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ABSTRACT

The objective of this thesis is to propose two novel interval observer designs for dif-

ferent classes of linear and hybrid systems with nonlinear observations. The first part

of the thesis presents a novel interval observer design for uncertain locally Lipschitz

continuous-time (CT) and discrete-time (DT) systems with noisy nonlinear obser-

vations. The observer is constructed using mixed-monotone decompositions, which

ensures correctness and positivity without additional constraints/assumptions. The

proposed design also involves additional degrees of freedom that may improve the

performance of the observer design. The proposed observer is input-to-state stable

(ISS) and minimizes the L1-gain of the observer error system with respect to the un-

certainties. The observer gains are computed using mixed-integer (linear) programs.

The second part of the thesis addresses the problem of designing a novel asymp-

totically stable interval estimator design for hybrid systems with nonlinear dynamics

and observations under the assumption of known jump times. The proposed architec-

ture leverages mixed-monotone decompositions to construct a hybrid interval observer

that is guaranteed to frame the true states. Moreover, using common Lyapunov anal-

ysis and the positive/cooperative property of the error dynamics, two approaches

were proposed for constructing the observer gains to achieve uniform asymptotic sta-

bility of the error system based on mixed-integer semidefinite and linear programs,

and additional degrees of freedom are incorporated to provide potential advantages

similar to coordinate transformations. The effectiveness of both observer designs is

demonstrated through simulation examples.
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Chapter 1

INTRODUCTION

1.1 Background and Motivation

State estimation is a fundamental problem in real-world engineering applications

such as autonomous vehicles and robots (cf. Figure 1.1), where the objective is to

estimate the unmeasured states of a system using the available measurements for

decision-making and control. The accuracy and robustness of the state estimator are

crucial for achieving stability and optimal performance in control systems. However,

in many practical applications, the dynamics of the system are uncertain and non-

linear, and the measurements may be corrupted by noise or other disturbances, e.g.,

in Tahir and Açıkmeşe (2021). To address these challenges, various techniques have

been developed, including Kalman filters, Bayesian filters, etc. To handle bounded

uncertainties without knowledge of their statistics such as means and covariances as

well as nonlinearities, interval observers are designed to provide a guaranteed bound

on the state estimate even in the presence of unknown bounded disturbances. In

contrast, Kalman filters linearize the system and the noise is assumed to be Gaussian

and white, which makes the solution less accurate for highly nonlinear systems and

when the noise is non-Gaussian.

1.2 Literature Review

Numerous studies have been conducted on the development of set-valued/interval

observers for a wide range of systems. These include linear, nonlinear, coopera-

tive/monotone, mixed-monotone, and Metzler dynamics (Wang et al. (2015); Cheb-

1



Figure 1.1: Various Real-World Applications Where State Estimation is Important.

otarev et al. (2015); Tahir and Açıkmeşe (2021); Khajenejad et al. (2021); Khajenejad

and Yong (2020); Farina and Rinaldi (2000)). The main idea behind the literature is

to design observer gains that ensure the observer error dynamics are Schur/Hurwitz

stable and positive/cooperative. Incorporating all of these constraints can result in

theoretical and computational complexities. For specific classes of systems, to over-

come these difficulties, some studies have proposed leveraging interval arithmetic-

based approaches, transforming the system into a positive form, and/or using (time-

varying/invariant) state transformations, such as the ones discussed in prior studies,

before designing the interval observer.

Additionally, for more general classes of nonlinear systems, various types of bound-

ing mappings/decomposition functions (Khajenejad and Yong (2021)) have been

leveraged to cast the observer design problem into semi-definite programs (SDPs)
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with LMI constraints (Wang et al. (2012, 2015); Efimov and Räıssi (2016); Briat and

Khammash (2016); Tahir and Açıkmeşe (2021); Khajenejad et al. (2022)). However,

the obtained LMIs might still be restrictive and solutions may not exist for some

systems, i.e., the LMIs might be infeasible for some systems, due to several imposed

conditions and upper bounding. To tackle this problem, coordinate transformations

have been proposed to relax the design conditions and to facilitate obtaining fea-

sible observer gains (Dinh et al. (2014); Mazenc and Bernard (2011)). However,

unfortunately, the coordinate transformation and observer gains cannot be simul-

taneously synthesized/designed. Recently, robustness against noise/uncertainty has

been considered for designing uncertain systems. This involves solving SDPs that

satisfy framer, stabilizability, and noise attenuation/mitigation constraints. This ap-

proach may lead to conservatism and computational complexity (Khajenejad and

Yong (2022)). In the case of continuous-time LPV systems, L1/L2 performance is

often considered.

On the other hand, the design of observers for hybrid systems is more challenging

because hybrid systems combine both continuous/flow dynamics and discrete/jump

dynamics. An observer design framework was introduced for hybrid systems with

linear flows/jump dynamics in Bernard and Sanfelice (2018). Moreover, the especially

challenging task of designing hybrid interval observers was tackled for specific classes

of hybrid systems like linear impulsive systems (Degue et al. (2021, 2018); Briat

and Khammash (2017)), switched linear systems (Wang et al. (2018)) and switched

nonlinear systems (He and Xie (2016)). However, to our best knowledge, there are no

existing interval observer designs for general hybrid systems with nonlinear dynamics

and nonlinear observations, which is the focus of the second part of this thesis.
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Chapter 2

PRELIMINARIES

2.1 Notations

Rn, Rn
>0, Rn×p, Nn and N denote the n-dimensional Euclidean space, positive

vectors of size n, matrices of size n by p, natural numbers up to n and natural numbers,

respectively. For a vector v ∈ Rn, its vector p-norm is given by ∥v∥p ≜ (
∑n

i=1 |vi|p)
1
p ,

while for a matrix M ∈ Rn×p, Mij represents its j-th column and i-th row entry,

sgn(M) represents its element-wise signum function, M⊕ ≜ max(M,0n×p), M
⊖ ≜

M⊕ −M , and |M | ≜M⊕ +M⊖ is its element-wise absolute value. Moreover, Md is

a diagonal matrix with the diagonal elements of a square matrix M ∈ Rn×n, Mnd ≜

M −Md is the matrix with only its off-diagonal elements, and Mm ≜ Md + |Mnd|

is the “Metzlerized” matrix. A Metzler matrix is a square matrix in which all the

off-diagonal components are nonnegative (equal to or greater than zero). Further, all

vector and matrix inequalities are element-wise inequalities, and the matrices of zeros

and ones of dimension n × p are denoted as 0n×p and 1n×p, respectively. Finally, a

function α : R+ × R+ → R+ is of class K if it is continuous, positive definite (i.e.,

α(x) = 0 for x = 0; α(x) > 0 otherwise), and strictly increasing, and is of class K∞ if

it is also unbounded, while λ : R+ → R+ is of class KL if for each fixed t ≥ 0, λ(·, t)

is of class K and for each fixed s ≥ 0, λ(s, t) decreases to zero as t→ ∞.

2.2 Definitions

Definition 1 (Interval). An (n-dimensional) interval I ≜ [z, z] ⊂ Rn is the set of

vectors z ∈ Rnz such that z ≤ z ≤ z. A similar definition applies to matrix intervals.
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Definition 2 (Jacobian Sign-Stability). A vector-valued function f : Z ⊂ Rnz → Rp

is Jacobian sign-stable (JSS), if in its domain Z, the entries of its Jacobian matrix

do not change signs, i.e., if one of the following hold:

Jfij(z) ≥ 0 or Jfij(z) ≤ 0

for all z ∈ Z,∀i ∈ Np,∀j ∈ Nnz , where J
f (z) represents the Jacobian matrix of the

mapping f evaluated at z ∈ Z.

Definition 3 (Mixed-Monotonicity and Decomposition Functions). Consider the un-

certain dynamical system with initial state x0 ∈ X0 ≜ [x0, x0] ⊂ Rn and process noise

wt ∈ W ≜ [w,w] ⊂ Rnw :

x+t = g(zt) ≜ g(xt, wt), zt ≜ [x⊤t wt]
⊤, (2.1)

where x+t ≜ xt+1 if (2.1) is a DT system and x+t ≜ ẋt if (2.1) is a CT system.

Moreover, g : Z ⊂ Rn
z → Rn is the vector field with augmented state zt ∈ Z ≜

X ×W ⊂ Rnz as its domain, where X is the entire state space and nz = n+ nw.

Suppose (2.1) is a DT system. Then, a mapping gd : Z ×Z → Rp is a DT mixed-

monotone decomposition function with respect to g, if i) gd(z, z) = g(z), ii) gd is

monotone increasing in its first argument, i.e., ẑ ≥ z ⇒ gd(ẑ, z
′) ≥ gd(z, z

′), and iii)

gd is monotone decreasing in its second argument, i.e., ẑ ≥ z ⇒ gd(z
′, ẑ) ≤ gd(z

′, z).

On the other hand, if (2.1) is a CT system, a mapping gd : Z ×Z → Rp is a CT

mixed-monotone decomposition function with respect to g, if i) and iii) for the DT

system hold, while ii) is modified to the following: ii’) gd is monotone increasing in its

first argument with respect to “off-diagonal” arguments, i.e., ∀(i, j) ∈ Nn×Nnz ∧ (i ̸=

j), ẑj ≥ zj, ẑi = zi ⇒ gd,i(ẑ, z
′) ≥ gd,i(z, z

′).

Definition 4 (Embedding System). For an n-dimensional system (2.1) with any

decomposition function gd(·), its embedding system is defined as the following 2n-

5



dimensional dynamical system with initial condition

[
x⊤0 x⊤0

]⊤
:

x+t
x+t

 =

gd(
[
(xt)

⊤w⊤

]⊤
,

[
(xt)

⊤w⊤

]⊤
)

gd(

[
(xt)

⊤w⊤

]⊤
,

[
(xt)

⊤w⊤

]⊤
)

 . (2.2)

Definition 5 (Correct Interval Framers and Framer Errors). Let Assumptions 2–1

hold. Given the nonlinear plant G in (3.1), x, x : T → Rn are called upper and lower

framers for the system states, if xt ≤ xt ≤ xt, ∀t ∈ T,∀wt ∈ W ,∀vt ∈ V. Further,

εt ≜ xt − xt is called the framer error at time t. Any dynamical system whose states

are correct framers for the system states of the plant G, i.e., with εt ≥ 0,∀t ∈ T, is

called a correct interval framer for system (3.1).

Definition 6 (L1-Robust Interval Observer). An interval framer Ĝ is L1-robust and

optimal, if the L1-gain of the framer error system G̃, defined below, is minimized:

∥G̃∥L1 ≜ sup∥∆∥L1
=1 ∥ε∥L1 , (2.3)

where ∥v∥L1 ≜
∫∞
0

∥vt∥1dt is the L1 signal norm for v ∈ {ε,∆}, and εt and ∆t =

∆ ≜

[
∆w⊤ ∆v⊤

]⊤
are the framer error and combined noise signals, respectively,

with ∆w ≜ w − w and ∆v ≜ v − v.

2.3 Propositions

Proposition 1 (Jacobian Sign-Stable Decomposition). For a mapping f : Z ⊂

Rnz → Rp, if Jf (z) ∈ [Jf , J
f
] for all z ∈ Z,, where Jf , Jf ∈ Rp×nz are known matri-

ces, then the function f can be decomposed to a JSS mapping µ(·) and a (remainder)

affine mapping Hz (that is also JSS), in an additive remainder-form:

∀z ∈ Z, f(z) = Hz + µ(z), (2.4)

6



where the matrix H ∈ Rp×nz , satisfies

∀(i, j) ∈ Np × Nnz , Hij = Jfij ∨Hij = J
f

i,j. (2.5)

Proposition 2 (Tight and Tractable Decomposition Functions for JSS Mappings).

Let µ : Z ⊂ Rnz → Rp be a JSS mapping on its domain. Then, it admits a tight

decomposition function for each µi(·), i ∈ Np as follows:

µd,i(z1, z2) = µi(D
iz1 + (Inz −Di)z2), (2.6)

for any ordered z1, z2 ∈ Z where Di is a binary diagonal matrix determined by which

vertex of the interval [z2, z1] or [z1, z2] that maximizes (if z2 ≤ z1) or minimizes (if

z2 > z1) the function µi(·) that can be found in closed-form as:

Di = diag(max(sgn(J
µ

i ),01,nz)). (2.7)

Consequently, a tight and tractable remainder-form decomposition function for the

system in (2.1) can be found by applying Proposition 2 to the Jacobian sign-stable

decomposition from Proposition 1.

2.4 Assumptions

Assumption 1. The disturbance/noise bounds w, w, v, and v] as well as the signals

yt (output) and ut (input, if any) are known at all times. Moreover, the initial state

x0 is such that x0 ∈ X0 = [x0, x0] with known bounds x0 and x0.

Assumption 2. The mappings/functions f(·) and h(·) are known, locally Lipschitz,

differentiable and mixed-monotone in their domain 1 . Moreover, the lower and upper

1Both assumptions of locally Lipschitz continuity and differentiability are primarily for ease of
exposition and can be relaxed to a much weaker continuity assumption (cf. Khajenejad and Yong
(2021) for more details).
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bounds of their Jacobian matrices, Jf , J
f ∈ Rn×nz and Jh, J

h ∈ Rl×nζ are known,

where nz = n+ nw and nζ = n+ nv.

Assumption 3. The mappings fc, fd, hc, hd are known, differentiable, and locally

Lipschitz in their domain with a priori known lower and upper bounds for their Ja-

cobian matrices, Jfc , J
fc
, Jfd , J

fd ∈ Rn×n , Jhc , J
hc ∈ Rm1×n and Jhd , J

hd ∈ Rm2×n,

respectively.

Assumption 4. The plant jump times, as well as the outputs yc during flows and/or

yd at the jumps, are known.

Assumption 5. Some information about the flow/dwell time between successive

jumps is known, namely a closed subset I of R≥0 such that any hybrid arc x in

the maximal solution set SH(X0) with the initial state in X0 satisfies:

• tj+1(x)− tj(x) ∈ I, ∀j ∈ {1, ..., J(x)− 1} if J(x) < +∞ or ∀j ∈ N≥0 if J(x) =

+∞,

• 0 ≤ t− tj(x) ≤ sup I, ∀(t, j) ∈ dom(x),

where tj(x) is the time stamp corresponding to jump j and J(x) ≜ sup domj(x).

8



Chapter 3

L1-ROBUST INTERVAL OBSERVER

This chapter considers the design of L1-robust interval observers, which is pub-

lished in Pati et al. (2022).

3.1 Problem Formulation

System Dynamics: The uncertain/noisy discrete-time (DT) or continuous-time

(CT) nonlinear systems considered in this work is given as:

G :


x+t = f̂(xt, ut)+Wwt ≜ f(xt)+Wwt,

yt = ĥ(xt, ut)+V vt ≜ h(xt)+V vt,

(3.1)

for all t ∈ T, where x+t = xt+1,T = {0} ∪ N if G is a DT system and x+t =

ẋt,T = R≥0, if G is a CT system. Moreover, xt ∈ X ⊂ Rn, wt ∈ W ≜ [w,w] ⊂

Rnw , vt ∈ V ≜ [v, v] ⊂ Rnv , ut ∈ Rs and yt ∈ Rl are state, process noise, measurement

noise, known control input and output measurement signals, respectively. f̂ : Rn ×

Rm → Rn denotes the nonlinear state vector field and ĥ : Rn × Rm → Rl denotes

observation/constraint functions, from which the mappings/functions f : Rn → Rn

and h : Rn → Rl are well-defined, since the input signal ut ∈ Rm is known. Moreover,

the noise matrices W and V are known.

The goal is to estimate the state trajectories of the plant G in (3.1), when the

initial state satisfies x0 ∈ X0≜ [x0, x0] ⊂ X .

Problem 1. Given the nonlinear system in (3.1), as well as Assumptions 1–2, design

a correct and L1-robust interval observer (cf. Definitions 6) whose framer error (cf.

9



Definition 5) is input-to-state stable (ISS), i.e.,

∥εt∥2 ≤ β(∥ε0∥2, t) + ρ(∥∆∥L∞),∀t ∈ T, (3.2)

where β and ρ are functions of classes KL and K∞, respectively, with the L∞ signal

norm ∥∆∥L∞ = sups∈[0,∞) ∥∆s∥2 = ∥∆∥2 and ∆s defined as in (2.3).

3.2 Interval Observer Design

In order to the propose the interval observer design, we first provide an equivalent

representation of the system dynamics for the plant G in (3.1).

Lemma 1. Consider plant G in (3.1) and suppose that Assumptions 1–2 hold. Let

L,N ∈ Rn×l and T ∈ Rn×n be arbitrary matrices that satisfy T + NC = In. Then,

the system dynamics (3.1) can be equivalently written as

ξ+t =(TA−LC−NA2)xt+Tϕ(xt)−Nρ(xt, wt)

+(TW−NB2)wt−Lψ(xt)+L(yt−V vt),

xt = ξt +Nyt −NV vt,

(3.3)

where A ∈ Rn×n, C,A2 ∈ Rl×n, and B2 ∈ Rl×nw are chosen such that the following

decompositions hold ∀x ∈ X , w ∈ W (cf. Definition 2 and Proposition 1):

f(x) = Ax+ ϕ(x), h(x) = Cx+ ψ(x),

ψ+(x,w) = A2x+B2w + ρ(x,w),
(3.4)

such that ϕ, ψ, ρ are JSS, with ψ+(x,w) = ψ̇(x,w) = ∂ψ
∂x
(f(x) +Ww) if G is a CT

system and ψ+(x,w) = ψ(x+) = ψ(f(x) +Ww) if G is a DT system.

Proof. This can be proved by defining an auxiliary state ξt ≜ xt−Nyt+NV vk. Then,

from (3.1) and (3.4), we have ξt = xt − N(yt − V vk) = xt − N(Cxt + ψ(xt)), and

10



moreover, by choosing N to satisfy T +NC = In, we obtain ξt = Txt −Nψ(xt) that

has the following dynamics:

ξ+t =Tx+t −NCψ+(xt, wt)

=T (Axt+ϕ(xt)+Wwt)−N(A2xt+B2wt+ρ(xt, wt)),

with x+t from (3.1) and f(xt) and ψ
+(xt, wt) from (3.4). Finally, adding a ‘zero term’

L(yt − Cxt − ψ(xt) − V vt) = 0 (cf. (3.1) and (3.4)) to the above yields (3.3), where

xt can be recovered from the definition of ξt.

Then, using the equivalent system in (3.3), we propose a unified interval observer

Ĝ based on the construction of an embedding system

ξ+
t
=M↑xt−M↓ xt+ Lyt+ T⊕ϕd(xt, xt)−T⊖ϕd(xt, xt)

+(LV )⊕v+(LV )⊖v + (TW−NB2)
⊕w

−(TW−NB2)
⊖w−L⊕ψd(xt, xt) + L⊖ψd(xt, xt)

−N⊕ρd(xt, w, xt, w) +N⊖ρd(xt, w, xt, w)

+MNy−(MNV )⊕v+(MNV )⊖v,

ξ
+

t =M↑xt−M↓ xt+ Lyt+ T⊕ϕd(xt, xt)−T⊖ϕd(xt, xt)

+(LV )⊕v+(LV )⊖v + (TW−NB2)
⊕w

−(TW−NB2)
⊖w−L⊕ψd(xt, xt) + L⊖ψd(xt, xt)

−N⊕ρd(xt, w, xt, w) +N⊖ρd(xt, w, xt, w)

+MNy−(MNV )⊕v+(MNV )⊖v,

xt = ξ
t
+Nyt − (NV )⊕v + (NV )⊖v,

xt = ξt +Nyt − (NV )⊕v + (NV )⊖v,
(3.5)

where ξt, ξt, ξ
+

t , ξ
+

t
∈ Rn are auxiliary variables, M ≜ TA− LC −NA2 and if G is a

CT system, then

x+t ≜ ẋt, x
+
t ≜ ẋt, M

↑≜Md+Mnd,⊕, M↓≜Mnd,⊖, (3.6)
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and if G is a DT system, then

x+t ≜ xt+1, x
+
t ≜ xt+1, M

↑ ≜M⊕, M↓ ≜M⊖. (3.7)

Further, ϕd, ψd : R2n → Rn and ρd : R2l → Rl are tight mixed-monotone decompo-

sition functions of ϕ, ψ, and ρ, respectively (cf. (3.4), Definition 3), which are JSS

and thus, can be computed using (2.6) and (2.7). Finally, N,L ∈ Rn×l and T ∈ Rn×n

are the observer gain matrices to be designed with T and N satisfying T +NC = In.

The detailed derivation of the observer design Ĝ in (3.5) and its desired properties

are given in the next subsections.

Remark 1. Note that the above observer structure is inspired by Wang et al. (2012)

to introduce additional degrees of freedom, where we now have three to-be-designed

observer gains N, T, L, in contrast to only one observer gain L in our previous work

(Khajenejad and Yong (2022)). While this is very helpful from a performance per-

spective, it is found in Section 5.1.1 to be not an exact substitute for coordinate

transformations that may help to make the observer gain design problem in Theorem

2 feasible, presumably because the latter are nonlinear operations and the proposed

structure only introduces linear terms. In this case, a coordinate transformation can

be applied in a straightforward manner, similar to (Tahir and Açıkmeşe, 2021, Sec-

tion V) (omitted for brevity; cf. Mazenc and Bernard (2021) and references therein

for more discussions).

3.3 Observer Correctness (Framer Property)

In this subsection, we show that by construction, the proposed interval observer

Ĝ in (3.5) is a correct framer for the system G (and equivalently, for (3.3) in Lemma

3.2) in the sense of Definition 5 for both the CT (3.6) and DT (3.7) cases.

12



Theorem 1 (Correctness). Consider the nonlinear plant G in (3.1) and suppose

Assumptions 1 and 2 hold. Then, xt ≤ xt ≤ xt,∀t ∈ T,∀wt ∈ W ,∀vt ∈ V, where

xt and [x⊤t x
⊤
t ]

⊤ are the state vectors in G and Ĝ at time t ∈ T, respectively. In

other words, the dynamical system (3.5) constructs a correct interval framer for the

nonlinear plant G in (3.1).

Proof. Here by framing all the constituent items in the right hand side of system (3.3)

(which is equivalent to the original system (3.1)), using Proposition 1, we obtain (3.5).

Hence, (3.5) is a framer system for the original plant G, since it is straightforward

to see that the summation of the embedding systems/framers of constituent systems

constructs an embedding system for the summation of constituent systems. In order

to compute framers for the constituent systems in the right hand side of (3.3), we

split them into three groups, as follows. i) Known/certain terms that are independent

of state and noise and so, their upper and lower bounds are equal to their original

known value; ii) Linear terms with respect to the state and noise, which can be upper

and lower framed by applying (Efimov et al., 2013, Lemma 1). Note that there is a

subtle difference in computing the upper and lower framing/embedding systems for

the CT and DT cases, which is reflected in the definition ofM↑,M↓ in (3.6) and (3.7)

(cf. Definition 4); iii) Nonlinear terms in the state and noise that can be upper and

lower framed by leveraging Propositions 1 and 2

Summing up the constituent embedding systems/framers in i)-iii) yields the em-

bedding system (3.5). Finally, the correctness property follows from the framer prop-

erty of embedding systems.
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3.4 L1-Robust Observer Design

In addition to the correctness property, it is important to guarantee the stability

of the proposed framer i.e., we aim to design the observer gains T , N , and L to obtain

input-to-state stability (ISS) and L1-robustness.

Theorem 2 (L1-Robust and L1-ISS Observer Design). If Assumptions 1–2 hold for

the nonlinear system G in (3.1), then the correct interval framer Ĝ proposed in (3.5)

is L1-robust (cf. Definition 6), if there exist Q, T̃ ∈ Rn×n, Ñ ,N, L̃ ∈ Rn×l, p ∈ Rn
>0,

and γ > 0 that solve the following mixed-integer program (MIP):

(γ∗, p∗, Q∗, T̃ ∗, L̃∗, Ñ∗, N∗) ∈

{γ,p,Q,T̃ ,L̃,Ñ ,N} γ

s.t. 11×n

[
Ω Λ Υ

]
<

[
σ γ11×nw γ11×nv

]
,

T̃ + ÑC = Q, Ñ = Γ, p > 0, γ > 0,

(3.8)

where Q ≜ diag(p) denotes a matrix whose diagonal entries are the elements of p,

Λ ≜ |T̃W − ÑB2|+ |Ñ |F ρ

w, and

1. for a DT system G: σ ≜ p⊤−11×n, Ω ≜ |M |+ |T̃ |F ϕ

x + |Ñ |F ρ

x + |L̃|Fψ

x , Υ ≜

|L̃V |+ |ÑV |, and Γ ≜ Ñ ;

2. for a CT system G: σ ≜ −11×n, Ω ≜ Mm + |T̃ |F ϕ

x + |Ñ |F ρ

x + |L̃|Fψ

x , Υ ≜

|L̃V |+ Z, and Γ ≜ QN if V ̸= 0 and Γ ≜ Ñ otherwise,

with M ≜ TA− LC −NA2 and Z ≜ (|M | −Mm)|NV |. Furthermore, in both cases,

F
ϕ

x, F
ψ

x , F
ρ

x, F
ρ

w are computed from the JSS functions ϕ, ψ and ρ as follows:

F
µ
≜ [F

µ

x F
µ

w] ≜(J
µ
)⊕ +(Jµ)⊖, (3.9)

with J
µ
= J

f −H, Jµ = Jf −H, F
µ

x ∈ Rn×n and F
µ

w ∈ Rn×nw (cf. Proposition 1 and

(Khajenejad and Yong, 2022, Lemma 3)).
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Then, the corresponding L1-robust stabilizing observer gains T ∗, L∗, and N∗ can

be obtained as T ∗ = (Q∗)−1T̃ ∗, L∗ = (Q∗)−1L̃∗ and N∗ = (Q∗)−1Ñ∗. Moreover, the

interval observer is ISS, i.e., it satisfies (3.2).

Proof. We start by deriving the framer error (εt ≜ xt−xt) from (3.5), before proving

that the DT and CT error systems satisfy the condition in (2.3) and (3.2), i.e., Ĝ is

L1-robust and ISS. To do this, we define ∆s ≜ s−s,∆µ
d ≜ µd(x, s, x, s)−µd(x, s, x, s)

for all s ∈ {w, v} and µ ∈ {ϕ, ψ, ρ}.

First, from (3.5), the framer error is εt ≜ xt − xt = ξt − ξ
t
+ |NV |∆v. Then, the

DT observer error dynamics G̃ obtained from (3.5) and (3.7) can be written as:

ε+t = |TA−LC −NA2|εt+ |T |∆ϕ
d+ |N |∆ρ

d+ |L|∆ψ
d

+|TW−NB2|∆w+(|LV |+ |NV |)∆v + |MNV |∆v

≤ (|TA−LC −NA2|+ |T |F ϕ
x+ |N |F ρ

x+ |L|Fψ
x )εt

+(|TW−NB2|+ |N |F ρ
w)∆w+(|LV |+ |NV |)∆v,

(3.10)

where the inequality holds since ∆µ
d , µ ∈ {ϕ, ψ, ρ} satisfy ∆µ

d ≤ F
µ

xεt + F
µ

w∆w,

with F
µ

x, F
µ

w defined in (3.9) by (Khajenejad and Yong, 2022, Lemma 3) and their

pre-multiplier matrices | · | are non-negative. Further, by the Comparison Lemma

(Khalil, 2002, Lemma 3.4), the actual framer error system is stable if the comparison

system on the right hand side in (3.10) is stable.

Defining Ã ≜ |TA−LC−NA2|+|T |F ϕ

x+|N |F ρ

x+|L|F
ψ

x ,

B̃ ≜

[
(|TW−NB2|+|N |F ρ

w) (|LV |+|NV |)
]
≥ 0, C̃ ≜ In×n ≥ 0, and D̃ ≜ 0n×n ≥ 0,

the DT comparison system with zt = εt can be written as:

ε+t ≤ Ãεt+B̃[(∆w)⊤(∆v)⊤]⊤, zt= C̃εt+D̃[(∆w)⊤(∆v)⊤]⊤. (3.11)

Since Ã, B̃, C̃ and D̃ are non-negative, the error system in (3.11) is positive. Then,

by (Chen et al., 2013, Theorem 1), the comparison system (3.11) is asymptotically
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stable with γ > 0 as the L1-gain (cf. Definition 2.3), if there exists p ∈ Rn
>0 such thatÃ B̃

C̃ D̃


⊤  p

1n×1

 <

 p

γ1(nw+nv)×1

 . (3.12)

Next, by defining Q = Q⊤ ≜ diag(p) > 0, T̃ = QT , Ñ = QN , and L̃ = QL, we

have p = Q1n×1 and C̃⊤1n×1 = 1n×1. Further defining Ω ≜ QÃ and

[
Λ Υ

]
≜ QB̃,

we obtain that (3.12) is equivalent to the inequality constraint in (3.8). Similarly,

we can pre-multiply T +NC = In by the invertible Q matrix to obtain the equality

constraint in (3.8). Hence, by solving the MILP in (3.8) results in observer gains

T ∗ = (Q∗)−1T̃ ∗, N∗ = (Q∗)−1Ñ∗ and L∗ = (Q∗)−1L̃∗ that result in a L1-robust com-

parison system (3.11) i.e., it satisfies (2.3) with γ∗. Moreover, since the comparison

system is linear, asymptotically stability also implies that it is ISS (Sontag (2008)).

Consequently, by the Comparison Lemma (Khalil, 2002, Lemma 3.4), the actual DT

framer error system on the left hand side of (3.10) is also L1-robust and ISS.

The CT case is similar to the DT case, where from (3.5) and (3.6), we obtain CT

observer error dynamics G̃:

ε̇t = (TA−LC −NA2)
mεt + |T |∆ϕ

d+|N |∆ρ
d+ |L|∆ψ

d

+|TW −NB2|∆w + |LV |∆v + |MNV |∆v

≤ ((TA−LC−NA2)
m+|T |F ϕ

x+|N |F ρ

x+|L|F
ψ

x )εt

+(|TW −NB2|+|N |F ρ

w)∆w + (|LV |+ Z)∆v,

with Z ≜ (|M |−Mm)|NV | ≥ 0. Further, defining Ã ≜ (TA−LC−NA2)
m+|T |F ϕ

x+

|N |F ρ

x+ |L|Fψ

x , B̃ ≜

[
(|TW −NB2|+|N |F ρ

w) (|LV |+ Z)

]
≥ 0, C̃ ≜ In×n ≥ 0, and

D̃ ≜ 0n×n ≥ 0, the CT comparison system with zt = εt is given by (3.11). Since Ã is

Metzler and B̃, C̃ and D̃ are non-negative, the error comparison system is positive.

Then, by (Briat, 2013, Lemma 1), the CT comparison system is asymptotically stable
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with L1-gain, γ > 0, if there exists p ∈ Rn
>0 such thatÃ B̃

C̃ D̃


⊤  p

1n×1

 <

 0n×1

γ1(nw+nv)×1

 . (3.13)

By defining Q, T̃ , Ñ , and L̃ similar to the DT case , M̃ ≜ QM , and Z̃ ≜ QZ,

the inequality in 3.13 is equivalent to the inequality condition (3.8). The equality

constraint can also be obtained as in the DT case. Finally, a similar argument to the

DT case implies that the CT interval observer is L1-robust and is also ISS.

Note that in some cases, a coordinate transformation may help to make the MIP

in (3.8) feasible (cf. Remark 4). Further, we found that it is often helpful to multiply

Υ by a factor representing the ratio of the magnitudes of the measurement to process

noise signals to penalize their effects equally.

Remark 2. In the CT case (only), the presence of the term Z̃ = (|M̃ | − M̃m)|NV |

leads to bilinear constraints, but the MIP remains solvable with off-the-shelf solvers,

e.g., Gurobi (Gurobi Optimization, Inc. (2015)). Nonetheless, in the absence of mea-

surement noise, i.e., V = 0, or by choosing N = 0 (at the cost of losing the extra

degrees of freedom with T and N), the MIP reduces to a mixed-integer linear program

(MILP) similar to DT case.

Remark 3. We have a mixed-integer problem in (3.8) due to the presence of terms

(Note that absolute values are internally converted into a mixed-integer formulation

in off-the-shelf tools, e.g., YALMIP (Löfberg (2004)), where a binary variable is in-

troduced to indicate if |x| = x or |x| = −x.) involving absolute values |M | and

“Metzlerization” Mm = Md + |Mnd|. If desired, extra positivity constraints can be

imposed (i.e., by setting M ≥ 0, Mnd ≥ 0 and replacing |M |, |Mnd| with M , Mnd),

similar to the literature on SDP/LMI-based interval observer designs, to obtain a lin-

ear program. This addition is found to sometimes not incur any conservatism (e.g.,
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in the DT example in Section 5.1.2) but the problem becomes infeasible in others (e.g.,

in the CT example in Section 5.1.1.
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Chapter 4

HYBRID INTERVAL OBSERVER

This chapter considers the design of a hybrid interval observers, which was sub-

mitted to the 2023 IEEE Conference on Decision and Control.

4.1 Problem Formulation

Consider the hybrid plant with flow and jump dynamics characterized by mappings

fc : Rn → Rn and fd : Rn → Rn, respectively and corresponding output mappings

hc : Rn → Rm1 and hd : Rn → Rm2 , and an equivalent hybrid system composed of

JSS decompositions (Proposition 1) of fc, fd, hc, and, hd given as:

H



ẋ = fc(x) = Acx+ ϕc(x), x ∈ C,

x+ = fd(x) = Adx+ ϕd(x), x ∈ D,

yc = hc(x) = Hcx+ ψc(x), x ∈ C,

yd = hd(x) = Hdx+ ψd(x), x ∈ D,

(4.1)

with an uncertain initial state x0,0 satisfying x0,0 ∈ X0 ≜ [x0,0, x0,0] ⊂ X , where x0,0

and x0,0 are known and the JSS mappings ϕc, ϕd, ψc, ψd and matrices Ac, Ad, Hc, Hd

are obtained via Proposition 1, while x ∈ Rn is the state and y = (yc, yd) is the output

with yc ∈ Rm1 and yd ∈ Rm2 . The sets C ⊂ Rn and D ⊂ Rn represent the flow set

and the jump/guard set of the hybrid plant H, respectively.

Additionally, a hybrid arc is the solution x of the hybrid plant H defined on a

hybrid time domain denoted by dom(x) ⊂ R≥0×N such that for any (T, J) ∈ dom(x),
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∃ t0 ≤ t1 ≤ · · · ≤ tJ that satisfy:

dom(x) ∩ ([0, T ]× {0, 1, ..., J}) =
⋃J−1
j=0 ([tj, tj+1], j).

Further, domt(x) and j(x) represent the projection of dom(x) in its first and second

dimension, respectively.

Additionally in this section, we describe the construction of the proposed hybrid

interval observer as well as analyze its correctness and asymptotic stability properties.

Note that in the rest of the paper, for brevity we drop the explicit dependence on the

hybrid time (t, j) unless explicitly necessary.

4.2 Interval Observer Design

Inspired by our work on interval observers for discrete- and continuous-time sys-

tems in Pati et al. (2022), we propose the following hybrid interval observer Ĥ for the

hybrid system H in (4.1), which can be obtained by first finding its equivalent rep-

resentation with a transformation that satisfies Tc +NcHc = In and Td +NdHd = In

similar to (Pati et al., 2022, Lemma 1) and then constructing the corresponding

embedding systems for the flow and jump dynamics (cf. Definition 4):

ξ̇ =(Md
c +Mnd,⊕

c )x−Mnd,⊖
c x+ Lcyc+ T⊕

c ϕc,δ(x, x)−T⊖
c ϕc,δ(x, x)

−L⊕
c ψc,δ(x, x) + L⊖

c ψc,δ(x, x)−N⊕
c ρc,δ(x, x) +N⊖

c ρc,δ(x, x) +McNcy,

ξ̇ =(Md
c +Mnd,⊕

c )x−Mnd,⊖
c x+ Lcyc+ T⊕

c ϕc,δ(x, x)−T⊖
c ϕc,δ(x, x)

−L⊕
c ψc,δ(x, x) + L⊖

c ψc,δ(x, x)−N⊕
c ρc,δ(x, x) +N⊖

c ρc,δ(x, x) +McNcy,

x = ξ +Ncyc,

x = ξ +Ncyc,

20



ζ+ =M⊕
d x−M

⊖
d x+ Ldyd+ T⊕

d ϕd,δ(x, x)−T
⊖
d ϕd,δ(x, x)

−L⊕
d ψd,δ(x, x) + L⊖

d ψd,δ(x, x)−N⊕
d ρd,δ(x, x) +N⊖

d ρd,δ(x, x) +MdNdy,

ζ
+
=M⊕

d x−M
⊖
d x+ Ldyd+ T⊕

d ϕd,δ(x, x)−T
⊖
d ϕd,δ(x, x)− L⊕

d ψd,δ(x, x) + L⊖
d ψd,δ(x, x)

−N⊕
d ρd,δ(x, x) +N⊖

d ρd,δ(x, x) +MdNdy,

ξ+ = ζ+ +Ndyd −Ncyc,

ξ
+
= ζ

+
+Ndyd −Ncyc,

where x, x ∈ Rn are upper and lower framers of the state x, respectively, ξ, ξ ∈

Rn are continuous-time auxiliary framers and ζ, ζ ∈ Rn are discrete-time auxiliary

framers, with Mc ≜ TcAc − LcHc − NcA2c and Md ≜ TdAd − LdHd − NdA2d. Addi-

tionally, the JSS mappings ρc : Rn → Rm1 and ρd : Rn → Rm2 are obtained from JSS

decomposition (via Proposition 1 under the assumption of known Jacobian bounds)

of ψ̇c(x) = ∂ψc

∂x
fc(x) = A2cx + ρc(x) and ψd(x

+) = ψd(fd(x)) = A2dx + ρd(x), with

linear JSS mappings A2c ∈ Rm1×n and A2d ∈ Rm2×n.

Further, ϕc,δ, ϕd,δ : R2n → Rn, ψc,δ, ρc,δ : R2n → Rm1 and ψd,δ, ρd,δ : R2n → Rm2

are tight mixed-monotone decomposition functions of ϕc, ϕd, ψc, ρc, ψd, and ρd,

respectively (cf. (4.1), Definition 3), which are JSS and thus, can be computed using

(2.6). Finally, Nc, Lc ∈ Rn×m1 , Nd, Ld ∈ Rn×m2 , and Tc, Td ∈ Rn×n are the observer

gain matrices to be designed that satisfies Tc+NcHc = Td+NdHd = In. The detailed

properties of correctness and asymptotic stability of the observer design Ĥ are proven

in the next subsections.

Remark 4. Note that the observer design presented in this section is inspired by

Wang et al. (2012) and Degue et al. (2021) and involves six observer gains, Nc, Tc,
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Lc, Nd, Td and Ld, which provide additional degrees of freedom when compared to

existing hybrid observer designs, e.g., in Bernard and Sanfelice (2018), which often

only have two degrees of freedom with gains Lc and Ld.

4.3 Hybrid Observer Correctness

In this section, we demonstrate that by construction, the hybrid interval estimator

Ĥ proposed in (4.2) for the hybrid plant H is correct, i.e., its framers bound the true

states.

Theorem 3. [Correctness] Suppose Assumptions 3-2.4 hold for the hybrid plant H

considered in (4.1) and let Ĥ be its corresponding hybrid interval observer built ac-

cording to (4.2). Then, their respective solutions xt,j and [x⊤t,j, x
⊤
t,j]

⊤ satisfy xt,j ≤

xt,j ≤ xt,j,∀(t, j) ∈ dom(x), i.e., the hybrid interval observer Ĥ functions as a correct

interval framer for the hybrid plant H.

Proof. We start by considering the base case, x0,0 ≤ x0,0 ≤ x0,0, which is trivially true

because of the assumption on the initial condition x0,0 ∈ X0 ≜ [x0,0, x0,0] ⊂ X . Next,

assuming that xt,j ≤ xt,j ≤ xt,j holds for some (t, j) ∈ dom(x) with tj ≤ t ≤ tj+1,

we will show that xt,j+1 ≤ xt,j+1 ≤ xt,j+1 holds for (t, j + 1) ∈ dom(x) with tj+1 ≤

t ≤ tj+2. By construction, the continuous-time embedding system during flow in

(4.2) guarantees the framer properties by (Khajenejad and Yong, 2021, Proposition

3), i.e., xt′,j ≤ xt′,j ≤ xt′,j, ∀t ≤ t′ ≤ tj+1. Then, by the construction of the

discrete-time embedding system during jumps in (4.2) and (Khajenejad and Yong,

2021, Proposition 3), we have xtj+1,j+1 ≤ xtj+1,j+1 ≤ xtj+1,j+1, (tj+1, j + 1) ∈ dom(x).

Finally, by (Khajenejad and Yong, 2021, Proposition 3) again for the flow, we obtain

xt,j+1 ≤ xt,j+1 ≤ xt,j+1 for (t, j + 1) ∈ dom(x) with tj+1 ≤ t ≤ tj+2. Thus, by the

principle of mathematical induction, the theorem holds.
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4.4 Stable Observer Design

In addition to proving correctness, it is essential to ensure the stability of the pro-

posed hybrid framer. Thus, we propose two variants for designing the observer gains

Tc, Td, Nc, Nd, Lc, and Ld to asymptotically stabilize (cf. (3.2)) the error dynamics of

the hybrid interval observer.

Q-Hybrid Interval Observer

First, we outline the first variant that is based on the use of a quadratic common

Lyapunov function to prove asymptotic stability.

Theorem 4. [Q-Hybrid Interval Observer] If Assumptions 3-2.4 hold for the hybrid

plant H in (4.1), then the hybrid interval observer Ĥ in (4.2) is asymptotically stable if

there exist ac, ad ∈ R, T̃c, T̃d ∈ Rn×n, Ñc, L̃c ∈ Rn×m1,Ñd, L̃d ∈ Rn×m2 and a diagonal

matrix P ≻ 0 such that:

ΓT + Γ ⪯ acP, (4.2a) P Ω

ΩT eadP

 ⪰ 0, (4.2b)

acτ + ad < 0, ∀τ ∈ I, (4.2c)

T̃c + ÑcHc = P, (4.2d)

T̃d + ÑdHd = P, (4.2e)

where Γ ≜ (T̃cAc − L̃cHc − ÑcA2c)
m + |T̃c|F ϕc + |L̃c|Fψc + |Ñc|F ρc, Ω ≜ |T̃dAd −

L̃dHd− ÑdA2d|+ |T̃d|F ϕd + |L̃d|Fψd
+ |Ñd|F ρd, and I satisfies Assumption 5. Further,

F ξ, ∀ξ ∈ Ξ ≜ {ϕc, ψc, ρc, ϕd, ψd, ρd} are computed from the JSS functions ξ ∈ Ξ with

Jacobian matrices Jξ ∈ [Jξ, J
ξ
] as follows: F ξ ≜ (J

ξ
)⊕ + (Jξ)⊖.
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Then, the observer gains in (4.2) can be obtained as Tc ≜ P−1T̃c, Nc ≜ P−1Ñc,

Lc ≜ P−1L̃c, Td ≜ P−1T̃d, Nd ≜ P−1Ñd and Ld ≜ P−1L̃d.

Proof. We begin by constructing the hybrid framer error dynamics from (4.2), before

proving that the feasibility of (4.2a)-(4.2e) implies that the hybrid error dynamics

are asymptotically stable. From (4.2), the framer error is ε ≜ x− x = ξ − ξ = ζ − ζ

and the hybrid framer error dynamics of H̃ can be expressed as

H̃



ε̇ = (TcAc−LcHc −NcA2c)
mεt

+|Tc|∆ϕc
d + |Nc|∆ρc

d + |Lc|∆ψc

d

≤ Ecε

x ∈ C,

ε+ = |TdAd−LdHd −NdA2d|ε

+|Td|∆ϕd
d + |Nd|∆ρd

d + |Ld|∆ψd

d

≤ Edε

x ∈ D,

(4.3)

where we define ∆ξ
δ ≜ ξδ(x, x) − ξδ(x, x) for all ξ ∈ Ξ that satisfy ∆ξ

δ ≤ F ξ by

(Khajenejad et al., 2022, Lemma 3), as well as Ec ≜ (TcAc−LcHc−NcA2c)
m+|Tc|F ϕc+

|Lc|Fψc + |Nc|F ρc and Ed ≜ |TdAd − LdHd −NdA2d|+ |Td|F ϕd + |Ld|Fψd
+ |Nd|F ρd .

Consequently, by applying (Bernard and Sanfelice, 2018, Theorem 3.1) (that uses

a quadratic common Lyapunov function) to the linear comparison hybrid system in

(4.3), the error dynamics is global asymptotically stable if there exists a positive

definite matrix P ∈ Rn×n and scalars ad and ac such that:

ET
c P + PEc ⪯ acP, (4.4a)

ET
d PEd ⪯ eadP, (4.4b)

acτ + ad < 0, ∀τ ∈ I. (4.4c)

Moreover, since P is diagonal (by assumption), then it can be trivially shown that

PMm = (PM)m and P |M | = |PM | for any matrixM . Given this, as well as defining
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Γ and Ω as in Theorem 4, (4.4a) can be written as in (4.2a), while (4.4b) can be

represented as

ΩTP−1Ω ≤ eadP. (4.5)

Then, by applying the Schur complement, (4.5) is equivalent to (4.2b). The conditions

in (4.2d) and (4.2e) can be recovered by left multiplying the two linear transformations

Tc+NcHc = Td+NdHd = In introduced in the hybrid observer design in (4.2) with the

matrix P and defining M̃ ≜ PM , ∀M ∈ {Tc, Tc, Nc, Nd}. Hence, the feasibility of the

constraints (4.2a)-(4.2e) prove the asymptotic stability of the error comparison linear

hybrid system in (4.3). Consequently, the error hybrid dynamics in (4.3) and the

hybrid interval observer in (4.2) are asymptotically stable according to Comparison

Lemma (Khalil, 2002, Lemma 3.4).

L-Hybrid Interval Observer

Next, we introduce the second variant that is based on the use of a linear common

Lyapunov function by leveraging the fact that our hybrid framer error dynamics are

cooperative/positive by design.

Theorem 5. [L-Hybrid Interval Observer] If Assumptions 3-2.4 hold for the hybrid

plant H in (4.1), then the hybrid interval observer Ĥ in (4.2) is asymptotically stable

if there exist ac, ad ∈ R, T̃c, T̃d ∈ Rn×n, Ñc, L̃c ∈ Rn×m1, Ñd, L̃d ∈ Rn×m2 and a
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positive vector z ∈ Rn
>0 such that:

Γ⊤1n×1 ≤ acz, (4.6a)

Ω⊤1n×1 ≤ eadz, (4.6b)

acτ + ad < 0, ∀τ ∈ I (4.6c)

T̃c + ÑcHc = P, (4.6d)

T̃d + ÑdHd = P, (4.6e)

where P ≜ diag(z) (a diagonal matrix with z as its diagonal elements), Γ ≜ (T̃cAc −

L̃cHc−ÑcA2c)
m+ |T̃c|F ϕc+ |L̃c|Fψc+ |Ñc|F ρc, Ω ≜ |T̃dAd−L̃dHd−ÑdA2d|+ |T̃d|F ϕd+

|L̃d|Fψd
+ |Ñd|F ρd, I satisfies Assumption 5 and F ξ, ∀ξ ∈ Ξ ≜ {ϕc, ψc, ρc, ϕd, ψd, ρd}

are computed as described in Theorem 4.

Then, the observer gains in (4.2) can be obtained as Tc ≜ P−1T̃c, Nc ≜ P−1Ñc,

Lc ≜ P−1L̃c, Td ≜ P−1T̃d, Nd ≜ P−1Ñd and Ld ≜ P−1L̃d.

Proof. The proof follows similar steps as the proof of Theorem 4. Since the flow

dynamics and jump dynamics of our proposed hybrid interval observer in (4.2) are

correct by construction according to Theorem 3, the framer error hybrid dynamics in

(4.3) are also cooperative/positive by construction. Hence, by Propositions (Rantzer,

2011, Proposition 1 and 2), a linear common Lyapunov function V (ε) = z⊤ε can be

considered. Consequently, by applying (Goebel et al., 2012, Proposition 3.29) to the

linear comparison hybrid system in (4.3), the error dynamics is globally asymptoti-

cally stable if there exists a vector z > 0, and scalars ad and ac such that:

z⊤Ec ≤ acz
⊤, (4.7a)

z⊤Ed ≤ eadz⊤, (4.7b)

acτ + ad < 0, ∀τ ∈ I. (4.7c)
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Moreover, defining P ≜ diag(z) and therefore, z = P1n×1, it can be trivially shown

that for any matrix M , we have MmP = (MP )m and |M |P = |MP |, and defining Γ

and Ω as in Theorem 5, inequalities (4.6a) and (4.6b) can be obtained from (4.7a) and

(4.7b), respectively. Further, similar to the proof of Theorem 4, the constraints (4.6d)

and (4.6e) are consequences of left multiplying the linear transformations Tc+NcHc =

Td + NdHd = In with the matrix P and defining M̃ ≜ PM , ∀M ∈ {Tc, Tc, Nc, Nd}.

Hence, the linear hybrid system in (4.3) and by Comparison Lemma (Khalil, 2002,

Lemma 3.4), the hybrid error dynamics in (4.3) and the hybrid interval observer in

(4.2) are asymptotically stable.

Remark 5. Note that the presence of absolute value terms |M | and ”Metzlerization”

Mm =Md+ |Mnd| results in mixed-integer optimization problems in Theorems 4 and

5. Additionally, due to the presence of the term ead in inequalities (4.6b) and (4.2b),

the optimizations in Theorems 4 and 5 are non-trivial. However, by (line) searching

over ac and ad that satisfy acτ+ad < 0,∀τ ∈ I, the optimization problems in Theorems

4 and 5 can be simplified to mixed-integer semidefinite programs (MISDP) and mixed-

integer linear programs (MILP), respectively, which can be solved using off-the-shelf

tools. If desired, extra positivity constraints can be imposed (i.e., by setting M ≥ 0,

Mnd ≥ 0 and replacing |M |, |Mnd| with M , Mnd), then the MISDP in Theorem

(4) and the MILP in Theorem (5) can be further simplified to semidefinite programs

(SDP) and linear programs (LP), respectively, that are often more computationally

amenable.
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Chapter 5

SIMULATIONS

5.1 Examples for L1-Robust Interval Observer Design

In this section, we consider both CT and DT examples to demonstrate the effec-

tiveness of our approaches. The MILPs in (3.8) are solved using YALMIP (Löfberg

(2004)) and Gurobi (Gurobi Optimization, Inc. (2015)).

5.1.1 CT System Example

Let us consider the CT system in (Dinh et al., 2014, Eq. (30)):

ẋ1 = x2 + w1, ẋ2 = b1x3 − a1 sin(x1)− a2x2 + w2,

ẋ3=−a3(a2x1+x2)+
a1
b1
(a4 sin(x1)+cos(x1)x2)−a4x3+w3,

with output y = x1 (i.e., V = 0 and we have an MILP formulation (cf. Remark 3))

and the following parameters: a1 = 35.63, b1 = 15, a2 = 0.25, a3 = 36, a4 = 200,X0 =

[19.5, 9]× [9, 11]× [0.5, 1.5],W = [−0.1, 0.1]3.

The problem in (3.8), even with the additional degrees of freedom, as well as the

observer designs in Khajenejad and Yong (2022); Dinh et al. (2014) are infeasible

without a state transformation (also cf. Remark 4). Hence, similar to (Khajenejad

and Yong, 2022, Section V-A), we consider a similarity transformation z = Sx with

S =


20 0.1 0.1

0 0.01 0.06

0 −10 −0.4

, and added and subtracted 5y from the dynamics of ẋ1. Further,

adding positivity constraints to cast (3.8) as an LP led to infeasibility; thus, the MILP

formulation is less conservative (cf. Remark 3).
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By solving (3.8), we obtain the following observer gains:

T =


−1.569 4.138 −0.021

0.016 0.973 0.0001

50.200 −80.860 1.421

, N =


51.386

−0.330

−1004.014

, L =


7869.338

0.186

0

,

A =


−5 1 0

0 0.25 15

0 36 200

, B =


0 0

1 0

0 1

, C =


1

0

0

, A2 = ∅, and B2 = ∅. From Figure 5.1

(only results for x3 is depicted for brevity; other states show the same trends), we

observe that the state framers obtained by our proposed approach, x, x, are tighter

than those obtained by both the interval observers in Khajenejad and Yong (2022),

xH∞ , xH∞ , and in Dinh et al. (2014), xDMN , xDMN . Moreover, the framer error εt =

xt − xt is observed to converge exponentially to a steady-state value.

As shown in Figure 5.1, state, x3, and its upper and lower framers and error of our

proposed observer, x3, x3, ε3, and by the observers in Khajenejad and Yong (2022),

x
Hinfty

3 , x
Hinfty

3 , ε
Hinfty

3 , and Dinh et al. (2014), xDMN
3 , xDMN

3 , εDMN
3 .

5.1.2 DT System Example

Next, we consider the noisy DT Hénon chaos system (Khajenejad and Yong, 2022,

Section V-B): xt+1 = Axt+r[1−x2t,1]+Bwt, yt = xt,1+vt, where A =

 0 1

0.3 0

, B = I,

r =

0.05
0

, X0 = [−2, 2] × [−1, 1], W = [−0.01, 0.01]2 and V = [−0.025, 0.025].

Note that in this example, the problem in (3.8) is feasible without any coordinate

transformation and further, additional positivity constraints can be added to cast

(3.8) as an LP without any performance loss (cf. Remark 3). By solving (3.8), we

obtain the following observer gains: T =

0.5448 0

0 1

, N =

0.4552
0

, L =

0
0

,
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Figure 5.1: State, x3, as well as its upper and lower framers and error returned
by our proposed observer, x3, x3, ε3, and by the observer in Dinh et al. (2014),
xDMN
3 , xDMN

3 , εDMN
3 for the CT System example.

C =

[
1 0

]
, A2 = ∅, and B2 = ∅. From Figure 5.4 (x2 omitted for brevity), the

estimates from our proposed approach are tighter than the methods in Tahir and

Açıkmeşe (2021) and Khajenejad and Yong (2022) that instead minimizes the H∞-

gain.

As shown in the Figure 5.2, state, x1, and its upper and lower framers and error

of our proposed observer, x1, x1, ε1, and by the observers in Khajenejad and Yong

(2022), xH∞
1 , xH∞

1 , εH∞
1 , and Tahir and Açıkmeşe (2021), xTA1 , xTA1 , εTA1 .
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Figure 5.2: State, x2, and its Upper and Lower Framers, Returned by our Proposed
Observer, x2, x2, and by the Observer in Tahir and Açıkmeşe (2021), xTA2 , xTA2 (left)
and Norm of Framer Error (right) for the DT System Example.

5.2 Examples for Hybrid Interval Observer Designs

5.2.1 Bouncing Ball

Consider a bouncing ball with gravity coefficient g > 0, restitution coefficient

λ > 0 and (nonlinear) drag coefficient β > 0, modeled as system (4.1) with

fc(x) =

 x2

−g − βx2|x2|

 , fd(x) =
 x1

−λx2

 ,
C = R≥0×R,D = {(x1, x2) ∈ R2 : x1 = 0, x2 ≤ 0},

with output hc(x) = hd = x1, where state x1 represents the position (above ground)

and x2 represents the velocity. Next, we consider two cases where the minimum dwell

time τm is zero (λ < 1) or non-zero (sufficiently large λ).
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Figure 5.3: Linear Bouncing Ball with τm = 0: State x2, its Lower (x2) and Upper
(x2) Framers, and the Normalized Lyapunov Function (VN (εt,j) = V (εt,j)/V (ε0,0)) of Both
Hybrid Observer Variants.

Zero minimum dwell time

First, we consider the case of the linear (β = 0) bouncing ball problem with λ = 0.8,

i.e., the overall the system losses energy and exhibits Zeno behavior. Hence, for this

case, we have minimum dwell time τm = 0. In this scenario, from Fig. 5.3, it can

be observed that the MILP approach (using Theorem 5) estimates the unmeasured

velocity x2 faster than the MISDP approach (using Theorem 4). Moreover, from

the analysis of normalized Lyapunov function values (normalized by the initial value)

from Fig. 5.3, both the observers have comparable performance in asymptotically

stabilizing the framer errors.

From the Figure 5.3, for the Linear Bouncing Ball (with τm = 0): the state x2, its

lower (x2) and upper (x2) framers, and the normalized Lyapunov function (VN(εt,j) =

V (εt,j)/V (ε0,0)) of both hybrid observer variants.

Non-zero minimum dwell time

Next, we consider the case of a nonlinear bouncing ball problem with β = 0.02,

i.e., the system losses energy during flow due to nonlinear drag forces, but due to a
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Figure 5.4: Nonlinear Bouncing Ball with τm ̸= 0: State x2, its Lower (x2) and Upper
(x2) Framers and the Normalized Lyapunov Function (VN (εt,j) = V (εt,j)/V (ε0,0)) of Both
Hybrid Observer Variants.

sufficiently large coefficient of restitution λ = 1.09 (such a system can be realized in

practice by considering an actuated table), the system gains more energy than it loses

during flows. Hence, the system has a non-zero minimum dwell time τm (no Zeno

behavior). From Fig. 5.4, the velocity x2 framers of both the MILP and MISDP

approaches (Using Theorems 4 and 5, respectively) converge very fast to the true

values. Moreover, from Fig. 5.4, it is evident that both variants have comparable

performances in the sense of their normalized Lyapunov function values.

From the Figure 5.4, for the Nonlinear Bouncing Ball (with τm ̸= 0): State x2, its

lower (x2) and upper (x2) framers and the normalized Lyapunov function (VN(εt,j) =

V (εt,j)/V (ε0,0)) of both hybrid observer variants.
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Chapter 6

CONCLUSION

This thesis proposed two interval observer designs, the first was developed uncer-

tain locally Lipschitz CT and DT systems with nonlinear noisy observations and the

second is designed for hybrid systems with known jump times and nonlinear dynam-

ics and observations. In the former case, the proposed L1 observer is input-to-state

stable (ISS) and minimizes the L1-gain of the observer error system. Unlike most

existing interval observers, the design involves mixed-integer (linear) programs in-

stead of semi-definite programs with linear matrix inequalities and offers additional

degrees of freedom that can be simultaneously designed. On the other hand, the

proposed observer for hybrid systems has cooperative flow dynamics and positive

jump dynamics, and it is correct by construction without any additional positivity

constraints. The proposed observer designs involve solving mixed-integer semidefinite

programs or mixed-integer linear programs to compute the observer gains, including

the additional degrees of freedom from a system transformation. Both designs were

demonstrated to be effective in several simulation examples.

6.1 Future Work

In our future work, we will extend our proposed framework to consider noisy

or uncertain hybrid systems with unobserved discrete modes and unknown jump

times. Additionally, it would be interesting to investigate the performance of the

proposed observer design on more complex hybrid systems and to compare it with

other observer designs.
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Efimov, D. and T. Räıssi, “Design of interval observers for uncertain dynamical sys-
tems”, Automation and Remote Control 77, 2, 191–225 (2016).
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