining these results, we have that S must also terminate in O(f(n)) rounds.

If S is chosen arbitrarily in (i), then O(f(n)) is an upper bound on the runtime

of any sequential execution of A, as desired. While the measure of progress will

vary depending on what process is being analyzed, our dominance arguments will

always follow this structure.

Let a configuration C of the path A1, . . . , Ak encode the battery values of each

amoebot Ai as C(Ai). A schedule is a sequence of configurations (C0, . . . , Ct). Note

that in the following definition for the parallel execution, we reduce each amoebot’s

battery capacity from κ to κ′ = κ−α. This does not apply to the sequential execution,

and is just a proof artifact that will be useful in Lemma 4.3.5.
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Definition 4.3.4. A parallel energy schedule (C0, . . . , Ct) is a schedule such that

for all configurations Ci and amoebots Aj we have Ci(Aj) ∈ [0, κ′] and, for every

0 < i ≤ t, Ci is reached from Ci−1 using the following for each amoebot Aj:

• Aj is a root, so it harvests energy from the external energy source with:

– Ci(Aj) = Ci−1(Aj) + min{α, κ′ − Ci−1(Aj)}

• Ci−1(Aj) ≥ α and Ci−1(Aj+1) < κ′, so Aj passes energy to its child with:

– Ci(Aj) = Ci−1(Aj)−min{α, κ′ − Ci−1(Aj+1)}

– Ci(Aj+1) = Ci−1(Aj+1) + min{α, κ′ − Ci−1(Aj+1)}

Such a schedule is greedy if the above actions are taken in parallel whenever possible.

Now consider any fair sequential activation sequence S; i.e., one in which every

amoebot is activated infinitely often. We compare a greedy parallel energy schedule to

a sequential energy schedule (CS
0 , . . . , C

S
t ) where CS

i is the configuration of the path

A1, . . . , Ak at the completion of the i-th sequential round in S. For an amoebot Ai in

a configuration C, let ∆C(Ai) denote the total amount of energy in the batteries of

amoebots Ai, . . . , Ak in C; i.e., ∆C(Ai) =
∑k

j=iC(Aj). For any two configurations C

and C ′, we say C dominates C ′ — denoted C � C ′ — if and only if for all amoebots

Ai in the path A1, . . . , Ak, we have ∆C(Ai) ≥ ∆C′(Ai).

Lemma 4.3.5. Given any fair sequential activation sequence S beginning at a config-

uration CS
0 in which Ai.ebat = 0 for all 1 ≤ i ≤ k, there exists a greedy parallel energy

schedule (C0, . . . , Ct) with C0 = CS
0 such that CS

i � Ci for all 0 ≤ i ≤ t.

Proof. Given a fair sequential activation sequence S and an initial configuration CS
0 ,

we obtain a unique sequential energy schedule (CS
0 , . . . , C

S
t ). Our goal is to construct

a parallel energy schedule (C0, . . . , Ct) such that CS
i � Ci for all 0 ≤ i ≤ t. Let
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C0 = CS
0 ; then, for 0 < i ≤ t, let Ci be obtained from Ci−1 by performing one parallel

round : each amoebot greedily performs the actions of Definition 4.3.4 if possible.

We now show CS
i � Ci for all 0 ≤ i ≤ t by induction on i. Since C0 = CS

0 , we

trivially have CS
0 � C0. So suppose i > 0 and for all rounds 0 ≤ r < i we have

CS
r � Cr. Considering any amoebot Aj, we have ∆CSi−1

(Aj) ≥ ∆Ci−1
(Aj) by the

induction hypothesis and want to show that ∆CSi
(Aj) ≥ ∆Ci(Aj). First suppose the

inequality from the induction hypothesis is strict and we have ∆CSi−1
(Aj) > ∆Ci−1

(Aj),

meaning strictly more energy has been passed into Aj, . . . , Ak in the sequential setting

than in the parallel one after rounds i− 1 are complete. Because all successful energy

transfers pass α energy either from the external source to the root A1 or from a parent

Aj to its child Aj+1, we have that ∆CSi−1
(Aj) ≥ ∆Ci−1

(Aj)+α. But by Definition 4.3.4,

an amoebot can receive at most α energy per parallel round, so we have:

∆Ci(Aj) ≤ ∆Ci−1
(Aj) + α ≤ ∆CSi−1

(Aj) ≤ ∆CSi
(Aj)

Thus, it remains to consider when ∆CSi−1
(Aj) = ∆Ci−1

(Aj), meaning the amount

of energy passed into Aj, . . . , Ak is exactly the same in the sequential and parallel

settings after rounds i−1 are complete. It suffices to show that if Aj receives α energy

in parallel round i, then it also does so in sequential round i.

We first prove that if Aj receives α energy in parallel round i, then CS
i−1(Aj) ≤ κ−α;

i.e., Aj has enough room in its battery to receive α energy whenever it is activated in

sequential round i. There are two cases: either Aj already had enough room in its

battery to receive α energy in parallel round i (i.e., Ci−1(Aj) ≤ κ′ − α) or it had a

full battery (i.e., Ci−1(Aj) = κ′) but passed α energy to Aj+1 in parallel, “pipelining”

energy to make room for the energy it received. In either case, it is easy to see that

Ci−1(Aj) ≤ κ′. By supposition we have ∆CSi−1
(Aj) = ∆Ci−1

(Aj) and by the induction
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hypothesis we have ∆CSi−1
(Aj+1) ≥ ∆Ci−1

(Aj+1). Combining these facts, we have:

CS
i−1(Aj) =

k∑
`=j

CS
i−1(A`)−

k∑
`=j+1

CS
i−1(A`)

= ∆CSi−1
(Aj)−∆CSi−1

(Aj+1)

≤ ∆Ci−1
(Aj)−∆Ci−1

(Aj+1)

=
k∑
`=j

Ci−1(A`)−
k∑

`=j+1

Ci−1(A`)

= Ci−1(Aj) ≤ κ′ = κ− α

Thus, regardless of whether Aj already had space for α energy or used pipelining in

parallel round i, Aj must have space for α energy at the start of sequential round i,

as desired.

Next, we show that if Aj receives α energy in parallel round i, then there is

at least α energy for Aj to receive in sequential round i. If Aj is the root, this is

trivial: the external source of energy is its infinite supply. Otherwise, j > 1 and we

must show CS
i−1(Aj−1) ≥ α. We have ∆CSi−1

(Aj) = ∆Ci−1
(Aj) by supposition and

∆CSi−1
(Aj−1) ≥ ∆Ci−1

(Aj−1) by the induction hypothesis, so:

CS
i−1(Aj−1) =

k∑
`=j−1

CS
i−1(A`)−

k∑
`=j

CS
i−1(A`)

= ∆CSi−1
(Aj−1)−∆CSi−1

(Aj)

≥ ∆Ci−1
(Aj−1)−∆Ci−1

(Aj)

=
k∑

`=j−1

Ci−1(A`)−
k∑
`=j

Ci−1(A`)

= Ci−1(Aj−1) ≥ α

Thus, we have shown that if Aj receives α energy in parallel round i, then

CS
i−1(Aj) ≤ κ − α and either j = 1 or CS

i−1(Aj−1) ≥ α, meaning that at the end of
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sequential round i − 1 there is both α energy available to pass to Aj and Aj has

room in its battery to receive it. Though we do not control the order of activations

in sequential round i, additional activations can only increase the amount of energy

available to pass to Aj (by, e.g., passing more energy to Aj−1) and increase the space

available in Aj.ebat (by passing more energy to Aj+1). Since the activation sequence S

was assumed to be fair, either j = 1 and Aj will be activated at least once in sequential

round i or j > 1 and Aj−1 will be activated at least once in sequential round i; in

either case, Aj will receive α energy in sequential round i. Therefore, in all cases we

have shown that ∆CSi
(Aj) ≥ ∆Ci(Aj), and since the choice of Aj was arbitrary, we

have CS
i � Ci as desired.

To conclude the dominance argument, we bound the number of parallel rounds

needed to recharge a path of k amoebots. Combined with Lemma 4.3.5, this gives an

upper bound on the worst case number of sequential rounds required to do the same.

Lemma 4.3.6. Let (C0, . . . , Ct) be a greedy parallel energy schedule where C0 is the

configuration in which Ai.ebat = 0 for all 1 ≤ i ≤ k and Ct is the configuration in

which Ai.ebat = κ′ = κ− α for all 1 ≤ i ≤ k. Then t = κ′

α
k = O(k).

Proof. We argue by induction on k, the number of amoebots in the path. If k = 1,

then A1 = Ak is the root amoebot that harvests α energy per parallel round from the

external source by Definition 4.3.4. Since A1 has no children to which it may pass

energy, clearly, within κ′

α
= O(k) rounds A1.ebat = κ′ will be satisfied.

Now suppose k > 1 and that for all 1 ≤ j < k, a path of j amoebots fully recharges

in κ′

α
j parallel rounds. Once an amoebot Ai has received energy for the first time,

it is easy to see by inspection of Definition 4.3.4 that Ai will receive α energy from

Ai−1 (or the external energy source, in the case that i = 1) in every subsequent
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parallel round until Ai.ebat is full. Similarly, Definition 4.3.4 ensures that Ai will pass

α energy to Ai+1 in every subsequent parallel round until Ai+1.ebat is full. Thus, once

Ai receives energy for the first time, Ai effectively acts as an external energy source

for the remaining amoebots Ai+1, . . . , Ak.

The root A1 first harvests energy from the external energy source in parallel

round 0, and thus acts as a continuous energy source for A2, . . . , Ak in all subsequent

rounds. By the induction hypothesis, we have that A2, . . . , Ak will fully recharge in

κ′

α
(k−1) parallel rounds, after which A1 will no longer pass energy to A2. The root A1

harvests α energy from the external energy source per parallel round and already has

A1.ebat = α, so in an additional κ′
α
− 1 parallel rounds we have A1.ebat = κ′. Therefore,

the path A1, . . . , Ak fully recharges in 1 + κ′

α
(k − 1) + κ′

α
− 1 = κ′

α
k = O(k) parallel

rounds, as required.

Lemmas 4.3.3, 4.3.5, and 4.3.6 show that an inhibited tree T of k amoebots will

recharge all its stressed amoebots in at most O(k) sequential rounds. The following

lemma shows that within a bounded number of additional rounds, there will be some

amoebot that is neither inhibited nor stressed and thus can perform an enabled action

(if it has one).

Lemma 4.3.7. Suppose that the last stressed amoebot in T has just received the energy

it needs to perform its next action. If T has depth dT , then within 2dT additional

rounds some amoebot in T with a pending enabled action will be able to perform it.

Proof. Let Ta be the set of amoebots in T that have enabled actions to perform. By

supposition, all amoebots in Ta now have sufficient energy stored in their batteries

to perform their actions (i.e., they are no longer stressed). It remains to bound the
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time for an amoebot in Ta to reset its inhibit flag, the only remaining obstacle to

performing its action.

Let Ts ⊆ T be the connected subtree of amoebots with their stress flags set. All

leaves of Ts at the start of a sequential round are guaranteed to reset their stress flags

by the completion of the round since they are no longer stressed and do not have

children with stress flags set. A descendant-to-root path in Ts can have length at most

dT ; the depth of tree T . So in at most dT rounds, all amoebots in T will reset their

stress flags.

In the first sequential round in which the root does not have any children with

their stress flags set, the root resets its inhibit flag. In each subsequent round, any

child whose parent has reset its inhibit flag will also reset its own inhibit flag. The

longest root-to-descendant path in T is of length dT , so in at most dT rounds there

must exist an amoebot in Ta that resets its inhibit flag; let A be the first such amoebot.

Amoebot A has an enabled action, has sufficient energy stored, and is not inhibited,

so it performs its enabled action during its next usage phase.

We conclude our analysis with the following two theorems. Recall from Section 4.2

that an algorithm solves the energy distribution problem in t sequential rounds if no

amoebot remains stressed for more than t rounds and at least one amoebot is able to

perform an enabled action every t rounds.

Theorem 4.3.8. Algorithm Energy-Sharing solves the energy distribution problem

in O(n) sequential rounds.

Proof. By Lemma 4.3.1, all n amoebots in system S will join the spanning forest F

within n sequential rounds. Since there is no communication or energy transfer between

different trees of F , it suffices to analyze an arbitrary tree T ∈ F . By Lemma 4.3.2,
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if T contains a stressed amoebot then all amoebots of T will be inhibited within

2dT rounds, where dT is the depth of T . Lemma 4.3.3 shows that assuming T has

a path structure can only increase the time to recharge its stressed amoebots, and

Lemmas 4.3.5 and 4.3.6 prove that even in the case that all amoebots have uniform,

maximum demand — i.e., δ(A) = κ for all amoebots A — all stressed amoebots will

be distributed enough energy to meet their demand within O(|T |) rounds. Finally,

Lemma 4.3.7 shows that within 2dT additional rounds some amoebot in T will use its

energy to perform its next enabled action. Therefore, since the depth of T can be at

most its size (if T is a path) and its size can be at most the number of amoebots in

the system (if T is the only tree in F), we conclude that Energy-Sharing solves the

energy distribution problem in n+ 2dT +O(|T |) + 2dT = O(n) sequential rounds.

To establish a lower bound, observe that for a system of n amoebots each with a

battery capacity of κ to fully recharge, the system needs to harvest and distribute nκ

total energy. Each amoebot with access to an external energy source may only be

activated once per sequential round in the worst case. So in this worst case, a system

with s ≤ n amoebots with energy access can harvest at most sα energy from external

sources per sequential round. This yields the following theorem.

Theorem 4.3.9. The worst case runtime for any local control algorithm to solve

the energy distribution problem when s ≤ n amoebots have access to external energy

sources is Ω(n/s) sequential rounds.

Theorems 4.3.8 and 4.3.9 yield the following corollary.

Corollary 4.3.10. Algorithm Energy-Sharing is asymptotically optimal when the

number of amoebots with access to external energy sources is a fixed constant.

96



4.4 Simulation Results

We now present simulations of the Energy-Sharing algorithm.3 All figures in

this section use color intensity to indicate the energy level of an amoebot’s battery,

with more intense color corresponding to more energy stored. Our first simulation

(Figure 9) shows Energy-Sharing running on a system of 91 amoebots with a single

root amoebot that has access to an external energy source. All amoebots have a

capacity of κ = 10 and a transfer rate of α = 1. To incorporate energy usage in

the simulation, we assume that every amoebot has a uniform, repeating demand of

δ(·, ·) = 5 energy per “action”, though no explicit action is actually performed when

the energy is used. The system is organized as a hexagon with the root at its center for

visual clarity, but the resulting behavior is characteristic of other initial configurations,

root placements, and parameter settings.

All amoebots are initially idle, with the exception of the root shown with a

gray/black ring (Figure 9a). The setup phase establishes the spanning forest (or tree,

in this case) rooted at amoebots with energy access; an amoebot’s parent direction is

shown as an arc. Since all amoebots start with empty batteries, stress flags (shown

as red rings) quickly propagate throughout the system and inhibit flags soon follow

(Figure 9b). As energy is harvested by the root and shared throughout the system,

some amoebots (shown with yellow rings) receive sufficient energy to meet the demand

for their next action but remain inhibited from using it (Figure 9c). This inhibition

remains until all stressed amoebots in the system receive sufficient energy to meet their

demands (Figure 9d), at which point amoebots (shown with green rings) can reset

3Code for all simulations is openly available as part of AmoebotSim (https://github.com/
SOPSLab/AmoebotSim), a visual simulator for the amoebot model of programmable matter. Enlarged
videos of simulations can be viewed at https://sops.engineering.asu.edu/sops/energy-distribution.
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their inhibit flags and use their energy (Figure 9e). After using energy, these amoebots

may again become stressed and trigger another stage of inhibition (Figure 9f).

Our second simulation demonstrates the necessity of the communication phase for

effective energy distribution. In Section 4.1, we motivated the need for a strategy that

leverages the biofilm-inspired long-range communication of amoebots’ energy states

to shift between selfish and altruistic energy usage. Figure 10 shows a simulation

with the same initial configuration and parameters as the first simulation (Figure 9),

but with its communication phase disabled. Without the communication phase to

inhibit amoebots from using energy while those that are stressed recharge, amoebots

continuously share any energy they have with their descendants in the spanning forest.

Thus, while the leaves of the spanning forest occasionally meet their energy demands

(bold green amoebots in Figure 10b–10d), even after 1000 rounds most amoebots have

still not met their energy demand even once.

4.5 Extensions

With our energy distribution algorithm in place, we now present useful extensions.

We begin by considering amoebot crash failures in which an amoebot stops functioning

and no longer participates in the collective behavior. Crash failures pose a key challenge

for Energy-Sharing: they disrupt the structure of the spanning forest F that the

amoebots use for routing energy and communicating their energy states. To achieve

robustness to these crash failures, we present algorithm Forest-Prune-Repair that

enables the spanning forest to self-repair so long as certain assumptions on the locations

of faulty amoebots hold (Sections 4.5.1–4.5.2). We then show how Forest-Prune-

Repair can be leveraged to compose Energy-Sharing with existing algorithms
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(a) t = 0 seq. rounds (b) t = 10

(c) t = 100 (d) t = 190

(e) t = 191 (f) t = 192

Figure 9. Simulation of Energy-Sharing. This system has 91 amoebots with one
root, κ = 10, α = 1, and a repeating uniform demand of δ(·, ·) = 5 for all amoebots.
The black amoebot is the root, red amoebots have their stress flags and possibly also
their inhibit flags set, yellow amoebots have only their inhibit flags set, and green
amoebots have no flags set.
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(a) t = 1 seq. round (b) t = 50

(c) t = 200 (d) t = 1000

Figure 10. Simulation of Energy-Sharing Without Communication. Uses the same
initial configuration and parameters as in Figure 9, but with the communication phase
disabled. Without communication to set stress and inhibit flags, all amoebots remain
uninhibited (green), but only the leaves of the spanning forest ever amass enough
energy to meet their demands.

in the amoebot catalogue, effectively generalizing all previous work on the amoebot

model to also consider energy constraints (Section 4.5.3).

We make three assumptions about crashed amoebots. First, the neighbors of a

crashed amoebot can detect that it is crashed. Second, the subgraph induced by the

positions of non-crashed amoebots must remain connected at all times; otherwise,

there may be no way for components of non-crashed amoebots to communicate. Third,

there must always be at least one non-crashed root amoebot; otherwise, the system

would lose access to all external energy sources. We do not claim that these detection,

100



connectivity, and root-reliability assumptions are necessary for fault tolerance, but

each addresses a non-trivial challenge that is beyond the scope of this work.

4.5.1 The Forest-Prune-Repair Algorithm

In the context of our energy distribution algorithm, crash failures partition the

spanning forest F into “non-faulty” trees F∗ that are rooted at amoebots with energy

access and “faulty” trees F ′ that are disconnected from any external energy source.

Together, F∗ ∪ F ′ form a forest that spans all non-crashed amoebots. To make our

algorithms robust to these faults, we present Forest-Prune-Repair (Algorithm 8),

a local, ad hoc reconstruction that self-repairs F to reform a spanning forest of trees

rooted at amoebots with energy access.

Algorithm Forest-Prune-Repair works as follows. When an amoebot A finds

that its parent has crashed, it knows it has become the root of a faulty tree in F ′. In

response, A broadcasts a “prune signal” throughout this new tree by setting a prune

flag in each of its children’s memories, informing its descendants of the crash failure.

It then clears its parent pointer, resets all flags, and becomes idle. Any amoebot

that has its prune flag set does the same, effectively dissolving the faulty tree. Idle

amoebots then rejoin an existing tree in a manner similar to the setup phase described

in Section 4.3. When activated, an idle amoebot A considers all its root or active

neighbors that do not have their prune flag set. Of these amoebots, A chooses one to

be its parent in a round-robin manner; i.e., if A is ever pruned again, it chooses the

next such amoebot to be its parent.

Integrating Forest-Prune-Repair with Energy-Sharing is straightforward.

In the setting where the system is subject to crash faults, Forest-Prune-Repair
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Algorithm 8 Forest-Prune-Repair for Amoebot A
1: if (A.prune) ∨ (A.parent is crashed) then
2: for all amoebots B such that B.parent = A do B.prune← true.
3: A.parent← null.
4: A.prune← false.
5: A becomes idle.
6: else if (A is idle) ∧ (A has a root or active neighbor B such that ¬B.prune) then
7: Choose a root or active neighbor B with ¬B.prune by round-robin selection.
8: Update A.parent← B.
9: A becomes active.

simply replaces the setup phase described in Section 4.3. An amoebot proceeds with

the communication, sharing, and usage phases if it is not idle and its parent is not

crashed.

4.5.2 Analysis

We now analyze Forest-Prune-Repair, beginning with a simple proof of safety

that shows certain properties of the non-faulty trees in F∗ are always preserved.

Lemma 4.5.1. If a non-faulty tree T ∈ F∗ is initially acyclic, then under Forest-

Prune-Repair it will remain acyclic. Moreover, there will always be at least one tree

in F∗.

Proof. By the root-reliability assumption, there is always at least one non-crashed root

amoebot; thus, F∗ can never be empty. The operations of Forest-Prune-Repair

that change the structure of forest F are the removal of amoebots from their trees

during pruning and the addition of idle amoebots to new trees during rejoining. It is

easy to see that removing amoebots from any tree during pruning cannot create cycles

where there were none before. An amoebot only rejoins a tree if it is idle, implying
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that it has no children. So an idle amoebot rejoining a tree T ∈ F∗ is like adding a

new leaf vertex to T , which cannot create a cycle because T was initially acyclic.

Lemma 4.5.2. Suppose an amoebot crashes, yielding a new faulty tree T ∈ F ′. For

any amoebot A at depth d in tree T , A will be pruned (i.e., set its children’s prune

flags, clear its memory, and become idle) in at most d sequential rounds.

Proof. Suppose an amoebot crashes in round r, yielding a new faulty tree T ∈ F ′.

Let A be any amoebot at depth d in T . If d = 1, then A is the root of T . Since every

amoebot is activated at least once per sequential round, A will activate, see its parent

is crashed, and prune itself by the end of round r + 1. Now suppose d > 1 and every

amoebot at depth at most d− 1 in T has been pruned by the end of round r + d− 1.

If A has already been pruned (as is possible due to the activation order), we are done.

So suppose A has not yet been pruned at the start of round r+d. The parent of A was

at depth d− 1, and thus must have set the prune flag of A and become pruned by the

end of the previous round. So whenever A is activated in round r+ d, it sees its prune

flag is set and is pruned. Thus, in all cases, A is pruned in at most d rounds.

Under Forest-Prune-Repair, a pruned amoebot A chooses its new parent B

from among its root or active neighbors that do not have their prune flags set. There

are two cases: (i) B is in a non-faulty tree, meaning A has rejoined F∗ as desired, or

(ii) B is in a faulty tree, say T ∈ F ′. In the latter case, there must be prune flags

propagating throughout T because T ∈ F ′, so Lemma 4.5.2 shows A will now be

pruned again, this time from T .

An especially bad version of this case occurs when an amoebot continually rejoins

the tree it is pruning by choosing one of its descendants as its new parent (see

Figure 11). In fact, if this choice is not made carefully, it is possible that such an

103



amoebot would always choose a descendant as its parent and thus never rejoin F∗.

We refer to this situation as a chase cycle due to the way the prune flag propagation

“chases” the rejoining amoebots. However, since amoebots choose their new parents

from among their eligible neighbors in a round-robin manner, chase cycles cannot

continue for long. We have the following lemma.

Lemma 4.5.3. Suppose an amoebot A in faulty tree T ∈ F ′ has at least one neighbor

in a non-faulty tree of F∗. Then the number of times A will be pruned before it rejoins

F∗ is at most 6.

Proof. Each time A is pruned, it chooses a new parent from among its active or root

neighbors that do not have their prune flags set. By supposition, A has at least one

such neighbor in a tree of F∗. Moreover, its neighbor(s) in F∗ will always be in the

set of eligible new parents since every amoebot in a non-faulty tree is either a root or

is active and is never pruned. By Lemma 4.5.2, A will be pruned again each time it

chooses a parent in a faulty tree of F ′. In a round-robin selection, A can choose each

neighbor in F ′ as its parent at most once before choosing a parent in F∗, as desired.

Every amoebot has at most 6 neighbors, so in the worst case the number of times A

will be pruned before it rejoins F∗ is 6.

We conclude by bounding the stabilization time of Forest-Prune-Repair, which

captures the time required for all amoebots to rejoin non-faulty trees once the last

crash failure has occurred. We note that our bound does not directly depend on the

number of crash failures f , but rather on the number of non-crashed amoebots m

removed from non-faulty trees as a result of the crash failures.
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Figure 11. Chase Cycles in Forest-Prune-Repair. (a) A0 crashes, removing the
non-crashed amoebots in red from their non-faulty tree (in black) and disconnecting
them from the root amoebot with access to external energy (shown with a black ring).
(b) A1 sees that its parent is crashed and prunes itself (black circle), setting its child’s
prune flag. (c) A1 then chooses one of its descendants A6 as its new parent, creating
a chase cycle. (d)–(g) A2 and A3 do the same, continuing the chase cycle. (h) Later,
A1 chooses B as its parent, rejoining F∗ and breaking the chase cycle.
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Theorem 4.5.4. Suppose f < n amoebots crash (where n is the number of amoebots

in S), yielding faulty trees F ′. If no other amoebots crash, all m = |F ′| non-crashed

amoebots rejoin F∗ in O(m2) sequential rounds in the worst case.

Proof. If m = 1, then by Lemma 4.5.1 and the connectivity assumption, all non-

crashed neighbors of the single non-crashed amoebot A 6∈ F∗ must be in F∗. By

Lemma 4.5.2, A will be pruned in one round; A will then choose a neighbor in F∗ as

its new parent in its next activation. So A rejoins F∗ in O(1) = O(m2) rounds.

Now supposem > 1. Again by Lemma 4.5.1 and the connectivity assumption, there

must exist a non-crashed amoebot A ∈ F ′ with a neighbor in F∗. By Lemma 4.5.2, A

will be pruned in at most m rounds since the depth of A in its faulty tree can be at

most the total number of amoebots in faulty trees. Amoebot A will then choose a

new parent from among its eligible neighbors; if it chooses any neighbor in F ′ as its

new parent, it will again be pruned in at most another m rounds by Lemma 4.5.2.

By Lemma 4.5.3, A will in the worst case need to repeat this process 6 times before

choosing a neighbor in F∗ as its new parent. Thus, A rejoins F∗ in O(m) rounds.

This leaves m− 1 non-crashed amoebots in F ′ needing to rejoin F∗. By the induction

hypothesis, these amoebots rejoin F∗ in O((m− 1)2) rounds, so we conclude that all

m non-crashed amoebots in F ′ will rejoin F∗ in O(m2) rounds.

4.5.3 Algorithm Composition

We ultimately envision Energy-Sharing as a subprocess that is executed con-

tinuously, handling the energy demands of higher level algorithms for the system’s

self-organizing behaviors. In particular, if every action of an amoebot algorithm

was assigned an energy cost, Energy-Sharing must supply each amoebot with
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sufficient energy to meet these costs. However, many amoebot algorithms involve

amoebot movements that would necessarily disrupt the spanning forest F maintained

by Energy-Sharing for energy routing and communication. Just as was the case for

crash failures (Section 4.5.1), this necessitates a protocol for repairing F as amoebots

move, disconnecting from existing neighbors and gaining new ones.

We can repurpose Forest-Prune-Repair to address moving amoebots with a

simple modification. In this setting, instead of an amoebot initiating the pruning

of its subtree if it detects that its parent has crashed, it initiates the pruning of its

subtree and additionally prunes itself (unless it is an energy root) whenever it moves

according to the higher level algorithm. The rest of Forest-Prune-Repair stays

the same with the pruning broadcast dissolving the subtree and the resulting idle

amoebots rejoining elsewhere.

With this modification in place, Energy-Sharing can be composed with any

amoebot algorithm A requiring energy distribution so long as (i) the battery capacity

κ is at least as large as the demand of the most energy-intensive action in A, and (ii) A

maintains system connectivity at all times (this is sufficient to satisfy the connectivity

assumption of Section 4.5 since no amoebots actually crash). Note that A need not

satisfy the root-reliability assumption; since each root is not actually crashing when it

moves, the system maintains its access to external energy sources so long as it remains

connected.

Actions required by algorithm A are handled in the usage phase of Energy-

Sharing. If some amoebot A has an action to perform according to algorithm A,

then if A has sufficient stored energy and is not inhibited, it spends the energy and

performs the action; otherwise, it foregoes its action this activation. For example,

Figure 12 shows Energy-Sharing composed with the algorithm for basic shape
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(a) t = 0 seq. rounds (b) t = 200

(c) t = 500 (d) t = 1000

(e) t = 1500 (f) t = 2000

Figure 12. Simulation of Energy-Sharing Composed with Basic-Shape-Formation. In
particular, hexagon formation on 91 amoebots is composed with Energy-Sharing
with one root, κ = 10, α = 1, and action demand δ(·, ·) = 5. The communication
structure is maintained by Forest-Prune-Repair. Amoebot color and parent
directions are visualized with respect to Energy-Sharing, as in Section 4.4. The
energy root (shown in black) moves according to the shape formation algorithm and
need not be centered.
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formation [52, 60] forming a hexagon. Theorem 4.3.8 ensures that all n amoebots

will meet their energy needs and at least one amoebot will be able to perform an

enabled action every O(n) sequential rounds. By Theorem 4.5.4, any disruption to

the communication structure caused by actions involving movements will be repaired

in O(m2) sequential rounds, where m is the number of amoebots severed from the

communication structure. Thus, Energy-Sharing will not impede the progress of A

but — according to our proven bounds — may add significant overhead to its runtime.

However, we observe reasonable performance in practice: for example, since hexagon

formation terminates in O(n) rounds, our proven bounds suggest that the composed

algorithm could terminate in time O(n2) or worse but Figure 13a demonstrates an

overhead that appears asymptotically sublinear. With the addition of more energy

roots, the composed algorithm is dramatically faster, approaching the runtime achieved

without energy constraints (see Figure 13b).

4.5.4 Using Energy For Reproduction

Our goal in this work was to meet the energy demands of fixed-sized amoebot

systems as they execute algorithm actions. One could also consider using energy for

system growth via reproduction, mimicking the bacterial biofilms that inspired our

algorithm. Supposing an amoebot A has sufficient energy and is adjacent to some

unoccupied position u, a reproduction action would split A into two (analogous to

cellular mitosis), yielding a new amoebot A′ occupying u. In preliminary simulations

(see Figure 14), we obtain behavior that is qualitatively similar to the biofilm growth

patterns observed by Liu and Prindle et al. [133, 163]; in particular, the use of

communication and inhibition leads to an oscillatory growth rate. However, our

109



(a) (b)

Figure 13. Runtime Experiments for Algorithm Composition. Runtime experiment
results for the composition of Energy-Sharing with the basic shape formation
algorithm. Each experiment was repeated 20 times; average runtime is shown as a solid
line and standard deviation is shown as an error tube. (a) Runtimes of the basic shape
formation algorithm alone (blue) vs. when it is composed with Energy-Sharing
(yellow) as a function of system size. Asymptotic runtime bounds are shown as dotted
lines; the composed algorithm tracks most closely with O(n log2 n). (b) Runtimes of
the composed algorithm for a system of 200 amoebots as a function of the number
of energy roots in the system. With more energy roots, the composed algorithm
approaches the runtime of basic shape formation with no energy constraints.

oscillations have an amplitude and period that increases with time while the biofilms’

have relatively constant amplitude and period. This is due to the fact that the supply

of energy remains constant in our simulated system while it scales with the periphery of

the biofilms. Further work is needed to formally characterize our algorithm’s behavior

for these growing, dynamic systems.
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(a) t = 5, 100, 550, and 1025 seq. rounds

(b)

Figure 14. Simulation of Energy-Sharing with Reproduction. (a) The system is
initialized as a single root amoebot and uses the same parameters as the previous
simulations. After 1025 sequential rounds, the system has grown to 507 amoebots.
(b) The growth rate, shown here as the number of reproduction actions per round
averaged over a 10-round sliding window, has an oscillating pattern: each recharging
period is followed by a rapid burst of growth.
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Chapter 5

LEADER ELECTION

Leader election is a fundamental and well studied problem in distributed computing

in which exactly one member of the system must irreversibly declare itself the leader

(e.g., by setting a dedicated bit in memory). The ability of a leader to break symmetry

and coordinate the system via broadcasts makes it a powerful tool for distributed

algorithms, and the domain of programmable matter is no exception. For population

protocols, Angluin et al. showed that any semilinear predicate — i.e., any stable

global property of the system — can be efficiently computed by a population with a

constant number of states per agent when a leader is given, though it is unknown if this

problem can be solved efficiently without a leader [9]. Only recently was a time- and

space-optimal leader election protocol discovered [22]. In the tile assembly and nubot

models for molecular self-assembly, leader-like seed structures are used ubiquitously

for shape formation [39, 40, 41, 173, 194]. Finally, many amoebot algorithms assume

or elect a leader, including those for shape formation [58, 62, 65, 66, 95], object coating

(Chapter 6, [55, 61]), and convex hull formation (Chapter 7, [53]).

The Improved-Leader-Election algorithm presented in this chapter is histor-

ically the second leader election algorithm for the (geometric, sequential) amoebot

model [54], subsuming the original Leader-Election algorithm [60]. Both algo-

rithms utilize randomization and the geometry of the triangular lattice to break

symmetry, electing a leader for any connected amoebot system in which the amoebots

have common chirality. Leader-Election is (i) described at a high level, lacking

local rules for each amoebot’s execution, (ii) analyzed using a simplified treatment
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of time, and (iii) shown to achieve its linear runtime bound only in expectation.

Improved-Leader-Election, on the other hand, is a fully local and distributed

algorithm that elects a leader in O(L) sequential rounds w.h.p., where L is the length

of the outer boundary of the system. This w.h.p. guarantee applies to both the

algorithm’s correctness and its runtime.

Algorithm Det. Weak
Sched.

Allows
Holes

Removes
Chirality Static Leaders

Elected Runtime

Leader-Election [60] No No Yes No Yes 1 O(L∗) exp.
Improved-Leader-
Election No No Yes No Yes 1, whp. O(L) whp.

Di Luna et al. [65, 66] Yes Yes No Yes Yes k ≤ 3 O(n2)
Gastineau et al. [92] Yes No No No Yes 1 O(n)
Bazzi and Briones [21] Yes Yes Yes No Yes k ≤ 6 O(n2)
Emek et al. [78] Yes No Yes Yes No 1 O(Ln2)

Table 6. Comparison of Amoebot Algorithms for Leader Election. Updated from the
tables in [21, 78]. Algorithms are organized chronologically by first appearance. When
k ∈ Z+ appears in the number of leaders elected, it refers to the amoebot system
being k-symmetric. For the runtime bounds, L∗ denotes the length of the longest
system boundary, L denotes the length of the system’s outer boundary, and n denotes
the number of amoebots in the system.

This result spurred a flurry of recent research in the distributed computing com-

munity to obtain a leader election algorithm that removed reliance on randomization

for symmetry breaking and other strong assumptions. Table 6 summarizes the known

leader election algorithms, their assumptions, and their outcomes. These assumptions

and outcomes are detailed as follows:

• Deterministic vs. Randomized. Randomization is a classical technique for symme-

try breaking, but incurs a failure probability (with respect to correctness, runtime,

or both) that is not present in deterministic algorithms. The Leader-Election

algorithm by Derakhshandeh et al. [60] and the present Improved-Leader-

Election algorithm are randomized while the rest are deterministic.
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• Amoebot Actions. Recall from Section 2.2.4 that amoebots are activated sequen-

tially and, when activated, can read information from their own memories and

the memories of their neighbors, perform local computation, write updates to

their memories or the memories of their neighbors, and perform at most one

movement. The algorithms of Di Luna et al. [65, 66] and Bazzi and Briones [21]

are proven to elect a leader even when amoebots’ read/compute, write, and move

operations are split across multiple (not necessarily consecutive) activations; i.e.,

they assume a weak scheduler.

• Connectivity and Holes. Recall from Section 2.3 that an amoebot system is

connected if the subgraph of G∆ induced by the occupied nodes is also connected.

A hole in an amoebot system is a maximal, finite connected component of the

subgraph of G∆ induced by the unoccupied nodes. The algorithms of Di Luna et

al. [65, 66] and Gastineau et al. [92] can only solve leader election for systems that

do not contain holes while the rest work for any connected system. Note that

solving leader election under for systems that remain disconnected throughout

an algorithm’s execution is impossible since the constraint of local sensing and

communication prohibits disconnected components from interacting.

• Chirality. As described in Section 2.4, the chirality assumption states that

all amoebots have a common sense of clockwise direction. For leader election,

chirality provides useful geometric information. However, the algorithms of Di

Luna et al. [65, 66] and Emek et al. [78] successfully elect leaders without the

chirality assumption.

• Movement. Emek et al. use amoebots’ movement capabilities as a novel way to

break symmetry [78]. All other algorithms are static and only use communication

to elect their leaders.
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• Number of Leaders Elected. Due to spatial symmetry in the amoebot system’s

configuration, some of the deterministic algorithms may elect a constant number

of leaders instead of a unique one. In particular, if the amoebot system is

k-symmetric, then the algorithm of Di Luna et al. [65, 66] elects k ∈ {1, 2, 3}

leaders and the algorithm of Bazzi and Briones [21] elects k ∈ {1, 2, 3, 6} leaders.

All other algorithms elect a unique leader.

• Runtime. All bounds are given in (fair, sequential) rounds. Recall from Sec-

tion 2.2.4 that a round ends when each amoebot has been activated at least

once. Note that under a weak scheduler, this only guarantees that an amoebot

has completed one of reading, writing, or moving per round.

The remainder of this chapter is organized as follows. We give the formal statement

of the leader election problem and the assumptions in use in Section 5.1. We then

present the Improved-Leader-Election algorithm in Section 5.2 and its correctness

and runtime analysis in Section 5.3. Finally, Section 5.4 details several algorithm

extensions, including an adaptation that improves the correctness guarantee from

w.h.p. to with probability 1.

5.1 The Leader Election Problem

An algorithm solves the leader election problem if for any connected amoebot

system of initially contracted amoebots, eventually a single amoebot irreversibly

declares itself the leader (e.g., by setting a dedicated bit in its memory) and no other

amoebot ever declares itself to be the leader. The algorithm presented in this chapter

assumes geometric space, common chirality, constant-size memory, and the simplified

sequential setting (Section 2.2.4). The running time of a leader election algorithm is
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defined as the number of (fair, sequential) rounds until a leader is declared. Note that

an algorithm is not required to terminate for amoebots other than the leader. Variants

of the leader election problem are discussed in Section 5.4, including allowing initial

configurations with expanded amoebots and requiring termination for all amoebots.

5.2 The Improved-Leader-Election Algorithm

We now present the Improved-Leader-Election algorithm, beginning with an

overview of its six phases. These phases are not synchronized; i.e., at any point in

time, different amoebots may be executing different phases. Furthermore, an amoebot

can be involved in the execution of multiple phases simultaneously. The first phase

is boundary setup. In this phase, each amoebot locally checks whether it is part of a

boundary of the amoebot system. Only boundary amoebots participate in the leader

election. Amoebots occupying a common boundary organize themselves into a directed

cycle. The remaining phases operate on each boundary independently.

In the segment setup phase, the boundaries are divided into segments. Each

amoebot flips a fair coin: those that flip heads become candidates and compete

for leadership whereas those that flip tails become non-candidates that assist the

candidates in their competition. A segment consists of a candidate and all subsequent

non-candidates along the boundary up to (but not including) the next candidate. The

identifier setup phase assigns a random identifier to each candidate that is stored

distributively among the amoebots in the candidate’s segment.

In the identifier comparison phase, the candidates compete for leadership by

comparing their identifiers using token passing. Whenever a candidate sees an

identifier greater than its own, it revokes its candidacy. Whenever a candidate sees its
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own identifier, the solitude verification phase is triggered. In this phase, the candidate

checks whether it is the last remaining candidate on the boundary. If so, it initiates

the boundary identification phase to check if it occupies the unique outer boundary of

the system. In that case, it becomes the leader; otherwise, it revokes its candidacy.

5.2.1 Boundary Setup

The boundary setup phase organizes the amoebot system into a set of boundaries,

as in Figure 15a. Let VA be the set of nodes in G∆ that are occupied by amoebots, and

consider the graph G∆|V \VA induced by the unoccupied nodes in G∆. An empty region

is a maximal connected component of G∆|V \VA . Let N(R) be the neighborhood of an

empty region R in G∆; that is, N(R) = {u ∈ V \ R : ∃v ∈ R such that (u, v) ∈ E}.

Note that by definition, all nodes in N(R) are occupied by amoebots. We refer to N(R)

as the boundary of the amoebot system corresponding to R. Since VA corresponds

to nodes occupied by a finite set of amoebots, exactly one empty region has infinite

size while any others have finite size. The boundary corresponding to the infinite

empty region is the unique outer boundary, and any boundary corresponding to a

finite empty region is an inner boundary.

Next, the amoebots of each boundary organize into a directed cycle. Upon

its first activation, each amoebot determines its place in these cycles using only

local information as follows. If amoebot A has no neighbors, then since the system

is connected by assumption, A must be the only amoebot in the system. So A

immediately declares itself the leader and terminates. If A is surrounded (i.e., it has

six neighbors), then A is not part of any boundary and simply terminates.

Otherwise, if neither of these special cases apply, then amoebot A must be adjacent
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(a) (b)

Figure 15. Boundaries and Agents. (a) Boundaries of an amoebot system. The solid
line represents the unique outer boundary and the dashed lines represent the inner
boundaries. (b) Agents (black dots) of amoebots (gray circles) organized into directed
cycles along the boundaries of (a).

to at least one occupied and one unoccupied node. Consider each maximal, consecutive

sequence of unoccupied nodes in the neighborhood of A. There can be at most three

such empty sequences (see Figure 16) for A corresponding to up to three distinct

boundaries. However, an amoebot cannot locally decide whether or not two empty

sequences correspond to distinct boundaries. Thus, for each empty sequence S in its

neighborhood, amoebot A acts as a distinct agent aS that independently executes the

remaining phases of Improved-Leader-Election, ensuring that the algorithm’s

executions on distinct boundaries are isolated.4 Agent aS chooses the amoebot

occupying the node immediately clockwise (resp., counterclockwise) from S to be

its successor (resp., predecessor). This organizes the set of all agents into disjoint,

directed cycles spanning the boundaries of the system (see Figure 15b).

As a consequence of this approach, an amoebot can appear on the same boundary

4When activated, amoebot A simply executes Improved-Leader-Election for each of its
agents in turn. Note that because the algorithm only requires constant memory per agent and
there are at most three agents per amoebot, the entire algorithm respects the amoebot model’s
constant-size memory constraint.
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Figure 16. Amoebot Neighborhoods and their Boundaries. All possible results (up
to rotation) of the boundary setup phase depending on the amoebot’s neighborhood.
For each boundary, the depicted arrow starts at the corresponding agent’s predecessor
and ends at its successor.

up to three times as different agents. While this can be ignored for most of the

remaining phases, it will require special consideration during solitude verification.

5.2.2 Segment Setup

This and all subsequent phases operate exclusively on the system’s boundaries

and does so on each boundary independently. So it suffices to consider a single

boundary for the rest of the algorithm description. The segment setup phase divides

the boundary into disjoint “segments” as follows. Each agent flips a fair coin: those

that flip heads become candidates and those that flip tails become non-candidates. In
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the following phases, candidates compete for leadership while non-candidates assist in

this competition. A segment is a maximal sequence of agents (a1, . . . , ak) such that

a1 is a candidate, ai is a non-candidate for all 1 < i ≤ k, and ai is the successor of

ai−1 for all 1 < i ≤ k. Note that the maximality of each segment implies that the

successor of ak is a candidate. We refer to the segment starting at a candidate c as

the segment of c, denoted c.seg, and to the number of agents in this segment as its

length, denoted |c.seg|. In the following phases, each candidate uses its segment as

distributed memory.

5.2.3 Identifier Setup

After the segments have been set up, each candidate generates a random identifier

for use in the competition of the next phase by assigning a random digit to each agent

in its segment. Note that the term identifier is slightly misleading since two distinct

candidates can have the same identifier.

Each candidate c generates its random identifier, denoted c.id, by passing a

token along its segment in the direction of the boundary (recall token passing from

Section 2.4). When an agent receives the token, it chooses a value uniformly at random

from {0, . . . , r − 1} as its digit in the identifier, where r is a constant that is fixed in

the analysis. The resulting identifier c.id is a number with radix r consisting of |c.seg|

digits where c holds the most significant digit and the last agent of c.seg holds the

least significant digit.

After generating its identifier c.id, each candidate c creates a copy of c.id that is

stored in reverse digit order in its segment. This copy is used in the next phase to

compare against the identifiers of other candidates. The token that generated c.id
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is reused in creating the reversed copy as follows. The last agent of c.seg writes its

digit in the token and then passes it towards c (the beginning of c.seg), where c stores

a copy of that digit. Candidate c then (over)writes its digit in the token and passes

it back to the end of the segment, which stores a copy of that digit. This process is

repeated by the second-to-last and second agents and so on until c.id is completely

copied.5 Finally, the token is passed to c to demarcate the end of this phase.

5.2.4 Identifier Comparison

During the identifier comparison phase, candidates use their identifiers to compete

with each other. When comparing identifiers of different lengths, longer identifiers

are defined to be greater than shorter ones; otherwise, the identifiers are compared

directly. A candidate with the greatest identifier eventually progresses to the solitude

verification phase, while any candidate with a lesser identifier withdraws its candidacy.

To achieve the comparison, the non-reversed copies of the identifiers remain stored

in their respective segments while the reversed copies move backwards along the

boundary as a sequence of tokens. More specifically, a digit token is created for each

digit of a reversed identifier. A digit token created by the last agent of a segment is

marked as a delimiter token. We define the token sequence of a candidate c as the

sequence of digit tokens created by the agents in c.seg. Once created, digit tokens are

passed against the direction of the boundary. Each agent is allowed to hold at most

two tokens at a time and can forward at most one token per activation. Tokens are

not allowed to overtake each other. Furthermore, an agent can only receive a token

5We deliberately opt for simplicity over speed in this method for creating a reversed copy of the
identifier. As we will show in Section 5.3, the runtime of this phase will be dominated by that of
identifier comparison, so this simpler approach does not affect the algorithm’s asymptotic runtime.
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after it creates its own digit token. This ensures that token sequences of distinct

candidates remain separated and the tokens within a token sequence maintain their

relative order along the boundary.

We now describe the comparison between the identifier of a candidate c and the

token sequence of a candidate c′. Figure 17 serves as a running example, but note that

c and c′ need not be consecutive as depicted. Initially, all agents are active and tokens

are inactive (Figure 17a). Whenever a candidate passes a token into a new segment,

that token becomes active (Figure 17b). When an active agent receives an active

token, they match: the agent stores the result of their digit comparison (<, >, or =)

and both the agent and token become inactive (Figure 17c). Since the token sequence

of c′ stores the digits of c′.id in reverse order, the agent storing the least significant

digit of c.id matches with the token storing the least significant digit of c′.id, the agent

storing the second-to-least significant digit of c.id matches with the token storing the

second-to-least significant digit of c′.id, and so on. Inactive tokens are simply passed

on until reaching the next candidate that reactivates it when passing it into the next

segment, as already described (Figure 17d).

The delimiter token of the token sequence of c′ eventually enters c.seg (Figure 17d).

As the delimiter token is passed through c.seg towards c, it sees the results of the

previous matched digit comparisons from the least to most significant and updates

its record of the overall comparison accordingly (Figure 17e–f). When candidate c

eventually receives this delimiter token, the comparison can be decided as follows.

If c already matched with a non-delimiter token of c′, then |c.seg| < |c′.seg| and c

withdraws its candidacy. If the delimiter token already matched with a non-candidate

agent in c.seg, then |c.seg| > |c′.seg| and c remains a candidate. Finally, if c matches

with the delimiter token (as in Figure 17g), then we have |c.seg| = |c′.seg|.

122



0

0

0

0

0

0

0

c c'
1 1 1 1 10

0
0(a)

1110

c.seg

c c'
(b)

(c)

1 1 1 1 10
0

0

1110

1 1 1 1 10
0

0
c c'

1110

c c'
1 1 1 1 10

0
0

111

(d)

<

<>=

c c'
1 1 1 1 10

0
0

<

>=

11

1 1 1 1 10
0

0

1 1 1 1 10
0

0

=

>
1

c c'

c c'

1
>

>

(e)

(f)

(g)

c'.seg

0

1

  

Figure 17. Identifier Comparison. Candidate c with identifier c.id = 0101 is being
compared to the token sequence of candidate c′ with c′.id = 1110. Inactive elements
are shaded while active elements are not. The digit tokens are depicted as squares,
while the star depicts the special delimiter token.

In this last case where c and c′ have segments of equal length, the record of the

overall comparison stored in the delimiter token is used to decide the comparison. If

c.id < c′.id, c withdraws its candidacy. If c.id > c′.id, c remains a candidate. Finally,

if c.id = c′.id, c may have just compared against its own identifier and thus initiates
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the solitude verification phase to determine if it is the only remaining candidate on

the boundary. This concludes the comparison of c.id and c′.id.

It remains to describe how agents and tokens are reset to prepare for the next

comparison. As already mentioned, when candidate c passes the tokens of c′ into the

next segment, it reactivates them — even if c has withdrawn its candidacy. Candidate

c also deletes the comparison result from the delimiter token when it passes it into

the next segment. Finally, whenever an agent passes a delimiter token, it reactivates

and resets its comparison result (Figure 17e–g).

5.2.5 Solitude Verification

The goal of solitude verification is for a candidate to check whether it is the last

remaining candidate on its boundary. Solitude verification is triggered during the

identifier comparison phase whenever a candidate detects equality between its own

identifier and the identifier of a token sequence that traversed its segment. Such a

token sequence can either be the a candidate’s own or that of another candidate with

the same identifier. Once the solitude verification phase is started, it runs in parallel

to the identifier comparison phase and does not interfere with it.

A necessary (but insufficient) condition for candidate c to be the only remaining

candidate on its boundary is if the next candidate along the boundary, say c′, occupies

the same node as c. The following algorithm checks this condition. Let the extended

segment of c refer to the span of agents from c up to but not including c′; note that

this not only includes c.seg but also any segments of subsequent candidates that

have already withdrawn their candidacy. Treat the directed edges of the boundary

cycles as vectors in the two-dimensional Euclidean plane. The next candidate along
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Figure 18. Solitude Verification. The vector interpretation of the system’s outer
boundary from the perspective of candidate c is shown on the left. The logical
positions of the positive and negative tokens after they have settled are shown on the
right, for the situation where the only remaining candidate(s) is/are (a) c, (b) c and
c′, and (c) c and c′′.

the boundary occupies the same node as c if and only if the sum of the vectors

corresponding to the boundary edges in the extended segment of c is 0. To decide

if this is the case in a local manner, c defines a local two-dimensional coordinate

system (e.g., as in Figure 18) and uses the following token passing scheme to generate

and sum the x- and y-components in parallel. We only describe this scheme for the

x-components since the scheme for the y-components is analogous.

First, candidate c creates an activation token and passes it in the direction of the

cycle towards the next candidate. Whenever the activation token is passed to the

right (resp., left) with respect to the locally defined x-axis, it creates a positive token

(resp., negative token) that is passed back towards c. Positive and negative tokens

move independently of each other, but cannot overtake tokens of the same type. Each

agent can hold at most two tokens of each type.

Once these tokens reach c or cannot move any closer to c, they become settled. This
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is detected locally as follows. Each positive (or negative) token stores a bit specifying

whether or not it is settled; this bit is initially false. When a token is passed to c or

to an agent whose predecessor already holds two settled tokens of that type, this bit

is set to true. Once all positive tokens are settled, they form a consecutive sequence

whose length in tokens equals the magnitude of the +x-component in the summed

vector; an analogous statement holds for the negative tokens (Figure 18a–c).

When the activation token reaches the next candidate, it reverses its movement

back towards c, staying behind any unsettled positive or negative tokens. Once they

have settled, deciding whether the vectors sum to 0 can be done in a local manner:

the vectors corresponding to the extended segment of c sum to 0 if and only if the

length of the positive and negative token sequences are equal; i.e., if the last settled

tokens in these sequences are held by the same agent and that agent holds the same

number of positive and negative tokens. For example, this is the case in Figure 18a–b

but not in Figure 18c. Thus, the activation token simply observes whether or not this

is the case and then continues towards c to report the result, deleting all positive and

negative tokens on the way. When c receives the activation tokens for both the x- and

y-components, it can decide whether the vectors sum to zero and thus whether the

next candidate along the boundary occupies the same node.

However, as hinted before, this is not sufficient to decide whether c is the last

remaining candidate on the boundary. As described in the boundary setup phase,

an amoebot may appear on the same boundary up to three times as different agents.

Thus, there may be distinct agents on the same boundary that occupy the same

node (as with c and c′ in Figure 18b) causing the vectors to sum to 0 despite there

being multiple agents remaining. To handle this case, each amoebot assigns a locally

unique identifier from {1, 2, 3} to each of its agents in an arbitrary way. When the
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activation token reaches the next candidate, it reads its agent identifier and carries

this information back to c. It is easy to see that c is the last remaining candidate on

its boundary if and only if the corresponding vectors sum to 0 and the agent identifier

stored in the activation token equals the agent identifier of c.

Finally, we address the interaction between the solitude verification and identifier

comparison phases. If solitude verification is triggered for a candidate c while c is

still performing a previously triggered execution of solitude verification, it ignores

this trigger and simply continues with the ongoing execution. Candidate c may

also be eliminated by the identifier comparison phase while it is performing solitude

verification. In this case, c waits for the ongoing solitude verification to finish before

withdrawing its candidacy.

5.2.6 Boundary Identification

Once a candidate c determines that it is the only remaining candidate on its

boundary, it initiates the boundary identification phase to check if it lies on the

unique outer boundary. If so, the amoebot acting as c declares itself the leader;

otherwise, c revokes its candidacy. This phase uses the fact that, due to the way

agents’ predecessors and successors are defined during boundary setup, the outer

boundary is oriented clockwise while any inner boundary is oriented counterclockwise

(see Figure 15b).

To distinguish between clockwise and counterclockwise oriented boundaries, a

candidate c passes a token along its boundary that sums the angles of the turns it takes

according to Figure 19, storing the results in a counter α. When the token returns to

c, there are two cases: α = 360◦ for the unique outer boundary, and α = −360◦ for
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Figure 19. Boundary Identification. The external angle α is determined by summing
the depicted turn angles. The incoming and outgoing arrows represent the directions
the token enters and leaves an agent, respectively, up to rotation.

any inner boundary. To respect the constant-size memory constraint, we encode α as

k ∈ Z such that α = k · 60◦. It is sufficient to store k modulo 5 so that k = 1 for the

outer boundary and k = 4 for an inner boundary, requiring only three bits of memory.

5.3 Analysis

We now first analyze the correctness of Improved-Leader-Election. Recall

from Section 5.1 that an algorithm solves the leader election problem if exactly one

amoebot irreversibly declares itself the leader. The boundary identification phase

ensures that no agent on an inner boundary can ever declare itself the leader, so it

suffices to focus on agents on the outer boundary. By the identifier comparison and

solitude verification phases, a candidate on the outer boundary will only declare itself

the leader if its identifier is strictly greater than the identifier of every other candidate

on the outer boundary. The following sequence of lemmas establishes that there exists

such a candidate with high probability. We begin with a lower bound on the length of

the outer boundary.

Lemma 5.3.1. Let n be the number of amoebots in the system and L be the length of

the outer boundary, i.e., the number of agents in the cycle spanning the outer boundary.

Then L ≥
√
n.
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Proof. Define a coordinate system by choosing an arbitrary node of G∆ as the origin

and orienting the +x-axis to the right and the +y-axis to the up-right. Label

the nodes VA ⊂ V occupied by amoebots with their (x, y) coordinates, and let

xmin = min{x : (x, y) ∈ VA} and xmax = max{x : (x, y) ∈ VA}. Define ymin and

ymax analogously. The bounding box of the amoebot system is the minimum area

parallelogram containing all nodes of VA, which is given by the parallelogram with

corners (xmin, ymin), (xmin, ymax), (xmax, ymin), and (xmax, ymax). Since this bounding

box contains all n amoebots, its area must satisfy (xmax − xmin)(ymax − ymin) ≥ n,

implying that at least one of its sides must be of length at least
√
n. W.l.o.g., suppose

xmax − xmin ≥
√
n. Then for each x-coordinate in {xmin, . . . , xmax} there exists an

amoebot with a maximal y-coordinate; note that this amoebot must be on the outer

boundary. Therefore, we conclude that the length of the outer boundary is at least as

long as xmax − xmin ≥
√
n.

The segment setup phase partitions the outer boundary into segments. We give a

probabilistic lower bound on the length of the longest segment.

Lemma 5.3.2. For sufficiently large n, the segment setup phase produces a segment

on the outer boundary of length at least (log2 n)/4, w.h.p.

Proof. Let a1 be any agent on the outer boundary and label the remaining agents as

(a1, a2, . . . , aL) such that ai is the successor of ai−1 for all 1 < i ≤ L. Partition a into

subsequences of length ` = (log2 n)/4, resulting in k = bL/`c ≥ b
√
n/`c subsequences

by Lemma 5.3.1. Since the algorithm terminates in the boundary setup phase if n = 1,

we can assume n ≥ 2, implying that ` > 0 and k is well-defined.

Let a(i) = (a(i−1)`+1, . . . , ai`) be the i-th subsequence of a, for 1 ≤ i ≤ k. Let Ei

be the event that all agents in a(i) flip tails during the segment setup phase. Then
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Pr [Ei] = (1/2)` = n−1/4. Since the events Ei are independent, we have:

Pr

[
k⋂
i=1

Ei

]
=
(
1− n−1/4

)k ≤ (1− n−1/4
)b4√n/ log2 nc

Since bxc > x/4 for any x > 1 and 4
√
n/ log2 n > 1 for any n ≥ 2, we have

b4
√
n/ log2 nc >

√
n/ log2 n. So:

Pr

[
k⋂
i=1

Ei

]
<
(
1− n−1/4

)√n/ log2 n

Rewriting
√
n as n1/4 ·n1/4 in the exponent and applying the well-known inequality

(1− 1/x)x ≤ 1/e yields:

Pr

[
k⋂
i=1

Ei

]
<

((
1− n−1/4

)n1/4
)n1/4/ log2 n

≤ e−n
1/4/ log2 n

Thus for sufficiently large n, there exists a subsequence of ` = (log2 n)/4 agents

that all flip tails and become non-candidates in the segment setup phase w.h.p.

It remains to show that there is at least one agent on the outer boundary that

flips heads and becomes a candidate. By Lemma 5.3.1, this holds with probability

1− (1/2)L ≤ 1− (1/2)
√
n. Therefore, we conclude that for sufficiently large n, there

exists a segment on the outer boundary of length at least (log2 n)/4, w.h.p.

We can now analyze the probability of there being a unique candidate on the outer

boundary with the greatest identifier.

Lemma 5.3.3. For sufficiently large n, there exists a candidate c∗ on the outer

boundary such that c∗.id > c.id for all candidates c 6= c∗ on the outer boundary, w.h.p.

Proof. Let C be the set of all candidates on the outer boundary, M ⊆ C be the

candidates with maximal segment length, and c∗ be some candidate with the greatest

identifier. Since longer identifiers are defined to be greater than shorter identifiers,
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we must have c∗ ∈ M and c∗.id > c.id for all c ∈ C \M . It remains to show that

c∗.id > c.id for all c ∈M \ {c∗}. This is the case if the identifier of c∗ is unique.

By definition, the identifiers of the candidates in M all consist of the same number

of digits, which by Lemma 5.3.2 must be at least (log2 n)/4, w.h.p. Each digit is chosen

independently and uniformly at random from {0, . . . , r−1}, where r is a fixed constant

of our choice. Thus, the probability that c∗.id = c.id for any candidate c ∈M \ {c∗} is

at most r−(log2 n)/4. Applying the union bound shows that the probability there exists

such a candidate is at most (|M | − 1) · r−(log2 n)/4 < n1−(log2 r)/4. So we conclude that

c∗ is the unique candidate with the greatest identifier, w.h.p., as claimed.

We can now prove the correctness of the algorithm.

Theorem 5.3.4. The Improved-Leader-Election algorithm solves the leader

election problem, w.h.p.

Proof. We must show that eventually a single amoebot irreversibly declares itself

to be the leader and no other amoebot ever does so. We need only consider agents

on the outer boundary since the boundary identification phase prohibits agents on

inner boundaries from causing their amoebots to declare themselves as leaders. Once

every amoebot has finished the boundary setup phase, every agent has finished the

segment setup phase, and every candidate has finished the identifier setup phase,

Lemma 5.3.3 shows that there is a unique candidate c∗ on the outer boundary

with the greatest identifier, w.h.p. Thus, c∗ will not withdraw its candidacy during

the identifier comparison phase. In contrast, every other candidate c 6= c∗ on the

outer boundary eventually withdraws its candidacy because the token sequence of

c∗ eventually traverses c.seg. Such agents cannot cause their amoebots to become

leaders. So c∗ will eventually trigger solitude verification when it is the last remaining
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candidate on the outer boundary because the token sequence of c∗ eventually traverses

c∗.seg while c∗ is not already performing solitude verification. After verifying that it

is the last remaining candidate, c∗ executes the boundary identification phase and

determines that it lies on the outer boundary. It then instructs its amoebot to declare

itself the leader of the amoebot system.

Next, we analyze the runtime of Improved-Leader-Election. Recall from

Section 5.1 that the running time of a leader election algorithm is defined as the

number of (sequential) rounds until a leader is declared. As with the correctness

proofs, it suffices to analyze the outer boundary.

Each amoebot can complete the boundary setup and segment setup phases on

its first activation since they only involve computation based on local neighborhood

information. Since each amoebot is activated at least once per round, every amoebot

completes these first two phases after a single round. Candidate agents then initiate

the identifier setup phase.

Lemma 5.3.5. A segment of length ` completes the identifier setup phase in O(`2)

sequential rounds.

Proof. Recall that in the identifier setup phase, a segment’s candidate creates a token

that is passed (i) through the segment to assign digits to each agent, (ii) back and

forth through the segment to create a reversed copy of the identifier, and (iii) back to

the candidate to signal the end of the phase. The amoebot whose agent is holding

this token is guaranteed to be activated at least once per round, so this token must

be passed at least once per round since there are no other tokens blocking it. Thus,

we can upper bound the runtime of this phase by the length of the token’s trajectory.
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For a segment of length `, the token is passed at most O(`2) times, so we conclude

that the identifier setup phase completes in at most O(`2) rounds.

To bound the number of rounds required for all segments on the outer boundary

to complete the identifier setup phase, we bound the maximal length of a segment.

Lemma 5.3.6. The length of any segment on the outer boundary is O(log n), w.h.p.

Proof. For any constant k ∈ R+, the probability that an agent becomes a candidate

with a segment of length at least k log2 n is at most (1/2)k log2 n = n−k. Since there are

n amoebots in the system and each amoebot corresponds to at most 3 agents, there

are at most 3n agents on the outer boundary. Applying the union bound shows that

the probability of there being a segment of length at least k log2 n is at most 3n1−k,

which proves the lemma.

Combining Lemmas 5.3.5 and 5.3.6 yields the following corollary.

Corollary 5.3.7. All candidates on the outer boundary complete the identifier setup

phase after O(log2 n) rounds, w.h.p.

In the identifier comparison phase, each segment generates a token sequence of

digit tokens that are passed against the direction of the boundary for comparison with

other segments’ identifiers. Each agent holds at most two tokens that it forwards in

first-in, first-out order whenever the next agent (in this case, its predecessor) can hold

an additional token. Agents forward at most one token per activation.

We want to bound the time required for all digit tokens to progress some length

along the outer boundary. However, since digit tokens can block one another’s progress,

this analysis is not as simple as it was for the identifier setup phase (Lemma 5.3.5). In

the following lemma, we make use of a dominance argument (Remark 1) comparing
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the sequential execution of the identifier comparison phase with a parallel execution

in which all tokens move in lock step.

Lemma 5.3.8. Let T be the first round at the start of which every agent on the outer

boundary has created its digit token. Then at the beginning of round T + i, for all

i ∈ N, each digit token on the outer boundary has been passed at least i times.

Proof. Consider a parallel execution in which the digit tokens are passed in lock step,

beginning from the configuration at which each digit token is held by the agent that

created it. In one parallel round, each digit token is forwarded once; thus, every agent

stores exactly one token per round in the parallel execution. For a digit token t, let

pi(t) denote the number of times token t has been passed in the parallel execution by

the beginning of parallel round i. Analogously, let si(t) be the number of times t has

been passed in the sequential execution by the beginning of sequential round T + i.

We argue by induction on i ∈ N that si(t) ≥ pi(t) for all digit tokens t. If i = 0,

then all digit tokens t are held by the agents that created them in both executions, so

si(t) = pi(t). So suppose i > 0 and consider any digit token t. If si(t) > pi(t), then:

si+1(t) ≥ si(t) ≥ pi(t) + 1 = pi+1(t),

and thus we have si+1(t) ≥ pi+1(t) as desired.

Suppose instead that si(t) = pi(t). For the sequential execution to make at least as

much progress in sequential round T + i as the parallel execution does in parallel round

i, t must be passed at least once. The only reason this would not happen is if t is

blocked by another digit token in the sequential execution. So consider the digit token

t′ that was created by the agent just ahead of the one that created t. Since all digit

tokens move in lock step in the parallel execution, we have pi(t) = pi(t
′). Combining
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this fact with the induction hypothesis and the assumption that si(t) = pi(t) yields:

si(t
′) ≥ pi(t

′) = pi(t) = si(t)

Thus, t′ has been passed at least as many times as t has by the start of sequential

round T +i and must be at least one agent ahead. By an analogous argument, the digit

token t′′ following t′ must be at least two agents ahead of t in the sequential execution.

Since the digit tokens preserve their order, there are no other agents between t, t′, and

t′′. So at the start of sequential round T + i, we have: (i) t is the next token to be

passed by its agent and (ii) the agent that t should be passed to is only holding one

token, namely t′. Therefore, since every amoebot (and thus every agent) is activated

at least once per sequential round, t will be passed in sequential round T + i.

We also analyze the runtime of the solitude verification phase using a dominance

argument. Recall that the extended segment of a candidate c is the span of agents

from c up to but not including the next non-withdrawn candidate in the direction of

the boundary; this includes c.seg and the segments of any subsequent candidates that

withdrew their candidacy in the identifier comparison phase.

Lemma 5.3.9. An extended segment of length ` completes the solitude verification

phase in O(`) rounds.

Proof. W.l.o.g., consider the execution of the solitude verification phase for the x-

components; the execution for the y-components occurs in parallel. The activation

token is first passed through the extended segment creating positive and negative

tokens. Since the activation token is never blocked, this traversal completes in at

most ` rounds. The activation token is then passed back towards the candidate, but

remains behind any unsettled positive and negative tokens. Once all positive and

negative tokens have settled, the activation token can be passed unhindered back
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to the candidate, which again takes at most ` rounds. So it remains to bound the

number of rounds until all positive and negative tokens have settled.

We once again employ a dominance argument. W.l.o.g., we analyze the time for

all positive tokens to settle; the same bound also holds for the negative tokens, which

are passed independently. Consider a parallel execution in which the positive tokens

are passed in lock step, beginning from the configuration at which each positive token

is held by the agent that created it. Let a1, . . . , a` be the agents of this extended

segment, where a1 is the candidate. For a positive token t, let pi(t) denote the index of

the agent holding t at the beginning of parallel round i. Analogously, let si(t) denote

the index of the agent holding t at the beginning of sequential round T ′ + i, where T ′

is the first sequential round at the start of which all positive tokens have been created.

We argue by induction on i ∈ N that si(t) ≤ pi(t) for all positive tokens t. If i = 0,

all positive tokens t are held by the agents that created them in both executions, so

si(t) = pi(t). So suppose i > 0 and consider any positive token t. If si(t) < pi(t), then:

si+1(t) ≤ si(t) ≤ pi(t)− 1 ≤ pi+1(t),

and thus we have si+1(t) ≤ pi+1(t) as desired.

Suppose instead that si(t) = pi(t). We need two observations: first, the order

of the positive tokens is maintained; second, whenever an agent holds two positive

tokens in the parallel execution, both tokens have reached their final position. If t

is the closest positive token to the candidate, it will be passed unhindered in both

executions, and the inequality holds. Otherwise, let t′ be the next token from t in the

direction of the candidate. Then we have one of three cases:

Case 1. If pi(t′) = pi(t), then by our second observation both t and t′ are at their
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final position. Thus, t is never passed again in either execution since si(t) = pi(t):

si+1(t) = si(t) = pi(t) = pi+1(t)

Case 2. If pi(t′) ≤ pi(t)− 2, then by our first observation the agent t will be passed

to in parallel round i is not holding a token. By the induction hypothesis we have

si(t
′) ≤ pi(t

′) and by our assumption we have si(t) = pi(t), so this is also true of the

sequential execution. Thus, t is passed at least once in the sequential execution:

si+1(t) ≤ si(t)− 1 = pi(t)− 1 = pi+1(t)

Case 3. If pi(t′) = pi(t)− 1, then we distinguish between two subcases. If agent

pi(t
′) holds two tokens, then t′ has reached its final position and thus so has t. By the

same argument as for Case 1, si+1(t) = pi+1(t). So suppose agent pi(t′) only holds t′

in the parallel execution. If there is no token t′′ following t′, then we know that agent

si(t) holds at most one token in the sequential execution. Otherwise, t′′ is at least two

agents ahead of t in the parallel execution and thus, by the induction hypothesis, also

in the sequential execution. So in any case, agent si(t) + 1 holds at most one token in

the sequential execution and t will be passed at least once:

si+1(t) ≤ si(t)− 1 = pi(t)− 1 = pi+1(t)

So in all cases, we have si(t) ≤ pi(t) for all positive tokens t. Thus, since all

positive tokens reach their final position in O(`) parallel rounds, they do so within

O(`) sequential rounds as well. Within an additional O(`) sequential rounds, all

positive tokens have set their settled bits to true. Therefore, in total, the solitude

verification phase completes in O(`) sequential rounds.
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The boundary identification phase is only executed once a candidate determines

that it is the last remaining candidate on its boundary. The following lemma upper

bound the running time of this phase; recall that L is the length of the outer boundary.

Lemma 5.3.10. The last remaining candidate on the outer boundary completes the

boundary identification phase in O(L) rounds.

Proof. The token summing the outer boundary’s angles traverses the entire outer

boundary. Since there are no other tokens blocking this one and the amoebot whose

agent is holding this token must be activated at least once per round, this traversal

completes in O(L) rounds.

We conclude with the following runtime bound.

Theorem 5.3.11. The Improved-Leader-Election algorithm solves the leader

election problem in O(L) rounds, w.h.p.

Proof. All amoebots complete the boundary setup and segment setup phases by the

end of the first round. By Corollary 5.3.7, all candidates on the outer boundary

complete the identifier setup phase in an additional O(log2 n) rounds, w.h.p. By

Lemma 5.3.3, there exists a unique candidate c∗ on the outer boundary with the

greatest identifier, w.h.p. We show that c∗ declares itself as the leader after an

additional O(L) rounds.

At the end of one additional round, all candidates have created their digit tokens for

identifier comparison. By Lemma 5.3.8, all digit tokens — and particularly the token

sequence of c∗ — have completely traversed the outer boundary after an additional

L rounds. Thus, all candidates c 6= c∗ on the outer boundary have either already

withdrawn their candidacy by this time or intend to do so after completing their ongoing

executions of the solitude verification phase since c.id < c∗.id. Since the maximum
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length of an extended segment on the outer boundary is L, any ongoing executions

of solitude verification will complete and all candidates waiting to withdraw their

candidacy will do so after O(L) additional rounds by Lemma 5.3.9. If candidate c∗ was

also executing solitude verification, it will also complete — potentially unsuccessfully,

if other candidates had not yet withdrawn their candidacy — within these O(L)

rounds. In the worst case, Lemmas 5.3.8 and 5.3.9 show that in another O(L) rounds,

the token sequence of c∗ will once again traverse c∗.seg and trigger an execution

of solitude verification that will establish c∗ as the last remaining candidate on its

boundary. Candidate c∗ then executes the boundary identification phase, requiring

a final O(L) rounds by Lemma 5.3.10. So after a total of O(log2 n) +O(L) = O(L)

rounds, c∗ determines that it is the only remaining candidate on the outer boundary

and instructs its amoebot to declare itself the leader.

Theorem 5.3.11 establishes the runtime of Improved-Leader-Election in terms

of the number of agents on the outer boundary. Depending on the application, it

might be desirable to specify this runtime in terms of numbers of amoebots. We have

the following two corollaries.

Corollary 5.3.12. The Improved-Leader-Election algorithm solves the leader

election problem in O(nL) rounds, w.h.p., where nL is the number of amoebots on the

outer boundary.

Proof. Each amoebot on the outer boundary corresponds to at most three agents on the

outer boundary, so O(nL) = O(L) and the corollary follows from Theorem 5.3.11.

Corollary 5.3.13. The Improved-Leader-Election algorithm solves the leader

election problem in O(n) rounds, w.h.p.

Proof. Clearly we have nL ≤ n, so the corollary follows from Corollary 5.3.12.
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We note that the O(n) bound given by Corollary 5.3.13 is quite pessimistic since nL

can be much smaller than n. For example, a solid hexagon or other similarly compact

amoebot configurations have nL = O(
√
n) amoebots on their outer boundaries.

5.4 Extensions

The Improved-Leader-Election algorithm can be extended to achieve three

desirable properties: (i) correctness when the system contains both contracted and

expanded amoebots instead of just contracted ones, (ii) termination for all amoebots

in the system instead of just for the leader, and (iii) correctness with probability 1

instead of just with high probability. These three extensions can be combined into a

single algorithm that satisfies all of the above properties.

5.4.1 Expanded Amoebots

It is straightforward to extend Improved-Leader-Election to handle amoebot

systems containing expanded amoebots. An expanded amoebot A simply simulates

two distinct contracted amoebots, one for each node it occupies. Whenever A is

activated, it simulates the activations of the corresponding contracted amoebots one

after another in an arbitrary order, effectively reducing the problem of leader election

with expanded amoebots to leader election without expanded amoebots.

Since every amoebot is activated at least once per round, every simulated amoebot

is also activated at least once per round. Furthermore, the runtime analysis presented

in Section 5.3 holds for arbitrary activation orders. So the analysis holds despite

expanded amoebots always activating their two simulated amoebots consecutively.
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Therefore, the statements of Theorem 5.3.11 and Corollaries 5.3.12 and 5.3.13 also

hold for amoebot systems containing expanded amoebots.

5.4.2 Termination for All Amoebots

In the definition of the leader election problem given in Section 5.1, the leader

is the only amoebot for which an algorithm must terminate. Accordingly, amoebots

may enter infinite loops while executing Improved-Leader-Election in certain

situations. For example, consider an amoebot system with an empty region R of size

1. With constant probability, all six agents on the inner boundary corresponding to R

become candidates and create the same one-digit identifier. The identifier comparison

phase will never eliminate any of these six candidates, yielding an infinite loop.

Depending on the application, it might be desirable to have a leader election

algorithm that is guaranteed to terminate for all amoebots in the system. This can be

achieved with the following extension. After the leader has been elected, it broadcasts

a termination signal through the system. An amoebot receiving this message forwards

it to each of its neighbors that have not already received it by writing it into their

memories and then terminates. Let VA ⊂ V be the set of occupied nodes in G∆ and

let G∆|VA be the subgraph of G∆ induced by VA. The runtime of this termination

broadcast is linear in the diameter D of G∆|VA , so after O(L+D) rounds, a leader

has been elected w.h.p. and the execution of Improved-Leader-Election has

terminated for all amoebots in the system. We summarize this result in the following

corollary.

Corollary 5.4.1. There is a leader election algorithm that terminates for all amoebots

in O(L+D) rounds, w.h.p.
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Note that L and D are, in general, independent of each other. Nevertheless, L and

D are both clearly upper bounded by n, implying the following corollary.

Corollary 5.4.2. There is a leader election algorithm that terminates for all amoebots

in O(n) rounds, w.h.p.

5.4.3 Almost Sure Leader Election

The Improved-Leader-Election algorithm elects a leader with high probability,

as shown in Theorem 5.3.4. In particular, there is a small but nonzero probability that

the algorithm fails to elect a leader, either because every agent on the outer boundary

flips tails and becomes a non-candidate in the segment setup phase or because multiple

candidates on the outer boundary generate the same greatest identifier in the identifier

setup phase. In this final extension of Improved-Leader-Election, we describe

how a leader can be elected almost surely (i.e., with probability 1) while maintaining

a runtime bound of O(L) rounds, w.h.p.

The main idea of this extension is to run a second leader election algorithm called

Almost-Sure-Leader-Election in parallel to Improved-Leader-Election.

This algorithm begins by setting up the boundaries as in the boundary setup phase.

Each agent is initially a candidate, and the candidates alternate between the following

two phases. In the first phase, a candidate flips a coin and sends the result along its

boundary to both its preceding and its succeeding candidate. A candidate withdraws

its candidacy if it flips tails while both its predecessor and successor flip heads. Note

that this competition locally synchronizes competing candidates. The second phase of

the algorithm corresponds to the solitude verification phase.

Once a candidate determines that it is the last remaining candidate on its boundary,
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it executes the boundary identification phase. If the candidate lies on an inner

boundary, it withdraws its candidacy. Otherwise, it sends a stop token along the outer

boundary that stops the execution of Improved-Leader-Election and, at the

same time, checks whether Improved-Leader-Election has already established a

leader. If so, the candidate withdraws its candidacy; otherwise, it declares itself the

leader. We have the following theorem.

Theorem 5.4.3. The Almost-Sure-Leader-Election algorithm elects a leader in

O(L) rounds, w.h.p., and eventually solves the leader election problem almost surely.

Proof. As in previous analyses, it suffices to consider the execution of Almost-Sure-

Leader-Election on the outer boundary. While there are still multiple candidates

on the outer boundary, the first phase reduces the number of candidates with a

probability that is lower bounded by a constant. When the last remaining candidate

competes with itself, it cannot receive coin flip results different than what it flipped, so

it does not withdraw its candidacy. Thus, eventually only a single candidate remains

on the outer boundary almost surely.

This candidate eventually determines that it is the last remaining candidate on

the outer boundary via the solitude verification and boundary identification phases. It

then interacts with Improved-Leader-Election by sending a stop token along the

outer boundary, producing one of three results: (i) Improved-Leader-Election

establishes a leader and this candidate withdraws its candidacy, (ii) Improved-

Leader-Election establishes a unique candidate on the outer boundary with the

greatest identifier but the stop token reaches its amoebot before it declares leadership,

so only Almost-Sure-Leader-Election declares a leader, or (iii) Improved-

Leader-Election fails to establish a unique candidate on the outer boundary with
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the greatest identifier so Almost-Sure-Leader-Election eventually declares a

leader.

By Theorem 5.3.4 either the first or second case holds with high probability. In

the first case, Improved-Leader-Election establishes a leader in O(L) rounds by

Theorem 5.3.11. In the second case, Almost-Sure-Leader-Election stops the

execution of Improved-Leader-Election before it can establish a leader. Since

Improved-Leader-Election establishes a leader in O(L) rounds, the stop token

must have been created in O(L) rounds. By an argument analogous to those of

Lemmas 5.3.5 and 5.3.10, the stop token requires at most L rounds to traverse the

boundary and, therefore, Almost-Sure-Leader-Election establishes a leader in

O(L) rounds. Finally, in the third case Almost-Sure-Leader-Election almost

surely establishes a leader eventually.
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Chapter 6

OBJECT COATING

Inspection of bridges, tunnels, wind turbines, and other large civil infrastructure

for defects is a time-consuming, costly, and potentially dangerous task. In the future,

smart coating technology could do the job more efficiently and without putting people

in danger. The idea behind smart coating is to form a thin layer of tiny sensors on an

object that can measure the condition of the surface — e.g., its temperature, stress

and strain, etc. — and then report these metrics to a remote, centralized monitor

for human review. Such technology promises a broad range of future applications

including automated monitoring and repair of critical infrastructure, isolation and

containment of harmful substance leaks, and stopping internal bleeding.

This chapter focuses on object coating under the amoebot assuming geometric

space, common chirality, constant-size memory, and the simplified sequential setting

(Section 2.2.4). Defined formally in Section 6.1, the object coating problem tasks an

amoebot system with reconfiguring into even layers such that all amoebots are as

close as possible to the given object. In 2017, Derakhshandeh et al. introduced the

Universal-Coating algorithm for object coating but only proved its correctness [61].

In this chapter, we present this algorithm’s runtime analysis and matching lower

bounds [55]. This analysis depends in part on an update to the algorithm’s leader

election protocol based on Improved-Leader-Election (Chapter 5, [54]), so we

first detail the Universal-Coating algorithm in Section 6.2 for completeness. In

Section 6.3, we prove that Universal-Coating solves the object coating problem in

O(n) sequential rounds w.h.p. (Theorem 6.3.13), where n is the number of amoebots
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in the system. We then prove two lower bounds in Section 6.4: local-control algorithms

for object coating not only have at least a worst-case linear runtime (Theorem 6.4.1),

but also are at least a linear factor slower than an optimal global algorithm in the

worst-case (Theorem 6.4.2). These lower bounds imply that the Universal-Coating

algorithm is worst-case asymptotically optimal both among local-control algorithms

and in a competitive sense against algorithms with global information (Corollary 6.4.3).

We conclude with simulation results in Section 6.5 that validate the Universal-

Coating algorithm’s linear runtime bound and demonstrate that its competitive

ratio may be better than linear in practice.

6.1 The Object Coating Problem

Recall that an object is a finite, connected, static set of nodes O ⊂ V (Section 2.4).

For object coating, we further assume objects are simply connected, meaning the

subgraphs induced by both O and V \ O are connected (i.e., object O contains no

holes). Let the distance between nodes u, v ∈ V , denoted d(u, v), be the number of

edges in the shortest (u, v)-path in G∆. Similarly, for v ∈ V and U ⊂ V , we define

d(v, U) = minu∈U d(u, v). The i-th layer of object O is defined as Li = {v ∈ V :

d(v,O) = i}, i.e., the nodes with distance i to object O. Object O contains a tunnel

of width i if the subgraph induced by V \O is i-connected but not (i+ 1)-connected.

An instance of the object coating problem has the form (S, O) where S is a finite

amoebot system and O ⊂ V is the object to be coated. An instance is valid if (i) all

amoebots in S are initially contracted and “idle”, (ii) object O is simply connected

and does not contain tunnels of width less than 2(dn/|L1|e+1), and (iii) the subgraph

induced by O∪VS is connected, where VS ⊂ V are the nodes occupied by amoebots in
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S. The coating of objects with narrow tunnels requires added technical mechanisms

that complicate the coating protocol without contributing to its basic concepts, so

we exclude such objects for simplicity. A local, distributed algorithm A solves a

valid instance of the object coating problem if, when each amoebot of S executes

A individually to termination, all amoebots of S are contracted and the nodes VS

occupied by amoebots satisfy:

min
v∈V \(O∪VS)

d(v,O) ≥ max
v∈VS

d(v,O)

This means that in an optimally even coating of O, the closest unoccupied node to O

is at least as far from O as the furthest occupied node from O.

6.2 The Universal-Coating Algorithm

In this section, we summarize the Universal-Coating algorithm of Derakhshan-

deh et al. for object coating under the amoebot model [61]. This algorithm assumes

amoebots share a common chirality (i.e., sense of clockwise direction). Table 7 lists the

local variables used by this algorithm and Algorithm 9 gives its complete distributed

pseudocode. We emphasize that while this algorithm is not an original contribution

of this dissertation, a sufficiently detailed summary is necessary to frame the runtime

analysis contributed by this research. This dissertation also addresses several small

inconsistencies and bugs in the presentation of the algorithm given in [55, 61].

We begin with an overview of the Universal-Coating algorithm’s four phases

which are integrated seamlessly without any underlying synchronization. The amoebot

system is first organized as a spanning forest rooted at amoebots on the object’s

boundary (i.e., its first layer) in the setup phase. In the complaint coating phase,

amoebots not yet on the boundary “complain” using the spanning forest structure to
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Variable Notation Domain Initialization

State state idle, follower, root,
retired, marker

idle

Complaints Stored complaint Z2 0
Checks Stored check Z2 0
Layer Index layer {−1} ∪ Z4 −1
Parent Direction parent {−1} ∪ Z6 −1
Movement Direction dir {−1} ∪ Z6 −1
Marker Direction marked {−1} ∪ Z6 −1

Table 7. Local Variables for Universal-Coating.

advance their ancestors along the boundary while there is still room. This eventually

either brings the entire amoebot system into the first layer (at which point the

algorithm can terminate) or completely coats the first layer. The amoebots in the

first layer participate in the node election phase to elect a marker node in the first

layer. This marker node enables the amoebots in the first layer to determine when it

has been completely coated. This triggers the general layering phase which ensures

layer i of the object is only formed after layer i− 1 is complete, for i ≥ 2.

6.2.1 Preliminaries and Setup

In the Universal-Coating algorithm, an amoebot A can be in one of five states

denoted A.state ∈ {idle, follower,root,retired,marker}. The setup phase

organizes the amoebot system into a spanning forest F using the well-established

spanning forest primitive [52]. Due to amoebots’ interactions with the object, we

differentiate between more cases here than we did in the exposition of the spanning

forest primitive in Chapter 4. Recall that all amoebots are initially idle. On activation,

an idle amoebot A adjacent to the object becomes a root with A.state ← root.

Otherwise, if A has a root or follower neighbor B, A becomes a follower with A.state←
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Algorithm 9 Universal-Coating for Amoebot A
1: if A.state = idle then
2: if A is adjacent to the object O then
3: A.state← root and A.layer← 1.
4: A makes its node a candidate and starts node-based Improved-Leader-Election.
5: else if A has a neighbor B with B.state ∈ {marker,retired} then
6: A.state← root.
7: else if A has a neighbor B with B.state ∈ {root, follower} then
8: A.state← follower, A.parent← direction of B, and A.complaint← 1.
9: else if A.state = follower then

10: if A is contracted then
11: if A is adjacent to O or has a neighbor B with B.state ∈ {marker,retired} then
12: A.state← root.
13: else ForwardComplaint(A.parent). . See Algorithm 10.
14: else if A is expanded then
15: if A has a contracted child B then A pulls B in a handover.
16: else if A has no children nor neighbors B with B.state = idle then A contracts.
17: else if A.state = root then
18: if A is adjacent to O then A participates in node-based Improved-Leader-Election.
19: if A is contracted then
20: A.layer← GetLayer( ) and A.dir← GetDir( ). . See Algorithm 10.
21: if A has a neighbor B in direction A.dir with B.state ∈ {marker,retired} then
22: A.state← retired.
23: else if A is adjacent to O then
24: if A occupies the elected marker node then
25: if A.check ≥ 1 then A.state← marker.
26: else if A has a contracted neighbor B in direction A.dir then B.check← 1.
27: else
28: if the node in direction A.dir is unoccupied and A.complaint ≥ 1 then
29: A expands toward A.dir and A.complaint← A.complaint− 1.
30: else
31: ForwardComplaint(A.dir). . See Algorithm 10.
32: ForwardCheck(i), where i is the counter-clockwise direction.
33: else
34: if A has a neighbor B with B.marked pointing at A then A.state← marker.
35: else if the node in direction A.dir is unoccupied then A expands to A.dir.
36: else if A is expanded then
37: A.check← 0.
38: if A has a contracted child B with B.state = follower then
39: A pulls B in a handover.
40: else if A has any contracted child B then A pulls B in a handover.
41: else if A has no children nor neighbors B with B.state = idle then A contracts.
42: else if A.state = marker then
43: if A has a neighbor B in direction A.dir with B.state = retired then
44: if A.layer is even then A.marked← one direction clockwise from A.dir.
45: else A.marked← one direction counter-clockwise from A.dir.
46: A.state← retired.
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Algorithm 10 Universal-Coating for Amoebot A: Helper Functions
1: function GetLayer( )
2: Let N be the neighbors of A with state marker or retired.
3: if A is adjacent to the object O then return 1.
4: else return (minB∈N{B.layer}+ 1) mod 4.
5: function GetDir( )
6: Let N be the nodes adjacent to A occupied by O or by neighbors B with B.state = retired

and A.layer = (B.layer + 1) mod 4.
7: Let i ∈ Z6 be any direction pointing from A to a node in N .
8: while i points to a node in N do
9: if A.layer is even then i← the next clockwise direction from i.

10: else i← the next counter-clockwise direction from i.
11: return i.
12: function ForwardComplaint(i)
13: Let amoebot B be the neighbor in direction i from A.
14: if A.complaint ≥ 1 and B.complaint < 2 then
15: A.complaint← A.complaint− 1 and B.complaint← B.complaint + 1.
16: function ForwardCheck(i)
17: if there is not a neighbor B in direction i from A or B is expanded then A.check← 0.
18: else if A.check ≥ 1 and B.check < 2 then
19: A.check← A.check− 1 and B.check← B.check + 1.

follower and updates its parent pointer to A.parent ← B. A new follower also

generates a complaint token to be used in the complaint coating phase. This repeats

until all amoebots are either roots or followers, forming a spanning forest F of trees

rooted at amoebots adjacent to the object.

Each root amoebot A maintains a variable A.dir ∈ Z6 indicating the direction

it wants to move in. We refer to the unique root amoebot A in each tree with no

neighboring amoebot in direction A.dir as the tree’s super-root. The complaint coating

and general layering phases will specify how the root and super-root amoebots choose

their directions and move to lead their trees in coating the object. Regardless of

phase, followers use the spanning forest primitive to follow their respective parents

while maintaining tree connectivity. Consider any follower A. If A is contracted and

adjacent to the object or a marker or retired amoebot, it becomes a root. Otherwise,

if A is expanded, we distinguish between two cases: if A has a contracted child B,
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(a) (b) (c)

(d) (e) (f)

Figure 20. The Complaint Coating Phase. Root amoebots (black dots with gray circles)
are coating the object (black polygon) by following the super-root (root with black
arrow). Complaint tokens (flags) are forwarded to the super-root to enable movement
and allow more followers to join the first layer. For simplicity, this illustration only
shows amoebots holding one complaint token at a time though the algorithm specifies
a capacity of two.

then A initiates a pull handover with B; otherwise, if A has no children and no idle

neighbors, then A contracts.

6.2.2 Complaint Coating

In the complaint coating phase, roots advance clockwise around the first layer

(i.e., the object’s boundary) so long as there is room to do so and there are follower

amoebots in their tree that are not yet on the boundary. This is achieved by each

(super-)root A directing A.dir towards the next clockwise node along the first layer,

which can be tracked locally.

Recall that whenever an amoebot transitions from idle to follower, it generates a

complaint token. Thus, the total number of complaint tokens held by amoebots equals
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the total number of followers not yet in the first layer (Figure 20a). These complaint

tokens are forwarded from contracted children to their parents towards each tree’s

super-root such that each amoebot holds at most two complaint tokens at a time

(Figure 20b). Whenever a super-root A is contracted and holds at least one complaint

token, it expands towards A.dir (i.e., into the next position clockwise along the first

layer) and consumes one complaint token (Figure 20c). Regardless of complaint

tokens, an expanded (super-)root performs a pull handover with a contracted child if

it has one — preferring follower children to root children — or simply contracts if it

has no children or idle neighbors (Figure 20d). Followers move as described above

(Figure 20e–f).

The complaint coating phase terminates in one of two ways. If there are less

amoebots in the system than there are positions in the first layer (i.e., n < |L1|), then

since super-roots can only expand into new positions when they have a complaint

token to consume, eventually all complaint tokens are consumed, all amoebots are

contracted and occupy nodes in L1, and no amoebot ever moves again (see [61] for

details). This solves the object coating problem. Otherwise, if n ≥ |L1|, the first layer

is eventually filled with contracted amoebots. This is detected in the next phase.

6.2.3 Node Election

Root amoebots on the object’s boundary participate in the node election phase to

elect a marker node. This marker node is used to detect the the complete coating

of the first layer by contracted amoebots and to mark the beginning and end of

each successive layer. This phase uses the Improved-Leader-Election algorithm

(Chapter 5, [54]) to elect a marker node with the key difference that the participating
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entities are the nodes of the first layer instead of static amoebots. However, since

nodes are simply positions in space and cannot actually compete for leadership, the

root amoebots occupying the first layer emulate this logical competition as they move.

As a consequence of this approach, a marker node cannot be elected until the first

layer is completely filled with (possibly expanded) amoebots.

Once the marker node has been elected, any contracted amoebot that comes to

occupy it generates a check-contracted token that is used to determine when the first

layer is completely filled with contracted amoebots. Check-contracted tokens are

forwarded along the first layer in a counter-clockwise direction to contracted amoebots

only. If a check-contracted token ever reaches an expanded amoebot, it is consumed.

Thus, once a check-contracted token returns to the marker node, it is guaranteed

that the first layer is filled with contracted amoebots. The contracted amoebot A

occupying the marker node becomes the marker amoebot with A.state ← marker

and sets a pointer A.marked ∈ Z6 to a node of the next layer to indicate the starting

node of layer 2. When a contracted root amoebot A sees a marker or retired amoebot

in direction A.dir, it also becomes retired with A.state← retired. This causes the

amoebots in the first layer to retire in counter-clockwise order.

6.2.4 General Layering

The general layering phase handles the coating of higher layers (see Figure 21).

Each amoebot A tracks its current layer index with variable A.layer ∈ Z4 which is

stored modulo 4 to respect the constant-size memory constraint. If A is adjacent to

the object, then A.layer = 1; otherwise, A sets A.layer ← (B.layer + 1) mod 4 for

whichever of its neighbors B has the smallest layer index.
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Figure 21. The General Layering Phase. The marker amoebots (black dots with
black hexagons) delineate the start and end of each layer. The second layer is not
yet complete, so its marker amoebot has not yet set a pointer to the marker node
of layer 3 (dotted hexagon). Retired amoebots (black dots with black circles) form
the coating. A root (black dot with gray circle) (a) traverses layer 3 clockwise, (b)
encounters an unoccupied position in layer 2, (c) enters layer 2 and changes direction,
and (d) sees a retired amoebot in its traversal direction and retires.

Root amoebots A traverse the structure of retired amoebots clockwise (if their

layer index is odd) and counter-clockwise (if their layer index is even) by updating

and following their A.dir directions. If a root changes layers during its traversal (i.e.,

by entering layer i from layer i+ 1), it correspondingly updates its layer index and

changes its traversal direction. This traversal completes in one of two ways. If a

contracted root A has a marker or retired amoebot in direction A.dir, A can also

retire. Otherwise, if a contracted amoebot A comes to occupy the node marked by

the marker amoebot of the previous layer A.layer− 1, it becomes the marker amoebot

of layer A.layer. However, it does not set A.marked for the next layer until A.layer is

completely coated, which can be detected locally by ensuring A has retired neighbors

in A.layer in both the clockwise and counter-clockwise directions.

6.3 Runtime Analysis

The Universal-Coating algorithm was proven correct by Derakhshandeh et

al. in [61]. However, that formulation of the algorithm used the outdated and only
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partially analyzed Leader-Election algorithm [60] for its node election phase.

When using the Improved-Leader-Election algorithm for node election, this

algorithm inherits its w.h.p. guarantees on both its correctness and runtime. An

astute reader may observe that none of the subsequent algorithms for leader election

discussed in Chapter 5, Table 6 existed at the time when the Universal-Coating

algorithm was developed. Unfortunately, though they boast deterministic guarantees

on correctness and runtime, none of them are compatible with our present setting.

The Universal-Coating algorithm requires a competition between the static, cycle-

forming nodes of the first layer to produce exactly one elected marker node, but none

of the more recent algorithms simultaneously allow holes, remain static, and elect

exactly one leader.6 Thus, the Improved-Leader-Election algorithm remains

state of the art for our present setting.

In this section, we prove that the Universal-Coating algorithm solves the

object coating problem in O(n) sequential rounds, w.h.p., where n is the number of

amoebots in the system. We begin with a straightforward analysis of the formation of

the spanning forest.

Lemma 6.3.1. All idle amoebots in the system become active and join the spanning

forest within n sequential rounds.

Proof. Recall from Section 6.1 that the subgraph induced by the occupied nodes and

the nodes of the object is connected, so as long as there are still idle amoebots in the

system, at least one idle amoebot A must be adjacent to the object or have a root

or follower amoebot as a neighbor. When A is next activated, it will become a root

6The leader election algorithm by Bazzi and Briones [21] could be used in the restricted setting
where the object to be coated (and thus the nodes in its first layer) are asymmetric. However, even
with this restriction there is not a clear advantage for Universal-Coating: its correctness and
runtime guarantees become deterministic, but its runtime increases from O(n) to O(n2) rounds.
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or follower and join the spanning forest. This is guaranteed to happen within one

sequential round since every amoebot is activated at least once per round. Thus, at

least one idle amoebot joins the spanning forest per round, and there are initially n

idle amoebots.

We next establish two separate dominance arguments (Remark 1) regarding the

movement of trees in the spanning forest: one for their movement when regulated

by complaint tokens (as in the coating of the first layer), and another for their

unconstrained movement (as in the coating of higher layers). Together, these will

upper bound the runtime of a sequential execution by the runtime of a parallel

execution.

Let a configuration C of the amoebot system S encode the node(s) each amoebot

occupies, the complaint token(s) each amoebot holds, and each amoebot’s shape and

algorithm variables. Let F(C) denote the forest induced by the nodes occupied by

follower and root amoebots in configuration C. The forest F(C) has three types of

directed edges: those from the tail of an expanded amoebot to its head, those from the

head of a follower amoebot A to the tail of A.parent, and those from the head of a root

amoebot A to the tail of the amoebot occupying A.dir, if one exists. As a technical

detail we will use in the proofs, we assume a directed edge from a root amoebot A

to the amoebot occupying A.dir is not included until A is first contracted. Since

every node in F(C) has at most one outgoing edge, F(C) either forms a collection of

disjoint trees or a ring of trees.

A schedule is a sequence of configurations (C0, . . . , Ct). The following definition

captures the unconstrained movement of a spanning forest in a parallel execution, as

in the coating of the higher layers.

156



Definition 6.3.2. A parallel forest schedule (C0, . . . , Ct) is a schedule such that each

configuration Ci represents a connected amoebot system, F(C0) forms a forest of one

or more trees, and each amoebot A follows the unique path PA defined by F from its

initial position in C0 as follows. For every 1 ≤ i ≤ t, Ci is reached from Ci−1 using

the following for each amoebot A:

1. A expands into the next (adjacent) node in path PA if it is unoccupied in Ci−1.

2. A contracts, leaving a node it occupied in Ci−1 unoccupied in Ci.

3. A participates in a handover with a neighbor.

4. A occupies the same node(s) in Ci−1 and Ci.

Such a schedule is greedy if the above actions are taken in parallel whenever possible.

Greedy parallel forest schedules have a special property that ensures rapid progress.

In particular, we prove that if a greedy forest schedule begins in a “well-behaved” initial

configuration, then it remains well-behaved throughout its execution, guaranteeing

progress is made every two parallel configurations.

Lemma 6.3.3. Consider any greedy parallel forest schedule (C0, . . . , Ct). If every

expanded parent in C0 has at least one contracted child, then every expanded parent in

Ci also has at least one contracted child for all 1 ≤ i ≤ t.

Proof. Suppose to the contrary that Ci is the first configuration with an expanded

parent A that has all expanded children; note that by supposition i > 0. We consider

all possible expanded and contracted states of A and its children in Ci−1 and show

that none of them can result in A and its children all being expanded in Ci. First

suppose A is expanded in Ci−1. Then by supposition, A has at least one contracted

child. By Definition 6.3.2, the only move available to a contracted child of A is a

handover with A. This yields A contracted in Ci, a contradiction.
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Suppose instead that A is contracted in Ci−1. Since A is expanded in Ci by

supposition, by Definition 6.3.2 it must either expand into the next unoccupied node

of its path or perform a handover with its (expanded) parent. Regardless of which

occurs, A does not interact with any of its children. Consider any child B of A. If B

is contracted, then it cannot perform a movement and thus remains contracted in Ci.

Otherwise, if B is expanded, then it either contracts if it has no children or performs

a handover with one of its contracted children that it must have by supposition. So

all children of A are contracted in Ci, a contradiction.

As a final observation, two trees of the forest F(Ci−1) may merge if a super-root

A of one tree expands into an unoccupied node adjacent to an amoebot B in another

tree. But since A is a root, it only defines B as its parent after it becomes contracted,

so the lemma holds in this case as well.

Now consider any fair sequential activation sequence S; i.e., one in which every

amoebot is activated infinitely often. We compare a greedy parallel forest schedule to a

sequential forest schedule (CS
0 , . . . , C

S
t ) where CS

i is the amoebot system configuration

at the completion of the i-th sequential round in S. For an amoebot A in a configuration

C of any type of forest schedule, we define the head distance dh(A,C) of A to be the

number of edges in the path PA from the head of A to the end of PA. Its tail distance

dt(A,C) is defined analogously. Depending on whether A is contracted or expanded,

we have dh(A,C) ∈ {dt(A,C), dt(A,C) − 1}. For any two configurations C and C ′

of a forest schedule, we say C dominates C ′ — denoted C � C ′ — if and only if for

all amoebots A we have dh(A,C) ≤ dh(A,C
′) and dt(A,C) ≤ dt(A,C

′). We have the

following lemma.

Lemma 6.3.4. Given any fair sequential activation sequence S beginning at a con-

figuration CS
0 in which every expanded parent has at least one contracted child, there
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exists a greedy parallel forest schedule (C0, . . . , Ct) with C0 = CS
0 such that CS

i � Ci

for all 0 ≤ i ≤ t.

Proof. Let M(A) be the sequence of movements amoebot A executes according to S.

We iteratively construct a greedy parallel forest schedule (C0, . . . , Ct) that mimics the

sequential execution by greedily selecting moves from these movement sequences. As

such, let Mi(A) denote the subsequence of moves not yet selected from M(A) after

reaching Ci and let mi(A) denote the first movement in Mi(A).

We claim that a greedy parallel forest schedule (C0, . . . , Ct) can be constructed

from configuration C0 = CS
0 such that Ci is reached from Ci−1 by executing only the

movements of a greedily selected, mutually compatible subset of {mi(A) : A ∈ S}

for all 1 ≤ i ≤ t. Argue by induction on i, the current configuration number. The

initial configuration C0 is trivially obtained, so suppose i > 0 and (C0, . . . , Ci−1)

is a greedy parallel forest schedule constructed as above. W.l.o.g., let Mi−1 =

{mi−1(A1),mi−1(A2), . . . ,mi−1(Ak)} be the greedily selected, mutually compatible

subset of movements selected to reach Ci from Ci−1. Since all movements in Mi−1

are mutually compatible and have not yet been executed, a greedy parallel forest

schedule could certainly execute them; however, suppose to the contrary the schedule

is additionally capable of executing some movement m′(A) 6∈ Mi−1 from Ci−1. We

must have that m′(A) 6= mi−1(A); otherwise, we would have m′(A) = mi−1(A) 6∈Mi−1,

implying that m′(A) is incompatible with at least one movement in Mi−1 since Mi−1

is greedily selected. This leaves the following cases:

Case 1. Movement mi−1(A) is an expansion into an unoccupied node. Then A

must be contracted and have no parent in Ci−1. This implies that m′(A) = mi−1(A)

since there are no other movements A could execute, a contradiction.

Case 2. Movement mi−1(A) is a contraction. Then A must be expanded and have
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no children in Ci−1. This implies that m′(A) = mi−1(A) since there are no other

movements A could execute, a contradiction.

Case 3. Movement mi−1(A) is a handover with one of its children B. By the

induction hypothesis, all earlier movements in M(A) must have already been executed

in reaching Ci−1. Thus, B is a child of A in Ci−1 and must be contracted at the time

mi−1(A) is performed. If B is expanded in Ci−1, it must have become so before Ci−1

was reached. But this yields a contradiction: since the parallel forest schedule is greedy,

B should have already either contracted if it had no children or performed a handover

with a contracted child whose existence is guaranteed by Lemma 6.3.3. Thus, B is

also contracted in Ci−1 and we once again have m′(A) = mi−1(A), a contradiction.

This establishes that a greedy parallel forest schedule (C0, . . . , Ct) can be con-

structed by greedily mimicking the movements of the sequential execution. We

conclude by showing that each configuration Ci is dominated by its sequential counter-

part CS
i , the configuration at the completion of the i-th sequential round in S. Argue

by induction on i, the current configuration number. Since C0 = CS
0 , we trivially have

CS
0 � C0. So suppose i > 0 and for all rounds 0 ≤ r < i we have CS

r � Cr. Consider

any amoebot A. Since A executes the same movements in both the sequential and

parallel schedules and A decreases either its head distance or tail distance by 1 each

time it moves, it suffices to show that A has performed at least as many movements

in the parallel schedule up to Ci as it has according to S up to CS
i .

If A does not perform a movement in reaching Ci from Ci−1, then by the induction

hypothesis we have dh(A,Ci) = dh(A,Ci−1) ≥ dh(A,CS
i−1) ≥ dh(A,CS

i ). An analogous

argument holds for tail distances. Otherwise, A performs movement mi−1(A) in

reaching Ci from Ci−1. If A has already performed movement mi−1(A) before reaching

CS
i−1 in the sequential execution, then clearly dh(A,CS

i ) ≤ dh(A,Ci) and dt(A,CS
i ) ≤
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dt(A,Ci); in fact, at least one of these inequalities must be strict. Otherwise, mi−1(A)

must be the next movement for A to perform according to S and we have dh(A,CS
i−1) =

dh(A,Ci−1) and dt(A,C
S
i−1) = dt(A,Ci−1). Thus, since A will perform mi−1(A) in

parallel round i, we must show that A also performs mi−1(A) in sequential round i.

If mi−1(A) is an expansion, then A must be the super-root of its tree in both

Ci−1 and CS
i−1 and thus must be able to expand in both. Similarly, if mi−1(A) is a

contraction, then A must have no children in both Ci−1 and CS
i−1 and thus must be

able to contract in both. Finally, if mi−1(A) is a handover with a contracted child

B, then B must also be contracted in CS
i−1; otherwise, dt(B,CS

i−1) > dt(B,Ci−1),

contradicting the induction hypothesis. So the handover can be executed in both the

sequential and parallel schedules. Therefore, in any case the sequential schedule can

perform the same movement for A as the parallel schedule does, and since the choice

of A was arbitrary, we have CS
i � Ci.

We can show a similar result for the movement of spanning forests that are

regulated by complaint flags, as we have in the coating of the first layer. Note that in

the following definition for the parallel execution, we reduce each amoebot’s complaint

token capacity from two to one. This does not apply to the sequential execution and

is just a proof artifact that will be useful in Lemma 6.3.6.

Definition 6.3.5. A parallel complaint-based forest schedule (C0, . . . , Ct) is a parallel

forest schedule that, for every 1 ≤ i ≤ t, reaches Ci from Ci−1 using the following for

each amoebot A:

1. A does not hold a complaint token in Ci−1 and one of Property 2–4 of Defini-

tion 6.3.2 (a parellel forest schedule) holds.
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2. A holds a complaint token t in Ci−1 and expands into the next (adjacent) node

in path PA if it is unoccupied in Ci−1, consuming t.

3. A holds a complaint token in Ci−1 and passes it to the neighbor specified by

F(Ci−1) if it either is not holding a complaint token in Ci−1 or is also passing

its complaint token. If multiple complaint tokens are being passed to the same

neighbor (as is possible with multiple children passing their tokens to the same

parent), preference is given to followers’ tokens over roots’.

Such a schedule is greedy if the above actions are taken in parallel whenever possible.

To extend the dominance argument between parallel and sequential executions

for forest schedules to complaint-based forest schedules, define the complaint distance

dc(t, C) of any complaint token t held by an amoebot A in configuration C of a forest

schedule as the number of edges in the path PA from the head of A to the end of PA.

For any two configurations C and C ′ of a complaint-based forest schedule, we say C

dominates C ′ — denoted C � C ′ — if and only if C dominates C ′ with respect to

head and tail distances and dc(t, C) ≤ dc(t, C
′) for all complaint tokens t.

It is also possible to construct a greedy parallel complaint-based forest schedule

whose configurations are dominated by their sequential counterparts, as we did for

greedy parallel forest schedules in Lemma 6.3.4. Since many of the details are the

same, we only highlight the key differences. First, Definition 6.3.5 restricts amoebots

to holding at most one complaint token at a time while the sequential executions

allow a capacity of two. This enables the sequential executions to not “fall behind”

the parallel execution when passing complaint tokens. Similar to the “pipelining” of

energy described in Lemma 4.3.5 for Energy-Sharing, Definition 6.3.5 allows an

amoebot A in a parallel schedule to pass its complaint token to the next amoebot B

even if B also holds a complaint token, so long as B is also passing its token forward
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in this same parallel round. The sequential executions do not have this luxury of

synchronized actions, but the mechanism of buffering up to two complaint tokens at a

time allows them to mimic the pipelining in parallel schedules.

Another difference is that a contracted amoebot cannot expand into the next

unoccupied node in its path unless it holds a complaint token to consume. However, this

is true of both the sequential and parallel executions, so once again the greedy parallel

complaint-based forest schedule can be constructed directly from the movements

taken by the sequential execution. Moreover, since this restriction can only cause a

contracted amoebot to remain comtracted, the conditions of Lemma 6.3.3 are still

upheld. Thus, we obtain the following lemma:

Lemma 6.3.6. Given any fair sequential activation sequence S beginning at a con-

figuration CS
0 in which every expanded parent has at least one contracted child, there

exists a greedy parallel complaint-based forest schedule (C0, . . . , Ct) with C0 = CS
0 such

that CS
i � Ci for all 0 ≤ i ≤ t.

Together, the dominance argument results of Lemmas 6.3.4 and 6.3.6 imply that

for any sequential execution of the first and higher layer coating process, there exists

a greedy parallel execution that takes at least as many rounds. Formally, let S be any

fair sequential activation sequence and let S∗ = (C0, . . . , Cf ) denote the corresponding

dominated greedy parallel schedule, where C0 is the initial configuration of the amoebot

system and Cf is the final coating configuration. In the remainder of this section we

determine an upper bound for f which in turn, due to the dominance arguments, also

upper bounds the running time of the sequential execution with activation sequence S.

Since S was arbitrary, this upper bound serves as a runtime bound for any sequential

execution of Universal-Coating, as desired.
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To obtain an upper bound on f , the number of parallel rounds required by S∗ to coat

the first and higher layers, we bound the worst-case time required to coat layer i after

layers 1, . . . , i−1 have already been coated. We will not differentiate between complaint-

based and unconstrained forest schedules since analogous dominance arguments hold

for both settings. Though our dominance arguments hold for any (complaint-based)

forest schedule, our analysis focuses on a specific class that better supports our

layer-by-layer decomposition. A forest-path schedule ((C0, . . . , Ct),P) is a forest

schedule (C0, . . . , Ct) such that (i) all trees of the forest F(C0) are rooted at a path

P = v1, v2, . . . , v` ⊆ G∆ and (ii) all amoebots traverse the path P in the same

direction.

We now analyze the number of parallel rounds required by S∗ to coat the first layer.

For convenience, we assume that there are sufficient amoebots to coat the first layer

(i.e., n ≥ |L1|) though the proofs could be extended to the setting where n < |L1|.

We also assume that the root of a tree generates a complaint token upon its first

activation since this can only increase the number of complaint tokens generated. Let

S∗1 = ((C0, . . . , Ct1), L1) be the greedy parallel forest-path schedule where (C0, . . . , Ct1)

is a truncated version of S∗ (i.e., t1 ≤ f) and Ct1 is the first configuration of S∗ in

which all nodes of layer 1 are occupied by contracted amoebots.

Lemma 6.3.7. Consider any round i of the greedy parallel forest-path schedule S∗1

with 0 ≤ i ≤ t1 − 2. Then within the next two parallel rounds of S∗1 , (i) at least one

complaint token is consumed, (ii) at least one complaint flag is passed from an amoebot

outside layer 1 to an amoebot in layer 1, (iii) all remaining complaint flags move one

amoebot closer to a super-root, or (iv) layer 1 is completely filled, possibly with some

expanded amoebots.
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Proof. If layer 1 is completely filled, then (iv) is satisfied. Otherwise, there exists at

least one super-root in F(Ci). We consider several cases:

Case 1. There exists a super-root A in F(Ci) that holds a complaint token c.

Definition 6.3.5 delineates the following possibilities. If A is contracted, then it can

expand and consume c in parallel round i+ 1. Otherwise, if A is expanded but has no

children, then it can contract in parallel round i+1 and then expand and consume c in

parallel round i+ 2. Finally, if A is expanded but has children, then by Lemma 6.3.3

it must have a contracted child with which it can perform a handover with in parallel

round i+ 1. It can then expand and consume c in parallel round i+ 2. Thus, within

two parallel rounds (i) is satisfied.

Case 2. No super-root in F(Ci) holds a complaint token and there exists a follower

amoebot (outside layer 1) that holds a complaint token. Let A1, A2, . . . , Ak denote

any sequence of amoebots in layer 1 such that Aj is the parent of Aj+1 in F(Ci) for all

1 ≤ j < k, no ancestor of A1 in F(Ci) holds a complaint token, only Ak has a follower

child that holds a complaint token, and Aj holds a complaint token for all 1 ≤ j ≤ k.

By Definition 6.3.5, each amoebot in the sequence passes its complaint token to its

parent in parallel, allowing for the follower child of Ak holding a complaint token to

pass it to Ak. Thus, (ii) is satisfied.

Case 3. No super-root in F(Ci) holds a complaint token and all complaint tokens

are held by amoebots in layer 1. Since there are no followers outside layer 1 holding

complaint tokens that take preference over those already in layer 1, all complaint flags

are forwarded from child to parent in parallel, satisfying (iii).

The following lemma uses Lemma 6.3.7 to show that all nodes of layer 1 are
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occupied by (possibly expanded) amoebots within O(|Li|) parallel rounds. It then

argues that within another O(|Li|) rounds, all amoebots in layer 1 will be contracted.

Lemma 6.3.8. The greedy parallel forest-path schedule S∗1 completes in t1 = O(|L1|)

rounds; i.e., after O(|L1|) rounds, layer 1 must be filled with contracted amoebots.

Proof. Suppose to the contrary that after 8|L1| + 2 parallel rounds, there exist

unoccupied nodes in layer 1. Then condition (iv) of Lemma 6.3.7 was not satisfied by

any of these rounds, so one of conditions (i), (ii), or (iii) must have been satisfied every

two parallel rounds. Condition (i) can be satisfied at most |L1| times (accounting

for at most 2|L1| parallel rounds) since a super-root expands into an unoccupied

node of layer 1 each time a complaint token is consumed. Condition (iii) can also

be satisfied at most |L1| times (accounting for at most another 2|L1| parallel rounds)

since once all complaint flags enter layer 1, they must all reach a super-root after being

passed at most |L1| times. Thus, the remaining 8|L1|+ 2− (2|L1|+ 2|L1|) = 4|L1|+ 2

parallel rounds must satisfy condition (ii) at least 2|L1| + 1 times, implying that

2|L1|+ 1 complaint tokens have been passed from follower children to parents in layer

1. Each amoebot can hold at most one complaint token at a time, so at least |L1|+ 1

complaint tokens have been consumed by super-roots, implying that the super-roots

have collectively expanded into |L1|+ 1 unoccupied nodes of layer 1, a contradiction.

So in at most 8|L1| + 2 parallel rounds, all nodes of layer 1 are occupied by

amoebots, though some may be expanded. If an expanded amoebot in layer 1 does

not have a contracted follower child, then once per round it must be able to pull

its unique root child in a handover. This transfer of expansion occurs at most |L1|

times before reaching an amoebot A in layer 1 with a contracted follower child B.

Since root handovers give preference to follower children, A will pull B and B will
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then contract in the next two parallel rounds. Therefore, layer 1 will be filled with

contracted amoebots after at most 8|L1|+ 2 + |L1|+ 2 = O(|L1|) parallel rounds.

Once all nodes in layer 1 are occupied by amoebots, they compete to become the

marker node in the node election phase. Recall that this phase uses a node-based

variant of the Improved-Leader-Election algorithm (Chapter 5, [54]) for its

competition. Thus, by Theorem 5.3.11, we have the following bound.

Lemma 6.3.9. Once all nodes of layer 1 are occupied by amoebots, a marker node is

elected in layer 1 within O(|L1|) additional rounds, w.h.p.

Lemmas 6.3.8 and 6.3.9 show that layer 1 is both filled with contracted amoebots

and contains an elected marker node in O(|L1|) parallel rounds, w.h.p. The contracted

amoebot A occupying the marker node then generates a check-contracted token

that is guaranteed to return to A in an additional O(|L1|) parallel rounds since all

amoebots in layer 1 are contracted and the token is passed once per parallel round.

So A becomes the marker amoebot and in each subsequent parallel round, the next

(counter-clockwise) amoebot in layer 1 retires. Once all |L1| contracted amoebots in

layer 1 retire, the marker amoebot sets its pointer to indicate the starting node of

layer 2 and retires. Combined with Lemma 6.3.1, this yields:

Lemma 6.3.10. The worst-case number of parallel rounds for greedy parallel forest-

path schedule S∗1 to coat layer 1 is O(n), w.h.p.

Next, we turn to the higher layers. In particular, we bound the number of parallel

rounds required by S∗ to coat layer i once layer i−1 is coated, for i > 1. The following

lemma establishes a more general result that we use for this purpose.

167



Lemma 6.3.11. Consider any greedy forest-path schedule ((C0, . . . , Ct),P) with P =

v1, v2, . . . , v` and any k such that 1 ≤ k ≤ `. If every expanded parent in C0 has

at least one contracted child, then nodes v`−k+1, . . . , v` will be occupied by contracted

amoebots within 2(`+ k) parallel rounds.

Proof. Let A be the super-root closest to v` and suppose there are at least k root

or follower amoebots in C0 (otherwise, there are insufficient amoebots to occupy k

nodes of P). Argue by induction on k, the number of nodes in P starting from v`

that must be occupied by contracted amoebots. If k = 1, then by Lemma 6.3.3

every expanded parent has at least one contracted child in any configuration, so A is

always able to either expand into the next unoccupied node of P if it is contracted or

contract in a handover with one of its children if it is expanded. Thus, in at most

2` ≤ 2(`+ k) = 2`+ 2 parallel rounds, A has moved forward ` nodes, is contracted,

and occupies its final node v`−k+1 = v`.

Now suppose that k > 1 and that nodes v`−x+1, . . . , v` are all occupied by contracted

amoebots in at most 2(`+ x) parallel rounds for all 1 ≤ x < k. In particular, we have

that nodes v`−(k−1)+1 = v`−k+2, . . . , v` are all occupied by contracted amoebots in at

most 2(`+ k − 1) = 2(`+ k)− 2 parallel rounds and want to show that v`−k+1 is also

occupied by a contracted amoebot within two additional parallel rounds. Let A be the

amoebot currently occupying v`−k+1; such an amoebot must exist because we assumed

there were at least k root or follower amoebots and all amoebots follow the unique

path P in a forest-path schedule. If A is contracted in parallel round 2(`+ k)− 2 then

it remains so in parallel round 2(`+ k) and we are done. Otherwise, if A is expanded

in parallel round 2(`+ k)− 2, it either has no children or has a contracted child by

Lemma 6.3.3. In either case, A can contract in parallel round 2(`+ k)− 1, proving

the lemma.
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When coating any higher layer i > 1, each root amoebot either traverses layer i

in the set direction di (either clockwise or counter-clockwise) or traverses layer i+ 1

in the opposite direction di over already retired amoebots in layer i until it finds

an unoccupied node of layer i to enter. We bound the worst-case runtime for these

two traversals independently in order to upper bound the time to coat layer i after

layer i − 1 is coated. W.l.o.g., let Li = v1, . . . , v|Li| denote the nodes of layer i in

the order they appear starting at the marker node v1 and proceeding in direction

di. Let S∗i = ((Cti−1+1, . . . , Cti), Li) be the greedy parallel forest-path schedule where

(Cti−1+1, . . . , Cti) is the subschedule of S∗ where Cti−1
is the first configuration of S∗

in which all nodes of layer i − 1 are occupied by contracted, retired amoebots and

Cti is defined analogously. By Lemma 6.3.11, all root movements through layer i in

direction di complete in O(|Li|) parallel rounds; an analogous argument shows that

all root movements through layer i+ 1 in direction di complete in O(|Li+1|) = O(|Li|)

parallel rounds. Once all nodes of layer i are occupied by contracted amoebots, these

amoebots retire and the marker node for layer i+ 1 is set within an additional O(|Li|)

parallel rounds. This yields the following runtime bound for individual higher layers.

Lemma 6.3.12. Starting from configuration Cti−1+1 — the first configuration after

layer i − 1 is completely coated — the greedy parallel forest-path schedule S∗ coats

layer i in O(|Li|) additional parallel rounds.

We conclude our analysis with the following theorem.

Theorem 6.3.13. The Universal-Coating algorithm solves any valid instance

(S, O) of the object coating problem in O(n) sequential rounds, w.h.p., where n is the

number of amoebots in S.
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Proof. Consider any valid instance (S, O) of the object coating problem and any

fair sequential activation sequence S. By Lemmas 6.3.4 and 6.3.6 there exists a

corresponding greedy parallel forest schedule S∗ = (C0, . . . , Cf) such that CS
i � Ci

for all 0 ≤ i ≤ f . Thus, f is an upper bound on the number of sequential rounds

required to solve the given instance and so it suffices to upper bound f .

By Lemma 6.3.10, S∗ coats layer 1 with contracted amoebots in O(n) parallel

rounds, w.h.p. Lemma 6.3.12 then shows that once layer i − 1 has been coated by

contracted amoebots, S∗ coats layer i in an additional O(|Li|) parallel rounds. Let ` be

the index of the final layer that n amoebots can coat; i.e.,
∑`−1

j=1 |Lj| < n ≤
∑`

j=1 |Lj|.

Then, in total, the worst-case number of parallel rounds needed to coat all ` possible

layers is:

f ≤ O(n) +
∑̀
i=1

O(|Li|) = c

(
n+

∑̀
i=1

|Li|

)
= O(n)

w.h.p., where c > 0 is some sufficiently large constant. Therefore, since f is an upper

bound on the sequential runtime, so is O(n).

6.4 Lower Bounds

We now turn to lower bounds on the runtime of algorithms for object coating.

Let TA(S, O) denote the worst-case number of sequential rounds over all possible

fair activation sequences required by an algorithm A to solve an instance (S, O) of

the object coating problem, and let TA = max(S,O){TA(S, O)} denote the worst-case

sequential runtime over all valid problem instances. We begin by proving a linear

lower bound on TA for any local-control algorithm A.

Theorem 6.4.1. For any local-control algorithm A for the object coating problem,

TA = Ω(n), where n is the number of amoebots in S.
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Figure 22. Object Coating Instance for Linear Lower Bound. All n amoebots (black
dots) must occupy nodes in the first layer of object O (black polygon) to solve this
instance, but amoebot An is n nodes away and thus must move at least Θ(n) times.

Proof. Consider the instance (S, O) of the object coating problem depicted in Figure 22

where the amoebot system S forms a single line of amoebots A1, . . . , An such that

only A1 is connected to the object O. Since |L1| > n, all n amoebots must enter layer

1 to solve this instance. So An must move Θ(n) times since its distance to the object

is d(An, O) = n. Since each amoebot is only guaranteed to be activated once per

sequential round, An may in the worst-case move at most once per sequential round.

Therefore, regardless of algorithm A, we have TA ≥ TA(S, O) = Ω(n).

A linear lower bound is fairly large and therefore not very helpful to distinguish

between different algorithms for object coating, so we instead compare an algorithm’s

runtime to the best possible runtime. Formally, an algorithm A is c-competitive for

some constant c > 1 if for any valid instance (S, O) of the object coating problem,

E [TA(S, O)] ≤ c ·OPT(S, O) + k,

where the expectation is taken over an algorithm’s random decisions if it is randomized,

OPT(S, O) is the minimum worst-case number of sequential rounds over all fair
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Figure 23. Object Coating Instance for Linear Competitive Ratio. The object O
(black polygon) occupies a straight line of nodes in G∆ while the amoebots (black dots)
almost entirely coat its first layer. However, one node of the first layer below O and
equidistant from its left and right points is unoccupied while one node of the second
layer above O and (nearly) equidistant from its left and right points is occupied.

activation sequences required by any algorithm to solve (S, O), and k > 0 is a

constant independent of (S, O). Unfortunately, a large lower bound also holds for the

competitive ratio of any local-control algorithm, even with randomization.

Theorem 6.4.2. Any local-control algorithm A for the object coating problem has a

competitive ratio of Ω(n), where n is the number of amoebots in the system.

Proof. We show that there exists a valid instance (S, O) of the object coating problem

that can be solved by an optimal algorithm in O(1) sequential rounds but requires any

local-control algorithm Ω(n) times longer, establishing that any local-control algorithm

is at best Ω(n)-competitive. Let the object O be a horizontal line of nodes of any

finite length and let S be a system of |L1| − 1 contracted amoebots occupying all of

layer 1 except for one node below O equidistant from its sides and one amoebot above

O in layer 2 equidistant from its sides (see Figure 23). An optimal algorithm could

move the amoebot system as in Figure 24 to solve this instance in O(1) sequential

rounds. Note that this particular optimal algorithm even maintains system-object

connectivity throughout its execution, something we do not require in general.
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Now consider any local-control algorithm A for object coating. Define the left-

imbalance at round i, denoted φ`(i), as the net number of amoebots that have crossed

from the top of O to the bottom on its left side by the start of sequential round i.

Analogously, define the right-imbalance at round i, denoted φr(i), as the net number

of amoebots that have crossed from the bottom of O to the top on its right side by

the start of sequential round i. In the worst-case, information and amoebots may only

travel a distance of i nodes in i rounds. Thus, for any round i ≤ n/4, the probability

distributions of φ`(i) and φr(i) are independent. Moreover, no amoebot up to round

n/4 can determine which side (i.e., ` or r) it is closer to since the positions of the gap

and layer 2 amoebot are each equidistant from the sides. So for any round i ≤ n/4,

we have Pr [φ`(i) = k] = Pr [φr(i) = k] for any integer k. By round n/4, we have the

following cases.

Case 1. φ`(n/4) = φr(n/4). Then the net change in numbers of amoebots on the

top and bottom of O is zero, and thus there are more amoebots on the top of O than

on the bottom. So there must exist an unoccupied node on the bottom of O, as there

was initially, so O has not yet been coated.

Case 2. φ`(n/4) 6= φr(n/4). From our insights above, we have that for any two inte-

gers k1 and k2, Pr [φ`(n/4) = k1 ∧ φr(n/4) = k2] = Pr [φ`(n/4) = k2 ∧ φr(n/4) = k1].

Hence, the cumulative probability of all outcomes where φ`(n/4) < φr(n/4) is

equal to the cumulative probability of all outcomes where φ`(n/4) > φr(n/4). If

φ`(n/4) < φr(n/4), then there are again more amoebot on the top of O than on the

bottom, so O has not yet been coated.

Therefore, the probability that A has not yet solved the coating problem in n/4

rounds is at least 1/2, and thus E [TA(S, O)] ≥ 1/2 · n/4 = n/8. Since OPT(S, O) =

O(1), this establishes a linear competitive ratio.
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(a) (b) (c)

(d) (e) (f)

Figure 24. Optimal Algorithm for Object Coating. (a)–(f) show the amoebot system
configuration at the start of sequential round i = 1, . . . , 6, respectively. After five
sequential rounds, the object is coated. Note that this algorithm solves the given
instance in at most five sequential rounds regardless of the fair activation sequence
used or the object/system size.

Together, Theorems 6.3.13, 6.4.1, and 6.4.2 yield the following corollary.

Corollary 6.4.3. Algorithm Universal-Coating is worst-case asymptotically opti-

mal and has an optimal competitive ratio, w.h.p.

6.5 Simulations

We conclude with simulation results that demonstrate that in practice, the

Universal-Coating algorithm achieves a sublinear average competitive ratio. Since

OPT(S, O) is difficult to compute for general instances, we first obtain an appropriate

lower bound. Recall that the distance between nodes u and v, denoted d(u, v) is the

number of edges in the shortest (u, v)-path in G∆; the distance between a node v and

a subset of nodes U is d(v, U) = minu∈U d(u, v). In a slight abuse of notation, we use

d(A, v) to denote the distance between the node occupied by A and the node v.

For any valid instance (S, O) of the object coating problem, let C(S, O) denote
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the set of all coatings that would solve this instance; i.e., C(S, O) contains subsets of

nodes C such that:

min
v∈V \(O∪U)

d(v,O) ≥ max
v∈U

d(v,O)

Given a coating C ∈ C(S, O), let B(S, C) denote the complete bipartite graph on

partitions S and C. Set the weight of each edge e = (A, v) ∈ S × C to w(e) =

d(A, v). Every perfect matching in B(S, C) corresponds to an assignment of amoebots

to positions in a coating of object O. The maximum edge weight in a matching

corresponds to the maximum distance an amoebot has to traverse to reach its final

(retired) position. Let M(S, C) be the set of all perfect matchings in B(S, C). We

define the matching dilation of instance (S, O) as:

MD(S, O) = min
C∈C(S,O)

{
min

M∈M(S,C)

{
max
e∈M

w(e)

}}
The matching dilation of an instance lower bounds all distances amoebots must

traverse to reach their retired positions in a coating. In the worst-case, each amoebot

may move at most once per sequential round, so we have OPT(S, O) ≥ MD(S, O).

We note that MD(S, O) is not a tight bound on OPT(S, O). In particular, it only

considers the distances between amoebots and their final destinations in the coating

but ignores the congestion that may arise as amoebots move there.

Observe that any coating in C(S, O) includes nodes from some fixed number of

layers `; specifically, it must include all nodes of the first `− 1 layers (i.e., they are

completely coated) and some subset of nodes from the final `-th layer (i.e., the final

layer may be partially coated). Depending on the number of amoebots in S and

the length of layer `, there may be prohibitively many possible coatings to iterate

through individually in calculating the matching dilation explicitly.7 We instead

7Given an amoebot system S of n amoebots and an object O, we can determine the final number
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Figure 25. Simulations of the Universal-Coating Algorithm. Statistics are shown
for 20 repeated iterations per run, with error bars shown for 95% confidence intervals.
(a) The runtime of Universal-Coating in sequential rounds for varying system and
object sizes. (b) The ratio of runtime in sequential rounds to the lower bound w∗ in
log-scale. (c) The relationship between runtime and object size for different system
sizes.

efficiently compute a lower bound on the matching dilation by considering assignments

of amoebots to any position in the first ` layers. Formally, we consider a complete

bipartite graph with partitions S and
⋃`
i=1 Li where the edge weights are set as

described above. We then search for a minimum edge weight w∗ such that there

exists a bipartite matching saturating S and
⋃`−1
i=1 Li that only uses edges of weight

at most w∗. The search for a satisfactory matching given a fixed maximum edge

weight can be achieved in polynomial time with standard algorithms for minimum cost

matchings, and w∗ can be found in a logarithmic number of iterations using binary

search. Therefore, since w∗ is the smallest value such that there exists a valid coating

in C(S, O) where no amoebot is further than w∗ from its final position, we have that

MD(S, O) ≥ w∗.

Using AmoebotSim (https://github.com/SOPSLab/AmoebotSim), we simulated

of layers `. Moreover, we know that k = n−
∑`−1
i=1 |Li| amoebots are left to coat layer ` since the

problem definition requires the first `− 1 layers to be completely filled. Therefore, there are
(|L`|
k

)
valid coatings in C(S, O) that cannot be iterated efficiently unless k ≈ 1 or k ≈ |L`|.
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Universal-Coating where amoebot systems of n are initialized randomly around reg-

ular hexagonal objects of varying radii. Figure 25a shows the runtime of Universal-

Coating in sequential rounds as a function of system size n for different object sizes.

We observe the runtime increasing linearly with the system size, matching the proven

runtime in Theorem 6.3.13. Figure 25b shows the ratio of runtime to the lower bound

w∗ on the matching dilation of the system. While Theorem 6.4.2 and Corollary 6.4.3

show that Universal-Coating achieves the worst-case optimal competitive ratio

of Θ(n), we observe in practice that the average competitive ratio may be closer to

logarithmic. Finally, Figure 25c shows the runtime in sequential rounds as a function

of object radius for different system sizes. Overall, the runtime increases linearly with

object radius, though there is significantly higher variability in the runtime for larger

object radii. This is likely due to the node-based leader election phase, which depends

on the length of the object’s boundary.
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Chapter 7

CONVEX HULL FORMATION

Determining the convex hull of a set of points is a well-studied and classical problem

in computational geometry and combinatorial optimization. While this problem is

usually treated abstractly, here we consider it as a collective task for programmable

matter where a system must form a physical seal around a static object using as little

resources as possible [53]. This is an attractive behavior for programmable matter

as it would enable systems to, for example, isolate and contain oil spills [198], mimic

the collective transport capabilities seen in ant colonies [125, 142], or even surround

and engulf malignant entities in the human body as phagocytes do [1]. Though our

algorithm is certainly not the first distributed approach taken to computing convex

hulls, to our knowledge it is the first to do so with distributed computational entities

that have no sense of global orientation nor of their coordinates and are limited to only

local sensing and constant-size memory. Moreover, to our knowledge ours is the first

distributed approach to computing restricted-orientation convex hulls, a generalization

of usual convex hulls (see definitions in Section 7.1). Finally, our algorithm is gracefully

degrading : when the number of amoebots is insufficient to form an object’s convex

hull, a maximal partial convex hull is still formed.

The convex hull problem is arguably one of the best-studied problems in com-

putational geometry. Many parallel algorithms have been proposed to solve it (see,

e.g., [3, 76, 85]), as have several distributed algorithms (see [69, 146, 164]). However,

conventional models of parallel and distributed computation assume that the com-

putational and communication capabilities of the individual processors far exceed
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those of individual modules of programmable matter. Most commonly, for example,

the nodes are assumed to know their global coordinates and to can communicate

non-locally. Amoebots in the amoebot model have only constant-size memory and

can communicate only with their immediate neighbors. Furthermore, the object’s

boundary may be much larger than the number of amoebots, making it impossible for

the amoebot system to store all the geographic locations. Finally, to our knowledge,

there only exist centralized algorithms to compute (strong) restricted-orientation

convex hulls (see, e.g., [119] and the references therein); ours is the first to do so in a

distributed setting.

The related problems of shape formation (Section 2.5, [52, 58, 62, 66, 95]) and

object coating (Chapter 6, [55, 61]) have both been considered under the amoebot

model. Like shape formation, convex hull formation is a reconfiguration problem

involving a manipulation of the amoebot system’s shape; however, the desired convex

hull is a function of the object and thus is not known to the amoebots a priori. Object

coating also depends on an object, but may not form a convex seal around the object

using the minimum number of amoebots.

Organization. We begin by defining two variants of the convex hull formation

problem in the context of our triangular lattice G∆ based on two interpretations of

convex hulls in restricted orientation geometry: the strong O∆-hull and the (weak)

O∆-hull (Section 7.1). Our algorithm for convex hull formation has two phases: the

amoebot system first explores the object to learn the convex hull’s dimensions, and

then uses this knowledge to form the convex hull. In Section 7.2, we introduce the

main ideas behind the learning phase as a novel local algorithm run by a single

amoebot with unbounded memory. We then give new results on organizing a system of
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amoebots each with O(1) memory into binary counters in Section 7.3. Combining the

results of these two sections, we present the full distributed algorithm for learning and

forming the strong O∆-hull in Section 7.4. We conclude by presenting an extension of

our algorithm to solve the O∆-hull formation problem in Section 7.5.

7.1 The Convex Hull Formation Problem

For this chapter, we assume the simplified sequential amoebot model in which

at most one amoebot is active at a time and the adversary activates every amoebot

infinitely often (Section 2.2.4). We further assume geometric space, common chirality,

and constant-size memory (see Table 1). In addition to the standard model, we define

some terminology specific to our application of convex hull formation, all of which

are illustrated in Figure 26. Recall from Section 2.4 that an object is a finite, static,

simply connected set of nodes that does not perform computation. The boundary

B(O) of an object O is the set of all nodes in V \O that are adjacent to O. Object

O contains a tunnel of width i if the subgraph induced by V \O is i-connected but

not (i+ 1)-connected. We assume that amoebots can differentiate between adjacent

object nodes and neighboring amoebots.

We now formally define the notions of convexity and convex hulls for our model.

We start by introducing the concepts of restricted-orientation convexity (also known

as O-convexity) and strong restricted-orientation convexity (or strong O-convexity)

which are well established in computational geometry [84, 167]. We then apply these

generalized notions of convexity to our discrete setting on the triangular lattice G∆.

In the continuous setting, given a set of orientations O in R2, a geometric object

is said to be O-convex if its intersection with every line with an orientation from
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(a) (b)

Figure 26. Restricted-Orientation Convex Hulls. An object O (black) with a tunnel
of width 1 on its right side and its (a) O-hull (dashed line) and O∆-hull H ′(O) (solid
black line), and (b) strong O-hull (dashed line) and strong O∆-hull H(O) (solid black
line).

O is either empty or connected. The O-hull of a geometric object O is defined as

the intersection of all O-convex sets containing O, or, equivalently, as the minimal

O-convex set containing O. An O-block of two points in R2 is the intersection of all

half-planes defined by lines with orientations in O and containing both points. The

strong O-hull of a geometric object O is defined as the minimal O-block containing O.

We now apply the definitions of O-hull and strong O-hull to the discrete setting

of a lattice. Let O be the orientation set of G∆, i.e., the three orientations of axes of

the triangular lattice. The (weak) O∆-hull of object O, denoted H ′(O), is the set of

nodes in V \O adjacent to the O-hull of O in R2 (see Figure 26a).8 Analogously, the

strong O∆-hull of object O, denoted H(O), is the set of nodes in V \O adjacent to

the strong O-hull of O in R2 (see Figure 26b). For simplicity, unless there is a risk of

ambiguity, we will use the terms “strong O∆-hull” and “convex hull” interchangeably

throughout this work.

An instance of the strong O∆-hull formation problem (or the convex hull formation

8We offset the convex hull from its traditional definition by one layer of nodes since the amoebots
cannot occupy nodes already occupied by O.
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problem) has the form (S, O) where S is a finite, connected system of initially

contracted amoebots and O ⊂ V is an object. We assume that (i) S contains a unique

leader amoebot ` initially adjacent to O,9 (ii) there are at least |S| > log2(|H(O)|)

amoebots in the system, and (iii) O does not have any tunnels of width 1.10 A

local, distributed algorithm A solves an instance (S, O) of the convex hull formation

problem if, when each amoebot executes A individually, S is reconfigured so that

every node of H(O) is occupied by a contracted amoebot. The O∆-hull formation

problem can be stated analogously.

7.2 The Single-Amoebot Algorithm

We first consider an amoebot system composed of a single amoebot A with

unbounded memory and present a local algorithm for learning the strong O∆-hull of

object O. As will be the case in the distributed algorithm, amoebot A does not know

its global coordinates or orientation. We assume A is initially on B(O), the boundary

of O. The main idea of this algorithm is to let A perform a clockwise traversal of

B(O), updating its knowledge of the convex hull as it goes.

In particular, the convex hull can be represented as the intersection of six half-

planes H = {N,NE, SE, S, SW,NW}, which A can label using its local compass (see

Figure 27). Amoebot A estimates the location of these half-planes by maintaining six

9One could use the Improved-Leader-Election algorithm described in Chapter 5 to obtain
such a leader in O(|S|) rounds, with high probability. Removing this assumption would simply
change all the deterministic guarantees given in this work to guarantees with high probability.

10We believe our algorithm could be extended to handle tunnels of width 1 in object O, but this
would require technical details beyond the scope of this work.
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Figure 27. The Half-Planes of a Convex Hull. (a) An amoebot’s local labeling of
the six half-planes composing the convex hull: the half-plane between its local 0 and
5-labeled edges is N , and the remaining half-planes are labeled accordingly. (b) An
object (black) and the six half-planes (dashed lines with shading on included side)
whose intersection forms its convex hull (black line). As an example, the node depicted
in the upper-right is distance 0 from the S and SE half-planes and distance 7 from N .

counters {dh : h ∈ H}, where each counter dh represents the L1-distance11 from the

position of A to half-plane h. If at least one of these counters is equal to 0, A is on its

current estimate of the convex hull.

Each counter is initially set to 0, and A updates them as it moves. Let [6] =

{0, . . . , 5} denote the six directions A can move in, corresponding to its contracted

port labels. In each step, A first computes the direction i ∈ [6] to move toward

using the right-hand rule, yielding a clockwise traversal of B(O). Since O was

assumed to not have tunnels of width 1, direction i is unique. Amoebot A then

updates its distance counters by setting dh ← max{0, dh + δi,h} for all h ∈ H, where

δi = (δi,N , δi,NE, δi,SE, δi,S, δi,SW , δi,NW ) is defined as follows:

δ0 = (1, 1, 0,−1,−1, 0) δ1 = (0, 1, 1, 0,−1,−1) δ2 = (−1, 0, 1, 1, 0,−1)

δ3 = (−1,−1, 0, 1, 1, 0) δ4 = (0,−1,−1, 0, 1, 1) δ5 = (1, 0,−1,−1, 0, 1)

11The distance from a node to a half-plane is the number of edges in a shortest path between the
node and any node on the line defining the half-plane.
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Figure 28. The Single-Amoebot Algorithm for Convex Hull Formation. The amoebot
A with its convex hull estimate (gray line) after traversing the path (dashed line) from
its starting point (small black dot). (a) dh ≥ 1 for all h ∈ H, so its next move does
not push a half-plane. (b) Its next move is toward the SE half-plane and dSE = 0, so
(c) SE is pushed.

Thus, every movement decrements the distance counters of the two half-planes

to which A gets closer, and increments the distance counters of the two half-planes

from which A gets farther away. Whenever A moves toward a half-plane to which its

distance is already 0, the value stays 0, essentially “pushing” the estimation of the

half-plane one step further. An example of such a movement is given in Figure 28.

Finally, A needs to detect when it has learned the complete convex hull. To do

so, it stores six terminating bits {bh : h ∈ H}, where bh is equal to 1 if A has visited

half-plane h (i.e., if dh has been 0) since A last pushed any half-plane, and 0 otherwise.

Whenever A moves without pushing a half-plane (e.g., Figure 28a–28b), it sets bh = 1

for all h such that dh = 0 after the move. If its move pushed a half-plane (e.g.,

Figure 28b–28c), it resets all its terminating bits to 0. Once all six terminating bits

are 1, A contracts and terminates.

We now analyze the correctness and runtime of this single-amoebot algorithm.

Note that, since the amoebot system contains only one amoebot A, each activation of

A is also a (fair, sequential) round. For a given round i, let Hi(O) ⊂ V be the set of

all nodes enclosed by A’s estimate of the convex hull of O after round i, i.e., all nodes
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in the closed intersection of the six half-planes. We first show that A’s estimate of the

convex hull represents the correct convex hull H(O) after at most one traversal of the

object’s boundary, and does not change afterwards.

Lemma 7.2.1. If amoebot A completes its traversal of B(O) in round i∗, then

Hi(O) = H(O) for all i ≥ i∗.

Proof. Since A exclusively traverses B(O), Hi(O) ⊆ H(O) for all rounds i. Fur-

thermore, Hi(O) ⊆ Hi+1(O) for any round i. Once A has traversed the whole

boundary, it has visited a node of each half-plane corresponding to H(O), and thus

Hi∗(O) = H(O).

We now show amoebot A terminates if and only if it has learned the complete

convex hull.

Lemma 7.2.2. If Hi(O) ⊂ H(O) after some round i, then bh = 0 for some half-plane

h ∈ H.

Proof. Suppose to the contrary that after round i, Hi(O) ⊂ H(O) but bh = 1 for

all h ∈ H; let i be the first such round. Then after round i − 1, there was exactly

one half-plane h1 ∈ H such that bh1 = 0; all other half-planes h ∈ H \ {h1} have

bh = 1. Let h2, . . . , h6 be the remaining half-planes in clockwise order, and let round

tj < i− 1 be the one in which bhj was most recently flipped from 0 to 1, for 2 ≤ j ≤ 6.

Amoebot A could only set bhj = 1 in round tj if its move in round tj did not push any

half-planes and dhj = 0 after the move. There are two ways this could have occurred.

First, A may have already had dhj = 0 in round tj − 1 and simply moved along

hj in round tj, leaving dhj = 0. But for this to hold and for A to have had bhj = 0

after round tj − 1, A must have just pushed hj, resetting all its terminating bits to 0.
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Amoebot A could not have pushed any half-plane during rounds t2 up to i− 1, since

bh2 = · · · = bh6 = 1, so this case only could have occurred with half-plane h2.

For the remaining half-planes hj , for 3 ≤ j ≤ 6, A must have had dhj = 1 in round

tj − 1 and moved into hj in round tj . But this is only possible if A pushed hj in some

round prior to tj − 1, implying that A has already visited h3, . . . , h6. Therefore, A has

completed at least one traversal of B(O) by round i, but Hi(O) ⊂ H(O), contradicting

Lemma 7.2.1.

Lemma 7.2.3. Suppose Hi(O) = H(O) for the first time after some round i. Then

amoebot A terminates at some node of H(O) after at most one additional traversal of

B(O).

Proof. Since i is the first round in which Hi(O) = H(O), amoebot A must have just

pushed some half-plane h — resetting all its terminating bits to 0 — and now occupies

a node u with distance 0 to h. Due to the geometry of the triangular lattice, the next

node in a clockwise traversal of B(O) from u must also have distance 0 to h, so A will

set bh to 1 after its next move. As A continues its traversal, it will no longer push any

half-planes because its convex hull estimation is complete. Thus, A will visit every

other half-plane h′ without pushing it, causing A to set each bh′ to 1 before reaching

u again. Amoebot A sets its last terminating bit bh∗ to 1 when it next visits a node v

with distance 0 to h∗. Therefore, A terminates at v ∈ B(O) ∩H(O).

The previous lemmas immediately imply the following theorem. Let B = |B(O)|.

Theorem 7.2.4. The single-amoebot algorithm terminates after t∗ = O(B) rounds

with amoebot A at a node u ∈ B(O) ∩H(O) and Ht∗(O) = H(O).
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Algorithm 11 Binary-Counter for Amoebot Ai
1: if the next non-final token in Ai.toks is a c+ then
2: if Ai.bit = 0 then
3: Dequeue c+ from Ai.toks, delete c+, and set Ai.bit← 1.
4: else if (Ai.bit = 1) ∧ (Ai+1.toks is not full, i.e., has less than two tokens) then
5: Dequeue c+ from Ai.toks, enqueue c+ into Ai+1.toks, and set Ai.bit← 0.
6: else if Ai.bit = ⊥ then
7: Dequeue f from Ai.toks and enqueue f into Ai+1.toks.
8: Dequeue c+ from Ai.toks, delete c+, and set Ai.bit← 1.
9: else if the next non-final token in Ai.toks is a c− then

10: if Ai.bit = 1 then
11: if ¬(Ai+1.bit = 1 ∧Ai+1.toks = [c−]) then
12: Dequeue c− from Ai.toks, delete c−, and set Ai.bit← 0.
13: if (Ai+1.toks = [f ]) ∧ (Ai 6= A0) then
14: Dequeue f from Ai+1.toks, enqueue f into Ai.toks, and set Ai.bit← ⊥.
15: else if (Ai.bit = 0) ∧ (Ai+1.toks is not full) then
16: Dequeue c− from Ai.toks, enqueue c− into Ai+1.toks, and set Ai.bit← 1.

Functions available only to the leader, ` = A0:
17: function Generate(op)
18: if A0.toks = [], i.e., A0.toks is empty then
19: if op is increment then generate c+ and enqueue it into A0.toks.
20: else if op is decrement then generate c− and enqueue it into A0.toks.
21: function ZeroTest(A0, A1)
22: if (A1.bit = 1) ∧ (A1.toks = [c−]) then return unavailable.
23: else return (A1.toks = [f ]) ∧ ((A0.bit = 0 ∧A0.toks = []) ∨ (A0.bit = 1 ∧A0.toks = [c−]))

7.3 A Binary Counter of Amoebots

For a system of amoebots each with constant-size memory to emulate the single-

amoebot algorithm of Section 7.2, the amoebots need a mechanism to distributively

store the distances to each of the strong O∆-hull’s six half-planes. To that end, we

now describe how to coordinate an amoebot system as a binary counter that supports

increments and decrements by one as well as zero-testing. This Binary-Counter

algorithm subsumes previous work on collaborative computation under the amoebot

model that detailed an increment-only binary counter [162]. This algorithm uses tokens,

or constant-size messages that can be passed between amoebots (see Section 2.4).

Accompanying pseudocode is given in Algorithm 11.
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Suppose that the participating amoebots are organized as a simple path with the

leader amoebot at its start: ` = A0, A1, A2, . . . , Ak. Each amoebot Ai stores a value

Ai.bit ∈ {⊥, 0, 1}, where Ai.bit = ⊥ implies Ai is not part of the counter; i.e., it

is beyond the most significant bit. Each amoebot Ai also stores tokens in a queue

Ai.toks; the leader ` can only store one token, while all other amoebots can store up

to two. These tokens can be increments c+, decrements c−, or the unique final token

f that represents the end of the counter. If an amoebot Ai (for 0 < i ≤ k) holds f —

i.e., Ai.toks contains f — then the counter value is represented by the bits of each

amoebot from the leader ` (storing the least significant bit) up to and including Ai−1

(storing the most significant bit).

The leader ` is responsible for initiating counter operations, while the rest of the

amoebots use only local information and communication to carry these operations out.

To increment the counter, the leader ` generates an increment token c+ (assuming it

was not already holding a token). Now consider this operation from the perspective of

any amoebot Ai holding a c+ token, where 0 ≤ i ≤ k. If Ai.bit = 0, Ai consumes c+

and sets Ai.bit← 1. Otherwise, if Ai.bit = 1, this increment needs to be carried over

to the next most significant bit. As long as Ai+1.toks is not full (i.e., Ai+1 holds at

most one token), Ai passes c+ to Ai+1 and sets Ai.bit← 0. Finally, if Ai.bit = ⊥, this

increment has been carried over past the counter’s end, so Ai must also be holding the

final token f . In this case, Ai forwards f to Ai+1, consumes c+, and sets Ai.bit← 1.

To decrement the counter, the leader ` generates a decrement token c− (if it was

not holding a token). From the perspective of any amoebot Ai holding a c− token,

where 0 ≤ i < k, the cases for Ai.bit ∈ {0, 1} are nearly anti-symmetric to those

for the increment. If Ai.bit = 0 and Ai+1.toks is not full, Ai carries this decrement

over by passing c− to Ai+1 and setting Ai.bit ← 1. However, if Ai.bit = 1, we only
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allow Ai to consume c− and set Ai.bit← 0 if Ai+1.bit 6= 1 or Ai+1 is not only holding

a c−. While not necessary for the correctness of the decrement operation, this will

enable conclusive zero-testing. Additionally, if Ai+1 is holding f , then Ai is the most

significant bit. So this decrement shrinks the counter by one bit; thus, as long as

Ai 6= A0, Ai additionally takes f from Ai+1, consumes c−, and sets Ai.bit← ⊥.

Finally, the zero-test operation: if A1.bit = 1 and A1 only holds a decrement token

c−, ` cannot perform the zero-test conclusively (i.e., zero-testing is “unavailable”).

Otherwise, the counter value is 0 if and only if A1 is only holding the final token f and

(i) `.bit = 0 and `.toks is empty or (ii) `.bit = 1 and ` is only holding a decrement

token c−.

7.3.1 Correctness Analysis

We now show the safety of our increment, decrement, and zero-test operations for

the distributed counter. More formally, we show that given any sequence of these

operations, our distributed binary counter will eventually yield the same values as a

centralized counter, assuming the counter’s value remains nonnegative.

If our distributed counter was fully synchronized, meaning at most one increment

or decrement token is in the counter at a time, the distributed counter would exactly

mimic a centralized counter but with a linear slowdown in its length. Our counter

instead allows for many increments and decrements to be processed in a pipelined

fashion. Since the c+ and c− tokens are prohibited from overtaking one another,

thereby altering the order the operations were initiated in, it is easy to see that the

counter will correctly process as many tokens as there is capacity for.

So it remains to prove the correctness of the zero-test operation. We will prove
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this in two parts: first, we show the zero-test operation is always eventually available.

We then show that if the zero-test operation is available, it is always reliable; i.e., it

always returns an accurate indication of whether or not the counter’s value is 0.

Lemma 7.3.1. If at time t zero-testing is unavailable (i.e., amoebot A1 is holding a

decrement token c− and A1.bit = 1) then there exists a time t′ > t when zero-testing

is available.

Proof. We argue by induction on i — the number of consecutive amoebots Aj, for

x ≤ j < x+ i , such that Aj.bit = 1 and Aj only holds a c− token — that there exists

a time t∗ > t where Ax can consume c− and set Ax.bit ← 0. If i = 1, then either

Ax+1.bit 6= 1 or Ai+1 is not only holding a c−, so Ax can process its c− at its next

activation (say, at t∗ > t).

Now suppose i > 1 and the induction hypothesis holds up to i− 1. Then at time

t, every amoebot Aj with x ≤ j < x+ i− 1 is holding a c− token and has Aj.bit = 1.

By the induction hypothesis, there exists a time t1 > t at which Ax+1 is activated and

can consume its c− token, setting Ax+1.bit← 0. So the next time Ax is activated (say,

at t∗ > t1) it can do the same, consuming its c− token and setting Ax.bit← 0. This

concludes our induction.

Suppose A1 is holding a decrement token c− and A1.bit = 1 at time t, leaving the

zero-test unavailable. Applying the above argument to A1, there must exist a time

t∗ > t such that A1 can process its c− and set A1.bit← 0. Since the increment and

decrement tokens remain in order, A1 will not be holding a c− token when ` is next

activated (say, at t′ > t∗) allowing ` to perform a zero-test.

Lemma 7.3.2. If the zero-test operation is available, then it reliably decides whether

the counter’s value is 0.
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Proof. The statement of the lemma can be rephrased as follows: assuming the zero-test

operation is available, the value of the counter v = 0 if and only if A1 only holds the

final token f and either (i) `.bit = 0 and `.toks is empty or (ii) `.bit = 1 and ` only

holds a decrement token c−. Let (∗) represent the right hand side of this iff. Note

that v is defined only in terms of the operations the leader has initiated, not in terms

of what the amoebots have processed.

We first prove the reverse direction: if (∗) holds, then v = 0. By (∗), we know that

A1.toks only holds f . Thus, `.bit is both the least significant bit (LSB) and the most

significant bit (MSB). Also by (∗) we know that either `.bit = 0 and `.toks is empty,

or `.bit = 1 and `.toks = [c−]. In either case, it is easy to see that v = 0.

To prove that if v = 0, then (∗) holds, we argue by induction on the number

of operations i initiated by the leader (i.e., the total number of c+ and c− tokens

generated by `). Initially, no operations have been initiated, so v = 0. The counter

is thus in its initial configuration: A1.toks only contains f , `.bit = 0, and `.toks is

empty. So (∗) holds. Now suppose that the induction hypothesis holds for the first

i− 1 operations initiated, and consider the time ti−1 just before ` generates the i-th

operation at time ti. There are two cases to consider: at time ti−1, either v = 0 or

v > 0.

Suppose v = 0 at time ti−1. Since ` can only hold one token, `.toks must have

been empty at time ti−1 in order for ` to initiate another operation at time ti. This

operation must have been an increment, since a decrement on v = 0 violates the

counter’s nonnegativity. So at time ti, v = 1 > 0 and thus “if v = 0, then (∗) holds” is

vacuously true.

So suppose v > 0 at time ti−1. The only nontrivial case is when v = 1 at time ti−1

and the i-th operation is a decrement; otherwise, v remains greater than 0 and “if
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v = 0, then (∗) holds” is vacuously true. In this nontrivial case, v = 0 and `.toks = [c−]

at time ti. To show (∗) holds, we must establish that `.bit = 1 and A1 only holds

f at time ti. Suppose to the contrary that `.bit = 0 at time ti. Then the c− token

in `.toks must eventually be carried over to some amoebot Aj with j ≥ 1 that will

process it. But this implies that v > 2j − 1 ≥ 1 at time ti, a contradiction that v = 0.

Finally, suppose to the contrary that A1.toks 6= [f ] at time ti. If A1.bit = ⊥, we

reach a contradiction because `.bit = 0 is the LSB and `.toks = [c−], implying that

v < 0. If A1.bit = 0, we reach a contradiction because `.bit = A1.bit = 0 and thus

there must exist an amoebot Aj with j ≥ 2 that will consume the c− token held by `,

implying that v > 2j − 1 ≥ 3. So we have that A1.bit = 1 at time ti. If A1.toks = [c−],

we reach a contradiction because the zero-test operation is available. If A1.toks is

empty or contains a c+ token, we reach a contradiction because A1.bit = 1, implying

that v > 1. But since A1 cannot hold two c− tokens (as ` would had to have consumed

a previous c− token while A1.bit = 1 and A1.toks = [c−]) and cannot hold both f and

a c− token (as this implies v < 0), the only remaining case is that A1.toks = [f ], a

contradiction.

7.3.2 Runtime Analysis

To analyze the runtime of our distributed binary counters, we use a dominance

argument (Remark 1) comparing the progress of the counter operations between a

sequential and parallel execution, building upon the analysis of [162] that bounded

the running time of an increment-only distributed counter. We first prove that the

counter operations are, in the worst case, at least as fast in a sequential execution

as they are in a simplified parallel execution. We then give an upper bound on the
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number of parallel rounds required to process these operations; combining these two

results also gives a worst case upper bound on the running time in terms of sequential

rounds.

Let a configuration C of the distributed counter encode each amoebot’s bit value

and any increment or decrement tokens it might be holding. A configuration is valid

if (i) there is exactly one amoebot (say, Ai) holding the final token f , (ii) Aj.bit = ⊥

if j ≥ i and Aj.bit ∈ {0, 1} otherwise, and (iii) if an amoebot Aj is holding a c+ or

c− token, then j ≤ i. A schedule is a sequence of configurations (C0, . . . , Ct). Let

X be a nonnegative sequence of m increment and decrement operations; i.e., for all

0 ≤ i ≤ m, the first i operations have at least as many increments as decrements.

Definition 7.3.3. A parallel counter schedule (X, (C0, . . . , Ct)) is a schedule

(C0, . . . , Ct) such that each configuration Ci is valid, each amoebot holds at most one

token, and, for every 1 ≤ i ≤ t, Ci is reached from Ci−1 by satisfying the following for

each amoebot Aj:

1. If j = 0, then Aj = ` generates the next operation according to X.

2. Aj is holding c+ in Ci and either Aj.bit = 0, causing Aj to consume c+ and set

Aj.bit← 1, or Aj.bit = ⊥, causing Aj to additionally pass the final token f to

Aj+1.

3. Aj is holding c− and Aj.bit = 1 in Ci, so Aj consumes c−. If Aj+1 is holding

f in Ci, Aj takes f from Aj+1 and sets Aj.bit ← ⊥; otherwise it simply sets

Aj.bit← 0.

4. Aj is holding c+ and Aj.bit = 1 in Ci, so Aj passes c+ to Aj+1 and sets

Aj.bit← 0.

5. Aj is holding c− and Aj.bit = 0 in Ci, so Aj passes c− to Aj+1 and sets

Aj.bit← 1.
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Such a schedule is greedy if the above actions are taken in parallel whenever possible.

Using the same sequence of operationsX and any fair sequential activation sequence

S, we compare a greedy parallel counter schedule to a sequential counter schedule

(X, (CS
0 , . . . , C

S
t )), where CS

i is the amoebot system configuration at the completion

of the i-th sequential round in S. Recall that in the sequential setting, each amoebot

(except the leader `) is allowed to hold up to two counter tokens at once while the

parallel schedule is restricted to at most one token per amoebot (Definition 7.3.3).

For a given (increment or decrement) token c, let IC(c) be the index of the amoebot

holding c in configuration C if such an amoebot exists, or ∞ if c has already been

consumed. For any two configurations C and C ′ and any token c, we say C dominates

C ′ with respect to c — denoted C(c) � C ′(c) — if and only if IC(c) ≥ IC′(c). We say

C dominates C ′ — denoted C � C ′ — if and only if C(c) � C ′(c) for every token c.

Lemma 7.3.4. Given any nonnegative sequence of operations X and any fair sequen-

tial activation sequence S beginning at a valid configuration CS
0 in which each amoebot

holds at most one token, there exists a greedy parallel counter schedule (X, (C0, . . . , Ct))

with C0 = CS
0 such that CS

i � Ci for all 0 ≤ i ≤ t.

Proof. With a nonnegative sequence of operations X, a fair activation sequence S,

and a valid starting configuration CS
0 , we obtain a unique sequential counter schedule

(X, (CS
0 , . . . , C

S
t )). We construct a greedy parallel counter schedule (X, (C0, . . . , Ct))

using the same sequence of operations X as follows. Let C0 = CS
0 , and note that since

each amoebot in CS
0 was assumed to hold at most one token, C0 is a valid parallel

configuration. Next, for 0 ≤ i < t, let Ci+1 be obtained from Ci by performing one

parallel round : each amoebot greedily performs one of Actions 2–5 of Definition 7.3.3

if possible; the leader ` additionally performs Action 1 if possible.
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To show CS
i � Ci for all 0 ≤ i ≤ t, argue by induction on i. Clearly, since C0 = CS

0 ,

we have IC0(c) = ICS0 (c) for any token c in the counter. Thus, CS
0 � C0. So suppose

that for all rounds 0 ≤ r < i, we have CS
r � Cr. Consider any counter token c in Ci.

Since both the sequential and parallel schedules follow the same sequence of operations

X, it suffices to show that ICi(c) ≤ ICSi (c). By the induction hypothesis, we have that

ICi−1
(c) ≤ ICSi−1

(c), but there are two cases to distinguish between:

Case 1. Token c has made strictly more progress in the sequential setting than

in the parallel setting by round i − 1, i.e., ICi−1
(c) < ICSi−1

(c). If c is consumed in

parallel round i, then c must have been consumed at some time before sequential

round i. Otherwise, since c is carried over at most once per parallel round, ICi(c) ≤

ICi−1
(c) + 1 ≤ ICSi−1

(c) ≤ ICSi (c).

Case 2. Token c has made the same amount of progress in the sequential and

parallel settings by round i− 1, i.e., ICi−1
(c) = ICSi−1

(c). Inspection of Definition 7.3.3

shows that nothing can block c from making progress in the next parallel round, a

fact we will formalize in Lemma 7.3.5. So if c is consumed in parallel round i, we

must show it is also consumed in sequential round i; otherwise, c will be carried over

in parallel round i, and we must show it is also carried over in sequential round i.

Suppose to the contrary that amoebot Aj consumes c in parallel round i but not

in sequential round i. Then c must be a decrement token, and whenever Aj was

activated in sequential round i, it must have been that Aj+1.bit = 1 and Aj+1.toks

contained a decrement token c′, blocking the consumption of c. By the induction

hypothesis, we have that ICi−1
(c′) ≤ ICSi−1

(c′) = j + 1, and since the order of tokens is

maintained, we have that j = ICi−1
(c) < ICi−1

(c′). Combining these expressions, we

have ICi−1
(c′) = j+ 1; i.e., Aj+1 holds c′ just before parallel round i. We will show this

situation is impossible: it cannot occur in the parallel execution that Aj is holding a
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decrement token c it will consume while Aj+1 is also holding a decrement token c′ in

the same round. For c′ to have reached Aj+1, it must have been carried over from Aj

in a previous round when Aj.bit = 0. Since the parallel counter schedule is greedy,

the only way c′ is still at Aj+1 in parallel round i is if this carry over occurred in the

preceding round, i− 1. This carry over would have left Aj.bit = 0 in parallel round

i, but for Aj to be able to consume c in round i, as supposed, we must have that

Aj.bit = 1, a contradiction.

Now suppose to the contrary that c is carried over from Aj to Aj+1 in parallel round

i but not in sequential round i. Then whenever Aj was last activated in sequential

round i, Aj+1 must have been holding two counter tokens, say c′ and c′′, where c′ is

buffered and c′′ is the token Aj+1 is currently processing. Thus, since counter tokens

cannot overtake one another (i.e., their order is maintained), Aj+1 must have been

holding c′ and c′′ before sequential round i began, i.e., ICSi−1
(c′) = ICSi−1

(c′′) = j+1. But

amoebots in the parallel setting cannot hold two tokens at once, and since the order

of the tokens is maintained, we must have ICi−1
(c′′) > ICi−1

(c′) ≥ ICi−1
(c) + 1 = j + 1.

Combining these expressions, we have ICi−1
(c′′) > ICi−1

(c′) ≥ j + 1 = ICSi−1
(c′′),

contradicting CS
i−1 � Ci−1.

Therefore, ICi(c) ≤ ICSi (c) in both cases. Since the choice of c was arbitrary, we

conclude that CS
i � Ci.

So it suffices to bound the number of parallel rounds required to process all counter

operations. The following lemma shows that the counter can always process a new

increment or decrement operation at the start of a parallel round.

Lemma 7.3.5. Consider any counter token c in any configuration Ci of a greedy

parallel counter schedule (X, (C0, . . . , Ct)). In Ci+1, c either has been carried over

once (ICi+1
(c) = ICi(c) + 1) or has been consumed (ICi+1

(c) =∞).
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Proof. This follows directly from Definition 7.3.3. If counter token c is held by the

unique amoebot A that will consume it in configuration Ci, then by Actions 2 or

3 (if c is an increment or decrement token, respectively), nothing prohibits A from

consuming c in parallel round i+ 1. Since the parallel counter schedule is greedy, this

must occur, so ICi+1
(c) =∞.

Otherwise, c needs to be carried over from, say, Aj to Aj+1 where j = ICi(c). In the

parallel setting, each amoebot can only store one token at a time. So the only reason

c would not be carried over to Aj+1 in parallel round i+ 1 is if Aj+1 was also holding a

counter token that needed to but couldn’t be carried over in parallel round i+ 1. But

this is impossible, since tokens can always be carried over past the end of the counter,

and thus all tokens can be carried over in parallel. So ICi+1
(c) = ICi(c) + 1.

Unlike in the sequential setting, zero-testing is always available in the parallel

setting.

Lemma 7.3.6. The zero-test operation is available at every configuration of a greedy

parallel counter schedule.

Proof. Recall that zero-testing is unavailable whenever A1.bit = 1 and A1.toks = [c−].

This issue stems from ambiguity about where the most significant bit is in the sequential

setting, since it is possible for an adversarial activation sequence to flood the counter

with decrements while temporarily stalling the amoebot holding the final token f .

This results in a configuration where the counter’s value is effectively 0 (with many

decrements waiting to be processed), but the counter has not yet shrunk appropriately,

bringing f to amoebot A1.

This is not a concern of the parallel setting; by Lemma 7.3.5, we have that each

counter token is either carried over or consumed in the next parallel round. So if
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A1 is holding a decrement token c− and A1.bit = 1, it must be because A0 = ` just

generated that c− and forwarded it to A1 in the previous parallel round. Thus, a

conclusive zero-test can be performed at the end of each parallel round.

We can synthesize these results in the following theorem.

Theorem 7.3.7. Given any nonnegative sequence X of m operations and any fair

sequential activation sequence S, the Binary-Counter algorithm processes all oper-

ations in O(m) sequential rounds.

Proof. Let (X, (C0, . . . , Ct)) be the greedy parallel counter schedule corresponding to

the sequential counter schedule defined by S and X in Lemma 7.3.4. By Lemma 7.3.5,

the leader ` can generate one new operation from S in every parallel round. Since

we have m such operations, the corresponding parallel execution requires m parallel

rounds to generate all operations in X. Also by Lemma 7.3.5, assuming in the worst

case that all m operations are increments, the parallel execution requires an additional

dlog2me parallel rounds to process the last operation. If ever the counter needed

to perform a zero-test, we have by Lemmas 7.3.6 and 7.3.2 that this can be done

immediately and reliably. So all together, processing all operations in S requires

O(m+ log2m) = O(m) parallel rounds in the worst case, which by Lemma 7.3.4 is

also an upper bound on the worst case number of sequential rounds.

7.4 The Convex-Hull-Formation Algorithm

We now show how a system of n amoebots each with only constant-size memory

can emulate the single-amoebot algorithm of Section 7.2. Recall that we assume there

are sufficient amoebots to maintain the binary counters and that the system contains
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a unique leader amoebot ` initially adjacent to the object. In our Convex-Hull-

Formation algorithm, this leader ` is primarily responsible for emulating the amoebot

with unbounded memory in the single-amoebot algorithm. To do so, it organizes the

other amoebots in the system as distributed memory, updating its distances dh to

half-plane h as it moves along the object’s boundary. This is our algorithm’s learning

phase. In the formation phase, ` uses these complete measurements to lead the other

amoebots in forming the convex hull. There is no synchronization among the various

(sub)phases of our algorithm; for example, some amoebots may still be finishing the

learning phase after the leader has begun the formation phase.

7.4.1 Learning the Convex Hull

The learning phase combines the movement rules of the single-amoebot algorithm

(Section 7.2) with the distributed binary counters (Section 7.3) to enable the leader

to measure the convex hull H(O). We note that there are some nuances in adapting

the general-purpose Binary-Counter algorithm for use in our Convex-Hull-

Formation algorithm. For clarity, we will return to these issues in Section 7.4.2 after

describing this phase.

In the learning phase, each amoebot A can be in one of three states, denoted

A.state ∈ {leader, follower, idle}. All non-leader amoebots are assumed to be

initially idle and contracted. To coordinate the system’s movement, the leader `

orients the amoebot system as a spanning tree rooted at itself. This is achieved using

the well-established spanning forest primitive (see, e.g., Chapter 6 and [52]). If an

idle amoebot A is activated and has a non-idle neighbor, then A becomes a follower
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and sets A.parent to this neighbor. This primitive continues until all idle amoebots

become followers.

Imitating the single-amoebot algorithm of Section 7.2, ` performs a clockwise

traversal of the boundary of the object O using the right-hand rule, updating its

distance counters along the way. It terminates once it has visited all six half-planes

without pushing any of them, which it detects using its terminating bits bh. In this

multi-amoebot setting, we need to carefully consider both how ` updates its counters

and how it interacts with its followers as it moves.

Rules for Leader Computation and Movement. If ` is expanded and it has a

contracted follower child A in the spanning tree that is keeping counter bits, ` pulls A

in a handover.

Now suppose ` is contracted. If all its terminating bits bh are equal to 1, then `

has learned the convex hull, completing this phase. Otherwise, it must continue its

traversal of the object’s boundary. If the zero-test operation is unavailable or if it

is holding increment/decrement tokens for any of its dh counters, it does not move.

Otherwise, let i ∈ [6] be its next move direction according to the right-hand rule, and

let v be the node in direction i. There are two cases: either v is unoccupied, or ` is

blocked by another amoebot occupying v.

In the case ` is blocked by a contracted amoebot A, ` can role-swap with A,

exchanging its memory with the memory of A. In particular, ` gives A its counter

bits, its counter tokens, and its terminating bits; promotes A to become the new

leader by setting A.state ← leader and clearing A.parent; and demotes itself by

setting `.state← follower and `.parent← A. This effectively advances the leader’s

position one node further along the object’s boundary.
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If either v is unoccupied or ` can perform a role-swap with the amoebot blocking

it, ` first calculates whether the resulting move would push one or more half-planes

using update vector δi. Let H′ = {h ∈ H : δi,h = −1 and dh = 0} be the set of

half-planes being pushed, and recall that since zero-testing is currently available, ` can

locally check if dh = 0. It then generates the appropriate increment and decrement

tokens according to δi. Next, it updates its terminating bits: if it is about to push a

half-plane (i.e., H′ 6= ∅), then it sets bh ← 0 for all h ∈ H; otherwise, it can again use

zero-testing to set bh ← 1 for all h ∈ H such that dh + δi,h = 0. Finally, ` performs its

move: if v is unoccupied, ` expands into v; otherwise, ` performs a role-swap with the

contracted amoebot blocking it.

Rules for Follower Movement. Consider any follower A. If A is expanded and has

no children in the spanning tree nor any idle neighbor, it simply contracts. If A is

contracted and is following the tail of its expanded parent B = A.parent, it is possible

for A to push B in a handover. Similarly, if B is expanded and has a contracted child

A, it is possible for B to pull A in a handover. However, if A is not emulating counter

bits but B is, then it is possible that a handover between A and B could disconnect

the counters (see Figure 29). So we only allow these handovers if either (i) both keep

counter bits, like A3 and A4 in Figure 29; (ii) neither keep counter bits, like B2 and

B3 in Figure 29; or (iii) one does not keep counter bits while the other holds the final

token, like A6 and C1 in Figure 29.
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Figure 29. Safe Handovers in the Learning Phase. The leader A0 (black dot) and its
followers (black circles). Followers with dots keep counter bits, and A6 holds the final
token. Allowing B1 to handover with A3 would disconnect the counter, while all other
potential handovers are safe.

7.4.2 Adapting Binary-Counter for Convex-Hull-Formation

Both the learning phase (Section 7.4.1) and the formation phase (Section 7.4.3) use

the six distance counters dh, for h ∈ H. As alluded to in the previous section, we now

describe how to adapt the general-purpose Binary-Counter algorithm described in

Section 7.3 for the Convex-Hull-Formation algorithm.

First, since the amoebot system is organized as a spanning tree instead of a simple

path, an amoebot A must unambiguously decide which neighboring amoebot keeps

the next most significant bit. Amoebot A first prefers a child in the spanning tree

already holding bits of a counter. If none exist, a child “hull”, “marker”, or “pre-

marker” amoebot (see Section 7.4.3) is used. Finally, if none exist, a child on the

object’s boundary is chosen. (We prove that at least one of these cases is satisfied in

Lemma 7.4.6).

Second, each amoebot may participate in up to six dh counters instead of just one.

Since the different counters never interact with one another, this modification is easily
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handled by indexing the counter variables by the counter they belong to. For each

half-plane h ∈ H, the final token fh denotes the end of the counter dh, increment and

decrement tokens are tagged c+
h and c−h , respectively, and an amoebot A keeps bits

A.bith and holds tokens A.toksh.

Third, the amoebot system is moving instead of remaining static, which affects

the binary counters in two ways. As described in Section 7.4.1, certain handovers

must be prohibited to protect the connectivity of the counters. Role-swaps would

also disconnect the counters, since the leader transfers its counter information (bits,

tokens, etc.) into the memory of the amoebot blocking it. To circumvent this issue,

we allow each amoebot to keep up to two bits of each counter instead of one. Then,

during a role-swap, the leader only transfers its less significant bits/tokens for each

counter dh, retaining the information related to the more significant bits and thus

keeping the counters connected.

The fourth and final modification to the binary counters is called bit forwarding.

As described above, both amoebots involved in the role-swap are left keeping only

one bit instead of two. Thus, if ever an amoebot A only has one bit of a counter dh

while the amoebot B keeping the next most significant bit(s) has two, A can take the

less significant bit and tokens from B. This ensures that all amoebots eventually hold

two bits again.

Other than these four adaptations, the mechanics of the counter operations remain

exactly as in Section 7.3. These adaptations increase the memory load per amoebot by

only a constant factor (i.e., by one additional bit per half-plane), so the constant-size

memory constraint remains satisfied.
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7.4.3 Forming the Convex Hull

The formation phase brings as many amoebots as possible into the nodes of the

convex hull H(O). It is divided into two subphases. In the hull closing subphase, the

leader amoebot ` uses its binary counters to lead the rest of the amoebot system along

a clockwise traversal of H(O). If ` completes its traversal, leaving every node of the

convex hull occupied by (possibly expanded) amoebots, the hull filling subphase fills

the convex hull with as many contracted amoebots as possible.

We begin with the hull closing subphase. When the learning phase ends, the leader

amoebot ` occupies a position s ∈ H(O) (by Lemma 7.2.3) and its distributed binary

counters contain accurate distances to each of the six half-planes h ∈ H. The leader’s

main role during the hull closing subphase is to perform a clockwise traversal of H(O),

leading the rest of the amoebot system into the convex hull. In particular, ` uses its

binary counters to detect when it reaches one of the six vertices of H(O), at which

point it turns 60◦ clockwise to follow the next half-plane, and so on.

The amoebot system tracks the position s that ` started its traversal from by

ensuring a unique marker amoebot occupies it. The marker amoebot is prohibited

from contracting out of s except as part of a handover, at which point the marker

role is transferred so that the marker amoebot always occupies s. Thus, when `

encounters the marker amoebot occupying the next node of the convex hull, it can

locally determine that it has completed its traversal and this subphase.

However, there may not be enough amoebots to close the hull. Let n be the

number of amoebots in the system and H = |H(O)| be the number of nodes in the

convex hull. If n < dH/2e, eventually all amoebots enter the convex hull and follow

the leader as far as possible without disconnecting from the marker amoebot, which
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is prohibited from moving from position s. With every hull amoebot expanded and

unable to move any farther, a token passing scheme is used to inform the leader that

there are insufficient amoebots for closing the hull and advancing to the next subphase.

Upon receiving this message, the leader terminates, with the rest of the amoebots

following suit.

In the following, we give a detailed implementation of this subphase from the

perspective of an individual amoebot A.

Rules for Leader Computation and Movement. If the leader ` is holding the

“all expanded” token and does not have the marker amoebot in its neighborhood

— indicating that there are insufficient amoebots to complete this subphase — it

generates a “termination” token and passes it to its child in the spanning tree. It then

terminates by setting `.state← finished.

Otherwise, if ` is expanded, there are two cases. If ` has a contracted hull child A

(i.e., a child A with A.state = hull), ` performs a pull handover with A. If ` does not

have any hull children but does have a contracted follower child A keeping counter

bits, then this is its first expansion of the hull closing subphase and the marker should

occupy its current tail position. So ` sets A.state ← pre-marker and performs a

pull handover with A (see Figure 30a–30b).

During its hull traversal, ` keeps a variable `.plane ∈ H indicating which half-plane

boundary it is currently following. It checks if it has reached the next half-plane by

zero-testing: if the distance to the next half-plane is 0, ` updates `.plane accordingly.

It then inspects the next node of its traversal along `.plane, say v. If v is occupied by

the marker amoebot A, then ` has completed the hull closing subphase; it updates

A.state← finished and then advances to the hull filling subphase. Otherwise, if ` is
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Figure 30. The Hull Closing Subphase. (a) After expanding for the first time, the
leader ` occupies the starting position s with its tail. (b) After performing a handover
with `, follower child Q becomes the pre-marker (inner circles). (c) When Q contracts,
it becomes the marker (inner dot). (d) If there are insufficient amoebots to close the
hull, the marker amoebot will eventually become expanded and unable to contract
without vacating position s.

contracted, it continues its traversal of the convex hull by either expanding into node

v if v is unoccupied or by role-swapping with the amoebot blocking it, just as it did

in the learning phase.

Rules for the Marker Amoebot Logic. The marker role must be passed between

amoebots so that the marker amoebot always occupies the position at which the

leader started its hull traversal. Whenever a contracted marker amoebot A expands

in a handover with its parent, it remains a marker amoebot. When A subsequently

contracts as a part of a handover with a contracted child B, A becomes a hull amoebot

and B becomes a pre-marker. Finally, when the pre-marker B contracts — either

on its own or as part of a handover with a contracted child — B becomes the marker

amoebot (see Figure 30c).

Importantly, the marker amoebot A never contracts outside of a handover, as this

would vacate the leader’s starting position (see Figure 30d). If A is ever expanded

but has no children or idle neighbors, it generates the “all expanded” token and passes

it forward along expanded amoebots only. If this ultimately causes the leader to

learn there are insufficient amoebots to close the hull (as described above) and the
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“termination” token is passed all the way back to A, A terminates by consuming the

termination token and becoming finished.

Rules for Follower and Hull Amoebot Behavior. Follower amoebots move just as

they did in the learning phase, with two additional conditions. First, if ever a follower

is involved in a handover with the pre-marker or marker amoebot, their states are

updated as described above. Second, follower amoebots never perform handovers with

hull amoebots.

Hull amoebots are simply follower amoebots that have joined the convex hull. They

only perform handovers with the leader and other hull amoebots. Additionally, they’re

responsible for passing the “all expanded” and “termination” tokens: if an expanded

hull amoebot A holds the “all expanded” token and its parent is also expanded, A

passes this token to its parent. If a hull amoebot A is holding the “termination” token,

it terminates by passing this token to its hull or marker child and becoming finished.

We now turn to the hull filling subphase, which is the final phase of the algorithm. It

begins when the leader ` encounters the marker amoebot in the hull closing subphase,

completing its traversal of the hull. At this point, the hull is entirely filled with

amoebots, though some may be expanded. The remaining followers are either outside

the hull or are trapped between the hull and the object. The goal of this subphase is

to (i) allow trapped amoebots to escape outside the hull, and (ii) use the followers

outside the hull to “fill in” behind any expanded hull amoebots, filling the hull with as

many contracted amoebots as possible.

At a high level, this subphase works as follows. The leader ` first becomes finished.

Each hull amoebot then also becomes finished when its parent is finished. A finished
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amoebot A labels a neighboring follower B as either trapped or filler depending

on whether B is inside or outside the hull, respectively. This can be determined locally

using the relative position of B to the parent of A, which is the next amoebot on the

hull in a clockwise direction. A trapped amoebot performs a coordinated series of

movements with a neighboring finished amoebot to effectively take its place, “pushing”

the finished amoebot outside the hull as a filler amoebot. Filler amoebots perform a

clockwise traversal of the surface of the hull (i.e., the finished amoebots) searching for

an expanded finished amoebot to handover with. Doing so effectively replaces a single

expanded finished amoebot on the hull with two contracted ones.

There are two ways the hull filling subphase can terminate. Recall that n is

the number of amoebots in the system and H = |H(O)| is the number of nodes in

the convex hull. If n ≥ H, the entire hull can be filled with contracted amoebots.

To detect this event, a token is used that is only passed along contracted finished

amoebots. If it is passed around the entire hull, termination is broadcast so that all

amoebots (including the extra ones outside the hull) become finished. However, it

may be that dH/2e ≤ n < H; that is, there are enough amoebots to close the hull

but not enough to fill it with all contracted amoebots. In this case, all amoebots will

still eventually join the hull and become finished.

In the following, we describe the local rules underlying the three important

primitives for this subphase.

Freeing Trapped Amoebots. Suppose a finished amoebot A has labeled a neighboring

contracted amoebot B as trapped (see Figure 31a). In doing so, A sets itself as the

parent of B. When B is next activated, it sets A.state← pre-filler (see Figure 31b).

This indicates to A that it should expand towards the outside of the hull as soon as
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Figure 31. Freeing a Trapped Amoebot. (a) A finished amoebot A marks a neighboring
follower B on the interior of the hull as trapped (inner triangle). (b) B marks its
parent A as a pre-filler (inner circle). (c) A expands outside the hull. (d) In a handover
between A and B, A becomes a filler (inner dot) and B becomes pre-finished (gray).
(e) B contracts and becomes finished.

possible (Figure 31c). Once A has expanded, A and B perform a handover (Figure 31d).

This effectively pushes A out of the hull, where it becomes a filler amoebot, and

expands B into the hull, where it becomes pre-finished. Finally, whenever B contracts

— either on its own or during a handover — it becomes finished, taking the original

position and role of A (Figure 31e).

Filling the Hull. An amoebot A becomes a filler either by being labeled so by a

neighboring finished amoebot or by being ejected from the hull while freeing a trapped

amoebot, as described above. If A is expanded, it simply contracts if it has no children

or idle neighbors, or performs a pull handover with a contracted follower child if it

has one. If A is contracted, it finds the next node v on its clockwise traversal of the

hull. Amoebot A simply expands into v unless the first occupied node clockwise from

v is occupied by the tail of an expanded finished amoebot B. In this case, A performs

a push handover with B, sets B to be its parent, and becomes pre-finished. Whenever

A next contracts — either on its own or during a handover — it becomes finished.

An example of a some movements of filler amoebots can be found in Figure 32.
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Figure 32. Movements of Filler Amoebots. (a) A finished amoebotAmarks neighboring
followers B and C on the exterior of the hull as fillers (inner triangle). (b) B performs
a handover with A to fill the hull, becoming pre-finished (gray), while C expands
along a clockwise traversal of the hull. (c) B contracts and becomes finished.

Detecting Termination. Before ` finishes at the start of this subphase, it generates

an “all contracted” token containing a counter t initially set to 0. This token is passed

backwards along the hull to contracted finished amoebots only. Whenever the token

is passed through a vertex of the convex hull, the counter t is incremented. Thus,

if a contracted finished amoebot is ever holding the “all contracted” token and its

counter t is equal to 7, it terminates by consuming the “all contracted” token and

broadcasting “termination” tokens to all its neighbors. Whenever an amoebot receives

a termination token, it also terminates by becoming finished.

7.4.4 Correctness Analysis

Correctness of the Counters. We first build on the correctness proofs of Section 7.3

to show that the adapted distributed binary counters described in Section 7.4.2 remain

correct. Recall that there are six dh counters maintained by a spanning tree of follower

amoebots rooted at the leader `. Because the dh counters never interact with one

another, we can analyze the correctness of each counter independently. Also recall
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that we allow each amoebot to keep up to two bits of each counter instead of one.

Since the order of the bits is maintained, this does not affect correctness. We begin

by proving several general results. Throughout this section, recall that B = |B(O)|

denotes the length of the object’s boundary, and H = |H(O)| denotes the length of

the object’s convex hull.

Lemma 7.4.1. The distributed binary counters never disconnect.

Proof. By the spanning forest primitive, the amoebot system cannot physically become

disconnected. So the only way to disconnect a counter dh is to insert a follower that is

not keeping bits of dh between two amoebots that are. There are two ways this could

occur. A contracted follower not keeping bits of dh could perform a handover with

an expanded follower that is (as in Figure 29), separating the counter from its more

significant bits. Alternatively, the leader ` could role-swap without leaving behind

a bit to keep dh connected. Both of these movements were explicitly forbidden in

Section 7.4.1, so the counters remain connected.

Next, we prove two useful results regarding the lengths of the distributed binary

counters.

Lemma 7.4.2. Let L be the path of nodes traversed by leader ` from the start of

the algorithm to its current position. Then there are at most blog2 min{|L|, H}c+ 1

amoebots holding bits of a distributed binary counter dh.

Proof. It is easy to see that the value of dh is at most min{|L|, H}: ` cannot be

further from its current estimation of half-plane h than the number of moves it has

made, and its distance from the true half-plane h is trivially upper bounded by the

length of the convex hull. Since exactly blog2 bc+ 1 bits are needed to store a binary

value b, we have that blog2 min{|L|, H}c+ 1 bits suffice to store dh. Each amoebot
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maintaining dh holds at least one bit, so there are at most blog2 min{|L|, H}c+ 1 such

amoebots.

Lemma 7.4.3. Let L be the path of nodes traversed by leader ` from the start of the

algorithm to its current position. Then there are at least min{n, d|L|/2e} amoebots

including ` along L.

Proof. Argue by induction on |L|. If |L| = 1, then min{n, d|L|/2e} = 1 and ` is the

only amoebot on its traversal path. So consider any |L| > 1, and suppose that the

lemma holds for all |L′| < |L|. In particular, consider the subpath L′ ⊆ L containing

all nodes of L except the one ` most recently moved into; thus, |L′| = |L| − 1. By the

induction hypothesis, there were at least min{n, d(|L| − 1)/2e} amoebots including `

on L′. We show that after ` moves into the |L|-th node of its traversal, there are at

least min{n, d|L|/2e} amoebots along L.

If n ≤ d(|L| − 1)/2e, then all amoebots (including `) were on L′. Regardless

of how ` moves into the |L|-th node of its traversal — i.e., either by an expansion

or a role-swap — it cannot remove an amoebot as its follower. So there remain

n ≥ min{n, d|L|/2e} amoebots along L.

Otherwise, if n > d(|L| − 1)/2e, there are two cases to consider. If |L| − 1 is odd,

then there were at least |L|/2 amoebots on L′, a path of |L| − 1 nodes. Thus, at

least one amoebot on L′ was contracted. Via successive handovers, ` could eventually

become contracted and perform its expansion or role-swap into the |L|-th node of its

traversal, which again could not remove any of its followers. So there are at least

|L|/2 ≥ min{n, d|L|/2e} amoebots along L.

The second case is if |L| − 1 is even, implying that there were at least (|L| − 1)/2

amoebots on L′, a path of |L| − 1 nodes. If there were strictly more than (|L| − 1)/2

amoebots on L′, at least one of them must have been contracted, and an argument
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similar to the odd case applies here as well. However, if there were exactly (|L| − 1)/2

amoebots on L′, then every amoebot along L′ was expanded, including `. Thus,

some new follower must have joined L′ in order to enable successive handovers that

allowed ` to contract and then move into the |L|-th node of its traversal. So there are

(|L| − 1)/2 + 1 = (|L|+ 1)/2 ≥ min{n, d|L|/2e} amoebots along L.

These two lemmas are the key to proving the safety of our Convex-Hull-

Formation algorithm’s use of Binary-Counter. In particular, we now show that

the distributed binary counters never intersect themselves — corrupting the order of

the bits — and that there are always enough amoebots to maintain the counters.

Corollary 7.4.4. The distributed binary counters never intersect.

Proof. Suppose to the contrary that ` forms a cycle ` = A1, . . . , Ak, Ak+1 = A1 in the

spanning tree such that every amoebot Ai on the cycle is keeping bits of a counter dh.

Recall that ` first traverses B(O) in the learning phase until it accurately measures

the convex hull, at which point it traverses H(O) in the hull closing subphase.

The amoebots maintaining counters only exist on this traversal path. Thus, any

cycle ` could create has length k ≥ H. But by Lemma 7.4.2, there are at most

blog2 min{|L|, H}c + 1 amoebots holding bits of a given counter, and this value is

maximized when |L| ≥ H. So the cycle must have length at least H but at most

blog2Hc+ 1, which is impossible because H ≥ 6 due to the geometry of the triangular

lattice, a contradiction.

Corollary 7.4.5. There are always enough amoebots to maintain the distributed

binary counters.

Proof. We prove that the number of amoebots holding bits of a given counter never

exceeds the number of amoebots following leader ` along its traversal path. By
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Lemmas 7.4.2 and 7.4.3, it suffices to show blog2 min{m,H}c+ 1 ≤ min{n, dm/2e}

for any number of nodes m ≥ 1 traversed by `. Using the assumption that n > log2H,

careful case analysis shows that this inequality holds.

The following lemma shows that each amoebot can unambiguously decide which

amoebot holds the next most significant bit of a counter when the amoebot system is

structured as a spanning tree instead of a simple path.

Lemma 7.4.6. Suppose a distributed binary counter dh is maintained by amoebots

` = A1, . . . , Ak, where k ≤ blog2Hc. Then for every i ∈ {1, . . . , k}, Ai can identify

the amoebot responsible for the next most significant bit of dh unambiguously.

Proof. Recall from Section 7.4.2 that Ai identifies the amoebot responsible for the

next most significant bit of dh by preferring, in this order, a child already holding

counter bits, a child hull or (pre-)marker amoebot, or a child on B(O). We show such

an amoebot exists and is unambiguous by induction on k.

If k = 1, then ` = A1 is the only amoebot keeping bits of dh and thus has no

children keeping counter bits. If ` is only holding one bit of dh, then ` itself could

hold the next most significant bit. So suppose ` is holding two bits of dh, implying

that ` has expanded or role-swapped at least twice. In the learning phase, no hull or

(pre-)marker amoebots exist. Since ` only traverses B(O) in this phase, it always has

a follower child on B(O). In the hull closing subphase, ` only traverses H(O), and

all amoebots on H(O) are either hull amoebots or the (pre-)marker amoebot. The

hull filling subphase does not use counters. Thus, in all phases, ` can unambiguously

identify the amoebot responsible for the next most significant bit.

Now consider any 1 < k ≤ blog2Hc, and suppose the lemma holds for all k′ < k.

For all 1 ≤ i < k, Ai+1 is the unambiguous child of Ai already holding bits of dh.
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So consider Ak. If Ak is only holding one bit of dh, then Ak itself could hold the

next most significant bit. So suppose Ak is holding two bits of dh. If Ak is a hull

amoebot, it has exactly one child also on the convex hull and this child must be

a hull amoebot or the (pre-)marker amoebot. Otherwise (i.e., if Ak is not a hull

amoebot), we know by the induction hypothesis that Ak is either the (pre-)marker

amoebot or a follower on B(O). In order for Ak to be holding two bits of dh, the

value of dh must be at least 2k since dh is connected by Lemma 7.4.1. This implies

` has expanded or role-swapped at least 2k times, so by Lemma 7.4.3 there are at

least min{n, d(2k + 1)/2e} amoebots following ` along its traversal path. To identify a

unique child follower of Ak on B(O), it suffices to show min{n, d(2k + 1)/2e} ≥ k, i.e.,

that there are more followers extending along B(O) than are currently holding bits of

dh. By our assumption that n > log2H and our supposition that k ≤ blog2Hc, we

have n > log2H ≥ blog2Hc+ 1 > k. Since 2k + 1 is always odd whenever k > 1, we

have d(2k + 1)/2e = 2k−1 + 1, which is strictly greater than k for all k > 1.

Thus, the counters are all extended along the same, unambiguous path of amoebots.

To conclude our results on the distributed binary counters, we show that bit forwarding

moves the bits of all six counters towards the leader as far as possible.

Lemma 7.4.7. If ` only has one bit of a distributed binary counter dh and is not

holding the final token fh at time t, then there exists a time t′ > t when ` either has

two bits of dh or is holding fh.

Proof. Suppose ` is only emulating one bit of a counter dh and is not holding fh at

time t. Argue by induction on i, the number of consecutive amoebots starting at

` = A1 that are only emulating one bit of dh and are not holding fh. If i = 1, then A2

must either be (i) emulating two bits of dh, (ii) emulating the most significant bit
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(MSB) of dh and holding fh, or (iii) only holding fh. In cases (i) and (ii), ` can take

the less significant bit from A2 during its next activation (say, at time t′ > t) while in

case (iii) ` can take fh instead.

Now suppose i > 1 and the induction hypothesis holds up to i− 1. Then Ai−1 is

only emulating one bit of dh and is not holding fh while Ai satisfies one of the three

cases above. As in the base case, after the next activation of Ai−1 (say, at t1 > t),

Ai−1 is either emulating two bits of dh or is holding fh. Therefore, by the induction

hypothesis, there exists a time t′ > t1 when ` is also either emulating two bits of dh or

holding fh.

Correctness of the Learning Phase. To prove the learning phase is correct, we must

show that the leader ` obtains an accurate measurement of the convex hull by moving

and performing zero-tests, emulating the single-amoebot algorithm of Section 7.2.

We already proved in Lemmas 7.3.1 and 7.3.2 that ` will always eventually be able

to perform a reliable zero-test. So we now prove the correctness of the amoebot

system’s movements. This relies in part on previous work on the spanning forest

primitive (see Section 9, [52]), where movement for a spanning tree following a leader

amoebot was shown to be correct. In fact, the correctness of our algorithm’s follower

movements follows directly from this previous analysis, so it remains to show the

leader’s movements are correct.

Lemma 7.4.8. If ` is contracted, it can always eventually expand or role-swap along

its clockwise traversal of B(O). If ` is expanded, it can always eventually perform a

handover with a follower.

Proof. First suppose ` is contracted. Leader ` can only move if its zero-test operation
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is available for all of its dh counters, which must eventually be the case by Lemma 7.3.1.

Let v be the next clockwise node on B(O). If v is unoccupied, ` can simply expand

into node v. Otherwise, ` needs to perform a role-swap with the amoebot occupying

v. This is only allowed when, for each counter dh, ` holds two bits or the final token

fh. Lemma 7.4.7 shows this is always eventually true, implying ` can perform the

role-swap. In either case, ` moves into v.

Now suppose ` is expanded. By the spanning forest primitive, some follower child

A of ` will eventually contract. Thus, ` can perform a pull handover with A in its

next activation to become contracted.

By Lemma 7.4.8, we have that the leader ` can exactly emulate the movements

of the single amoebot in Section 7.2. Thus, as a direct result of Theorem 7.2.4, `

completes the learning phase with an accurate measurement of the convex hull of O.

Correctness of the Formation Phase. The formation phase begins with the leader

` occupying its starting position s ∈ H(O) ∩ B(O). Recall that in the hull closing

subphase, ` uses its binary counters to perform a clockwise traversal of the convex

hull H(O), leading the rest of the amoebot system into the convex hull. The amoebot

system tracks the starting position s by ensuring a marker amoebot always occupies

it, as we now prove.

Lemma 7.4.9. The starting position s is always occupied by the leader, pre-marker,

or marker amoebot.

Proof. Initially, the leader ` occupies s. When it expands into the first node of H(O),

its tail still occupies s. When it contracts out of s as part of a handover with a

contracted follower child A, it sets A as the pre-marker amoebot; at this point, the
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head of A occupies s. Whenever a pre-marker amoebot contracts to occupy s only —

either on its own or as part of a handover with a contracted child — it becomes the

marker amoebot. A marker amoebot A may expand so that its tail still occupies s,

but can only contract out of s as part of a handover with a contracted child, which A

then sets as the pre-marker amoebot. Thus, in all cases, s is either occupied by the

leader, the pre-marker, or the marker amoebot.

If there are insufficient amoebots to close the hull, we must show that the amoebot

system fills as much of the hull as possible and then terminates.

Lemma 7.4.10. If there are fewer than dH/2e amoebots in the system, each amoebot

will eventually terminate, expanded over two nodes of H(O).

Proof. By nearly the same argument as for Lemma 7.4.8, ` will always eventually

move along its traversal of H(O), guided by its counters that continuously update the

distances to each half-plane. However, by Lemma 7.4.9, the starting position s cannot

be vacated by the marker amoebot unless another amoebot replaces it in a handover.

Thus, ` will be able to traverse at most 2n nodes of H(O) before all amoebots in the

system are expanded, unable to move any further. By supposition, n < dH/2e: if H is

even, then dH/2e = H/2 and thus 2n ≤ H − 1; if H is odd, then dH/2e = (H + 1)/2

and thus 2n ≤ 2((H + 1)/2− 1) = H − 1. Thus, there are insufficient amoebots to

close the hull, even if all amoebots expand.

When the marker amoebot is expanded and has no children, which must occur by

the above argument, it generates the “all expanded” token allexp. Because the allexp

token is only passed towards the leader by expanded amoebots, we are guaranteed

that every amoebot from the marker up to the amoebot currently holding allexp is

expanded. Thus, if ` ever receives the allexp token but does not have the marker
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amoebot in its neighborhood, ` can locally decide that there are insufficient amoebots

to close the hull. Termination is then broadcast from `.

Assuming there are sufficient amoebots to close the hull, we must show that the

leader successfully completes its traversal of H(O) and advances to the hull filling

subphase.

Lemma 7.4.11. If there are at least dH/2e amoebots in the system, then the leader `

will complete its traversal of H(O), closing the hull.

Proof. Once again, by nearly the same argument as for Lemma 7.4.8, ` will always

eventually move along its traversal of H(O). As in Lemma 7.4.10, ` will be able to

traverse at most 2n nodes of H(O). By supposition, since n ≥ dH/2e, we have that

2n ≥ H. Thus, there are enough amoebots for ` to close the hull.

So it remains to show that the “all expanded” token allexp does not cause `

to terminate incorrectly when there are sufficient amoebots to close the hull. By

Lemma 7.4.8, ` has completed at least one traversal of B(O). Combining Lemma 7.4.3

with our supposition that n ≥ dH/2e and the fact that B ≥ H, we have that ` has at

least

min

{
n,

⌈
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2

⌉}
− 1 ≥ min
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amoebots following it. Thus, in order for the marker amoebot to be expanded and

have no children — allowing it to generate the allexp token — there must be at least

dH/2e amoebots from the marker amoebot to ` all on the hull. If the allexp token

is eventually passed to `, then all of these amoebots from the marker to ` must be

expanded. So there must be exactly H/2 of them, since they are all expanded but

must fit in the H nodes of the convex hull. Therefore, either ` receives the allexp token
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but has already closed the hull or ` never receives the allexp token. In either case, `

closes the hull and can advance to the hull filling subphase.

The hull filling subphase begins when ` encounters the marker amoebot, closing

the hull and finishing. At this point, the hull may be occupied by both expanded and

contracted amoebots. We must show that this subphase fills the hull with as many

contracted amoebots as possible.

Lemma 7.4.12. If H(O) is closed but not filled with all contracted amoebots and

there exists an amoebot occupying a node not in H(O), then at least one amoebot can

make progress towards filling another hull position with a contracted amoebot.

Proof. The main idea of this argument is to categorize all types of amoebots that

occupy nodes outside H(O) and then order these categories such that if no amoebots

in the first i categories exist, then an amoebot in the (i+ 1)-th category must be able

to make progress.

The first category contains all types of amoebots that are able to make progress

without needing changes in their neighborhoods. Any idle amoebot adjacent to a

non-idle amoebot can become a follower in its next activation. Similarly, any hull

amoebot adjacent to a finished amoebot can become finished in its next activation.

If no amoebots from the first category exist to make progress independently, we

show a amoebot from this second category can make progress. Any expanded amoebot

with no children can contract in its next activation, since there are no idle amoebots

adjacent to non-idle amoebots. Since no hull amoebots are adjacent to finished

amoebots, all hull amoebots must be finished. Thus, any contracted follower adjacent

to a node of H(O) will be labeled as either trapped or filler by a neighboring finished

amoebot in its next activation. Moreover, any trapped amoebot must have a finished
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parent: if this parent is expanded, the trapped amoebot can perform a handover with

it to become pre-finished; otherwise, the trapped amoebot can mark this parent as a

pre-filler.

Now consider a third category, assuming no amoebots from the first two categories

exist. Among expanded followers waiting to contract in a handover, at least one

expanded follower must have a contracted follower child to handover with because

all followers with no children are contracted. Any expanded pre-filler must have a

contracted trapped amoebot it is freeing, so these amoebots can perform a handover

in their next activation, causing the trapped amoebot to become pre-finished and the

pre-filler to become a filler.

The fourth category follows from the third. Any expanded filler or pre-finished

amoebot must be waiting to perform a handover with a contracted follower child since

all expanded amoebots with no children have already contracted. But all followers

are now contracted and not adjacent to nodes of H(O). Thus, any expanded filler or

pre-finished amoebot waiting to perform a handover with a contracted follower child

can do so in its next activation.

The fifth category follows from the third and fourth. From the fourth category, we

can now assume all filler amoebots are contracted. So any contracted filler amoebots

that can handover with a neighboring expanded finished amoebot do so, becoming

pre-finished. But from the third category, we know there are no expanded pre-fillers

protruding onto the surface of the convex hull. So there must exist a contracted filler

whose next node on its clockwise traversal of the surface of H(O) is unoccupied, and

this contracted filler can expand in its next activation.

The final category contains contracted pre-fillers needing to expand outwards,

onto the exterior of the convex hull. From the previous categories, we can assume
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that there are no longer any followers or fillers on the surface of the convex hull.

Thus, nothing is blocking a contracted pre-filler from expanding outwards in its next

activation. Therefore, as these six categories are exhaustive, we conclude that as long

as there exists a amoebot occupying a node outside H(O), at least one amoebot can

make progress.

Applying Lemma 7.4.12 iteratively, we can immediately conclude that the convex

hull is eventually filled with all contracted amoebots if there are enough amoebots to

do so, i.e., if there are at least H amoebots. However, if there are dH/2e ≤ n < H

amoebots (i.e., there are enough amoebots to close the hull but not enough to fill it

with all contracted amoebots), applying Lemma 7.4.12 iteratively shows that the hull

is filled with as many contracted amoebots as possible. The following lemma shows

that the system terminates correctly in either case.

Lemma 7.4.13. If there are at least dH/2e amoebots in the system, all amoebots

eventually terminate, filling H(O) with as many contracted amoebots as possible.

Proof. Since there are at least dH/2e amoebots, the hull will be closed by Lemma 7.4.11.

If the system contains n ≥ H amoebots, then applying Lemma 7.4.12 iteratively shows

that the hull is eventually entirely filled with contracted finished amoebots. However,

the n −H extra amoebots must also terminate. Recall that the leader ` generates

the “all contracted” token allcon before it finishes at the start of the phase, and that

this token is passed backwards along the hull over contracted finished amoebots only.

Thus, we are guaranteed that every amoebot from the amoebot currently holding

the allcon token up to the finished amoebot that was the leader is contracted and

finished. Since the hull is eventually filled with all contracted finished amoebots, allcon
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eventually completes its traversal of the hull, triggering termination that is broadcast

to all amoebots in the system.

If the system contains dH/2e ≤ n < H amoebots, then there are too few amoebots

to fill H(O) with only contracted amoebots. Thus, applying Lemma 7.4.12 iteratively

shows that eventually all amoebots join the hull and become finished. Therefore, in all

cases, the hull is filled with as many contracted amoebots as possible and all amoebots

eventually finish.

We summarize our correctness results in the following theorem.

Theorem 7.4.14. The Convex-Hull-Formation algorithm correctly solves in-

stance (S, O) of the convex hull formation problem if |S| ≥ |H(O)|, and otherwise

forms a maximal partial strong O∆-hull of O.

7.4.5 Runtime Analysis

We now bound the worst-case number of fair, sequential rounds for the leader `

to learn and form the convex hull. As in Section 7.3, we use dominance arguments

(Remark 1) to show that the worst-case number of parallel rounds required by a

carefully defined parallel schedule is no less than the runtime of our algorithm. The

first dominance argument will show that the counters bits are forwarded quickly

enough to avoid blocking leader expansions and role-intos. The second will relate the

time required for ` to traverse the object’s boundary and convex hull to the running

time of our algorithm. Both build upon the dominance arguments of Section 6.3,

which analyzed spanning trees of amoebots led by their root amoebots. Several

nontrivial extensions are needed here to address the interactions between the counters

and amoebot movements as well as traversal paths that can be temporarily blocked.
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We first analyze the performance of bit forwarding (Section 7.4.2). Note that

this is independent of the actual counter operations analyzed in Section 7.3; here, we

analyze how the amoebots forward their counter bits towards the leader `. Suppose

a counter dh is maintained by amoebots ` = A0, A1, . . . Ak, that is, each amoebot Ai

holds one or two bits of dh and amoebot Ak holds the final token fh. A bit forwarding

configuration C of counter dh encodes the number of counter elements (i.e., bits of dh

or the final token fh) each amoebot holds as C = [C(0), . . . , C(k)], where C(i) ∈ {1, 2}

is the number of elements held by amoebot Ai. A bit forwarding configuration C

dominates another configuration C ′ — denoted C � C ′ — if and only if the first i

amoebots of C hold at least as many bits of dh as the first i amoebots of C ′ do, i.e., if∑i
j=0C(j) ≥

∑i
j=0C

′(j) for all i ∈ {0, . . . , k}.

Definition 7.4.15. A parallel bit forwarding schedule (C0, . . . , Ct) is a sequence of

bit forwarding configurations such that for every 1 ≤ i ≤ t, Ci is reached from Ci−1

using one of the following for each amoebot Aj, for 0 ≤ j ≤ k:

1. The leader ` = A0 performs a role-swap with an amoebot in front of it, say A−1,

so Ci(0) = Ci−1(0)− 1 = 1 and Ci(−1) = 1, shifting the indexes forward.

2. Ak holding fh either forwards fh to Ak−1 or Ak−1 takes fh from Ak, so Ci(k) =

Ci−1(k)− 1 = 0 and Ci(k − 1) = Ci−1(k − 1) + 1 = 2.

3. Aj forwards a counter element to Aj−1 and takes a counter element from Aj+1, so

Ci(j+1) = Ci−1(j+1)−1, Ci(j) = Ci−1(j) = 1, and Ci(j−1) = Ci−1(j−1)+1 =

2.

4. Aj does not forward or receive any bits, so Ci(j) = Ci−1(j).

Such a schedule is greedy if the above actions are taken in parallel whenever possible
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without disconnecting the counters (i.e., leaving some C(j) = 0 for j < k) or giving

any amoebot more than two counter elements.

Greedy parallel bit forwarding schedules can be directly mapped onto the greedy

parallel forest schedules of Definition 6.3.2. An amoebot keeping two counter elements

in a bit forwarding configuration C corresponds to a contracted amoebot in an amoebot

system configuration M ; two adjacent amoebots each keeping a single counter element

in C correspond to a single expanded amoebot in M . Further, the way counter tokens

are passed can be exactly mapped onto expansions, contractions, and handovers of

amoebots. So the next result follows immediately from Lemmas 6.3.3 and 6.3.4 and

the fact that ` can only role-swap if it has two counter elements.

Lemma 7.4.16. Suppose leader ` only has one bit of a counter dh and is not holding

the final token fh in round 0 ≤ i ≤ t − 2 of greedy parallel bit forwarding schedule

(C0, . . . , Ct). Then within the next two parallel rounds, ` will either have a second bit

of dh or will be holding fh.

Next, we combine the parallel counter schedule of Definition 7.3.3, the parallel bit

forwarding schedule of Definition 7.4.15, and the movements of amoebots following

leader ` to define a more general parallel tree-path schedule. We use these parallel

tree-path schedules to bound the runtime of a spanning tree of amoebots led by a

leader traversing some path P. This bound will be the cornerstone of our runtime

proofs for the learning and formation phases. Here, we consider amoebot system

configurations C that encode each amoebot’s position, state, whether it is expanded

or contracted, and any counter bits and tokens it may be holding. Note that C

contains all the information encoded by the counter configurations of Definition 7.3.3

and by the bit forwarding configurations of Definition 7.4.15. Thus, for an amoebot
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system configuration C, let Ccount (resp., Cbit) be the counter configuration (resp., bit

forwarding configuration) based on C.

Definition 7.4.17. A parallel tree-path schedule ((C0, . . . , Ct),P) is a schedule

(C0, . . . , Ct) such that the amoebot system in C0 forms a tree of contracted amoebots

rooted at the leader `, P is a (not necessarily simple) path in G∆ \ O starting at

the position of ` in C0 and, for every 1 ≤ i ≤ t, Ci is reached from Ci−1 such that

(i) any counter operations are processed according to the parallel counter schedule

(∆, (Ccount
0 , . . . , Ccount

i )) where ∆ is the sequence of counter operations induced by the

change vectors δi associated with P , (ii) any bit forwarding operations are processed

according to the parallel bit forwarding schedule (Cbit
0 , . . . , Cbit

i ), and (iii) one of the

following hold for each amoebot A:

1. The next position in path P is occupied by an amoebot and amoebot A = `

role-swaps with it.

2. The next position in path P is unoccupied and amoebot A = ` expands into it.

3. A contracts, leaving the node occupied by its tail empty in Ci.

4. A performs a handover with a neighbor B.

5. A does not move, occupying the same nodes in Ci−1 and Ci.

Such a schedule is greedy if the parallel counter and bit forwarding schedules are greedy

and the above actions are taken in parallel whenever possible without disconnecting

the amoebot system or the counters.

Even when P is not a simple path, we know the distributed binary counters never

disconnect or intersect by Lemma 7.4.1 and Corollary 7.4.4. Thus, for any greedy

parallel counter schedule, its greedy parallel counter and bit forwarding schedules

are characterized by Theorem 7.3.7 and Lemma 7.4.16, respectively. Property 1 of
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Definition 7.4.17 handles role-swaps. Recall that if the leader ` is contracted, it must

either hold two bits or the final token of each of its counters in order to role-swap

with an amoebot blocking its traversal path without disconnecting the counters. So

by Lemma 7.4.16, ` is never waiting to perform a role-swap for longer than a constant

number of rounds in the parallel execution. The remaining properties are exactly those

of a parallel forest schedule (Definition 6.3.2). Thus, by Lemmas 6.3.4 and 6.3.11, we

have the following result:

Lemma 7.4.18. If P is the (not necessarily simple) path of the leader’s traversal, the

leader traverses this path in O(|P|) sequential rounds in the worst case.

Using Lemma 7.4.18, we can directly relate the distance the leader ` has traversed

to the system’s progress towards learning and forming the convex hull. Once again,

recall that B = |B(O)| is the length of the object’s boundary and H = |H(O)| is

the length of the object’s convex hull. By Lemma 6.3.1, B amoebots self-organize

as a spanning tree rooted at ` in at most B sequential rounds. By Lemmas 7.2.1

and 7.2.3, ` traverses B(O) at most twice before completing the learning phase. Thus,

by Lemma 7.4.18:

Lemma 7.4.19. The learning phase completes in at most O(B) sequential rounds.

The analysis of the hull closing subphase is similar, but contains an additional

technical detail: the condition that a marker amoebot can only contract as part of

a handover is not represented in a greedy parallel tree-path schedule. In particular,

Property 3 of Definition 7.4.17 says that a marker amoebot with no children should

contract in a greedy parallel tree-path schedule since doing so does not disconnect

the amoebot system or the counters. But doing so would vacate the leader’s starting

position, which is explicitly prohibited by the algorithm. Instead of defining yet
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another type of parallel schedule capturing this condition and then relating it to

parallel forest schedules (Definition 6.3.2), we instead simply observe that this cannot

prohibit the leader from progressing according to Lemma 7.4.18 until all amoebots are

expanded, at which point no amoebots can move any further. With this observation,

we can prove the following runtime bound for the hull closing subphase.

Lemma 7.4.20. In at most O(H) sequential rounds from when the leader ` completes

the learning phase, either ` completes its traversal of H(O) and closes the hull or

every amoebot in the system terminates, expanded over two nodes of H(O).

Proof. If there are sufficiently many amoebots to close the hull (i.e., n ≥ dH/2e), then

` will complete its traversal of H(O) by Lemma 7.4.11. The length of this traversal is

H, so by Lemma 7.4.18, ` closes the hull in at most O(H) sequential rounds.

If instead there are insufficient amoebots to close the hull (i.e., n < dH/2e), then

Lemma 7.4.10 shows that every amoebot will eventually be expanded, occupying

nodes of H(O). Until all amoebots become expanded, there must exist at least one

contracted amoebot in the system. The length of the leader’s traversal path in this

case is 2n < H, so by Lemma 7.4.18, all amoebots become expanded in at most O(H)

sequential rounds. Whenever it was that the marker amoebot first became expanded

and had no children, it generated the “all expanded” token allexp. Once all amoebots

are expanded, the allexp token must be passed forward at least once per sequential

round, so the allexp token reaches ` in at most another O(n) = O(H) sequential

rounds. In a similar fashion, it takes at most another O(n) = O(H) sequential rounds

for ` to broadcast termination to all amoebots in the system. Thus, every amoebot

in the system is terminated and expanded over two nodes of H(O) in at most O(H)

sequential rounds.
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The final runtime lemma analyzes the hull filling subphase.

Lemma 7.4.21. In at most O(H) sequential rounds from when the leader ` closes

the hull, min{n,H} nodes of H(O) will be filled with contracted finished amoebots.

Proof Sketch. The main idea of this argument is to define a potential function repre-

senting the system’s progress towards filling the hull with contracted finished amoebots,

and then argue that this potential function reaches its maximum — representing the

system filling the hull with as many contracted finished amoebots as possible — in

at most O(H) sequential rounds. We consider parallel filling schedules that work

similarly to parallel path-tree schedules, but take into consideration all the state

transitions and movement rules of the hull filling subphase. Define a filler segment F

as a connected sequence of filler amoebots on the surface of the hull, and the head

h(F ) of a filler segment as the filler amoebot furthest clockwise in the segment. At

time step t, let Ut ⊆ H(O) be the set of nodes not yet occupied by contracted finished

amoebots, ft be the number of (pre-)filler amoebots in the system, and Ft be the set of

distinct filler segments on the surface of the hull. We define our potential function as

Φ(t) = −|Ut|+ ft− d(Ft), where d is a function that sums the length of each traversal

path from the head of a filler segment F ∈ Ft to the node in U(t) it eventually fills.

We then argue that Φ(t) strictly increases every constant number of rounds until

either Ut = 0, meaning all hull nodes are occupied by contracted finished amoebots,

or Ut = 2(H − n), meaning there were insufficient amoebots to fill every hull node

with a contracted finished amoebot.

Putting it all together, we know the algorithm is correct by Theorem 7.4.14, the

learning phase terminates in O(B) sequential rounds by Lemma 7.4.19, the hull closing

subphase terminates in an additional O(H) sequential rounds by Lemma 7.4.20, and
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the hull filling subphase fills the convex hull with as many contracted amoebots as

possible in another O(H) sequential rounds by Lemma 7.4.21. Thus, since B ≥ H,

we complete our analysis with the following theorem.

Theorem 7.4.22. In at most O(B) sequential rounds, the Convex-Hull-

Formation algorithm either solves instance (S, O) of the convex hull formation

problem if |S| ≥ |H(O)| or forms a maximal partial strong O∆-hull of O otherwise.

The time required for all amoebots in the system to terminate may be longer

than the bound given in Theorem 7.4.22, depending on the number of amoebots. As

termination is further broadcast to the rest of the system, we know that at least

one non-finished amoebot receives a termination signal and becomes finished in each

sequential round. So,

Corollary 7.4.23. The Convex-Hull-Formation algorithm terminates for all

amoebots in system S in O(n) sequential rounds in the worst case.

7.5 Forming the (Weak) O∆-Hull

To conclude, we show how the Convex-Hull-Formation algorithm can be

extended to form the (weak) O∆-hull of object O, solving the O∆-hull formation prob-

lem. Our O∆-Hull-Formation algorithm extends the Convex-Hull-Formation

algorithm at the point when a finished amoebot (say, Afirst) first holds the “all con-

tracted” token with counter value 7 and would usually broadcast termination. Note

that by Theorem 7.4.14 this only happens if n ≥ H, which we assume to be true

for the O∆-Hull-Formation algorithm. Instead of terminating, Afirst initiates the

O∆-hull formation phase of our algorithm by becoming tightening. Every finished
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Figure 33. The O∆-Hull-Formation Algorithm. (a) A1 is convex (black dot) and
can perform a movement into the node between its successor and predecessor, A2 has
just made such a move, and A3 is reflex (black circle). (b)–(d) Transforming the cycle
of tightening amoebots that initially form H(O) into H ′(O) by repeatedly moving
convex amoebots towards the object.

contracted amoebot whose parent A.parent is tightening becomes tightening as well,

declaring A.parent, which must be the next amoebot clockwise from A on H(O), as

its successor ; analogously, the predecessor of A will be the amoebot B on H(O) such

that B.parent = A. Any amoebot A that is not finished becomes non-tightening

if it has a tightening or non-tightening amoebot B in its neighborhood and sets

A.parent ← B. As the outcome, the amoebots on H(O) form a bi-directed cycle

of contracted tightening amoebots and all other amoebots are non-tightening, their

parent pointers forming a spanning forest in which each root is a tightening amoebot.

Throughout the algorithm, we say a tightening amoebot A is convex (resp., reflex )

if A and its successor and predecessor are tightening and contracted, its successor lies

in direction d, and its predecessor lies in direction (d+2) mod 6 (resp., (d+4) mod 6);

see Figure 33a. The idea of our algorithm is to progressively transform the structure

of contracted finished amoebots initially forming the convex hull H(O) into the

object’s O∆-hull H ′(O) by repeatedly moving convex amoebots towards the object

(see Figure 33b–33d).
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Moving Convex Amoebots. Since the cycle of finished amoebots initially occupies

the convex hull H(O), the algorithm begins with exactly six convex amoebots and

no reflex amoebots. Whenever a contracted convex amoebot A becomes activated, it

moves into the node “between” its successor and predecessor, i.e., into the node v in

direction (d+ 1) mod 6, where d is the direction to its successor (see amoebot A2 in

Figure 33a). Note that v must be a node contained within the strong O-hull of O, i.e.,

moving A “shrinks” the cycle of tightening amoebots towards H ′(O). More specifically,

if v is unoccupied, A simply expands into v. Otherwise, v must be occupied by a

non-tightening amoebot B. If B is expanded, A simply pushes B. Otherwise, it

role-swaps with B by declaring B to be a tightening amoebot, demoting itself to a

non-tightening amoebot, setting B as its parent, and updating the predecessor and

successor relationships for B while erasing its own.

If A is expanded, it pulls a contracted non-tightening child in a handover, if

one exists, and otherwise contracts. Note that, as in the hull filling subphase of

Convex-Hull-Formation, the distributed binary counters are no longer in use.

Thus, any potential handovers can be performed without regard for the connectivity

of the counters.

Termination Detection. Finally, we describe how to detect when the O∆-hull has

been formed. When for the first time Afirst occupies a node adjacent to O, it sends

a tight-termination token with value 1 and forwards it to its successor. If a convex

amoebot A has this token and can perform a movement, it sets the token value to 0

before forwarding it to its successor; by all other amoebots, the token is forwarded

without any value change. If Afirst receives the token with value 0, it deduces that

there are still movements being made and resets the token value to 1, once again
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forwarding it to its successor. But if Afirst receives the token with value 1, it knows the

O∆-hull has been constructed. So Afirst terminates by becoming tight-finished and

any contracted amoebot with a tight-finished neighbor also becomes tight-finished.

We now show the correctness and runtime of the O∆-Hull-Formation algorithm.

Recall that the O∆-hull H ′(O) has been formed if all nodes of H ′(O) are occupied by

contracted amoebots.

Lemma 7.5.1. Amoebot Afirst does not become tight-finished before H ′(O) has been

formed.

Proof. Let A0 = Afirst and C = (A0, A1, . . . , Am = A0) be the cycle of tightening

amoebots, where Ai+1 is the successor of Ai. Note that C never changes during the

execution of the algorithm (by relabeling the amoebots involved in a role-swap). Also

observe that if a contracted amoebot Ai cannot perform a movement at time t but

can perform a movement at time t′ > t, then Ai−1 or Ai+1 must perform a movement

at some time between t and t′.

Suppose to the contrary that A0 = Afirst becomes tight-finished at time t∗ although

a movement of some convex amoebot is still possible. Then the tight-termination

token must have traversed the whole cycle, returning to Afirst with value 1 at time t∗.

Let time t ≤ t∗ be the earliest time at which some amoebot Ai with 0 < i < k holds

the tight-termination token and a amoebot Aj with j < i can perform a movement;

informally, t is the first time that a movement appears “behind” the tight-termination

token’s sweep of cycle C as it searches for movements. Amoebot A0 = Afirst can never

perform a movement, as it is already adjacent to the object at the time it creates the

tight-termination token, and no tightening amoebot adjacent to the object can ever

perform a movement. By the minimality of t, we know that for any 0 ≤ t′ < t, all
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amoebots from A1 up to the amoebot holding the tight-termination token also cannot

perform a movement; in particular, this is true at time t− 1. Thus, every amoebot Ak

with 0 ≤ k ≤ i, including Aj−1 and Aj+1, cannot perform a movement at time t− 1.

But by the observations made above, this yields a contradiction to the claim that Aj

could perform a movement at time t.

Lemma 7.5.2. The tightening amoebots eventually form H ′(O), after which no convex

amoebot can move anymore.

Proof. Let Ui ⊂ V be the set of nodes enclosed by the cycle of tightening amoebots

after the i-th movement (not containing nodes occupied by tightening amoebots). To

show that the tightening amoebots eventually form H ′(O), we show the following

claims:

1. Ui is O-convex and contains the object O for all i.

2. If Ui is an O-convex set containing O, but is not minimal, then a movement is

possible.

Together with the fact that Ui+1 ⊂ Ui, this proves that H ′(O) is eventually formed.

Clearly, once Ui is minimal, no movement is possible anymore, as otherwise it could

not have been minimal.

To prove the first claim, argue by induction on i. Initially, the amoebots form

H(O), so U0 is the strong O-hull of O, and, by definition, is O-convex and contains

O. Now suppose Ui is O-convex and contains O by the induction hypothesis, and

let A be the amoebot that performs the next movement into a node v in direction

(d+ 1) mod 6. Clearly, Ui+1 still contains O. Since Ui is O-convex, the intersection of

Ui with any straight line of nodes containing v is connected. These intersections remain
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connected in Ui+1 since the neighbors of v in directions (d+ 3) mod 6, (d+ 4) mod 6,

and (d+ 5) mod 6 are not in Ui and Ui+1 = Ui \ {v}.

To prove the second claim, suppose that no movement of a convex amoebot is

possible anymore. Therefore, every convex amoebot must be adjacent to the object,

as only then it is incapable of moving any further. Every node v ∈ Ui \ O on the

boundary of Ui (i.e., that is adjacent to a node of V \Ui) therefore lies on a straight line

connecting two nodes of O (which are adjacent to convex amoebots). Therefore, the

set that results from removing v from Ui cannot be O-convex. Thus, Ui is minimal.

Taken together, these lemmas prove the correctness of the O∆-Hull-Formation

algorithm. By Lemma 7.5.1, we have that Afirst will not terminate prematurely,

stopping the remaining amoebots from correctly forming H ′(O). So by Lemma 7.5.2,

H ′(O) is eventually formed and there are no remaining movements. Thus, the

tight-termination token will never be set to value 0 again, resulting in the following

concluding lemma.

Lemma 7.5.3. Once H ′(O) has been formed, the tight-termination token traverses

the cycle at most twice before Afirst terminates.

We now turn to the runtime analysis. Recall that H = |H(O)| = |H ′(O)| and

n = |S|. As in Section 7.4.5, we first bound the runtime for a parallel execution of the

algorithm and then argue that the execution is dominated by a sequential execution.

As before, we consider amoebot system configurations C that encode each amoebot’s

position, state, whether it is expanded or contracted, and tokens.

Definition 7.5.4. A parallel cycle schedule is a schedule (C0, . . . , Ct) such that in C0

all nodes of H(O) are occupied by contracted tightening amoebots forming a directed

cycle in clockwise direction and all other amoebots are contracted and connected to
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Figure 34. The Execution of a Greedy Parallel Cycle Schedule. (a) An amoebot A and
its starting and ending positions. (b)–(d) Convex amoebots greedily moving towards
the object whenever possible.

a tightening amoebot via a sequence of parent pointers. For every 1 ≤ i ≤ t, Ci is

reached from Ci−1 such that the following holds for every amoebot A:

1. A is tightening, has a successor in direction d, and moves into the node u in

direction (d+ 1) mod 6 by performing an expansion, if u is unoccupied, or by

performing a role-swap, otherwise.

2. A has no children and contracts, leaving the node occupied by its tail empty in

Ci.

3. A pulls in a child, or, if A is non-tightening, pushes its parent.

4. A occupies the same nodes in Ci−1 and Ci.

Such a schedule is greedy if the above actions are taken in parallel whenever possible.

Given any greedy parallel cycle schedule, we can now show the following lemma.

Lemma 7.5.5. Any greedy parallel cycle schedule reaches a configuration in which

the amoebots form H ′(O) within O(H) parallel rounds.

Proof. Consider the structure of tightening amoebots forming H(O) at the beginning

of the algorithm. Note that for any two convex amoebots A1 and A2 that are connected

by a straight line of hull amoebots (i.e., that are visited consecutively in a traversal

236



of the cycle), there exists at least one amoebot B between A1 and A2 on that line

that is adjacent to the object O. Any movement that is performed by any amoebot

between A1 and B on that line can only be a direct or indirect consequence of A1’s

first movement, but must be fully independent of any movement of A2. Therefore, it

suffices to analyze the execution of the algorithm on each of the six vertices of H(O),

i.e., on all tightening amoebots that initially lie between a convex amoebot A and

the first amoebot adjacent to the object in any of the two directions in which A has

adjacent tightening amoebots.

Consider a convex amoebot A occupying node u at the beginning of the algorithm.

Let v and w be the first nodes in directions d and (d + 2) mod 6, respectively, in

which A has adjacent tightening amoebots such that v and w are adjacent to O. For

any hull amoebot A occupying a node between u and v or between u and w, let iA

be the distance from A’s initial position sA to u, and let dA be the distance from

sA to its final position tA adjacent to O in direction (d + 1) mod 6. We will show

that A reaches tA after at most iA + 2dA parallel rounds, which, as both di and i are

bounded above by H and the tightening amoebots of the six corners of H(O) form

H ′(O) independently, immediately implies the claim.

First, note that our algorithm ensures that there is never an expanded non-

tightening amoebot whose parent is expanded, i.e., handovers can always be performed.

Now fix some amoebot A occupying a node between u and v or between u and w and

consider the parallelogram formed by diagonal vertices u and tA, with edges extending

in directions d and (d+ 2) mod 6 (see Figure 34a). By the definition of the O∆-hull,

no node of this parallelogram can be a node of O. Therefore, the following can easily

be shown by induction on the number of parallel rounds t ≤ iA: Every amoebot B

such that iB ≤ t − 1 is contracted and occupies the node that lies (t − iB)/2 steps
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in direction (d+ 1) mod 6 of tB, if iB and t are both even or both odd; otherwise, B

is expanded, its head occupying the node that lies (t− iB + 1)/2 steps in direction

(d+ 1) mod 6 of tB (see Figure 34b–34d). Therefore, after iA rounds, the successor

of A, if sA lies between u and v, or its predecessor, if it lies between u and w, is

expanded for the first time (as in Figure 34b). In the next round, A will perform its

first movement. It can easily be seen that A will not be hindered in its movement

until it reaches tA, which therefore takes 2dA additional rounds.

Similarly to the proofs of Sections 7.3.2 and 7.4.5, we compare a greedy parallel

cycle schedule with an sequential cycle schedule (CS
0 , . . . , C

S
t ) based on a fair sequential

activation sequence S. For any two configuration C and C ′ and a tightening amoebot

A, we say that C dominates C ′ w.r.t. A, if and only if A has performed at least

as many movements in C as in C ′, and say that C dominates C ′ if and only if C

dominates C ′ w.r.t. every amoebot. Note that if a movement is possible, it can never

be hindered, and therefore we obtain the following lemma.

Lemma 7.5.6. Given any fair sequential activation sequence S and some initial

configuration CS
0 for the O∆-Hull-Formation algorithm, there exists a greedy

parallel cycle schedule (C0, . . . , Ct) with C0 = CA
0 such that CS

i � Ci for all 0 ≤ i ≤ t.

After H ′(O) is formed, the tight-termination token is passed over the entire cycle

at most twice by Lemma 7.5.3, which takes at most O(H) sequential rounds. Finally,

once Afirst terminates by becoming tight-finished, in the worst case only one additional

amoebot becomes tight-finished in each subsequent round. Thus, it may take an

additional O(n) sequential rounds in the worst case before all amoebots terminate.

We conclude the following theorem.
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Theorem 7.5.7. In at most O(H) sequential rounds, the O∆-Hull-Formation

algorithm solves instance (S, O) of the O∆-hull formation problem if |S| ≥ |H(O)|.

After an additional O(|S|) rounds, all amoebots have terminated.

239



Chapter 8

COMPRESSION

Our first stochastic algorithm that replaces amoebot reliance on memory and

communication with biased random decisions is for compression, gathering an amoebot

system as compactly as possible [32]. More formally, an amoebot system must

reconfigure to reach and remain among configurations with small boundaries, where

we refer to the total length of a boundary as the perimeter of the configuration. Nature

offers a fascinating variety of compression phenomena: fire ants form floating rafts [149],

cockroach larvae perform self-organizing aggregation [113, 172], honey bees choose hive

locations based on a decentralized process of swarming and recruitment [29], and the

slime mold Dictyostelium undergoes a phase in its life cycle where 100,000 single-celled

organisms gather into a cluster known as a “slug” [64]. No individual in these systems

can view the group as a whole when making decisions; instead, cooperation is achieved

by taking cues from nearby neighbors.

Our work on compression was originally inspired by the widely studied Ising model

of ferromagnetism from statistical physics [111]. In this model, all nodes of some

graph are assigned a positive or negative spin and a temperature parameter governs

how likely it is for neighboring nodes to have the same spin. For certain temperatures,

the system clusters, where large regions of the graph have the same spin. In an

analogy to the Ising model, we consider a node of our triangular lattice G∆ as having

positive spin if it is occupied by an amoebot and having negative spin otherwise.

Our algorithm’s bias parameter λ is closely related to inverse temperature in the

Ising model and thus governs the likelihood of having adjacent amoebots. Achieving
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compression corresponds to forming a cluster of positive spins in the Ising model with

fixed magnetization, where the total number of nodes with each spin does not change.

However, our work requires that amoebots only move to adjacent nodes and that the

system remains connected, constraints not typically considered for Ising models but

necessary for implementation as a distributed algorithm for amoebot systems.

Works in a variety of areas of computer science have considered compression-type

problems. In swarm robotics, different variations of shape formation and aggregation

problems have been studied (e.g., [20, 80, 93, 155, 160, 175]), but usually with robots

that have more complex capabilities than our amoebots do. Similarly, pattern for-

mation and creation of convex structures has been studied in the cellular automata

domain (e.g., [38, 63]), but differs from our model by assuming more powerful compu-

tational capabilities. Distributed computing theory for autonomous mobile robots has

treated the rendezvous (or gathering) problem which seeks to gather mobile agents at

some node of a graph (see [13, 44, 86, 158] and the references therein). In comparison,

amoebots follow the exclusion principle and hence are unable to gather at a single node,

requiring different techniques. Lastly, algorithms for hexagon shape formation in the

amoebot model were presented in [58, 62]. Although a hexagon satisfies our definition

of a compressed configuration, these algorithms critically rely on a leader amoebot

that coordinates the rest of the system. In comparison, the Markov chain-based

algorithm we present takes a fully decentralized and local approach — forgoing the

need for a leader — and is naturally robust and self-stabilizing.

8.1 Preliminaries
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8.1.1 A Stochastic Approach to Self-Organizing Particle Systems

At a high level, in our stochastic approach we first define an energy function that

captures our objectives for the particle system. We then design a Markov chain that,

in the long run, favors particle system configurations with desirable energy values,

and we prove these desirable configurations occur with high probability. Care is taken

to ensure this Markov chain can be translated to a local, distributed algorithm run by

each amoebot individually. (This chapter uses particles and amoebots interchangeably,

preferring “particles” when using the centralized perspective of Markov chains and

“amoebots” when referring to the corresponding distributed algorithms.)

The motivation underlying the design of this Markov chain is from statistical

physics, where ensembles of particles similar to those we consider represent physical

systems and demonstrate that local micro-behavior can induce global, macro-scale

changes to the system [19, 25, 171]. Like a spring relaxing, physical systems favor

configurations that minimize energy. Each system configuration σ has energy deter-

mined by a Hamiltonian H(σ) and a corresponding weight w(σ) = e−β·H(σ), where

β = 1/T is inverse temperature. Markov chains have been well-studied as a tool for

sampling system configurations with probabilities proportional to their weight w(σ),

where configurations with the least energy H(σ) have the highest weight and are thus

most likely to be sampled [166].

Using a Metropolis filter [102], we can design a Markov chainM such that the

eventual probability of the particle system being in configuration σ is w(σ)/Z, where

Z =
∑

σ∈Ω w(σ) is a normalizing constant known as the partition function. In this

stationary distribution ofM, configurations with larger weight w(σ) — and smaller

energy H(σ) — occur with higher probability. We then use tools from Markov
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chain analysis to prove that configurations with large energy values occupy only an

exponentially small fraction of this stationary distribution. By carefully designing

M to use only local moves, we can adapt it as a local, distributed algorithm for

self-organizing particle systems with the same guarantees on long-run behavior.

This stochastic approach to developing distributed algorithms for programmable

matter is applicable to any problem where the objective can be described as minimizing

some energy function, provided changes in that energy function can be calculated with

only local information. However, a main challenge encountered in the applications

considered so far has been proving the energy function is biased enough that desirable

(low energy) configurations occur with sufficiently large probability. More formally, if

there are many more configurations with high energy than with low energy, a situation

known as high entropy, then the probability that a configuration drawn from the

stationary distribution accomplishes the desired objective may not be very high. For

this reason, biases must be large enough to guarantee low energy configurations —

those that accomplish the objectives — dominate the state space, even if there are

many undesirable high energy configurations.

8.1.2 Terminology for the Stochastic Approach

An amoebot system arrangement is the set of nodes in G∆ that are occupied by

tails of amoebots;12 note that an arrangement does not distinguish which amoebot

occupies which node within the arrangement. Two arrangements are equivalent if one

is a translation of the other, and an equivalence class of arrangements is called an

12Lattice nodes occupied by heads of expanded amoebots are not considered part of a configuration,
since the states of our Markov chain consider only contracted amoebots. This is for technical reasons
that will be explained in Section 8.2.2.
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amoebot system configuration. Note that two configurations differing by rotation are

distinct from a global perspective, even though each individual amoebot has no sense

of global orientation.

An edge of a configuration is an edge of G∆ where both endpoints are occupied

by tails of amoebots. Similarly, a triangle of a configuration is a triangular face of

G∆ with all three vertices occupied by tails of amoebots. The number of edges (resp.,

triangles) of a configuration σ is denoted e(σ) (resp., t(σ)). When referring to a path,

we mean a path of configuration edges. Two amoebots are connected if there is a path

between them, and a configuration is connected if all pairs of amoebots are.

A boundary of a configuration σ is a minimal closed walk W on edges of σ that

separates all amoebots of σ from a connected, unoccupied subgraph of G∆ that has

at least one node; see Figure 35. For each boundary W , let SW be the maximal such

subgraph. If SW is finite, we say it is a hole. If SW is infinite, then W is the unique

external boundary of σ. The perimeter p(σ) of a configuration σ is the sum of the

lengths of all boundaries of σ. Note that an edge may appear twice in the same

boundary (if it is a cut-edge of σ) or in two different boundaries (e.g., if it separates

two different connected components of unoccupied nodes). In these cases, the edge is

counted twice in p(σ).

We specifically consider connected amoebot system configurations. Starting from

a connected configuration (possibly with holes), our algorithm will keep the system

connected, eliminate all holes, and prohibit any new holes from forming, a fact we

prove in Section 8.2.4. We eliminate holes because our current proof techniques

require hole-free configurations. We maintain connectivity because — in addition

to simplifying our proofs — allowing an amoebot system to disconnect is generally

undesirable in the amoebot model. Because amoebots can only communicate with
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e1 e2

Figure 35. An Amoebot System Configuration and its Boundaries. The unique external
boundary is shown as solid black lines and the other two boundaries surrounding holes
are shown as dashed black lines. Edge e1 appears on the external boundary twice,
while edge e2 appears in two different boundaries.

their immediate neighbors and do not have any global orientation or coordinates,

disconnected components have no way of knowing their relative positions and thus

cannot intentionally move toward one another to reconnect. One exception is [67],

where amoebots were allowed to disconnect by no more than a small constant dis-

tance, with extremely careful constraints on amoebot movements ensuring eventual

reconnection. In general, because the underlying lattice is infinite, it is extremely

unlikely disconnected components will find each other by random search. Techniques

exist for handling disconnected components constrained to remain in finite regions

(see Section 11.2), but this requires modifying the underlying model, which we choose

not to do here.

8.1.3 Compression of Amoebot Systems

Our objective is to solve the compression problem. There are many ways to

formalize what it means for an amoebot system to be compressed. For example, one
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could try to minimize the diameter of the system, maximize the number of edges,

or maximize the number of triangles. We choose to define compression in terms of

minimizing perimeter. Here, we prove that for connected configurations with no holes

(the states we eventually reach), minimizing perimeter, maximizing the number of

edges, and maximizing the number of triangles are all equivalent and are stronger

notions of compression than minimizing diameter.

The perimeter of a connected, hole-free configuration of n particles ranges from a

maximum value pmax(n) = 2n− 2 when the system is in its least compressed state (a

tree with no induced triangles) to some minimum value pmin(n) = Θ(
√
n) when the

system is in its most compressed state. It is easy to see pmin(n) ≤ 4
√
n, and we now

prove any configuration σ of n particles has p(σ) ≥
√
n; this bound is not tight but

suffices for our proofs.

Lemma 8.1.1. A connected configuration with n ≥ 2 particles has perimeter at least
√
n.

Proof. We argue by induction on n. A connected particle system with two particles

necessarily has perimeter 2 ≥
√

2. Let σ be any connected particle system configuration

with n > 2 particles, and suppose the lemma holds for all connected configurations

with fewer than n particles.

First, suppose there is a particle P ∈ σ not incident to any triangles of σ. This

implies P has one, two, or three neighbors, none of which are adjacent. If P has one

neighbor, removing P from σ yields a configuration σ′ with n− 1 particles and, by

induction, perimeter at least
√
n− 1. Thus,

p(σ) = p(σ′) + 2 ≥
√
n− 1 + 2 ≥

√
n.
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If P has two neighbors, removing P from σ produces two connected configurations σ1

and σ2, where σ1 has n1 particles, σ2 has n2 particles, and n1 + n2 = n− 1. Thus,

p(σ) ≥
√
n1 +

√
n2 + 4 >

√
n− 1 + 4 >

√
n.

Similarly, if P has three neighbors, its removal produces three connected configurations

with n1, n2, and n3 particles, respectively, where n1 + n2 + n3 = n− 1. We conclude:

p(σ) ≥
√
n1 +

√
n2 +

√
n3 + 6 >

√
n− 1 + 6 >

√
n.

Now, suppose every particle in σ is incident to some triangle of σ, implying there are

at least dn/3e triangles in σ. An equilateral triangle with side length 1 has area
√

3/4,

so the external boundary of σ encloses an area of at least A = dn/3e(
√

3/4) ≥
√

3n/12.

By the isoperimetric inequality, the minimum perimeter shape enclosing this area

(without regard to lattice constraints) is a circle of radius r and perimeter p, where:

r =

√
A

π
=

√
n
√

3

12π
, p = 2πr =

√
πn√

3
>
√
n.

As the external boundary of σ also encloses an area of at least
√

3n/12, we have

p(σ) >
√
n.

When n is clear from context, we omit it and refer to pmin := pmin(n) and

pmax := pmax(n). We now formalize what it means for an amoebot system to be

compressed.

Definition 8.1.2. For any α > 1, a connected configuration σ is α-compressed if

p(σ) ≤ α · pmin.

We prove in Section 8.3 that our algorithm, when executed for a sufficiently long

time, can achieve α-compression for any constant α > 1 with probability at least
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1 − ζ
√
n where ζ < 1 is a constant, provided n is sufficiently large. We note that

α-compression implies the diameter of the amoebot system is also O(
√
n), so our

notion of α-compression is stronger than defining compression in terms of diameter.

In order to minimize perimeter using simple local moves, we exploit the following

relationship. Because our algorithm eventually reaches and remains in the set of

connected configurations with no holes (Section 8.2.4), we only consider this case.

Lemma 8.1.3. For a connected configuration σ of n particles with no holes, e(σ) =

3n− p(σ)− 3.

Proof. We count particle-edge incidences, of which there are 2e(σ). Counting another

way, every particle has six incident edges, except for those on the (unique) external

boundary W . At each particle on W , the exterior angle is 120, 180, 240, 300, or 360

degrees. These correspond to the particle “missing” 1, 2, 3, 4, or 5 of its six possible

incident edges, respectively, or degree/60 − 1 missing edges. If W visits the same

particle multiple times, we count the appropriate exterior angle and corresponding

missing edges each time. From a well-known result about simple polygons with p(σ)

sides, the sum of exterior angles along W is 180p(σ) + 360 degrees. Summing the

number of “missing” edges degree/60− 1 over all particles on W, we find the total

number of missing edges to be:

(180p(σ) + 360)/60− p(σ) = 2p(σ) + 6.

This implies there are 6n − (2p(σ) + 6) total particle-edge incidences, so 2e(σ) =

6n− 2p(σ)− 6.

We briefly note that minimizing perimeter is also equivalent to maximizing triangles.

Lemma 8.1.4. For a connected configuration σ of n particles with no holes, t(σ) =

2n− p(σ)− 2.
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Proof. The proof is nearly identical to that of Lemma 8.1.3 but counts particle-triangle

incidences, of which there are 3t(σ). Counting another way, every particle has six

incident triangles, except for those on the external boundaryW . Consider any traversal

of W ; at each particle, the exterior angle is 120, 180, 240, 300, or 360 degrees. These

correspond to the particle “missing” 2, 3, 4, 5, or 6 of its six possible incident triangles,

respectively, or degree/60 missing triangles. If W visits the same particle multiple

times, we count the appropriate exterior angle at each visit. The sum of exterior

angles along W is 180p(σ) + 360, so in total particles on the perimeter are missing

3p(σ) + 6 triangles. This implies there are 6n− 3p(σ)− 6 particle-triangle incidences,

so 3t(σ) = 6n− 3p(σ)− 6.

The above lemmas imply the following corollary.

Corollary 8.1.5. A connected configuration with no holes and minimum perimeter is

also a configuration with the maximum number of edges and the maximum number of

triangles.

Because these three notions of compression are equivalent, we will state our

algorithm in terms of maximizing the number of edges but prove our compression

results in terms of minimizing perimeter, for ease of presentation. The original

presentation of these results in [32] stated the algorithm in terms of maximizing the

number of triangles.

8.1.4 Background on Markov Chains

A thorough treatment of Markov chains can be found in the standard textbook [127];

here, we present the necessary terminology relevant to our results. A Markov chain

249



is a memoryless random process on a state space Ω. For compression, Ω will be all

connected configurations of n particles; in particular, it will always be finite and

discrete. A Markov chain randomly transitions between the states of Ω in a stochastic

(i.e., time-independent) fashion, where the probability with which the chain transitions

to its next state depends only on its current state. We focus on discrete time Markov

chains, where one transition occurs per step. Because of this stochasticity, we can

completely describe a Markov chain by its transition matrix M , which is an |Ω| × |Ω|

matrix indexed by the states of Ω, defined such that for any pair x, y ∈ Ω, M(x, y)

is the probability, if in state x, of transitioning to state y in one step of the Markov

chain. The t-step transition probability M t(x, y) is the probability of transitioning

from x to y in exactly t steps.

A Markov chain is irreducible if there is a sequence of valid transitions from any

state to any other state, that is, if for all x, y ∈ Ω there is a t such that M t(x, y) > 0.

A Markov chain is aperiodic if for all x ∈ Ω, gcd{t : M t(x, x) > 0} = 1. A Markov

chain is ergodic if it is both irreducible and aperiodic, or equivalently, if there exists t

such that for all x, y ∈ Ω, M t(x, y) > 0.

A stationary distribution of a Markov chain is a probability distribution π over Ω

such that πM = π. Any finite, ergodic Markov chain converges to a unique stationary

distribution given by π(y) = limt→∞M
t(x, y) for any x, y ∈ Ω; importantly, for such

chains this stationary distribution is completely independent of the starting state x.

To verify a distribution π′ is the unique stationary distribution of a finite ergodic

Markov chain, it suffices to check that π′(x)M(x, y) = π′(y)M(y, x) for all x, y ∈ Ω

(the detailed balance condition; see, e.g., [83]). Detailed balance will be the key to

connecting our global objective, captured in the stationary distribution π, to the
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local moves executed by our particles, which occur with probabilities described by the

transition matrix M .

Given a state space Ω, a set of allowable transitions between states, and a desired

stationary distribution π on Ω, the celebrated Metropolis–Hastings algorithm [102]

gives a Markov chain on Ω that uses only allowable transitions and has stationary

distribution π. This is accomplished by carefully setting the probabilities of the

state transitions as follows. For a state x ∈ Ω, its neighbors N(x) are the states it

can transition to and its degree is its number of neighbors. Starting at x ∈ Ω, the

Metropolis–Hastings algorithm picks y ∈ N(x) uniformly with probability 1/(2∆),

where ∆ is the maximum degree of any state, and moves to y with probability

min{1, π(y)/π(x)}; with all the remaining probability, it stays at x and repeats. Using

this probability calculation to decide whether or not to make a transition is known as a

Metropolis filter. If the allowable transitions connect Ω (i.e., if the chain is irreducible),

then π must be the stationary distribution by detailed balance.

While calculating π(y)/π(x) seems to require global knowledge, this ratio can

often be calculated easily using only local information when many terms cancel

out, as will be the case for us. The states of the Markov chainM we consider are

particle system configurations, its transitions correspond to individual particle moves,

and our desired stationary distribution is π(σ) = λe(σ)/Z, where Z =
∑

σ∈Ω λ
e(σ) is

the normalizing constant also known as the partition function. Each particle will

calculate the Metropolis probabilities ofM using only the difference in the number of

neighbors (incident edges) it has before it moves (configuration x) and after it moves

(configuration y), as π(y)/π(x) = λe(y)−e(x). The key to our approach is that the

value e(y)− e(x) can be observed locally in the neighborhood of the moving particle
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without using global information. The resulting stationary distribution of M will

favor configurations with more edges and thus, by Corollary 8.1.5, smaller perimeter.

8.2 Algorithms for Compression

Our objective is to give a stochastic algorithm enabling a self-organizing particle

system on the triangular lattice G∆ to provably solve the compression problem. Our

algorithm relies only on local information and requires minimal communication: each

particle only needs to know which of its adjacent locations are occupied by neighboring

particles and which neighbors, if any, are expanded. Our solution is simple, robust,

and oblivious (see Section 8.2.3).

In order to leverage powerful tools from Markov chain analysis to prove our

algorithm’s correctness, our algorithm is designed to maintain several properties. First,

assuming the particle system is initially connected, our algorithm will ensure it stays

connected, eventually eliminates any holes it may contain, and prohibits any new holes

from forming — all using only local information. Second, any moves allowed by our

algorithm after all holes have been eliminated are ensured to be reversible: if a particle

moves from its current location to a new location in one step, then in the next step

there is a nonzero probability that it moves back to its original location. Finally, the

moves allowed by our algorithm suffice to transform any connected, hole-free particle

system configuration into any other connected, hole-free configuration.

Our algorithm achieves compression by biasing particles towards moves that gain

them more neighbors; i.e., where more edges with neighboring particles are formed.

Specifically, a bias parameter λ controls how strongly the particles favor having more

neighbors: λ > 1 corresponds to favoring neighbors, while λ < 1 corresponds to

252



disfavoring neighbors. As Lemma 8.1.3 shows, locally favoring more neighbors is

equivalent to globally favoring a shorter perimeter; this is the relationship we exploit

to obtain particle compression.

8.2.1 The Markov ChainMC for Compression

We begin by presenting two key properties that enable a particle to move from

location ` to adjacent location `′ without disconnecting the particle system or forming

a hole. We will let capital letters refer to particles and lower case letters refer to

locations on the triangular lattice G∆, e.g., “particle P at location `.” For a particle P

(resp., location `), we use N(P ) (resp., N(`)) to denote the set of particles adjacent to

P (resp., to `), where by adjacent we mean connected by a lattice edge. For adjacent

locations ` and `′, by N(`∪ `′) we mean (N(`)∪N(`′)) \ {`, `′}. Let S = N(`)∩N(`′)

be the set of particles adjacent to both ` and `′; note that |S| ∈ {0, 1, 2}.

Property 8.2.1. |S| ∈ {1, 2} and every particle in N(`∪ `′) is connected to a particle

in S by a path through N(` ∪ `′).

Property 8.2.2. |S| = 0, ` and `′ each have at least one neighbor, all particles in

N(`) \ {`′} are connected by paths within this set, and all particles in N(`′) \ {`} are

connected by paths within this set.

These properties capture precisely the structure required to maintain system

connectivity and prevent certain new holes from forming as a particle moves from

location ` to `′. Additionally, both are symmetric for ` and `′, necessary for particle

moves to be reversible. However, they are not so restrictive as to limit the movement

of particles and prevent compression from occurring. We will see that after a burn-in
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phase to eliminate any holes, moves satisfying these properties suffice to transform

any configuration into any other.

We now define our Markov chainMC for compression. The state space Ω ofMC

is the set of all connected configurations of n contracted particles, and the rules and

probabilities given in Algorithm MC define the transitions between states. Later,

in Section 8.2.2, we will show how to view this Markov chain as a local, distributed

algorithm AC . BothMC and AC take as input a bias parameter λ > 1 and begin at

an arbitrary connected starting configuration σ0 ∈ Ω.

Algorithm 12 Markov ChainMC for Compression
From any connected configuration σ0 of n contracted particles, repeat:

1: Select particle P uniformly at random from among all particles; let ` be its location.
2: Choose neighboring location `′ and q ∈ (0, 1) each uniformly at random.
3: if `′ is unoccupied then
4: P expands to simultaneously occupy ` and `′.
5: Let e = |N(`)| be the number of neighbors P had when it was contracted at `.
6: Let e′ = |N(`′)| be the number of neighbors P would have if it contracts to `′.
7: if (i) e 6= 5, (ii) ` and `′ satisfy Property 8.2.1 or Property 8.2.2, and (iii) q < λe

′−e then
8: P contracts to `′.
9: else P contracts back to `.

In Markov chain MC , note that a constant number of random bits suffices to

generate q in Step 2, as only a constant precision is required (given that e′ − e is an

integer in [−3, 3] and λ is a constant). In Step 7, Condition (i) ensures no new holes

form, Condition (ii) ensures the particle system stays connected andMC is eventually

ergodic, and Condition (iii) ensures the particle moves happen with probabilities such

thatMC converges to the desired stationary distribution.

In practice, Markov chainMC yields good compression. We simulatedMC for

λ = 4 on 100 particles that began in a line; the configurations after 1, 2, 3, 4, and 5

million iterations ofMC are shown in Figure 36. In Section 8.3, we will rigorously

prove that Markov chainMC achieves compression with all but exponentially small

probability whenever λ > 2 +
√

2 (Theorem 8.3.5).
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(a) (b)

(c) (d) (e)

Figure 36. Simulation of Markov ChainMC with λ = 4. A system of 100 particles
initially in a line after (a) 1 million, (b) 2 million, (c) 3 million, (d) 4 million, and (e)
5 million iterations ofMC with bias λ = 4.

8.2.2 The Local, Distributed Algorithm AC for Compression

In order for each particle to individually runMC , a Markov chain with centralized

control, we show howMC can be translated into a local, distributed algorithm AC

that satisfies the constraints of the amoebot model. There are two parts of this

translation: (i) selecting particles uniformly at random as in Step 1 ofMC must be

translated to a fair sequential adversary used to activate individual amoebots, and (ii)

moving particles in a combined expansion and contraction as in Steps 4–9 ofMC must

be decoupled into two separate activations since the amoebot model allows at most

one movement per activation. All other steps ofMC can be directly implemented

by an individual amoebot with constant-size memory using only information from its

local neighborhood.
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Choosing a particle at random in Step 1 ofMC enables us to explicitly calculate

the stationary distribution ofMC so that we can provide rigorous guarantees about

its structure. However, with a fair sequential adversary, one cannot assume that the

next amoebot to be activated is equally likely to be any amoebot (see Section 2.2.4).

To mimic this uniformly random activation sequence in a local way, we assume each

amoebot has its own Poisson clock with mean 1 and activates after a delay t drawn

with probability e−t. After completing its activation (executing one iteration of

Algorithm 13), a new delay is drawn to its next activation, and so on. The exponential

distribution guarantees that, regardless of which amoebot has just activated, all

amoebots are equally likely to be the next to activate (see, e.g., [83]). Moreover,

amoebots proceed without requiring knowledge of any other amoebots’ clocks. Similar

Poisson clocks are commonly used to describe physical systems that perform concurrent

updates in continuous time.

We can better approximate a fair sequential adversary by allowing each amoebot

to have its own constant mean for its Poisson clock, allowing for some amoebots to

activate more often than others in expectation. In this setting, the probability that

a given amoebot A is the next of the n amoebots to activate is not 1/n, but rather

some probability pA that depends on all amoebots’ Poisson means.13 This does not

change the stationary distribution ofMC (i.e., Lemma 8.2.13 still holds with a nearly

identical proof that replaces 1/n with pA), and our main results (Theorem 8.3.5 and

Corollary 8.3.6) still follow. Because the same results hold regardless of the rates of

amoebots’ Poisson clocks, we assume clocks with mean 1 for simplicity. We emphasize

that although these Poisson activation sequences are necessary for rigorously proving

13Probability pA would only play a role in the analysis of AC , not in its execution. Amoebot A
does not need to know or calculate pA.
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the convergence ofMC — and, therefore, the correctness of AC — we do not expect

the system’s behavior to be substantially different for non-Poisson activation sequences.

Algorithm 13 Local, Distributed Algorithm AC for Compression
If A is contracted:

1: Let ` denote the current location of A.
2: Choose a neighboring location `′ uniformly at random from the six possible choices.
3: if `′ is unoccupied and A has no expanded neighbors then
4: A expands to simultaneously occupy ` and `′.
5: if there are no expanded amoebots adjacent to ` or `′ then
6: A.flag← true.
7: else A.flag← false.

If A is expanded:
8: Choose q ∈ (0, 1) uniformly at random.
9: Let N∗(·) ⊆ N(·) be the set of neighboring amoebots excluding any heads of expanded amoebots.

10: Let e = |N∗(`)| be the number of neighbors A had when it was contracted at `.
11: Let e′ = |N∗(`′)| be the number of neighbors A would have if it contracts to `′.
12: if (i) e 6= 5, (ii) locations ` and `′ satisfy Property 8.2.1 or Property 8.2.2 with respect to N∗(·),

(iii) q < λe
′−e, and (iv) A.flag = true then

13: A contracts to `′.
14: else A contracts back to `.

We now turn to decoupling the combined expansion and contraction movement

in a single state transition ofMC into two (not necessarily consecutive) activations

of a given amoebot running AC . We must carefully handle the way in which an

amoebot’s neighborhood may change between its two activations, ensuring that at

most one amoebot per neighborhood moves at a time, mimicking the sequential nature

ofMC . Each amoebot A continuously runs AC , executing Steps 1–7 if contracted,

and Steps 8–14 if expanded. Conditions (i)–(iii) in Step 12 of AC are analogous to

those in Step 12 ofMC , but treat expanded amoebots as if they are still contracted

at their tail location, rather than considering all occupied neighboring locations. We

use the additional Condition (iv) to ensure A is the only amoebot in its neighborhood

moving to a new position since it last expanded, as we now explain in more detail. For

the purposes of this analysis, recall from Section 2.2.4 that a fair sequential adversary

activates one amoebot at a time and must activate each amoebot infinitely often.
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Suppose an amoebot A eventually moves from location ` to location `′ by expanding

to occupy both positions at some time t and contracting to `′ at some time t′ > t

according to an execution of AC . Since A eventually completes its movement to `′,

there must have been no expanded amoebots adjacent to ` or `′ at time t (by Step 6

and Condition (iv) of Step 12 in AC). Any other amoebot B that expands into the

neighborhood of A in the time interval (t, t′) will see that A is expanded and set its

flag to false in Step 7 of AC . Since any such neighbor B with a false flag must

contract back to its original position during its next activation (by Condition (iv) of

Step 12 and Step 14 of AC), amoebot A can safely ignore any expanded heads in its

neighborhood, making decisions in Steps 8–12 of AC as if B had never moved. Thus,

the neighborhood of A remains effectively undisturbed in the interval (t, t′), allowing

AC to faithfully emulateMC .

Any objective that can be accomplished by MC can be accomplished by AC

and vice versa. Consider an activation sequence of amoebots executing AC that

transforms the initial configuration σ0 to a configuration σ′ that potentially contains

both expanded and contracted amoebots. Obtain configuration σ from σ′ by preserving

the locations of all contracted amoebots and considering every expanded amoebot

to be contracted at its tail. Then there exists a sequence of transitions inMC that

reaches σ. The perimeter p(σ′) ignores heads of expanded amoebots (Section 8.1.2),

so p(σ) = p(σ′). Conversely, every sequence of transitions in MC that reaches a

configuration σ directly corresponds to a sequence of activations (expansions followed

immediately by contractions) of amoebots executing AC also leading to σ′ = σ, where

again p(σ) = p(σ′). Thus, proving α-compression for σ also implies α-compression for

σ′, and vice-versa. Hence, we can useMC and the respective Markov chain tools and

techniques in order to analyze the correctness of AC . Because we show α-compression
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forMC for all α > 1 (Theorem 8.3.5), this also then implies α-compression for AC

for all α > 1. In subsequent sections, we focus on analyzingMC .

We have shown our Markov chainMC can be translated into a local, distributed

algorithm AC with the same behavior, but such implementations are not always

possible in general. Any Markov chain for particle systems that relies on non-local

particle moves or has transition probabilities that depend on non-local information

cannot be executed by a local, distributed algorithm. Moreover, many algorithms

under the amoebot model are not stochastic and thus cannot be meaningfully described

as Markov chains (e.g., those described in Chapters 5–7).

8.2.3 Obliviousness and Robustness ofMC and AC

Our algorithm for compression has two key advantages over previous algorithms for

self-organizing particle systems: inherent obliviousness and robustness. An algorithm

is oblivious if it is stateless; i.e., a particle remembers no information from past

activations and decides what to do based only on its observations of its current

environment. In practical settings, such algorithms are desirable because they do

not require persistent memory and are often self-stabilizing and fault-tolerant (see,

e.g., obliviousness in autonomous mobile robots [87]); theoretically, they are of great

interest because they are computationally weak at an individual level but can still

collectively accomplish sophisticated goals. Algorithm AC for compression is the first

nearly oblivious algorithm for self-organizing particle systems, as each particle only

needs to store its flag variable as a single bit of information between its expansion

and contraction activations. Previous works under the amoebot model (see, e.g.,
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Chapters 5–7), however, rely heavily on persistent particle memory for decision

making and communication.

Our algorithm is also the first for self-organizing particle systems to meaningfully

consider fault-tolerance.14 A distributed algorithm’s fault-tolerance has to do with

its ability to achieve its goals despite possible crash failures or Byzantine failures. In

a crash failure, an agent abruptly ceases functioning and may never be resuscitated.

These failures are particularly problematic for systems with a single point of failure,

as there is no guarantee the critical agent will remain non-faulty nor that its memory

and role could be assumed by another agent if it crashes. In a Byzantine failure, some

fraction of the agents are malicious and execute arbitrary behavior in an effort to stop

the non-faulty portion of the system from achieving its task.

Before we introduced our compression algorithm, work on self-organizing particle

systems had not addressed either type of possible fault, and many of the proposed

algorithms were susceptible to complete failure if even a single particle crashed. If one

or more particles were to crash in our algorithm for compression, they would cease

moving and act as fixed points around which the remaining particles would simply

continue to compress. For the more adversarial setting of Byzantine failures, since our

algorithm is (nearly) oblivious and communication is limited to particles checking the

flags of their neighbors, the malicious particles are unable to “lie” or otherwise corrupt

healthy particles’ behaviors. We speculate that the malicious particles could affect

the overall compression of the system by expanding away from where the system is

aggregating and refusing to contract, essentially acting as fixed points. However, if

14After our compression algorithm was first introduced in [32], fault-tolerance for self-organizing
particle systems was also considered by Di Luna et al. for shape formation problems in [67].
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the fraction of malicious particles is small, the non-faulty particles will still be able to

compress around the malicious particles, as in crash failures.

8.2.4 Invariants forMC

We have established that algorithm AC is a distributed implementation of Markov

chainMC (Section 8.2.2), so we will perform the rest of our analysis directly onMC .

We begin by showing thatMC maintains certain invariants.

Lemma 8.2.1. If the particle system is initially connected, during the execution of

Markov chainMC it remains connected.

Proof. Consider one iteration of MC where a particle P moves from location ` to

location `′. Let σ be the configuration before this move, and σ′ the configuration after.

We show that if σ is connected, then so is σ′.

A move of particle P from ` to `′ occurs only if ` and `′ are adjacent and satisfy

Property 8.2.1 or Property 8.2.2. First, suppose they satisfy Property 8.2.1. If σ is

connected, then for every particle Q there exists some path P = (P = P1, P2, . . . , Pk =

Q) from P to Q in σ. By Property 8.2.1, since P2 ∈ N(`), there exists a path from P2

to a particle S ∈ S that is entirely contained in N(`). After P moves to location `′, it

remains connected to particle Q by a (not necessarily simple) walk that first travels

to S, then travels through N(`) to P2, and finally follows P to Q. This implies P is

connected to all particles from location `′, so σ′ is connected via paths through P .

Next, assume locations ` and `′ satisfy Property 8.2.2. Let Q and Q 6= P be

particles; we show that if σ is connected, then Q and Q must be connected by a

path not containing P . If σ is connected, then Q and Q are connected by some path

P = (Q = Q1, Q2, . . . , Qk = Q). If P is not in this path we are done, so suppose this
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path contains P , that is, Qi = P for some i ∈ {2, . . . , k − 1}. Both Qi−1 and Qi+1

are neighbors of `, and by Property 8.2.2 all neighbors of ` are connected by a path

in N(`). Thus P can be augmented to form a (not necessarily simple) walk W by

replacing P with a path from Qi−1 to Qi+1 in N(`). As P 6∈ W , this walk connects Q

and Q in σ′ without going through P , as desired. Because any two particles Q,Q 6= P

are connected by a path not containing P , they remain connected after P moves from

` to `′. Additionally, because `′ has at least one neighbor by Property 8.2.2, P at

location `′ is connected to at least one particle, and via that particle to all other

particles in σ′. Thus σ′ is connected.

We prove in the next subsection thatMC will eventually reach a configuration

with no holes (Lemma 8.2.8). After that point, the following lemma will apply. While

it is true more broadly thatMC will never create new holes, we prove only what we

will need, that new holes are never created in a hole-free configuration.

Lemma 8.2.2. All configurations reachable by Markov chainMC from a connected

configuration with no holes do not have holes.

Proof. Consider one iteration of MC where a particle P moves from location ` to

location `′. Let σ be the configuration before this move, and σ′ the configuration after.

We show if σ is hole-free, then so is σ′.

By a cycle in a configuration σ we will mean a cycle in G∆ that surrounds at least

one unoccupied location and whose vertices are occupied by particles of σ. Note a

configuration has a hole if and only if it has a cycle. Throughout this proof, we will

argue about the existence of cycles rather than the existence of holes.

We first show that if σ′ has a cycle then that cycle must contain P . Suppose, for

the sake of contradiction, this is not the case and σ′ has a cycle C with P 6∈ C. If P is
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removed from location `′, then cycle C still exists in σ′ − P . If P is then placed at `,

yielding σ, then C still exists unless it had enclosed exactly one unoccupied location, `.

However, this is not possible as any cycle in σ′ − P encircling ` would also necessarily

encircle neighboring unoccupied location `′. This implies cycle C exists in cycle-free

configuration σ, a contradiction. We conclude any cycle in σ′ must contain P .

Because particle P moved from location ` to location `′ in a valid step of Markov

chainMC , it must be true (by the conditions checked in Step 7 ofMC) that ` has

fewer than five neighbors and locations ` and `′ satisfy Property 8.2.1 or Property 8.2.2.

First, suppose they satisfy Property 8.2.2. While P might momentarily create

a cycle when it expands to occupy both locations ` and `′, it will then contract to

location `′. Suppose P is part of some cycle C = (P = P1, P2, . . . , Pk−1, Pk = P ) in

σ′. By Property 8.2.2, P2 and Pk−1 are connected by a path in N(`′) that doesn’t

contain P . Replacing path (Pk−1, P, P2) in cycle C by this path in N(`′) yields a (not

necessarily simple) cycle C ′ in σ′ not containing P , a contradiction.

Next, suppose ` and `′ satisfy Property 8.2.1. Because particle P moved from `

to `′ in a valid step ofMC , location ` must have at most four neighbors in σ. This

means that in σ′, location ` has at most five neighbors — its original neighbors plus

P at location `′ — and thus is adjacent to at least one unoccupied location. Suppose

there exists some cycle C = (P = P1, P2, . . . , Pk−1, Pk = P ) in σ′. This cycle encircles

at least one unoccupied location `′′ 6= `: since ` is adjacent to another unoccupied

location in σ′, it cannot be the case that ` is the only unoccupied location inside C. If

there exists a path between P2 and Pk−1 in N(`′), the argument from the previous case

applies and we are done. Otherwise, w.l.o.g., it must be that |S| = 2 and there exist

paths in N(` ∪ `′) from Pk−1 to S1 ∈ S and from P2 to S2 ∈ S, with S1 6= S2. There

then exists a (not necessarily simple) cycle C∗ in σ obtained from C by replacing path
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(Pk−1, P, P2), where P is in location `′, with path (Pk−1, . . . , S1, P, S2, . . . , P2), where

P is in location `. C∗ is a valid cycle in σ because it encircles unoccupied location

`′′ 6= `. This is a contradiction because σ has no cycles. We conclude by contradiction

that, in all cases, σ′ must have no cycles, and thus must have no holes.

8.2.5 Eventual Ergodicity ofMC

The state space Ω of our Markov chainMC is the set of all connected configurations

of n contracted particles, and Lemma 8.2.1 ensures that we always stay within this

state space. The initial configuration σ0 of MC may or may not have holes. By

Lemma 8.2.2, once a hole-free configuration is reached,MC remains in the part of

the state space consisting of all hole-free connected configurations, which we call

Ω∗. In this section, we prove that from any starting state MC always reaches Ω∗.

Furthermore, we prove thatMC is irreducible on Ω∗, that is, for any two configurations

in Ω∗ there exists some sequence of moves between them that has positive probability.

Stated another way, what we show is that all states in Ω∗ are recurrent, meaning

onceMC reaches a state σ ∈ Ω∗ it returns to σ with probability 1, while all states in

Ω \Ω∗ are transient, meaning they are not recurrent. AsMC is also aperiodic, we can

conclude it is eventually ergodic on Ω∗, a necessary precondition for all of the Markov

chain analysis to follow.

We note the details of these proofs have been substantially simplified and clarified

from the originally published conference version of these results [32], where the proof

of ergodicity required over 10 pages of detailed analysis. Figure 37 illustrates one

difficulty. It depicts a hole-free configuration for which there exist no valid moves
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Figure 37. The Necessity of Jump Moves inMC . A connected configuration for which
all valid moves of Markov chainMC satisfy Property 8.2.2; no particle has a valid
move satisfying Property 8.2.1. This demonstrates the subtlety of the Markov chain
rules we have defined.

satisfying Property 8.2.1; the only valid moves satisfy Property 8.2.2. Thus if moves

satisfying Property 8.2.2 are not included, neither Ω nor Ω∗ is connected.

At a high level, we prove that for any configuration σ there exists a sequence

of valid particle moves transforming σ into a straight line. Since a straight line is

hole-free, this shows that from any initial configuration in Ω, there exists a sequence of

moves with non-zero probability reaching Ω∗, as desired. We then prove any moves of

MC among states of Ω∗ are reversible, which implies that for any τ ∈ Ω∗ there exists

a sequence of valid particle moves transforming a straight line into τ . Altogether, this

shows for any σ, τ ∈ Ω∗ there exists a sequence of valid moves (within Ω∗) transforming

σ into τ , as required for ergodicity.

We will let m1 be the vertical lattice line containing the leftmost particle(s) in σ.

We label the subsequent vertical lattice lines as m2,m3,m4, and so on. The process

for moving the particles into one straight line is a sweep line algorithm, an approach

often used in computational geometry [89, 181]. We first consider the particles in
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(a)
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(b)
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Figure 38. The Line Invariants for Ergodicity. (a) An example of a configuration and
a line mi that satisfies both invariants. (b) After a sequence of moves described in
Lemma 8.2.4, mi+1 satisfies Invariant 8.2.1. (c) After a sequence of moves described
in Lemma 8.2.5, mi+1 also satisfies Invariant 8.2.2.

leftmost vertical line m1, then the particles in m2, and so on; when considering line

mi, we maintain the following invariants:

Invariant 8.2.1. All particles left of mi form lines stretching down and left.

Invariant 8.2.2. Each such line stretches down and left from a particle in mi that

has an empty location directly below it.

Line m1 trivially satisfies these properties as there are no particles to its left.

Figure 38a gives an example of an intermediate configuration and a line mi satisfying

these invariants. Starting from a configuration in which the invariants are satisfied

for mi, we describe how to find a sequence of valid particle moves after which mi+1

also satisfies the invariants. For the configuration in Figure 38a, the configuration

obtained after first ensuring mi+1 satisfies Invariant 8.2.1 is shown in Figure 38b, and

the configuration obtained after ensuring mi+1 also satisfies Invariant 8.2.2 is shown

in Figure 38c.
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Figure 39. Local Moves for Line Setup. Particle positions from the base case (top
row) and inductive step (bottom row) of the proof of Lemma 8.2.3. Particles are
represented by black dots, and unoccupied locations are represented by dashed circles.
Neighboring particles have a black line drawn between them.

Throughout this subsection, a component of line mi will refer to a maximal

collection of particles in mi that are connected via paths in mi. For example, in

Figure 38a, mi has four components (from top to bottom: of one, two, three, and one

particles, respectively). We begin with a lemma about particle movements that will

play a key role.

Lemma 8.2.3. Suppose particle P has exactly two neighbors, Q1 below it and Q2

above-right of it, and let ` be the unoccupied location below-right of P . There exists a

sequence of valid moves, occurring strictly below and right of P , after which either it

is valid for P to move to ` or some other particle has already moved to `.

Proof. We induct on the number of particles strictly below and right of P . If there

are no such particles, then it is valid (satisfying Property 8.2.1) for P to move from

its current location `0 to `. This is because N(`0) ∩ N(`) = {Q1, Q2}, and either

these are the only two particles in N(`0 ∪ `) (Figure 39a) or there is exactly one other
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particle in N(`0 ∪ `) and it is adjacent to Q2 (Figure 39b). Thus the conclusions of

the lemma are already satisfied with an empty set of moves.

Suppose there are k > 0 particles strictly below and right of P , and for all

0 ≤ k′ < k the lemma holds. If it is already valid for P to move to `, we are

done; an example is given in Figure 39c. Otherwise, since P has fewer than five

neighbors, it must be that neither Property 8.2.1 nor Property 8.2.2 is satisfied. Note

S = N(P ) ∩N(`) contains two particles, Q1 and Q2. Because Property 8.2.1 doesn’t

hold, and N(P ) doesn’t contain any particles other than those of S, it must be that

there is a particle P ′ in N(`) that is not connected to a particle in S by a path within

N(`). Then P ′ must occupy the location below-right of `, and the locations adjacent

to both ` and P ′ must be unoccupied; see Figure 39d. We now consider N(P ′), which

is of size at least one and at most three.

First, we suppose N(Q′) is not connected; see Figure 39e. In this case, P ′ must

have exactly two neighbors, one below P ′ and the other above-right of P ′, while

location `′ below-right of P ′ is unoccupied. There are fewer than k particles below

and right of P ′ because this is a proper subset of the k particles below and right of

P . By the induction hypothesis, we conclude there is a sequence of moves occurring

entirely below and right of P ′ after which either it is valid for P ′ to move to `′ or

another particle has moved to `′. In the first case, we let P ′ move to `′ and afterwards

it is valid (satisfying Property 8.2.1) for P to move to `, because N(`) now contains

only Q1 and Q2. In the second case, a particle has moved to `′ but N(P ′) otherwise

remains unchanged, causing N(P ′) to now be connected, the case we consider next.

Otherwise, suppose N(P ′), which is of size at least one and at most three, is

connected; see Figure 39f. Note the current location of P ′ and location ` satisfy
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Property 8.2.2, so particle P ′ can move to `. As P ′ and ` are below and right of P ,

this move satisfies the conclusions of the lemma.

If mi satisfies the invariants, we want to give a sequence of moves after which mi+1

also satisfies the invariants. The following lemma will be used towards that goal.

Lemma 8.2.4. If mi satisfies Invariants 8.2.1 and 8.2.2 and has a component of

size at least two, there exists a sequence of valid moves that decreases the number of

particles in mi, after which mi still satisfies the invariants.

Proof. Consider any component of mi of size at least two, and let P be the topmost

particle in this component. Then P has a particle below it, no particle above it,

and (by Invariants 8.2.1 and 8.2.2) no particle above-left or below-left of it. The two

locations right of P may or may not be occupied. We consider two cases: when N(P )

is connected, and when it is not.

When N(P ) is disconnected, we invoke Lemma 8.2.3. It must be that P has two

neighbors that satisfy the conditions of the lemma, and so there exists a sequence

of valid moves after which either location ` below-right of P is occupied by another

particle or it is valid for P to move to `. All moves in this sequence occur right of

P , and thus don’t affect the invariants for mi. If it is now valid for P to move to

`, we make this move and the number of particles in mi has decreased, as desired.

If another particle has moved to `, then N(P ) is now connected, the next case we

consider.

When N(P ) is connected, it must look as in Figures 40a, 40b, or 40c. In all cases,

particle P moving down-left is a valid move that decreases the number of particles in

mi. However, Invariant 8.2.1 no longer holds for mi after this move, so we continue to

move particle P down until it is adjacent to the bottom particle Q in this component
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Figure 40. Local Moves for Line Formation. If P is the topmost particle in a component
of mi of size at least two and its neighborhood is connected, then (a)–(c) are the
three possibilities for N(P ). In all three of these cases, moving P down-left satisfies
Property 8.2.1. (d) and (e) show the two cases for subsequently moving P to a new
position such that the invariants still hold for mi.

of particles in mi. If there is not already a line stretching down and left from Q, then

P moves down once more to start such a line (Figure 40e), which is valid because of

the invariants for mi. If this line stretching down and left from Q already exists, we

note the locations at distances one and two above this line must all be unoccupied.

This follows from Invariants 8.2.1 and 8.2.2 for mi: all particles left of mi must extend

down and left from the bottom particle of some component in mi, and the first such

particle above Q is at least two units above P ’s original location and thus at least

three units above Q. Thus, it is valid (satisfying Property 8.2.1) to move P along this

line and add it to the end (Figure 40d). In all cases, the number of particles in mi

decreases while the invariants for mi remain satisfied, as desired.

Lemma 8.2.4 can be applied iteratively until all components of mi are of size one

and all particles left of mi form lines stretching down-left from these components of

size one. Thus, all particles left of mi+1 form lines stretching down-left, satisfying

Invariant 8.2.1 for mi+1. We now consider how to also satisfy Invariant 8.2.2 for mi+1.
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Figure 41. Local Moves for Merging Lines. (a)–(b) Each line can be moved down by
iteratively moving the line’s particles down one space from right to left. (c)–(e) Once
flush with the bottommost line, particles from this line can move left and down to
merge with the bottommost line, satisfying Invariant 8.2.2.

Lemma 8.2.5. If mi satisfies both invariants and mi+1 satisfies Invariant 8.2.1, then

there exists a sequence of valid moves after which mi+1 satisfies both invariants.

Proof. Because the configuration is connected, each line left of mi+1 is connected to

some particle in mi+1. However, the line may not stretch down and left from this

particle or this particle may not have an empty location below it, as is required by

Invariant 8.2.2. Consider any component of mi+1 which is adjacent to at least one line

left of mi+1 stretching down-left. To satisfy Invariant 8.2.2, we merge all such lines

into one, stretching down-left from the bottom particle Q in this component. First,

we move the lowest line so that it is stretching down-left from Q. An entire line can be

moved down one unit by first moving the rightmost particle in this line (the particle

in line mi) down once, which is necessarily a valid move, and then by subsequently

moving the remaining particles down once from right to left (for an example of this

downward movement of a line, see Figure 41a). This can be repeated until this lowest

line is in the desired position, stretching down and left from Q.

Iteratively consider the next lowest line. As before, we move this line down

one unit at a time by moving the particles each down once from right to left until
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the line is flush with the bottommost line (Figures 41a–41b). The particles in this

line can then easily be added to the bottommost line one at a time, from left to

right, as in Figures 41c–41e. We repeat this line merging process until all particles

stretching down-left from this component of mi have been reorganized into one line

stretching down-left from Q. After repeating this process for all components in mi+1,

Invariant 8.2.2 is satisfied for mi+1. Invariant 8.2.1 still holds for mi+1 as all particles

are still in lines, so mi+1 now satisfies both invariants, as claimed.

We now combine the previous two lemmas to get the main inductive step for our

sweep-line procedure.

Lemma 8.2.6. If mi satisfies both invariants, then there exists a sequence of valid

particle moves after which mi+1 also satisfies both invariants.

Proof. Suppose mi satisfies both invariants. If there are connected components of two

or more particles contained in mi, we can iteratively apply Lemma 8.2.4 to reduce the

number of particles in mi without affecting the invariants. After this, all components

of mi consist of one particle. Now all particles left of mi+1 are in lines (possibly

consisting of just one particle) stretching down-left, satisfying Invariant 8.2.1. Next,

we can apply Lemma 8.2.5 to ensure that mi+1 also satisfies Invariant 8.2.2, merging

any lines stretching down-left from the same component of mi+1. Thus, there exists a

sequence of valid moves after which mi+1 satisfies both invariants, as claimed.

Lemma 8.2.7. There exists a valid sequence of moves transforming any configuration

into a line.

Proof. Initially, m1 for σ trivially satisfies the invariants because there are no particles

left of m1. Repeatedly using Lemma 8.2.6, we obtain a sequence of moves after which

the invariants hold for some line mk which has no particles to its right.
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All particles in mk must be in a single component. If this was not the case, then

the configuration would not be connected: particles left of mk only form lines that are

insufficient to connect multiple components of mk, and there are no particles right of

mk. We know that the configuration must be connected because initial configuration

σ0 was connected and we have only made valid particle moves (Lemma 8.2.1), so this

is a contradiction, and mk must have a single component.

We repeatedly apply Lemma 8.2.4 until there is only one particle left in mk and

line mk still satisfies the invariants. At this point the particles form a single line

stretching down-left from the single particle in mk, and we have given a sequence of

valid moves transforming an arbitrary configuration into a line.

In particular, this shows that for any connected configuration there exists a valid

sequence of moves transforming it into a configuration with no holes.

Lemma 8.2.8. EventuallyMC reaches a configuration with no holes, after which no

holes are ever introduced again.

Proof. Let σ0 ∈ Ω be the initial (connected) configuration given as input to Markov

chainMC . By Lemma 8.2.7 for σ0, there is positive probability thatMC will reach

Ω∗ ⊂ Ω, the set of hole-free connected particle configurations. Lemma 8.2.7 holds

for any configuration, so this is also true of each subsequent state σi. Since Ω is

finite,MC must eventually reach Ω∗, as desired. Finally, by Lemma 8.2.2, once Ω∗ is

reached, the particle system will remain hole-free for the rest ofMC ’s execution.

Note that the previous lemma is equivalent to saying that any configuration with

a hole is a transient state of Markov chainMC . We present one more lemma before

provingMC is irreducible on Ω∗ once it reaches Ω∗. Let M be the transition matrix
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ofMC , that is, M(σ, τ) is the probability of moving from state σ to state τ in one

step ofMC .

Lemma 8.2.9. For any two configurations σ, τ ∈ Ω∗, ifM(σ, τ) > 0 thenM(τ, σ) > 0;

that is, onceMC reaches Ω∗, all of its transitions are reversible on Ω∗.

Proof. Let σ, τ ∈ Ω∗ be any two configurations such that M(σ, τ) > 0. Then σ and τ

differ by one particle P that is at location ` in σ and at an adjacent location `′ in τ .

In τ , particle P at location `′ has at most four neighbors. It cannot have six

neighbors because location `, which was previously occupied by P in σ, is now

unoccupied. It cannot have five neighbors because otherwise `′ would have been a

hole in σ when P was at `, a contradiction to our assumption that σ ∈ Ω∗. Because

M(σ, τ) > 0, Property 8.2.1 or Property 8.2.2 must hold for ` and `′. Both properties

are symmetric with regard to the role played by ` and `′. Thus, if Markov chainMC

in state τ selects particle P , neighboring location `, and sufficiently small probability

q in Step 2, then because Conditions (i)–(iii) of Step 7 are satisfied, particle P moves

to location `. This proves M(τ, σ) > 0.

Lemma 8.2.10. Once Markov chainMC reaches Ω∗, it is irreducible on Ω∗, the state

space of all connected configurations without holes.

Proof. Let σ and τ be any two connected configurations of n particles with no holes.

By Lemma 8.2.7, there exists a sequence of valid moves transforming σ into a line.

By Lemmas 8.2.7 and 8.2.9, there exists a sequence of valid moves transforming this

line into τ .

Corollary 8.2.11. OnceMC reaches Ω∗, it is ergodic on Ω∗.

Proof. By Lemma 8.2.10, MC is irreducible on Ω∗. As long as n > 1, then since

the configuration is connected, every particle has at least one neighbor. Thus, at
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each step ofMC there is at least a 1/6 probability that no move is made because a

particle proposes moving into an adjacent location that is already occupied, soMC is

aperiodic. Thus, onceMC reaches Ω∗, it is ergodic on Ω∗.

We note thatMC is not irreducible on Ω, and thus not ergodic on Ω, because a

configuration with a hole cannot be reached from a hole-free configuration. Ergodicity

is necessary to apply tools from Markov chain analysis, as we do in the next subsection,

which is why we focus on the behavior ofMC after it reaches Ω∗.

8.2.6 The Stationary Distribution π ofMC

In this section we determine the stationary distribution ofMC .

Lemma 8.2.12. If π is a stationary distribution of MC, then for any σ ∈ Ω \ Ω∗,

π(σ) = 0.

Proof. For any configuration σ ∈ Ω \Ω∗, there is a positive probability of moving into

Ω∗ in some later time step (Lemma 8.2.8). For any configuration τ ∈ Ω∗, there is

zero probability of reaching a configuration with holes (Lemma 8.2.2). If a stationary

distribution π were to put any positive probability mass on states in Ω \ Ω∗, over

time the total probability mass within Ω \ Ω∗ would decrease as it leaks into Ω∗

with no possibility of returning. Thus such a distribution could not be stationary, a

contradiction. We conclude that any stationary distribution π ofMC has π(σ) = 0

for all σ ∈ Ω \ Ω∗, as claimed.

Lemma 8.2.13. Markov chainMC has a unique stationary distribution π given by:

π(σ) =


λe(σ)

Z
σ ∈ Ω∗

0 σ ∈ Ω \ Ω∗
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where Z =
∑

σ∈Ω∗ λ
e(σ) is the normalizing constant, also called the partition function.

Proof. Lemma 8.2.12 guarantees that any stationary distribution ofMC has π(σ) = 0

for configurations σ 6∈ Ω∗. Once MC reaches Ω∗ (which it is guaranteed to by

Lemma 8.2.8), it is ergodic on Ω∗ (Corollary 8.2.11). We conclude, because Ω∗ is

finite, thatMC on Ω∗ has a unique stationary distribution, and thusMC on Ω also

has a unique stationary distribution.

We confirm that π as stated above is this unique stationary distribution by detailed

balance. Let σ and τ be configurations in Ω∗ with σ 6= τ such that M(σ, τ) > 0. By

Lemma 8.2.9, we have M(τ, σ) > 0. Suppose particle P moves from location ` in σ

to neighboring location `′ in τ . Let e be the number of edges formed by P has when

it is in location `, and let e′ be that number when P is in location `′. This implies

e(σ)− e(τ) = e− e′. If λe′ ≤ λe, then we see that

M(σ, τ) =
1

n
· 1

6
· λe′−e and M(τ, σ) =

1

n
· 1

6
· 1.

In this case we can verify that σ and τ satisfy the detailed balance condition:

π(σ)M(σ, τ) =
λe(σ)

Z
· λ

e′−e

6n
=

λe(τ)

Z · 6n
= π(τ)M(τ, σ).

If λe′ > λe, we can similarly calculate these probabilities to verify detailed balance:

M(σ, τ) =
1

n
· 1

6
· 1 and M(τ, σ) =

1

n
· 1

6
· λe−e′ ,

π(σ)M(σ, τ) =
λe(σ)

Z · 6n
=
λe(τ)

Z

λe−e
′

6n
= π(τ)M(τ, σ).

Since the detailed balance condition is satisfied for all σ, τ ∈ Ω∗, it only remains to

verify that π is in fact a probability distribution:∑
σ∈Ω

π(σ) =
∑
σ∈Ω∗

λe(σ)

Z
+
∑

σ∈Ω\Ω∗
0 =

∑
σ∈Ω∗ λ

e(σ)∑
σ∈Ω∗ λ

e(σ)
= 1.

We conclude π is the unique stationary distribution ofMC .
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While it is natural to assume maximizing the number of edges in a configuration

results in more compression, here we formalize this. We prove π can also be expressed

in terms of perimeter. This impliesMC converges to a distribution weighted by the

perimeter of configurations, a global characteristic, even though the probability of any

particle move is determined only by local information.

Corollary 8.2.14. The stationary distribution π ofMC is also given by:

π(σ) =


λ−p(σ)

Z
σ ∈ Ω∗

0 σ ∈ Ω \ Ω∗

where Z =
∑

σ∈Ω∗ λ
−p(σ) is the normalizing constant, also called the partition function.

Proof. This expression is equal to the formulation given in Lemma 8.2.13 when σ 6∈ Ω∗,

so it suffices to verify the case σ ∈ Ω∗. We use Lemma 8.1.3 and Lemma 8.2.13:

π(σ) =
λe(σ)∑

σ∈Ω∗ λ
e(σ)

=
λ3n−p(σ)−3∑

σ∈Ω∗ λ
3n−p(σ)−3

=
λ3n−3

λ3n−3
· λ−p(σ)∑

σ∈Ω∗ λ
−p(σ)

=
λ−p(σ)∑

σ∈Ω∗ λ
−p(σ)

,

yielding the desired result.

The original version of these results [32] also expressed the stationary distribution

in terms of the number of triangles in a configuration. Recall a triangle is a face of

G∆ that has all three of its vertices occupied by particles and t(σ) is the number of

triangles in configuration σ. We include the following corollary for completeness, but

will not use it in subsequent sections.

Corollary 8.2.15. The stationary distribution π ofMC is also given by

π(σ) =


λt(σ)

Z
σ ∈ Ω∗

0 σ ∈ Ω \ Ω∗

where Z =
∑

σ∈Ω∗ λ
t(σ) is the normalizing constant, also called the partition function.
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Proof. This follows from Lemma 8.1.4 and Corollary 8.2.14:

π(σ) =
λ−p(σ)∑

σ∈Ω∗ λ
−p(σ)

=
λ−(2n−t(σ)−2)∑

σ∈Ω∗ λ
−(2n−t(σ)−2)

=
λ−2n+2

λ−2n+2
· λt(σ)∑

σ∈Ω∗ λ
t(σ)

=
λt(σ)∑

σ∈Ω∗ λ
t(σ)

,

yielding the desired result.

8.2.7 Convergence Time ofMC

We prove in Section 8.3 that when λ > 2 +
√

2, the particle system will be

compressed at stationarity with all but exponentially small probability. We do not

give explicit bounds on the time required for this to occur, and moreover we believe

proving rigorous bounds will be challenging. A common measure of convergence time

of a Markov chain is its mixing time, the number of steps until the distribution is

within total variation distance ε of the stationary distribution, starting from the worst

initial configuration. Getting a polynomial bound on the mixing time of our Markov

chainMC is likely to be challenging because of its similarity to physical systems such

as the ferromagnetic Ising and Potts models, where sites are assigned spins and nearest

neighbors prefer to have the same spins. In our case, the particles can be thought

of as one spin and the empty sites another, and the Markov chainMC also favors

configurations with more like spins adjacent. Local Markov chains on models like this,

including the two-dimensional Ising model with constant boundary conditions, are

believed to have polynomial mixing time; however, proving such a bound remains

a difficult open problem despite breakthrough works showing subexponential [138]

and subsequently quasipolynomial [135] upper bounds on the mixing time. The

shrinkage over time of the boundary of the particle configuration underMC is similar

to the shrinkage over time in the Ising model of “droplets” of one state surrounded

by the other state (see, e.g., [34] for work investigating such droplets in two and
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three dimensions). This shrinking of droplets is believed — but not proved — to be

the salient feature determining the mixing time for the Ising model with constant

boundary conditions. Because our algorithm has similarly hard-to-analyze features,

we expect getting rigorous mixing time bounds will be challenging.

It is also worth noting that mixing time may not be the best measure of our

algorithm’s ability to achieve compression. While we prove in later sections that

compression with high probability onceMC has reached its stationary distribution,

compressed configurations could be reached much earlier. When starting from a

line of n particles, preliminary simulations indicate that doubling the number of

particles consistently results in about a ten-fold increase in iterations until compression

is achieved. Based on this, we conjecture the number of iterations of MC until

compression occurs is Ω(n3) and O(n4), the equivalent of Ω(n2) and O(n3) sequential

rounds of AC . Furthermore, we do not expect the presence of holes in the initial

configuration to significantly delay compression, even though this may increase the

mixing time.

8.3 Achieving Compression

We proved in Section 8.2.6 that Markov chainMC converges to a unique stationary

distribution, and we know that distribution exactly (Corollary 8.2.14). In this section,

we show that when parameter λ is large enough, this stationary distribution exhibits

compression with high probability. While compression could actually occur even

earlier, beforeMC is close to stationarity, our proofs rely on analyzing the stationary

distribution ofMC .

Recall for any α > 1 we say a configuration σ with n particles is α-compressed
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if its perimeter p(σ) < α · pmin, where pmin is the minimum possible perimeter of a

configuration with n particles. We prove that, for any α > 1 and provided λ and

n are large enough, a configuration chosen at random according to the stationary

distribution ofMC is α-compressed with all but a probability that is exponentially

small (in
√
n). Values of α closer to 1 simply require larger λ values. Conversely, we

then prove (as a corollary) that for any λ > 2 +
√

2, there is a constant α such that

with high probability α-compression occurs at stationarity.

8.3.1 Perimeter and Self-Avoiding Walks

We begin with some necessary results bounding the number of connected, hole-free

particle system configurations with a certain perimeter. Let Sα be the set of all

connected, hole-free configurations with perimeter at least α · pmin, for some constant

α > 1. We only consider hole-free configurations because we are concerned with

behavior ofMC at stationarity and the stationary distribution π ofMC only gives

positive probability to hole-free configurations in Ω∗ (Corollary 8.2.14). We want an

exponentially small upper bound on π(Sα) =
∑

σ∈Sα π(σ), the probability of being in

a configuration with large perimeter at stationarity.

Let ck denote the number of connected, hole-free configurations with perimeter k.

Recall that pmax = 2n− 2 is the maximum possible perimeter for a configuration of n

particles; using the expression for π given in Corollary 8.2.14, we can write π(Sα) as:

π(Sα) =
∑
σ∈Sα

π(σ) =
∑
σ∈Sα

λ−p(σ)

Z
=

∑pmax
k=dα·pmine ckλ

−k

Z
.

Recall that Corollary 8.2.14 defined the partition function as Z =
∑

σ∈Ω∗ λ
−p(σ), the

summed weight of all connected, hole-free configurations. In order to give an upper

bound on π(Sα), we establish a lower bound on Z and an upper bound on ck. It
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(a) (b) (c)

Figure 42. Self-Avoiding Walks in the Hexagonal Lattice. (a) The hexagonal lattice.
(b) A self-avoiding walk in the hexagonal lattice. (c) A walk that is not self-avoiding.

suffices to use the trivial bound Z ≥ λ−pmin for the former; to bound the latter, we

turn to lattice duality and self-avoiding walks (for a more thorough treatment of

self-avoiding walks, see, e.g., [18]).

Definition 8.3.1. A self-avoiding walk in a graph is a walk that never visits the same

vertex twice.

Self-avoiding walks are most commonly studied for graphs that are planar lattices,

and we will focus on self-avoiding walks in the hexagonal lattice, also called the

honeycomb lattice (Figure 42a). Examples of self-avoiding walks and non-self-avoiding

walks in this lattice are shown in Figures 42b and 42c, respectively. The hexagonal

lattice is of interest because it is dual to the triangular lattice G∆ that particles occupy

in the amoebot model. That is, by creating a new vertex in every face of the triangular

lattice and connecting two of these new vertices if their corresponding triangular faces

have a common edge, we obtain the hexagonal lattice; see Figure 43a.

The number of self-avoiding walks of a certain length starting from a fixed vertex

has been extensively studied for many planar lattices. This number is believed to grow

exponentially with the length of the walk, and the base of this exponent is known

as the connective constant of the lattice. More concretely, if Nl is the number of
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(a) (b)

Figure 43. Self-Avoiding Walks and Particle System Configurations. (a) The duality
between the triangular lattice G∆ and the hexagonal lattice. (b) An example of
a particle system configuration, its corresponding polygon in the hexagonal lattice
(shaded), and the boundary of this region which is a self-avoiding polygon in the
hexagonal lattice (bold).

self-avoiding walks of length l in some planar lattice L, then the connective constant

of lattice L is defined as µL = liml→∞(Nl)
1/l. For example, the connective constant

of the square lattice is 2.625622 ≤ µsq ≤ 2.679193, but an exact value has not been

rigorously proved [115, 161]. The only lattice for which the connective constant is

exactly known is our lattice of interest, the hexagonal lattice.

Theorem 8.3.2 (Duminil-Copin and Smirnov [75]). The connective constant of the

hexagonal lattice is µhex =
√

2 +
√

2.

This theorem implies that the number of self-avoiding walks of length l in the

hexagonal lattice is f(l) · µlhex, for some subexponential function f (a function is

subexponential if liml→∞ f(l)1/l = 1).

To bound the number of connected, hole-free particle system configurations with

some fixed perimeter, we turn from self-avoiding walks to the closely related notion

of self-avoiding polygons, where a self-avoiding polygon is a self-avoiding walk that
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starts and ends at the same vertex (Figure 43b). The number of self-avoiding walks

of length l is an upper bound on the number of self-avoiding polygons of perimeter l.

Lemma 8.3.3. The number of connected, hole-free particle system configurations

with n particles and perimeter k is at most f(k) ·
(
2 +
√

2
)k

for some subexponential

function f .

Proof. Consider the dual to the triangular lattice G∆, the hexagonal lattice Ghex

(Figure 43a). For any connected, hole-free particle system configuration σ with n

particles, consider the union Aσ of all the faces of Ghex corresponding to vertices

of G∆ that are occupied in σ. Whenever two particles are adjacent in G∆, their

corresponding faces in Ghex share an edge. This union Aσ is a simply connected

polygon because σ is connected and has no holes; moreover, the boundary of Aσ forms

a self-avoiding polygon in Ghex (bold in Figure 43b).

We first show that the number of connected, hole-free particle system config-

urations in G∆ with perimeter k is at most the number of self-avoiding polygons

in Ghex with perimeter 2k + 6. Let σ be a connected, hole-free configuration with

perimeter k. A particle P is on the (unique external) boundary of σ if and only

if its corresponding hexagon HP in Ghex shares an edge with the perimeter of Aσ.

That is, if a particle P appears once on the boundary of σ with exterior angle

θP ∈ {120◦, 180◦, 240◦, 300◦, 360◦}, then HP has (θP/60◦)− 1 of its edges contained

in the perimeter of Aσ. More generally, if a particle P appears mP ≥ 1 times on the

boundary of σ with exterior angles summing to θP , then HP has (θP/60◦)−mP of its

edges contained in the perimeter of Aσ. Thus, we conclude the number of edges on

the perimeter of Aσ is:

p(Aσ) =
∑
P∈p(σ)

(
θP
60◦
−mP

)
=

∑
P∈p(σ) θP

60◦
− k =

180◦k + 360◦

60◦
− k = 2k + 6.
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As noted before, the number of self-avoiding polygons in a lattice with perimeter

l is at most the number of self-avoiding walks in that lattice with length l. So the

number of self-avoiding polygons in Ghex with perimeter 2k+ 6 is at most the number

of self-avoiding walks in Ghex of length 2k + 6. By Theorem 8.3.2, the number of

self-avoiding walks in Ghex of length 2k+6 is f1(2k+6) ·µ2k+6
hex , for some subexponential

function f1. Let f(k) = f1(2k + 6) · µ6
hex; note that f is also subexponential. Then,

all together, the number of connected, hole-free particle system configurations with

perimeter k is at most f(k) · µ2k
hex = f(k) ·

(
2 +
√

2
)k
, as desired.

We can restate Lemma 8.3.3 in a slightly different way to make it easier to use in

our later proofs.

Lemma 8.3.4. For any ν > 2 +
√

2, there is an integer n1(ν) such that for all

n ≥ n1(ν), the number of connected, hole-free particle system configurations with n

particles and perimeter k is at most νk.

Proof. From Lemma 8.3.3 we know that the number of connected, hole-free configura-

tions with n particles and perimeter k is at most at most f(k) ·
(
2 +
√

2
)k
, for some

subexponential function f . Because ν > 2 +
√

2 and f is subexponential, it follows

that:

lim
k→∞

f(k) · (2 +
√

2)k

νk
= 0.

Let k1(ν) be such that for all k > k1(ν), f(k) ·
(
2 +
√

2
)k ≤ νk; k1(ν) must exist

because the above limit is less than one. Let n1(ν) = k1(ν)2. For any n ≥ n1(ν), all

connected configurations with n particles have perimeter at least k1(ν) by Lemma 8.1.1.

We conclude that for any n ≥ n1(ν) and for any k between pmin(n) and pmax(n),

f(k) ·
(
2 +
√

2
)k ≤ νk and thus the number of connected, hole-free configurations with
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perimeter k is at most νk, as claimed. If k is not within these bounds, there are no

configurations with n particles and perimeter k, so the lemma is trivially true.

We note that, in general, the closer ν is to 2 +
√

2 the larger n1(ν) has to be.

8.3.2 Proof of Compression

To simplify notation, we define the weight of a configuration σ to be w(σ) =

π(σ) · Z = λ−p(σ). For a set S ⊆ Ω, we define w(S) =
∑

σ∈S w(σ) as the sum of the

weights of all configurations in S. We now prove our main result.

Theorem 8.3.5. For any α > 1, let λ∗ = (2 +
√

2)
α
α−1 . There exists n∗ ≥ 0 and ζ < 1

such that for all λ > λ∗ and n > n∗, the probability that a random sample σ drawn

according to the stationary distribution π ofMC is not α-compressed is exponentially

small in
√
n = Θ(pmin):

Pr [p(σ) ≥ α · pmin : σ ∼ π] < ζ
√
n.

Proof. Recall that Sα is the set of connected, hole-free configurations with perimeter

at least α · pmin. We wish to show that π(Sα) is smaller than some function that is

exponentially small in
√
n.

We first consider the partition function Z of π; recall Z =
∑

σ∈Ω∗ λ
−p(σ). If σmin

is a configuration of n particles achieving the minimum possible perimeter pmin, then

w(σmin) = λ−pmin is a lower bound on Z. It follows that:

π(Sα) =
w(Sα)

Z
<

w(Sα)

w(σmin)
.

The remainder of this proof will be spent finding an upper bound on w(Sα)/w(σmin)

that is exponentially small in
√
n. To begin, we stratify Sα into sets of configurations
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that have the same perimeter; recall every configuration has an integer perimeter

because of lattice constraints. Let Ak be the set of all configurations with perimeter

k; then Sα =
⋃pmax
k=dα·pmineAk. Noting that pmax = 2n− 2, we can then write:

w(Sα)

w(σmin)
=

∑2n−2
k=dα·pminew(Ak)

λ−pmin
.

Since all configurations in Ak have the same perimeter k, they also have the same

weight λ−k; thus, w(Ak) = |Ak|λ−k. Choose ν such that λ∗ < ν
α
α−1 < λ, implying

2 +
√

2 < ν < λ
α−1
α ; since λ > λ∗, such a ν must exist. By Lemma 8.3.4, provided n

is large enough (i.e., larger than the value n1(ν)), we have |Ak| ≤ νk. So, we have:

w(Sα)

w(σmin)
=

∑2n−2
k=dα·pmine |Ak|λ

−k

λ−pmin
≤
∑2n−2

k=dα·pmine ν
kλ−k

λ−pmin
=

2n−2∑
k=dα·pmine

νkλ−kλpmin .

Because k ≥ α · pmin, it follows that k/α ≥ pmin. As λ > λ∗ > 2 +
√

2 > 1,

w(Sα)

w(σmin)
≤

2n−2∑
k=dα·pmine

νkλ−kλk/α =
2n−2∑

k=dα·pmine

(
ν

λ
α−1
α

)k
.

We chose ν such that ν < λ
α−1
α , so (ν/λ

α−1
α ) < 1. Because k ≥ α · pmin > α

√
n

(by Lemma 8.1.1), we have:

w(Sα)

w(σmin)
≤

2n−2∑
k=dα·pmine

(
ν

λ
α−1
α

)α√n
≤ (2n− 2)

(
ν

λ
α−1
α

)α√n
.

Since (ν/λ
α−1
α ) < 1, we can find a constant ζ < 1 such for all sufficiently large n,

say n ≥ n2, it holds that:

w(Sα)

w(σmin)
≤ (2n− 2)

(
ν

λ
α−1
α

)α√n
< ζ

√
n.

Setting n∗ = max{n1(ν), n2} completes the proof of the theorem.

Although Theorem 8.3.5 is proved only in the case where the number of particles

is sufficiently large, we expect and observe it to hold for much smaller n. We note
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that the closer the value ν
α
α−1 used in the above proof is to λ∗ the larger n1(ν) is, and

the closer ν is to λ, the larger n2 is. In particular, when λ is close to λ∗ then n∗ must

be large, while for λ� λ∗, smaller values of n∗ suffice for the proof. Computing an

exact value for n∗ is difficult because the value n1(ν) from Lemma 8.3.4 is not known

explicitly; see Section 4 of [75] and the references therein.

While the above result shows thatMC (and, by extension, the local, distributed

algorithm AC) accomplishes α-compression for any α > 1, smaller values of α require

larger values of λ. In practice, when λ is large,MC takes a long time to reach any

compressed configuration. Because of this, what happens when λ is small is also of

interest. We now show that provided λ > 2 +
√

2, there is some constant α such that

α-compression occurs. Of course, there is again a tradeoff: the smaller λ is, the larger

α must be.

Corollary 8.3.6. For any λ > 2+
√

2, for any constant α > log2+
√

2 λ/(log2+
√

2 λ−1)

there exists n∗ ≥ 0 and ζ < 1 such that for all n ≥ n∗, a random sample σ drawn

according to the stationary distribution π ofMC satisfies

Pr [p(σ) ≥ α · pmin : σ ∼ π] < ζ
√
n.

Proof. If α >
log2+

√
2 λ

log2+
√

2 λ−1
, then solving for λ gives λ > (2 +

√
2)

α
α−1 . Theorem 8.3.5

then gives the desired result.

8.4 Achieving Expansion

Now that we have proved Markov chain MC (and distributed algorithm AC)

yields compression whenever λ > 2 +
√

2, it is natural to ask about the behavior

ofMC when λ ≤ 2 +
√

2. As λ > 1 corresponds to particles favoring having more
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neighbors, one might conjecture that compression occurs whenever λ > 1. We show,

counterintuitively, that this is not the case: for all λ < 2.17, compression does not

occur. For example, consider the simulation depicted in Figure 44: even after 20

million iterations of MC with bias λ = 2, the system has not compressed. This

stands in stark contrast to the simulations depicted in Figure 36, which achieved good

compression after only 5 million iterations ofMC using λ = 4.

(a)
(b)

Figure 44. Simulation of Markov ChainMC with λ = 2. A system of 100 particles
initially in a line after (a) 10 million and (b) 20 million iterations ofMC with bias
λ = 2.

Analogous to our definition of α-compression, we say a configuration σ is β-

expanded for some 0 < β < 1 if p(σ) > β · pmax. For a configuration of n particles,

pmax = 2n − 2 = Θ(n) and pmin = Θ(
√
n), so β-expansion and α-compression for

any constants β and α are mutually exclusive for sufficiently large n. We prove in

this section that, for all 0 < λ < 2.17 and provided n is large enough, there is a

constant β such that a configuration chosen at random according to the stationary

distribution ofMC is β-expanded with probability at least 1− ζ
√
n for some constant
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ζ. As mentioned above, this is notable because it implies that λ > 1 (i.e., favoring

more neighbors) is not sufficient to guarantee compression as one might first guess.

We begin with some preliminaries about counting the number of particle system

configurations with a certain perimeter, which will give us a lower bound on the

partition function Z. We then use this bound to show that for all λ <
√

2, expansion

occurs. By revisiting and improving this lower bound on Z, we can improve this result

and show expansion occurs for all λ < 2.17.

8.4.1 A Non-trivial Lower Bound on the Partition Function

Let Sβ be the set of all connected, hole-free particle system configurations with

perimeter at most β · pmax for some constant 0 < β < 1. Analogous to the approach

for proving compression, we want to show π(Sβ) =
∑

σ∈Sβ λ
−p(σ)/Z, the stationary

probability of being in a configuration with small perimeter, is exponentially small in
√
n. Recall that Corollary 8.2.14 defined the partition function as Z =

∑
σ∈Ω∗ λ

−p(σ),

the summed weight of all connected, hole-free configurations. The critical component

of this result is an improved lower bound on Z; the trivial bound of Z ≥ λ−pmin used

for compression does not suffice for expansion. We give our first non-trivial lower

bound on Z in Lemma 8.4.1, and this result is valid for all λ > 0. Later, we will

obtain an improved lower bound on Z that is valid for all λ ≥ 1.

Obtaining these lower bounds on Z for expansion requires a lower bound on the

number of configurations with n particles and a given perimeter; this is the opposite

of what we did for compression, where we upper bounded this quantity. To begin, we

recall pmax = 2n− 2 and note:

Z =
∑
σ∈Ω∗

λ−p(σ) ≥
∑

σ∈Ω∗ : p(σ)=pmax

λ−p(σ) = c2n−2λ
−(2n−2),
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where c2n−2 is the number of configurations with n particles and perimeter exactly

2n − 2. Note if a configuration σ with n particles has perimeter 2n − 2, then by

Lemmas 8.1.3 and 8.1.4 it must be that σ has exactly n− 1 edges and no triangles;

that is, σ is an induced tree in G∆. We present a method for enumerating a subset of

these trees, giving a lower bound on c2n−2.

Lemma 8.4.1. For any λ > 0, Z ≥ (
√

2/λ)pmax.

Proof. We enumerate n-vertex paths in G∆ where every step is either down-right or

up-right; this is a subset of the trees contributing to c2n−2. Starting from the first

particle, there are 2n−1 ways to place rest of the particles to form such a path, where

each one is either up-right or down-right from the previous one. This means there are

at least 2n−1 such paths, giving:

c2n−2 ≥ 2n−1 =
√

2
2n−2

=
√

2
pmax

.

From this, it follows that:

Z =
∑
σ∈Ω∗

λ−p(σ) ≥
∑

σ∈Ω∗ : p(σ)=pmax

λ−pmax ≥
√

2
pmax

λ−pmax = (
√

2/λ)pmax ,

the desired result.

As the next result will show, Lemma 8.4.1 directly implies the particle system

does not compress, even in the limit, for any λ <
√

2. This bound could be improved

significantly with a better lower bound for c2n−2, but this will be eclipsed by the lower

bound for Z when λ ≥ 1 given in Section 8.4.3.

290



8.4.2 Proof of Expansion

We now show, using Lemma 8.4.1, that for any value of β ∈ (0, 1) it is possible to

achieve β-expansion by simply runningMC with input parameter λ sufficiently small.

The closer β is to 1, the closer λ must be to 0 in order to achieve β-expansion.

Theorem 8.4.2. For any 0 < β < 1, let λ∗ = min
(√

2,
√

2
1

1−β (2 +
√

2)
−β
1−β

)
. There

exists n∗ ≥ 0 and ζ < 1 such that for all λ < λ∗ and n ≥ n∗, the probability that

a random sample σ drawn according to the stationary distribution π of MC is not

β-expanded is exponentially small in
√
n:

Pr [p(σ) ≤ β · pmax : σ ∼ π] < ζ
√
n.

Proof. Because λ < λ∗, we know λ <
√

2
1

1−β (2 +
√

2)
−β
1−β . Rearranging terms in

this expression, we obtain λ(β−1)/β21/2β > 2 +
√

2. Let ν be any value satisfying

λ(β−1)/β21/2β > ν > 2 +
√

2. We will later use the fact that for any such choice of ν,

νλ
1−β
β 2−

1
2β < 1.

Let Sβ be the set of configurations of perimeter at most β · pmax. We wish to show

that π(Sβ) is smaller than some function that is exponentially small in
√
n. Using

Lemma 8.4.1 to upper bound the partition function Z of the stationary distribution

π, we have:

π
(
Sβ
)

=
w
(
Sβ
)

Z
≤

w
(
Sβ
)(√

2/λ
)pmax = w

(
Sβ
)( λ√

2

)pmax
.

The remainder of this proof will be spent finding an upper bound on the right

hand side of the above equation that is exponentially small in
√
n. To begin, we

stratify Sβ into sets of configurations that have the same perimeter. Let Bk be the
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set of all configurations with perimeter k; then Sβ =
⋃bβ·pmaxc
k=pmin

Bk. We can then write:

w
(
Sβ
)( λ√

2

)pmax
=

bβ·pmaxc∑
k=pmin

w(Bk)

(
λ√
2

)pmax
.

The weight of each element in the set Bk is the same, λ−k. By Lemma 8.3.4 and

our careful choice of ν, above, the number of configurations in set Bk is at most νk

provided k is sufficiently large. So,

w
(
Sβ
)( λ√

2

)pmax
≤
bβ·pmaxc∑
k=pmin

νkλ−k
(
λ√
2

)pmax
.

Because k ≤ β · pmax, we have pmax ≥ k/β. As λ < λ∗ ≤
√

2, we have:

w
(
Sβ
)( λ√

2

)pmax
≤
bβ·pmaxc∑
k=pmin

νkλ−k
(
λ√
2

) k
β

=

bβ·pmaxc∑
k=pmin

(
νλ

1−β
β

√
2

1
β

)k

.

Because of our choice of ν, the rightmost term in parentheses is less than one. By

applying the inequalities pmax = 2n− 2 ≥ k ≥ pmin >
√
n (by Lemma 8.1.1),

w
(
Sβ
)( λ√

2

)pmax
≤
bβ·pmaxc∑
k=pmin

(
νλ

1−β
β

√
2

1
β

)√n
≤ (2n− 2)

(
νλ

1−β
β

√
2

1
β

)√n
.

Again using the fact that the rightmost term in parentheses is less than one, we

can find a constant ζ < 1 and an n∗ such that for all n ≥ n∗,

π
(
Sβ
)
≤ w

(
Sβ
)( λ√

2

)pmax
≤ (2n− 2)

(
νλ

1−β
β

√
2

1
β

)√n
< ζ

√
n,

proving the theorem.

While the above result shows thatMC accomplishes β-expansion for any β < 1,

larger values of β require smaller values of λ. However, larger values of λ are still of

interest as we wish to characterize how the behavior ofMC and AC depends on λ.

We now show that provided λ <
√

2, there is some constant β such that β-expansion

occurs. Of course, there is again a tradeoff: the larger λ is, the smaller β is.

292



Corollary 8.4.3. For all 0 < λ <
√

2, for any constant β < log
√

2−log λ

log(2+
√

2)−log λ
, there

exists n∗ ≥ 0 and ζ < 1 such that for all n ≥ n∗, a random sample σ drawn according

to the stationary distribution π ofMC satisfies

Pr [p(σ) ≤ β · pmax : σ ∼ π] < ζ
√
n.

Proof. Theorem 8.4.2 applies whenever λ <
√

2
1

1−β (2 +
√

2)
−β
1−β . Solving for β, we see

the theorem applies whenever β < log
√

2−log λ

log(2+
√

2)−log λ
, as desired.

This proves the counterintuitive result that λ > 1 is not sufficient to guarantee

compression. While λ > 1 guarantees that configurations with smaller perimeter

have higher weight at stationarity, our work in this section shows that there are so

many configurations with large perimeter that, for λ <
√

2, these large perimeter

configurations dominate the stationary distribution. Raising λ above 2 +
√

2, we

observe an energy/entropy tradeoff. In this regime, the high energy (small perimeter)

configurations dominate the state space as opposed to those with high entropy (large

perimeter), yielding compression.

8.4.3 An Improved Lower Bound on the Partition Function

We can improve the bound of λ <
√

2 appearing in Corollary 8.4.3 by finding a

better lower bound on the partition function Z. When we know λ ≥ 1, the improved

bounds in Lemma 8.4.6 below can be used to show β-expansion occurs for an even

greater range of values for λ, λ < 2.17. Again, larger values of λ necessitate smaller,

but still constant, values of β.

To get an improved bound on Z, the key observation is that when λ ≥ 1, any
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Figure 45. Three-Particle System Configurations. All 11 connected, hole-free configu-
rations of three particles. In each, the highest leftmost particle is labeled H, and the
lowest leftmost particle is labeled L; when there is only one leftmost particle H = L.

value k < 2n− 2 satisfies λ−k ≥ λ−(2n−2). Thus, as pmax = 2n− 2, it follows that

Z =
∑
σ∈Ω∗

λ−p(σ) ≥
∑
σ∈Ω∗

λ−(2n−2) = |Ω∗| · λ−(2n−2),

where the sums are over all connected, hole-free particle system configurations with n

particles. Thus, it suffices to find a lower bound on the total number of connected,

hole-free configurations with n particles and any perimeter, instead of only counting

the number of configurations with maximum perimeter as we did in Section 8.4.1.

Leveraging this observation will yield a better lower bound on Z than in the previous

case where λ was unrestricted.

Lemma 8.4.4. For λ ≥ 1, Z ≥ 0.12 · (1.67/λ)pmax.

Proof. We first give a lower bound on the number of connected, hole-free configurations

with n particles by iteratively enumerating a subset of them. Note there are 11

connected, hole-free configurations with exactly 3 particles; all 11 are shown in

Figure 45.
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Given some connected, hole-free configuration σ with 1 + 3j particles, for j ≥ 0,

we show how to enumerate 22 distinct hole-free configurations of 4 + 3j particles, each

consisting of three particles added to the right of σ. Let P be the highest rightmost

particle of σ and let Q be the lowest rightmost particle of σ; possibly P = Q. Choose

any of the 11 hole-free configurations with 3 particles, and let L be its lowest leftmost

particle and H be its highest leftmost particle as in Figure 45; possibly H = L. Attach

this configuration to σ either by placing H below and right of Q or by placing L

above and right of P ; see Figure 46 for two such examples. Note even if Q = P and

H = L, this still results in two distinct attachments. In the first case, all locations

directly below Q and all locations directly above H are unoccupied; this ensures the

only adjacency between σ and the newly added three particles is between Q and H,

meaning no holes have been created. Similarly in the second case, all locations above

P or below L are unoccupied, again ensuring no holes form.

Using this process and beginning with a single particle (as in Figure 46a), we

can enumerate 22j distinct configurations with 1 + 3j particles for all j ≥ 0. This

does not enumerate all configurations on 1 + 3j particles: for example, there are 42

configurations on 4 particles and this process only enumerates 22 of them. However,

this process iterates nicely and produces reasonable lower bounds as the number of

particles gets large.

To get a lower bound on the number of configurations of n particles when n 6≡

1 mod 3), we can simply enumerate all configurations on 1 + 3j ≤ n particles for

j =
⌊
n−1

3

⌋
, and add one or two particles to each in some deterministic way. We

conclude that for any n, the number of connected, hole-free configurations of n

particles is at least:

22b
n−1

3 c ≥ 22
n−1

3 · 22−2/3 = 22−2/3(221/6)2n−2 > 0.12 · 1.672n−2.
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Figure 46. Enumerating Tree Configurations. The iterative process of Lemma 8.4.4.
(a) One of the 11 connected, hole-free configurations of three particles, and the two
ways it can attach to the single particle with which the iterative process begins. (b)
Another of the 11 connected hole-free configurations of three particles, and the two
ways it can attach to a configuration with four particles.

Using this bound, it follows that:

Z =
∑
σ∈Ω∗

λ−p(σ) ≥
∑
σ∈Ω∗

λ−(2n−2) =
|Ω∗|
λ2n−2

>
0.12 · 1.672n−2

λ2n−2
= 0.12 ·

(
1.67

λ

)pmax
,

proving the lemma.

This bound can be improved even further by considering configurations of 50

particles instead of configurations of three particles. A result by Jensen [114] will

be essential. In that paper, the author presents a parallel algorithm efficient enough

to count the number of benzenoid hydrocarbons containing h hexagonal cells up to

h = 50. A benzenoid hydrocarbon containing h hexagonal cells is exactly equivalent

to a connected, hole-free particle system configuration with h particles, implying the

following.
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Lemma 8.4.5 (Jensen [114]). The number of connected, hole-free particle system

configurations with 50 particles is:

N50 = 2,430,068,453,031,180,290,203,185,942,420,933.

Lemma 8.4.6. For λ ≥ 1, Z ≥ 0.13 · (2.17/λ)pmax.

Proof. We use the same approach as in Lemma 8.4.4, noting that 2.17 ≈ (2N50)1/100.

To get a lower bound on the number of configurations with n particles, first write n as

n = 1+50i+ j, where i, j ∈ Z≥0 and j < 50; subject to these requirements, i and j are

unique. Iteratively construct one particle configuration σ with n particles by beginning

with a single particle and repeatedly attaching one of the N50 configurations with 50

particles to the right as in the proof of Lemma 8.4.4: place its highest leftmost particle

H below and right of the existing configuration’s lowest rightmost particle Q, or place

its lowest leftmost particle L above and right of the existing configuration’s highest

rightmost particle P . This process, applied i times, yields a connected, hole-free

configuration of 1+50i = n− j particles. There are then 2Nj ways, following the same

procedure, to attach the remaining j particles to form a configuration of n particles.

In this way, we can enumerate (2N50)i · 2Nj unique connected, hole-free configurations

of n particles. It follows that the number of connected, hole-free configurations of n

particles is at least:

(2N50)i · 2Nj = (2N50)
n−1−j

50 · 2Nj = (2N50)
n−1
50 · (2N50)−

j
50 · 2Nj.

Calculations show that for all 0 ≤ j < 50, we have (2N50)
−j/50 · 2Nj ≥ 0.13. It

follows that the number of connected, hole-free configurations of n particles is at least:

0.13 ·
(

(2N50)1/100
)2n−2

= 0.13 ·
(

(2N50)1/100
)pmax

.
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Noting that (2N50)1/100 > 2.17, it follows that:

Z ≥
∑
σ∈Ω∗

λ−(2n−2) = |Ω∗| · λ−(2n−2) ≥ 0.13 · (2.17)pmaxλ−pmax = 0.13 · (2.17/λ)pmax ,

the desired result.

As we will see next, this will directly imply that the particle system will not exhibit

compression for any λ < 2.17. We expect this bound will improve given accurate

counts of the number of connected, hole-free configurations for even larger numbers of

particles. Computationally this seems infeasible, and a careful analysis of the work

done in [114] suggests the best bound achievable by this method would be expansion

for all λ < 2.27, only a mild improvement and still far from the known lower bound

for compression, λ > 2 +
√

2. Indeed, recent work using enumeration methods has

only improved the λ < 2.17 bound to 2.21 [134].

8.4.4 Proof of Expansion for a Larger Range of Bias

We now show, using Lemma 8.4.6, that it is possible to achieve β-expansion (i.e.,

compression does not occur) using any value of λ up to 2.17.

Theorem 8.4.7. For all 1 ≤ λ < x := (2N50)1/100 ≈ 2.17, for any β < log x−log λ

log(2+
√

2)−log λ

there exists n∗ ≥ 0 and ζ < 1 such that for all n ≥ n∗, a random sample σ drawn

according to the stationary distribution π ofMC satisfies

Pr [p(σ) ≤ β · pmax : σ ∼ π] < ζ
√
n.

Proof. First, note that the condition

β <
log x− log λ

log
(
2 +
√

2
)
− log λ

=
log(x/λ)

log
((

2 +
√

2
)
/λ
)
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can be equivalently expressed as 2 +
√

2 < λ(β−1)/βx1/β. Pick ν to be between these

two values, so that 2 +
√

2 < ν < λ(β−1)/βx1/β.

Let Sβ be the set of configurations of perimeter at most β · pmax. We wish to show

that π(Sβ) is smaller than some function that is exponentially small in
√
n. Applying

Lemma 8.4.6, which gives a lower bound on the partition function Z of stationary

distribution π, we see that:

π
(
Sβ
)

=
w
(
Sβ
)

Z
≤

w
(
Sβ
)

0.13
(
x
λ

)pmax ≤ 8w
(
Sβ
)(λ

x

)pmax
.

The remainder of this proof will be spent finding an upper bound on the right

hand side of the above equation that is exponentially small in
√
n. To begin, we

stratify Sβ into sets of configurations that have the same perimeter. Let Bk be the

set of all configurations with perimeter k; then Sβ =
⋃bβ·pmaxc
k=pmin

Bk. We can then write:

w
(
Sβ
)(λ

x

)pmax
=

bβ·pmaxc∑
k=pmin

w(Bk)

(
λ

x

)pmax
.

The weight of each element in the set Bk is the same, λ−k. By Lemma 8.3.4, the

number of elements in set Bk is at most νk for k sufficiently large because ν > 2 +
√

2.

So we have:

w
(
Sβ
)(λ

x

)pmax
≤
bβ·pmaxc∑
k=pmin

νkλ−k
(
λ

x

)pmax
.

Because k ≤ β · pmax, we have pmax ≥ k/β. As λ < x, we have:

w
(
Sβ
)(λ

x

)pmax
≤
bβ·pmaxc∑
k=pmin

νkλ−k
(
λ

x

) k
β

=

bβ·pmaxc∑
k=pmin

(
νλ

1
β

λx
1
β

)k

=

bβ·pmaxc∑
k=pmin

(
ν

λ
β−1
β x

1
β

)k
.

Because we picked ν so that ν < λ(β−1)/βx1/β, the rightmost term in parentheses

is less than one. By applying the inequalities pmax = 2n − 2 ≥ k ≥ pmin >
√
n (by

Lemma 8.1.1), we see that

w
(
Sβ
)(λ

x

)pmax
≤
bβ·pmaxc∑
k=pmin

(
ν

λ
β−1
β x

1
β

)√n
≤ (2n− 2)

(
ν

λ
β−1
β x

1
β

)√n
.

299



Again using the fact that the rightmost term in parentheses above is less than one,

we can find a constant ζ < 1 and an n∗ such that for all n ≥ n∗,

π
(
Sβ
)
≤ 8w

(
Sβ
)(λ

x

)pmax
≤ 8(2n− 2)

(
ν

λ
β−1
β x

1
β

)√n
< ζ

√
n,

proving the theorem.

Combining Theorem 8.4.7 with Corollary 8.4.3 gives the following result.

Corollary 8.4.8. For all 0 < λ < (2N50)1/100 ≈ 2.17, there exists a constant 0 < β < 1

such that for sufficiently large n with all but exponentially small (in
√
n) probability a

sample drawn according to stationary distribution π ofMC is β-expanded.

Proof. If 0 < λ < 1, then by Corollary 8.4.3, for any constant β < log
√

2−log λ

log(2+
√

2)−log λ
, for

sufficiently large n with all but exponentially small probability β-expansion occurs

at stationarity. Note that for λ < 1, we have 1 > log
√

2−log λ

log(2+
√

2)−log λ
> 0, so there always

exists such a positive constant β less than this bound for which β-expansion occurs.

If 1 ≤ λ < x := (2N50)
1/100 ≈ 2.17, then by Theorem 8.4.7, for any β <

log x−log λ

log(2+
√

2)−log λ
, for sufficiently large n with all but exponentially small probability

β-expansion occurs at stationarity. Because 1 > log x−log λ

log(2+
√

2)−log λ
> 0, there always exists

such a positive constant β less than this bound for which β-expansion occurs.

We conclude that for any 0 < λ < (2N50)
1/100, there exists a constant 0 < β < 1

such that for sufficiently large n with all but exponentially small probability a sample

drawn according to stationary distribution π ofMC is β-expanded.
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Chapter 9

SHORTCUT BRIDGING

We next apply the stochastic approach to shortcut bridging, where an amoebot

system must dynamically maintain bridge structures that balance a tradeoff between

efficiency and cost [7, 8]. This behavior is inspired by the work of Reid et al. [168]

who found that Eciton army ants continuously modify the shape and position of

foraging bridges — constructed and maintained by their own bodies — across holes and

uneven surfaces on the forest floor. These bridges appear to stabilize in a structural

formation that balances the “benefit of increased foraging trail efficiency” with the

“cost of removing workers from the foraging pool to form the structure” [168]. Shortcut

bridging is an attractive goal for programmable matter, as many application domains

involve surfaces with structural irregularities and dynamic topologies. For example,

recent progress in the molecular programming domain has achieved a process of DNA

nanotube nucleation, growth, and diffusion to maintain connections between DNA

origami landmarks [150]. In the future, programmable matter could be employed

to detect and span small cracks in infrastructure; dynamic bridging behavior would

enable the system to remain connected and shift its position as cracks form and

change.

9.1 Preliminaries
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9.1.1 The Shortcut Bridging Problem

In addition to the amoebot model (Chapter 2) and the terminology for the stochastic

approach (Section 8.1.2), we first introduce some terminology specific to shortcut

bridging. Just as the uneven surfaces of the forest floor affect the foraging behavior

of army ants, the collective behavior of particle systems should change when G∆ is

non-uniform. Here, we focus on system behaviors when the nodes of G∆ are either gap

(unsupported) or land (supported). A particle can tell whether the node(s) it occupies

are gap or land nodes. We also make use of objects — i.e., static, occupied nodes

that do not perform computation — to keep the particle system anchored to certain

fixed sites. In order to analyze the strength of the bridges produced by our algorithm,

we define the weighted perimeter p(σ, c) of a connected, hole-free configuration σ to

be the summed weight of the edges on the boundary of σ, where edges between land

locations have weight 1, edges between gap locations have weight c > 1, and edges

with one endpoint on land and one endpoint in the gap have weight (1 + c)/2.

An instance of the shortcut bridging problem has the form (L,O, σ0, c, α), where

L ⊆ V is the set of land locations, O is the set of (two) objects to bridge between,

σ0 is the initial configuration of the particle system, c > 1 is a fixed weight for edges

between gap locations, and α > 1 is a parameter capturing our error tolerance. An

instance is valid if (i) the objects of O and particles of σ0 all occupy locations in L,

(ii) σ0 connects the objects, and (iii) σ0 is connected. A distributed algorithm solves

a valid instance (L,O, σ0, c, α) if, beginning from σ0, it reaches and remains in a set

of configurations Σ∗ such that any σ ∈ Σ∗ has weighted perimeter p(σ, c) within an

α-factor of its minimum possible value, with high probability.

In analogy to the apparatus used in [168] (Figure 48a), we are particularly interested
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(a) (b)

Figure 47. Example Initial Configurations for Shortcut Bridging. Initial configurations
σ0 of particles (black) connecting two objects O (red) on land masses L (brown
and black) for two instances of the shortcut bridging problem for which we present
simulation results (Section 9.5).

in instances where L forms a V-shape, O has two objects positioned at either base of

L, and σ0 lines the interior sides of L, as in Figure 47a. However, our algorithm is not

limited to this setting; for example, we show simulation results for an N-shaped land

mass (Figure 47b) in Section 9.5.

The weighted perimeter balances the trade-off observed in [168] between the

competing objectives of establishing a short path between the fixed endpoints while

not having too many particles in the gap. Although both metrics are amenable

to our analysis, we focus on weighted perimeter instead of the number of particles

in the gap for two reasons. First, the structure and thickness of bridges produced

using weighted perimeter more closely resemble those of ant bridges, while using the

number of particles in the gap results in consistently thin, jagged structures (compare

Figures 48b vs. 48c). Second, only particles on the perimeter can move, and thus

recognize the potential risk of being in the gap.
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(a) (b) (c)

Figure 48. Choosing an Optimization Metric to Produce Ant-Like Bridges. (a) In this
image from [168], army ants of the genus Eciton build a dynamic bridge which balances
the benefit of a shortcut path with the cost of committing ants to the structure. (b)
Our shortcut bridging algorithm also balances competing objectives and converges to
similar configurations. (c) Minimizing the number of particles in the gap instead of
the weighted perimeter results in thin bridges with large clusters of particles on land
that do not resemble the ant bridges as closely.

9.1.2 Applying the Stochastic Approach

Recall from Section 8.1.1 that in the stochastic approach to self-organizing particle

systems, we define an energy function that captures our objectives for the particle

system and then design a Markov chain that favors configurations with desirable energy

values in the long run. Care is taken to ensure this Markov chain can be executed in

a distributed manner by each particle individually using only local information from

their immediate neighborhoods.

For shortcut bridging, we introduce a Hamiltonian over particle system configu-

rations that assigns the lowest energy values to configurations with desirable bridge

structures; we then design our algorithm to favor these configurations with small

Hamiltonians. We assign each configuration σ a Hamiltonian H(σ) = p(σ, c), its

weighted perimeter. Employing a bias parameter λ, the weight of a configuration σ is

w(σ, c) = λ−p(σ,c), where w(σ, c) is the likelihood with which we want our algorithm

to yield σ. As λ gets larger, these weights increasingly favor configurations where
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H(σ) = p(σ, c) is small and the desired bridging behavior is exhibited. Using a Markov

chain, we will ensure that the eventual probability with which we are at state σ is

w(σ, c)/Z, where Z =
∑

σ′ w(σ′, c) is the normalizing constant.

As was the case for compression (Chapter 8), the corresponding distributed

algorithm for shortcut bridging is nearly oblivious — requiring only two bits of

persistent memory between particle activations — and inherently robust, forming the

best bridge possible with respect to any crashed particles’ locations.

9.2 Algorithms for Shortcut Bridging

Recall that for the shortcut bridging problem, we desire for our algorithm to

achieve small weighted perimeter, where boundary edges in the gap cost a factor of

c > 1 more than those on land. The algorithm must balance the competing objectives

of having a short path between the two objects while not forming too large of a

bridge. We capture these factors by preferring configurations σ that have both small

perimeter p(σ), the length of the walk around the boundary of the particle system,

and small gap perimeter g(σ), the number of perimeter edges that are in the gap,

where edges with one endpoint in the gap and one endpoint on land count as half

an edge in the gap. While these objectives may appear to be aligned rather than

competing, decreasing the length of the overall perimeter increases the gap perimeter

and vice versa in the problem instances we consider (e.g., Figure 47). We note that

p(σ, c) = p(σ) + (c− 1)g(σ), and thus minimizing weighted perimeter is equivalent to

simultaneously minimizing both perimeter and gap perimeter.
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9.2.1 The Markov ChainMB for Shortcut Bridging

Our Markov chain algorithm incorporates two bias parameters: λ and γ. The value

of λ controls the preference for having small perimeter, while γ controls the preference

for having small gap perimeter. In this paper, we only consider λ > 1 and γ > 1,

which correspond to favoring small perimeter and small gap perimeter, respectively.

Using a Metropolis filter, we ensure our algorithm converges to stationary distribution

π given by π(σ) = λ−p(σ)γ−g(σ)/Z where Z =
∑

σ′ λ
−p(σ′)γ−g(σ

′) is the normalizing

constant necessary to make π a probability distribution. Arithmetic shows:

λ−p(σ,c) = λ−p(σ)−(c−1)g(σ) = λ−p(σ)(λc−1)−g(σ),

so setting γ = λc−1 yields our desired stationary distribution.

We note that λ is the same parameter that controlled compression in Chapter 8,

where Markov chainMC converged to a distribution over connected, hole-free con-

figurations σ proportional to λ−p(σ). That work showed that λ > 1 is not sufficient

to ensure compression, so we restrict our attention to λ > 2 +
√

2, the regime where

compression provably occurs.

To ensure our algorithm maintains some desired invariants throughout its execution,

we introduce two properties every movement must satisfy. Specifically, these properties

maintain system connectivity15 and prevent holes from forming. Moreover, both

properties are symmetric, which is necessary for the transitions of our Markov chain

to be reversible.

We extend the notation for particle neighborhoods from Section 8.2.1 to include

objects. For a location `, let N(`) denote the set of particles and objects adjacent to

15Unlike in compression where the particle system is always connected, here the particle system
may disconnect into several components which remain connected through objects.
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`. For adjacent locations ` and `′, we use N(` ∪ `′) to denote the set N(`) ∪ N(`′),

excluding particles or objects occupying ` or `′. Let S = N(`) ∩N(`′) be the particles

and objects adjacent to both locations; we note |S| ∈ {0, 1, 2}.

Property 9.2.1. |S| ∈ {1, 2} and every particle or object in N(` ∪ `′) is connected to

a particle or object in S by a path through N(` ∪ `′).

Property 9.2.2. |S| = 0, ` and `′ each have at least one neighbor, all particles and

objects in N(`) \ {`′} are connected by paths within this set, and all particles and

objects in N(`′) \ {`} are connected by paths within this set.

We now present our Markov chain MB for a valid instance (L,O, σ0, c, α) of

the shortcut bridging problem. For input parameter λ > 2 +
√

2, set γ = λc−1.

For simplicity, we assume that the initial configuration σ0 is not only connected —

as required for the instance to be valid — but also hole-free. As was shown for

compression in Lemma 8.2.8, our algorithm will eventually eliminate any holes that a

connected configuration contains, so we focus on the behavior of the system after this

occurs.

Algorithm 14 Markov ChainMB for Shortcut Bridging
From any connected, hole-free configuration σ0 of n contracted particles, repeat:

1: Choose a particle P uniformly at random from among all n particles; let ` be its location.
2: Choose a neighboring location `′ and q ∈ (0, 1) each uniformly at random.
3: if `′ is unoccupied then
4: P expands to occupy both ` and `′.
5: Let σ (resp., σ′) be the configuration with P at ` (resp., at `′).
6: if (i) |N(`)| 6= 5, (ii) ` and `′ satisfy Property 9.2.1 or Property 9.2.2, and
7: (iii) q < λp(σ)−p(σ′)γg(σ)−g(σ′) then
8: P contracts to `′.
9: else P contracts back to `.

Conditions (i) and (ii) of Step 6 ensure that the particle system remains connected

and no new holes are formed during the execution ofMB. In particular, condition (i)
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explicitly disallows a particle with five neighbors from moving into the only unoccupied

location in its neighborhood, as doing so would create a hole. Condition (iii) of Step 7

is the Metropolis filter discussed above; the proposed particle move, once confirmed

to be valid, only occurs with probability:

min{1, λp(σ)−p(σ′)γg(σ)−g(σ′)} = min{1, λp(σ,c)−p(σ′,c)},

where σ is the configuration with P at location ` and σ′ is the configuration with P at

location `′. Although p(σ)− p(σ′) and g(σ)− g(σ′) are values defined at system-level

scale, in the next section we show these differences can be calculated locally.

The state space Ω of MB is the set of all configurations reachable from σ0

via valid transitions of MB. We conjecture that this includes all connected, hole-

free configurations of n particles connected to both objects, but proving all such

configurations are reachable from σ0 is not necessary for our results. Note that

the corresponding proof of irreducibility for compression (Lemma 8.2.10) does not

generalize here due to the presence of static objects.

9.2.2 The Local, Distributed Algorithm AB for Shortcut Bridging

In order for individual particles to run MB, a Markov chain with centralized

control, we must translate MB into a local, distributed, algorithm AB that fully

respects the constraints of the (simplified, sequential) amoebot model (Chapter 2).

As was the case for compression, two key issues are (i) translating the uniformly at

random particle selection in Step 1 ofMB to particle activations determined by a

fair sequential adversary and (ii) decoupling a particle’s combined expansion and

contraction in Steps 4–9 of MB into two separate activations since a particle can

perform at most one movement per activation. We address the former with Poisson
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clocks of constant means and the latter with one-bit flags in particle memory; see

Section 8.2.2 for details.

An additional issue for this translation that is unique to shortcut bridging arises

in the local calculation of the differences p(σ)− p(σ′) and g(σ)− g(σ′) used in Step 6

ofMB. As will be made clear in the following lemma, it is necessary for a moving

particle to know whether its neighbors occupy land or gap locations when calculating

g(σ)− g(σ′). However, a node’s information is only assumed to be accessible to the

particle occupying it, so we introduce a P.land variable in particle memory that is

equal to 1 if the particle’s tail occupies a land location and 0 otherwise. As in the

distributed algorithm AC for compression, expanded amoebots are treated as if they

are still contracted at their tail location when considering neighborhoods N(·).

Lemma 9.2.1. An expanded particle P occupying adjacent locations ` and `′ in G∆

can calculate the values of p(σ)− p(σ′) and g(σ)− g(σ′) in Condition (iii) ofMB and

AB using only local information involving `, `′, and N(` ∪ `′).

Proof. Observe that p(σ)−p(σ′) and g(σ)−g(σ′) need only be calculated if Conditions

(i) and (ii) hold. By Lemma 8.1.3 from compression,

p(σ)− p(σ′) = |N(`′)| − |N(`)|,

which can be calculated using only local information.

Recall that gap perimeter is defined as the number of boundary edges in the gap,

counting edges between gap and land as half an edge; this is equal to the number

of particles that are on the perimeter and in the gap, counted with appropriate

multiplicity if a particle appears on the perimeter more than once. Given a particle

Q and a configuration τ , let G(Q, τ) be equal to 1 if Q occupies a gap location in τ

and 0 otherwise. Let δ(Q, τ) be the number of times Q appears on the perimeter of τ .
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Then the desired difference is:

g(σ)− g(σ′) =
∑
Q∈S

(G(Q, σ)δ(Q, σ)−G(Q, σ′)δ(Q, σ′)) .

Define ∆(Q) = δ(Q, σ) − δ(Q, σ′). For particle P , since Conditions (i) and (ii)

of Step 6 hold, ∆(P ) = 0. For any particle Q 6∈ N(` ∪ `′) ∪ {P}, ∆(Q) = 0 since

its neighborhood is not affected by the movement of P . Moreover, for any particle

Q 6= P , G(Q, σ) = G(Q, σ′) since it does not move. So:

g(σ)− g(σ′) =
∑
Q∈S

(G(Q, σ)δ(Q, σ)−G(Q, σ′)δ(Q, σ′))

= δ(P, σ) (G(P, σ)−G(P, σ′)) +
∑

Q∈N(`∪`′)

G(Q, σ)∆(Q).

The first term is easily calculated locally. Since σ is connected and hole-free,

δ(P, σ) is the number of maximal, consecutive sets of unoccupied locations adjacent

to `. Since P is expanded, occupying both ` and `′, it can see ` and `′ as land or gap

locations to determine G(P, σ) and G(P, σ′). For the summation, P can read Q.land

from any neighbor Q ∈ N(` ∪ `′) to determine G(Q, σ), so it remains to show that P

can locally calculate ∆(Q) for any Q ∈ N(` ∪ `′). First suppose that Q occupies a

location adjacent to ` but not `′. Then:

∆(Q) =


−1 if Q has two neighbors in N(`);

1 if Q has no neighbors in N(`);

0 otherwise.

The opposite is true if Q occupies a location adjacent to `′ but not `:

∆(Q) =


1 if Q has two neighbors in N(`′);

−1 if Q has no neighbors in N(`′);

0 otherwise.
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Lastly, if Q occupies a location adjacent to both ` and `′, then:

∆(Q) =


0 if Q has zero or two neighbors in N(` ∪ `′);

−1 if Q shares a neighbor with ` but not `′;

1 if Q shares a neighbor with `′ but not `;

In all cases, P can calculate ∆(Q), and thus also g(σ) − g(σ′), using only local

information.

Algorithm 15 Local, Distributed Algorithm AB for Shortcut Bridging
If A is contracted:

1: Let ` denote the current location of A.
2: Choose a neighboring location `′ uniformly at random from the six possible choices.
3: if `′ is unoccupied and A has no expanded neighbors then
4: A expands to occupy both ` and `′.
5: if there are no expanded amoebots adjacent to ` or `′ then
6: A.flag← true.
7: else A.flag← false.

If A is expanded:
8: Choose q ∈ (0, 1) uniformly at random.
9: Let N∗(·) ⊆ N(·) be the set of neighboring amoebots excluding any heads of expanded amoebots.

10: Let ∆p = p(σ)− p(σ′) and ∆g = g(σ)− g(σ′) be calculated according to Lemma 9.2.1.
11: if (i) |N∗(`)| 6= 5, (ii) ` and `′ satisfy Property 9.2.1 or Property 9.2.2 with respect to N∗(·),

(iii) q < λ∆pγ∆g, and (iv) A.flag = true then
12: A contracts to `′.
13: if `′ is a land location then A.land← 1.
14: else A.land← 0.
15: else A contracts back to `.

With Lemma 9.2.1 in place, we can present the local, distributed algorithm AB for

shortcut bridging (Algorithm 15). The pseudocode is written from the perspective of

an amoebot A that has been activated according to its Poisson clock. As was the case

for compression, any objective that can be accomplished by Makrov chainMB can

be accomplished by the distributed algorithm AB and vice versa. Thus, it suffices to

analyzeMB using the respective tools of Markov chain analysis when characterizing

the long-run behavior of algorithm AB, as we do in the next section.
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9.3 Analysis of the Markov ChainMB

We begin our analysis with some useful properties of Markov chainMB. Our first

two claims follow from the analysis of the Markov chainMC for compression given in

Section 8.2.4 and basic properties of Markov chains and our particle systems.

Lemma 9.3.1. If σ0 is connected and has no holes, then at every iteration ofMB,

the current configuration is connected and has no holes.

Proof. Lemmas 8.2.1 and 8.2.2 proved that no transitions made byMC could introduce

holes or disconnect the particle system. Since the moves allowed byMB are a subset

of those allowed inMC (since the local properties checked at each iteration are the

same),MB cannot introduce holes or disconnect the system either.

Lemma 9.3.2. If σ0 has no holes, thenMB is ergodic.

Proof. Markov chainMB is irreducible because we defined Ω to be precisely those

configurations reachable by valid transitions ofMB starting from σ0. MB is aperiodic

because at each iteration there is a probability of at least 1/6 that no move occurs, as

each particle has at least one neighbor. Thus,MB is ergodic.

AsMB is finite and ergodic, it converges to a unique stationary distribution, and

we can find that distribution using detailed balance.

Lemma 9.3.3. The stationary distribution ofMB is

π(σ) = λ−p(σ)γ−g(σ)/Z,

where Z =
∑

σ′∈Ω λ
−p(σ′)γ−g(σ

′).
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Proof. Let M be the transition matrix forMB; i.e., M(σ, τ) denotes the probability

thatMB transitions from configuration σ to configuration τ in a single step. Prop-

erties 9.2.1 and 9.2.2 ensure that particle P moving from location ` to location `′ is

valid if and only if P moving from `′ to ` is. This implies that for any configurations σ

and τ , M(σ, τ) > 0 if and only if M(τ, σ) > 0. Using this, we easily verify the lemma

via detailed balance.

Let σ, τ ∈ Ω be distinct configurations that differ by one valid move of a particle

P from location ` to neighboring location `′, and let n be the number of particles in

the system. Then,

M(σ, τ) =
1

n
· 1

6
·min{λp(σ)−p(τ)γg(σ)−g(τ), 1}, and

M(τ, σ) =
1

n
· 1

6
·min{λp(τ)−p(σ)γg(τ)−g(σ), 1}.

W.l.o.g., assume that λ and γ satisfy λp(σ)−p(τ)γg(σ)−g(τ) ≤ 1. Then,

π(σ)M(σ, τ) =
λ−p(σ)γ−g(σ)

Z
· λ

p(σ)−p(τ)γg(σ)−g(τ)

6n
=
λ−p(τ)γ−g(τ)

Z
· 1

6n
= π(τ)M(τ, σ)

The definition of Z implies π satisfies
∑

σ′∈Ω π(σ′) = 1, so π is a valid probability

distribution and we conclude π is the unique stationary distribution ofMB.

The stationary distribution can be alternatively expressed using weighted perimeter

p(σ, c) = p(σ) + (c− 1)g(σ).

Lemma 9.3.4. For c = 1 + logλ γ, the stationary distribution ofM is given by

π(σ) = λ−p(σ,c)/Z,

where Z =
∑

σ′∈Ω λ
−p(σ′,c).

We now prove our main result.
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Theorem 9.3.5. Consider any λ > 2+
√

2 =: ν, any γ > 1, and any α > log λ
log λ−log ν

> 1.

There exists n∗ ≥ 0 such that for all n > n∗, the probability that a random sample σ

drawn according to the stationary distribution π ofMB over configurations Ω with n

particles satisfies

p(σ, 1 + logλ γ) > α · pmin

is exponentially small in n, where pmin is the minimum weighted perimeter of a

configuration in Ω.

Proof. This proof mimics that of α-compression (Theorem 8.3.5), but additional

insights are necessary to accommodate the difficulties introduced by considering

weighted perimeter instead of perimeter. Throughout we consider weighted perimeter

p(σ) = p(σ, 1 + logλ γ).

Define the weight of a configuration σ ∈ Ω to be:

w(σ) := π(σ) · Z = λ−p(σ)γ−g(σ) = λ−p(σ),

where Z =
∑

σ′∈Ω λ
−p(σ′)γ−g(σ

′). For a set of configurations S ⊆ Ω, we define its weight

w(S) =
∑

σ∈S w(σ); analogously, let π(S) =
∑

σ∈S π(σ) = w(S)/Z. Let σmin ∈ Ω

be a configuration with minimal weighted perimeter pmin, and let Sα be the set of

configurations with weighted perimeter at least α · pmin. We show that for sufficiently

large n,

π(Sα) =
w(Sα)

Z
<

w(Sα)

w(σmin)
≤ ζ

√
n,

where ζ < 1. The first equality and inequality follow directly from the definitions of

Z, w, and σmin. We focus on the last inequality.

Stratify Sα into sets of configurations that have the same weighted perimeter;

there are at most O(n2) such sets, as the total perimeter and gap perimeter can each

take on at most O(n) values. Label these sets as A1, A2, . . . , Am in order of increasing
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weighted perimeter, where m is the total number of distinct weighted perimeters of

configurations in Sα. Let pi be the weighted perimeter of all configurations in set Ai;

since Ai ⊆ Sα, then pi ≥ α · pmin.

Each configuration σ ∈ Ai has the same weight, namely w(σ) = λ−pi , so to bound

w(Ai) = |Ai|λ−pi it suffices to bound |Ai|. A configuration with weighted perimeter

pi has perimeter p ≤ pi, and Lemma 8.3.3 from the analysis of compression implies

the number of connected, hole-free configurations with perimeter p is at most f(p)νp,

for some subexponential function f . Letting pmin denote the minimum possible

(unweighted) perimeter of a configuration of n particles, we conclude that:

w(Ai) = λ−pi |Ai| ≤ λ−pi ·
pi∑

p=pmin

f(p)νp ≤ λ−pif1(pi)ν
pi ,

where f1(pi) =
∑pi

p=pmin
f(p) is necessarily also a subexponential function because it

is a sum of at most a linear number of subexponential terms. So,

w(Sα) =
m∑
i=1

w(Ai) ≤
m∑
i=1

f1(pi)
(ν
λ

)pi
≤ f2(n)

(ν
λ

)α·pmin
,

where f2(n) =
∑m

i=1 f1(pi) is a subexponential function because pi = O(n),m = O(n2),

and f1 is subexponential. The last inequality above holds as λ > ν and pi ≥ α · pmin.

Then, since Z =
∑

σ′∈Ω λ
−p(σ′) ≥ λ−pmin = w(σmin),

π(Sα) =
w(Sα)

Z
≤ w(Sα)

w(σmin)
≤ f2(n)

(ν
λ

)α·pmin
λpmin = f2(n)

[
λ
(ν
λ

)α]pmin
.

The constant λ(ν/λ)α is less than 1 whenever α > log λ
log λ−log ν

. Since the perimeter

of any configuration of n particles is at least
√
n (Lemma 8.1.1), pmin ≥

√
n. Because

f2(n) is subexponentially large but (λ(ν/λ)α)
√
n is exponentially small, asymptotically

the latter term dominates and we conclude there exists ζ < 1 such that for all

sufficiently large n,

π(Sα) ≤ f2(n)(λ(ν/λ)α)
√
n < ζ

√
n,

315



which proves the theorem.

Though Theorem 9.3.5 is proved only in the case where the number of particles is

sufficiently large, we expect and observe it to hold for much smaller n. However, we

are unable to compute an explicit bound on how large n must be for these results to

hold because the exact form of the subexponential function f(p) in the above proof is

unknown (see Section 4 of [75] and the references therein).

The following corollary shows that our algorithm solves any instance (L,O, σ0, c, α)

of the shortcut bridging problem when parameters λ and γ are chosen accordingly.

Corollary 9.3.6. The local, distributed algorithm AB corresponding to Markov chain

MB solves any valid instance of the shortcut bridging problem where the number of

particles is sufficiently large.

Proof. Given any valid instance (L,O, σ0, c, α) of the shortcut bridging problem, it

suffices to run AB starting from configuration σ0 with parameters λ > (2 +
√

2)
α
α−1

and γ = λc−1. Then α > log(λ)

log(λ)−log(2+
√

2)
> 1, so by Theorem 9.3.5 the system reaches

and remains with all but exponentially small probability in a set of configurations with

weighted perimeter p(σ, c) < α · pmin, where pmin is the minimum weighted perimeter

of a configuration in Ω. Solving the shortcut bridging problem only requires the

weaker condition that this occurs with all but a polynomially small probability, which

our algorithm certainly achieves.

9.4 Dependence on the Gap Angle

To understand the relationship between bridging and shape, we consider V-shaped

land masses of various angles (e.g., Figure 47a). We prove our shortcut bridging
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algorithm has a dependence on the internal angle θ of the gap similar to that of the

army ant bridges studied by Reid et al. [168]. We show that when θ is sufficiently

small, with all but exponentially small probability the bridge constructed by the

particles stays close to the bottom of the gap (away from the apex of angle θ). On

the other hand, we show that for some large values of θ, when λ and γ satisfy certain

conditions, with all but exponentially small probability the bridge stays close to the

top of the gap. We prove these results with a Peierls argument and careful analysis of

the geometry of the gap. Simulations of our shortcut bridging algorithm for varying

angles can be found in Section 9.5.

We first give a formal construction for the V-shaped land mass L given any

θ ∈ (0, π) and constant width w ≥ 2. Let e ∈ E be any edge of the triangular lattice

and label its endpoints as v1 and v2. Extend line segment `1 from v1 such that it

forms an angle of π/2 + θ/2 with e. Similarly extend line segment `2 from v2, of the

same length and on the same side of e as `1, also forming an angle of π/2 + θ/2 with

e. Segments `1 and `2 then differ in their orientation by angle θ. W.l.o.g., we assume

`1 is clockwise from `2 around e. Let b be the line through `1 and `2’s other endpoints

(not v1 and v2). The land mass consists of v1, v2, and all vertices of G∆ that are

outside of `1 and `2 and from which there exists a lattice path of length at most w to

a vertex strictly between `1 and `2. Vertices of G∆ on the opposite side of b from e

are not included in the land mass. For example, Figure 49a depicts a land mass with

θ ∼ π/6 and Figure 49b shows another with θ ∼ π/2; both have width w = 5. This

careful definition involving edge e is necessary to ensure there are no adjacent land

locations on opposite sides of the gap, as could happen for small θ if the land mass is

not constructed carefully.

From now on we will, in a slight abuse of notation, refer to the gap locations
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Figure 49. Construction of V-shaped Land Masses by Gap Angle. The land mass
L of constant width 5 for (a) a small value of θ ≈ π/6 and height 8 and (b) a large
value of θ ≈ π/2 and height 9. Point m is the midpoint of the segment between the
midpoints of `1 and `2, and b is shown as a dashed line.

between `1 and `2 as the gap. By the bottom of the gap, we mean the line b through `1

and `2’s other endpoints (not v1 and v2). We may assume b is a line of the triangular

lattice by truncating `1 and `2 so that both end on a lattice line; this does not change

the land mass L. We also assume b ∩ `1 and b ∩ `2 are not vertices of the triangular

lattice G∆; if they are, we can perturb `1 and `2 slightly, without changing the land

mass. Note b is always parallel to e.

The height of land mass L is the length of a shortest path in G∆ from v1 or v2

to b that only visits land locations; the land mass in Figure 49a has height 8, while

the land mass in Figure 49b has height 9. Let m be the midpoint of the segment

connecting the midpoints of `1 and `2; m is in the center of the gap, halfway between

e and b.

The initial configuration σ0 we consider is a path of width 2 lining the interior

sides of the land mass L (see Figure 50). We position the two fixed objects of O in
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Figure 50. Initial System Configurations on V-shaped Land Masses by Gap Angle.
The initial configuration σ0, with particles shown in black and objects enlarged and
red, for (a) a small value of θ ≈ π/6 and (b) a large value of θ ≈ π/2. Point m is
the midpoint of the segment between the midpoints of `1 and `2, and b is shown as a
dashed line.

line b at the second vertices outside `1 and `2, anchoring the particles on either side of

the gap. Note the height of L is exactly the number of particles in σ0 next to `1 (or

`2), excluding v1 and v2.

Lemma 9.4.1. Let L be a V-shaped land mass of height k and angle θ. The initial

configuration σ0 has 4k + 5 particles and two objects.

Proof. First, suppose θ ≤ π/3, as in Figure 50a. Each lattice line parallel to e and

intersecting `1 and `2, up to but not including b, contains exactly four particles. There

are k such lattice lines. Line b contains two particles. In the lattice line above and

parallel to e, there are three particles. In total, this gives 4k+ 2 + 3 = 4k+ 5 particles

and two objects.

Now, suppose θ > π/3, as in Figure 50b; a different counting approach is necessary.

Consider the lattice line through v1 and the gap location adjacent to v1 and v2; this
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line and all lines parallel to it intersecting `1 contain exactly two particles, and there

are k such lines. The same is true for v2 and `2. Uncounted by this approach are five

additional particles: the two particles adjacent to each of the two objects, and the

particle adjacent to v1 and v2. In total, this gives 2k + 2k + 4 + 1 = 4k + 5 particles

and two objects.

For a given σ, let x be the particle or object contained in line b farthest outside of

`1, and let y be the particle or object in line b farthest outside of `2. We will refer

to the perimeter of σ traversed counterclockwise from x to y as the inner perimeter

of σ. We say the inner perimeter is above a point p if p is to the right of the inner

perimeter traversed from x to y; it is below a point p if p is to its left.

We can partition Ω into two sets S1 and S2, where S1 contains all configurations

whose inner perimeter is strictly above midpoint m of the gap and S2 contains all

configurations whose inner perimeter goes through or below m. We first prove that for

λ > 2 +
√

2 (i.e., in the range of compression) and γ > 1, there is an angle θ1 such that

for all θ < θ1, π(S1) is exponentially small. We then prove that for λ > 2 +
√

2 and

γ > λ4(2 +
√

2)4, there is a θ2 such that for all θ ∈ (π/3, θ2), π(S2) is exponentially

small. We expect much better bounds θ1 and θ2 can be obtained with more effort,

and that these results generalize to all λ > 2 +
√

2 and γ > 1, but here we simply

demonstrate it is possible to give rigorous results about the dependence of the bridge

structure on θ.

9.4.1 Proofs for Small θ

We begin with some structural lemmas.
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Lemma 9.4.2. Let L be a V-shaped land mass of height k and angle θ ≤ π/3. Then

any path in G∆ that starts and ends at the bottom of the gap and goes strictly above

the midpoint m of the gap has length at least k + 1.

Proof. For θ ≤ π/3, there are k − 1 lattice lines parallel to b strictly between b and

e. Of these lines exactly d(k − 1)/2e are below or contain m. Any path from b to a

location above m and back to b must contain at least two vertices in each of these

lattice lines, two vertices in b, and one vertex strictly above m, giving a total of

3 + 2d(k − 1)/2e ≥ 3 + 2((k − 1)/2) = k + 2

vertices. As the length of a path is the number of edges it contains, the path must

have length at least k + 1.

Lemma 9.4.3. The i-th lattice line below and parallel to e contains h(i) gap locations

between `1 and `2, where:

i
√

3 tan
θ

2
≤ h(i) ≤ i

√
3 tan

θ

2
+ 2.

Proof. Let bi be the i-th lattice line below and parallel to e. We use trigonometry

to analyze the length of bi between `1 and `2; see Figure 51a. Consider the triangle

formed by bi, `1, and the line perpendicular to e at v1, which we call `∗. Lines `1 and

`∗ form an angle of θ/2, and the distance between e and bi along `∗ is i
√

3/2. It follows

that the length of bi between `1 and `∗ is i
√

3 tan(θ/2)/2. Altogether, this implies bi

between `1 and `2 is of length i
√

3 tan(θ/2) + 1. As each edge of the triangular lattice

has length 1, this means there are between i
√

3 tan(θ/2) and i
√

3 tan(θ/2) + 2 gap

locations in bi, as claimed.
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Figure 51. Supporting Figures for the Analysis of Small Gap Angles. (a) A depiction
of the notation used in the proof of Lemma 9.4.3; the intersection of b8 and the gap is
depicted as a solid segment, which is of length 8

√
3 tan(θ/2) + 1 and contains 4 gap

locations. (b) The configuration σ∗ used in Lemma 9.4.4 for θ = π/6 and k = 8.

Lemma 9.4.4. Let L be a V-shaped land mass of height k and angle θ ≤ π/3. Then

the normalizing constant Z of the stationary distribution π ofMB satisfies

Z ≥ C
[
(λγ)−2

√
3 tan θ

2

]k
,

for a constant C that depends on θ, λ, and γ but not on k.

Proof. Observe that Z =
∑

σ∈Ω λ
−p(σ)γ−g(σ) satisfies Z ≥ λ−p(σ

′)γ−g(σ
′) for any σ′ ∈ Ω.

We now construct a particular σ∗ ∈ Ω (Figure 51b) and calculate its perimeter and

gap perimeter. Let σ∗ contain a straight line of particles along b connecting the two

objects, and let u be the number of objects and particles in this line. By Lemma 9.4.3,

since b = bk and u includes two particles on land as well as two objects,

k
√

3 tan
θ

2
+ 4 ≤ u ≤ k

√
3 tan

θ

2
+ 6.

Continue constructing σ∗ by placing rows of u particles above this initial row such

that the row starts and ends on opposite sides of the gap. By Lemma 9.4.1, there are
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4k + 7 total objects and particles, so there will be v = d(4k + 7)/ue such rows, with

the last row possibly incomplete. We note that v satisfies:

v =

⌈
4k + 7

u

⌉
≤ 4k + 7

u
+ 1 ≤ 4k + 7

k
√

3 tan θ
2

+ 4
+ 1 ≤ 4√

3 tan θ
2

+
7

4
+ 1 ≤ 4√

3 tan θ
2

+ 3

and:

v =

⌈
4k + 7

u

⌉
≥ 4k + 7

u
≥ 4k + 7

k
√

3 tan θ
2

+ 6
≥ 4k

k
√

3 tan θ
2

+ 6k
≥ 4√

3 tan θ
2

+ 6

Configuration σ∗ has perimeter at most 2u+ 2v − 4 and gap perimeter at most

u− 4 + z, where z is the number of particles occupying gap locations in the upper

perimeter of σ∗. These z remaining particles must be in either the (k − v + 1)-th or

(k− v+ 2)-th lattice lines below e, so we can bound z by again applying Lemma 9.4.3:

z ≤ (k − v + 1)
√

3 tan
θ

2
+ 2.

Altogether, this implies:

p(σ∗) ≤ 2u+ 2v − 4

≤ 2k
√

3 tan
θ

2
+ 12 +

8√
3 tan θ

2

+ 6− 4

≤ k

(
2
√

3 tan
θ

2

)
+

(
8√

3 tan θ
2

+ 14

)
,

and:

g(σ∗) ≤ u− 4 + z

≤ k
√

3 tan
θ

2
+ 6− 4 + (k − v + 1)

√
3 tan

θ

2
+ 2

≤ 2k
√

3 tan
θ

2
+

(
− 4√

3 tan θ
2

+ 6
+ 1

)
√

3 tan
θ

2
+ 4

≤ k

(
2
√

3 tan
θ

2

)
+

(
√

3 tan
θ

2
−

4
√

3 tan θ
2√

3 tan θ
2

+ 6
+ 4

)
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We note that the second parentheses in the final bounds above for p(σ∗) and g(σ∗)

are constants that only depend on θ. This implies that there is a constant

C = λ
−
(

14+ 8√
3 tan θ2

)
γ
−
(√

3 tan θ
2
− 4
√

3 tan θ2√
3 tan θ2 +6

+4

)

such that:

Z ≥ λ−p(σ
∗)γ−g(σ

∗) ≥ C
[
(λγ)−2

√
3 tan θ

2

]k
As claimed, C depends only on λ, γ, and θ, and is independent of k.

Theorem 9.4.5. Let λ > 2 +
√

2 =: ν and γ > 1. Then there exists a constant θ1

such that for all V-shaped land masses with angle θ < θ1, the probability that the

inner perimeter is above midpoint m is exponentially small in k, the height of the gap,

provided k is sufficiently large. In particular,

θ1 = 2 tan−1

(
logλγ (λ/ν)
√

3

)
.

Proof. Recall that S1 ⊆ Ω is the set of configurations for which the inner perimeter is

strictly above m. We show that S1 has exponentially small weight at stationarity; in

particular, we show π(S1) is bounded above by f2(k)ξk, where f2(k) is a subexponential

function and ξ < 1 is a constant.

If σ ∈ S1, then by Lemma 9.4.2 we have p(σ) ≥ 2k + 2, as its inner perimeter —

and thus the rest of the perimeter as well — must be above m. Furthermore, because

the perimeter by definition includes both objects and particles which number 4k + 7

by Lemma 9.4.1, any configuration σ ∈ Ω has p(σ) ≤ 2(4k + 7) − 2 = 8k + 12. In

Section 8.3, we exploited a connection to self-avoiding walks in the hexagon lattice to

show the number of connected, hole-free configurations with perimeter p is at most

f(p)νp for some subexponential function f (Lemma 8.3.3). This is certainly also

an upper bound on the number of configurations in S1 with perimeter p. Because

324



γ−g(σ) < 1, we have:

π(S1) =
∑
σ∈S1

λ−p(σ)γ−g(σ)

Z
<

8k+12∑
p=2k+2

f(p)νpλ−p

Z
.

Let f1(k) =
∑8k+12

p=2k+2 f(p), and note that this function is subexponential in k because

its number of summands is linear in k. Because λ > ν and p ≥ 2k + 2, we have that:

π(S1) ≤
f1(k)

(
ν
λ

)2k+2

Z
.

By Lemma 9.4.4, there is a constant C1 = ν2/(λ2C) such that:

π(S1) ≤
f1(k)

(
ν
λ

)2k+2

C
[
(λγ)−2

√
3 tan θ

2

]k = C1f1(k)

(
ν(λγ)

√
3 tan θ

2

λ

)2k

For all θ < 2 tan−1
(
logλγ(λ/ν)/

√
3
)
, the term in parentheses above is less than one:

ν(λγ)
√

3 tan θ
2

λ
<
ν(λγ)

logλγ

(
λ

2+
√

2

)
λ

= 1

Because C1f1(k) is a subexponential function but the term above, raised to the 2k

power, is exponentially small, the latter eventually dominates and we conclude there is

a constant ξ < 1 such that for sufficiently large k, π(S1) < ξk, proving the theorem.

Since n = 4k+ 5 by Lemma 9.4.1, the probability that the inner perimeter is above

point m is also exponentially small in n, the number of particles. As an example,

for λ = 4 and γ = 2 (the parameters of the simulations in Figures 54 and 55), our

methods give θ1 = 0.0879 ≈ 5.03◦. However, simulations suggest this bound is far

from tight. In general, as λ increases, so does the angle θ1: a stronger bias towards a

shorter perimeter means the bridge forms closer to the bottom of the gap and at even

larger angles the bridge remains below m. Similarly, as γ decreases the bridge moves

down towards the bottom of the gap and at even larger angles remains below m.
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As with Theorem 9.3.5, we are unable to give explicit bounds on the “sufficiently

large k” required by the statement of Theorem 9.4.5 because determining the exact

form of the subexponential function f(p) in the above proof remains an open problem

(see Section 4 of [75]). However, we expect and observe that the claims of this theorem

hold even for the small k for which our proofs do not apply.

9.4.2 Proofs for Large θ

We now consider the set S2 = Ω \ S1, which consists of all configurations where

the inner perimeter goes through or below m. We will show that for some large angles

θ, for all λ > 2 +
√

2 and γ > (2 +
√

2)4λ4, π(S2) is exponentially small. While a

lower bound on γ is necessary for the proofs presented below, we believe this is an

artifact of our proof rather than the problem itself and suspect this requirement can

be loosened or removed altogether.

For θ ≥ π/3, it is no longer true that a V-shaped land mass of height k has exactly

k − 1 lattice lines between b and e. We define a new quantity q, the gap depth, as the

length of a shortest path from e to b in G∆; unlike in the definition of the height k

of a gap, this shortest path is not required to stay on land locations. The Euclidean

distance between e and b is then
√

3q/2. Furthermore, q can be expressed as a function

of k and θ.

Lemma 9.4.6. For a V-shaped land mass of height k and angle θ ≥ π/3, the gap

depth q satisfies

k =

⌈(
1

2
+

√
3

2
tan

θ

2

)
q

⌉
Proof. Consider the path from v1 to line b that leaves v1 forming an angle of 2π/3

with e, and then proceeds along b until it reaches a land location; see Figure 52, where
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Figure 52. Calculating the Gap Depth. The path of length k (bold) from vertex v1 to
the first land location in line b considered in the proof of Lemma 9.4.6; this path is
used to calculate the gap height k in terms of the gap depth q. By also considering
the reflection of this path from v2 (solid line), we can calculate the distance between
the two objects to be q + 2dwe+ 3 (Lemma 9.4.7).

this path is shown in bold. The total length of this path is k, and its first segment

from v1 to b is length q. Let w be the length of b between this path’s turning point and

`1; then k = q + dwe. This path and `1 form an obtuse triangle where two sides have

lengths q and w, respectively. The angle opposite the side of length w is θ/2− π/6,

while the angle opposite the side of length q is π − 2π/3− (θ/2− π/6) = π/2− θ/2.

Length w can be calculated in terms of length q with the law of sines:

w =
sin
(
θ
2
− π

6

)
sin
(
π
2
− θ

2

) q =
sin θ

2
cos π

6
− cos θ

2
sin π

6

cos θ
2

q =

√
3

2
sin θ

2
− 1

2
cos θ

2

cos θ
2

q =
q
√

3

2
tan

θ

2
−q

2

Because q is an integer, it follows that:

k = q + dwe =

⌈
q +

q
√

3

2
tan

θ

2
− q

2

⌉
=

⌈(
1

2
+

√
3

2
tan

θ

2

)
q

⌉
,

which is the desired result.

For simplicity, we do the bulk of our analysis using the gap depth q instead of the
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Figure 53. Supporting Figures for the Analysis of Large Gap Angles. From the proof
of Lemma 9.4.8: (a) An example of a shortest path between land locations on opposite
sides of the gap passing through midpoint m. (b) The four possible locations for
midpoint m for which a shortest path passing through or below m contains m′, and a
shortest path from m′ to a land location (solid line).

gap height k. The previous lemma shows that proving an expression is exponentially

small in q implies it is also exponentially small in k.

Lemma 9.4.7. For any V-shaped land mass of gap depth q and angle θ ≥ π/3, any

configuration σ has perimeter at least

p(σ) ≥
(

2
√

3 tan
θ

2

)
q + 6.

Proof. We first bound the distance between the two objects on either side of the

gap. Using the length w from the proof of Lemma 9.4.6, the distance between the

two objects in any configuration is q + 2dwe+ 3 ≥ q + 2w + 3 (see Figure 52). The

perimeter of any particle configuration is at least twice this distance, so for any σ,

p(σ) ≥ 2q + 4w + 6 = 2q + 4

(
q
√

3

2
tan

θ

2
− q

2

)
+ 6 =

(
2
√

3 tan
θ

2

)
q + 6,

which is the desired bound.
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Lemma 9.4.8. For any V-shaped land mass of gap depth q and angle θ > π/3,

any configuration σ ∈ S2 (passing below or through midpoint m of the gap) has gap

perimeter g(σ) ≥ q
2
.

Proof. If σ ∈ S2, i.e., if its inner perimeter passes through or below m, then it must

contain a path that starts and ends at land locations and also passes through or below

m. We consider all such paths and give a lower bound on the number of gap locations

they must contain. The shortest such paths start and end on opposite sides of the

gap, so we focus on paths of this type.

If m is a vertex of G∆, one shortest path between land locations passing through

m leaves m along the two lattice lines not parallel to e and follows them until reaching

the land mass, as in Figure 53a. If m is on a lattice edge, a shortest path passing

below m is constructed in the same way, beginning from each of the edge’s endpoints.

Otherwise, if m is neither a lattice point nor on a lattice edge, the same procedure is

followed for the first lattice point or lattice edge below m. In all cases, let m′ be the

point of intersection between this path and `∗, the line perpendicular to e through v1.

Figure 53b shows all the possible locations of m producing a particular m′. Inspection

shows that in all of these cases, m′ is contained in the 2b q+1
4
c-th lattice line below e.

Let `1 be the line from v1 to b forming an angle of 2π/3 with e (see Figure 53b).

Because θ > π/3, all vertices of G∆ contained in `1 except v1 are gap locations. Any

shortest path from m′ to a land location must share a vertex of G∆ with line `1.

Because m′ is in the 2b q+1
4
c-th lattice line below e, any path from m′ to `1 is of length

at least b q+1
4
c and contains at least b q+1

4
c + 1 gap locations, including both of its

endpoints. By symmetry, this means any path between land locations passing below

m, and thus any inner perimeter of a particle configuration passing below m, contains
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at least

2

(⌊
q + 1

4

⌋
+ 1

)
≥ 2

(
q − 2

4
+ 1

)
≥ q

2

gap locations, as claimed.

Theorem 9.4.9. Let λ > 2 +
√

2 =: ν and γ > (λν)4. Then there exists a constant

θ2 > π/3 such that for all V-shaped land masses with angle θ ∈ (π/3, θ2), the probability

that the inner perimeter goes through or below midpoint m is exponentially small in k,

the height of the gap, provided k is sufficiently large.

Proof. Recall S2 is the set of all configurations whose inner perimeter goes through or

below m. We show that π(S2) is exponentially small in k, the height of the gap. By

definition,

π(S2) =

∑
σ∈S2

λ−p(σ)γ−g(σ)

Z
.

By Lemma 9.4.1, the number of particles and objects in σ0 for a land mass of

height k is 4k + 7. Since σ0 is a path of width 2 and every particle occupies a land

location, p(σ0) = 4k + 7 and g(σ0) = 0. Thus,

Z =
∑
σ∈Ω

λ−p(σ)γ−g(σ) ≥ λ−p(σ0)γ−g(σ0) = λ−4k−7.

It is simpler to work with gap depth q instead of gap height k. By Lemma 9.4.6, k

satisfies k ≤
(

1
2

+
√

3
2

tan θ
2

)
q + 1, so:

Z ≥ λ−4k−7 ≥ λ
−4

(
1
2

+
√

3
2

tan θ
2

)
q−4−7

= λ−(2+2
√

3 tan θ
2)q−11.

Combining this with Lemma 9.4.8, we have:

π(S2) =
∑
σ∈S2

λ−p(σ)γ−g(σ)

Z
≤ λ(2+2

√
3 tan θ

2)q+11
∑
σ∈S2

λ−p(σ)γ−
q
2

Let pmin (resp., pmax) be the minimum (resp., maximum) possible perimeter for a

valid particle configuration in S2. By Lemma 9.4.7, pmin ≥ 2
√

3 tan(θ/2)q. As shown
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in the proof of Theorem 9.4.5, pmax = 8k + 12; in terms of q, by Lemma 9.4.6,

pmax ≤ 8

(
q

2
+
q
√

3

2
tan

θ

2
+ 1

)
+ 12 = 4q + 4q

√
3 tan

θ

2
+ 20.

Once again using Lemma 8.3.3 to upper bound the number of configurations with

perimeter p by the expression f(p)νp, where f is some subexponential function, we

have that:

π(S2) ≤ λ(2+2
√

3 tan θ
2)q+11

pmax∑
p=pmin

f(p)νpλ−pγ−
q
2

≤ λ(2+2
√

3 tan θ
2)q+11

(
pmax∑
p=pmin

f(p)

)(ν
λ

)pmin
γ−

q
2

≤

(
λ11

pmax∑
p=pmin

f(p)

)(
λ(2+2

√
3 tan θ

2)
(ν
λ

)2
√

3 tan θ
2
γ−

1
2

)q

=

(
λ11

pmax∑
p=pmin

f(p)

)(
λ2ν2

√
3 tan θ

2γ−
1
2

)q
The first parentheses is a function f1(q) that is subexponential in q, as it has a

polynomial number of summands based on our calculations of pmin and pmax (which

are expressions in terms of q), and each summand is subexponential. When the term in

the second set of parentheses above is less than one, the second factor (this term raised

to the q power) is exponentially small in q, the gap depth, and thus for sufficiently

large q this term dominates and the entire expression is exponentially small in q. This

holds whenever θ satisfies:

θ < 2 tan−1

(
1

2
√

3
logν

(
γ1/2λ−2

))
= 2 tan−1

(
1√
3

logν

(
γ1/4

λ

))
=: θ2.

Whenever γ1/4/λ > ν — i.e., whenever γ > (λν)4 — the argument of tan−1

above is at least 1/
√

3, and thus θ2 > π/3. It follows that whenever γ > (λν)4 and

θ ∈ (π/3, θ2),

π(S2) < f1(q)ψq,
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where f1(q) is subexponentially large in q and ψ < 1 so the second term is exponentially

small in q. For sufficiently large q, the second term dominates, and we conclude the

weight of set S2 at stationarity is exponentially small in q. Because k and q differ only

by additive and multiplicative constants, it is also exponentially small in k, the gap

height, for sufficiently large k.

As was the case for small angles, here also we have that by Lemma 9.4.1, there

are n = 4k + 5 particles. Thus, we have that the probability the inner perimeter goes

through or below midpoint m when θ is sufficiently large is also exponentially small

in n. If we again use the example value of λ = 4 (as in the simulations depicted in

Figures 54 and 55), Theorem 9.4.9 requires γ > (λν)4 ≈ 34,786. This value is large,

but importantly is constant; i.e., it does not depend on n. For example, when λ = 4

and γ = 105, our methods show that the resulting bridge remains above midpoint m

with high probability for any angle between π/3 = 60◦ and θ2 ≈ 1.2234 ≈ 70.10◦. On

the other hand, a simulation with λ = 4, γ = 2, and θ = 90◦ is shown in Figure 55c to

remain well above the midpoint m, suggesting that this behavior is stable for much

smaller values of γ and a much larger range of angles than we were able to prove.

As for Theorems 9.3.5 and 9.4.5, we are unable to give explicit bounds on the

“sufficiently large k” required by the statement of Theorem 9.4.9 because the exact

form of f(p) in its proof is unknown, but we expect and observe that it holds even for

the small k for which our proof does not apply.

9.5 Simulations

We can see the performance of our algorithm from simulation results on a variety

of instances. Figure 54 shows snapshots over time for a bridge shortcutting a V-shaped

332



(a) (b) (c) (d)

Figure 54. Simulation of Markov ChainMB on a V-shaped Land Mass. A particle
system using biases λ = 4 and γ = 2 to shortcut a V-shaped land mass with θ = π/3
after (a) 2 million, (b) 4 million, (c) 6 million, and (d) 8 million iterations of Markov
chainMB, beginning in configuration σ0 shown in Figure 47a.

(a) (b)
(c)

Figure 55. Simulations of Markov ChainMB Varying Gap Angle. A particle system
using biases λ = 4 and γ = 2 to shortcut a V-shaped land mass with angle (a) π/6,
(b) π/3, and (c) π/2 after 20 million iterations of Markov chain MB. For a given
angle, the land mass L and initial configuration σ0 were constructed as described in
Section 9.4.

(a) (b)

Figure 56. Simulation of Markov ChainMB on an N-shaped Land Mass. A particle
system using biases λ = 4 and γ = 2 to shortcut an N-shaped land mass after (a) 10
million and (b) 20 million iterations of Markov chainMB, beginning in configuration
σ0 shown Figure 47b.
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gap with internal angle θ = π/3 and biases λ = 4, γ = 2. Qualitatively, this bridge

matches the shape and position of the army ant bridges in [168]. Figure 55 shows

the results of an experiment that held λ, γ, and the number of iterations of MB

constant, varying only the internal angle of the V-shaped land mass. The particle

system exhibits behavior consistent with the theoretical results in Section 9.4 and

the army ant bridges in [168], shortcutting closer to the bottom of the gap when θ is

small and staying almost entirely on land when θ is large. Lastly, Figure 56 shows the

resulting bridge structure when the land mass is N-shaped, demonstrating that our

algorithm can be generalized beyond the original inspiration of V-shaped land masses

to shortcut multiple gaps in more complex structures.

These simulations demonstrate the successful application of our stochastic approach

to shortcut bridging. Moreover, experimenting with variants suggests this approach

may be useful for other related applications in the future. One related behavior of

particular interest is “exploration bridging”, where a particle system first explores its

environment to discover sites of interest, and then converges to a bridge-like structure

between them. We are also interested in formulating alternative local rules for shortcut

bridging which yield bridges that appear more “structurally sound”, though we suspect

the information needed to do so may be difficult to encode in our particle systems

due to the constant-size memory constraint of the amoebot model.
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Chapter 10

SEPARATION

Across many disciplines spanning computational, physical, and social sciences,

heterogeneous systems self-organize into both separated (or segregated) and integrated

states. Examples include molecules exhibiting attractive and repulsive forces, distinct

types of bacteria competing for resources while collaborating towards common goals

(e.g., [184, 190]), social insects tolerating or aggressing towards those from other

colonies (e.g., [117, 174]), and inherent human biases that influence how we form

and maintain social groups (e.g., [36, 107, 187]). In each of these, individuals are of

different “types”: integration occurs when the ensemble gathers together without much

preference about the type of their neighbors, while separation occurs when individuals

cluster with others of the same type.

We apply the stochastic approach to separation and integration of heterogeneous

amoebot systems in which amoebots have immutable colors [31]. Our inspiration

comes from the classical Ising model in statistical physics [111, 188], where the

vertices of a graph are assigned positive and negative “spins” and there are rules

governing the probability that adjacent vertices have the same spin. Connected to

the Ising model is classical work from stochastic processes on the Schelling model

of segregation [179, 180], which explores how individuals’ micro-motives can induce

macro-level phenomena like racial segregation in residential neighborhoods. Recent

variants of this model from computer science have investigated the degree of individual

bias required to induce such segregation [23, 110], and a related distributed algorithm

has been developed [154]. Our work differs from those on the Ising and Schelling
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models because of natural physical constraints on systems of self-organizing, active

particles like ours. For example, interpreting particles of one color to be vertices

with positive spin and particles of another color to be vertices with negative spin,

this acts like an Ising model, but on a graph that evolves as particles move. Despite

these obstacles, we apply tools for rigorously analyzing the Ising and similar models

to prove our distributed algorithm for separation and integration accomplishes the

desired goals.

While this dissertation focuses on distributed algorithms, it is worth noting that

efficient stochastic algorithms for separation can be challenging even with centralized

Markov chains. Separation of a region into equitably sized, compact districts has

been widely explored recently in the context of gerrymandering, where the aim is

to sample colorings of a weighted graph from an appropriately defined stationary

distribution [57, 105]. Heuristics for random districting have been discussed in the

media, but there are still no known rigorous, efficient algorithms.

Results. We present a distributed algorithm for self-organizing separation and

integration that takes as input two bias parameters, λ and γ. Setting λ > 1 corresponds

to particles favoring having more neighbors; this is known to cause compression in

homogeneous systems when λ is large enough (Chapter 8, [32]). For separation in the

heterogeneous setting, we introduce a second parameter γ, where γ > 1 corresponds

to particles favoring having more neighbors of their own color. We then investigate for

what values of λ and γ our algorithm yields compression and separation. Informally, a

particle system is separated if there is a subset of particles such that (i) the boundary

between this subset and the rest of the system is small, (ii) a large majority of particles

in this subset are of the same color, say c, and (iii) very few particles with color c exist
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outside of this subset. This notion of separation (defined formally in Definition 10.1.3)

captures what it means for a system to have large monochromatic regions of particles.

We prove that for any λ > 1 and γ > 45/4 ≈ 5.66 such that λγ > 2(2+
√

2)e0.0003 ≈

6.83, our algorithm accomplishes separation with high probability.16 However, we

prove the opposite for some values of γ close to one; counterintuitively, this even

includes some values of γ > 1, the regime where particles favor having like-colored

neighbors. Formally, we prove that for any λ > 1 and γ ∈ (79/81, 81/79) such that

λ(γ + 1) > 2(2 +
√

2)e0.00003 ≈ 6.83, our algorithm fails to achieve separation (i.e., it

achieves integration) with high probability.

Proof Techniques. Because our distributed algorithm is based on a Markov chain,

we can use standard tools such as detailed balance to understand its long-term behavior

and prove its convergence to a unique probability distribution π over particle system

configurations. This stationary distribution π depends on the input parameters λ and

γ. Our main contribution is analyzing π for various ranges of λ and γ, showing that

a configuration drawn from distribution π is either very likely (for large γ) or very

unlikely (for γ close to one) to be separated.

To show separation occurs when λ and γ are both large, we modify the proof

technique of bridging introduced by Miracle, Pascoe, and Randall [147]. To show

separation does not occur when λ is large and γ is small (close to one), we use a

probabilistic argument, a Chernoff-type bound, and a decomposition of configurations

into different regions. These arguments — both for large and small γ — require that

the particle system is compressed; i.e., that the system has perimeter Θ(
√
n). However,

16For separation and integration, we say an event A occurs with high probability (w.h.p.) if
Pr [A] ≥ 1 − cnδ , where 0 < c < 1 and δ > 0 are constants and n is the number of particles. Our
w.h.p. results all have δ ∈ {1/2, 1/2− ε}, for arbitrarily small ε > 0.
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the arguments from [32] showing compression occurs for homogeneous systems when

λ is large do not extend to the heterogeneous setting.

We instead turn to the cluster expansion from statistical physics to show our

separation algorithm achieves compression for large enough γ. The cluster expansion

was first introduced in 1937 by Mayer [139], though a more modern treatment can be

found in the textbook [90] where it is used to derive several properties of statistical

physics models including the Ising and hard-core models. In the past year, the cluster

expansion has received renewed attention in the computer science community due to

the recent work of Helmuth, Perkins, and Regts that uses the cluster expansion to

develop approximate counting and sampling algorithms for low-temperature statistical

physics models on lattices including the Potts and hard-core models [103]. Subsequent

work has considered similar techniques on expander graphs [116] and random regular

bipartite graphs [130]. Inspired by the interpolation method of Barvinok [16, 17],

these works give algorithms for estimating partition functions that explicitly calculate

the first log n coefficients of the cluster expansion. We use the cluster expansion

differently, to separate the volume and surface contributions to a partition function.

The cluster expansion is a power series representation of lnZ where Z is a polymer

partition function. We relate each of our quantities of interest to a particular polymer

partition function, and then use a version of the Kotecký-Preiss condition [123] to

show that the power series in the cluster expansion is convergent for the ranges of

parameters we are interested in. We then use this convergent cluster expansion to

split our polymer partition functions into a volume term, depending only on the size

of the region of interest, and a surface term, depending only on its perimeter. This

separation into volume and surface terms turns out to be the key to our compression

argument, both for large γ and for γ close to one. While splitting partition functions

338



into volume and surface terms is not a new idea in the statistical physics literature (for

example, Section 5.7.1 of [90] uses it to derive an explicit expression for the infinite

volume pressure of the Ising model on Zd with large magnetic field), we are the first

to bring this approach into the computer science literature. We are hopeful it will be

useful beyond its specific applications presented here.

10.1 Preliminaries

10.1.1 Terminology and Results for Homogeneous Amoebot Systems

We first recall the relevant terminology and results from our work on compression

(Chapter 8, [32]). A particle system arrangement is the set of nodes of the triangular

lattice G∆ occupied by particles. Two arrangements are equivalent if they are transla-

tions of each other; we define a particle system configuration to be an equivalence class

of arrangements. An edge of a configuration is an edge of G∆ where both endpoints

are occupied by particles. A configuration is connected if for any two particles in the

system, there is a path of such edges between them. A configuration has a hole if

there is a maximal, finite, connected component of unoccupied nodes in G∆.

As we justify with Lemma 10.2.1, our analysis will focus on connected, hole-free

configurations. The boundary of such a configuration σ is the closed walk P on edges

of σ that encloses all particles of σ and no unoccupied nodes of G∆. The perimeter

p(σ) of configuration σ is the length of this walk, also denoted |P|. The following

bounds the number of configurations with a given perimeter.

Lemma 10.1.1 (Lemma 8.3.4). For any ν > 2 +
√

2, there is an integer n1(ν) such
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(a) (b)

Figure 57. Bounding the Minimum Perimeter of a System Configuration. (a) The
regular hexagon with side length ` = 3, has 3`2 + 3`+ 1 = 37 total particles. (b) A
configuration with ` = 3 and k = 6, totaling n = 3`2 + 3`+ 1 + k = 43 particles. It
has perimeter 20 < 2

√
3
√
n ≈ 22.716.

that for all n ≥ n1(ν), the number of connected, hole-free particle system configurations

with n particles and perimeter k is at most νk.

Let pmin(n) be the minimum possible perimeter for a configuration of n particles;

it is easy to see that pmin(n) = Θ(
√
n). Recall that for any α > 1, a configuration of

n particles is said to be α-compressed if p(σ) ≤ α · pmin(n) (Definition 8.1.2). The

following lemma establishes a concrete upper bound on pmin(n).

Lemma 10.1.2. For any n ≥ 1, there is a connected, hole-free particle system

configuration of n particles with perimeter at most 2
√

3
√
n. That is, pmin(n) ≤ 2

√
3
√
n.

Proof. The lemma can easily be verified for n ≤ 6. For n ≥ 7, we begin with the

case where n = 3`2 + 3` + 1 for some integer ` ≥ 1. A regular hexagon with side

length ` can be decomposed into a single center node and six triangles each with
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`(`+ 1)/2 particles, totalling 3`2 + 3`+ 1 particles (see Figure 57a). Such a hexagon

has perimeter 6`. We see that:

pmin(3`2 + 3`+ 1) ≤ 6` ≤ 2
√

3
√

3`(`+ 1) ≤ 2
√

3
√
n− 1 ≤ 2

√
3
√
n.

Now consider n = 3`2 + 3`+ 1 + k, where integers ` and k satisfy k ∈ [1, 6`+ 6).

As (3`2 + 3`+ 1) + 6`+ 6 = 3(`+ 1)2 + 3(`+ 1) + 1, this covers all possible values of

n. Construct a configuration on n = 3`2 + 3`+ 1 + k particles by first constructing a

regular hexagon of side length ` and then adding the remaining k particles around

the outside of this hexagon in a single layer, completing one side before beginning

the next (see, e.g., Figure 57b where ` = 3 and k = 6). For k ≤ `, the perimeter

of this configuration is 6`+ 1. More generally, the perimeter increases by one when

particles begin to be added to a new side of the hexagon, and so for i ∈ {2, . . . , 6}

and k ∈ ((i− 1)`+ (i− 2), i`+ (i− 1)], the perimeter of this configuration is 6`+ i.

Using i ≤ 6 and ` ≥ 1, we have that for any i ∈ {1, . . . , 6},

pmin(3`2 + 3`+ 1 + k) ≤ 6`+ i

≤ 2
√

3

√(√
3`+

i

2
√

3

)2

= 2
√

3

√
3`2 +

i2

12
+ i

≤ 2
√

3
√

3`2 + 3 + i

≤ 2
√

3
√

3`2 + 3`+ 1 + i− 1

≤ 2
√

3
√

3`2 + 3`+ 1 + k = 2
√

3
√
n.

This concludes our proof.
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10.1.2 Heterogeneous Systems and The Separation Problem

Generalizing previous work on the amoebot model in which all amoebots are

homogeneous and indistinguishable, we assume that each amoebot A has a fixed color

c(A) ∈ {c1, . . . , ck} that is visible to itself and its neighbors, where k � n is a constant.

We extend the definition of configuration given in Section 10.1.1 to include both the

nodes of G∆ occupied by amoebots as well as the colors of those amoebots. An edge

of configuration σ with endpoints occupied by amoebots A and B is homogeneous if

c(A) = c(B) and heterogeneous otherwise.

We further extend the original model by allowing neighboring amoebots to exchange

their positions in a swap move. Swap moves have no meaning in homogeneous systems

as all amoebots are indistinguishable, but they grant heterogeneous systems flexibility

in allowing amoebots trapped in the interior of the system to move freely.17 These

swap moves are not necessary for the correctness of our algorithm or our rigorous

analysis, but enable faster convergence in practice.

In this paper, we study heterogeneous systems with k = 2 color classes. Our

algorithm performs well in practice for larger values of k and we expect our proof

techniques would generalize without needing significant new ideas. However, this

generalization would be cumbersome; thus, for simplicity, we restrict our attention

to systems with colors {c1, c2}. For 2-heterogeneous systems, we can formally define

separation with respect to having large monochromatic regions.

Definition 10.1.3. For β > 0 and δ ∈ (0, 1/2), a 2-heterogeneous system configuration

σ is said to be (β, δ)-separated if there is a subset of amoebots R such that:

17In domains where physical swap moves are unrealistic, colors could be treated as in-memory
attributes that could be exchanged by neighboring amoebots to simulate a swap move.
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1. There are at most β
√
n edges of σ with exactly one endpoint in R;

2. The density of amoebots of color c1 in R is at least 1− δ; and

3. The density of amoebots of color c1 not in R is at most δ.

A configuration is integrated if no such β, δ exist.

Unpacking this definition, β controls how small a boundary there is between the

monochromatic region R and the rest of the system, with smaller β requiring smaller

boundaries. The δ parameter expresses the tolerance for having amoebots of the wrong

color within the monochromatic region R: small values of δ require stricter separation

of the color classes, while larger values of δ allow for more integrated configurations.

Notably, R does not need to be connected.

10.2 Algorithms for Separation

10.2.1 The Markov ChainMS for Separation

Our Markov chain algorithm achieves separation by biasing particles towards

moves that both gain them more neighbors overall and more like-colored neighbors.

We use two bias parameters to control this preference: λ > 1 corresponds to particles

favoring having more neighbors, and γ > 1 corresponds to particles favoring having

more neighbors of their own color.

In order to leverage powerful techniques from Markov chain analysis and statistical

physics to prove the correctness of our algorithm, we design our algorithm to follow

certain invariants. First, assuming the initial system configuration is connected, our

algorithm ensures it remains connected; this is necessary because particles are strictly

limited to local interactions, so a disconnected particle cannot communicate with or
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even find the others. Second, our algorithm eventually eliminates all holes in the

configuration, and no new holes are ever formed. This is necessary because our proof

techniques only apply to hole-free configurations. Third, once all holes have been

eliminated, all moves allowed by our algorithm are reversible: if a particle moves from

node u to an adjacent node v in one step, there is a nonzero probability that it moves

back to u in the next step. Finally, the moves allowed by our algorithm suffice to

transform any connected, hole-free configuration into any other connected, hole-free

configuration.

Our algorithm uses two locally-checkable properties that ensure particles do not

disconnect the system or form a hole when moving (our first two invariants). We

use the following notation. For a location ` — i.e., a node of the triangular lattice

G∆ — let Ni(`) denote the particles of color ci occupying locations adjacent to `. For

neighboring locations ` and `′, let Ni(` ∪ `′) denote the set Ni(`) ∪Ni(`
′), excluding

particles occupying ` and `′. When ignoring color, let N(`) =
⋃
iNi(`); define N(`∪`′)

analogously. Let S = N(`)∩N(`′) denote the set of particles adjacent to both locations.

A particle can move from location ` to `′ if one of the following are satisfied:

Property 10.2.1. |S| ∈ {1, 2} and every particle in N(` ∪ `′) is connected to exactly

one particle in S by a path through N(` ∪ `′).

Property 10.2.2. |S| = 0, and both N(`) \ {`′} and N(`′) \ {`} are nonempty and

connected.

Note that these properties do not need to be verified for swap moves, since swap

moves do not change the set of occupied locations and thus cannot disconnect the

system or create a hole.
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We now define the Markov chain MS for separation. The state space Ω of

MS is the set of all connected heterogeneous particle system configurations of n

contracted particles, and Algorithm 16 defines its transition probabilities. We note

thatMS, a centralized Markov chain, can be directly translated to a local, distributed,

algorithm AS that can be run by each particle independently and concurrently to

achieve the same system behavior. This translation is much the same as for previous

algorithms developed using the stochastic approach; we refer the interested reader

to Sections 8.2.2 and 9.2.2 for details. Importantly, this translation is only possible

because all probability calculations and property checks in MS use strictly local

information available to the particles involved. Simulations ofMS can be found in

Section 10.2.3.

Algorithm 16 Markov ChainMS for Separation and Integration
From any connected configuration σ0 of n contracted particles, repeat:

1: Choose a particle P uniformly at random; let ci be its color and ` its location.
2: Choose a neighboring location `′ and q ∈ (0, 1) each uniformly at random.
3: if `′ is unoccupied then
4: P expands to occupy both ` and `′.
5: Let e = |N(`)| be the number of neighbors P had when it was contracted at `.
6: Let e′ = |N(`′)| be the number of neighbors P would have if it contracts to `′.
7: Let ei = |Ni(`)| and e′i = |Ni(`′)| be defined analogously for neighbors of color ci.
8: if (i) e 6= 5, (ii) ` and `′ satisfy Property 10.2.1 or 10.2.2, and (iii) q < λe

′−e · γe′i−ei then
9: P contracts to `′.

10: else P contracts back to `.
11: else if `′ is occupied by particle Q of color cj then
12: if q < γ|Ni(`

′)\{P}|−|Ni(`)|+|Nj(`)\{Q}|−|Nj(`′)| then P and Q perform a swap move.

10.2.2 The Stationary Distribution of Markov ChainMS

In this section, we prove that Markov chain MS maintains the four invariants

described previously and then characterize its stationary distribution.
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Lemma 10.2.1. If the particle system is initially connected, it remains connected

throughout the execution ofMS. Moreover,MS eventually eliminates any holes in

the initial configuration, after which no holes are ever introduced again.

Proof. This follows directly from analogous results shown for the Markov chainMC

for compression (Section 8.2.4). Although the separation and compression algorithms

assign different probabilities to particle moves, the set of allowed movements is exactly

the same, excluding swap moves. However, swap moves do not change the set of

occupied nodes of G∆, so they cannot disconnect the system or introduce a hole.

Thus, becauseMC keeps the system connected, eventually eliminates all holes, and

prohibits new holes from forming, so doesMS.

Lemma 10.2.2. Once all holes have been eliminated, every possible particle move is

reversible; that is, if there is a positive probability of moving from configuration σ to

configuration τ , then there is a positive probability of moving from τ to σ.

Proof. Suppose that a particle P moves from location ` to `′. In the next time step,

it is possible for P to be chosen again (Step 1) and for ` to be chosen as the position

to explore (Step 2). Because Properties 10.2.1 and 10.2.2 are symmetric with respect

to ` and `′, whichever was satisfied in the forward move will also be satisfied in this

reverse move. Finally, the probability checked in Condition (iii) of Step 9 is always

nonzero, so all together there is a nonzero probability that P moves back to ` in this

reverse move. Swap moves can be shown to be reversible in a similar way.

Lemma 10.2.3. Markov chainMS is ergodic on the state space of connected, hole-free

configurations.

Proof Sketch. One can show thatMS is irreducible (i.e., the moves ofMS suffice to

transform any configuration to any other configuration) similarly to the proof of the
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same fact for compression (see Lemma 8.2.10): it is first shown that any configuration

can be reconfigured into a straight line; then, the line can be sorted by the color of

the particles; finally, by reversibility (Lemma 10.2.2), the line can be reconfigured

into any configuration. Additionally, it is easy to see thatMS is aperiodic: at each

iteration ofMS, there is a nonzero probability that the configuration does not change.

Thus, becauseMS is irreducible and aperiodic, we conclude it is ergodic.

BecauseMS is finite and ergodic, it converges to a unique stationary distribution π

that we now characterize. For a configuration σ, recall that p(σ) denotes its perimeter

and e(σ) denotes its number of edges, or nearest-neighbor pairs. Let a(σ) be the

number of homogeneous edges in σ and let h(σ) be the number of heterogeneous edges

in σ.

Lemma 10.2.4. The stationary distribution ofMS is:

π(σ) =

 (λγ)−p(σ) · γ−h(σ)/Z if σ is connected and hole-free;

0 otherwise.

where Z =
∑

σ(λγ)−p(σ) ·γ−h(σ) is the normalizing constant also known as the partition

function.

Proof. By Lemma 10.2.1, whenMS starts at a connected configuration it eventually

reaches and remains in the set of configurations that are connected and hole-free.

Thus, disconnected configurations and configurations with holes have zero weight at

stationarity. We first verify that π(σ) = λe(σ) · γa(σ)/Ze, where Ze =
∑

σ λ
e(σ) · γa(σ), is

the stationary distribution ofMS by detailed balance. We then show that this form

of π can be rewritten as in the lemma.

Consider any two connected, hole-free configurations σ, τ that differ by one move

of some particle from location ` in σ to a neighboring location `′ in τ . By examining
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MS, we see that the probability of transitioning from σ to τ is:

M(σ, τ) = min
{

1, λ|N(`′)|−|N(`)| · γ|Ni(`′)|−|Ni(`)|
}
/6n.

A similar analysis shows:

M(τ, σ) = min
{

1, λ|N(`)|−|N(`′)| · γ|Ni(`)|−|Ni(`′)|
}
/6n.

Without loss of generality, suppose λ|N(`′)|−|N(`)| · γ|Ni(`′)|−|Ni(`)| < 1, meaning M(σ, τ)

is this value over 6n and M(τ, σ) = 1/6n. Because the only edges that differ in σ and

τ are incident to ` or `′,

π(σ)M(σ, τ) =
λe(σ) · γa(σ)

Ze
· 1

n
· 1

6
· λ|N(`′)|−|N(`)| · γ|Ni(`′)|−|Ni(`)|

=
λe(σ) · γa(σ)

Ze
· 1

n
· 1

6
· λe(τ)−e(σ) · γa(τ)−a(σ)

=
λe(τ) · γa(τ)

Ze
· 1

n
· 1

6
· 1 = π(τ)M(τ, σ)

Thus, detailed balance is satisfied for particle moves that are not swaps.

Suppose instead that σ and τ differ by a swap move of particle P with color ci at

location ` in σ and particle Q with color cj at neighboring location `′ in σ. This move

could occur if P or Q is chosen in Step 1 ofMS, so:

M(σ, τ) = min
{

1, γ|Ni(`
′)\{P}|−|Ni(`)|+|Nj(`)\{Q}|−|Nj(`′)|

}
/3n.

Similarly, because τ has P at location `′ and Q at location `, we have:

M(τ, σ) = min
{

1, γ|Ni(`)\{P}|−|Ni(`
′)|+|Nj(`′)\{Q}|−|Nj(`)|

}
/3n.

Without loss of generality, suppose that γ|Ni(`′)\{P}|−|Ni(`)|+|Nj(`)\{Q}|−|Nj(`′)| < 1, so
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M(σ, τ) is this value over 3n and M(τ, σ) = 1/3n. Then,

π(σ)M(σ, τ) =
λe(σ) · γa(σ)

Ze
· 2

n
· 1

6
· γ|Ni(`′)\{P}|−|Ni(`)|+|Nj(`)\{Q}|−|Nj(`′)|

=
λe(σ) · γa(σ)

Ze
· 2

n
· 1

6
· γ(|Ni(`′)\{P}|+|Nj(`)\{Q}|)−(|Ni(`)|+|Nj(`′)|)

=
λe(σ) · γa(σ)

Ze
· 2

n
· 1

6
· γa(τ)−a(σ)

=
λe(τ) · γa(τ)

Ze
· 2

n
· 1

6
· 1 = π(τ)M(τ, σ)

Thus, detailed balance is satisfied in both cases, so we conclude the stationary

distribution π over connected, hole-free configurations is given by π(σ) = λe(σ)·γa(σ)/Ze.

Since every edge of σ is either homogeneous or heterogeneous, we have e(σ) =

a(σ) + h(σ). By Lemma 8.1.3, we have e(σ) = 3n − p(σ) − 3 for any connected,

hole-free configuration σ, where n is the number of particles in the system. Thus, we

can rewrite this unique stationary distribution as follows:

π(σ) =
λe(σ) · γa(σ)

Ze

=
λe(σ) · γa(σ)∑
σ λ

e(σ) · γa(σ)

=
(λγ)−3n+3 · (λγ)e(σ) · γa(σ)−e(σ)

(λγ)−3n+3 ·
∑

σ(λγ)e(σ) · γa(σ)−e(σ)

=
(λγ)e(σ)−3n+3 · γa(σ)−e(σ)∑
σ(λγ)e(σ)−3n+3 · γa(σ)−e(σ)

=
(λγ)−p(σ) · γ−h(σ)∑
σ(λγ)−p(σ) · γ−h(σ)

.

This concludes our proof.

The remainder of this paper will be spent analyzing this stationary distribution.
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Figure 58. Simulation of Markov ChainMS with λ = 4 and γ = 4. A 2-heterogeneous
particle system of 100 particles starting from an arbitrary initial configuration after
(from left to right) 0; 50,000; 1,050,000; 17,050,000; and 68,250,000 iterations.

10.2.3 Simulations

We supplement our rigorous results with simulations that show separation occurs

for even better values of λ and γ than our proofs guarantee, indicating that our proven

bounds are likely not tight. We simulatedMS on heterogeneous particle systems with

two colors, using 50 particles of each color. Figure 58 shows the progression ofMS

over time with bias parameters λ = 4 and γ = 4, the regime in which particles prefer

to have more neighbors, especially those of their own color. The simulation ran for

nearly 70 million iterations, but much of the system’s compression and separation

occurs in the first million iterations. Separation still occurs even when swap moves

are disallowed, but takes much longer to achieve.

Figure 59 compares the resulting system configurations after runningMS from

the same initial configuration for the same number of iterations, varying only the

values of λ and γ. We observe four distinct phases: compressed-separated, compressed-

integrated, expanded-separated, and expanded-integrated. We rigorously verify the

compressed-separated behavior (i.e., when λ and γ are large), and do the same for

the compressed-integrated behavior (i.e., when λ is large and γ is small). We do not

give proofs for expanded configurations; in fact, our current definition of separation

may not accurately capture what occurs in expanded configurations.
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γ = 5.20 (Separation) γ = 0.58 (Integration)

λ = 5.20
(Compression)

λ = 0.58
(Expansion)

Figure 59. The Four Phases of Markov ChainMS. A 2-heterogeneous particle system
of 100 particles starting in the leftmost configuration of Figure 58 after 50,000,000
iterations ofMS for various values of the parameters λ and γ.

10.3 Technical Overview

We consider large λ and want to know for which values of γ separation occurs. Our

proof techniques apply to α-compressed configurations (i.e., those whose boundaries

have length p ≤ α · pmin, where pmin is the smallest possible perimeter for the given

number of particles).

In Section 10.4, we show that separation provably occurs among α-compressed

configurations, when γ is large enough. We use a technique known as bridging that was

developed to analyze molecular mixtures called colloids [147]. Adapting the bridging

approach to our setting requires several new innovations to overcome obstacles such

as the irregular shapes of particle system configurations, the non-self-duality of the

triangular lattice, the interchangeability between color classes, and other technicalities
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related to interfaces between particles of different colors. The main result of this

section is Theorem 10.4.10, which states that if P is a boundary of an α-compressed

configuration and if α, β, and δ satisfy a technical condition, then configurations with

boundary P and weights proportional to π are (β, δ)-separated with high probability

when γ is large enough. We also show that for any λ > 1 and γ > 45/4 ≈ 5.66,

there exist β > 0 and δ ∈ (0, 1/2) such that MS achieves (β, δ)-separation among

α-compressed configurations at stationarity with high probability (Corollary 10.4.12).

In Section 10.5, we show that there are some values of γ close to one for which

separation does not occur among α-compressed configurations. This counterintuitively

includes some γ > 1, where particles have a preference for having like-colored neighbors.

We prove this using a probabilistic argument in which we find a set of polynomially

many events such that if separation occurs, then at least one of these events occurs. We

then show that each event occurs with probability at most ζn1/2−ε for some ζ < 1 and

arbitrarily small ε > 0, which via a union bound over the polynomial number of events

implies separation is very unlikely. The main result of this section is Theorem 10.5.5,

which states that if P is a boundary of an α-compressed configuration, then if γ

and δ satisfy some technical conditions, configurations with boundary P and weights

proportional to π are (β, δ)-separated with probability at most ζn1/2−ε where ε > 0 can

be arbitrarily close to zero and ζ < 1 when γ is close to one. We also show that for

any λ > 1 and γ ∈ (79/81, 81/79), there exist β > 0 and δ ∈ (0, 1/2) such thatMS

achieves (β, δ)-separation among α-compressed configurations at stationarity with

probability at most ζn1/2−ε , where ε > 0 and ζ < 1 (Corollary 10.5.6).

With these results in place, it remains to show that Markov chainMS achieves

α-compression for the ranges of λ and γ of interest. However, the proofs of compression

used in Chapter 8 do not generalize for the heterogeneous setting, so we use the cluster
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expansion to overcome this obstacle. We omit the full details of these arguments

from this dissertation and instead refer the interested reader to the full paper [31].

We choose instead to emphasize the arguments of separation and integration when

α-compression is assumed as we will use these results again in Section 11.2.

10.4 Proof of Separation

We prove that, among configurations with small perimeter, those that are separated

are exponentially more likely than those that are not in the stationary distribution

of Markov chain MS, which is also the stationary distribution of our distributed

algorithm AS.

Recall ΩP ⊆ Ω is all configurations with no holes and boundary P. Let πP

be the stationary distribution conditioned on being in ΩP , πP(σ) = π(σ)/π(ΩP).

Because all configurations in ΩP have the same perimeter, using the definition of π

given in Lemma 10.2.4 we see that all terms of the form (λγ)−p(σ) cancel, yielding

πP(σ) = γ−h(σ)/ZP , where ZP =
∑

σ∈ΩP
γ−h(σ).

Recall a configuration σ is α-compressed if its perimeter is at most α · pmin, where

pmin is the minimum possible perimeter for the particles in σ. Our main result in this

section is that, for all P that determine α-compressed configurations, non-separated

configurations have exponentially small weight according to πP .

We formally define separation in terms of the existence of a monochromatic region

R as follows. If R is some subset of the particles in a configuration σ, then we say

that bdint(R) is all edges of G∆ with both endpoints occupied by particles in σ and

exactly one endpoint in R. For later use, we also define bdout(R) is all edges of G∆

where one point is occupied by a particle in R and the other endpoint is unoccupied
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and bd(R) = bdint(R) ∪ bdout(R). The following is the definition of separation we will

use throughout this section; it is equivalent to Definition 10.1.3 but stated in a more

formal way.

Definition 10.4.1. For β > 0 and δ ∈ (0, 1/2), a configuration σ ∈ ΩP is (β, δ)-

separated if there is a subset R of particles such that:

1. |bdint(R)| ≤ β
√
n;

2. The density of particles of color c1 in R is at least 1− δ; and

3. The density of particles of color c1 not in R is at most δ.

Here, β is a measure of how small the boundary between R and its complement R

must be and δ is a tolerance of having particles of the wrong color within R. We note

that requiring |bdint(R)| ≤ β
√
n is equivalent to having at most β

√
n edges with one

endpoint in R and one endpoint in R. We note that this definition is symmetric with

respect to the role played by c1 in R and the role played by c2 in R. R does not need

to be connected or hole-free.

We let Sβ,δ ⊆ ΩP be the configurations in ΩP that are (β, δ)-separated for some

β > 0 and δ < 1/2. We prove (Theorem 10.4.10) that for γ sufficiently large, as

long as P is α-compressed, β > 2α
√

3, and δ < 1/2, with all but exponentially small

probability a sample drawn from πP is in Sβ,δ:

πP(ΩP \ Sβ,δ) ≤ ζ
√
n,

where ζ < 1 is a constant. In the remainder of this section, we prove this result.
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(a) (b)

Figure 60. Lattice Duality and Contours. (a) The duality between the triangular
lattice G∆ (gray) and the hexagonal lattice Ghex (black). (b) A configuration σ with
11 black particles and 11 white particles. The boundary contour in the dual lattice
Ghex is thick and black, while all four heterogeneous contours of σ are shown by
dashed lines.

10.4.1 Lattice Duality and Contours

We begin with some background on lattice duality that will simplify our proofs

in the remainder of this section. The dual to the triangular lattice G∆, obtained by

creating a new vertex in every face of G∆ and connecting two of these vertices if their

corresponding triangular faces have a common edge, is the hexagonal lattice Ghex; see

Figure 60a. There is a bijection between edges of G∆ and edges of Ghex, associating an

edge of G∆ with the unique edge of Ghex that crosses it and vice versa. Throughout,

we refer to a contour as a walk in Ghex that never visits the same vertex twice, except

possibly to start and end at the same place; these are also known as self-avoiding

walks or, when starting and ending at the same place, self-avoiding polygons.

Each edge e ∈ Ghex crosses a unique edge f ∈ G∆, and we say an e separates the

two locations connected by f . For a configuration σ, we say e ∈ Ghex is a boundary

edge if it separates a particle of σ from an unoccupied location, and is a heterogeneous
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edge if it separates two particles of different colors. A contour is a boundary contour

if all of its edges are boundary edges and is a heterogeneous contour if all of its edges

are heterogeneous. See Figure 60b for an example of a configuration σ with particles

of two different colors and its boundary and heterogeneous contours.

For a configuration σ without holes, its boundary P can be completely described

by taking the union of all boundary edges in Ghex, which yields a boundary contour

in Ghex which we will call Phex. Recall from our analysis of the Markov chainMC for

compression that if |P| = k, then |Phex| = 2k + 6 (Lemma 8.3.3). For a configuration

with no holes and boundary P or boundary contour Phex, we can completely describe

the colors of its particles (up to swapping the colors) by giving all heterogeneous

edges. Because there are only two colors, the heterogeneous edges in Ghex form

non-intersecting contours because by parity every vertex of Ghex has either zero or two

incident heterogeneous edges. Each (maximal) heterogeneous contour either starts

and ends at different places on the boundary contour or is a closed loop; we call the

former a crossing contour and the latter an isolated contour. The configuration in

Figure 60b has three crossing contours and one isolated contour.

The crossing contours of a configuration σ separate the particles into simply

connected components whose boundary particles all have the same color. A face of

a configuration σ is a maximal simply connected subset F where all particles in F

incident on an edge of bd(F ) have the same color, which we call the color of F . For

any face F , its maximality implies all edges in bdint(F ) are heterogeneous in σ. A face

is outer if it includes at least on particle on P .
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10.4.2 Bridging Systems

Let (B, I) be a collection of contours in Ghex within a face F , where B contains

bridge contours connecting each isolated contour in set I (a subset of the isolated

contours within F ) to the boundary of F . For a given (B, I), we say particle P is

bridged in face F if there exists a path through particles of the same color as P to

bd(F ) or to a bridged isolated contour in I. A particle is unbridged if such a path

does not exist. We say that (B, I) is a δ-bridge system for face F if:

1. |B| ≤ |I|(1 − δ)/2δ, where |B| is the total number of edges in all the bridge

contours in B and |I| is the total number of edges in all the bridged isolated

contours in I.

2. The number of unbridged particles in F is ≤ δ|F |, where |F | is the number of

particles in F .

Note the δ in this definition is the same δ as in the set Sβ,δ that we are trying to

show has exponentially small weight. We now show how to find a δ-bridge system for

any face F .

Lemma 10.4.2. For any face F , there exists a δ-bridge system for F .

Proof. Figure 61 gives one example of a face F and a δ-bridge constructed for F .

W.l.o.g., suppose F is of color c1. If F has only one particle, then (∅, ∅) is a δ-bridge

system for F . We now suppose F has more than one particle and there exists a

δ-bridge system for all regions with a smaller number of particles than F . We will

iteratively construct a δ-bridge system (B, I) for F .

To start, let (B, I) = (∅, ∅), which satisfies |B| ≤ |I|(1− δ)/2δ. Let u(F ) be the

unbridged particles for (B, I) in F . If |u(F )| ≤ δ|F |, where |F | is the number of
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Figure 61. Bridging Systems. A face F and one potential δ-bridge (B, I) for F , where
B consists of thick black edges and I consists of all dashed edges. The boundary of F
in Ghex is shown with thin black lines.

particles in face F , then (B, I) is a valid δ-bridge system for F . If not, we give a

procedure for adding to (B, I) that reduces the number of unbridged particles in F and

maintains two invariants: (i) |B| ≤ |I|(1−δ)/2δ and (ii) for any I ∈ I not surrounded

by another contour in I, the face FI consisting of all particles inside I contains at

most δ|FI | unbridged particles. Both invariants are true for initial configuration (∅, ∅).

Repeating this process until u(F ) ≤ δ|F | gives a valid δ-bridge for F .

Suppose we are given a bridge system (B, I) for F that satisfies both invariants

but leaves u > δ|F | unbridged particles. Let Fext be the particles in F that are not

inside any bridged isolated contours in (B, I). We will consider contours V in Ghex

that stretch vertically across F , from one part of its boundary to another, consisting

of alternating down-left and down-right edges. We call such contours vertical contours.

We include in set VF all (infinite) vertical contours that contain at least one edge

inside Fext; we will only be interested in their intersection with Fext, which need not

be contiguous. For any V ∈ VF , let V ∩ Fext be all particles in Fext directly right

of V and let V ∩ u(Fext) be the unbridged ones. Because u(F ) > δ|F |, by applying
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Invariant (ii) we conclude that u(Fext) > δ|Fext|. It follows that there exists V ∈ VF

such that |V ∩ u(Fext)| > δ|V ∩ Fext|.

Any particle P ∈ V ∩u(Fext) must be surrounded by an unbridged isolated contour,

as otherwise it would have a monochromatic path to the boundary of F ; if there are

multiple isolated contours surrounding P , one must be the outermost, encircling all the

others. Enumerate all outermost isolated contours surrounding particles in u(Fext)∩V

as Ij for j = 1, . . . , k. Let Fj be the face surrounded by Ij, which is of color c2. By

our induction hypothesis, because |F | > |Fj| there exists a δ-bridge system (Bj, Ij)

for Fj. We add to bridge system (B, I) for F the set of bridges
⋃
j Bj and the set

of bridged isolated contours
⋃
j Ij. Furthermore, we add to B all the segments of V

that are left of bridged particles in V ∩ Fext, a set we call B0, and we add to I all Ij.

Because the number of particles that are newly bridged by this construction is at least

|u(F ) ∩ V|, we have reduced the number of unbridged particles in F . It only remains

to show that this new bridge system satisfies the necessary invariants.

To see that (B, I) satisfies Invariant (ii), note that the only new contours I ∈ I

not surrounded by other contours in I are the Ij. All particles that were bridged in

any FIj = Fj are now bridged in F , since both the boundary of Fj and the bridged

contours in Ij are now bridged contours in I. Because (Bj, Ij) is a valid δ-bridge

system for FIj = Fj, Fj contains at most δ|Fj| unbridged particles, as desired.

It remains to show that (B, I) satisfies Invariant (i). Because (Bj, Ij) is a δ-bridge

for Fj , |Bj| ≤ |Ij|(1− δ)/2δ for all j. Next, we see that
∑

j |Ij| ≥ 4 · |u(Fext) ∩ V|, as

the Ij collectively contain at least two contour edges left of and two contour edges

right of each particle in u(Fext) ∩ V. Because V satisfies |V ∩ u(Fext)| > δ|V ∩ Fext|,

then
∑

j |Ij| ≥ 4δ|V ∩Fext|. Bridge B0 added to B contains two contour edges for each

bridged particle in Fext ∩ V and at most a (1− δ)-fraction of the particles in Fext ∩ V
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are bridged, so |B0|/2 ≤ (1− δ)|V ∩ Fext|. Combining the previous two equations,

∑
j

|Ij| ≥ 4δ|V ∩ Fext| ≥ 4δ

(
1

2(1− δ)
|B0|

)
=

2δ

1− δ
|B0|

We conclude that the additions B0 and Bj to B and the additions Ij and Ij to I

satisfy:

|B0|+
k∑
j=1

|Bj| ≤
1− δ

2δ

k∑
j=1

|Ij|+
1− δ

2δ

k∑
j=1

|Ij| =
1− δ

2δ

k∑
j=1

(|Ij|+ |Ij|)

Thus, Invariant (i) is satisfied.

We have added to (B, I) while maintaining both invariants and reducing the

number of unbridged particles in F . We can continue this process until there are at

most δ|F | unbridged particles in F ; then, Invariant (i) implies (B, I) is a δ-bridge

system for F .

Lemma 10.4.3. For each σ ∈ ΩP with n particles, there exists a δ-bridge system

(B, I) for σ where B contains bridge contours connecting each isolated contour in set

I (a subset of σ’s isolated contours) to σ’s boundary contour or to a crossing contour,

such that:

• |B| ≤ |I|(1− δ)/2δ, and

• The number of unbridged particles in σ is at most δn.

Proof. The crossing contours of σ partition σ into faces. Construct a δ-bridge system

for each of these faces and take their union.

We now connect δ-bridges to configurations that are (β, δ)-separated.

Lemma 10.4.4. Let σ ∈ ΩP \ Sβ,δ and let (B, I) be the δ-bridge system for σ

constructed in Lemma 10.4.3. Let x be the total length of crossing contours in σ and

let y be the total length of bridged isolated contours in I. Then x+ y > β
√
n.

360



Proof. Let F be the set of outermost faces of σ, that is, those faces of σ that contain a

particle on σ’s perimeter. For each F ∈ F of color ci, if particle P ∈ F is surrounded

by b bridged isolated contours then put P in set R if and only if i + b ≡ 1(mod 2).

Because of how we have carefully defined R, inspection shows bdint(R) = x+ y. Using

the properties of δ-bridge system (B, I), one can show the density of particles of color

c1 is at least 1− δ in R and at most δ outside of R. If it were true that x+ y ≤ β
√
n,

then σ would be (β, δ)-separated, a contradiction as σ 6∈ Sβ,δ. Thus, it must hold that

x+ y > β
√
n.

10.4.3 Information Theoretic Argument for Separation

To show the set ΩP \ Sβ,δ of configurations with boundary contour P that are not

(β, δ)-separated has exponentially small weight under distribution πP , we will define a

map f = f3 ◦ f2 ◦ f1 from this set into ΩP and examine how this map changes weights

of configurations. If the number of particles of one color is less than or equal to δn,

then all configurations in ΩP are (β, δ)-separated with R = ∅ or R = ∅, so we assume

each color class has more than δn particles.

For σ ∈ ΩP \ Sβ,δ, let (B, I) be the δ-bridge system constructed for σ according to

Lemma 10.4.3. Let f1(σ) be the (unique) particle configuration that has the same

boundary contour P as σ and particle P that has color ci in σ and is surrounded by b

bridged isolated contours in I is given color c(i+b)(mod 2) in f1(σ). We let Im(f1(ΩP \

Sβ,δ)) be the set of configurations that f1 maps to.

We define f2 with domain Im(f1(ΩP \Sβ,δ)) to complement all faces of color c2 that

touch the boundary of the configuration (i.e. that include particles on P). The next
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lemmas explore the composition of these maps f1 and f2 as applied to configurations

σ ∈ ΩP \ Sβ,δ.

Lemma 10.4.5. For any σ ∈ ΩP \Sβ,δ, f2(f1(σ)) has boundary contour P, all particles

adjacent to P have color c1, and there are at most δn particles of color c2.

Proof. The first two claims follow easily from the definitions of f1 and f2. To see that

the last claim holds, we note that any particles of color c2 in f2(f1(σ)) must have been

unbridged by the bridge system (B, I) for σ, and there are at most δn such unbridged

particles by the definition of a δ-bridge system.

Lemma 10.4.6. Let τ ∈ Im((f2 ◦ f1)(ΩP \ Sβ,δ)). The number of configurations

σ ∈ ΩP \ Sβ,δ with crossing contours of total length x and bridged isolated contours

(bridged by a bridging system (B, I) from Lemma 10.4.3) of total length y that have

f2(f1(σ)) = τ is, for p = |P| the perimeter of any configuration in ΩP , at most

3p4(x+y)( 1+3δ
4δ ).

Proof. Any configuration σ ∈ ΩP \ Sβ,δ has boundary P of length p and boundary

contour Phex of length 2p+ 6. One can verify from first principles that Phex makes p

left turns and p + 6 right turns when traversed clockwise. Any bridges or crossing

contours that meet P do so at distinct left turns of P . We can mark each left turn of

P as the start of a bridge, the start of a crossing contour, or neither; the number of

ways to do so is 3p.

Next, we can trace out all crossing contours of σ, beginning at the starting points

marked along P. In tracing these contours, which do not intersect, at each vertex

in Ghex we make either a left turn or a right turn. Additionally, each vertex along

these contours can either be the beginning of a bridge in B, branching in the opposite
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direction from the contour, or not. Because x is the total length of σ’s crossing

contours, the number of valid ways to do this is at most 2x × 2x = 4x.

Finally, we trace out the bridges and isolated contours of each face of σ in a depth-

first way, beginning at the starting points marked along P and the crossing contours.

Bridges as constructed in Lemma 10.4.3 always move in the vertical direction, so the

direction of the next edge of a bridge, if it exists, is known; at each step we only

need to know if the bridge continues or if a bridged isolated contour begins. When

tracing out isolated contours, just like with heterogeneous crossing contours, there

are four choices for the next step: the direction in which the contour continues (two

choices) and whether or not a bridge branches off (two choices). Isolated contours

end when they reach an already-constructed bridge, and bridges end when they reach

a crossing contour, an already-constructed isolated contour, or P. The number of

possibilities for this depth-first traversal of the bridges and isolated contours of σ is at

most 2|B|4|I| ≤ 2
1−δ
2δ

y4y.

Altogether, any configuration σ ∈ ΩP \ Sβ,δ with crossing contours of total length

x and bridged isolated contours of total length y that have f2(f1(σ)) = τ can be

uniquely identified by marking P , tracing crossing contours, and tracing bridges and

bridged isolated contours. The number of valid ways to do this is at most:

3p4x2
1−δ
2δ

y4y = 3p4x+y+ 1−δ
4δ

y ≤ 3p4(x+y)( 1+3δ
4δ )

This is an upper bound on the number of preimages of τ under f2 ◦ f1 with correct x

and y.

Any τ ∈ Im((f2 ◦ f1)(ΩP \ Sβ,δ) will not be in ΩP because it has too few particles

of color c2. We will define f3 such that f3(τ) is similar to τ and has the correct number

of particles of each color, but we first need the following lemma. Let Ωc1
P be the set
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of configurations with all particles on boundary P having color c1, and recall that

wP(σ) = πP(σ)/ZP = γ−h(σ).

Lemma 10.4.7. For a configuration σ ∈ Ωc1
P , it is possible to flip the colors of some

particles to yield a configuration g(σ) ∈ ΩP with n/2 particles of each color such that

γ−|P|w(σ) ≤ w(g(σ)). Furthermore, for any τ ∈ ΩP , there are at most n different

σ ∈ Ωc1
P such that f(σ) = τ .

Proof. If σ ∈ ΩP , let g(σ) = σ and the lemma holds. For σ ∈ Ωc1
P \ ΩP , label the

particles of σ in order from left to right and, within each column, from top to bottom.

Flip the colors of particles in this order, until there are the correct number of particles

of each color. If σ has more than n/2 particles of color ci, then after flipping the

colors of all particles it has fewer than n/2 particles of color ci. At some intermediate

step, there must have been exactly n/2 particles of color ci and the configuration is in

ΩP , as desired. We let the first such configuration be g(σ).

Because we flip all particles in one column before flipping any particles in the

next column, all heterogeneous edges introduced by this process are in two adjacent

columns. If h is the total height of σ — the vertical difference between its lowest and

highest particles — then the number of adjacencies between particles whose color

was flipped and particles whose color was not flipped is at most 2h. This is an upper

bound on the number of heterogeneous edges introduced by the flips. The height

of a configuration is less than half its perimeter, so we conclude the number of new

heterogeneous edges is at most 2h(σ) ≤ p(σ) = |P|. Thus, wP(σ) ≤ wP(g(σ)).

Given τ ∈ ΩP and a number k ∈ {0, 1, . . . , n − 1}, complementing the colors of

the first k elements (according to the canonical ordering from above) of τ yields a

configuration that maps to τ under g. These n configurations, which may or may not

be in Ωc1
P , are the only ones that could map to τ under g.
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Since Im((f2 ◦ f1)(ΩP \ Sβ,δ)) ⊆ Ωc1
P , Lemma 10.4.7 immediately implies the

following.

Lemma 10.4.8. For a configuration τ ∈ Im((f2 ◦ f1)(ΩP \ Sβ,δ)), it is possible

to flip the colors of some particles to yield a configuration f3(τ) with the correct

number of particles of each color such that at most |P| additional heterogeneous

edges are introduced. Furthermore, for any ν ∈ ΩP , there are at most n different

τ ∈ Im((f2 ◦ f1)(ΩP \ Sβ,δ)) such that f3(τ) = ν.

Let f = f3 ◦ f2 ◦ f1 be a map from ΩP \Sβ,δ to ΩP . For σ ∈ ΩP \Sβ,δ, let x be the

total length of crossing heterogeneous contours in σ and y be the total length of all

isolated contours in σ that are bridged when constructing a δ-bridge system according

to the process of Lemma 10.4.2.

Lemma 10.4.9. For σ ∈ ΩP \ Sβ,δ where P is α-compressed, h(σ) − h(f(σ)) ≥

(x+ y)
(

1− 2α
√

3
β

)
.

Proof. Configuration f1(σ) has y fewer heterogeneous edges than σ, and configuration

f2(f1(σ)) has x fewer heterogeneous edges than f1(σ). When going from f2(f1(σ)) to

f(σ) = f3(f2(f1(σ))), at most 2α
√

3
√
n heterogeneous edges are added (Lemma 10.4.8).

Using Lemma 10.4.4, we conclude that:

h(σ)− h(f(σ)) ≥ x+ y − |P| ≥ x+ y − 2α
√

3
√
n

≥ x+ y − 2α
√

3

(
x+ y

β

)
≥ (x+ y)

(
1− 2α

√
3

β

)
This proves the claim.

We are now ready to prove our main result. Recall that for a fixed boundary

P, the probability distribution πP is over colored particle configurations with this

boundary where πP(σ) is proportional to γ−h(σ).
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Theorem 10.4.10. Let P be the boundary of n particles with |P| ≤ αpmin. For any

β > 2
√

3α and any δ < 1/2, if γ is large enough that

3
2α
√

3
β 4

1+3δ
4δ γ−1+ 2α

√
3

β < 1,

then for sufficiently large n the probability that a configuration drawn from πP is not

(β, δ)-separated is exponentially small:

πP(ΩP \ Sβ,δ) < ζ
√
n

where ζ < 1.

Proof. For any ν ∈ ΩP , we count the number of configurations in ΩP \ Sβ,δ such

that f(σ) = ν. By Lemma 10.4.6, the number of such preimages with crossing

contours of total length x and bridged isolated contours of total length y is at most

n3p4(x+y)(1+3δ)/4δ, where p = |P|. As p < αpmin < 2α
√

3
√
n, by Lemma 10.4.4 we

have p < 2α
√

3(x + y)/β. We can rewrite the number of preimages in f−1(ν) with

given values of x and y as:

n3p4(x+y)( 1+3δ
4δ ) < n32α

√
3(x+y

β )4(x+y)( 1+3δ
4δ ) = n

(
3

2α
√

3
β 4

1+3δ
4δ

)x+y

We now sum over all possible values of x + y. For each possible value of x + y,

there are at most x+ y + 1 ways in which each of x and y could have contributed to

this sum. By Lemma 10.4.4, x+ y > β
√
n, and because the edges counted in x+ y

are a subset of all edges in the configuration, x+ y < 3n. We conclude, for z = x+ y,

|f−1(ν)| ≤ n

3n∑
z=dβ

√
ne

(z + 1)
(

3
2α
√

3
β 4

1+3δ
4δ

)z
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Finally, we see that for any ν ∈ ΩP , using Lemma 10.4.9,∑
σ∈f−1(ν) πP(σ)

πP(ν)
=

∑
σ∈f−1(ν)

(
1

γ

)h(σ)−h(f(σ))

≤ n
3n∑

z=dβ
√
ne

(z + 1)

(
1

γ

)z(1− 2α
√

3
β

)

≤ n

3n∑
z=dβ

√
ne

(z + 1)
(

3
2α
√

3
β 4

1+3δ
4δ γ−1+ 2α

√
3

β

)z
This sum is exponentially small whenever the number of particles n is sufficiently large

and the base of the exponent satisfies 3
2α
√

3
β 4

1+3δ
4δ γ−1+ 2α

√
3

β < 1. Whenever β > 2α
√

3,

δ < 1/2, and γ is large enough this is true, so we can find a constant ζ < 1 such that

for sufficiently large n, ∑
σ∈f−1(ν) πP(σ)

πP(ν)
< ζdβ

√
ne < ζ

√
n

Because each σ ∈ ΩP \ Sβ,δ has some image f(σ) ∈ ΩP , we use this fact to see that:

πP(ΩP \ Sβ,δ) =
∑

σ∈ΩP\Sβ,δ

πP(σ) ≤
∑
ν∈ΩP

∑
σ∈f−1(ν)

πP(σ) ≤
∑
ν∈ΩP

πP(ν)ζ
√
n = ζ

√
n

We conclude that when n is sufficiently large, β > 2α
√

3, δ < 1/2, and γ is large

enough, the probability a particle configuration drawn from πP is not (β, δ)-separated

is exponentially small.

We now extend this result about the occurrence of separation when fixing an α-

compressed boundary P to a statement about the occurrence of separation among all

α-compressed boundaries. Let πα be the probability distribution over all configurations

that are α-compressed obtained by restricting π to this set, so that πα(σ) is proportional

to (λγ)−p(σ)γ−h(σ). We obtain the following result.
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Theorem 10.4.11. For any α > 1, β > 2
√

3α, and δ < 1/2, if γ is large enough that

3
2α
√

3
β 4

1+3δ
4δ γ−1+ 2α

√
3

β < 1

then for n sufficiently large the probability that a configuration drawn from πα is not

(β, δ)-separated is exponentially small:

πα(Ωα \ Sβ,δ) < ζ
√
n

where ζ < 1.

Proof. This result follows directly from Theorem 10.4.10. Let ζ < 1 be a constant

such that for any P with |P| < αpmin, πP(ΩP \ Sβ,δ) < ζ
√
n. We then see that:

πα(Ωα \ Sβ,δ) =
∑

P:|P|<αpmin

πα(ΩP \ Sβ,δ)

=
∑

P:|P|<αpmin

πα(ΩP)πP(ΩP \ Sβ,δ)

≤
∑

P:|P|<αpmin

πα(ΩP)ζ
√
n = ζ

√
n.

This proves the claim.

Corollary 10.4.12. For Markov chainMS with parameters λ > 1 and γ > 45/4 ≈ 5.66

and any α > 1, there exist constants β and δ such that for sufficiently large n,

MS provably accomplishes (β, δ)-separation among α-compressed configurations at

stationarity with high probability.

Proof. Among α-compressed configurations, Theorem 10.4.11 shows that if β, δ, and

γ satisfy 3
2α
√

3
β 4

1+3δ
4δ γ−1+ 2α

√
3

β < 1, then the probability that a configuration sampled

from πα is not (β, δ)-separated is at most ζ
√
n for a constant ζ < 1. For γ > 45/4,

one can always find a δ < 1/2 such that γ > 4(1+3δ)/4δ. For α > 1, one can always
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find a constant β > 2
√

3α such that the exponent 2α
√

3/β is sufficiently close to zero

that the above expression is less than one, as desired. We conclude that when n is

sufficiently large, the probability (β, δ)-separation occurs at stationarity is at least

1− ζ
√
n for some ζ < 1.

This concludes our proofs thatMS accomplishes separation.

10.5 Proof of Integration

We next prove that, among configurations with small perimeter, then for γ close

to 1 there exist β > 0 and δ ∈ (0, 1/2) such that (β, δ)-separation does not occur at

stationarity when n is sufficiently large.

Recall from Definition 10.4.1 that a two-color configuration is (β, δ)-separated if

there is a set R of particles with small boundary (i.e., |bdint(R)| < β
√
n) such that the

density of particles of color c1 is at least 1− δ in R and at most δ outside of R. In this

section, we assume for the sake of simplicity that there are n total particles with n/2

of each color, though we expect our results to generalize with little effort whenever

there are a constant fraction of particles of each color. Note that if there is not a

constant fraction of particles of each color, the configuration is always (β, δ)-separated

for any β and δ by treating the set of all particles as R.

Consider any configuration σ that is α-compressed and (β, δ)-separated, and let

R be a set witnessing this separation; i.e., |bdint(R)| < β
√
n, at most a δ-fraction of

particles in R are color c2, and at most a δ-fraction of the particles not in R are color

c1. Recall R is all particles not in R. We will use the following lemma bounding the

size of R.
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Lemma 10.5.1. For a set R witnessing (β, δ)-separation in a configuration σ of n

particles with n/2 of each color,

1− 2δ

1− δ
· n

2
< |R| ≤ 1

1− δ
· n

2

Proof. Suppose |R| > n
2−2δ

. By the definition of (β, δ)-separation, at most a δ-fraction

of these particles can be of color c2, which means at most δn/(2− 2δ) of them. The

remaining particles of R must be of color c1, so the number of particles of color c1 in

R satisfies

|R| − δn

2− 2δ
>

n

2− 2δ
− δn

2− 2δ
=

(1− δ)n
2(1− δ)

=
n

2

So R has strictly more than n/2 particles of color c1, contradicting the fact that

there are only n/2 particles of color c1 in the entire configuration. We conclude that

|R| ≤ 1
1−δ ·

n
2
. By the symmetry between R and R in the definition of separation,

|R| ≤ 1
1−δ ·

n
2
and thus:

|R| ≥ n− 1

1− δ
· n

2
=

1− 2δ

1− δ
· n

2

Recall that bdout(R) is the set of edges of G∆ with one endpoint in R and the

other endpoint unoccupied and bd(R) = bdout(R) ∪ bdint(R). Furthermore, because

we assume our configuration of interest is α-compressed,

|bd(R)| = |bdout(R)|+ |bdint(R)| ≤ αpmin + β
√
n ≤ (2

√
3α + β)

√
n,

which holds since pmin ≤ 2
√

3
√
n by Lemma 10.1.2.

To show that (β, δ)-separation does not occur, we will define polynomially many

events such that if (β, δ)-separation occurs then at least one of these events occurs; we

then show each of these events has a superpolynomially small probability of occurring.
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Figure 62. Diamond Partition of G∆. In this example, the diamonds have side length
6 and each contain 62 = 36 total vertices.

To this end, we consider a partition of the lattice G∆ into diamonds with side length

nc for some c < 1/4, where c is chosen so that nc is an integer; see Figure 62 for an

example of a partition of G∆ into diamonds with side length six. Each diamond in

this partition contains n2c vertices of G∆. The events we consider will be that one

diamond in the partition is fully occupied by particles and at most δ′ < 1/2 of these

particles are of color c2.

Lemma 10.5.2. Let σ be an α-compressed configuration. If σ is (β, δ)-separated, then

for any δ′ > δ/(1− 2δ), there exists a diamond in our partition that is fully occupied

by particles and has at most δ′n2c particles of color c2.

Proof. Let R witness the (β, δ)-separation of σ. Because each diamond in our partition

contains n2c vertices of G∆, by Lemma 10.5.1 the total number of diamonds intersecting

R is at least |R|/n2c ≥ n1−2c(1−2δ)
1−δ . Meanwhile, we see that at most |bd(R)| ≤

(β + 2
√

3α)
√
n diamonds intersect the boundary of R. The number of diamonds in

our partition comprised entirely of particles in R (and thus fully occupied by particles)
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must be at least n1−2c(1− 2δ)/(2− 2δ)− (β + 2
√

3α)
√
n. Suppose to the contrary

that each of these diamonds has at least δ′ > δ/(1− 2δ) particles of color c2. Then

the total number n2 of particles of color c2 in R would be at least:

δ′n2c

(
(1− 2δ)n1−2c

2− 2δ
− (β + 2

√
3α)
√
n

)
=

(
δ′

1− 2δ

2− 2δ
n− δ′(2

√
3α + β)n1/2+2c

)
Provided c < 1/4, asymptotically the first term above dominates and for n sufficiency

large we have that:

n2 >
δ′(1− 2δ)

2− 2δ
n =

(
δ

1− 2δ

)
1− 2δ

2− 2δ
n = δ

(
1

2− 2δ
n

)
≥ δ|R|

This shows that greater than a δ-fraction of the particles in R have color c2,

contradicting that σ is (β, δ)-separated with cluster R. We conclude that there must

exist a diamond in the partition that is fully occupied by particles in R with at most

a δ′ fraction of particles of color c2.

We will be interested in values of δ that give δ′ < 1/2, that is, in δ < 1/4. Let

P be the boundary of an α-compressed configuration. We examine the set ΩP of

configurations with this boundary. Recall πP is the stationary distribution conditioned

on boundary P. For a coloring σ of the particles inside P, we say that the weight

of this configuration is wP(σ) = γ−h(σ). We can then write πP(σ) = wP (σ)
ZP

, where

ZP =
∑

σ∈ΩP
wP(σ).

For any nc×nc diamond D with every vertex on or inside P occupied by a particle,

we consider the configurations σ ∈ ΩP that have fewer than a δ′-fraction of the

particles in D with color c2. We want to show that the set of all such configurations

has exponentially small weight at stationarity.

For such σ, we will break the term wP(σ) up according to contributions within D,

contributions between D and D, and contributions within D, where D is the set of all

372



particles on or inside P not in D. There are at most 8nc + 6 edges between D and D,

so these edges can contribute at most max{1, γ−8nc−6} and at least min{1, γ−8nc−6}

to the weight of a configuration, where the values achieved by these maximum and

minimums depend on whether γ > 1 or γ < 1. Instead of looking at contributions

from D or D for particular configurations, we look at the sum of contributions within

these regions over many possible configurations.

For any set Λ of vertices of G∆, let Ω`
Λ be all colorings of vertices in Λ with exactly

` particles assigned color c2; we will consider Λ = D and Λ = D. For σ ∈ Ω`
Λ, we

say that hΛ(σ) is the number of edges of G∆ where both endpoints are in Λ and are

assigned different colors in σ. The corresponding partition functions are:

Z`
Λ =

∑
σ∈Ω`Λ

γ−hΛ(σ)

The following lemma will play an important role. Note that Λ need not be

connected or hole-free.

Lemma 10.5.3. For any Λ ⊆ V (G∆),

Z`
Λ

Z
|Λ|/2
Λ

≤ max{γ6(`−|Λ|/2), γ−6(|Λ|/2−`)}

Proof. We first note that, because of the symmetry between colors, Z`
Λ = Z

|Λ|−`
Λ .

W.l.o.g., we assume ` ≥ |Λ|/2. For any σ ∈ Ω`
Λ, we can map it to a configuration in

Ω
|Λ|/2
Λ by choosing `− |Λ|/2 of the ` particles of color c2 and changing their color to c1.

There are
(

`
`−|Λ|/2

)
way to do this, and doing so changes the number of heterogeneous

edges within Λ by at most 6 (`− |Λ|/2). When doing this, each configuration τ ∈ Ω
|Λ|/2
Λ

is obtained from
( |Λ|/2
`−|Λ|/2

)
different σ ∈ Ω`

Λ. This implies:

Z`
Λ ·
(

`

`− |Λ|/2

)
·min{γ6(`−|Λ|/2), γ−6(`−|Λ|/2)} ≤ Z

|Λ|/2
Λ ·

(
|Λ|/2

`− |Λ|/2

)
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Because ` ≥ |Λ|/2, we have that
(

`
`−|Λ|/2

)
≥
( |Λ|/2
`−|Λ|/2

)
. Rearranging terms, we

obtain the desired result.

Lemma 10.5.4. Let δ′ < 1/2 and γ be close enough to one such that there exists an

ε ∈ (δ′, 1/2) where:(
ε

1− ε

)(ε−δ′)/11

< γ <

(
1− ε
ε

)(ε−δ′)/11

(∗)

Let P be the boundary of an α-compressed configuration with n particles and let D be

an nc × nc diamond inside P. The probability that a configuration drawn from πP has

at most a δ′-fraction of particles with color c2 in D is at most ζn2c for some ζ < 1,

provided n is sufficiently large.

Proof. We first note that ZP satisfies:

ZP ≥ Z
n2c/2
D Z

(n−n2c)/2

D min{γ−8nc−6, 1}

For any k ≤ δ′n2c, let SkD ⊆ ΩP be the set of configurations with exactly k particles of

color c2 in D. Then,

π(SkD) ≤
Zk
DZ

n/2−k
D max{γ−8nc−6, 1}

Z
n2c/2
D Z

(n−n2c)/2

D min{γ−8nc−6, 1}
≤ max{γ−8nc−6, γ8nc+6} Zk

D

Z
n2c/2
D

We note that there are fewer than 3n2c edges within D, so(
n2c

k

)
min{γ−3n2c

, 1} ≤ Zk
D ≤

(
n2c

k

)
max{γ−3n2c

, 1}

This yields:

Zk
D

Z
n2c/2
D

≤
(
n2c

k

)
max{γ−3n2c

, 1}(
n2c

n2c/2

)
min{γ−3n2c , 1}

= max{γ−3n2c

, γ3n2c}
n2c/2∏
i=k+1

i

n2c − i+ 1
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Let ε ∈ (δ′, 1/2) be a constant satisfying (∗); by supposition we know such a ε exists.

Because k < δ′n2c and each term in the product above is less than one, we see that

Zk
D

Z
n2c/2
D

≤ max{γ−3n2c

, γ3n2c}
εn2c∏

i=δ′n2c

i

n2c − i+ 1

≤ max{γ−3n2c

, γ3n2c}
(

ε

1− ε

)(ε−δ′)n2c

Therefore,

π(SkD) ≤ max{γ−8nc−6, γ8nc+6} Zk
D

Z
n2c/2
D

≤ max{γ−8nc−6, γ8nc+6}max{γ−3n2c

, γ3n2c}
(

ε

1− ε

)(ε−δ′)n2c

≤ max{γ−6, γ6}

(
max{γ−11, γ11}

(
ε

1− ε

)ε−δ′)n2c

By supposition, the term in parentheses above is strictly less than one, meaning that

for sufficiently large n we have that π(SkD) ≤ (ζk)
n2c for some ζk < 1. We now see that

the probability that D has at most a δ′-fraction of particles with color c2 is:

π

(
δ′n2c⋃
k=0

SkD

)
≤

δ′n2c∑
k=0

(ζk)
n2c ≤ δ′n2c max

k
(ζk)

n2c

.

For sufficiently large n, this is at most ζn2c for some ζ < 1. This concludes our

proof.

We could alternatively have chosen any ε ∈ (δ′, 1/2) and instead obtained a range

of γ for which the same result holds. Instead of finding an optimal value of ε as a

function of δ′ to obtain the largest range, we note that this optimum value is achieved

near δ′/2 + 1/4, halfway between δ′ and 1/2. Making this assumption allows us to get

some concrete bounds on γ and δ′, as we do in the corollaries below. First, we show

this result implies the absence of separation.
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Theorem 10.5.5. Let P be any α-compressed boundary. Consider any δ < 1/4 and

γ close enough to one such that there exists an ε ∈ (δ/(1− 2δ), 1/2) where:(
ε

1− ε

)(ε−δ/(1−2δ))/11

< γ <

(
1− ε
ε

)(ε−δ/(1−2δ))/11

(∗)

For any β > 0, the probability that a configuration sampled from πP is (β, δ)-separated

is at most ζ
√
n
for some constant ζ < 1, provided n is sufficiently large.

Proof. Since δ < 1/4, it is possible to choose a δ′ < δ/(1− 2δ) satisfying δ′ < 1/2 and:(
ε

1− ε

)(ε−δ′)/11

< γ <

(
1− ε
ε

)(ε−δ′)/11

which is possible because (∗) is satisfied with strict inequalities.

If a configuration σ ∈ ΩP is (β, δ)-separated, then by Lemma 10.5.2 for the δ′ we

have chosen there is an nc × nc diamond D that contains at most δ′n2c particles of

color c2, where c < 1/4 such that nc is an integer (for larger and larger n we can pick c

closer and closer to 1/4). The interior of P can be covered by at most n diamonds, so

by a union bound and Lemma 10.5.4 the probability that σ is (β, δ)-separated is less

than nζn2c , for a constant ζ < 1 and sufficiently large n. Therefore, exists a constant

ζ < 1 such that nζn2c
< ζ

n, proving the theorem.

We wish to understand the range of γ for which there exists an ε satisfying the

(∗) equation in Theorem 10.5.5; we focus on the upper bound on γ, as the lower

bound is its reciprocal. If γ <
(

1−ε
ε

)ε/11, then we can always choose a δ small enough

so that this equation is satisfied. Maximizing this expression exactly with respect

to ε is challenging to do exactly, so we note that numerically this is achieved when

ε ≈ 0.217812, corresponding to an upper bound on γ of about 1.02564, which for

simplicity we round down to the more explicit bound of γ < 81/79 ≈ 1.02532.
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Corollary 10.5.6. For Markov chain MS with parameters λ > 1 and γ ∈

(79/81, 81/79) and any α > 1, there exist constants β and δ such that for sufficiently

large n,MS does not accomplish (β, δ)-separation among α-compressed configurations

at stationarity with high probability.

Proof. Because γ < 81/79, then for ε = 0.22 it holds that γ <
(

1−ε
ε

)ε/11. Similarly, as

γ > 79/81, for the same ε it holds that γ >
(

ε
1−ε

)ε/11. It is always possible to find

a δ small enough so that (∗) of Theorem 10.5.5 holds. Thus, among α-compressed

configurations, Theorem 10.5.5 guarantees that for any β > 0, the probability that

the particles are not (β, δ)-separated is at least 1 − ζ
√
n, where ζ < 1 is a constant

and n is sufficiently large.
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Chapter 11

APPLICATIONS TO SWARM ROBOTICS AND GRANULAR ACTIVE MATTER

Swarm robotics and active matter physics provide powerful tools for the study

and control of ensembles driven by internal sources. At the macroscale, controlling

swarms typically utilizes significant memory, processing power, and coordination

unavailable at the microscale (e.g., for colloidal robots that could be useful for fighting

disease, fabricating intelligent textiles, and designing nanocomputers). In this chapter,

we focus on a two-pronged approach to “programming” ensembles across scales by

leveraging the physics of interactions : we pair theoretical, algorithmic abstractions of

self-organizing particle systems with experimental robot systems of active granular

matter that intentionally lack digital computation and communication, using minimal

(or no) sensing and control to test theoretical predictions. The distributed, stochastic

algorithms of Chapters 8–10 form the theoretical foundations of this approach. We first

investigate an analogy between compression (Chapter 8) and a phototaxing behavior

— i.e., directed locomotion towards or away from a light source — that arises in an

ensemble of analog “smart, active particles”, or supersmarticles (Section 11.1, [178]).

We then establish a tight feedback loop between the theoretical predictions of separa-

tion and integration (Chapter 10) and the robot ensemble behaviors of aggregation,

dispersion, and collective transport (Section 11.2, [128]). These results were obtained

in collaboration with the active matter physics and robotics research group of Daniel

I. Goldman at the Georgia Institute of Technology; this dissertation will primarily

emphasize the algorithmic contributions.
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11.1 Phototactic Supersmarticles

We investigate how a system of active granular matter can achieve directed locomo-

tion, where the interactions of individual particles cause the system to move together

as a collective in a desired direction. Specifically, we consider ensembles of particles

that are individually incapable of locomotion. When constrained to remain in close

proximity to other particles, we show that the ensemble can generate collective motion.

Moreover, we show how external stimuli in the form of a light source introduce asym-

metries in particle activity levels, yielding collective directed displacement towards or

away from the light — a behavior known as phototaxing.

We first study phototaxing in an experimental testbed of “smart, active particles”

(or smarticles) developed by the Goldman research group. Each smarticle is a small,

three-link, planar robot that can sense the presence of light but is incapable of

individual rotation or displacement. We refer to a collection of smarticles enclosed by

an unanchored rigid ring as a supersmarticle. This “robot made of robots” is capable

of behaviors more sophisticated than that of any individual smarticle; phototaxing is

one such behavior, as we demonstrate in experiments (Section 11.1.1). Extensions of

the present work on phototaxing in supersmarticles have employed a control theoretic

and reinforcement learning approach [177]. Recent work has used supersmarticles a

model testbed for investigating rattling, a unifying framework for characterizing and

controlling emergent self-organization in complex systems [43].

Phototaxing in supersmarticles is achieved by individual smarticles becoming

inactive when they sense light. We posit that these inactive smarticles can be

approximated as an extension of the boundary whose collision model is softer than

that of the rigid ring. This is consistent with studies of randomly diffusing self-
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propelled particles enclosed in a boundary that is partitioned into two sections, one

with a softer potential and the other with a more rigid potential [118, 182]. In

simulations, it was shown that the pressure applied by the particles’ collisions with

the softer boundary is larger than that of the collisions with the more rigid boundary.

We utilize this phenomena emerging from physical interactions in our experiments to

achieve directed locomotion in our ensembles of individually non-motile robots.

To characterize phototaxing behaviors from a theoretical perspective, we utilize

our results on compression, where a system of self-actuating computational particles

gathers together as tightly as possible (Chapter 8, [32]). Remarkably, phototaxing can

be achieved by just one subtle modification to the compression algorithm: particles

change their likelihood of activating when they sense light. In Section 11.1.2, we prove

that phototaxing occurs for systems of two and three particles. We then complement

these rigorous results with simulations for much larger systems that demonstrate the

same behavior.

Both the physical and theoretical systems we consider have three key properties: (i)

individual particles move regularly with no sense of direction, (ii) there is a constraint

ensuring particles remain in close proximity to each other, and (iii) particles’ activity

levels change in response to light. In both systems, these basic properties suffice to

produce phototaxing. Perhaps the most surprising result is that this direction motion

towards (or away from) the light source is achieved without all particles knowing

where the light source is; the occlusion of light by other particles suffices for the system

to move accordingly, using strictly local interactions.
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(a)
(b)

Figure 63. Smarticles and Supersmarticle Collectives. (a) An individual smarticle from
the front (top) and back (bottom). (b) A supersmarticle composed of five individual
smarticles.

11.1.1 Supersmarticle Design and Experimental Results

Each smarticle is a small (14 × 2.5 × 3 cm), three-link, planar robot with two

revolute joints where only the center link is in contact with the ground (Figure 63a).

A smarticle can change its shape in place by changing the angle of its outer links (or

“arms”), but cannot rotate or displace individually. Smarticles can be programmed

with predefined, shape changes in their joint-angle space; we call a closed, periodic

trajectory in joint-angle space a gait. A supersmarticle is a collection of smarticles

enclosed in an unanchored, rigid ring (Figure 63b). Details of the smarticle hardware

and design can be found in [178].

Each smarticle individually performs one of two behaviors: one where the smarticle

is active, changing its shape according to the square gait shown in Figure 64, and

another where the smarticle is inactive, holding its three links fixed and parallel to
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Figure 64. The Smarticle Square Gait. Left: The configuration space of a single
smarticle defined by the angles α1 and α2 between the outer and inner links. Right:
The square gait used in the phototaxing experiments.

each other. A smarticle persists in the active state until either of its photoresistors

(found on the front and back of the smarticle) detect light above a fixed threshold. It

then transitions to the inactive state, where it persists until the light sensed by both

of its photoresistors once again drops below the threshold, allowing it to transition

back to the active state.

Given the light sensor locations on the smarticles’ bodies and the geometry of the

planar experimental setup, typically only one smarticle is inactive at a time. The

inactive smarticle occludes light from reaching other smarticles behind it, keeping

their photoresistors below the threshold necessary to become inactive. This occlusion

effectively produces a light gradient across the supersmarticle which provides a decen-

tralized, stigmergic communication method. Each smarticle’s behavior is a response

to its local environment, which in turn affects the local environment of its neighbors.

For each experiment, we placed the supersmarticle at the center of a 60× 60 cm

level test plate with its composing smarticles randomly oriented. All experiments

were performed in a dark room so that, by default, smarticles remain in the active
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(a) (b)

(c) (d)

Figure 65. Supersmarticle Trajectories. The top row shows raw trajectories of the
supersmarticle’s center of geometry for (a) unbiased and (b) light-biased motion. Each
colored trajectory represents a separate experimental trial beginning at (0, 0) and
ending at a red circle. The bottom row shows the initial and final positions of a
superset of trials shown in the top row for (c) unbiased and (d) light-biased motion.
In all plots, trials where the light was not directed in the +x direction were rotated
for the sake of comparison, as indicated by the flashlight legends.

state. In control experiments, no light source is introduced and all smarticles remain

active; in phototaxing experiments, a light source is placed at the center of one

of the test plate’s edges and is continuously directed towards the nearest exposed

photoresistor, rendering a single smarticle inactive. An experiment run is ended when

the supersmarticle translates to an edge of the test plate or after 10 minutes, whichever

happens first. The phototaxing experiments were repeated with the light source at

each of the four possible locations to avoid any systematic error.
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Diffusive behavior was observed in both the control (Figures 65a and 65c) and

phototaxing experiments (Figures 65b and 65d), but the presence of inactive smarticles

near the light source introduces a biased drift towards the light. Supersmarticles

in the phototaxing experiments consistently diffused in the direction of the light

source with an average success rate of 82.3± 6.0% across all trials. We can further

examine the supersmarticles’ locomotion as mean-squared displacement over time

〈r2(t)〉 = vtα, where v is the collective’s characteristic speed and α characterizes the

movement as either subdiffusive (α < 1), diffusive (α = 1), or superdiffusive (α > 1).

By fitting a line to the log-log plot of our supersmarticles’ mean-squared displacement

curves, we find that the control experiments have a mean slope of α = 0.99 m2/s

and the phototaxing experiments have a mean slope of α = 1.04± 0.02 m2/s. This

indicates that the presence of a light source shifts the supersmarticles’ locomotion

from diffusive to superdiffusive, where the active transport phenomenon causes the

system to propagate towards the light source.

11.1.2 A Distributed, Stochastic Algorithm for Phototaxing

To complement the physical experiments, we give a local, distributed algorithm for

phototaxing under the geometric amoebot model. We first prove that this algorithm

causes directed locomotion in response to light for systems of two and three amoebots

and then give simulations that demonstrate this same behavior for larger systems.

We assume that the system initially forms a connected configuration of contracted

amoebots. We model light as a collection of point sources that each broadcast light

along lattice lines in the same direction (see Figure 66a). The first amoebot in each

lattice line senses the light, while all others behind it do not. We assume these light
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Figure 66. Modeling Phototaxing in the Amoebot Model. (a) An amoebot system
configuration (gray dots) with point sources broadcasting light upwards along the
lattice edges. Amoebots outlined in black can sense the light while all others are
occluded. (b)–(c) The two types of configurations for systems of two amoebots
analyzed in Theorem 11.1.1 and the probabilities of each amoebot’s movement if it is
activated next.

sources are positioned sufficiently far from the system so as to not interfere with

its motion. To quantify the amoebot system’s directed locomotion, we define the

height of a amoebot system to be the y-coordinate of its center of mass, where each

edge of G∆ is assumed to have length 1 and the light sources have y-coordinate 0 or

−1/2. A distributed algorithm A is said to solve the phototaxing problem if, when

each amoebot independently executes algorithm A, the height of the amoebot system

strictly increases or decreases in expectation.

Our distributed algorithm AP for phototaxing (Algorithm 17) is a remarkably sim-

ple extension of the stochastic, distributed algorithm for compression (Algorithm 13):

if an amoebot senses light, it executes an activation of compression; otherwise, it exe-

cutes an activation of compression with probability 1/4. We reproduce the necessary

details of compression in the pseudocode; however, for simplicity, we obfuscate the

usual details of the distributed translation and instead assume particles expand and

contract to their new positions in a single activation (see Section 8.2.2 for details).
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The 1/4 probability used in AP was chosen because it works well in practice, causing

amoebots that sense the light to be four times as active as those that do not in

expectation. Smaller probabilities cause different structural configurations to emerge

while larger values correspond to slower phototaxing.

Algorithm 17 Local, Distributed Algorithm AP for Phototaxing
1: if amoebot A senses light then Compression( ).
2: else with probability 1/4 Compression( ).
3: function Compression( )
4: Let ` denote the current location of A.
5: Choose a neighboring location `′ and q ∈ (0, 1) each uniformly at random.
6: if `′ is unoccupied then
7: A expands to simultaneously occupy ` and `′.
8: Let e = |N(`)| be the number of neighbors A had when it was contracted at `.
9: Let e′ = |N(`′)| be the number of neighbors A would have if it contracts to `′.

10: if e 6= 5, locations ` and `′ satisfy Property 8.2.1 or 8.2.2, and q < λe
′−e then

11: A contracts to `′.
12: else A contracts back to `.

In a system of two amoebots, algorithm AP simplifies to the following: if amoebot

A senses light, then move to one of the two unoccupied locations adjacent to both

amoebots chosen uniformly at random; otherwise, do so with probability 1/4. We

prove that this simplified algorithm solves the phototaxing problem.

Theorem 11.1.1. For an amoebot system of n = 2 amoebots, algorithm AP solves

the phototaxing problem.

Proof. We show that after two amoebot activations, the expected height of the system

has increased by at least 3/64, implying that the amoebot system is moving away

from the light source. Up to translation and reflection, there are two possible types of

configurations a system of two amoebots can be in: either (i) both amoebots can sense

the light, or (ii) one amoebot occludes the other; see Figure 66b and 66c, respectively.

Regardless of configuration type, each amoebot is equally likely to activate next. In a

type (i) configuration, case analysis shows the expected change in height after one
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activation is 0. Furthermore, with probability 1/2 the system remains in type (i) and

with probability 1/2 it enters type (ii). In a type (ii) configuration, there are two

cases. If the occluded amoebot activates next, then with probability 1/4 it moves

a distance of −1/2 in the y-direction, decreasing the height of the system by 1/4.

Otherwise, if the amoebot exposed to the light activates next, then it moves a distance

of 1/2 in the y-direction, increasing the height of the system by 1/4. Altogether, the

expected change in the height h of the system is:

E [∆h] =
1

2
· 1

4
·
(
−1

4

)
+

1

2
· 1 · 1

4
=

3

32

If the system starts in a type (i) configuration, then conditioning on the configuration

type after one activation shows that the expected height of the system has increased

by at least 3/64 in two activations. Otherwise, if the system starts in a type (ii)

configuration, the height of the system increases by at least 3/32 > 3/64 in two

activations.

The same results holds for systems of three amoebots, albeit with a slightly slower

drift. In systems of exactly three amoebots, algorithm AP simplifies to Algorithm 18.

Observe that the compression bias parameter λ and the Metropolis filter based on the

number of neighbors now play a role in the probability calculations.

Algorithm 18 Algorithm AP for Phototaxing on n = 3 Amoebots
1: Let L be the set of (at most two) valid locations to move to.
2: for each location `′ ∈ L do
3: Set probability p`′ ← 1/2.
4: if moving to `′ decreases the number of neighbors then p`′ ← p`′/λ.
5: if amoebot A does not sense light then p`′ ← p`′/4.
6: Move to a location `′ ∈ L with probability p`′ ; otherwise, do not move.

Theorem 11.1.2. For an amoebot system of n = 3 amoebots, algorithm AP solves

the phototaxing problem with any bias parameter λ > 2 +
√

2.
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Figure 67. Phototaxing in a System of Three Amoebots. The seven types of configura-
tions for systems of three amoebots analyzed in Theorem 11.1.2 and the probabilities
of each amoebot’s movement if it is activated next.

Proof. We show that after three amoebot activations, the expected height of the

system has increased by 1/(64λ). Up to translation and reflection, there are seven

possible types of configurations a system of three amoebots could be in; these are shown

in Figure 67. Case analysis shows that the expected change in height is nonnegative in

all seven types. For types (a)–(c), the expected increase in height after one amoebot

activation is at least 1/(64λ); since expected height is nondecreasing, the same holds

after three consecutive amoebot activations. For types (d)–(g), the expected change

in height after a single amoebot activation is 0, so we consider multiple consecutive

activations. There is a positive probability that a type (d) configuration will transition

to a type (a) or (c) configuration in one activation; thus, using conditional expectation,

we have that the expected increase in height after two activations is at least 1/(64λ).
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Similarly, the expected increase in height after two activations starting from a type

(e) configuration is 1/96; because λ > 2 +
√

2, we have 1/96 > 1/(64λ).

Starting from a type (f) or (g) configuration, it takes at least two amoebot moves

to reach a configuration where the system height should increase in expectation

after an additional activation. A type (f) or (g) configuration reaches a type (a)

configuration after two activations with probability 1/18 + 1/(9λ) and reaches a type

(c) configuration after two activations with probability 1/18 + 5/(72λ). Thus, the

total expected increase in height after three activations starting from a type (f) or (g)

configuration is:(
1

18
+

1

9λ

)
1

48
+

(
1

18
+

5

72λ

)
1

24
=

1

288
+

1

192λ
>

1

64λ

where the final inequality follows because λ > 2 +
√

2. Therefore, starting from any

configuration of three amoebots, the expected height of the system will increase by at

least 1/(64λ) in three activations.

While our proofs only hold for small systems, algorithm AP exhibits phototaxing

behavior for arbitrarily large amoebot systems. A simulation for a system of 91

amoebots is shown in Figure 68. Though the motion is largely random, there is

an evident drift away from the light sources. This drift was consistent across all

simulation runs.

11.2 Aggregation, Dispersion, and Collective Transport in BOBbots

Self-organizing collective behaviors are found throughout nature, including shoals

of fish aggregating to intimidate predators [137], fire ants forming rafts to survive

floods [149], and bacteria forming biofilms to share nutrients when they are metabol-

ically stressed [133]. Inspired by such systems, researchers in swarm robotics and
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(a) (b) (c) (d)

Figure 68. Simulation of Algorithm AP for Phototaxing. An system of 91 amoebots
running algorithm AP with λ = 4 after (a) 0, (b) 10 million, (c) 20 million, and (d)
30 million amoebot activations.

programmable active matter have used many approaches towards enabling ensembles

of simple, independent units to cooperatively accomplish complex tasks [20, 27, 73].

Both control theoretic and distributed computing approaches have achieved some

success, but often rely critically on robots computing and communicating complex

state information, requiring relatively sophisticated hardware that can be prohibitive

at small scales [77, 87]. Alternatively, statistical physics approaches model swarms as

systems being driven away from thermal equilibrium by robot interactions and move-

ments (see, e.g., [140, 153]). Tools from statistical physics such as the Langevin and

Fokker-Planck equations can then be used to analyze the mesoscopic and macroscopic

system behaviors [101]. Current approaches present inherent tradeoffs, especially as

individual robots become smaller and have limited functional capabilities [106, 195] or

approach the thermodynamic limits of computing and power [193].

To apply to a general class of micro- or nano-scale devices with limited capabilities,

we focus on systems of autonomous, self-actuated entities that utilize strictly local
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interactions to induce macroscale behaviors. Two behaviors of interest are dynamic free

aggregation, where agents gather together without preference for a specific aggregation

site (see Section 3.2.1 of [20]), and dispersion, its inverse. These problems are

widely studied, but most work either considers robots or models with relatively

powerful capabilities — e.g., persistent memory for complex state information [160,

175] or long-range communication and sensing [81, 93, 156] — or lack rigorous

mathematical foundations explaining the generality and limitations of their results as

sizes scale [45, 91, 129]. Recent studies on active interacting particles [2] and inertial,

self-organizing robots [56] employ physical models to treat aggregation and clustering

behaviors, but neither prove behavior guarantees that scale with system size and

volume. Supersmarticle ensembles [43, 177] are significantly more complex, exhibiting

many transient behavioral patterns stemming from their many degrees of freedom and

chaotic interactions, making them less amenable to rigorous algorithmic analysis.

Here we take a two-pronged approach to understanding the fundamental principles

of programming task-oriented matter that can be implemented across scales without

requiring sophisticated hardware or traditional computation that leverages the physics

of local interactions. We use a theoretical abstraction of self-organizing particle systems

(SOPS), where we can design and rigorously analyze simple distributed algorithms

to accomplish specific goals that are flexible and robust to errors. We then build a

new system of deliberately rudimentary active “cohesive granular robots” (which, to

honor granular physics pioneer Robert Behringer, we call “BOBbots” for Behaving,

Organizing, Buzzing robots) to test whether the theoretical predictions can be realized

in a real-world damped driven system. Remarkably, the lattice based equilibrium

model quantitatively captures the aggregation dynamics of the robots. With a provable

algorithmic model and even simpler BOBbots capturing the algorithm’s essential
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rules, we next explore how the BOBbot aggregation dynamics can be used for the

task of object transport, clearing non-robot impurities from the environment. This

complementary approach demonstrates a new integration of the fields of distributed

algorithms, active matter, and granular physics that navigates a translation from

theoretical abstraction to practice, utilizing methodologies inherent to each field.

For the purposes of this dissertation, we will primarily emphasize the algorithmic

contributions connecting the stochastic algorithm for separation and integration

(Chapter 10, [31]) to the present goals of aggregation and dispersion. In particular,

we omit the details of the BOBbot design and manufacturing, the stress sensing

experiments, and the analysis of the continuum dynamics modeled by the Cahn–

Hilliard equation. These details can be found in the full paper [128].

11.2.1 The Markov ChainMA for Aggregation and Dispersion

While many systems use interparticle attraction and sterical exclusion to achieve

system-wide aggregation and interparticle repulsion to achieve dispersion, these meth-

ods typically use some long-range sensing and tend to be nonrigorous, lacking formal

proofs guaranteeing desirable system behavior. We instead leverage our study of

stochastic processes for self-organizing particle systems (SOPS) that allows us to define

formal distributed algorithms and rigorously quantify long-term behavior (Chapters 8–

10).

In Chapter 8, we analyzed the Markov chainMC for compression and expansion,

which are analogous to aggregation and dispersion under the assumption that the

particle system remains simply connected (i.e., the system forms a single connected

cluster with no holes). This Markov chain is based on local moves that connect the
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state space of all simply connected configurations of particles. Moves are defined

so that each particle, when activated by its own Poisson clock (i.e., after a delay

chosen at random from a Poisson distribution with constant mean), chooses a random

neighboring node and moves there with a probability that is a function of the number

of neighbors in the current and new positions provided the node is unoccupied and the

move satisfies local conditions that guarantee the configuration stays simply connected.

In particular, for configurations σ and τ differing by the move of a single particle P

along a lattice edge, the transition probability is defined as M(σ, τ) ∝ min(1, λe
′−e),

where λ > 0 is a bias parameter that is an input to the algorithm, e is the number of

neighbors of P in σ, and e′ is the number of neighbors of P in τ . These probabilities

arise from the celebrated Metropolis–Hastings algorithm [102] and are defined so that

the Markov chain converges to a unique Boltzmann distribution π such that π(σ) is

proportional to λe(σ), where e(σ) is the number of nearest neighbor pairs in σ (i.e.,

those pairs that are adjacent on the lattice).

We showed that underMC , the simply connected particle system provably aggre-

gates into a compact conformation when λ > 3.42 and expands into a conformation

with nearly maximal (linear) perimeter when λ < 2.17 with high probability (Theo-

rems 8.3.5 and 8.4.7). However, despite rigorously achieving both aggregation and

dispersion,MC has two notable drawbacks that make it infeasible for direct imple-

mentation in a physical system of simple robots: the connectivity requirement that

tethers the particles together and the “look ahead” requirement used to calculate

transition probabilities ensuring convergence to the desired Boltzmann distribution.

To address these issues, we define a modified aggregation and dispersion algorithm

MA (Algorithm 19) where particles can disconnect and moves rely only on the current

state. Here, particles occupy nodes of a finite region of the triangular lattice, again
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Algorithm 19 Markov ChainMA for Aggregation and Dispersion
From any configuration σ0 of n contracted particles in an α-compressed region, repeat:

1: Choose a particle P uniformly at random from among all n particles.
2: Let ` be the location of P and e be the number of neighbors it has.
3: Choose a neighboring location `′ and q ∈ (0, 1) each uniformly at random.
4: if `′ is unoccupied and q < λ−e then P moves to `′.
5: else P remains at `.

moving stochastically and favoring configurations with more pairs of neighboring

particles. Each particle has its own Poisson clock and, when activated, chooses a

random adjacent lattice node. If that node is unoccupied, the particle moves there

with probability λ−e, where e is the number of current neighbors of the particle,

for bias parameter λ > 0. Thus, rather than biasing particles towards nodes with

more neighbors, we instead discourage moves away from nodes with more neighbors,

with larger λ corresponding to a stronger ferromagnetic attraction between particles

(Figure 69a).

We first prove that this new chainMA converges to the same Boltzmann distribu-

tion π(σ) ∝ λe(σ) over system configurations σ as the original algorithmMC .

Lemma 11.2.1. The unique stationary distribution ofMA is π(σ) = λe(σ)/Z, where

Z =
∑

τ λ
e(τ) is a normalizing constant.

Proof. Let σ and τ be any two SOPS configurations with σ 6= τ such thatM(σ, τ) > 0,

implying that τ can be reached from σ by a single move of some particle P . Suppose

P has e neighbors in σ and has e′ in τ . We must show the detailed balance condition

holds with respect to the transition probabilities:

M(σ, τ)π(σ) = M(τ, σ)π(τ)

The Markov chains in Chapters 8–10 were designed using the Metropolis–Hastings

algorithm [102] which specifies transition probabilitiesM(σ, τ) = min{π(τ)/π(σ), 1} to
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Figure 69. The Markov ChainMA for Aggregation. (a) A particle moves away from
a node where it has e neighbors with probability λ−e, where λ > 0. Thus, moves
from locations with more neighbors are made with smaller probability than those
with fewer (e.g., in the insets, p1 = λ−3 < p2 = λ−2 < p3 = 1). (b) A simulation of
MA with 1377 particles for λ = 7.5 showing progressive aggregation. The bulk of the
largest connected component is shown in blue and its periphery is shown in light blue.
(c) Time evolution of NMC , the size of the largest connected component, showing
dispersion for λ = 1.5 and aggregation for λ = 12. The simulations use 400 particles.
(d) Phase change in λ-space for the aggregation metric AGGMC = NMC/(k0PMC

√
n),

where k0 is a scaling constant, PMC is the number of particles on the periphery of
the largest component, and n is the total number of particles. This phase change is
qualitatively invariant to the system’s size.
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capture the ratio between stationary weights of the current and proposed configurations.

So we have that π(τ)/π(σ) = λe
′−e. It is then easy to see that this ratio is unchanged

by the modified transition probabilities where M(σ, τ) = λ−e and M(τ, σ) = λ−e
′ , and

thus detailed balance is satisfied:

M(σ, τ)

M(τ, σ)
=
λ−e

λ−e′
= λe

′−e =
π(τ)

π(σ)

Therefore, since π satisfies detailed balance andMA is an ergodic finite Markov chain,

we conclude that π is the unique stationary distribution ofMA.

This lemma shows that Markov chainMA will converge to the same stationary

distribution asMC did, but can do so without “look ahead” information. Algorithm

MC further lifts the connectivity constraint by allowing particles to disconnect,

instead restricting their possible locations from the infinite triangular lattice to a

bounded region. However, our analysis of the stationary distribution π for MC

focused on simply connected configurations and do not generalize to the disconnected

setting. To overcome this obstacle, we instead turn to our analysis of the Markov

chain MS for separation and integration (Chapter 10). We proved that among

particle systems of two colors that were α-compressed (i.e., that have boundary

length at most α times the minimum possible perimeter),MS would provably achieve

separation whenever γ > 45/4 ≈ 5.66 and would provably achieve integration whenever

0.98 ≈ 79/81 < γ < 81/79 ≈ 1.02 (Corollaries 10.4.12 and 10.5.6). This separation

algorithm can be applied to the setting where an α-compressed, bounded region of the

lattice is completely filled with particles that move by “swapping” places with their

neighbors. By viewing particles of one color as “empty space” and particles of the other

color as our particles of interest, the swap moves in the separation algorithm correspond

to particle moves within a bounded area. These are precisely the moves used in our
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aggregation algorithm, where separation corresponds to aggregation and integration

corresponds to dispersion. Thus, our results for separation (Corollaries 10.4.12

and 10.5.6) combined with the following formal definition for aggregation and dispersion

that is modeled after Definition 10.4.1 of separation immediately implies the subsequent

theorem.

Definition 11.2.2. For β > 0 and δ ∈ (0, 1/2), a configuration σ is (β, δ)-aggregated

if there is a subset R of lattice nodes such that:

1. At most β
√
n edges have exactly one endpoint in R;

2. The density of particles in R is at least 1− δ; and

3. The density of particles not in R is at most δ.

A configuration is dispersed if no such (β, δ) exist.

Theorem 11.2.3. Let configuration σ be drawn from the stationary distribution of

MA on a bounded, α-compressed region of the triangular lattice with a sufficiently

large number of particles n. If λ > 5.66, then with high probability there exist β > 0

and 0 < δ < 1/2 such that σ will be (β, δ)-aggregated. However, when 0.98 < λ < 1.02,

the configuration σ will be dispersed with high probability.

Varying values of λ in simulation gives strong indication that dispersion persists

for larger values of λ and the aggregation algorithm undergoes a phase transition

whereby the macroscopic behavior of the system suddenly changes from dispersion

to aggregation (Figure 69c–d), mimicking the fixed magnetization ferromagnetic

Ising model which motivated our Markov chain algorithm. Nonetheless, our proofs

demonstrate that our system has two distinct phases of behavior for different ranges

of λ for any system with a sufficiently large number of interacting particles, which is

enough for our purposes.
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11.2.2 BOBbots: A Model Active Cohesive Granular Matter System

Next, to test whether the lattice-based equilibrium system can be used to control

a real-world swarm in which there are no guarantees of detailed balance or Boltzmann

distributions, we introduce a collective of active cohesive granular robots which we

name BOBbots (Figure 70a–70c) — Behaving, Organizing, Buzzing robots — whose

design physically embodies the aggregation algorithm. Driven granular media provide a

useful soft matter system to integrate features of the physical world into the toolkit for

programming collectives. This builds upon three decades of work understanding how

forced collections of simple particles interacting locally can lead to remarkably complex

and diverse phenomena, not only mimicking solids, fluids, and gasses [6, 131] — e.g.,

in pattern formation [79, 143], supercooled and glassy phenomena [98, 121], and shock

waves [170] — but also displaying phenomena characteristic of soft matter systems

such as stress chains [108] and jamming transitions [24, 46]. While cohesive granular

materials are typically generated in situations where particles are small (powders, with

interactions dominated by electrostatic or even van der Waals interactions) or wet

(with interactions dominated by formation of liquid bridges between particles) [104,

148], we generate our cohesive granular robots using loose magnets which can rotate

to always achieve attraction.

The movement and interactions between BOBbots were designed to capture the

salient features of the abstract stochastic algorithm while replacing all sensing, com-

munication, and probabilistic computation with physical morphology and interactions.

Each BOBbot has a cylindrical chassis with a base of elastic “brushes” that are

physically coupled to an off-center eccentric rotating mass vibration motor (ERM).

The vibrations caused by the rotation of the ERM are converted into locomotion by
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Figure 70. BOBbots and their collective motion. (a) Schematic of experimental
setup. BOBbots are placed in a level arena with airflow gently repelling them from
the boundaries. (b) A closeup of the experimental platform. (c) Mechanics of the
BOBbots. Loose magnetic beads housed in the BOBbots’ peripheries can reorient
so BOBbots always attract each other. The vibration of the ERM motor and the
asymmetry of bristles lead to the directed motion. The light sensor activates the
motion. (d) Discrete element method simulation setup. (e) The BOBbot-boundary
interactions: airflow repulsion fA, BOBbot-boundary friction fBW, and normal force
FBW,n. (f) The inter-BOBbot interactions: attraction between magnetic beads FM ,
inter-BOBbot friction fBB, and sterical exclusion FBB,n.
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the brushes (Figure 70c). Due to asymmetry in our construction of this propulsion

mechanism, the BOBbots traverse predominantly circular trajectories [126] that are

randomized through their initial conditions but — unlike the SOPS particles — are

inherently deterministic with some noise and occur at a constant speed per robot

distributed as v0 = 4.8± 2.0 cm/s.

Analogous to the modified transition probabilities in the aggregation algorithm

that discourage particles from moving away from positions where they have many

neighbors, each BOBbot has loose magnets housed in shells around its periphery that

always reorient to be attractive to nearby BOBbots (Figure 70c). The probability

that a BOBbot detaches from its neighbors is negatively correlated with the attractive

force from the number of engaged magnets, approximating the movement probabilities

given by the algorithm which scale inversely and geometrically with the number of

neighbors. The strength of the magnets FM0 determines whether the system aggregates

or disperses in the long run, analogous to λ in the algorithm.

To allow for study of larger BOBbot ensembles and more comprehensive sweeps of

parameter space, we also performed Discrete-Element Method (DEM) simulations of

the BOBbots (see Figure 70d–f). The motion of an individual BOBbot is modeled as a

set of overdamped Langevin-type equations governing both its translation and rotation

subject to its diffusion, drift [112], magnetic attraction, and sterical exclusion with

other BOBbots. The translational drift corresponds to the speed from the equilibrium

of the drive and drag forces while the rotational drift corresponds to the circular

rotation. Similar methods have been used to understand macroscale phenomena

emerging from collectives of microscopic elements [101] and to model particle motion

in active matter [165].

Mitigating the effects of the arena’s fixed boundaries in both experiments and
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simulations presented a significant design challenge. BOBbots can persist along the

boundary or in corners, affecting system dynamics by, for example, enabling aggregates

to form where they would not have otherwise or hindering multiple aggregates from

integrating. To address these issues, uniform airflow was employed to gently repel

BOBbots away from the boundary and similar effects were implemented in simulation.

11.2.3 Clustering Dynamics in BOBbots and Theory

Since the critical elements of the Markov chainMA can be physically embodied by

robots as simple as our BOBbots, to test ifMA could quantitatively capture collective

dynamics, we next investigated the degree to which collectives of BOBbots aggregate

as a function of their peripheral magnet strength FM0 in both robotic experiments

and DEM simulations. (For convenience, FM0 is normalized by the gravity of Earth

g = 9.81 m/s2 when using the unit of gram.) The experimental protocol begins with

placing magnets of a particular strength FM0 into the BOBbots’ peripheral slots. The

BOBbots are positioned and oriented randomly in a rectangular arena and are then

actuated uniformly for a fixed time during which the BOBbots’ positions and the

size of the largest connected component are tracked (Figure 71a–c). These trials are

conducted for several FM0 values with repetition. We followed the same protocol in

simulations.

In experiment and DEM simulation, we observe an abrupt, rapid rise and then

saturation in the size NMC of the largest connected component as the magnetic

attraction FM0 increases (Figure 71d). These curves resemble those in Figure 69d,

with the magnetization FM0 playing a role analogous to the bias parameter λ. Given

this correspondence, we explored whether the equilibrium SOPS model could be used
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Figure 71. Evolution of BOBbot Clusters. (a) Time evolution snapshots of both
experiment and (b) simulation for a system of 30 BOBbots with different magnet
strengths: FM0 = 5 g (left) where we observe dispersion, and FM0 = 19 g (right)
where we observe aggregation. (c) Time evolutions of the size of the largest component
NMC in experiment and simulation for a system of 30 BOBbots with FM0 = 5 g
(magenta) and FM0 = 19 g (blue). (d) Scaling of cluster size vs. magnetic strength for
a system of 30 BOBbots showing an increase in NMC as the magnet strength FM0

increases. The yellow plot line shows the mean and standard deviation of NMC in
the 150 simulation runs for each magnetic strength FM0 between 1–35 g, with a step
size of 1 g. Experimental data is shown in red with error bars showing the standard
deviation of largest cluster size NMC and the uncertainty of FM0 due to empirical
measurement.
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to make quantifiable predictions in the robot experiments. First, we designed a test

to examine how force and λ scale. Recall that in the SOPS algorithm, the force

acting on each particle is proportional to λe, where e is the particle’s current number

of neighbors. In the experiments, BOBbots cannot count their neighbors, but the

magnets are expected to provide a similar force that also increases geometrically when

more magnets are engaged.

To estimate the relationship between force and λ, we investigate the rate at which

a BOBbot loses or gains neighbors over a fixed amount of time. Viewing a BOBbot’s

completion of half its circular motion as analogous to a particle moving to a new

lattice node in the SOPS algorithm and using this time interval to evaluate the

transition, simulation data shows that a BOBbot’s transition probability from having

a higher number of neighbors e to a lower number e′ closely follows the algorithm’s

P (σ, τ) ∝ min(1, λe
′−e) transition probabilities (Figure 72a). Further, we evaluated the

BOBbots’ effective bias parameter λeff as a function of FM0 and found an exponential

relation λeff = exp(βFM0), where β is a constant representing inverse temperature

(Figure 72b). The BOBbots’ transition probabilities can then be approximated as

P (σ, τ) = exp(−β(εe − εe′)), where β is the inverse temperature of the system and

εe = e · FM0 can be interpreted as the energy contributed by a BOBbot’s e neighbors.

With the relation between FM0 and λeff established, we next compare the ag-

gregation behaviors exhibited by the SOPS algorithm and the BOBbot ensembles.

Figure 72c shows the fraction of particles/BOBbots in the largest component NMC/n

observed in both the SOPS algorithmMA and BOBbot simulations after converting

with respect to λeff; the algorithm does indeed capture the maximum cluster fraction

observed in the simulations. Notably, the aggregated and dispersed regimes in λ-space

established by Theorem 11.2.3 provide a rigorous understanding of these BOBbot
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collective behaviors. For instance, the proven dispersed regime 0.98 < λ < 1.02 gives

a clear explanation for why agents will not aggregate even in the presence of mutual

attraction. Further, it also helps establish the magnitude of attraction needed to

saturate the aggregation.

A
𝐹𝑀0 = 19 g

5 g

𝑃
𝑀
𝐶

𝑁𝑀𝐶
102

101

101 103

102

B

1

0.5

Figure 73. Perimeter Scaling of BOBbot Clusters. (a) Log-log plot showing the
scaling relationship between the largest component’s size NMC and perimeter PMC in
number of BOBbots for simulated systems of 400 BOBbots with FM0 = 5 g (magenta)
and 19 g (cyan) for fixed boundary conditions. Each data point is the average of 20
simulations. While the SOPS predicts a scaling power of 0.5 for the aggregated case
(cyan), the data shows a slightly larger — but still sublinear — power of 0.66± 0.07.
(b) Final snapshot of the collective motion of 400 BOBbots with FM0 = 5 g (left) and
19 g (right). BOBbots shown in black belong to the largest connected component;
those outlined in red are on its periphery.

We additionally test the SOPS prediction that the maximum cluster should not
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only be large but also compact, occupying a densely packed region. The results from

separation [31] that we apply here for aggregation suggest the following relationship

between the size of the largest component NMC and its perimeter PMC . In dispersed

configurations, PMC should scale linearly with NMC , meaning that most BOBbots lie

on the periphery of their components. In aggregated configurations, however, PMC

should scale as N1/2
MC , approximating the minimal perimeter for the same number

of BOBbots by at most a constant factor. We test these scaling relationships in

simulations with 400 BOBbots (Figure 73) and find that the theory’s predictions

hold in the dispersed regime; however, the 0.66± 0.07 sublinear scaling power for the

aggregated case is slightly higher than the theory’s prediction of 0.5. This discrepancy

may in part be due to boundary and finite-size effects — in fact, DEM simulations with

periodic boundaries show a scaling power of 0.59±0.18 that is closer to the SOPS theory

— but is also affected by non-reversibility inherent in the BOBbots’ circular trajectories.

To make a quantitative comparison that captures when components are both large

and compact, we track AGGMC = NMC/(k0PMC

√
n), where k0 is a scaling constant

defined such that AGGMC = 1 when the system is optimally aggregated, achieving

the minimum possible perimeter. Physically, AGGMC is reminiscent of surface tension

for which energy minimization leads to a smaller interface (in our setting, smaller

perimeter PMC), yielding an AGGMC closer to 1. We obtain agreement between the

SOPS and DEM simulations with respect to this metric as well (Figure 72d), further

validating the theory’s prediction, though the DEM simulations yield slightly smaller

AGGMC than the SOPS algorithm for large λ.
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11.2.4 Object Transport in the Aggregated Phase

Encouraged by the close connections between the physical system and the underly-

ing theoretical model, we sought to test whether aggregated BOBbots could collectively

accomplish a task. In particular, could an aggregated BOBbot collective “recognize”

the presence of a non-robot impurity in its environment and cooperatively expel it

from the system? Typically, such collective transport tasks — e.g., the cooperative

transport of food by ants [82, 192] — either manifest from an order-disorder transition

or rely heavily on conformism between agents for concerted effort and alignment of

forces. With our BOBbot collectives, we instead aim to accomplish transport via

simple mechanics and physical interactions emergently controlling global behavior

without any complex control, communication, or computation.

By maintaining a high magnetic attraction FM0, we remain in the aggregated regime

where most BOBbots connect physically and can cumulatively push against untethered

impurities (e.g., a box or disk) introduced in the system (Figure 74a). The BOBbot

collective’s constant stochastic reconfiguration grants it the ability to envelop, grasp,

and dislodge impurities as their individual forces additively overcome the impurities’

friction, leading to large displacement in the aggregated regime (Figure 74b, right)

with a median displacement of 7.9 cm over 12 minutes. On the contrary, we find

that systems with weak magnetic attraction (i.e., those in the dispersed regime) can

typically only achieve small impurity displacement (Figure 74b, left) with a median

displacement of 0.9 cm over 12 minutes. We observe infrequent anomalies in which

dispersed collectives achieve larger displacement than aggregated ones, but these

outliers arise from idiosyncrasies of our rudimentary robots (e.g., an aggregated cluster
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Figure 74. Object Transport Using Aggregation. (a) Schematic of the experimental
setup. (b) Time evolution snapshots of box transport by a system of 30 BOBbots
with magnet strength FM0 = 5 g and 19 g. The box has a mass of 60 g. The final
panel shows the object’s complete trajectory, where D denotes the Euclidean distance
of the final displacement.
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of BOBbots may continuously rotate in place without coming in contact with an

impurity due to the BOBbots’ individual orientations in the aggregate).

Characterizing the impurity’s transport dynamics as mean-squared displacement

over time 〈r2(τ)〉 = vτα reveals further disparities between the aggregated and

dispersed BOBbot collectives (Figure 75a). On a log-log plot, the intercept indicates

log(v), where v is the characteristic speed of the impurity’s transport; we observe that

in all but one fringe case the strongly attractive collectives achieve transport that

is orders of magnitude faster than those of the weakly attractive ones (Figure 75b).

The slope of each trajectory indicates the exponent α that characterizes transport

as subdiffusive (α < 1), diffusive (α = 1), or superdiffusive (α > 1). While all the

strongly attractive collectives immediately achieve nearly ballistic transport (with

α = 1.85 ± 0.11 for τ < 20 s) indicating rapid onset of cluster formation and

pushing, the weakly attractive collectives initially exhibit mostly subdiffusive transport

(with α = 0.89 ± 0.56 for τ < 20 s) caused by intermittent collisions from the

dispersed BOBbots (Figure 75c). When the slight heterogeneous distribution of the

dispersed BOBbots remains unchanged for a sufficiently long time, the accumulation

of displacement in a persistent direction can cause a small drift, leading to ballistic

transport at a longer time scale. Nonetheless, the transport speeds achieved by the

dispersed collectives are two orders of magnitude smaller than those of the strongly

attractive ones.

Simulations of impurity transport reproduce the experimental results (Figure 75b,

inset), including the rare anomalies. Seven of the 100 simulations of weakly attractive

collectives succeeded in transporting the impurity to the arena boundary at slow speeds

while 76 of the 100 simulations of strongly attractive collectives did so ballistically.

The remaining 24 simulations of attractive collectives that did not achieve ballistic
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Figure 75. Mean-Squared Displacement of Object Transport. (a) Mean-squared
displacement of the box over time in log-log scale for collectives with FM0 = 5 g
(magenta) and 19 g (blue). (b) Distribution of the average speed, calculated as the
final displacement D (as shown in Figure 74b) divided by total time. Inset: Simulation
results for the overall transport speed. The two peaks for FM0 = 19 g correspond to
pushing to the edges and corners. (c) Distributions of the mean-squared displacement
exponent α at short time scale τ < 20 s.

transport consistently formed an aggregate that never came into contact with the

impurity. We found that disaggregating established aggregates by introducing time

periods with no attraction enabled them to dissolve and reform for another attempt at

transport. Using different disaggregating sequences, the attractive collectives achieved

ballistic transport in 15–20% more simulations than without disaggregating.

11.2.5 Discussion

In this section, we use mathematical ideas from distributed computing and sta-

tistical physics to create task-oriented cohesive granular media composed of simple
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interacting robots called BOBbots. As predicted by the theory, the BOBbots aggregate

compactly with stronger magnets (corresponding to large bias parameter λ) and dis-

perse with weaker magnets (or small λ). Simulations capturing the physics governing

the BOBbots’ motions and interactions further confirm the predicted phase change

with larger numbers of BOBbots. The collective transport task then demonstrates

the utility of the aggregation algorithm.

There are several noteworthy aspects of these findings. First, the theoretical

framework of the underlying SOPS model can be generalized to allow many types of

relaxations to its assumptions, provided its dynamics remain reversible and model

a system at thermal equilibrium. For example, noting that the probability that a

robot with e neighbors detaches may not scale precisely as λ−e as suggested by the

Boltzmann weights, we can generalize algorithmMA to be more sensitive to small

variations in these weights: the proofs establishing the two distinct phases can be

shown to extend to this setting, provided the probabilities pe of detaching from e

neighbors satisfy c1λ
−e ≤ pe ≤ c2λ

−e, for constants c1, c2 > 0.

The robustness of the local, stochastic algorithms makes the macro-scale behavior

of the collective resistant to many types of idiosyncrasies inherent in the BOBbots,

including bias in the directions of their movements, the continuous nature of their

trajectories, and nonuniformity in their speeds and magnet strengths. Moreover, our

algorithms are inherently self-stabilizing due to their memoryless, stateless nature,

always converging to a desired system configuration — overcoming faults and other

perturbations in the system — without the need for external intervention. In our

context, the algorithm will naturally continue to aggregate, even as some robots may

fail or the environment is perturbed.

Moreover, we find that the nonequilibrium dynamics of the BOBbots are largely

411



captured by the theoretical models that we analyze at thermal equilibrium, which is

in agreement with the findings of Stenhammar et al. [183]. For example, in addition

to visually observing the phase change as the magnetic strengths increase, we are

able to test precise predictions about the size and perimeter of the largest connected

components based on the formal definitions of aggregation and dispersion from the

SOPS model. We additionally use simulations to study the transition probability

of a BOBbot from having e neighbors to having e′ neighbors to see if the magnetic

interactions conform to the theory, and indeed we see a geometric relation decrease

in the probability of moving as we increase the number of neighbors, as predicted.

The resultant correspondence between the magnetic attraction and effective bias in

the algorithm confirms a quantitative connection between the physical world and the

abstract algorithm.

In summary, the framework presented here using provable distributed, stochastic

algorithms to inspire the design of robust, simple systems of robots with limited

computational capabilities seems quite general. It also allows one to leverage the

extensive amount of work on distributed and stochastic algorithms, and equilibrium

models and proofs in guiding the tasks of inherently out of equilibrium robot swarms.

Preliminary results show that we likely can achieve other basic tasks such as alignment,

separation (or speciation), and flocking through a similar principled approach. We

note that exploiting physical embodiment with minimal computation seems a critical

step in scaling collective behavior to encompass many cutting edge settings, including

micro-sized devices that can be used in medical applications and cheap, scalable

devices for space and terrestrial exploration. Additionally, we plan to further study

the important interplay between equilibrium and nonequilibrium dynamics to better
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solidify these connections and to understand which relaxations remain in the same

universality classes.
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Chapter 12

CONCLUSION

This dissertation advances programmable matter’s modeling, algorithm design and

analysis, and applications to swarm robotic and active matter systems. In Chapter 2,

we presented the canonical amoebot model as a complete reformulation of the amoebot

model of programmable matter, emphasizing its handling of concurrency and hierarchy

of assumption variants. We then presented two black box enhancements of existing

amoebot algorithms, extending sequential, energy-agnostic algorithms that satisfy

certain conventions to the concurrent, energy-constrained setting without sacrificing

correct behavior (Chapters 3 and 4). Chapters 5–10 detailed two complementary

approaches to algorithm design and analysis: one that relies on amoebot memory and

communication to solve problems like leader election, object coating, and convex hull

formation; and another that uses only biased random decisions to solve problems like

compression, shortcut bridging, and separation. Compared to the stateful algorithms

of Chapters 5–7, the stochastic algorithms of Chapters 8–10 are inherently self-

stabilizing and robust to errors. Chapter 11 detailed how these stochastic algorithms

can be readily adapted to two experimental systems, supersmarticles and BOBbots,

to provably characterize collective behaviors of phototaxing, aggregation, dispersion,

and collective transport. We conclude with several new and exciting directions for

future research.

Fault Tolerant Programmable Matter. Chapters 2–3 focused on bridging the

gap between existing models of active programmable matter and the constraints

414



of programmable matter hardware with respect to concurrency and energy usage.

Another key area of improvement is the modeling and mitigation of faulty behavior,

i.e., when individual modules of programmable matter may crash or exhibit malicious

(Byzantine) behavior. While crash failures have been considered under the amoebot

model in specific cases — e.g., for energy distribution in Chapter 4, for shape formation

in [67], and for the stochastic algorithms of Chapters 8–10 — the amoebot model does

not yet have a formal fault model for crash failures. Faults also pose a major problem

for our lock-based approach to concurrency control (Chapter 3), as the canonical

amoebot model’s Lock operation is no longer deadlock-free in the presence of crash

failures. Finally, nearly all existing design and analysis of algorithms for programmable

matter assume the cooperative nature of the participating modules. Byzantine failures

thus force a paradigm shift to competitive dynamics, which are significantly more

complex.

Asynchronous Algorithms for Programmable Matter. The canonical amoebot

model of Chapter 2 introduced a unifying and formal framework for algorithm design

and adversarial activation models. The majority of the results in this dissertation

assumed a simplified fair sequential setting where the adversary could activate at

most one amoebot per time and was forced to activate every amoebot infinitely

often. Shifting towards the concurrent setting, the asynchronous hexagon formation

algorithm of Section 2.5 and the concurrency control protocol of Chapter 3 gave two

complementary sets of sufficient conditions for designing correct algorithms under

unfair asynchronous adversaries, the most general of all adversarial activation models.

The first approach stems from the analysis of the hexagon formation algorithm in

Section 2.5: if an algorithm is correct under any unfair sequential adversary, its
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enabled actions remain enabled despite concurrent action executions, and its enabled

actions execute successfully and invariant from their sequential executions, then the

algorithm can immediately be shown to be correct under any unfair asynchronous

adversary. However, these conditions are relatively strict. The second approach

requires a compliant algorithm to be correct under any unfair sequential adversary

and to satisfy the conventions of the concurrency control protocol. However, as was

discussed in Section 3.4, it is an open question at this time to find any algorithm

involving movement that satisfies the monotonicity convention. Thus, while we are

hopeful that these two approaches can be applied to the analysis of existing and

future algorithms under asynchronous adversaries in the canonical amoebot model,

it remains an open problem to find less restrictive sufficient conditions or to develop

other general approaches to the design and analysis of asynchronous algorithms.

Bridging Algorithmic Theory to the Mechanics of Physical Systems. The physics of

local interactions provide a powerful toolkit for programming task-oriented collectives

across scales without requiring sophisticated hardware or traditional computation.

Chapter 11 described a two-pronged approach to programming physical ensembles

by bridging the rigorous analysis of algorithmic theory to the physics of damped

driven systems. Remarkably, in the case of the BOBbots of Section 11.2, the lattice-

based distributed algorithms leveraging equilibrium statistical physics quantitatively

captured the nonequilibrium dynamics of an analog robot swarm. This approach

opens many exciting directions for interdisciplinary research, especially in the areas of

social insects and colloidal robots [132, 196].

Distributed Algorithms for the Dynamics of Movement. Programmable matter
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is just one example of a system of cooperating agents whose communication links

change over time as a result of active (self-directed) motion; practical examples include

social insect colonies, swarm robotics, and autonomous vehicular networks. Dynamic

networks have received some attention from the distributed computing community

over the last decade (e.g., under the time-varying graph model [35] and for peer-to-peer

networks [11]), especially in the area of self-stabilization when topological changes

are sparse in both time and space [4]. However, unlike dynamics caused by rare

transient failures — as in existing works on self-stabilization — moving systems shift

their topologies rapidly but locally. How do these dynamics of movement compare

with existing treatments of dynamic networks? What fundamental behaviors (such

as broadcast and leader election) can be achieved in these models, especially in the

setting where individual processes are very limited (e.g., in terms of memory)? As one

concrete example problem, is it possible to adapt a stateless form of broadcast known

as amnesiac flooding [109] under dynamics of movement? Studying systems of moving,

computationally limited agents is a natural generalization of programmable matter

research, and has the potential to form rich connections between these distributed

computing subfields.
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Suh), your lives are an inspiration to me and your pride in who I’ve become gives me
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