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ABSTRACT

The advancement and marked increase in the use of computing devices in health care

for large scale and personal medical use has transformed the field of medicine and

health care into a data rich domain. This surge in the availability of data has allowed

domain experts to investigate, study and discover inherent patterns in diseases from

new perspectives and in turn, further the field of medicine. Storage and analysis of

this data in real time aids in enhancing the response time and efficiency of doctors

and health care specialists. However, due to the time critical nature of most life-

threatening diseases, there is a growing need to make informed decisions prior to the

occurrence of any fatal outcome. Alongside time sensitivity, analyzing data specific

to diseases and their effects on an individual basis leads to more efficient prognosis

and rapid deployment of cures. The primary challenge in addressing both of these

issues arises from the time varying and time sensitive nature of the data being studied

and in the ability to successfully predict anomalous events using only observed data.

This dissertation introduces adaptive machine learning algorithms that aid in the

prediction of anomalous situations arising due to abnormalities present in patients

diagnosed with certain types of diseases. Emphasis is given to the adaptation and

development of algorithms based on an individual basis to further the accuracy of

all predictions made. The main objectives are to learn the underlying representation

of the data using empirical methods and enhance it using domain knowledge. The

learned model is then utilized as a guide for statistical machine learning methods to

predict the occurrence of anomalous events in the near future. Further enhancement

of the learned model is achieved by means of tuning the objective function of the

algorithm to incorporate domain knowledge. Along with anomaly forecasting using

multi-modal data, this dissertation also investigates the use of univariate time series

data towards the prediction of onset of diseases using Bayesian nonparametrics.
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Chapter 1

INTRODUCTION

1.1 Motivation

Rapid growth in the availability and accessibility of computational medical devices

has caused a large amount of medical data to become available to domain experts like

physicians, caregivers and non-domain experts with computational and mathematical

backgrounds. Medical institutions of all scales record and collect patient data across

various modalities on a daily basis leading to the transformation of the field into a

data rich domain. As a result of data availability, new avenues of medical research

have become prominent - computational research using health care data, bioinformat-

ics, biostatistics and others. However, the increase in available data coupled with the

complexity of the biological processes being investigated and the time sensitive na-

ture of most disease, necessitates the design and development of techniques to model

the underlying representations from the data and make informed decisions using the

learned models to prevent fatal outcomes. Short-term forecasting of anomalous be-

havior in physical systems allows domain experts to mitigate and prevent threatening

circumstances. In contrast, long-term variations and patterns uncovered from ob-

served data allow experts to model physical system behavior and iteratively improve

these models to fit patients at an individual level.

Medical data availability has caused the use of data driven machine learning tech-

niques, previously applied to domains with large scale datasets, to further boost the

process of disease discovery and analysis to improve patient care. Diseases or anoma-

lies are a result of imbalance in the physical system of the human body. For example,
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osteoclasts and osteoblasts are responsible for the resorption and formation of bone

respectively. The slightest imbalance of this tightly coupled process leads to osteo-

porosis. These anomalies in the physical system are usually developed over a period of

time. Therefore, clinical datasets have an inherent temporal factor embedded in them

that contributes a significant amount to understanding and uncovering the nature of

the disease being studied.

Empirical data driven learning techniques can be applied to learn models solely

using observed data. On the contrary, domain specific non-linear physical system

numerical models are formulated based on the physical nature of the system con-

cerned and in turn are often difficult to simulate and contain simplifying assumptions.

Therefore it is important to consider both aspects, observed data and the underlying

domain specific knowledge, while developing predictive solutions in such domains so

that they are accurate and explainable.

This work introduces patient specific adaptive techniques to utilize both temporal

and morphological attributes of the physical system to predict possible future anoma-

lous behavior of the system. The emphasis is specifically laid on developing techniques

that incorporate domain specific knowledge into real time observations to enhance the

accuracy of the predictions made. Changes in physiological parameters observed dur-

ing temporal and morphological anomalies play a key role in understanding and in

turn forecasting their occurrences at a later time.

1.2 Background

1.2.1 Prediction of Blood Glucose Levels in Type I Diabetes Mellitus Patients

According to a recent study (Sun et al. (2022)), global diabetes prevalence in

adults between the ages of 20 to 79 years has been estimated to be around 10.5% of the
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global population. Diabetes Mellitus or diabetes, is a chronic disease that causes life

threatening episodes (Remme (2022); Dybjer et al. (2022); Escobedo-de la Peña et al.

(2021); Lee et al. (2021)) that can disable affected individuals (Chamberlain et al.

(2022); Chen et al. (2021); Gregg and Menke (2021)), requires expensive treatment

regimes and reduces overall life expectancy. Affected individuals are categorized as

either Type 1 Diabetes Mellitus (T1DM) where the body is unable to produce insulin,

or as Type 2 Diabetes Mellitus (T2DM) where the body is unable to efficiently utilize

the insulin produced.

Cyber-physical control systems are used in many critical infrastructures including

smart grids, medical systems and autonomous vehicles. An important feature of such

control systems is that the controller algorithm interacts with the physical system

through sensing and actuation. A popular method used for developing a controller

strategy for these systems is model predictive control. In such a strategy, a model

of the physical system is used to obtain an estimation of the state variables that can

accurately describe the physical system at a given time in the future. The prediction

is then used in the decision algorithm of the controller. Often the prediction model

may not accurately represent the practical deployment of the system. In such cases,

the prediction model will be inaccurate and it can lead to wrong decisions made by

the controller. In addition to inaccuracies, the physical system prediction models also

require personalization. This involves evaluation of controller parameters and correct

configuration to match the operation of the specific physical system instance. Such

personalizations can only be obtained by observing the control system and utilizing

the input output data. Hence, data driven approaches such as machine learning

techniques can potentially be utilized to iteratively improve a physical model.

A case in point is that of closed loop blood glucose control systems or artificial

pancreas. It uses the Bergman minimal model to estimate the future blood glucose
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level of a person based on the current measurements of blood glucose, blood insulin,

and interstitial insulin levels. The Bergman minimal model is only good for fasting

conditions and does not take into account physical activity of a person or meal intake.

Hence, the only marketed closed loop blood glucose control system can only operate

during the night.

Being able to predict blood glucose levels in diabetes patients specially T1DM

patients is critical in preventing hyperglycemic and hypoglycemic events from occur-

ring. Bergman et al. (1981) presents a mathematical model to simulate the blood

glucose levels given a specific set of biological parameters which is used in models for

simulating blood glucose levels for blood glucose monitoring devices.

The artificial pancreas (AP) project (Cobelli et al. (2011)), a cyber-physical sys-

tem, was developed as a counter measure to help T1DM patients regulate and stabilize

blood glucose levels in free living scenarios. AP is a closed-loop blood glucose con-

trol system comprised of a glucose sensor, an insulin infusion device and a control

algorithm. The control algorithm utilizes the readings from the glucose sensor and

based on pre-computed thresholds regulates the amount of insulin to be injected as

a response to the rise in blood glucose levels. The aforementioned control algorithms

used in AP are based on mathematical models that describe blood glucose kinetics.

One of the most commonly used blood glucose models is the Bergman minimal model

(BMM) (Bergman et al. (1981)) which utilizes an individual’s current blood glucose

level, insulin level and interstitial insulin levels to estimate the blood glucose level

in the near future. Several control algorithms for AP have been developed using the

BMM (Banerjee et al. (2013); Banerjee and Gupta (2013, 2014)) and have shown

that using such models in the control algorithm require a certain degree of person-

alization - extracting and tuning the model parameters on a per-person basis. This

level of personalization can be attained by observing the control system and utilizing
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the input-output data streams. As a result, data-driven approaches such as machine

learning can be efficiently utilized to build and improve these predictive models.

Since the AP project has been widely researched, a large number of statistical

and machine learning methods have been developed and iterated through in search

for an optimal algorithm for the task of predicting blood glucose levels in the near

future. Sparacino et al. (2007) use real time Continuous Glucose Monitor (CGM)

device data, which is a time series, and apply two prediction methods namely using

a first-order polynomial model for describing the time series and a model based on

an auto-regression (AR) model. Of the two models presented, the AR model per-

forms better than the first-order polynomial model. The authors in (Parker et al.

(1999)) use model predictive controllers(MPCs) to predict the occurrence of hyper-

and hypoglycemic event before they can occur. The non-linear system for glucose

dynamics is represented as a linear input-output system by a novel algorithm devel-

oped by them. The authors also further improve the performance of prediction using

a Kalman filter combined with their MPC implementation. Naive machine learning

methods like Support Vector Regression (SVR) (Georga et al. (2012); Bunescu et al.

(2013); Georga et al. (2011)) K-means clustering and k-nearest neighbors (Karegowda

et al. (2012)) have also been used for blood glucose prediction with varying levels of

success.

Neural Networks are one of the most popular and widely used forms of representa-

tion learning in the fields of machine learning and data mining. A single layer neural

network is able to learn an almost accurate approximation of a function or the rep-

resentation of a model. A fairly recent concept - deep learning using neural networks

has made significant progress in the fields of data mining, artificial intelligence and

natural language processing. The success of deep learning is based on the availability

of large scale data and the advent of computation power in the form of multi-core
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general purpose graphics processing units. These large-scale datasets usually have

an underlying representation that is followed by all the samples in it. Deep learning

networks strive to learn the best representation possible from these datasets and then

apply the learned representations on test samples with high levels of classification

or prediction accuracy. However in the event of these datasets being modeled using

complex models that are highly non-linear in nature, or the entire dataset having a

large amount of noise, deep learning networks may not be able to learn the underlying

representation correctly. This in turn would lead to high prediction or classification

errors by the same network on test datasets. In order to overcome these limitations

of deep neural networks, a newer concept called Guided Deep Learning has begun

to be applied in certain fields. The concept of guided deep learning is to be able to

provide the deep neural network with a notion of the underlying model and help it

learn the representation in a more efficient manner.

More recently, artificial neural networks (ANN) have been used for predicting

blood glucose in diabetes patients due to their universal function approximation ca-

pabilities (Pérez-Gand́ıa et al. (2010); Zecchin et al. (2012); Pappada et al. (2011);

Tresp et al. (1999)). Since then neural networks have been widely used for prediction

of blood glucose levels. For example - (Tresp et al. (1999)) use a recurrent neural

network to predict the blood glucose level over a future horizon. Their work demon-

strates that the application of neural networks for prediction has advantages over

predictions using a compartment based model. The use of a wavelet based neural

network along with principal component analysis to extract features from a time se-

ries of blood glucose level obtained from (Kok (2004)) is in (Zainuddin et al. (2009)).

In (Kok (2004)), the authors use an artificial neural network based approach with ac-

ceptable levels of accuracy. We find the use of an artificial neural network for on-line

glucose prediction using data from CGM devices but it is not able to predict sudden
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changes in blood glucose levels that may occur Pérez-Gand́ıa et al. (2010). Pappada

et al. (2011) predict blood glucose levels from CGM devices using a neural network

model with significant model accuracy.

When tested over longer periods of time, these ANN based solutions were found

to have high prediction error. To overcome the restrictions of ANN based solutions

and to introduce an even deeper level of automation, deep learning based solutions

are explored. Deep neural networks (DNN) (Schmidhuber (2015)) are composed of

a large number of hidden layers and are able to learn underlying representations

more accurately from data with minimum level of human intervention. Deep neural

networks have been successfully used to learn complex representations from datasets

including images (Krizhevsky et al. (2012)) and also in natural language processing

(Collobert and Weston (2008)). In certain applications, using deep learning without

providing any guidance to the neural network can lead to problems including lower

rates of predictions and classification. For example in the case of self-driving cars

(Bojarski et al. (2016)), neural networks are used to learn how to navigate traffic

conditions. However, in order to be able to successfully mimic a human driver, the

system must be able to evaluate proper driving techniques. By providing the neural

network with an idea of how the data is modeled, overfitting of data can be prevented

in a large number of cases. Also guided deep neural networks will be more efficient in

filtering out unwanted noise from real data as noisy samples would not be consistent

with the guide given to the deep network.

Several deep learning based solutions have also been developed for prediction

of blood glucose in diabetic patients (Mhaskar et al. (2017); Faruqui et al. (2019);

Zhu et al. (2018); Gu et al. (2017); Munoz-Organero (2020)). Alongside DNN based

solutions, due to the time varying nature of blood glucose data, recurrent neural net-

works have also been used for near-term prediction (El Idriss et al. (2019); Rabby
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et al. (2021); Sun et al. (2018); Wang et al. (2020); Martinsson et al. (2018)). How-

ever DNN based solutions are still prone to overfitting while training. To overcome

this limitation and to introduce aspects of the physiological model that is used for

modeling the dataset, guided deep learning was introduced and has been used in var-

ious fields (Read et al. (2019); Yin et al. (2019); Zeng et al. (2018); Hu et al. (2020)).

The authors in (Alashkar et al. (2017)) demonstrate that using an example-rules

based guided deep neural network provides results superior to using only rule-based

classification or only deep neural networks. This is because by providing a set of

example-rules to the deep neural network results in the network learning the param-

eters that affect the dataset more accurately. The parameters which do not have a

significant effect are not given much priority.

1.2.2 Prediction of Near-term Bradycardia in Pre-term Infants

Infants who are born prior to completion of 37 weeks of gestation are termed

as preterm infants. They are usually kept under strict care and monitoring since

their vital organs are still in the process of initial development. Due to their prema-

ture birth, these infants are very susceptible to health problems like hypoxemia (low

oxygenation of blood), apnea, cerebral problems, gastrointestinal problems, immune

system problems and various others that have long and short term effects (Blackburn

(1995)).

A critical problem in preterm infants is bradycardia, which is a slower than normal

heart rate that indicates low blood oxygen levels (Upton et al. (1992)). Infant and

preterm infant heart rate, which is the number of times the heart beats per minute,

is usually over 100 beats per minute (bpm) (Perlman and Volpe (1985)). During

episodes of bradycardia, their heart rates are lower which leads to the reduction of

blood velocity thus impacting the amount of oxygenated blood that can be circulated
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to the developing organs (Pichler et al. (2003)). Bradycardia has both short and

long term effects (Poets et al. (2015)) with the most severe being loss of life. Early

detection of bradycardia is thus crucial to avoid negative long term effects. It is

also to be noted that since these are preterm infants that are being monitored, their

sudden movements often cause motion artifacts which may be wrongly detected as

the onset of bradycardia. Along with early detection false alarms must be addressed

to ensure that real episodes of bradycardia are addressed in time. A false alarm is

caused when normal heartbeats are incorrectly detected as bradycardia events.

Various methods have been considered in the literature to predict the onset of

bradycardia events. Most of these methods depend on metrics related to the R

wave of the QRS complex, such as the peak-to-peak R-R interval (RRI) extracted

from ECG signals (Pan and Tompkins (1985)). In (Gee et al. (2017)), point process

theory was used to model instantaneous measures of RRIs between heart beats for

use in predicting bradycardia prior to onset with a 15% false alarm rate. Bayesian

online change point detection was used in (Gee et al. (2018)) to estimate sequential

transitions between RRIs that lead to bradycardia; the RRIs were modeled using

a lognormal probability density function (PDF). Multivariate regression predictive

modeling was used to identify clinically significant bradycardia parameters with a 5%

level of confidence (Truong (2018)). Predictive modeling was also used in employing

decision trees (Mahmud et al. (2019)) with time-frequency based ECG features to

classify active bradycardia events with 86.7% accuracy. Note that the aforementioned

methods require features or prior knowledge of the occurrence of bradycardia. In

the recent years, nonparametric modeling has drawn a great deal of attention in

many areas of research (Mittal and Paragios (2004); Moraffah (2019); Moraffah and

Papandreou-Suppappola (2019)).
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1.3 Contributions

In this section we highlight the research problem and its accompanying challenges

followed by the contributions made by this work to address the concerned problem.

1.3.1 Model Guided Neural Networks for Prediction of Blood Glucose Levels in

T1DM Patients

Formally, we define the research problem as - given a non-linear physical system

with time varying inputs and outputs, we want to develop a data driven model that

can reliably predict the output state of the system for unseen system inputs while

incorporating domain specific knowledge into the model, assuming that the system

inputs, outputs and parameters are observable.

The research challenges that are addressed while developing a solution are defined

as follows - for a given non-linear physical system with inputs Xi = {xi1, xi2, ..., xiN}

and their corresponding system outputs yi, where i ∈ 1, 2, 3, ..., N ,

• develop a solution that predicts the output state ahead in time with high levels

of accuracy

• is adaptable to individual instances of the system

• is explainable with respect to the domain

• functions with reduced volumes of training data

This dissertation develops and demonstrates a neural network framework where an

initial physical model can be used as a guide to a deep learning network to develop a

more accurate and personalized data driven machine learning prediction model. This

proposed framework is then enhanced with the addition of a model based objective
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function for the neural network in conjunction with the use of recurrent neural net-

works to improve the understanding of temporal attributes. We apply this proposed

model guided learning model towards the prediction of blood glucose data.

The following contributions were made in this area:

1. Model Guided Deep Learning: This work develops and implements a type of

guided deep learning - one that uses a model to help the deep neural network

learn the underlying representation. For data intensive applications, using deep

neural networks it is possible to increase the accuracy of predictions or clas-

sifications. However, deep neural networks can also over-fit data and lead to

lower rates of accuracy in some cases. In order to prevent these drawbacks

while being able to achieve a high level of prediction accuracy we propose to

introduce a guide to assist the neural network learn the underlying representa-

tion of the model and achieve convergence faster. The selected guide model is a

complex non-linear physiological model (Bergmann Minimal model modified to

account for physical activity and endogenous glucose production) that is rep-

resentative of the data. As an application of the proposed model guided deep

learning method, we predict the blood glucose levels in T1DM patients using

data collected from CGM devices in a free living scenario.

2. Loss Function Optimization: Loss functions measure the relative drift of pre-

dictions (or classifications) made by a neural network when compared to the

ground truth. Efforts are made to either minimize or maximize this drift based

on the problem formulation. While applying deep learning in the proposed

method, we try to minimize a loss function to ensure accurate predictions. A

new custom loss function is implemented to further enhance the proposed model

guided learning and this work studies the effects of applying the model through
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the loss function as opposed to directly to the network.

3. Recurrent Neural Network based Model Guided Learning: A novel recurrent

neural network based model guided deep learning utilizing the proposed custom

loss function. Recurrent neural networks are widely applied in the prediction of

time series data due to their innate ability to remember past observations and

iteratively improved the learned model over time. By exploiting this inherent

ability of recurrent neural networks in conjunction with the proposed loss func-

tion, this work implements and studies the effects of such a system compared

to off-the-shelf implementations for the task of blood glucose prediction.

1.3.2 Prediction of Near-term Bradycardia in Pre-term Infants

Formally, we define the research problem as - given a non-linear physical system

with a time varying output that can be observed and is prone to the occurrence of

anomalous events, we want to develop a model that can reliably predict the onset of

these aforementioned anomalous events prior to their occurrence in the near future.

The research challenges that are addressed while developing a solution are de-

fined as follows - for a given non-linear physical system with N sequential output

observations (x1, x2, ..., xN),

• develop an anomaly forecasting solution that has high prediction accuracy

• reduces the false positive rate

• utilizes only the observed data i.e. has no prior knowledge of system parameters

• functions with reduced volumes of training data

This dissertation develops and demonstrates a nonparametric solution that uses a

small number of features from the observed output of the physical system to accurately
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predict the onset of anomalies in the data prior to their occurrence in the near future.

We apply this proposed nonparametric solution towards the prediction of bradycardia

in preterm infants.

The contribution made while addressing this research problem is listed below.

1. Bradycardia Prediction using Non-parametric Kernel Density Estimation: We

propose and implement a novel method to predict the onset of near-term brady-

cardia in preterm infants without prior knowledge. The proposed nonparamet-

ric method robustly and accurately estimates a nonspecific probability density

function of the continuous non-bradycardia ECG segments and constructs an

RRI confidence set that depends on a desirable level of detection accuracy. We

then introduce a test to achieve the false alarm rate of 5% by inverting the

test. In particular, this method can achieve probability of false alarm, PFA, as

low as 5%, which is significantly more accurate compared to the existing meth-

ods. This method does not require any prior features to be extracted from the

ECG signal. The method also demonstrates through simulation we can robustly

predict the onset of bradycardia for a given false alarm rate.
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Chapter 2

MODEL GUIDED DEEP LEARNING APPROACH TOWARDS PREDICTION

OF BLOOD GLUCOSE LEVELS

2.1 Problem Definition

Cyber-physical systems often use predictive models of the physical system for

the decision making process. Although these predictive models may be theoretically

sound, when applied in practice they may suffer from various inaccuracies which

in turn degrades the performance of the system as a whole. Dealing with these

inaccuracies in the implementation of predictive models is a complex task since the

physical system is usually dependent on a large number of parameters. Instead of

dealing with several different instances of the physical system and trying to resolve

issues for each of them, we propose a way to improve the prediction capability of

these suboptimal predictive models in the presence of artifacts in practice.

2.2 Novel Model Guided Deep Learning Approach

The predictive models used in cyber-physical systems are highly non-linear by

nature. Since neural networks are capable of approximating non-linear computable

functions, we use it to extract prediction models using a data driven approach. We

opt to use a deep neural network since the added number of hidden layers allows it

learn the underlying non-linear representation more efficiently and with a higher level

of precision. Instead of allowing the deep neural network to freely learn from the data

and extract models, we provide it with a guide in the form of the predictive model.

This guide model must be integrated with the deep neural network.In this paper we
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Figure 2.1: Architecture of Guided Deep Learning Using a Predictive Physiological
Model as the Guide

integrate the predictive model into the deep neural network as an additional input

feature for the network. For each sample of input features, the predictive model is

used to generate an estimated value for the parameter that needs to be predicted. The

estimate generated by the predictive model for each sample in the input data is a result

of processing that sample using a mathematical model and hence captures the non-

linearity of the predictive model. This estimated value is then added as an additional

input feature for the deep neural network. The estimate of the parameter from the

predictive model aids the deep neural network in learning only those parameters that

are significant for correctly approximating the underlying model.

We show the usage of this proposed model guided deep learning on the closed loop

glucose control system for T1DM patients. The predictive model used as the guide for

our deep neural network is a physiological model called the Bergman Minimal Model.

We improve upon the existing Bergman Minimal Model and use this modified version.

Figure 2.1 is represents the overall architecture for our model guided deep learning

approach applied to the prediction of blood glucose levels in T1DM patients.
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2.2.1 Modified Bergmann Minimal Model

The model currently mostly used to research on the metabolism of glucose and

insulin regulation is the Bergman minimal model. This model was proposed by the

authors in Bergman et al. (1981) for the interpretation of glucose and insulin dynam-

ics. The Bergman Minimal Model is a two compartment model - one model for glucose

disappearance and the other model for insulin kinetics. The figure below shows the

minimal model for glucose disappearance and the minimal model for insulin kinetics

as per Van Riel (2004).

Figure 2.2: Two Compartment Bergman Minimal Model. Source - Van Riel (2004)

The equations describing the minimal model are given below -

dG(t)

dt
= k1(Gb −G(t))−X(t)G(t), G(t0) = G0, (2.1)

dX(t)

dt
= k2(I(t)− Ib)− k3X(t), X(t0) = 0, (2.2)
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t is the independent model variable time in minutes, t0 is the time of the glucose

injection, G(t) is the plasma glucose concentration[mg/dL], I(t) is the plasma insulin

level[µU/mL] and X(t) is the interstitial insulin activity. In order to improve blood

glucose prediction in the original minimal model, physical activity factor was added

along with the inclusion of Endogenous Glucose Production (EGP). As per Hovorka

et al. (2004), the insulin sensitivity is linearly and very tightly associated to the EGP

sensitivity. So in order to quantify the effects of interstitial insulin on the endogenous

production of glucose, the EGP is accumulated with X(t). By adding these two extra

factors along with the meal intake, a more accurate way of simulating the dynamics

of insulin was ensured.

This modified Bergman Minimal Model is what we use as a guide model and input

to our neural networks. This modified implementation of the Bergman Minimal Model

is implemented as a preprocessing step for our dataset and then fed to the neural

networks as the guide input.

2.3 Evaluation Metric

The metric chosen for evaluating the different prediction algorithms was Root

Mean Squared Error (RMSE). We compute the RMSE for each of the tested algo-

rithms using the formula given below -

RMSE =

√√√√ 1

N

N∑
i=1

(BGactual −BGpredicted)2 (2.3)

To evaluate the Bergman Minimal Model and the modified Bergman Minimal

Model estimators we use the same formula for RMSE as mentioned above. The only

change made was to use the estimated blood glucose values in these two cases. We

determine the performance of a predictor (or estimator) in this paper by observing
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the RMSE values for the predictions made. Since the dataset had been normalized

prior to training and testing, an RMSE value closer to zero indicates that a more

accurate prediction of blood glucose levels.

2.4 Dataset, Results and Discussion

2.4.1 Dataset and Preprocessing

Since the blood glucose level predictions depend on biological parameters that vary

from person to person, the data was collected, trained and tested on an individual

basis. Our dataset comprises of T1DM patient data collected from seven patients

over a period of seven days. The CGM device collects blood glucose data every five

minutes. A 16G accelerometer attached to the waist of each patient recorded their

physical activity levels throughout the day and was also set to collect data every five

minutes. Insulin sensitivity, basal and bolus rates and the EGP rate was determined

for each patient individually and then recorded. The estimated blood glucose level

from the modified Bergman Minimal Model is also fed as an input to the deep neural

network. This dataset is standardized to zero mean and unity standard deviation.

This was done to ensure a uniform scale among all the collected features and also to

ensure that the deep neural network reached convergence faster.

2.4.2 Experimental Setup

The proposed solution was implemented on a personal computer system compris-

ing of the following parts -

• Intel Core i7 4790 4 core CPU (base clock 3.60 GHz)

• 32GB RAM

• NVIDIA GTX 745 GPU with 4GB VRAM
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Figure 2.3: (a) A Single Layer Artificial Neural Network. (b) A Wide Neural
Network Composed of a Single Layer of Five Hundred Neurons. (c) A Deep Neural
Network Composed of Eleven Hidden Layers with Each Layer Composed of Fifty to
Eighty Neurons.

• Python 3.6 for neural network

• MATLAB 2019a for preprocessing

We use three variants of neural networks ranging from a single layer neural network

(Figure 2.3a.) to a wide network with a single layer (Figure 2.3b.) to a deep neural

network (Figure 2.3c.). Each type of neural network used is described below.

The neural network model (NN-Model I) is a single layer artificial neural network.

This neural network is composed of an input layer with input neurons corresponding

to the number of input features, one hidden layer with five neurons and a single

output neuron. The activation functions used for the hidden and output layer are

the tan hyperbolic and linear function respectively. The performance of this neural

network is reported later.

The wide neural network model (NN-Model II) is a neural network with an input

layer, a single hidden layer and an output layer. The input layer is composed of the
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same number of neurons as the number of input features. The hidden layer is com-

posed of five hundred neurons, while the output layer only has a single neuron. This

type of neural network is called a wide network because of the large number of neu-

rons present in the hidden layer. The activation functions for the hidden and output

layers are similar to the artificial neural network mentioned earlier- tan hyperbolic

for the hidden layer and linear activation for the output layer.

The third variant of neural network tested was the deep neural network model

(NN-Model III). The deep neural network, shown in Figure 2.3c, is composed of

thirteen layers - one input layer with four external neurons, one for each of the input

features, eleven hidden layers composed of neurons ranging between fifty to eighty

neurons in each layer and one output layer comprised of one external neuron, providing

the prediction of the blood glucose level. By method of trial and error, we optimize

the number of hidden layers required to make our deep neural network. Using lesser

than eleven hidden layers for our given dataset resulted in underfitting of the data

while using in excess of eleven layers would result in over-fitting the data. The tan

hyperbolic function is used as the activation function for each neuron in the hidden

layers. The output layer neuron uses a linear activation function.

For all three models of neural networks we use mean squared error as the loss

function and the Adam optimizer Kingma and Ba (2014). The initial weight distri-

bution for the neurons is done according to Glorot and Bengio (2010) for the tan

hyperbolic function. A batch size of 10 is used for all the neural network models and

the learning rate was set to 0.001 and the epsilon value was set to 10−8.

The modified Bergman minimal model and its effect on the estimation of blood

glucose levels are tested using four different variants of the proposed guide model. In

order to create each of the four different guide models one or more input features was

added or removed from the modified Bergman Minimal Model implementation and
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Table 2.1: Guide Model and the Corresponding Model Variant It Is Based On

Guide Model No. Guide Input Defined by

GM-I Bergman Minimal Model

GM-II Bergman Minimal Model with the effect of Endogenous

Glucose Production

GM-III Bergman Minimal Model with the effect of physical ac-

tivity

GM-IV Bergman Minimal Model with the effect of Endogenous

Glucose Production & physical activity

the same feature(s) was added or removed from the input to the neural network it

was fed into. The four variants of the guide model are listed in Table 2.1. We will

henceforth refer to each guide model as seen in Table 2.1.

We also use guided Support Vector Regression (SVR) using the guide models from

Table 2.1 to predict the blood glucose values. The predictions made using this guided

SVR approach is compared and contrasted in the results and discussion sections.

Training and testing of each of the aforementioned algorithms was done on a per

patient basis. For each patient, the training dataset was composed of six days worth

of data and then testing was done on the remaining day of data split into twelve

hour sets. Each patient dataset was subject to each of the guide models mentioned

in Table 2.1 above and then the data was input to each of the NN-Models with and

without the model guide for training and testing.
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Table 2.2: Bergman Minimal Model and Modified Bergman Minimal Model Predic-
tion RMSE Values

Modified Bergman Minimal Model Bergman Minimal Model

P1 0.422 0.461

P2 0.387 0.450

P3 0.527 0.476

P4 0.467 0.513

P5 0.447 0.573

P6 0.442 0.488

P7 0.425 0.477

2.4.3 Results

In this section we present the results of all our experiments and demonstrate that

our proposed model guided deep learning neural network outperforms the existing

methods of predicting blood glucose levels in T1DM patients.

The Bergman Minimal Model and our modified Bergman Minimal Model provide

estimates of the blood glucose levels with high RMSE values (Table 2.2). By ac-

counting for meal intake, physical activity and EGP our modified Bergman Minimal

Model performs slightly better in estimating the blood glucose levels as compared to

the original minimal model.

We evaluate the three neural network models NN-Models I, II and III when they

are not provided with any guide input. The RMSE values obtained for each of the

three NN-Models for the seven patients are shown in Table 2.3. It is to be noted that

the deep neural network, NN-Model III, has the lowest RMSE values for most of the
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Table 2.3: RMSE for NN-models I, II and III Without Any Guide Model Input

NN-Model I NN-Model II NN-Model III

P1 0.54 0.45 0.38

P2 0.36 0.44 0.45

P3 0.45 0.68 0.31

P4 0.33 0.42 0.43

P5 0.47 0.32 0.60

P6 0.66 0.54 0.26

P7 0.32 0.65 0.55

test cases. This can be attributed to the increased non-linearity of NN-Model III due

to the increased number of hidden layers and thus it is able to learn the non-linearity

of the underlying model better. Although, the learned representation does not result

in accurate predictions as seen from Figure 2.4

On applying the four variants of our guide model to our NN-Models I, II and

III the prediction RMSE value is always lower as compared to using the NN-Models

without a guide. Performance of the single layer neural network NN-Model I increases

significantly (lowered RMSE values) and we can see that it is able to learn the un-

derlying representation more accurately than without the guide input. From Table

2.4, the RMSE values show that this NN-Model I outperforms the Bergman Minimal

Model estimator and the guided SVR for most cases. It however has varied perfor-

mance across with respect to the four guide models used. Using NN-Model II with

the four guide models results in RMSE values (refer to Table 2.5) that are not always

lower than those obtained for NN-Model I. Since NN-Model II is also composed of
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Figure 2.4: Actual and Predicted Values of Blood Glucose for Patient 5 Using
NN-model III and No Guide Model Input

only a single hidden layer but with a much larger number of neurons in it, the network

may be learning the insignificant parameters more than NN-Model I.

Table 2.4: RMSE for NN-Model I Using the Various Guide Models

GM-I GM-II GM-III GM-IV

P1 0.075 0.053 0.049 0.045

P2 0.096 0.207 0.057 0.067

P3 0.017 0.2635 0.08 0.056

P4 0.085 0.139 0.047 0.052

P5 0.04 0.207 0.031 0.031

P6 0.01 0.07 0.021 0.0114

P7 0.02 0.018 0.018 0.0218
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Table 2.6 shows the RMSE values for the predictions made by the model guided

SVR using the guide models from Table 2.1. The predictions made by the guided

SVR also observed to be more accurate than the estimates obtained using only the

physiological models. GM-IV model used as a guide to the SVR produces the lowest

prediction error in most cases.

Table 2.6 also shows the RMSE values for each variant of the guide model when

passed to NN-Model III for prediction. For all the cases NN-Model III when com-

bined with GM-IV has the lowest RMSE values and can predict the blood glucose

levels better than the other guide models for this type of neural network model. The

decrease in the RMSE values for prediction using NN-Model III can be accounted

for by the increased number of hidden layers present. The extra hidden layers al-

low NN-Model III to better understand the non-linearity of the physiological model

used here and this when combined with the guide, NN-Model III learns the required

representation better than without the guide input.

Table 2.5: RMSE for NN-Model II Using the Various Guide Models

GM-I GM-II GM-III GM-IV

P1 0.1006 0.076 0.0552 0.0511

P2 0.1219 0.2139 0.0883 0.0304

P3 0.086 0.269 0.025 0.0539

P4 0.1313 0.1692 0.0638 0.0610

P5 0.0511 0.2056 0.0451 0.0356

P6 0.081 0.07 0.024 0.0273

P7 0.051 0.05 0.022 0.021
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Table 2.6: RMSE for Model Guided SVR and Model Guided Deep Neural Network
NN-Model III

Models Guided SVR NN-Model III

GM-I GM-II GM-III GM-IV GM-I GM-II GM-III GM-IV

P1 0.428 0.241 0.164 0.169 0.0176 0.017 0.01 0.00293

P2 0.221 0.054 0.043 0.044 0.0113 0.198 0.029 0.0028

P3 0.335 0.157 0.128 0.154 0.0205 0.238 0.011 0.00909

P4 0.417 0.275 0.256 0.249 0.0132 0.0857 0.012 0.00879

P5 0.369 0.174 0.162 0.167 0.0174 0.2055 0.0063 0.0079

P6 0.376 0.219 0.204 0.194 0.0165 0.05 0.0148 0.0053

P7 0.451 0.231 0.16 0.091 0.0174 0.25 0.07 0.0019

2.4.4 Discussion

From the results shown in section 2.4.3 , we demonstrate that our proposed ap-

proach of model guided deep learning is able to significantly lower the prediction

errors as compared to using only the predictive model or a free learning deep neural

network. Applying our proposed approach to a closed loop glucose control system

for prediction of blood glucose levels, we saw a significant improvement in the predic-

tions made for each patient. The guide model used for our deep neural network is the

modified Bergman Minimal Mode. Compared to the Bergman Minimal Model and

modified Bergman Minimal Model being used individually to estimate blood glucose

level for our dataset, our proposed approach has an improvement in the RMSE values

by a factor of almost 100. Our proposed approach improves on the RMSE values on

an average by a factor of almost 50 compared to a deep neural network without any
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(a) Prediction Using NN-Model III and GM-I (b) Prediction Using NN-Model III and GM-II

(c) Prediction Using NN-Model III and GM-III (d) Prediction Using NN-Model III and GM-IV

Figure 2.5: Prediction Using the Four Different Variants of the Modified Bergman
Minimal Model and NN-Model III

guide and by a factor of 32 compared to using a guided SVR approach.

For NN-Model III, the RMSE values obtained on the test sets for each patient

is always much lesser when using a model guide as compared to without using the

guide. Inspite of having the same architecture of the deep neural network, the model

guided deep neural network makes more accurate predictions. Figure 2.5 shows the

predictions made by the deep neural network NN-Model III for all for model guides

(GM I-IV) for Patient 1. We observe that the most accurate predictions are made

by using GM-IV i.e. our modified Bergman Minimal Model as the guide input. The

quality of the predictive model used as the guide impacts the predictions made by

the deep neural network. In this regard when the original physiological model (GM-

I) is improved by adding the effects of EGP (GM-II) and the effects of physical
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activity (GM-III) and then combining both (GM-IV) the predictions made by the

model guided deep neural network become increasingly closer to the ground truth

values. Therefore we can conclude that by introducing a model based guide to the

free learning deep neural network we are able to significantly improve the predictions

made by the deep neural network.
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Chapter 3

A FRAMEWORK FOR MODEL GUIDED LONG SHORT-TERM MEMORY

NEURAL NETWORKS FOR PREDICTION OF BLOOD GLUCOSE LEVELS

3.1 Problem Definition

Forecasting blood glucose levels with a high level of accuracy is an essential re-

quirement for the artificial pancreas project to be successful. In this regard, we have

seen multiple methods based on statistical and machine learning techniques being

developed throughout literature. However, most of these methods are reliant only on

empirical evidence i.e. observations from the glucose monitoring device while some

of the more recent work also include other parameters like meal input and physical

activity. For all these methods that consider the observed glucose monitor data, they

do not account for the difference in the observed interstitial blood glucose from the

monitoring devices and the actual blood glucose levels. It is essential to account for

the difference in the interstitial and venous blood glucose levels in order to develop

a model that can accurately estimate the blood glucose levels for a given period of

time. In this work, we propose to build a framework for predicting blood glucose

levels in T1DM patients using a model guided long short term memory (LSTM) net-

work. Using a mathematical model that encapsulates the kinetics of diffusion of blood

glucose from the bloodstream to the tissue level we incorporate the missing domain

knowledge required for accurate estimation of blood glucose in a closed loop system.
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3.2 Novel Framework for Model Guided Long Short-Term Memory Neural

Networks with Custom Loss Function

In this section we formulate the blood glucose prediction problem as a time-series

prediction problem using supervised learning, briefly discuss the modified BMM used

as our model guide, discuss the LSTM architecture and how it is used for the regression

task and finally present our proposed framework.

3.2.1 Time Series Problem Formulation

Blood glucose readings from CGM sensors are crucial for patients to monitor and

administer insulin doses on a daily basis. CGM sensors record blood glucose levels at

frequent intervals (common interval used is a recording every 5 minutes). CGM data

can be modeled as time-series data of the form (x1, x2, x3, ..., xi, xi+1, ..., xn) where

each xi is the CGM observation at the i-th instant. Since sequential time-series data

can be modeled

Most LSTM based prediction solutions only consider this single CGM time-series

for the blood glucose prediction task. While some may add additional features like

meal information, physical activity (exercise, daily step count, etc.), and bolus insulin,

in this work we consider the following as input features -

• CGM sensor reading: BGactual

• carbohydrate intake information: Cintake

• physical activity by means of accelerometer readings: Accphysical

• bolus insulin injected: Ibolus

• lastly the estimate of blood glucose levels using the modified BMM (model

guide): BGmodelguide
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Since an observation is made for each of the aforementioned features at every i-

th timestep, we formulate each sample in our dataset as a multi-variate time-series

sample of the form (BGactual
i , Accphysicali , Ibolusi , Cintake

i , BGmodelguide
i ). However, this

sequential time-series data must be converted to an input-output pair form such that

any j-th sample Xj has a ground truth label or value yj associated with it for the task

of learning. We convert our multi-variate time-series dataset into a multi-dimensional

input-output sequence. Using this newly formed dataset from our multi-variate time-

series data, we apply our proposed MG-LSTM approach for blood glucose prediction.

3.2.2 Modified Bergman Minimal Model

In order to model the effects of insulin sensitivity and pancreatic responsiveness

in diabetic patients, the Bergman minimal model was developed. This is a two-

compartment model that is used to quantify both pancreatic responsiveness and in-

sulin sensitivity for a given subject. Pancreatic responsiveness can be described as

the ability of the pancreatic β-cells to respond to and dispose of glucose in the blood.

Insulin sensitivity refers to how sensitive the body’s cells are in response to insulin.

A higher insulin sensitivity results in a more efficient utilization of blood glucose.

According to the two compartment minimal model, the glucose kinetics model is

described using (3.1) and (3.2) and the insulin sensitivity is calculated as SI = −P3/P2

and its unit is min−1/µU per ml. The definition of X and the remaining parameters

are described in Bergman et al. (1979).

dG(t)

dt
= (P1 −X)G(t)− P1Gb, G(t0) = G0, (3.1)

dX(t)

dt
= P2X(t) + P3I(t), X(t0) = 0, (3.2)

where:
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• t is the independent model variable time in minutes,

• t0 is the time of injection of external glucose,

• G(t) is the concentration of plasma glucose,

• I(t) is the plasma insulin level, and

• X(t) is the interstitial insulin activity.

The model of insulin kinetics that is utilized for the calculation of the pancreatic

responsivity parameters is given by (3.3) as

dI(t)

dt
= γ(G(t)− h)t− nI(t) (3.3)

However, the regulation of blood glucose is not limited to the effects of insulin and

the amount of carbohydrates consumed by individuals. Other physiological factors

like endogenous glucose production (EGP) Young (2005) and the amount of physical

activity Yardley et al. (2012) undergone by an individual also play an important

role. In this work, we utilize the modified Bergman minimal model found in Agrawal

(2017); Das et al. (2017). This modified BMM accounts for the relation of insulin

sensitivity and endogenous glucose production Hovorka et al. (2004),the effects of

physical activity Colberg et al. (2015) and the meal intake sub-model Gillis et al.

(2007). The original BMM (3.1), (3.2) and (3.3) are modified as shown in (3.4), (3.5)

and (3.6) respectively.

dG(t)

dt
= −(P1 + PA)(G(t)−Gb)−X(t)G(t)+

m(t) + EGP0(1−X(t)

Vg
(3.4)

dX(t)

dt
= P2X(t) + P3I(t) (3.5)
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dI(t)

dt
=


γ(G(t)− h)t− n(I(t) + Ib) + U(t)

VI
, ifG(t) ≥ h

−n(I(t) + Ib) + U(t)
VI
, otherwise

(3.6)

where:

• G(t)(mg/dl) is the relative differential plasma glucose,

• Gb(mg/dl) is the basal glucose,

• X(unitless) represents the remote effects of insulin on glucose distribution and

endogenous glucose production,

• I(t)(µI/dl) is the blood insulin concentration,

• Ib(µI/dl is the basal insulin concentration,

• P1(min
−1) is the glucose ”mass action” rate constant,

• P2(min
−1) is the rate constant expressing the spontaneous decrease of tissue

glucose uptake ability,

• P3(min
−1) is the insulin-dependent increase in tissue glucose uptake ability per

unit of insulin concentration excess over baseline insulin,

• n(min−1) is the first order decay rate constant for insulin in plasma,

• γ(min−1)is the rate of pancreatic release of insulin after the bolus, per minute

and per mg/dl of glucose concentration above the target glycemia,

• h(mg/dl) is the pancreatic ”target glycemia”,

• VI(dl/kg) is the glucose volume distribution,

• VG(dl/kg) is the insulin volume distribution,
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• m(t)(mg) is the effect of carbohydrate intake on plasma glucose,

• EGP0(mg/dl) represents endogenous glucose production extrapolated to the

zero insulin concentration, and

• U(t)(µI/dl) is the modification for T1DM in which insulin appears only from

an exogenous source.

3.2.3 Long Short-Term Memory Neural Network

General ANNs are capable function approximators but the flow of information is

unidirectional i.e. from the input layer to the output layer while travelling through

the hidden layers. This implies that the current computed output of the network is

not considered as an input while calculating the output of the next sample. However,

in RNNs there is a directional cycle in the process of transmission of information.

This cyclic flow of information allows the RNN to remember the previous output

while computing the output of the current sample, thereby bringing in the concept

of memory. However, RNNs do suffer from gradient disappearance and gradient ex-

plosion Rather et al. (2015). To overcome this problem, Long Short Term Memory

(LSTM) networks were developed Hochreiter and Schmidhuber (1997). LSTM net-

works are a special kind of RNN that are capable of learning long-term dependencies.

They were designed to avoid the disappearing and exploding gradient problems that

are faced by RNNs. Like RNNs, LSTMs also have a chain of repeating modules of

neural network. The repeating module (shown in Figure 3.1) in an LSTM comprises

of four neural network layers which interact in a special way.

The key to LSTMs is the cell state C which runs through the entire cell with minor

modifications made to it through linear interactions. This cell state is responsible for

remembering (addition of past state information) and forgetting (removal of past state

34



Figure 3.1: Long Short-Term Memory (Lstm) Unit Displaying the Four Neural
Network Layers Used for It’s Memory Capability

information) handled by the presence of various gates within the cell. Each gate is

comprised of a sigmoid neural network layer and a pointwise multiplication operation.

There are three such gates in every LSTM cell - input gate, output gate and forget

gates.

If the input sequence is given by (x1, x2, ..., xT ) and the hidden layer representa-

tions as (h1, h2, ..., hT ), then at time t:

ft = σ(Wf · [h(t−1), xt] + bf ) (3.7)

it = σ(Wi · [h(t−1), xt] + bi) (3.8)

C̃t = tanh(WC · [h(t−1), xt] + bC) (3.9)

Ct = ft ∗ Ct−1 + it ∗ C̃t (3.10)

ot = σ(Wo · [h(t−1), xt] + bo) (3.11)

ht = ot ∗ tanh(Ct) (3.12)
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where, it, ot, ft are the input gate, output gate and forget gate layer respectively,

Ct is the cell state at the given instant t, Wf ,Wi,WC and Wo are the weights of the

forget, input, cell state and output layer respectively, bf , bi, bC and bo are the bias

values for each of the layers respectively, σ(·) is the sigmoid function and tanh(·) is

the tan hyperbolic function.

In every LSTM, the first step is to decide how much information must be discarded

or remembered from the previous cell state. This is done by means of the forget gate

(ft) layer (3.7). By comparing the previous hidden layer information ht−1 and the

current sample xt, the forget gate layer outputs a number between 0 and 1 (by means

of the sigmoid function) for each value present in the cell state Ct−1. Next, the

LSTM decides on what new information it will store in the cell state - the input gate

layer (3.8) decides which values need to be updated while a tanh layer (3.9) creates

a candidate vector C̃t to be added to the current cell state Ct using (3.10). Lastly,

the output of the LSTM cell is generated using a sigmoid layer (3.11), which decides

what parts of the cell state must be sent out, multiplied by running the cell state

Ct through a tanh function as shown in (3.12). This output ht is transmitted to

the next LSTM cell and the process is repeated in the next LSTM cell. By utilizing

these four special neural network layers in each neuron, LSTM networks are capable

of remembering long sequences of past data.

In order to utilize the LSTM network for the task of prediction, we add a fully con-

nected layer at the end of our LSTM network to replicate the task of linear regression

(3.13).

yt = Wy ∗ ht + by (3.13)

where yt is the prediction made at time t, Wy is the weight matrix associated

with the output of the LSTM network ht and by is the bias/threshold of the linear

regression layer.
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Table 3.1: Description of Configurations of the Proposed Model Guided LSTM
Neural Network

Configuration Description of Configured Neural Network

Framework

Model Guide

Used

NG-LSTM Stacked LSTM with no model guide as input fea-

ture and no model guided loss

None

MG-LSTM I Stacked LSTM with model guide as input feature

only

Modified

BMM

MG-LSTM II Stacked LSTM with model guide as input feature

and model guided loss function

Modified

BMM

MG-LSTM III Stacked LSTM with hypothetical model guide as

input feature and model guided loss function

Hypothetical

Model Guide

3.2.4 Custom Loss Function

For neural networks, the objective or loss function plays an important role in

determining how well the neural network performs. Each neural network comprises

of an input layer, several hidden layers and an output layer. Data samples (Xi)

are fed as inputs to the network through the input layer followed by a series of

multiplications (with layer wise weights denoted by Wlayer) and layer wise activation

through the hidden layers to get an output (ŷ) through the output layer. The neural

network output is then compared to the ground truth value (y) corresponding to

each sample and the difference between the two is computed as the error term (3.15).

This computed error term provides us with a metric to evaluate the performance

of a model. The error term is then optimized by means of backpropagation, which

modifies the weights of each layer based on the error term.

ŷi = f(Xi,Wlayer, blayer) (3.14)
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error = y − ŷ (3.15)

The choice of the error metric or loss function is application dependent. One of

the most commonly used loss functions for the task of regression is Mean Squared

Error (MSE) (also called the L2 norm)(3.16)

Lemp = MSE =
1

N

√√√√ N∑
i=1

(yi − ŷi) (3.16)

where for each i − th sample, yi is the ground truth or actual value, ŷi is the

estimated output from the neural network and N is the total number of samples

present in the data. MSE is sensitive towards outliers and therefore penalizes outliers

to a greater degree. Blood glucose levels change in an abrupt manner depending on

certain factors like meal intake, amount of physical activity and EGP. These sudden

changes may result in the creation of outlier samples (sudden spikes or drops) in data

which in turn will be penalized heavily by a loss function such as MSE. In order to

correct this issue and with the purpose of embedding model knowledge into the neural

network we propose to use a loss function based on correcting the model using our

proposed model guide estimate in section 3.2. Our proposed loss function Lmg (3.17)

is based on using MSE between the model guide estimate ymg
i and the output of the

neural network ŷi

Lmg =
1

N

√√√√ N∑
i=1

(ymg
i − ŷi) (3.17)

By combining the loss calculated from empirical evidence (3.16) and the loss cal-

culated from the physiological model guide (3.17) in a weighted manner we get our

custom loss function L as

L = α1 ∗ Lemp + (1− α1) ∗ Lmg (3.18)
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Figure 3.2: Stacked LSTM Model Framework

where α1 and (1 − α1) are weighting factors that control the priority given to

empirical loss and physiological model based loss respectively. The values of both are

determined based on multiple experimental runs combined with the efficiency of the

model guide.

3.2.5 Model Guided LSTM

In this work, we propose to implement a model guided LSTM based neural network

(Figure 3.2) to predict changes in blood glucose levels in Type 1 Diabetes Mellitus

patients. We propose a LSTM neural network that is capable of learning from the

evidence while incorporating aspects of the model that describes the physiological

process of interest. In this work the model guide can be applied to the neural network

in two aspects - as an input feature and as part of the neural networks loss function.

For the task of glucose prediction we use the modified Bergman minimal model as

discussed in Section 3.2.2 as our guide model. The blood glucose estimate generated

by the modified BMM is used as an input feature. We also use this model guide

estimate as part of the loss function as discussed in Section 3.2.4. We show that by

using domain knowledge in conjunction with the representation learned by a neural

network, we are able to improve the prediction accuracy of the overall network and

fine tune the network to each individual patient.
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3.3 Evaluation Metrics

Evaluation metrics chosen for this work are the root mean squared error (RMSE)

and adjusted R2 value. RMSE is widely used in literature as a good measure of accu-

racy to compare prediction errors of either different models or model configurations.

Adjusted R2 on the other hand determines the usefulness of adding additional input

features by assessing their impact on the output variable. In order for a model to

be considered a good predictor for blood glucose, the RMSE of the predicted output

when compared to the ground truth must be relatively small. At the same time,

addition of the model guide feature must reflect an increase in the adjusted R2 value.

This would aid in the process of understanding the impact of adding the model guide

to the learning ability of a neural network. We discuss each of the chosen metrics

below.

3.3.1 Root Mean Square Error

While fitting a regression model, we want to evaluate how well our model “fits”

the given data. Root mean square error (RMSE) is a commonly used metric that

tells us how far apart the predicted values are from the ground truth, on an average.

The lower the value of RMSE, the better the model “fits” the corresponding dataset.

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi) (3.19)

We calculate RMSE for each i-th observation as shown in (3.19) using the ground

truth value yi = BGactual
i and the output of our proposed model guided LSTM network

ŷi = BGpredicted
i .
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3.3.2 Adjusted R2

While RMSE values tell us how well a model “fits” the corresponding dataset

by measuring the distance between the predicted value made by our model and the

ground truth, we use a second evaluation metric - adjusted R2 which shows the

degree to which the input/predictor variables are able to explain the variation in the

output/predicted variable for a given regression model.

The R2 metric (3.20) informs us about how well the independent/predictor vari-

ables of our model are able to explain the variation in the dependent/predicted vari-

able. This metric takes values between 0 and 1 - the higher the R2 value the better

the model fits the data.

R2 = 1−
∑

(yi − ŷi)∑
(yi − ȳ)

(3.20)

where for every i-th observation,

• yi is the ground truth value

• ŷi is the predicted value

• ȳ is the mean of the observed values

The R2 value has one shortcoming - increasing the number of independent vari-

ables will always cause the overall R2 value to increase. Therefore the addition of

independent variables to the regression model will result in a higher R2 value implying

that if the variables added are redundant to the model, we would still get a high value

of R2, which is not ideal or explainable. To correct this issue, we use the adjusted R2

(3.21) that takes into account the number of independent variables used to predict in

a model. This way it allows us to determine whether the addition of new variables is

actually useful while fitting the model.
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AdjustedR2 = 1− (1−R2)(N − 1)

(n− k − 1)
(3.21)

where,

• R2 is calculated using (3.20)

• N is the total number of observations used

• k is the number of independent variables used

Adjusted R2 values range between -1 to 1 indicating the goodness of fit between the

independent variables and the predicted variable. Higher positive values of adjusted

R2 imply that the independent variables used in the model are able to explain the

variation in the predicted variables to a greater degree.

3.4 Dataset, Results and Discussion

In this section we discuss the the BG forecasting accuracy of our proposed MG-

LSTM model framework for our dataset using various train to test splits of the data.

We also discuss the impact of the model guide and the discrepancies observed in the

dataset.

3.4.1 Dataset and Preprocessing

The variation of blood glucose levels is specific to each individual based on their

pancreatic β-cell responsiveness and insulin sensitivity along with other factors. Our

dataset comprises of data collected from eight T1DM patients in a controlled envi-

ronment over a period of seven days. Each patient was outfitted with a CGM device,

an insulin delivery pump along with a 16G accelerometer device to record physical

activity. We recorded the CGM reading and accelerometer reading every five minutes.
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Meal intake was recorded in terms of the amount of carbohydrates consumed while

insulin sensitivity, basal and bolus insulin, EGP rates were computed on a per patient

basis. The collected data was cleaned and preprocessed prior to being used for the

purposes of training and testing. The cleaning process was done to ensure that our

data is free from noisy readings, artifacts and erroneous readings. For the purposes of

training the neural network, the dataset was preprocessed and standardized to zero

mean and unity variance to ensure a uniform scale across all the collected features

and for faster convergence.

3.4.2 Experimental Setup

Since blood glucose sequences exhibit characteristics of strong non-linearity, ran-

domness and are non-stationary by nature, the application of general prediction meth-

ods is difficult. To this effect we use our proposed model guided LSTM based network

to accurately predict blood glucose levels in T1DM patients within a prediction hori-

zon (pH) of thirty minutes. The overall process from data acquisition to prediction

for each patient is described as follows:

1. Acquire patient data using CGM, accelerometer, meal information and insulin

injected. Clean the data and standardize to zero mean and unity variance prior

to splitting for training, validation and testing.

2. Use the acquired patient data to learn modified BMM parameters and estimate

the model guide values using the modified BMM.

3. Using a 60:20:20 train to validation to test split, we train our MG-LSTM net-

work and use the validation split to fine-tune network hyper-parameters. Model

performance is then tested using the test split and the RMSE and adjusted R2

values are computed.
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4. Using a 40:20:40 train to validation to test split, we train our MG-LSTM net-

work and use the validation split to fine-tune network hyper-parameters. Model

performance is then tested using the test split and the RMSE and adjusted R2

values are computed.

5. We compare the performance of using a 60:10:30 training to validation to test

split and using a 40:20:40 split of the dataset using the MG-LSTM model.

The proposed model guided stacked LSTM framework was implemented using the

Google Colab Research Environment and a desktop computer. Specifications of the

runtime environment used in the Google Colab Research environment are listed below:

• Intel Xeon CPU (base clock 2.20GHz)

• 16 GB RAM

• NVIDIA Tesla K80 GPU with 24GB VRAM

• Python 3.7.13

Specifications of the desktop computer used for preprocessing the dataset and gener-

ating the modified Bergman minimal model estimate are listed below:

• Intel Core i7 4790 4 core CPU (base clock 3.60GHz)

• 32GB RAM

• NVIDIA GTX 745 GPU with 4GB VRAM

• MATLAB R2019a
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3.4.3 MG-LSTM Configurations

In this work, we configure and use two variations of our proposed MG-LSTM

framework utilizing the modified BMM model (as discussed in Section 3.2.2) as our

guide model. We also configure a third variation of the proposed MG-LSTM frame-

work using a hypothetical guide model. The details for each of the configurations is

listed in Table. 3.1.

Each variation of our proposed MG-LSTM framework and NG-LSTM solution

was set to run for 500 epochs with an early stopping criteria of patience level 20.

The batch size was set to 16, learning rate to 0.0001 using the root mean squared

propagation optimizer. We note that for each of the configurations used convergence

of the proposed framework was achieved in less than 200 epochs consistently.

3.4.4 Results for 60:20:20 Data Split

Traditionally a 60:40 train to test split ratio is used for the task of learning models.

Each patient’s data is split using a 60:20:20 percent split ratio for training, validation

and testing respectively. We set the prediction horizon (pH) to 30 minutes for all

of our experiments. This is done to closely mimic the prediction behavior of real-

time CGM devices used by patients. All four configurations of our proposed model

(Table 3.1) are trained and tested using this data split. The experimental results

using this data split and our proposed models are summarized in Table. 3.2. The

average time to train each configuration using this data split is around 65±5 seconds

while the average inference time is around 0.3 ± 0.15 seconds. Results from this

table demonstrate that our proposed model achieves significantly better forecasting

performance across all cases as opposed to using no model guide for forecasting BG

levels.

45



(a) NG-LSTM Performance

(b) MG-LSTM I Performance

(c) MG-LSTM II Performance

Figure 3.3: Performance of Model Guided LSTM in Predicting Blood Glucose Lev-
els in Patient P5 for the next 700 Minutes (Approximately 11.5 Hours); (a) Using
Configurations NG-LSTM (b) Using Configuration MgGLSTM I and (c) Using Con-
figuration MG-LSTM II

Using this data set split, without a model guide, the stacked LSTM (NG-LSTM)

has RMSE values in the range of 18.96 to 39.09 mg/dL while the average RMSE is

28.745 mg/dL across all cases. On application of the model guided MG-LSTM in
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Table 3.2: Comparison of RMSE of the Various Configurations of the Proposed
Model Guided LSTM Neural Network Framework Using 60:40 Training to Testing
Data Split

NG-LSTM MG-LSTM I MG-LSTM II MG-LSTM III

Patient RMSE Adjusted R2 RMSE Adjusted R2 RMSE Adjusted R2 RMSE Adjusted R2

P1 33.909 0.839 23.796 0.822 31.875 0.760 23.800 0.800

P2 32.880 0.796 24.612 0.754 31.172 0.765 21.890 0.826

P3 29.200 0.368 17.380 0.610 14.452 0.640 17.160 0.710

P4 25.507 0.739 16.584 0.508 21.445 0.383 15.510 0.551

P5 18.960 0.197 13.476 0.620 9.860 0.633 6.720 0.760

P6 28.705 0.629 23.235 0.684 20.831 0.711 20.950 0.721

P7 33.736 0.889 23.793 0.790 27.105 0.776 23.476 0.790

P8 26.038 0.766 24.564 0.538 26.862 0.485 21.230 0.548

configuration MG-LSTM I, we observe that RMSE for each patient shows significant

decrease in RMSE values (ranges between 13.48 to 23.79 mg/dL) and the average

RMSE across all patients is reduced to 20.828 mg/dL. Using MG-LSTM II, model

guide as an input and in the loss function, we observe that the RMSE ranges between

9.86 to 31.75 mg/dL and the average RMSE increases slightly to 22.95 mg/dL.

The proposed model’s forecasting performance using pH=30 minutes is illustrated

in Figure 3.3 for patient P5 using configurations NG-LSTM (Figure 3.3a), MG-LSTM

I (Figure 3.3b) and MG-LSTM II (Figure 3.3c). While the introduction of the model

guide as an input feature decreases the error between the predicted BG values and the

ground truth, introduction of the model guide into the loss function further enhances

this effect.
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(a) NG-LSTM Performance

(b) MG-LSTM I Performance

(c) MG-LSTM II Performance

Figure 3.4: Performance of Model Guided LSTM in Predicting Blood Glucose Lev-
els in Patient P8 for the next 1200 Minutes (Approximately 20 Hours); (a) Using
Configurations NG-LSTM (b) Using Configuration MgGLSTM I and (c) Using Con-
figuration MG-LSTM II

3.4.5 Results for 40:20:40 Data Split

Aside from using the standard 60:40 split for training to testing data, we investi-

gate the effects of using smaller amounts of training data using our proposed model.
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Table 3.3: Comparison of RMSE of the Various Configurations of the Proposed
Model Guided LSTM Neural Network Framework Using 40:60 Training to Testing
Data Split

NG-LSTM MG-LSTM I MG-LSTM II MG-LSTM III

Patient RMSE Adjusted R2 RMSE Adjusted R2 RMSE Adjusted R2 RMSE Adjusted R2

P1 26.190 0.854 26.400 0.750 31.310 0.710 26.450 0.747

P2 25.480 0.810 23.120 0.790 21.120 0.760 25.120 0.710

P3 24.060 0.700 34.150 0.320 28.790 0.440 34.150 0.310

P4 24.820 0.860 19.343 0.720 24.240 0.630 19.340 0.720

P5 46.690 0.682 58.280 0.433 39.590 0.690 58.280 0.433

P6 36.930 0.492 27.586 0.510 26.940 0.490 27.586 0.510

P7 46.683 0.796 28.890 0.770 38.043 0.720 28.990 0.770

P8 28.573 0.697 22.916 0.580 23.073 0.590 19.790 0.580

The training data split is reduced to 40% of the total available data per patient. The

validation split is kept at 20% while the testing set is increased to 40%. The results of

applying all configurations of our proposed model on this data split are summarized

in Table 3.3. Results from this table indicate that reducing the amount of training

data does not affect the overall performance of our proposed model. The average

time to train each configuration using this data split is around 52± 5 seconds while

the average inference time is around 0.3± 0.15 seconds.

We observe that using a smaller training set, the RMSE ranges between 24.06

- 46.69 mg/dL using NG-LSTM (no model guide) and the average RMSE is 32.07

mg/dL across all cases. In comparison, using the modified BMM as a model guide

(MG-LSTM II) results in RMSE values between 21.12 - 39.59 mg/dL and the average

RMSE reduces to 29.014 mg/dL across all patients. From the results observed in this

section, we note that our proposed MG-LSTM framework is capable of forecasting
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Table 3.4: Comparison of RMSE Values Using Configuration NG-LSTM with 60:40
Train to Test Split and Configuration MG-LSTM II with 40:60 Training to Test Data
Split

60% Training Data 40% Training Data

NG-LSTM MG-LSTM II

Patient RMSE Adjusted R2 RMSE Adjusted R2

P1 33.909 0.839 31.310 0.710

P2 33.909 0.839 21.120 0.760

P3 29.200 0.368 28.790 0.440

P4 25.507 0.739 24.240 0.630

P5 18.960 0.197 39.590 0.690

P6 28.705 0.629 26.940 0.490

P7 33.736 0.889 38.043 0.720

P8 26.038 0.766 23.073 0.590

BG levels with limited training data. The forecasting performance of our proposed

model using a 40:20:40 data split with pH=30 minutes for Patient P8 is illustrated

in Figure 3.4.

Table. 3.4 shows the performance of NG-LSTM using 60% training data compared

to MG-LSTM II using 40% training data. Using these results and apart from a couple

of outliers (patients P5 and P7), we demonstrate that our proposed model achieves

lower prediction error while using a reduced amount of data for training. This makes

such a framework suitable for use in conditions where the model does not have a large

amount of data to learn from.
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Table 3.5: Comparison with Existing Methods for Prediction of Blood Glucose
Publication Methods Used Features Evaluation Metric Prediction Accuracy

Kok (2004) ANN CGM RMSE 2.7055 (Normalized)

Zainuddin et al. (2009) WNN CGM, Meal, Insulin, Physical Activity RMSE 0.0504 (Normalized)

Pérez-Gand́ıa et al. (2010) ANN CGM RMSE 19.51± 5 mg/dL

Pappada et al. (2011) ANN CGM, Meal, Insulin, Physical Activity RMSE 43.9± 6.5 mg/dL

Sparacino et al. (2007) ARIMA CGM MSPE 18.78 mg/dL

Yang et al. (2018) ARIMA CGM RAD 141.3mg/dL

Georga et al. (2012) SVR CGM, Meal, Insulin, Physical Activity RMSE 16.23± 3.87 mg/dL

Bunescu et al. (2013) SVR CGM, Meal, Insulin, Physical Activity RMSE 19.5 mg/dL

Mhaskar et al. (2017) Deep ANN CGM Accuracy 77.97%

Gu et al. (2017) LSTM CGM RMSE 14.04 mg/dL

Zhu et al. (2018) Deep CNN CGM RMSE 21.73± 2.52 mg/dL

Faruqui et al. (2019) LSTM CGM, Weight, Food, Physical Activity Accuracy 84.12%

Munoz-Organero (2020) LSTM CGM, Insulin, Food RMSE 6.42 mg/dL

Li et al. (2020) ESN CGM RMSE 23.57mg/dL

Martinsson et al. (2018) RNN-LSTM CGM RMSE 20.1 mg/dL

Sun et al. (2018) RNN-LSTM CGM RMSE 21.7 mg/dL

Proposed Work MG-LSTM CGM, Weight, Food, Physical Activity, Model Guide RMSE 13.48 mg/dL

3.4.6 Discussion on Model Guide and Adjusted R2 Value

Our proposed MG-LSTM framework improves the forecasting accuracy as com-

pared to using only a stacked LSTM framework. However, we observe some discrep-

ancies in the adjusted R2 value across all experiments performed. As discussed in

section 3.3.2, the adjusted R2 value informs us about the variation of the predicted

variable based on the addition of predictor variables. Addition of the model guide

as an input feature causes an increase of the adjusted R2 value for most patients

using our proposed model. However, for some patients we note a decrease in this

value. This decrease in the adjusted R2 value can be attributed to the model being

used to guide the LSTM network. For this work the modified BMM Agrawal (2017);

Das et al. (2017) was used as the model guide for MG-LSTM I and MG-LSTM II.

Since the BMM uses interstitial blood glucose levels to estimate the intravenous blood

glucose levels, we hypothesize that using a more accurate physiological model would
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further improve the performance of our proposed model.

We investigate the effects of using a hypothetical physiological model which can

estimate BG levels with low estimation error i.e. the model estimate is almost com-

parable to the ground truth. The BG estimate from our hypothesized physiological

model is obtained using (3.22)

BGHypEst = BGactual +Noise (3.22)

where Noise is generated from N (0, 3.5). Using BGHypEst as the model guide input

for our proposed model, we observe in Table. 3.2 and Table 3.3, a significant drop

in RMSE across all patients using both data splits. We also note an increase in the

adjusted R2 value at the same time. Switching out the modified Bergman minimal

model for a more accurate hypothetical model causes an increase in the adjusted

R2 value for most patients for both data splits. This observation shows that the

physiological model chosen as the guide for the framework is an integral part to

achieving a solution that has high predictive accuracy.

3.4.7 Discussion on RMSE

In this work, the evaluation metric root mean squared error or RMSE was used

to evaluate the predictive accuracy of the proposed framework. RMSE is used as

an evaluation metric for most regression based prediction solutions since it depicts

the deviation of the prediction from the ground truth values. We do note that our

proposed framework when applied to challenging problems such as the prediction of

blood glucose in diabetes mellitus patients require a few additional considerations.

Blood glucose levels can be demarcated as normal (between 80-120 mg/dL), hypo-

glycemic (below 80 mg/dL) and hyperglycemic (above 180 mg/dL). The presence of

three separate levels found in the measurement of a single variable can lead to some
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discrepancies while designing a predictive solution for it. To account for each level

of blood glucose during the task of prediction, we suggest minor modifications to the

evaluation metric as a future work.

Instead of evaluating the RMSE metric using the ground truth and the predicted

values, we suggest the inclusion of conditional RMSE evaluation based on the pre-

dicted level of blood glucose. This will allow the inclusion of hyperglycemic and

hypoglycemic regions to be evaluated alongside the normal blood glucose levels. As

a result, the framework would not only learn the normal levels but also the regions of

hyperglycemia and hypoglycemia causing lower values of RMSE and enhancing the

accuracy of prediction even further. Alongside an increase in prediction accuracy, this

change in the evaluation metric will increase the explainability of the model guided

framework as applied to the task of blood glucose prediction. Predicting blood glu-

cose levels and being able to provide feedback on the predictions made transforms a

simple predictive solution into an explainable solution.

3.4.8 Discussion on Time Invariant Physical Model Guide

The physical numerical model that is chosen as the model guide for our proposed

framework plays has a significant impact on the overall predictive accuracy as shown

in Section 3.4.6. The application of our proposed framework to the prediction of blood

glucose levels in diabetes mellitus patients highlights the requirement for consideration

of the time variant nature of the physical model.

Blood glucose levels change over time - meal consumption, physical activity, ex-

ternal insulin dose are some of the factors that play a major role in its variance.

However, the physical model used for the proposed solution in its current state of

implementation does not account for instantaneous changes as they occur. While

training the proposed model guided framework, it is feasible to compute the model
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guide estimate prior to being given as input to the stacked LSTM network. However

during the testing or inferencing period being able to compute the model guide es-

timate instantaneously would be beneficial since it would reflect the current state of

the physical system closely. In our current state of implementation, the model guide

is pre-computed even during the testing phase. This is primarily to save on the time

required to generate each point estimate instantaneously. The modified Bergman

minimal model is a set of coupled ordinary differential equations with a large number

of patient specific time-varying parameters. Computing these time-varying parame-

ters on an instantaneous basis is not tractable and as a result computing the model

guide estimate is not feasible in real time. However, relaxation of constraint to re-

compute patient specific time varying parameters could lead to a simplification in the

computation of the modified Bergman minimal model estimate over time. It is to be

noted that the computation of the model guide estimate during model inferencing is

prone to the inclusion of time lag in the predictions made. Since the LSTM network

is dependent on the model guide as an input feature, any delays in the computation

of the model guide will directly affect the time taken for the next prediction to be

made.

To avoid this shortcoming, this work pre-computes the model guide estimate for

the inference phase. This assumption is made to simulate the environment in which

this proposed framework is expected to work - model predictive controller systems.

These systems are based on low power hardware and use simplifying assumptions to

linearize models so that they can be evaluated in real time. However, using a neu-

ral network based solution like ours, we intend to achieve higher levels of predictive

accuracy while preserving the non-linear properties of the physical model. The imple-

mentation of a real time evaluation of the model guide and its impact on the overall

performance of the proposed framework is suggested future work.
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Chapter 4

BRADYCARDIA PREDICTION IN PRETERM INFANTS USING

NONPARAMETRIC KERNEL DENSITY ESTIMATION

4.1 Problem Definition

Prediction of the onset of bradycardia in preterm infants is crucial to the process

of administering timely care to prevent any fatal outcomes from occurring. Although

various techniques exist to detect and alert health care experts prior to the onset

of bradycardia events they are unable to be accurate and avoid false alarms at the

same time. In this paper we propose a novel method to predict the onset of near-

term bradycardia in preterm infants without prior knowledge while increasing the

prediction accuracy and lowering the number of false alarms overall.

4.2 Novel Bradycardia Prediction Approach Using Nonparametric Kernel Density

Estimation

ECG data obtained from a preterm infant is first preprocessed and segmented

(described in Section 4.4.1) such that each segment contains both normal and brady-

cardia beats. Using continuous normal beats, we extract R-peak information and

estimate our nonspecific probability density function. After setting a desired level of

false alarm to be tolerated by the system, a threshold region is found using the esti-

mated density and a generated threshold plane. We use R-peaks from further along

in time and test against this threshold region to determine the onset of near-term

bradycardia. Section 4.4.1 describes a statistical guarantee to achieve the desired

false alarm rate while Section 4.3 presents a practical way to construct the prediction
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set.

4.2.1 Nonparametric Prediction Test

We construct a hypothesis test to predict bradycardia in infants’ heartbeat. To

this end, we employ a nonparametric method for estimating a kernel-based proba-

bility density function to model RRI information to use in predicting the onset of

bradycardia. We consider ECG segments that are first processed to remove the base-

line wander. We then detect the R peaks using Pan-Tompkins algorithm (Pan and

Tompkins (1985)). Assuming that the number of R peaks in an ECG segment is N .

We define the R-tuple xn = (tn, Rn), n = 1, . . . , N and xn ∈ X , to be the time of

the peak occurrence and the peak amplitude Rn, respectively. We assume that the

R-tuple set XN = {x1, x2, . . . , xN} is identically and independently drawn from an

unknown density p(x). We exploit the kernel density estimator to estimate p(x) using

the data points Xn as

p̂H(x) =
1

N

N∑
n=1

KH(x− xn) (4.1)

for the positive definite bandwidth matrix H and KH(x) = |H|−1/2K
(
H−1/2x

)
where

K is smoothing kernel function in R. The estimated density depends directly on the

smoothing kernel KH and the bandwidth H. For the simplicity, we assume that KH

is Gaussian and H =h2 I2, where I2 is the (2× 2) identity matrix. We learn the best

value of h using leave-one-out cross validation to ensure accurate prediction and avoid

overfitting Celisse (2014).

Given a desirable probability of false alarm, PFA, we design a hypothesis testing

that produces (1−PFA) confidence. We define the null hypothesisH0 as the hypothesis

that the density of the next R-tuple xN+1 is the same as that of the previous R-tuples

in the set XN ; that is, H0 : xN+1 =x, for all possible values of x∈X . We aim to
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construct a confidence set AX , that consists of all values XN , such that the probability

of the next R-tuple, xN+1, belonging to this set satisfies the following condition

Pr(xN+1∈AX ) ≥ (1− PFA).

Note that inverting the test produces a prediction set. It is shown that the prediction

set AX is finite and distribution-free Lei et al. (2013). To this end, we utilize the

kernel density estimator p̂aH(x) based on the augmented data set XN∪{x} for a fixed

value of x ∈ X . The rank of p̂aH(x1), . . . , p̂
a
H(xN+1) is uniformly distributed under the

null hypothesis. Thus, For each value of x, the p-value ηx is given by

ηx =
1

N + 1

N∑
n=1

I
(
p̂aH(xn) ≤ p̂aH(x)

)
(4.2)

where I is the indicator function. We thus define the (1 − PFA) confidence set as

AX = {x : ηx ≥ PFA}. As mentioned earlier the prediction set AX is distribution-free

and is only determined using the finite set XN Shafer and Vovk (2008). Implementing

this method is impractical, thus we introduce a bigger set that contains AX and can

easily be constructed.

4.2.2 Unsupervised Prediction

Given the confidence set AX , we can successfully predict the next bradycardia

event with a 95% accuracy by setting PFA = 0.05. However, as it may not always be

possible to compute the set AX , we construct instead a feasible but larger confidence

set BX that is easier to compute and preserves the same accuracy. Define yn = p̂H(xn)

for n = 1, . . . , N . Assume that yi is sorted in an ascending order, that is, y1 ≤ · · · ≤

yN . We construct the prediction set BX as

BX = {x : p̂H(x) ≥ Ck},
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for the threshold plane is computed as Ck = yk − (KH(0)/N |H|1/2) where k= b(N +

1)PFAc.

Proposition 1 (Lei et al. (2013) Theorem 3.4) The set BX ⊃ AX satisfies

Pr(xN+1∈AX ) ≥ (1− PFA) =⇒ Pr(xN+1∈BX ) ≥ (1− PFA). (4.3)

In particular, the prediction set BX follows from the projection of estimated den-

sity which is above the threshold Ck.

4.3 Evaluation Metric

To evaluate our proposed method, we define the evaluation metric estimated pre-

dictive error (EPE) as

EPE =
Number of False Alarms

Number of R-tuples tested
(4.4)

Given an ECG segment containing N peaks, a desired level of PFA, and the pre-

diction set BX over the normal heartbeats in that segment, we can compute the

estimated predictive error by testing whether R-tuples from a future time belong to

BX . Our proposed method implies that the R-tuple xm = (tm, Rm) is predicted, with

(1 - PFA)% confidence, to be the onset of bradycardia if xm /∈ BX , m > N . If the

R-tuple xm is a bradycardia R-tuple and xm ∈ BX , m > N , then it is a false alarm

and counts towards the estimated predictive error.

The definition of the EPE indicates that, for a given probability of false alarm PFA,

lower value of the estimated predictive error results in the fewer false alarms being

raised. Thus, EPE is a measure of performance which is used for different values of

PFA to demonstrate how well our proposed method performs.

For a fixed value of PFA, we compute the total estimated predictive error for each

preterm infant as the average of the estimated predictive error (EPE) over all ECG
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segments for that preterm infant. Similarly, lower value of total estimated predictive

error indicates better performance of the method.

4.4 Dataset, Results and Discussion

In this section, we take a look at the dataset used for this problem and associated

means of preprocessing it. Results obtained from the implementation of the proposed

method on the chosen dataset is presented and discussed.

4.4.1 Dataset and Preprocessing Data

To demonstrate the performance of our proposed method, we make use of the

dataset provided by the MIT Preterm Infant Cardio-respiratory Signals (PICS) database

(Gee et al. (2017); Goldberger et al. (2000)). ECG data from ten preterm infants with

post-conceptional ages ranging between 293
7

and 342
7

weeks are collected for approxi-

mately 20 to 70 hours per infant at a sampling frequency of 500Hz as shown in Table

4.1. ECG data taken from each infant in the database is subject to the removal of

baseline wander by using a high-pass filter with cut-off frequency between 0.5-0.6 Hz.

We then remove the motion and disconnection artifacts from the signal by visual in-

spection. Following the aforementioned steps, we obtain the cleaned-up ECG signal

for each infant in the database. To locate the R-peaks in the cleaned-up data, we em-

ploy the Pan-Tompkins algorithm (Pan and Tompkins (1985)). Finally, each signal is

segmented by using the annotations provided by the database regarding the location

of occurrence of bradycardia events. Each signal contains both regular data points

(data collected five minutes prior to the first bradycardia event) and bradycardia

beats (data collected two minutes after the first bradycardia event).

Table 4.1 displays the number of bradycardia events and the number of ECG

segments generated for each preterm infant in the dataset. For each infant, R-tuples
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Table 4.1: Duration of ECG, Number of Bradycardia Events, Number of ECG
Segments for Ten Preterm Infants

Preterm Infant 1 2 3 4 5 6 7 8 9 10

Duration (hours) 45.6 43.8 43.7 46.8 48.8 48.6 20.3 24.6 70.3 45.1

Bradycardia Events 77 72 80 66 72 56 34 28 97 40

ECG Segments 77 72 80 66 72 56 34 28 97 40

are generated for each segment and utilized in our proposed model.

4.4.2 Experimental Setup

Using the preprocessed data from Section 4.4.1, we perform the following pro-

cedure for each infant over each segment. For a desired false alarm rate PFA, we

choose he bandwidth parameter h through leave-one out cross-validation. Assuming

a Gaussian kernel, we estimate the density to be p̂H(x) for the normal heartbeats in

each segment. We then compute the threshold plane Ck and generate the prediction

set BX for each segment as the area under the intersection of the density p̂H(x) and

the threshold plane Ck. We compute the estimated predictive error (EPE) by testing

whether R-tuples from the near future (during and after the bradycardia event) be-

long to the prediction set BX . If a future R-tuple from the bradycardia region belongs

to BX then it is considered to be an error. The above process is repeated for each

preterm infant for the false alarm rates, PFA, of 5%, 4%, 3%, 2% and 1%.

Specifications of the desktop computer used for this implementation are listed

below:

• Intel Core i7 4790 4 core CPU (base clock 3.60 GHz)

• 32GB RAM
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Figure 4.1: Preterm Infant ECG Segments: Normal Region (Blue Box) and Brady-
cardia Region (Red Box)

• NVIDIA GTX 745 GPU with 4GB VRAM

• MATLAB 2019a

The average runtime for computing the kernel density using the aforementioned

system for each ECG segment is 120 ± 30 seconds. We note that this computation

time can be lowered using a server based computation system.

Table 4.2: Average Estimated Predictive Error for Ten Preterm Infants for PFA

Between 0.05 To 0.01

Preterm Infant 1 2 3 4 5 6 7 8 9 10

PFA = 0.05 0.092 0.099 0.092 0.04 0.04 0.19 0.08 0.194 0.091 0.087

PFA = 0.04 0.095 0.284 0.387 0.29 0.31 0.45 0.31 0.295 0.223 0.26

PFA = 0.03 0.35 0.457 0.681 0.321 0.38 0.425 0.498 0.342 0.195 0.46

PFA = 0.02 0.82 0.68 0.943 0.91 0.87 0.9 0.89 0.694 0.83 0.87

PFA = 0.01 0.89 0.901 0.991 0.99 0.99 0.94 0.99 0.82 0.998 0.907
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4.4.3 Results

Figure 4.1 displays a portion of an ECG segment for preterm infant 1 containing

both normal and bradycardia heartbeats. Using leave-one-out cross validation, we

estimate the bandwidth parameter h for the Gaussian kernel to be 33.2313. Figure

4.2 provides a pictorial demonstration of our proposed method for fixed value of

PFA = 0.05 and the kernel density estimator with the bandwidth h = 33.2313. In

particular, we estimate the threshold plane Ck to be 0.0028 and used it to compute

the prediction set BX for this specific segment. The contour region obtained from

the intersection of the estimated density p̂H(x) and plane Ck provides the prediction

set BX . The prediction set BX is shown in Figure 4.3. All R-tuples that lie inside

this contour region are considered to be normal heartbeats. For the ECG segment

shown in Figure 4.1, we tested two R-tuples that indicate the last normal beat (R-

tuple (408.6, 0.48) denoted by a pink marker) and the first bradycardia beat (R-tuple

(409.3, 0.44) denoted by a red marker). We observe that the R-tuple for the last
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Figure 4.2: Kernel Density Estimator p̂h(x) and Threshold Region Ck for Preterm
Infant 1 ECG Segment
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Figure 4.3: Region BX Obtained from the Intersection of the Density and the
Threshold Region

normal beat lies just within the prediction set (denoted by the contour region) while

the R-tuple for the bradycardia beat lies outside the contour region. Using this

threshold region, we can predict the onset of near-term bradycardia by generating

R-tuples from future ECG data and locating the first R-tuple that lies outside this

region. We use ten random R-tuples from a future time for each segment to compute

the estimated predictive error for the corresponding segment. As mentioned in Section

4.3, the estimated predictive error value indicates how well our method performs at

a desired PFA. Low values of this metric imply that our method is able to predict the

onset of bradycardia with the specified level of accuracy and rate of false alarm. This

process is repeated for all ECG segments for preterm infant 1 for PFA values ranging

between 0.05 to 0.01 (5% to 1%). We compute the total predictive error for each

PFA value as shown in Figure 4.4 for preterm infant 1. Figure 4.4 demonstrates that

our proposed method works best at PFA = 0.05 and is able to predict the onset of

bradycardia with 95% accuracy as expected. The total average estimated predictive

error is lowest for this value of PFA indicating very few bradycardia R-tuples are
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mispredicted. We also observe that as we lower the probability of false alarm the

total estimated predictive error increases.

Similarly, we compute the total average estimated predictive error for each of the

ten preterm infants for PFA values of 5%, 4%, 3%, 2% and 1% shown in Table 4.2. A

similar trend can be observed across all ten preterm infants in the database - as the

probability of false alarm PFA is reduced, we see a significant increase in the average

estimated predictive error (Table 4.2). Hence we demonstrate that our proposed

method is able to predict the onset of bradycardia with higher accuracy and low false

alarm rate as compared to other existing methods.

4.4.4 Discussion

In the previous section, we demonstrated that our proposed method works and is

able to predict the onset of near-term bradycardia with an accuracy of (1− PFA) for

a desired probability of false alarm PFA. We also showed that our proposed method

achieves the highest prediction accuracy compared to prior work while maintaining

Figure 4.4: Average Estimated Predictive Error for Varying PFA in Infant 1
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the lowest rate of false alarm.

As shown in Figure 4.4 and Table 4.2, we observe that as the PFA value is lowered

from 5% (0.05) to 1% (0.01), the total average estimated predictive error increases.

The total average estimated predictive error is lowest at PFA = 0.05 with a slight

increase across all infants at PFA = 0.04. The error increases drastically as the

PFA value is lowered to 0.03, 0.02 and 0.01. However, this trend lies within our

expectation. By lowering the PFA value, the contour region under the intersection

of the threshold plane Ck and density p̂H(x) increases that is, the prediction set BX

grows. The enlargement of the prediction set allows for R-tuples that do not belong

to the actual set to erroneously be included in the region. This fact results in the fact

that bradycardia R-tuples are mistaken as normal beats - false alarms. In practice, it

is not feasible to remove false alarms in the entirety. Instead, we strive to minimize

the rate of false alarms while trying to maximize the prediction accuracy as much as

possible. Our proposed method demonstrates this and shows that it is not feasible

to guarantee accurate predictions with an expect level of confidence beyond a certain

value of PFA.
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Chapter 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

This work focused on developing adaptive statistical machine learning algorithms

for physical systems for the purpose of forecasting system behavior and anomalous

trends in the system.

For Type 1 Diabetes Mellitus patients, with the use of personal glucose moni-

toring devices and insulin infusion pumps, affected individuals can self-monitor their

blood glucose levels and inject the required amount of insulin as and when needed.

However, since these monitoring devices use model predictive controllers for calculat-

ing the required insulin dose based on thresholding and naive prediction algorithms,

there is still a risk of extreme glycemic events occurring. This work also notes that

a common data driven model is vastly outperformed by a per patient model in the

case of estimating and predicting the blood glucose level in Type 1 Diabetes Mellitus

patients. Furthermore, since the data acquired from each patient is unique to their

physical system, it is necessary to be able to determine the underlying representa-

tions that are unique to each patient and thereby enhance the level of care that can

be provided. This dissertation proposes and develops a novel model guided neural

network framework that utilizes multi-variate time series data from various modalities

to forecast trends in the physical system. The proposed work combines the empirical

evidence acquired from various sensors and human input with the physiological model

to enhance the accuracy of predictions made. This novel solution also optimizes the

objective function of the proposed model guided neural network by incorporating do-
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main knowledge within it. Also, by utilizing the inherent nature of recurrent neural

networks to exploit the temporal trends, the proposed novel solution increases the

ability to forecast trends in each individual by a significant margin while being able

to operate with lower amount of data. The proposed approaches are particularly suit-

able for use in free living scenarios since it reduces the risk of extreme glycemic events

by making accurate forecasts for insulin dose calculation. Utilizing this approach in

a model predictive controller will allow for accurate real-time predictions which can

be improved over time by conditioning the model using the physical system’s unique

parameters.

The proposed model guided neural network framework utilizes both empirical

evidence and domain knowledge to improve the accuracy of predictions and adds an

element of explainability to the overall solution. Since neural networks were chosen

in this work as the empirical learning algorithm, it is necessary to be able to explain

and understand the predictions made by the model with respect to the understanding

of the physical system it is being applied to. By incorporating domain knowledge

within such a learning algorithm, we demonstrate that this not only improves the

performance of the learning solution but also adds a level of explainability that was not

present before. An application of this proposed model guided framework, as shown in

this work, is towards the prediction of blood glucose levels in Type I Diabetes Mellitus

patients which demonstrates the significant improvement gained in predicting blood

glucose levels. This work can also be adapted and used in various other fields which

use physical based models to develop predictive solutions. The only requirement that

must be met is the availability of a physical numerical model that can be used as

the model guide. It is to be noted that quality of the physical model also plays an

important role i.e. a physical model that can generate better approximates of the

estimates of the required solution will increase the overall learning capability of the
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proposed solution. Therefore the choice of the learning algorithm and the physical

model guide are both important in utilizing the proposed model guided framework

for predictive solutions.

On the other hand, utilizing univariate time series data from preterm infants in

the form of electrocardiogram observations, this work proposed and developed a per

patient non-parametric model for predicting the on-set of near-term bradycardia.

Using non-parametric kernel density estimate and thresholding based on features

extracted from the observations, the proposed method significantly lowers the rate

of false alarm while being accurate in the predictions made. By allowing the health

care experts to dictate the tolerable rate of false alarm, this work introduces a level

of customization that can adapt to their various needs. This is done without causing

a reduction in the overall prediction accuracy of the system.

5.2 Future Work

Several extension of this work is possible. Some of them are listed below:

5.2.1 Forecasting Blood Glucose Levels in Type 1 Diabetes Mellitus Patients

1. Improved physiological modeling of blood glucose kinetics: The Bergman min-

imal model provides an approximation of interstitial blood glucose levels and not

the intravenous blood glucose levels. In order to further improve the impact of the

guide model on the neural network system, a physiological model that estimates the

intravenous blood glucose levels would vastly improve the forecasting ability of our

work.

2. Estimation of patient specific parameters: An improvement to the overall model

prediction accuracy would be observed in the case of extracting and estimating all of

the required parameters on a per-patient basis. The novel approaches presented in
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this dissertation utilize patient specific attributes as available although some of the

parameters were global approximations found in literature and are widely accepted.

3. Model mixing: While this work investigates the percent contribution of the

empirical model learned by the system and the physiological guide model, a study

involving a more accurate physiological model would aid in understanding and in-

creasing the overall performance.

4. Modeling the physiological model as a learning system: To make the proposed

work dynamic and adaptable to patients in real time, an avenue that can be explored

is the implementation of a stacked neural network that is a close approximation of

the physiological model being used.

5. Type II Diabetes Mellitus: This work utilizes data and physiological factors

specific to Type I Diabetes Mellitus patients. However, the model guided LSTM

framework can be applied for Type II Diabetes Mellitus patients as well with minor

modifications. Primarily, a physical model that captures the blood glucose kinetics,

especially insulin diffusion rate and insulin concentration in the blood is required to

account for the low insulin absorption rates characteristic of this variation.

6. Application of proposed model guided solution to other fields: This work

applied the proposed model guided solution for the prediction of blood glucose in

Type I diabetes patients and demonstrated an improvement in the predictions made.

Since a generalized framework is proposed and then implemented for this particular

domain of blood glucose, this proposed solution could be applied to other research

areas like remote sensing, physical sciences, finances and so on, where accurate and

explainable predictive solutions are required. The availability of a physical numerical

model and the choice of the empirical learning algorithm would be critical while

adapting the proposed model in this work for other domains.

69



5.2.2 Predicting the onset of Bradycardia in Preterm Infants

1. Decreasing computation time: The work proposed in this dissertation utilizes

kernel density estimation to predict upcoming bradycardia events. Generation of this

density function is expensive in time and can hamper the performance in a real time

implementation. Exploration of methods to generate the density function in a shorter

amount of time using multithread workloads.

2. Inclusion of observations from other modalities: Electrocardiogram data is

shown to be sufficient for the purpose of bradycardia prediction in preterm infants.

However, the inclusion of data from other modalities like breathing patterns, blood

markers and other biological processes will improve the proposed work further.

3. Application to other research problems: Predictive models generated using

only observed data are required in multiple fields that span various research domains.

Adaptation and application of the proposed solution to similar research problems in

other research domains is left as future work.

In addition, the developed model guided neural network and kernel density es-

timation approach can be applied to various areas like remote sensing, financial,

meteorological time-series data for the purpose of forecasting trends in the data.
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Pérez-Gand́ıa, C., A. Facchinetti, G. Sparacino, C. Cobelli, E. Gómez, M. Rigla,
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