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ABSTRACT

This thesis develops geometrically and statistically rigorous foundations for multivariate

analysis and bayesian inference posed on grassmannian manifolds. Requisite to the de­

velopment of key elements of statistical theory in a geometric realm are closed­form, an­

alytic expressions for many differential geometric objects, e.g., tangent vectors, metrics,

geodesics, volume forms. The first part of this thesis is devoted to a mathematical exposi­

tion of these. In particular, it leverages the classical work of Alan James to derive the ex­

terior calculus of differential forms on special grassmannians for invariant measures with

respect to which integration is permissible.

Motivated by various multi­sensor remote sensing applications, the second part of this

thesis describes the problem of recursively estimating the state of a dynamical system prop­

agating on the Grassmann manifold. Fundamental to the bayesian treatment of this prob­

lem is the choice of a suitable probability distribution to a priorimodel the state. Using the

Method of Maximum Entropy, a derivation of maximum­entropy probability distributions

on the state space that uses the developed geometric theory is characterized. Statistical

analyses of these distributions, including parameter estimation, are also presented. These

probability distributions and the statistical analysis thereof are original contributions.

Using the bayesian framework, two recursive estimation algorithms, both of which rely

on noisy measurements on (special cases of) the Grassmann manifold, are the devised and

implemented numerically. The first is applied to an idealized scenario, the second to amore

practically motivated scenario. The novelty of both of these algorithms lies in the use of the

derived maximum­entropy probability measures as models for the priors. Numerical sim­

ulations demonstrate that, under mild assumptions, both estimation algorithms produce

accurate and statistically meaningful outputs.

This thesis aims to chart the interface between differential geometry and statistical sig­

nal processing. It is my deepest hope that the geometric­statistical approach underlying

this work facilitates and encourages the development of new theories and new computa­
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tionalmethods in geometry. Application of these, in turn, will bring new insights and better

solutions to a number of extant and emerging problems in signal processing.
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Chapter 1

INTRODUCTION

The focus of this dissertation is two­fold. First, it develops new mathematical theory

for bayesian estimation and statistical analysis on real and complex Grassmannmanifolds,

where the geometrical aspects of the spaces are crucial considerations. Second (in fact, to

some degree, in parallel), it devises and implements computational geometric­statistical

algorithms that are applied to a specific class of extant and emerging problems in signal

processing – namely the iterative estimation of particular subspaces of finite­dimensional

vector spaces in dynamic scenarios.

1.1 Some Historical Remarks

It is said without great exaggeration that Grassmann invented linear algebra and, with

none at all, that he showed how to properly apply it in geometry [9]. Though in a tragic tale,

his visionary introduction to vectors, vector spaces, subspaces, bases, dimensions, exterior

products, and a host of geometric algebra [16], was almost entirely ignored by contempo­

rarymathematicians. Plücker introduced a special case of the concept of a space comprised

of subspaces of a linear space [38], which was generalized by Grassmann to establish what

only much later came to be known as a grassmannian. The definitions of vector spaces,

their subspaces, and collections of their subspaces came into mathematics, in the sense of

becoming widespread, around 1920, when Weyl’s influential book [51] appeared.

Work that directly underpins themodern theory ofmanifoldswas also emerging around

the same time that Grassmann published hisDie Ausdehnungslehre, perhapsmost notably

fromRiemannwho apparently coined the termMannigfaltigkeit in his 1851 doctoral thesis

[40]. The manifold nature of the grassmannian, along with its geometric and topological

properties, structure as a homogeneous space and a quotient of Lie groups, construction as

1



a scheme, representation as an algebraic variety, and numerous other characteristics have

been very well studied over the past century. Of particular importance to this thesis are the

introduction of Pontryagin coordinates [39], which enable integration on grassmannians

to be carried out in a single coordinate patch, and the pioneering work of James [21] in the

early 1950s, which established foundations for statistics on grassmannians.

The early­to­mid twentieth century also saw the emergence of statistical estimation

theory and prominent modern techniques. The method of maximum likelihood, first es­

tablished by Fisher in 1912 [10], remains one of the most popular and useful estimation

techniques of modern statistics; despite the bayesian emphasis in this thesis, we also draw

on these maximum­likelihood techniques. Kolmogorov [28] in 1941 and Wiener [53] in

1942 independently developed a linear minimum mean­square estimation technique that

received considerable attention and provided the foundation for the subsequent develop­

ment of the celebrated Kalman filter [24]. The late 1950s brought significant attention to

the development of bayesian statistics and the principle of maximum entropy, providing a

context within which the work presented in thesis may be regarded as a direct extension of

the Kalman filter.

Advances in sensor technologies and network sensor systems in the last quarter of the

twentieth century and into the twenty­first century precipitated new interest in subspace­

based linear models – and corresponding subspace­based methods – whose most natural

settings are Grassmann manifolds. In particular, the past three decades have shown sig­

nificant interest in applications in which a putative signal (that is known or unknown) of

a fixed rank (that is also known or unknown!) is to be detected based on measurements

collected from a single sensor, or possibly a suite of multiple sensors. Subspace­based lin­

ear models in signal analysis were initially popularized in array processing [29], and their

more generic use in signal detection and estimation were pioneered by Scharf [41] and oth­

ers in the 1980s. Notably, he and Friedlander established thematched subspace detector,

which generalizes the inner product detection of the classical matched filter to a statistic

obtained by projection of aggregated data into a higher dimensional signal subspace [42].
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Complementing this work was the introduction by Gish and Cochran [14] of the gener­

alized coherence estimate, which extended the popular two­channel magnitude­squared

coherence statistic, based on an inner product, to multi­channel statistic based on a Gram

matrix determinant. Both of these generalizations continue to see wide application.

The matched subspace detector, the generalized coherence estimate, and their general­

izations and variants have clearly stated optimalities and invariances, as well as evocative

geometrical interpretations. The matched filter – a special case of a matched subspace de­

tector – admits interpretation as the length of the projection of aggregated sensor data onto

the signal subspace. The generalized coherence estimate admits interpretation as the vol­

ume of a parallelotope or equivalently as the product of principal angles between subspaces

of a vector space. In fact, many standardmethods in statistical signal processing arose from

multivariate statistical analysis and, though expressed in terms of matrix algebra, often en­

tail geometric structure that is not explicitly elucidated.

This dissertation develops this geometric perspective, offering potential for broad new

geometric insight and methodology to this same class of statistical signal processing prob­

lems.

1.2 A Motivating Application

This dissertation is focused on a specific class of subspace detection, estimation, and

tracking problems, which has various multi­sensor remote sensing applications, including

multistatic radar and electronic surveillance. Typical goals of these problems are to detect

and characterize a putative unknown signal impinging on a network of distributed sensors.

For concrete context, we consider the following practical application throughout this thesis.

Let us assume there are k ≥ 1 linearly independent waveforms illuminating m spa­

tially distributed sensors, which transduce impinging electromagnetic radiation (or acous­

tic sound pressure) to ultimately produce digital signals. The target typically manifests as

a weighted sum of the waveforms, delayed and Doppler shifted according to the target lo­

cation and motion, at each sensor. Because the k transmit waveforms are the same but
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the weights (gains) are different at each receiver, they define a k­dimensional subspace of

a vector space of dimension n � k, where n refers to the length of the sample sequences

collected at each sensor for processing. As mentioned, the problem of detecting a common

but unknown signal of known rank k using data collected at m spatially distributed sen­

sors has been well studied in the signal processing literature [6] (and references therein).

However due to time­varying illumination and the effects of presumed targetmotion, the k­

dimensional subspace itself is time­varying. The problem is now to recursively estimate, or

track, a sequence of k­dimensional subspaces from observations at the spatially distributed

sensors. This task of detecting and estimating a sequence of subspaces of a time­varying

system is what we refer to as subspace tracking.

We should note that estimating the state of a dynamical system is a well­studied prob­

lem in connection with numerous applications. When the state space is Rn and the dy­

namical and measurement models are linear with additive gaussian noise, the well­known

and widely used Kalman filter provides an elegant solution that incorporates new mea­

surements in each epoch into the state estimate. As the state of our dynamical system is an

element of a Grassmann manifold, and we model the dynamics as rotations resulting from

the action of an element of the (special) unitary group, our dynamical system is intrinsically

nonlinear and the Kalman filter framework does not apply. bayesian analysis of stochas­

tic dynamical systems on nonlinear manifolds entails development of suitable probability

measures that play a role analogous to the gaussian distribution on Rn, e.g. maximum­

entropy probability measures. To our knowledge, the development of maximum­entropy

probability measures on grassmannians is not known in the literature.

Recent work [47], which has served as a proverbial launching pad for the approach to

iterative estimation put forth in this thesis, developed iterative estimation algorithms for

the state of a dynamical system evolving both on SO(2) and SO(3), where the maximum­

entropy distributions corresponding to a fixed first moment are the von Mises and the von

Mises­Fisher matrix distributions, respectively. Their results demonstrate in simulations

that their algorithms, based on bayesian recursion, appear to achieve an unprecedented
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combination of fidelity and computational efficiency. The recursive estimators relying on

an idealized measurement model that are set forth in Chapter 4 are direct extensions of

the geometric­statistical approach in [47] to special cases of the grassmannian: real and

complex projective space.

1.3 A Roadmap

The remainder of this thesis is organized as follows. Chapter 2 begins with a broad­

based introduction to the mathematical, geometrical, statistical, and information theoretic

foundations at play. While almost none of the material presented in this chapter is orig­

inal, a goal of this thesis is to create an entirely self­contained, mathematically complete

document accessible to members of both the differential geometry and statistical signal

processing communities. And a sound understanding of the mathematical underpinnings

will be essential to the ensuing chapters.

Chapters 3 and 4 comprise the bulk of the original work in this thesis. Chapter 3 de­

velops the aspects of the theory of bayesian estimation of particular subspaces of finite­

dimensional vector spaces in dynamic scenarios, specialized to the important, special case

where the subspaces are one­dimensional. In particular, we construct differential forms for

invariant measures on real and complex projective space, obtained from James’ derivation

of the differential form for the invariant measure on the Grassmann manifold [21]. It is

in this chapter where we also evaluate the integrals of theses invariant measures, yielding

normalized invariant measures – that is, uniform distributions – on RPn and CPn. We

further develop maximum­entropy probability distributions on RPn and CPn and include

a brief statistical analysis, including the estimation of their parameters. These probability

measures and the statistical analysis thereof are original contributions. Chapter 4 presents

the application of the geometric­statistical theory, devising a bayesian framework for re­

cursive estimation posed on real and complex projective space. For each of these spaces,

an idealized scenario is considered first, followed by one more practically motivated.

Chapter 5 lays the groundwork for extension from complex projective space to the com­
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plex Grassmann manifold. We obtain a few results in generality, but point out current

obstructions for complete generalizations of the bayesian estimation techniques and sta­

tistical analyses presented in preceding chapters. While the primary application motivat­

ing this thesis is indeed the (recursive) estimation of particular time­varying subspaces of

finite­dimensional vector spaces, e.g., points on a grassmannian, great care is taken so that

the development of the differential geometric objects can be naturally applied to a variety of

related problems in statistical signal processing, such as classification, coherence analysis,

even manifold learning.

Finally, in Chapter 6, we conclude with a discussion of our contributions and propose

opportunities to expand the scope of our geometric­statistical approach.

1.4 Some Notational Conventions

Scalar quantities are represented by regular, lowercase characters; vector quantities

are boldface, lowercase characters; matrix quantities are boldface, uppercase characters.

When the distinction is important, random quantities (variables, vectors, matrices) are in

sans­serif font. Examples of scalar­valued random variables are x, y,α, θ, while x, y,ααα, θθθ

are vector­valued random variables. Examples of scalar sample values (and deterministic

quantities) are x, y,α, θ, while examples of deterministic vector quantities are x,y,α,θ.

While it is perhaps a bit nontraditional in the statistical signal processing community,

we’ve attempted to adhere to denoting components of matrices and vectors with upper in­

dices. For example, the ith column of the matrixX is denoted xi; the (i, j)th element of the

matrixX is denoted xij , or sometimes xij .

Finally, boldface, calligraphic letters likeX ,Y will denote the subspace spanned by the

columns of the matricesX,Y .
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Chapter 2

MATHEMATICAL PRELIMINARIES

The present chapter will sketch (without proofs) some of the principal concepts, re­

sults, and notational conventions of the core areas of mathematics on which this thesis

is dependent: differential geometry, multivariate statistics, and bayesian estimation the­

ory. While almost none of the material presented in this chapter is original, the hope is

it will both encourage and facilitate the development of new geometric theories and com­

putational methods fit for application to extant and emerging problems in statistical sig­

nal processing. Should the reader be interested in the deeper, perhaps more generalized,

treatment of the geometric topics discussed in this chapter, some recommended reference

texts include the exceptional and gentle introduction to differential geometry and smooth

manifolds by Lee [32]; a more terse presentation of the same material by Spivak [46]; and

Hall’s leisurely introduction to matrix Lie groups and their Lie algebras [17]. For readers

interested in a deeper introduction to statistical signal processing and signal detection and

estimation theory, we recommend the elegant, theoretical presentation by Helstrom [19],

an insightful geometric interpretation of much of the same material by Scharf [41], as well

as themore pervasive texts by Kay [26, 27]. In all of what follows, additional references will

be cited wherever possible.

2.1 Geometric Foundations

As our presentation of differential geometric constructs borrows from [32], notation

here is mostly consistent with Lee’s. Throughout this chapter, all our manifolds are as­

sumed to be real[1], n­dimensional, smooth, Hausdorff, and second countable; and smooth

always means C∞, or infinitely differentiable. We write local coordinates of a manifoldM

on any open subset U ⊂ M as
(
x1, . . . ,xn

)
. Since coordinates formally constitute a map

[1]We will touch on complex manifolds in a few places.
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from U to Rn, this is to say that we identify U with its image in Rn and we identify a point

in U with its coordinate representation. We will denote the tangent space to a point p inM

by Tp or TpM , and the cotangent space to a point p inM by T ∗
p or T ∗

pM . The disjoint unions

TM = ∏p∈MTpM

T ∗M = ∏p∈MT ∗
pM

(2.1)

define the tangent and cotangent bundles of M , respectively. A vector field is a section

of the tangent bundle; a covector field is a section of the cotangent bundle. We let X(M)

denote the set of all smooth vector fields on the manifold M . Smooth vector fields can be

multiplied by smooth real­valued functions: if f ∈ C∞(M) and Y ∈ X(M), characterized

by p 7→ Yp, then fY is a new vector field characterized by

p 7→ (fY )p = f(p)Yp.

2.1.1 Tensors: Metrics and Differential Forms

In this section, we begin developing the technicalmachinery needed tomeasure geomet­

ric quantities – such as distances and angles – and to compute integrals over a manifold,

whichwill be fundamental to the statistical analysis performed on particularmanifolds pre­

sented in the latter half of this chapter.

For k ∈ Z+, we define a covariant k­tensor on TpM to be an element of the k­fold tensor

product T ∗
pM⊗· · ·⊗T ∗

pM , which we typically think of as a real­valued, multilinear function

of k elements of TpM :

α : TpM × · · · × TpM︸ ︷︷ ︸
k copies

→ R.

We denote the vector space of all covariant k­tensors on TpM by T k
(
T ∗
pM

)
. A covariant k­

tensor whose value is unchanged by interchanging any pair of elements is called a symmet­

ric tensor; an alternating tensor is a covariant k­tensorwhose value changes signwhenever

any pair of elements are interchanged. As alternating tensors are the natural language of

differential forms[2], we give special notation to the subspace comprising alternating co­

[2]Alternating covariant k­tensors are variously called exterior forms, multi­covectors, or k­covectors.
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variant k­tensors: Λk
(
T ∗
pM

)
. Analogous to the tangent and cotangent bundles on M , we

have the bundle of covariant k­tensors onM , defined by

T kM = ∏p∈MT k(T ∗
pM), (2.2)

and the bundle of alternating covariant k­tensors onM , defined by

ΛkT ∗M = ∏p∈MΛk
(
T ∗
pM

)
. (2.3)

It is smooth sections of these bundles that play critical roles in the research presented in

this thesis through two applications. First, they’ll serve as metrics, allowing us to compute

distances and angles between points on a manifold thus to do Euclidean geometry; sec­

ond, they’ll serve as objects that can be integrated (in a coordinate­independent way) over

a manifold, allowing us to compute standard integrals and thus to perform calculus and

statistics by classical means.

Riemannian Metrics and Distances

In this section, we review the concepts of a riemannian metric, the Levi­Civita connection,

and geodesics on a differentiable manifold. We begin here with a formal definition of a

riemannian metric.

Definition 2.1. Let M be a differentiable manifold. A riemannian metric on M is a

smooth section of T 2(M) – a 2­tensor field – denoted by g, which for all smooth vector

fieldsX,Y in X(M) and p ∈ M satisfes

(i) g(X,Y ) = g(Y ,X), and

(ii) gp : TpM × TpM → R is positive definite.

For every p ∈ M , the riemannian metric g provides an inner product on TpM given by

the nondegenerate symmetric bilinear form gp : TpM ×TpM → R. This is the reason to use

the standard notation 〈X,Y 〉g to denote the real number gp(X,Y ) forX,Y tangent vectors

in TpM . Below are just a few of the geometric constructions that we’ll see in application.

9



Definition 2.2.

• The length (or norm) of a tangent vectorX in TpM is defined to be

|X|g = 〈X,X〉
1
2
g = gp(X,X)

1
2 . (2.4)

• The angle between two (nonzero) tangent vectors X,Y in TpM is the unique θ ∈

[0,π] satisfying

cos θ =
〈X,Y 〉g
|X|g|Y |g

. (2.5)

• Two tangent vectorsX and Y are orthogonal if 〈X,Y 〉g = 0.

• Let t → γ(t), t ∈ [a, b] be a curve segment in M . The length of γ is defined by the

formula

Lg(γ) =

b∫
a

gγ(t) (γ̇(t), γ̇(t))
1/2 dt =

b∫
a

|γ̇(t)|g dt. (2.6)

If M is connected, any two points p and q in M can be joined by a curve: t 7→ γ(t),

t ∈ [a, b] with γ(a) = p and γ(b) = q. The infimum of the length of all curve segments

joining p and q is the distance between p and q. Curves which locally yield the shortest

distance between two points are called geodesic curves and are a main topic of discussion

in Chapter 5.

While it’s tempting to define geodesics only by their length minimizing property, this

definition turns out to be technically difficult to work with in practice. So we will instead

present the (equivalent) definition of a geodesic as a curve that is the generalization of a

straight line in familiar Euclidean space. Rooted in this generalization is a covariant deriva­

tive operator, a tool which will allow for the differentiation of vector fields along curves in a

coordinate­independent way. A covariant derivative is defined in terms of a connection on

the manifold. While connections can certainly be defined on smooth manifolds in the ab­

stract (see for example [31]), we’ll focus only onwhat is known as the Levi­Civita connection

to stay within the scope of this thesis.
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Definition 2.3. Given a smooth riemannian manifoldM with riemannian metric g, the

Levi­Civita connection is an R­bilinear map

∇ : X(M)× X(M) → X(M),

written∇(X,Y ) = ∇XY for vector fieldsX and Y , such that the following four conditions

are satisfied:

(i) ∇fXY = f∇XY

(ii) ∇X(fY ) = (Xf)Y + f∇XY

(iii) ∇X〈Y ,Z〉 = 〈∇XY ,Z〉+ 〈Y ,∇XZ〉

(iv) ∇XY (f)−∇Y X(f) = X(Y f)− Y (Xf)

for all vector fieldsX,Y ,Z in X(M) and for all smooth functions f ∈ C∞(M).

The vector field ∇XY – called the covariant derivative of Y with respect to X – and

what is known as the Fundamental Lemma of Riemannian Geometry guarantees the exis­

tence (and uniqueness!) of∇ on a riemannianmanifoldM . A proof, which includes explicit

formulae for computing the connection in local coordinates, can be found in [31], specifi­

cally, chapter five. Literature refers to property (iv) in Definition 2.3 as torsion free. For

smooth manifolds that are also matrix Lie groups equipped with a bi­invariant (rieman­

nian)metric (discussed in Section 2.1.2), we have the following extremely useful and simple

formula for the covariant derivative:

∇XY =
1

2
(XY − Y X) , (2.7)

for vector fieldsX and Y that are invariant under all left translations. The covariant deriva­

tive is the essential tool we use to define geodesic curve in a smooth riemannian manifold.

Definition 2.4. Let M be a riemannian manifold with riemannian metric g and Levi­

Civita connection∇. A smooth curve γ inM is a geodesic if

∇γ̇ γ̇ ≡ 0.
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All geodesics are length minimizing; and all length­minimizing curves are geodesics.

That is, Definition 2.4 is equivalent to a geodesic defined by the curve (locally) yielding the

shortest distance between two points on a manifold. The reader interested in a rigorous

proof of this equivalence is referred to Lee [31], specifically chapter six. Perhaps the most

well­known example of geodesics are great circles on S2, depicted in Figure 2.1.

Figure 2.1: Geodesics on S2 are great circles.

Exterior Differential Forms

Just as the covariant derivative allows us to make sense of differentiation on smooth (rie­

mannian) manifolds, we need an analogous tool that will allow us to make sense of integra­

tion over smooth manifolds (and submanifolds). Exterior differential forms are precisely

the objects we need to be able to integrate overmanifolds in a coordinate­independent way.

We begin with the definition.

Definition 2.5. Let M denote a smooth manifold. A differential k­form, or just a

k­form, is a smooth section of the kth exterior power of the cotangent bundle ofM . This

is a (smooth) tensor field whose value at each point is an alternating tensor. We denote

the vector space of all smooth k­forms by Ωk(M).

Tomake sense of this definition (by writing it in local coordinates) let us develop a basis

for ΛkM . If (x1, . . . ,xn) is the local coordinate representation of a point p ∈ M , then the
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derivations
∂

∂x1

∣∣∣∣
p

, . . . ,
∂

∂xn

∣∣∣∣
p

form a basis for TpM . In unwinding a few definitions, one can see that ∂/∂xi
∣∣
p
is just

the derivation that takes the ith partial derivative of (the coordinate representation of) a

function f at (the coordinate representation of) p. This basis for TpM gives rise to a dual

basis (ε1p, . . . , ε
n
p ) for T

∗
pM . However, application of the differential of a smooth function

shows that the coordinate covector field εip is none other than the familiar dxip. Now, given

the basis (dxi) for T ∗M , {
dxI : I is increasing

}
forms a basis forΛkM , where I is amulti­index of length k and dxI is the covariant k­tensor

that acts on vectors v1, . . . , vn by

dxI (v1, . . . vk) =
(
dxi1 ∧ · · · ∧ dxik

)
(v1, . . . , vk) = det


vi11 · · · vi1k
...

...

vik1 · · · vikk

 . (2.8)

In other words, dxI (v1, . . . , vk) is the determinant of the k×kminor consisting of the rows

i1, . . . , ik of a matrix whose columns are the components of the vectors v1, . . . , vk with re­

spect to the coordinates on M . It follows that a k­form ω is written in local coordinates

as

ω =
∑

{I:1≤i1<···<ik≤n}

ωIdx
I =

∑
{I:1≤i1<···<ik≤n}

ωIdx
i1 ∧ · · · ∧ dxik , (2.9)

where the coefficients ωI are smooth functions of x1, . . . xn. The exterior product (wedge

product) of a k­form with a an ℓ­form is a (k+ ℓ)­form obtained by formal multiplication of

the two forms using the associativity, bilinearity, and anticommutativity laws of the wedge

product, as set forth in [32]. Paramount among the properties of the wedge product is the

following proposition, a proof of which can be found in [32].

Proposition 2.1. For any covector ω1, . . . ,ωk and vectors v1, . . . , vk,

ω1 ∧ · · · ∧ ωk (v1, . . . , vk) = det
(
ωi(vj)

)
.
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As the determinant function hasmanaged toweave its way into this discussion, it should

be no surprise that the derivation of the invariant measure on the manifolds of particular

interest in this thesis hinges on it. Specifically, Chapter 3 will make use of the following

theorem[3], which can be proved using the proposition above.

Theorem 2.1. Let V be an n­dimensional vector space with basis
{
x1, . . . ,xn

}
and let T

be a linear operator on V . Then

T (x1) ∧ · · · ∧ T (xn) = (detT )
(
x1 ∧ · · · ∧ xn

)
.

Integration of Exterior Differential Forms

The preceding discussion began with a promise that differential forms are objects that can

be integrated on manifolds in a coordinate­independent way. While it’s certainly possible

to define the integral of a differential k­form over a submanifold of dimension k, our appli­

cations require only integration of differential forms ofmaximumdegree. We’ll see through

our promise, but restrict our definition to that of the integral of a differential n­form over

a smooth manifold of the same dimension.

We begin by noting that, because there is only one increasing multi­index of length n,

every n­form looks like

ω = fdx1 ∧ · · · ∧ dxn, (2.10)

where f is a smooth function of x1, . . . xn. If the domain of integration, D, is a subset of

Rn, the integral of the n­form is simply regarded as an ordinary volume integral over the

domain and evaluated as such. It would be a tragedy to omit from this thesis the finest line

in all of [32]: to compute the integral of an n­form, we just erase the wedges!∫
D⊂Rn

ω =

∫
D⊂Rn

fdx1 ∧ · · · ∧ dxn =

∫
D⊂Rn

fdx1 · · · dxn. (2.11)

The integral on the right is the ordinary Lebesgue integral of f on D. It is often the case,

however, that we wish to integrate an n­form over a domain of integration on themanifold.

[3]We acknowledge that some authors will define the determinant as the unique scalar satisfying this relation.
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For this, we divide the domain of integration into subdomains Di, each contained in a co­

ordinate chart (Ui,φi) on M . Then the pullback
(
φ−1
i

)∗
ω is an n­form on the open subset

φ(Di) in Rn and we define ∫
D⊂M

ω =
∑
i

∫
Di

ω =
∑
i

∫
φ(Di)

(
φ−1
i

)∗
ω. (2.12)

The right­most integral here can be computed by erasing the wedges, as discussed above.

With integration defined over a single coordinate patch, onemust use a partition of unity to

define the integral over the entiremanifold. And, finally, to integrate an integrable function

on the manifold with respect to the differential form, we simply express it as a function of

the coordinates x1, . . . ,xn and include it under the integral sign.

We remark that in the general theory of integrating a differential form over a smooth

manifold, a difficulty arises as to which sign should be assigned to the integrals over the

subdomains, which is connected to the orientation of each domain, before taking the sum.

As our purpose in this thesis is to only integrate differential forms overmanifolds that admit

atlases containing a single chart, we choose to avoid any further discussion of this subtlety.

2.1.2 Lie Groups, Lie Algebras, and the Exponential Mapping

This section addresses an incredibly important special class of differential manifolds:

Lie groups. We begin with the definition.

Definition 2.6. ALie group is a smoothmanifoldG that is also a group in the algebraic

sense, with the property that the multiplication map m : G × G → G and the inversion

map i : G → G, given by

m(g,h) = gh i(g) = g−1,

are both smooth.

As is customary, we denote the identity element of an arbitrary Lie group by the symbol

e, except in specific examples in which there are more common notations (such as I or In
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for the identity matrix in a matrix Lie group). A crucial property of Lie groups is that each

element g ∈ G defines a diffeomorphism Lg : G → G called left translation given by

Lg(h) = gh

(the inverse is given by Lg−1). Right translation, denoted Rg, is defined analogously. Left

(or right) translation is used to diffeomorphically dance around a Lie group; namely from

any point g ∈ G, one can move to h ∈ G via Lg−1h. Furthermore, the induced map on the

tangent spaces Lg∗ : TeG → TgG is an isomorphism of vector spaces. If we can describe

the tangent space TeG to the group at the identity, Lg∗ will thus provide a description of the

tangent space TgG to the group at any point g ∈ G. Explicitly,

TgG ∼= {Lg∗X : X ∈ TeG} . (2.13)

It is for this reason (and, well, for several other reasons) that we dedicate attention to the

tangent space of a Lie group at the identity, which we’ll soon see is the Lie algebra of G.

Of particular interest to the work presented in this thesis is “Her All­embracingMajesty

GL(n),” the general linear group consisting of n­by­n invertible matrices with entries from

either R or C, and a few subgroups of a certain sort [52]. Henceforth, the Lie theory pre­

sented will be restricted to closed subgroups ofGL(n), i.e., matrix Lie groups, allowing for

substantiallymore tangible definitions of the Lie algebra and the exponentialmapping than

in the case of a general Lie groups. We choose to generally focus only on real matrix Lie

groups in this presentation; we’ll highlight any key differences in definitions and theorems

for complex matrix Lie groups, however.

The exponential of amatrix plays a crucial role in Lie theory: it enters into the definition

of the Lie algebra and is the mechanism for passing information from the Lie algebra to the

Lie group. The exponential map is defined for square matrices exactly as for numbers:

exp(A) =
∞∑

m=0

Am

m!
. (2.14)

For a real (or complex) square matrixA, the infinite series defined by exp(A) converges to
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an invertible matrix of the same size. Paramount among the properties of the exponential

map is the following relationship between the determinant of matrix and its trace.

Proposition 2.2. For any n­by­n (real or complex) matrixA,

det (exp(A)) = exp(trace(A)).

Apurely algebraic proof of Proposition 2.2 can be found in [17]; a clever geometric proof

can be found in [32].

Important for our presentation of the Lie algebra is the relationship between the ex­

ponential map and one­parameter subgroups of a Lie group, that is, Lie group homomor­

phisms from R into G. Characterization of one­parameter subgroups of matrix Lie groups

is straightforward.

Proposition 2.3.

1. For every n­by­n complex matrixA, F (t) = exp(tA) is the one­parameter subgroup

ofGL(n,R) generated byA.

2. If F is a one­parameter subgroup of GL(n,R), there exists a unique n­by­n real

matrixA such that

F (t) = exp(tA).

We’re ready for a definition of the Lie algebra of a Lie group.

Definition 2.7. Let G be (a closed subgroup of) GL(n,F), where F = R or C. The Lie

algebra ofG, denoted g, is the set of all matricesA (invertible or not!) such that exp(tA)

is in G for all real numbers t. That is,

g
∆
= {A ∈ M(n,F) : exp(tA) ∈ G for all t ∈ R} . (2.15)

This definitionmeans thatX is in g if and only if the one­parameter subgroup generated

by X lies in G. There is an abstract notion of a Lie algebra (that is not even necessarily

associated to any Lie group). With an understanding of a Lie algebra in the abstract, it
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is possible to alternatively define the Lie algebra of a Lie group to be the Lie algebra of

all smooth left­invariant vector fields on the group. One can construct an explicit one­to­

one correspondence between this algebra of smooth left­invariant vector fields on G and

the one­parameter subgroups of G, thus equating the definitions. The interested reader is

referred to Lee [32] (specifically chapters eight and twenty) for a thorough discussion.

Without considering the abstract notion of a Lie algebra, the result of the following the­

orem will show that that the Lie algebra, as defined in Definition 2.7, is the tangent space

toG at the identity. This means that gmay alternatively be defined as the set of derivations

of smooth curves through the identity in G.

Theorem 2.2. LetG be (a closed subgroup of)GL(n,F), where F = R or C, and g its Lie

algebra. Then, a matrix X is in g if and only if there exists a smooth curve γ in M(n,F)

such that

(i) γ(t) lies in G for all t ∈ R,

(ii) γ(0) = I, and

(iii)
dγ

dt

∣∣∣∣
t=0

= X.

Thus, g is the tangent space at the identity to G.

For proof of this theorem, we point the reader to [17]. Elementary exercises for a student

in her typical graduate geometry coursework will identify the Lie algebras of classical Lie

groups, displayed in Table 2.2.

Lie Group Lie Algebra

GL(n,C) gl(n,C) = {A ∈ M(n,C)}

SL(n,C) sl(n,C) = {A ∈ gl(n,C) : trA = 0}

U(n) u(n) =
{
A ∈ gl(n,C) : A† = −A

}
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SU(n) su(n) = sl(n) ∩ u(n)

GL(n,R) gl(n,R) = {A ∈ M(n,R)}

O(n) o(n) =
{
A ∈ gl(n,R) : A⊤ = −A

}
SO(n) so(n) = o(n)

Table 2.2: Lie algebras of classical Lie groups.

Given a Lie group G and its Lie algebra g, we define the exponential mapping for G to

be the map

exp : g → G. (2.16)

That is, the exponential mapping for the Lie group G is the matrix exponential restricted

to the Lie algebra g of G. It’s important to note that the exponential map is not always

surjective onto the Lie group, as is quickly observed when, for example,

exp : gl(n,R) → GL(n,R).

Indeed, since det(exp(A)) = exp(trace(A)), every matrix of the form exp(A) has a positive

determinant. Furthermore, the exponential mapping may not be one­to­one onto g. It is,

however, locally one­to­one and onto, allowing it to serve as the crucial mechanism for

passing information between the group and the Lie algebra. Furthermore, the exponential

map from the Lie algebra to the Lie group is the natural language of geodesics on Lie groups

equipped with a particular metric.

Definition 2.8. Let G be a Lie group with Lie algebra g. A riemannian metric g on G

is left­invariant if it is invariant under all left translations: Lp∗g = g for all p ∈ G.

Similarly, g is right­invariant if it is invariant under all right translations, and bi­

invariant if it is both left­ and right­invariant.

This is to alternatively say that a metric is left­invariant (respectively right­invariant)

if and only if left (respectively right) translations are isometric with respect to the metric.
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Unraveling the notation of the push­forward in Definition 2.8, the riemannian metric g is

left­invariant precisely when

〈u, v〉a = 〈Lp∗|au,Lp∗|av〉Lpa = 〈Lp∗|au,Lp∗|av〉pa (2.17)

for all p, a inG and for all u, v in TpG. As we’re working exclusively with Lie groups that are

closed subgroups of GL(n,R) (or GL(n,C)), left­translation is the restriction of a linear

map whence, for any matrix A, LA∗ = LA whence TAG ∼= Ag. The condition of left­

invariance of a metric g becomes remarkably simple:

g(U ,V ) = gA(AU ,AV ),

or, equivalently,

gA(U ,V ) = g(A−1U ,A−1V ), (2.18)

for any matrices U ,V in Ag and any matrix A in G. Similarly, the condition of right­

invariance of the metric is given by

gA(U ,V ) = g(UA−1,V A−1). (2.19)

It is true that if G is commutative, a bi­invariant (riemannian) metric exists, and, if G

is compact, a bi­invariant (riemannian) metric may be constructed from its Haar measure.

However, for the Lie groups of interest in this thesis, we’ll be able to explicitly write out the

bi­invariant (riemannian) metric inherited from the Hilbert­Schmidt inner product on the

vector space of all finite­dimensional matrices. Explicitly, we will make use of the following

proposition.

Proposition 2.4. Let G be a Lie group. Any inner product 〈·, ·〉e defined on TeG can be

extended to a left­invariant riemannian metric on G.

Proof. Define for each g ∈ G and for all u, v in TgG,

〈u, v〉g = 〈d
(
Lg−1

)
g
u, d

(
Lg−1

)
g
v〉e.
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Left­invariance follows from application of the push­forward to the composition of func­

tions:

〈d(Ls)tu, d(Ls)tv〉st = 〈d(L(st)−1)std(Ls)tu, d(L(st)−1)std(Ls)tv〉e

= 〈d(L(st)−1 ◦ Ls)tu, d(L(st)−1 ◦ Ls)tv〉e

= 〈d(Lt−1)tu, d(Lt−1)tv〉e

= 〈u, v〉t. ■

While the study of Lie groups equipped with a bi­invariant riemannian metric is rich,

we record only the most noteworthy result for application in this thesis in the following

theorem.

Theorem 2.3. Let G be a Lie group equipped with a bi­invariant riemannian metric.

The geodesics γ in Gwith γ(0) = e are precisely the one­parameter subgroups of G.

AsProposition2.3 characterizes one­parameter subgroups inmatrix Lie groups in terms

of the exponential map, a geodesic starting at I inG is the curve t 7→ exp(tX), whereX is in

g. Since left translations are isometries, all left translates of one­parameter subgroups are

geodesics. Thus, for a fixed pointA in G and a tangent vectorX in g, the unique geodesic

passing throughA in the direction ofX is written

γ(t) = LA ◦ exp(tX) = A exp(tX). (2.20)

Lie Group Actions and Quotient Manifolds

Because many of the most important applications of Lie groups (especially in the work pre­

sented in this thesis!) involve them acting on other manifolds, this section will concentrate

on properties of Lie group actions. For the remainder of this section, let G be a Lie group

and letM be a (smooth) manifold.

Definition 2.9. A left­action of a group G onM is a map G ×M → M , often written
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as (g, p) 7→ g • p, that satisfies

g1 • (g2 • p) = (g1g2) • p

e • p = p.

(2.21)

A manifold endowed with a specific G­action is called a G­space.

For completeness, we include some basic terminology regarding Lie group actions.

Definition 2.10.

• The action is smooth if it is a smooth map from G×M intoM .

• For any point p ∈ M , the orbit of p under the action is the set of all images of p

under elements of G; that is:

G • p
∆
= {g • p : g ∈ G} .

• The action is transitive if for each pair of points p, q inM there exists an element g

in G such that g • p = q.

• For any point p ∈ M the stabilizer subgroup[4] of p is the set of elements g in G

that fix p; that is:

Gp
∆
= {g ∈ G : g • p = p} .

• The action is free if the only element of G that fixes any point in M is the identity;

that is, if g • p = p for some p inM , then g = e.

Among the most interesting kinds of group actions are those in which a Lie group acts

transitively. Examples ofmanifolds endowedwith a transitive smooth action by a Lie group

– homogeneous spaces – are the principal study of the work presented in this thesis. In the

study of homogeneous spaces, the stabilizer subgroup plays a pivotal role, for when G acts

on M , Gp – for any p in M – is a closed Lie subgroup of G. Allowing Gp to act on G by

right translation allows for an application of the Quotient Manifold Theorem [32], which

[4]The stabilizer subgroup is sometimes called the isotropy subgroup.
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guarantees that the coset space G/Gp – again, for any p in M – is a topological manifold

endowed with a unique smooth structure such that the quotient map

π : G → G/Gp (2.22)

is a smooth submersion, i.e., its push­forward is surjective at each point. In the case, the

orbit space G/Gp is a manifold in the honest sense of the word. When G is a Lie group

equipped with a riemannian metric, the quotient map is in fact a smooth, riemannian sub­

mersion.

We now specialize to the case of a Lie group G acting transitively on a set M . For any

fixed element p inM , there exists a one­to­one correspondence[5] between the set of (left­

)cosets of Gp in G andM so thatM is a quotient of G by Gp. Indeed, we define a map

Fp : G/Gp → M ,

by

gGp 7→ g • p.

Since

gGp = hGp ⇔ g−1h ∈ Gp ⇔ g−1h • p = p ⇔ g • p = h • p,

it follows that Fp is injective. In unraveling the definition of a transitive group action, we

see Fp is also surjective and thus defines a bijection of sets identifying left multiplication

in G/Gp with the action of G onM . WhenM is a smooth manifold, Fp is equivariant with

respect to the group action and hence a diffeomorphism. It’s important to note that because

the two stabilizer subgroupsGp and Gq of any two points p and q inM are isomorphic (they

are conjugate subgroups), it is enough to compute the stabilizer subgroup for a convenient

p. We henceforth identify a point q inM with its coset representative qGp in the coset space

G/Gp and we refer toM (and G/Gp) as the quotient.

[5]This is a consequence of the so­called Orbit­Stabilizer Theorem. See [7].
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As a directly relevant example, consider the transitive, smooth action of the orthogonal

groupO(n) on the real GrassmannmanifoldG(k,n) defined by left multiplication. That is,

R • span {x1, . . . ,xk} = span {Rx1, . . . ,Rxk} , (2.23)

where the xi are linearly independent, orthonormal n­vectors. As detailed fully in Chap­

ter 5, the stabilizer subgroup of the element inG(k,n) that is the span of the first k standard

basis vectors in Rn is isomorphic to

O(k)×O(n− k), (2.24)

from which a familiar presentation of the Grassmann manifold follows:

G(k,n) ∼= O(n)/ (O(k)×O(n− k)) . (2.25)

We often refer to the quotient map π in Equation 2.22, which corresponds to a fixed p

inM , as the projection ofG ontoM and, for every q ∈ M , the inverse image π−1(q) ⊂ G as

the fiber above q. Because the projection of G ontoM is a smooth, surjective submersion,

ifG possesses a riemannianmetric, the tangent space toG at each point g ∈ G decomposes

into an orthogonal (with respect to the metric) direct sum

TgG = Vg ⊕Hg, (2.26)

where Vg
∆
= ker dπg is the vertical space and Hg

∆
= V⊥

g is the horizontal space. Via this

direct sum, any tangent vectorX in TgGmay be written uniquely as

X = XV +XH,

whereXV is vertical andXH is horizontal. For each g in G,

dπg : TgG → Tπ(g) (G/Gp)

is a surjective linear map whose kernel is precisely the tangent space at g to theGp­orbit of

g under the action of Gp on G defined by right translation; that is,

ker dπg = Tg (Gp ⋆ g) .
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By elementary algebra, dπg descends to an isomorphism

TgG/Tg (Gp ⋆ g) ∼= Tπ(g) (G/Gp) .

Because this isomorphism is defined independently of any choices, we canonically identify

each element in Tπ(g) (G/Gp)with an element of the quotient space TgG/ ker dπg = TgG/Vg,

which, in light of the direct sum decomposition in Equation 2.26, is the horizontal space at

g. Thus, for a point q ∈ M , we can identify each element in the tangent space to M at the

point q with an element of a horizontal space to G at a point in the fiber above q.

As this discussion suggests, horizontal tangent vectors play a critical role inmany differ­

ential geometric objects on the quotient. Principal to our applications, is the dependence

on horizontal tangent vectors in G to characterize metrics and geodesics in the quotient.

The following theorem, which will conclude the presentation of the necessary geometric

framework for this thesis, elucidates the dependence.

Theorem2.4. LetG be a Lie group equippedwith a bi­invariant riemannianmetric and

letM be aG­space. If γ is a geodesic inG such that γ′(0) is a horizontal vector, then γ is a

horizontal geodesic in G, and the image of γ under the quotient map π : G → G/Gp – for

any p inM – is a geodesic inM of the same length as γ.

A proof of a generalized version of the theorem above can be found in [36], specifically

chapter seven.

2.1.3 Complex Differentiable Manifolds

In many important applications of differential and riemannian geometry, most notably

those involving the collection and analysis of real­world sensor data, we will encounter

generalizations to complex manifolds. Our position is that a complex­analytic manifold

of complex dimension nmay be regarded as a 2n­dimensional real manifold having certain

additional properties. A key additional property is the requirement of the complex­analytic

structure to comprise homeomorphic coordinatemaps to the open unit disk inCn, such that
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transition maps between any two coordinate maps is bi­holomorphic. This thesis does not

dive deeply into the theory of complex­analytic manifolds, limiting our study to only the es­

sential differences from real, differentiable manifolds impacting our work (of which there

are few).

2.2 Foundations of Statistical Signal Theory

As discussed in Chapter 1, the work presented in this thesis is motivated by various

multi­sensor remote sensing applications wherein a primary goal is to estimate a common

unknown signal of known rank k measured by m spatially distributed sensors. The mea­

surement collected at each sensor has the form of a complex n­vector, where n � m, and

is regarded as an element of an ambient n­dimensional vector space. When the number

of sensors exceeds the rank of the signal (m > k), the rank­k signal defines a particular

k­dimensional subspace called the signal subspace that can be regarded as an element of

G(k,n), the Grassmann manifold of all k­dimensional subspaces of an n­dimensional vec­

tor space. In practical problems, the sensor data are almost always corrupted by noise or

other distortions which must be considered when seeking to identify the signal subspace.

Much of modern signal theory is concerned with modeling of signal distortion probabilis­

tically and developing statistical methods, such as hypothesis tests and parameter estima­

tors, to understand the signal from the sensor measurements. The ubiquity of this type of

problem in practice has led to development of a substantial corpus of theory and meth­

ods often referred to as statistical signal theory and statistical signal processing. The

standard reference texts treating statistical signal theory and statistical signal processing

recommended at the beginning of this chapter ([19, 26, 27, 41]) generally focus on the

setting of a real or complex inner product space M . M is usually assumed to be finite­

dimensional, which is practically justified by the limitations of realistic processing algo­

rithms and achieved mathematically by approximately representing elements of infinite­

dimensional Hilbert space using finitely many basis functions. These assumptions are

leveraged to justify development of the theory forM = Rn orM = Cn. While our goal is to
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work withM = G(k,n), it is instructive to consider well­understood standard elements of

statistical signal theory in Rn or Cn to motivate subsequent discussion of the setting where

M is a non­linear manifold.

2.2.1 The Probability Background

The mathematical framework for statistical signal theory and statistical signal process­

ing is provided by the theory of probability. Analogous to the presentation of the relevant

theories of differential and riemannian geometry, this section serves to define some basic

concepts of the theory of probability (rooted of course in the theory of measure and inte­

gration), to establish notation, and to state without proof some principal results that will

be used throughout the remainder of this chapter and the document.

Probability theory begins with the concept of a probability space, typically denoted by

the triplet (Ω,A, Pr). Adopting the terminology of elementary probability theory, the sam­

ple space Ω is a set of all possible outcomes ω ∈ Ω of an experiment. Allowing 2Ω to denote

the set of all possible subsets of Ω, the event space A is a subset of 2Ω that is closed under

both complements and countable unions; that is A is a σ­algebra of subsets of Ω. It is the

elements of A – called events – to which we assign probabilities.

Definition 2.1. A pair (Ω,A)withA a σ­algebra of subsets ofΩ is called ameasurable

space. Given a measurable space (Ω,A), ameasure Pr is any countably additive, non­

negative set function on A. That is, Pr : A → R+, having the properties:

(i) Pr[A] ≥ Pr[∅] = 0 for all A ∈ A, and

(ii) Pr [
⋃

Aj ] =
∑

Pr[Aj ] for any countable collection of disjoint sets Aj in A.

When, in addition, Pr[Ω] = 1, the measure Pr is a probability measure and the triplet

(Ω,A, Pr) is a probability space.

Fundamental to the study of statistical signal theory and statistical signal processing is

the concept ofmeasurable functions on probability spaces, which, in what has to be one of

the stranger abuses of mathematical language are known as random variables.
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Random Variables

Definition 2.2. Let (Ω,A, Pr) be a probability space and (M ,M) ameasurable space. A

random variable onM is a function x : Ω → M such that the inverse image under x of

all elements inM are events. That is:

x−1(B)
∆
= {ω ∈ Ω : x(ω) ∈ B} ∈ A, for all B ∈ M.

The codomainM is called the observation space of the random variable x.

Throughout this thesis, we will be interested in two cases for (M ,M): the first is the

case in which M = Rn (and M is the usual Borel σ­algebra of subsets of Rn); the second

is the case in which M = G(k,n). For the present section, it will be instructive to focus

solely on the former, where the theory is particularly well known. As a reminder, we adopt

the useful convention of using fonts without serifs to denote random variables. Thus the

vector­valued random variable x – termed an n­variate random variable – may take on the

value x = x(ω).

As defined next, every random variable x induces a probability measure on its range,

closely related to its cumulative distribution function.

Definition 2.3. The distribution of a vector­valued random variable x, denoted Px, is

the probability measure on (Rn,B(Rn)) such that

Px(B) = Pr [{ω ∈ Ω : x(ω) ∈ B}]

for any Borel setB; it suffices[6] to require the same of all intervals (−∞,x] = (−∞,x1]×

· · · × (−∞,xn] ⊂ Rn.

Definition 2.4. The (cumulative) distribution function of a vector­valued random

variable x, denoted Fx, on Rn is given by

Fx(x) = Pr [{ω : x1(ω) ≤ x1, x2(ω) ≤ x2, . . . , xn(ω) ≤ xn}]

= Pr [{ω : x(ω) ≤ x}] ,
(2.27)

[6]The Borel σ­algebra on Rn is generated by all (products of) half rays (−∞, a1]× · · · × (−∞, an]. See [12].
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where the last expression is common shorthand.[7] In terms of the distribution, the cumu­

lative distribution function[8] is

Fx(x) = Px ((−∞,x1]× · · · × (−∞,xn]) . (2.28)

Definition 2.4 entails at once that Fx is a non­decreasing, right­continuous function

such that

lim
x→−∞

Fx(x) = 0 and lim
x→∞

Fx(x) = 1.

In fact, the distribution function is a complete characterization of the random variable.

Likewise, the probability density function, fx(x), which is related to the distribution func­

tion by

fx(x) =
dFx(x)

dx
, (2.29)

is also a complete characterization.[9] This follows from the fact that a distribution function

admitting a density can be expressed as

Fx(x) =

x1∫
−∞

· · ·
xn∫

∞

fx(x)dx, (2.30)

for all x ∈ Rn. In terms of the distribution,

Px(B) =

∫
B

fx(x)dx, (2.31)

for any Borel set B ⊂ Rn. It follows too that the density fx(x) must be an integrable,

(almost­everywhere) non­negative function, with∫
Rn

fx(x)dx = 1. (2.32)

[7]We’ll likely adopt the habit of omitting the argument of a random variable entirely, writing x = x(ω).

[8]As a consequence of the theory of Borel measures, the distribution function of a random variable uniquely

determines the distribution of the random variable. See [12].

[9]Because it is always true for models used in practice, we assume in our treatment that densities always

exist. However, it is worth keeping in mind that there certainly do exist random variables whose probabil­

ity distributions are not differentiable (precisely those that are not absolutely continuous with respect to the

probability measure).
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In fact, any integrable, (almost­everywhere) non­negative function that integrates to unity

over Rn defines a distribution by Equations 2.30 and 2.31, and hence a random variable

on Rn. While Rn will remain the sole focus of the developing treatment of introductory

statistical signal theory in this section, it is crucial to note here that the generalization to

an integrable, (almost­everywhere) non­negative function defined on M = G(k,n) (or on

any non­linear manifold for the matter) that integrates to unity overM will likewise define

a distribution, and hence a random variable on M , provided M is equipped with an atlas

and an invariant measure with respect to which integration is permissible.

Expectations, Correlations, & Covariance Matrices

Often we are interested in partial characterizations of a random variable in the form of

certain expectations.

Definition 2.5. Let (Ω,A, Pr) be a probability space and x = x(ω) a vector­valued ran­

dom variable on Rn with density function fx(x). The expected value of x, denoted E[x],

is the value of the integral

E[x]
∆
=

∫
Rn

xfx(x)dx, (2.33)

should the integral exist.

Definition 2.5 entails at once that the expected value is a linear operator, in the sense

that, for any random variables x and y onM , and any (finite) constants c1, c2,

E[c1x+ c2y] = c1E[x] + c2E[y],

provided both E[x] andE[y] exist. Furthermore, ameasurable function of a randomvariable

is itself a random variable whose expectation is oftenmost readily computed via application

of the following fundamental theorem of expectation.

Theorem2.1. Let (Ω,A, Pr) be a probability space and x = x(ω) a vector­valued random

variable onRnwith density function fx(x). Given a (measurable) function g of the random
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variable x, the resulting random variable g(x) has expected value

E[g(x)] =
∫
Rn

g(x)fx(x)dx,

provided the integral exists.

Several expectations that are important characterizations of random variables are the

mean value (or first moment)

mx
∆
= E[x],

the n­by­n correlation matrix (or second moment)

E[xx⊤],

and the n­by­n covariance matrix (or second central moment)

Λx
∆
= E[(x−mx)(x−mx)

⊤].

We should note that it is possible to regard x as a collection of n real­valued random vari­

ables x1, . . . , xn onR, whence fx(x) = fx1,...,xn(x1, . . . ,xn) is termed a joint probability den­

sity function. The (i, j)th element of the covariance matrix Λx is

[Λx]ij = cov(xi, xj) = E[(xi −mxi)(xj −mxj )],

and when i = j,

cov(xi, xi) = E[(xi −mxi)
2]

is the variance of the real­valued random variable xi.

Pairs of Random Variables

Let (Ω,A, Pr) be a probability space and let x = x(ω) and y = y(ω) be vector­valued random

variables onRn andRℓ, respectively. The joint behavior of x and y is described via their joint

(cumulative) distribution function and their joint probability density function defined by

Fx,y(x,y)
∆
= Pr [{ω : x(ω) ≤ x and y(ω) ≤ y}] (2.34)
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and

fx,y(x,y)
∆
=

∂2Fx,y(x,y)

∂x∂y
, (2.35)

respectively.[10],[11] Equation 2.35 directly follows from the fact that a joint distribution

function admitting a joint density can be expressed as[12]

Fx,y(x,y) =

x1∫
−∞

· · ·
xn∫

−∞

y1∫
−∞

· · ·
yℓ∫

−∞

fx,y(x,y)dxdy. (2.36)

As previously mentioned, the distribution and density functions of the random variable x

on Rn defined in Equations 2.27 and 2.29 may evidently be regarded as the joint distribu­

tion and the joint density functions of n random variables x1, . . . , xn on R. It is a general

principle that all properties of random variables that are relevant to probability theory can

be expressed in terms of their joint distributions. The joint (cumulative) distribution func­

tion Fx,y(x,y) and the (cumulative) distribution functions Fx(x) and Fy(y) of each random

variable x and y separately are related by

Fx(x) = lim
y→∞

Fx,y(x,y)

Fy(y) = lim
x→∞

Fx,y(x,y).

(2.37)

Here,Fx(x) andFy(y) are called themarginal (cumulative) distribution functions ofFx,y(x,y).

The corresponding marginal probability density functions fx(x) and fy(y) of each ran­

dom variable x and y separately can be computed via the joint probability density in Equa­

tion 2.35, without reference to the underlying distribution:

fx(x) =

∫
Rℓ

fx,y(x,y)dy

fy(y) =

∫
Rn

fx,y(x,y)dx.

(2.38)

[10]We’ll likewise only treat joint distribution functions that admit joint density functions.

[11]If x is a vector­valued random variable and x is a vector of the same order, x = x(ω) ≤ x is interpreted to

mean that xi ≤ xi for each respective element.

[12]We note that, for our purposes, the order of integration is interchangeable.
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Geometrically, it is useful to visualize marginal densities fx(x) and fy(y) as (integrated)

projections of the joint density fx,y(x,y) defined on the product space Rn × Rℓ to a single

factor.

The conditional density for x given y = y is defined by

fx(x|y = y)
∆
=

fx,y(x,y)

fy(y)
. (2.39)

Since fy(y|x = x) is defined analogously, we have

fx,y(x,y) = fx(x|y = y)fy(y) = fy(y|x = x)fx(x),

fromwhichBayes’ Rule (fundamental to the bayesian inference developed in ensuing chap­

ters of this thesis!) readily follows:

fx(x|y = y) =
fy(y|x = x)fx(x)

fy(y)
=

fy(y|x = x)fx(x)∫
Rn fy(y|x = x)fx(x)dx

. (2.40)

We remark that in cases where it will cause no confusion, we may omit the conditioning

random variable from the conditional density function, i.e.,

fx(x|y) = fx(x|y = y).

Definition 2.6. Two vector­valued random variables x and y are independent if

fx,y(x,y) = fx(x)fy(y). (2.41)

A family of vector­valued random variables x1, . . . , xn ismutually independent if

fx1,...,xn(x1, . . . ,xn) =
n∏

i=1

fxi(xi). (2.42)

In a straightforward application of the definition of conditional probabilities, Equa­

tion 2.41 is equivalent to the following condition for a pair of independent random variables

x and y:

fx(x|y = y) = fx(x), (2.43)
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and Equation 2.42 is equivalent to the following condition for multiple independent ran­

dom variables x1, . . . , xn:

fxi(xi| {xj = xj , j ∈ J }) = fxi(xi), (2.44)

where J is a subset of distinct indices selected from 1 to n.

2.2.2 Statistical Signal Theory: Estimation

The starting point of estimation theory, as formulated in the preceding section, is a

random, observable variable x, whose distribution admits a density functionparameterized

by an unknown variable θθθ. Given the conditional probability density fx(x|θ), the theory of

parameter estimation seeks a strategy that, on the basis of observing x, associates a random

variable θθθ̂ = θ̂(x) as an estimate of θθθ. It is often convenient to consider situations in which

θθθ takes on only a single value, which is regarded as deterministic but unknown. In this

case, it is common to invoke estimators that produce a deterministic point estimate from

the datum x. Even if the estimate is deterministic in this sense, the estimator θθθ̂(x), as a

function of the random variable x, is still a random variable.

In this thesis, we generally maintain a bayesian perspective of estimation, and regard

parameter estimates as random variables whose distributions result from combining prior

information and observed data according to Bayes’ Rule. In a few instances, we also employ

maximum­likelihood estimation techniques, treating parameters as deterministic but un­

known values as discussed above. As mentioned at the start of this chapter, some standard

reference texts for a reader who might be interested in a deeper, perhaps more exhaus­

tive, treatment of estimation theory (and the intimately related theory of detection) are

[19, 26, 27, 41].

It should be noted that in this treatment, we consider only the estimation of variables

that are static, i.e., that are constant in time. The estimation of dynamic variables is con­

sidered in Chapter 4.
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A Bayesian Approach

A bayesian approach to parameter estimation is, at least in principle, remarkably sim­

ple. First, the vector of parameters to be estimated is regarded as a vector­valued ran­

dom (though unobservable) variable θθθ and we presume the conditional density function

fx(x|θθθ = θ) fully characterizes the relationship between θθθ and the observable random vari­

able x. The marginal probability density function fθθθ(θ) – called herein a prior probability

density function – is too presumed to be a specified, known density function expressing

the state of knowledge or ignorance about θθθ before x is observed. Then, given this prior

density, the conditional density, and a realization of x, it is possible to compute the density

fθθθ(θ|x = x) via application of Bayes’ Rule, as in Equation 2.40. This density – called the

posterior probability density function of θθθ – modifies the prior, summarizing what can be

said about θθθ on the basis of the assumptions made and the data observed. It is from this

posterior density that inferences about the unknown parameter are made. In what follows,

we sometimes refer to the prior density and the posterior density functions simply as the

“prior” and the “posterior,” respectively.

Frequently, the distribution function of x admits a density function dependent not only

upon the unknown parameter of interest θθθ but also on a further so­called nuisance, or in­

cidental parameterφφφ. In the bayesian approach, overall inferences about θθθ are completely

determined by the posterior distribution of θθθ, obtained bymarginalizing the joint posterior

density of θθθ and φφφ over Φ:

fθθθ(θ|x) =
∫
Φ

fθθθ,φφφ(θ,φ|x)dφ, (2.45)

where Φ denotes the appropriate region of φφφ.

In view of Equation 2.39, we may write the joint posterior density as the product of the

conditional (posterior) density of θθθ given φφφ and the marginal (posterior) density of φφφ as

(omitting the decorative subscripts on the densities for concision)

f(θ,φ|x) = f(θ|φ,x)f(φ|x),
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from which it follows the posterior density of θθθmay be written

f(θ|x) =
∫
Φ

f(θ|φ,x)f(φ|x)dφ, (2.46)

in which the marginal (posterior) distribution f(φ|x) of the parameter φφφ acts as a weight

function multiplying the conditional distribution f(θ|φ,x) of the parameter of interest.

Alternatively, using Bayes’ Rule, we can express the posterior density of θθθ, conditioned

on x as

f(θ|x) = f(x|θ)f(θ)∫
f(x|θ)f(θ)dθ

, (2.47)

where

f(x|θ) =
∫
Φ

f(x|θ,φ)f(φ|θ)dφ. (2.48)

If we furthermore assume that θθθ and φφφ are independent, then Equation 2.48 reduces to

f(x|θ) =
∫
Φ

f(x|θ,φ)f(φ)dφ. (2.49)

From this perspective, the nuisance parameterφφφ is firstmarginalized out of the conditional

density f(x|θ,φ) and then the posterior density is found as usual via application of Bayes’

Rule.

We note that the focus of this bayesian approach to estimation presented here is not on

determining a single value for the unknown parameter θθθ but instead on determining, from

a realization of x, its posterior distribution. When a single value for θθθ – termed a point

estimate – is desired, a popular choice is the value of θθθ for which its posterior distribution

fθθθ|x(θ|x) is maximum, assuming of course a unique maximum exists. This point estimate

is known as themaximum a posteriori estimate and is often denoted θ̂MAP:

θ̂MAP
∆
= argmax

θ∈Θ
fθθθ(θ|x = x), (2.50)

where Θ is the set of all permissible values of θ.

Evidently requisite to a bayesian approach to estimation is the choice of a prior probabil­

ity density, or, equivalently, the prior distribution of the unknownparameter θθθ. Oftenwhen

36



choosing a prior, our knowledge lies somewhere between complete ignorance (e.g.., the use

of a noninformative prior) and strong prior knowledge (i.e., the use of a conjugate prior).

Often we’d like to assign a prior probability distribution that is as noninformative as pos­

sible, given partial information constraints. This desiderata baselines maximum­entropy

probability distributions, which are an integral part to the research presented hereto and,

hence, deserve specific attention in this chapter.

PriorProbabilities and thePrincipleofMaximumEntropy Theprinciple ofmax­

imum entropy is a powerful and versatile tool for assigning a probability distribution on the

basis of knowing only partial information about the distribution, e.g., its moments, while

introducing no new assumptions. It is based on Jaynes’ argument [22] that the probability

density function consistent with the known information and introduces no unwarranted

information is the distribution with maximum (differential) entropy [43]. Any probabil­

ity density function satisfying the constraints which has smaller entropy will contain more

(Shannon) information (less uncertainty), and thus says something stronger than what we

are assuming.

Many common probability distributions naturally arise as maximum­entropy distribu­

tions under moment constraints. For example the gaussian distribution is the maximum­

entropy distribution of a continuous real­valued random variable whose second moment

is fixed, and the von Mises­Fisher distribution is the maximum­entropy distribution of a

random variable on Sn whose first moment is fixed. Given that the Shannon differential

entropy of a probability measure f(x) in a probability space Ω is defined (following from

[43]) by

H(f)
∆
= −

∫
Ω

f(x) log f(x)dx,

the set up for the maximum­entropy problem looks like

maximize
f(x)

−
∫
Ω

f(x) log f(x)dx subject to
∫
Ω

hi(x)f(x)dx = ci, (2.51)
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for all constraints hi, i = 0, 1, . . . ,m. One constraint is always h0(x) = 1 and c0 = 1; that is,

f(x)must be a proper probability density. We solve the constrained optimization problem

via introducing Lagrangian multipliers, λi, of variational calculus. The Lagrangian is

L(f(x),λ0, {λi}) = −
∫
Ω

f(x) log f(x)dx+ λ0

∫
Ω

f(x)− 1


+

m∑
i=1

λi

∫
Ω

f(x)hi(x)dx− ci

 .

(2.52)

A solution, if it exists, will be a critical point of this Lagrangian. We have

∂L
∂f(x)

= 0 = − log f(x)− 1 + λ0 +
∑
i

λihi(x)

∂L
∂λ0

= 0 =

∫
Ω

f(x)dx− 1

∂L
∂λi

= 0 =

∫
Ω

f(x)hi(x)dx− ci.

For λ0 and λi, i = 1, . . . ,m, such that the constraints are satisfied, we can solve the first

equation for f(x) and retrieve the solution

f(x) = exp

{
−1 + λ0 +

m∑
i=1

λihi(x)

}
.

Because exp{−1+λ0} is a constant, we see that themaximum­entropy probability density,

subject to the constraints, has the form

f(x) ∝ exp

{
m∑
i=1

λihi(x)

}
. (2.53)

It is precisely this formulation that leads to the assertion of the maximum­entropy charac­

terizations of the gaussian and von Mises­Fisher distributions stated above.

The Method of Maximum Likelihood

In light of Bayes’ Rule, the maximum a posteriori estimate in Equation 2.50 is given by the

vector θ ∈ Θ for which the product fx(x|θθθ = θ)fθθθ(θ) is maximum. Though for many obser­

vation models arising in practice, assigning a prior distribution to the parameter regarded
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as a random variable θθθ might be a formidable, if not impossible, task. For such models, a

prevailing approach is to take, as point estimates, any values θ inΘ that maximize only the

conditional density of θθθ, given an observation x of x. Since fx(x|θθθ = θ) as a function of θ is

often termed the likelihood function, these point estimates are calledmaximum­likelihood

estimates. Maximizing the likelihood function defines the method of maximum­likelihood

and, if we assume a unique global maximum exists, defines the maximum­likelihood esti­

mate, denoted θ̂ML:

θ̂ML
∆
= argmax

θ∈Θ
fx(x|θθθ = θ), (2.54)

where, again, Θ is set of all permissible values of θθθ.

We remark that themaximum­likelihood estimate yields the same point estimate as the

maximum a posteriori estimate when θθθ is assumed a priori to be uniformly distributed in

its range (i.e., when the prior probability density is constant on its range), assuming, of

course, it’s possible to construct a uniform distribution on Θ.

Although the method of maximum likelihood is not based on any clearly defined op­

timum considerations, it has been very successful in leading to satisfactory procedures in

many practical problems. For wide classes of problems, maximum­likelihood procedures

actually possess various optimumproperties in the asymptotic regime. Most notably, as the

number of independent realizations of x increases without bound, sequences of maximum­

likelihood estimates converge to the true parameter value (in probability). This is a property

known as consistency. Proof of consistency and other aspects of the behavior of maximum­

likelihood estimates are treated fully in [19, 33].

Maximum­Likelihood Estimation: An Important Example Suppose that the n­

vector x is a realization of a gaussian distributed, vector­valued random variable x on C,

with the mean equal to Sa and the covariance equal to σ2In.[13] Presumably, the columns

[13]We consider complex random variables as pairs of real random variables comprising their real and imag­

inary parts. The distribution of a complex random variable is interpreted as the joint distribution of two real­

valued random variables.
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of the n­by­k matrix S form an orthonormal basis in Cn and the elements of the vector a

are unknown complex values. We assume σ2 is known. The probability density function

for x, conditioned on S = S and a = a is given by

fx(x|S = S, a = a) =
(
πσ2

)−n
exp

{
− 1

σ2
(x− Sa)† (x− Sa)

}
, (2.55)

where † denotes the hermitian transpose. In assuming the absence of a suitable prior for a,

computing its maximum­likelihood estimate is an elementary exercise for a student in her

typical graduate electrical engineering coursework:

âML = S†x,

that is, the maximum­likelihood estimate for each component aj , j = 1, . . . , k, is the scalar

projection of the data vector x in the direction of the subspace defined by the columns

of S. It’s worth noting that the maximum­likelihood estimate for a is unique due to the

unimodality of the assumed gaussian distribution of x. In assuming too the absence of a

suitable prior for S, we can compute its maximum­likelihood estimate, which in contrast

to the maximum­likelihood estimate for a, is significantly more rigorous. We provide a

summary here, though the estimate is presented in detail in [44]. We start with substituting

the maximum­likelihood estimate of a into the likelihood function, yielding a generalized

likelihood:

f(S|x = x) =
(
πσ2

)−n
exp

{
− 1

σ2

(
x†x− x†SS†x

)}
=
(
πσ2

)−n
exp

{
− 1

2σ2
[tr(W )− tr(WPS)]

}
,

(2.56)

where PS = SS† is the projection onto the subspace defined by the columns of S and

W = xx†. As σ2 is assumed to be known, it can be omitted from themaximization. As we’ll

see in Chapters 3 and 5, rank­k projection operators are in one­to­one correspondence with

points on the Grassmannmanifold of all k­dimensional subspaces of an n­dimensional vec­

tor space. Hencemaximizing the generalized likelihood in Equation 2.56 for themaximum­

likelihood estimate of S is achieved by maximizing tr(WPS) over G(k,n). Letting W =
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UDU †,whereU is a unitary matrix andD a diagonal matrix of non­increasing, real eigen­

values, we observe

argmax
PS∈G(k,n)

tr(WPS) = argmax
PS∈G(k,n)

tr(UDU †PS)

= argmax
P∈G(k,n)

tr(DP ).

A clever application of the Schur­Horn Theorem [20], which allows for the determination

of the possible diagonal entries of a hermitian matrix with a fixed set of eigenvalues, gives

the unique maximum of tr(DP ) when

P = P0 =

Ik 0

0 0

 .

It follows that tr(WPs) is maximized when

Ps = UP0U
†.

The maximum­likelihood estimate of s is therefore given by

ŝML = U

Ik
0

 , (2.57)

which results in the k eigenvectors that correspond to the k largest eigenvalues of xx†.

Figure 2.2 below shows an example of five realizations of x in R2, plotted as crosses (x),

generated from a one­dimensional, real subspace plotted in red (dashed). The maximum­

likelihood estimate of the subspace from the data is plotted in blue (solid).

We note here that the readerwill find a resemblance in the assumptions for this example

the mathematical model fit for the motivating application underpinning this thesis. As de­

tailedmore fully in Chapter 4, noisy sensor data, generated from a particular k­dimensional

subspace, will present as (independent and identically distributed) realizations of a gaus­

sian random vector whose mean is at least partially described by the subspace. When we

represent an orthonormal basis for the unknown subspace with a matrix S, the setup is
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squarely matched to this example. Rather than drawing on its maximum­likelihood esti­

mate, we regard S as a random variable on the (complex) Grassmann manifold and treat

estimation using a bayesian framework, where a suitable prior distribution defined on the

manifold is a crucial factor. Specializing to the important, special case where the unknown

subspace is one­dimensional, the next chapter develops the requisite geometric objects and

uses them to derivemaximum­entropy probability densities on projective space that will be

used for prior densities in the context of bayesian inference in Chapter 4.

Figure 2.2: Maximum­likelihood estimate of a one­dimensional, real subspace inR2 from
data.
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Chapter 3

PROJECTIVE SPACES

While the class of subspace­based signal processing problems we are interested in in­

volve k­dimensional subspaces of an ambient n­dimensional vector space, i.e., elements of

the Grassmannmanifold, the theory presented in the next two chapters is specialized to the

important, special case where the signal subspace is one­dimensional (the ambient dimen­

sion n remains general) and the Grassmann manifold is known as projective space. The

first half of the present chapter is dedicated to real projective space; the latter highlights

some key differences in the extension to complex projective space.

3.1 Real Projective Space

We begin with a formal, general definition.

Definition 3.1. Real projective n­space (also referred to as either projective n­

space or projective space) is the set of all one­dimensional linear subspaces in Rn+1.

We denote this space RPn.

Figure 3.1: Illustrations of real projective spaces RP1 in R2 (left) and RP2 in R3 (right).

Often RPn is presented as the unit n­sphere Sn in Rn+1 modulo the identification of

antipodal points, as illustrated for the special cases RP1 and RP2 in Figure 3.1. Indeed,
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much intuition for integrating and recursively estimating onRPn comes from implementing

a naïve approach on n­spheres and orthogonal groups.

Following the much more general treatment of defining the Grassmann manifold in

Chapter 5, we present local coordinates on RPn from three distinct perspectives, each of

which will become useful as we move to develop differential geometric objects and statisti­

cal analyses throughout this chapter and the document.

AnOrthonormalBasis Perspective Forx ∈ RPn, letxz be the unit vector of the form

xz =

 1

z

(1 + z⊤z
)−1/2

, (3.1)

where z =
[
z1 z2 · · · zn

]⊤ is an element of Rn. It is important to note that this represen­

tation, which we identify with the point x ∈ RPn, is an (n + 1)­dimensional vector whose

first coordinate is positive and that these coordinates implicitly characterize an atlas com­

prising a single chart covering almost all of RPn; the set of excluded points has measure

zero. There is a corresponding orthonormal basis for the orthogonal complement of xz in

Rn+1, comprising the columns of the (n+ 1)­by­nmatrix we denote x⊥
z . In coordinates,

x⊥
z =

 −z⊤

In

(In + zz⊤
)−1/2

. (3.2)

AnOrthogonal Projector Perspective Associated uniquely to each one­dimensional

subspace of Rn is a rank­one orthogonal projection operator. This one­to­one correspon­

dence gives rise to the following proposition.

Proposition 3.1. Let n be fixed positive integer. Let Pn define the set of all rank­one

orthogonal projection operators on Rn. That is,

Pn ∆
=

{
P ∈ Rn×n

∣∣∣∣P⊤ = P 2 = P , rank(P ) = 1

}
. (3.3)

There exists a bijection between real projective space RPn and Pn.
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For proof of this proposition, we turn an interested reader to [18], wherein a natural

bijection betweenRPn and Pn is constructed. Moreover, with respect to a designated topol­

ogy, Helmke proves his bijection is a diffeomorphism.

The standard form representing a one­dimensional subspace of Rn in Equation 3.1 has

the following associated standard form for a rank­one, orthogonal projection operator:

Pxz = xzx
⊤
z =

(
1 + z⊤z

)−1

 1 z⊤

z zz⊤

 .

A Homogeneous Perspective One last presentation of projective space we’ll include

is as a homogeneousmanifold by lettingO(n+1) act transitively onRPn. A consequence of

the so­called Orbit­Stabilizer Theorem (see [7]) yields the following one­to­one correspon­

dence:

RPn ∼= O(n+ 1)/ (O(1)×O(n)) . (3.4)

A special case of the Quotient Manifold Theorem (see [32]) will ensure that, with this iden­

tification, RPn is indeed a smooth manifold. To the astute reader (or to a reader who has

read ahead!), this presentation is a specialization of the real Grassmann manifold G(k,n)

to the case k = 1. A detailed mathematical justification for the representation in Equa­

tion 3.4 is included in Chapter 5. While the quotient manifold presentation may seem a

bit unwieldy, it gives rise to a differentiable structure so that RPn – defined only as a set

in Definition 3.1 – is a true differentiable manifold of dimension n. The quotient mani­

fold presentation will too avail ourselves of the particularly well­understood geometry of

Lie groups and homogeneous manifolds, which may be used to develop specific geometric

objects (e.g., tangent vectors, metrics, and geodesics). In fact, Chapter 5 will exploit this

quotient space representation for more general grassmannians to introduce a riemannian

metric and rigorously develop formulae for tangent vectors and geodesics.
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3.1.1 The Differential Form for the Invariant Measure

For the remaining treatment of RPn in this chapter, we return to the coordinate system

defined by Equations 3.1 and 3.2: for x ∈ RPn, we let xz be the unit vector of the form

xz =

 1

z

(1 + z⊤z
)−1/2

, (3.1 revisited)

where z =
[
z1 z2 · · · zn

]⊤ is an element ofRn. Andwe let the corresponding orthonormal

basis for the orthogonal complement ofxz inRn+1 comprise the columns of the (n+1)­by­n

matrix denoted x⊥
z :

x⊥
z =

 −z⊤

In

(In + zz⊤
)−1/2

. (3.2 revisited)

Observing the fact that real projective n­space is a special case of the real Grassmann

manifold avails ourselves of the classical work of James [21]. By analogy with his derivation

of the invariant measure for the real Grassmann manifold, the invariant measure on RPn

can be defined for points xz in a neighborhood of a point x ∈ RPn:

ωn(xz)
△
=

n∧
i=1

b⊤i dxz. (3.5)

In this expression, xz is a unit vector in the subspace defined by x; dxz is the total deriva­

tive of xz (i.e., the differential); and b1, . . . , bn are the orthonormal (n + 1)­dimensional

column vectors comprising the matrix x⊥
z . This is a system of vectors that can only be con­

structed locally. For the proof that Equation 3.5 is indeed a differential form that defines

the invariant measure, we refer the reader to James [21], specifically section four.

Using the coordinate system in Equations 3.1 and 3.2 and introducing α =
(
1 + z⊤z

)
for concision,

dxz =
∂xz

∂z
dz = α−3/2

 −z⊤

αIn − zz⊤




dz1

...

dzn

 ,
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from which it follows

ωn(x) = α−3n/2b⊤1

 −z⊤

αIn − zz⊤




dz1

...

dzn

 ∧ · · · ∧ b⊤n

 −z⊤

αIn − zz⊤




dz1

...

dzn

 . (3.6)

Let ti be the n­dimensional (row) vector given by

ti = b⊤i

 −z⊤

αIn − zz⊤

 =

[
t1i t2i · · · tni

]
,

so that, using Theorem 2.1,

ωn(x) = α−3n/2
n∑

j=1

tj1dzj ∧ · · · ∧
n∑

j=1

tjndxj

= α−3n/2 det


t11 · · · t1n
... · · ·

...

tn1 · · · tnn

 dz1 ∧ · · · ∧ dzn.

(3.7)

By elementary linear algebra,

T =

 −z⊤ (In + zz⊤)−1/2(
In + zz⊤)−1/2


⊤  −z⊤

αIn − zz⊤


=
(
In + zz⊤

)−1/2
zz⊤ +

(
In + zz⊤

)−1/2 (
αIn − zz⊤

)
= α

(
In + zz⊤

)−1/2
.

Because the spectrum of the matrix zz⊤ is
{
z⊤z, 0, . . . , 0

}
, the spectrum of the matrix In+

zz⊤ is
{
1 + z⊤z, 1, . . . , 1}, and it follows that

ωn(x) = α−3n/2 det

(
α
(
In + zz⊤

)−1/2
)
dz1 ∧ · · · ∧ dzn

= α−n/2 det
(
In + zz⊤

)−1/2
dz1 ∧ · · · ∧ dzn

=
(
1 + z⊤z

)−n/2 (
1 + z⊤z

)−1/2
dz1 ∧ · · · ∧ dzn

=
(
1 + z⊤z

)−(n+1)/2
dz1 ∧ · · · ∧ dzn.

(3.8)
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Integrating the Differential Form

It is apparently well known that the volume of real projective n­space is equal to one half

the volume of the n­sphere, but the derivation of the volume via direction integration of an

exterior differential form over the entire space is, to our knowledge, not readily available

in the literature. We derive the volume explicitly via the following direct transformation to

hyperspherical coordinates. Given

xz =

 1

z

(1 + z⊤z
)−1/2

,

with z =
[
z1 · · · zn

]⊤, consider the transformation

zk = tan θ1
k∏

i=1

sin θi cos θk+1 k < n

zn = tan θ1
n∏

i=1

sin θi

(3.9)

with θ1 ∈ (−π/2,π/2) and θi ∈ (0,π) for i > 1. As is worked out in detail in Appendix B.1,

the transformation law for the volume form on RPn is given by

(
1 + z⊤z

)−(n+1)/2
dz1 ∧ · · · ∧ dzn =

∣∣∣∣∣∣
n∏

j+1

sinn−j
(
θj
)∣∣∣∣∣∣ dθ1 ∧ · · · ∧ dθn. (3.10)

The volume of RPn is thus computed as (see Appendix A.1.1)

Vol(RPn) =

∫
RPn

ωn(xz)

=

∫
Rn

(
1 + z⊤z

)−(n+1)/2
dz1dz2 · · · dzn

=

π∫
0

· · ·
π∫

0

π/2∫
−π/2

∣∣∣∣∣∣
n∏

j=1

sinn−j(θj)

∣∣∣∣∣∣ dθ1dθ2 · · · dθn

=

π
2∫

−π
2

∣∣sinn−1
(
θ1
)∣∣ dθ1 n∏

j=2

π∫
0

sinn−j
(
θj
)
dθj
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=

√
πΓ
(
n
2

)
Γ
(
n+1
2

) n∏
j=2

√
πΓ
(
1+n−j

2

)
Γ
(
2+n−j

2

)
=

πn/2Γ
(
n
2

)
Γ
(
1
2

)
Γ
(
n+1
2

)
Γ
(
n
2

)
=

π
n+1
2

Γ
(
n+1
2

) ,
which is exactly half the volume of the n­sphere, as expected.

3.1.2 A Probability Distribution

The distribution developed and studied in this section plays a key role in bayesian infer­

ence on real projective space. Its importance lies in a number of characteristics, but princi­

pally in the fact that it has the same statistical role as the multivariate normal distribution

in n­dimensional Euclidean space or the von Mises and von Mises­Fisher distributions on

the n­sphere.

Theorem 3.1. For a fixed non­negative, real number κ and a fixed point µ in RPn, the

continuous probability density function on RPn with first moment equal to ρµ ∈ Rn+1

whichmaximizes entropy among all such densities (onRPn with firstmoment ρµ) is given

by

fx(x|µ,κ) = cn(κ)e
κ|µ⊤x|, (3.11)

where cn(κ) is chosen so that e
κ|µ⊤x| integrates, with respect to the volume form, to unity

over the whole space and κ so that E[x] = ρ(κ)µ.

Proof. The constrained optimization problem to maximize the (Shannon) differential en­

tropy on real projective space, subject to a constrained first moment is given by[1]

maximize
fx(x)

−
∫

RPn

fx(x) log fx(x)dx,

subject to
∫

RPn

fx(x)dx = 1 and
∫

RPn

xfx(x)dx = ρ(κ)µ.

[1]Against better judgement, we use dx and ωn(x) interchangeably to represent the invariant measure on

RPn.
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Solving this optimization problem is tantamount to solving the following:

maximize
fx(x)

−
∫

RPn

fx(x) log fx(x)dx,

subject to
∫

RPn

fx(x)dx = 1 and
∫

RPn

∣∣∣µ⊤x
∣∣∣ fx(x)dx = ρ(κ),

where the absolute value bars in the second constraint ensure the algebraic manipulation

introduces no extraneous solutions on the quotient manifold. Applying Equation 2.53 to

the constraints above results in the form of the maximum­entropy probability distribution

on RPn, subject to a fixed first moment, given by

fx(x|µ,κ) = cn(κ)e
κ|µ⊤x|,

as desired. ■

Figure 3.2: Illustration of the maximum­entropy probability distributions on RP1 (top)
and on RP2 (bottom) with increasing concentration: from left to right, κ = 5, 20, 100.

The density fx(x|µ,κ) is parameterized by the mean direction µ ∈ RPn, and the concen­

tration factor κ ∈ R+, so called because it characterizes how strongly elements on RPn

drawn according to fx(x|µ,κ) are concentrated about the mean direction µ. Larger values

of κ imply strong concentration about the mean direction. In particular, as κ tends to 0,

the distribution reduces to the uniform distribution on RPn, and as κ tends to infinity, the
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density tends to a point density. Figure 3.2 illustrates this probability density for the cases

n = 1 and n = 2 for a fixed fixed values of µ in each space and increasing values of κ. As

noted above, this maximum­entropy density onRPn is analogous to the widely studied von

Mises and von Mises­Fisher distributions on Sn [23, 34, 35].

To derive the value of the normalizing constant cn(κ), we use the fact that∫
RPn

cn(κ)e
κ|µ⊤x|dx = 1,

where dx represents the differential form for the invariant measure on RPn. To evaluate

this integral, let us first make the transformation y = Qx, where the first component of y

is equal to µ⊤x andQ is orthogonal (the first row ofQwill be µ⊤). The matrixQ is chosen

to be orthogonal so that dx = dy. We rewrite the equation above as

1

cn(κ)
=

∫
RPn

eκ|µ
⊤x|dx =

∫
Rn

eκ(1+z⊤z)
− 1

2 dz

(1 + z⊤z)
(n+1)/2

.

Under a second transformation to hyperspherical coordinates,

1

cn(κ)
=

π∫
0

· · ·
π∫

0

π
2∫

−π
2

eκ cos θ1

∣∣∣∣∣∣
n∏

j=1

sinn−j(θj)

∣∣∣∣∣∣ dθ1dθ2 · · · dθn

=

π∫
0

· · ·
π∫

0

n∏
j=2

sinn−j
(
θj
)
dθ2 · · · dθn

π
2∫

−π
2

eκ cos θ1
∣∣sinn−1

(
θ1
)∣∣ dθ1

=

n∏
j=2

π∫
0

sinn−j
(
θj
)
dθj

π
2∫

−π
2

eκ cos θ1
∣∣sinn−1

(
θ1
)∣∣ dθ1

= 2
n∏

j=2

π∫
0

sinn−j
(
θj
)
dθj

±π
2∫

0

eκ cos θ1 sinn−1
(
θ1
)
dθ1.

After application of results proved in Appendix A, simplification yields

1

cn(κ)
= π(n+1)/2

(
2

κ

)(n−1)/2 [
In−1

2
(κ) + Ln−1

2
(κ)
]
,

so that

cn(κ) =

(
κ
2

)n−1
2

π
n+1
2

[
In−1

2
(κ) + Ln−1

2
(κ)
] , (3.12)
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where Iν(x) is the modified Bessel function of the first kind and Lν(x) is the related mod­

ified Struve function [1]. This value of cn(κ) verifies that Equation 3.11 is indeed a proper

probability density.

To see the relationship between ρ and κ, we simply use the fact that

cn(κ)

∫
RPn

∣∣∣µ⊤x
∣∣∣ eκ|µ⊤x|dx = ρ.

Applying the same two coordinate transformations as in the derivation of the normalizing

constant above will yield

ρ(κ) =

2
n +

(
2
κ

)n−1
2

√
πΓ
(
n
2

) [
In+1

2
(κ) + Ln+1

2
(κ)
]

(
2
κ

)n−1
2

√
πΓ
(
n
2

) [
In−1

2
(κ) + Ln−1

2
(κ)
] . (3.13)

Using the results regarding the limiting behavior of Iν(x) andLν(x) recorded inAppendixA,

together with elementary algebra,

lim
κ→0+

ρ(κ) =
Γ
(
n+1
2

)
√
πΓ
(
n+2
2

) ,
lim
κ→∞

ρ(κ) = 1,

(3.14)

so that ρ is a real­valued, monotonically increasing, and bounded function of κ with values

between
Γ
(
n+1
2

)
√
πΓ
(
n+2
2

) and 1.
Maximum­Likelihood Estimators

This section presents a detailed derivation of themaximum­likelihood estimates for the pa­

rameters of the maximum­entropy distribution just introduced. Let x1, . . . ,xm comprise a

finite set of samples drawn independently from the distribution characterized by the prob­

ability density

fx(x|µ,κ) = cn(κ)e
κ|µ⊤x|,

where µ ∈ RPn and κ ∈ R+ are fixed parameters, and cn(κ) is the normalizing constant

given by Equation 3.12. Under the assumption of independence, we may write the joint
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likelihood of x1, . . . ,xm as

fx1,...,xm(x1, . . . ,xm|µ,κ) = cmn (κ) exp

{
κ

m∑
i=1

|µ⊤xi|

}
. (3.15)

Sincemaximizing fx1,...,xm(x1, . . . ,xm|µ,κ) in Equation 3.15 is equivalent tomaximizing its

log, the maximum­likelihood estimates µ̂ML and κ̂ML result from maximizing

ℓ (x1, . . .xm|µ,κ) = m log cn(κ) + κ

m∑
i=1

|µ⊤xi|. (3.16)

As only the last term of Equation 3.16 is dependent onµ, themaximum­likelihood estimate

µ̂ML of µ is evidently

µ̂ML = argmax
p∈RPn

m∑
i=1

∣∣∣p⊤xi

∣∣∣ , (3.17)

which defines µ̂ML to be (monotonically related to) a so­called Karcher mean of the samples

x1, . . . ,xm on RPn [25]. To find the maximum­likelihood estimate of κ, we solve

0 =
∂

∂κ
ℓ(x1, . . .xm; µ̂ML,κ) =

mc′n(κ)

cn(κ)
+

m∑
i=1

∣∣∣µ̂⊤
MLxi

∣∣∣ .
Using the formulae for the derivatives of the special functions in the normalizing constant

(see Appendix A),

−c′n(κ)

cn(κ)
=

In−3
2
(κ) + Ln−3

2
(κ)

In−1
2
(κ) + Ln−1

2
(κ)

− (n− 1)

κ
.

Since computing κ̂ML thus involves an implicit equation that is a ratio of special functions,

it is not possible to obtain an analytic solution, and we must take recourse to numerical or

asymptotic methods to obtain an approximation.

Figure 3.3: The maximum­likelihood estimates of µ (left) and κ (right) of the maximum­
entropy probability density function fx(x|µ,κ) defined on RP3.
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Figure 3.3 suggests consistency of the maximum­likelihood estimates µ̂ML and κ̂ML: em­

pirically the estimates appear to converge to the true parameter values, as the number

of independent realizations of x increases. The distance metric used here on RPn is the

Hilbert­Schmidt distance metric, defined by the Hilbert­Schmidt norm on the space of n­

by­n orthogonal projection operators:

dH.S.(µ̂ML,µ) = ‖Pµ̂ML − Pµ‖H.S. .

Explicit distance functions on grassmannians will be discussed in detail in Chapter 5.

3.2 Complex Projective Space

Important applications for subspace­based methods in data analysis arise in telecom­

munications and radio­frequency remote sensing. These applications typically involve nar­

rowband signals modulating a high­frequency sinusoidal carrier wave. Complex­valued

functions or complex vectors are natural representations for such signals for processing at

the receiver [19] (specifically, chapter three), so complex vector spaces are of considerable

practical interest in this context.

Much of what is presented here about complex projective space is directly analogous to

the case of real projective space. Derivation of the invariant measure and its integration

entail some differences that warrant particular attention, however.

For completeness, we begin with a formal, general definition.

Definition 3.1. Complex projective n­space (also referred to as complex projec­

tive space) is the set of all one­dimensional linear subspaces in Cn+1. We denote this

space CPn.

Coordinates on complex projective space are formulated analogously to the real case

presented above.
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AnOrthonormalBasis Perspective Forx ∈ CPn, letxz be the unit vector of the form

xz =

 1

z

(1 + z†z
)−1/2

, (3.18)

where z =
[
z1 z2 · · · zn

]⊤ is a now an element of Cn and † denotes the hermitian trans­

pose. It is important to note that this representation is an (n + 1)­dimensional, complex

vector whose first coordinate is positive and real­valued. As with the case of real projective

space, these coordinates implicitly characterize an atlas comprising a single chart covering

almost all of CPn; the set of excluded points has measure zero. There is a corresponding

orthonormal basis for the orthogonal complement of xz in Cn+1, comprising the columns

of the (n+ 1)­by­nmatrix we denote x⊥
z . In coordinates,

x⊥
z =

 −z†

In

(In + zz†
)−1/2

. (3.19)

A Hermitian Projector Perspective In following through the different perspectives

of coordinate representations of CPn, we may identify to each one­dimensional subspace

of Cn a rank­one, hermitian projection operator on Cn+1. Using the coordinates in Equa­

tion 3.18, these coordinates are given by

Pz = xzx
†
z =

(
1 + z†z

)−1

 1 z†

z zz†

 .

A Homogeneous Perspective And finally, letting U(n + 1) act (transitively) on CPn

gives rise to the homogeneous perspective of complex n­space:

CPn ∼= U(n+ 1)/ (U(1)×U(n)) . (3.20)

As in the case of real projective space, a specialized case of the Quotient Manifold Theorem

ensures that, with this identification, CPn is indeed a smooth manifold.
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3.2.1 The Differential Form for the Invariant Measure

Let us return to the coordinate systemdefined by Equations 3.18 and 3.19. Forx ∈ CPn,

xz denotes the unit vector of the form

xz =

 1

z

(1 + z†z
)−1/2

, (3.18 revisited)

where z =
[
z1 z2 · · · zn

]⊤ is an element of Cn. The corresponding orthonormal basis

for the orthogonal complement of xz in Cn+1 comprises the columns of the (n + 1)­by­n

complex matrix given by

x⊥
z =

 −z†

In

(In + zz†
)−1/2

. (3.19 revisited)

By analogy again with James’ invariant measure for real projective space given in Equa­

tion 3.5, the invariant measure on CPn can be defined for points xz in a neighborhood of a

point x ∈ CPn:

ωn(xz)
∆
=

(
i

2

)n
 n∧

j=1

b†jdxz ∧
n∧

j=1

dx†
zbj

 . (3.21)

In this expression,xz is a unit vector in the subspace defined byx; dxz is the total derivative

ofxz (i.e., the differential); and b1, . . . , bn are the orthonormal column vectors spanning the

orthogonal complement ofx inCn+1, as specified in Equation 3.19. The factor
(
i
2

)
accounts

for the fact that decomposing any form into its real and imaginary components, say x and

y, respectively, yields the following relation:

(x+ iy) ∧ (x− iy) = −2i(x ∧ y).

Having already computed
∧n

j=1 b
†
jdxz in Equations 3.6 to 3.8, it evidently follows that

ωn(xz) =

(
i

2

)n (
1 + z†z

)−(n+1)
dz ∧ dz. (3.22)
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Integrating the Differential Form

Given

xz =

 1

z

(1 + z†z
)−1/2

,

where z =
[
z1 z2 · · · zn

]⊤ is an element of Cn, consider the transformation

zk = eiφ
k
tan θ1

k∏
j=2

sin θj cos θk+1, k < n

zn = eiφ
n
tan θ1

n∏
j=2

sin θj

with θj ∈ (0,π/2) and φj ∈ (0, 2π) for j = 1, . . . ,n. Introducing z = u+ iv, where u and v

are in Rn, the transformation law for the volume form on CPn is given by (see Appendix B)(
i

2

)n

(1 + z†z)−(n+1)dz ∧ dz =
(
1 + u⊤u+ v⊤v

)−(n+1)
du1 ∧ · · · ∧ dundv1 ∧ · · · ∧ dvn

=

∣∣∣∣∣∣
n∏

j=1

sin2(n−j)+1 θj cos θj

∣∣∣∣∣∣ dθ1 ∧ · · · ∧ dθndφ1 ∧ · · · ∧ dφn,

(3.23)

whence the volume of CPn is computed as (see Appendix A)

Vol(CPn) =

∫
CPn

ωn(xz)

=

∫
R2n

(
1 + u⊤u+ v⊤v

)−(n+1)
du1dv1 · · · dundvn

=

2π∫
0

· · ·
2π∫
0

n∏
i=1

dφi

π/2∫
0

· · ·
π/2∫
0

sin2n−1 θ1 cos θ1dθ1
n∏

i=2

sin2(n−i)+1 θi cos θidθi

= (2π)n ·
π/2∫
0

sin2n−1 θ1 cos θ1dθ1
n∏

i=2

π/2∫
0

sin2(n−i)+1 θi cos θidθi

= (2π)n · 1

2n
· 1

2n−1(n− 1)!

=
πn

n!
.

As in the case of RPn, the volume of CPn is an apparently well­known result, but justifica­

tion often relies on invoking theorems about volumes of the product spaces and quotient

manifolds [4]. An explicit proof does not appear to be readily available in the literature.
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3.2.2 A Probability Distribution

We now seek a class of maximum­entropy probability distributions on CPn to support

bayesian estimation on this manifold. As in the case ofRPn, treated in Section 3.1.2, a vari­

ational approach is used to obtain a distribution whose (differential) entropy is maximum,

with respect to a known constraint.

Theorem 3.1. For a fixed non­negative, real number κ and a fixed point µ in CPn, the

continuous probability density function on CPn with first moment equal to ρµ ∈ Cn+1

whichmaximizes entropy among all such densities (onCPn with firstmoment ρµ) is given

by

fx(x|µ,κ) = cn(κ)e
κ|µ†x|, (3.24)

where cn(κ) is chosen so that eκ|µ†x| integrates, with respect to the volume form, to unity

over the whole space and κ so that E[x] = ρ(κ)µ

The proof of this theorem is essentially identical to the one given for Theorem 3.1. In

fact, the density functions for classes of maximum­entropy distributions useful to us on

real and complex projective spaces appear to be indistinguishable. Just as for the real case,

the density fx(x|µ,κ) on CPn is parameterized by the mean direction µ ∈ CPn and the

concentration factor κ ∈ R+, so­called because it characterizes how strongly elements on

CPn are concentrated about the mean direction µ. The key differences though, lie in the

values of their normalizing constants and the relationships between the fixed ρ and the

density parameter κ, which manifest only subtly in the analysis of this distribution. We

focus here first on the derivation of the value of cn(κ) and the express relationship between

ρ and κ for the complex case.

To derive the value of the normalizing constant cn(κ) in this case, we use the fact that∫
CPn

cn(κ)e
κ|µ†x|dx = 1,

where dx represents the differential form for the invariant measure on CPn. As in the case

of RPn, to evaluate this integral, we first make the transformation y = Qx, where the first
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component of y is equal to µ†x andQ is unitary (the first row ofQ will be µ†). The matrix

Q is chosen to be unitary so that dx = dy. Introducing again z = u + iv, where u and v

are in Rn, we rewrite the equation above as

1

cn(κ)
=

∫
CPn

eκ|µ†x|dx =

(
i

2

)n ∫
R2n

eκ(1+z†z)
(
1 + z†z

)−(n+1)
dz ∧ dz.

Under a second transformation to complex hyperspherical coordinates,

1

cn(κ)
=

2π∫
0

· · ·
2π∫
0

dφ1 · · · dφn

π
2∫

0

· · ·

π
2∫

0

eκ cos θ1

sin2n−1θ1 cos θ1
n∏

j=2

sin2(n−j)+1 θj cos θjdθ1 · · · dθn

= (2π)n

π
2∫

0

eκ cos θ1

sin2n−1 θ1 cos θ1dθ1
n∏

j=2

π
2∫

0

sin2(n−j)+1 θj cos θjdθj

= (2π)n
1

2n−1(n− 1)!

π
2∫

0

eκ cos θ1

sin2n−1 θ1 cos θ1dθ1,

where the last equality makes use of results derived in Appendix A. We continue via inte­

gration by parts:

1

cn(κ)
= (2π)n

1

2n−1(n− 1)!

 1

2n
+

κ

2n

π
2∫

0

eκ cos θ1 sin2n+1 θ1dθ1

 .

After application of results derived in Appendix A, simplification yields

cn(κ) =
1

πn

n! +
(
2
κ

)n− 1
2 (π)n+

1
2

[
In+ 1

2
(κ) + Ln+ 1

2
(κ)
] , (3.25)

where Iν(x) and Lν(x) are the now familiar modified Bessel function of the first kind and

modified Struve function. This normalizing constant serves in the complex case the role in

cn(κ) defined by Equation 3.12. To see the relationship between ρ and κ, we again use the

fact that

cn(κ)

∫
CPn

∣∣∣µ†x
∣∣∣ eκ|µ†x|dx = ρ.

Applying the same two coordinate transformations as in the derivation of the normalizing

constant above will yield the following (rather hideous) expression:

ρ(κ) =
κ+

(
2
κ

)n+ 1
2
√
πΓ(n+ 2)

[
κIn+ 3

2
(κ) + In+ 1

2
(κ) + κLn+ 3

2
(κ) + Ln+ 1

2
(κ)
]

2n+ 2 +
(
2
κ

)n+ 1
2
√
πκΓ(n+ 2)

[
In+ 1

2
(κ) + Ln+ 1

2
(κ)
] . (3.26)
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Using the results regarding the limiting behavior of Iν(x) andLν(x) recorded inAppendixA,

together will elementary algebra,

lim
κ→0+

ρ(κ) =

√
πΓ(n+ 2)

2 (n+ 1)Γ
(
3
2 + n

)
lim
κ→∞

ρ(κ) = 1,

(3.27)

so that ρ is a real­valued, monotonically increasing, and bounded function of κ with values

between
√
πΓ(n+ 2)

2 (n+ 1)Γ
(
3
2 + n

) and 1.
We remark that since the density function corresponding to the maximum­entropy dis­

tribution (with respect to a fixed first moment) onCPn is identical to the form of the density

function corresponding to the maximum­entropy distribution (with respect to a fixed first

moment) on RPn, the maximum­likelihood estimates of its parameters too take the same

form. The maximum­likelihood estimate for the concentration parameter κ is an implicit

function involving a ratio of the normalizing constant and its derivative, however. For the

complex case,

−c′n(κ)

cn(κ)
=

√
π
(
2
κ

)n+1
Γ(n+ 1)

(
−2nIn+ 1

2
(κ) + κIn− 1

2
(κ)− 2nLn+ 1

2
(κ) + κLn− 1

2
(κ)
)

√
π
(
2
κ

)n− 1
2 Γ(n+ 1)

(
In+ 1

2
(κ) + Ln+ 1

2
(κ)
)
+ 1

.

As in the real case, we take recourse to numerical methods to obtain an approximation for

κ̂ML, given that

−mcn (κ̂ML)

cn (κ̂ML)
=

m∑
i=1

∣∣∣µ̂†
MLxi

∣∣∣ .
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Chapter 4

RECURSIVE BAYESIAN ESTIMATION ON PROJECTIVE SPACES

With the requisite geometric­statistical objects developed on special grassmannians in

the the preceding chapter in hand, we now devise and implement a bayesian framework for

recursive estimation posed on these manifolds. Practical motivation lies in the context of a

particular multi­sensor remote sensing application, wherein a primary goal, as mentioned

in Section 2.2, is to estimate a common unknown signal of known rank k measured by

m > k spatially distributed sensors. Formally, we assume the signal is characterized by

k ≥ 1 linearly independent waveforms. As depicted in Figure 4.1, the waveforms emanate

from an omnidirectional source, illuminating m > k spatially distributed sensors, which

transduce impinging electromagnetic radiation (or acoustic sound pressure).

X1

X2

Xm

1

Figure 4.1: Data in the form of complex n­vectors arise from sampling k linearly inde­
pendent waveforms (i.e., a rank­k signal) illuminatingm > k spatially distributed sensors.
The rank­k signal defines a particular k­dimensional subspace, regarded in this setup as a
realization of a random variable onGC(k,n).

Data received at each of them sensors are assumed to have been filtered to a band of inter­

est, suitably sampled, and appropriately adjusted in time delay and Doppler according to

the putative target location andmotion. This pre­processing providesm complexn­vectors,
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which, when suitably arranged, can be described by the n­by­m complex data matrix

X = SA+ ν (4.1)

whose elements xnm are the samples of the noisy rank­k signal collected at themth sensor.

The k­dimensional signal subspace is defined by S ∈ Cn×k, whose columns are orthonor­

mal complex n­vectors, and the element akm of the matrixA ∈ Ck×m is a complex gain of

the component signal received at sensor m and in the subspace corresponding to the kth

column of S. As is common (and rather accurate to many real­world systems), we assume

the columns of the additive noise matrix, denoted here by ν, are realizations of indepen­

dent and identically distributed complex gaussian vectors with zero mean and covariance

matrix equal to a scalarmultiple of the identitymatrix. With the exception of the properties

described here, bothA and S are treated as unknown variables.

We introduce additional dynamical assumptions on the k linearly independent wave­

forms defining S in this setup, presumably due to time­varying illumination or the effects

of possible target motion, so that S itself is time­varying, at least in princible. Decorating

Equation 4.1 with subscripts,

Xt = StAt + νt (4.2)

denotes the received data in discrete time epochs, indexed by t = 1, 2, . . . . When St is

regarded as a realization of a random variable St onGC(k,n) with an assigned (unknown)

distribution, receipt of new measurements comprising Xt each time epoch can be used to

update an estimate of St. These probabilistic formulations are ideally suited for a bayesian

approach to estimation. We begin this chapter with the presentation of a general overview

of the topic of recursive estimation, from a bayesian perspective, before applying it to this

setup.

4.1 A Bayesian Framework for Recursive Estimation

Adopting traditional terminology, the dynamic randomvariable to be estimated is called

the state and its observation space the state space. A typical recursive estimation algo­
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rithm consists of essentially two stages: a prediction stage and an update stage. The pre­

diction stage uses a dynamical model to propagate the probability density of the state for­

ward from one measurement time to the next, and the update stage uses a measurement,

with a probabilistic assumption, to modify the prediction probability density of the state.

From a bayesian perspective, the objective is to recursively calculate some degree of belief

in the state at a discrete time t = 1, 2, . . . givenmeasurements up to time t. Throughout this

discussion (and this chapter!) we let st and z1:t denote the state at time t and the measure­

ments up to time t, respectively. We seek to construct the probability density fst (st| z1:t),

with the assumption that the initial density of the state is available.[1] If we suppose the

density fst (st−1|z1:t−1) at time t − 1 is available, the prediction stage then involves using

the system dynamics to obtain the prior probability density of the state at time t via the

Chapman­Kolmogorov equation

fst (st|z1:t−1) =

∫
fst (st|st−1) fst−1 (st−1|z1:t−1) dst−1. (4.3)

At time t, a measurement zt becomes available, and is assimilated into the prior probability

density via Bayes’ Rule:

fst (st|z1:t) =
fzt (zt|st) fst (st|z1:t−1)

fzt (zt|z1:t−1)
, (4.4)

where the normalizing constant

fzt (zt|z1:t−1) =

∫
fzt (zt|st) fst (st|z1:t−1) dst

depends on the likelihood function fzt (zt|st) defined by the measurement model. The re­

currence relations in Equations 4.3 and 4.4 form the basis for the optimal bayesian solution

of the iterative estimation problem and, under particular model assumptions, yield the fa­

miliar Kalman filter. It’s crucial to note that Equations 4.3 and 4.4 require integration over

the state space, which, for the estimation problems of principal interest to this thesis, are

Grassmann manifolds. The present chapter specializes the problem to real and complex

[1]In our simulations, the initial density is the uniform density on the state space.
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projective spaces, applying the geometric­statistical objects introduced in the preceding

chapter. Figure 4.2 illustrates the prediction and update steps of a desired iterative estima­

tor of a state evolving on real projective space.

Figure 4.2: A recursive bayesian estimation procedure on RP1.

4.2 An Idealized Model

Beforemoving to recursively estimating the state of a dynamical system evolving in time

on RPn using measurements modeled by the practically motivated scenario set forth at the

start of the chapter, we focus on amuch simpler problem in which the measurement model

is, in a very particular sense, idealized.

Wemodel the statistics with the maximum­entropy distribution (with respect to a fixed

first moment) on real projective space, as derived in Section 3.1.2. For this idealizedmodel,

we further assume the measurements at each time step are also distributed according to

this distribution, but perhaps characterized by a different mean or concentration parame­

ter value. A bayesian formalism, as described above, is used. Now because the forms of the

density functions corresponding to the maximum­entropy distributions on real and com­
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plex projective space are identical, the bayesian approach to estimation described here for

real projective space extends directly to the complex case. We devote our presentation to

real projective space, however. Numerical simulations demonstrate that, under mild as­

sumptions, our recursive estimator on RPn can be found to achieve successful estimation.

While original, the work presented in this section is a direct extension of the geometric­

statistical approach in [47].

4.2.1 The Prediction

On the space RPn, we are interested in recursively estimating the state st ∈ RPn of

a dynamical system at time t. We assume that, at time t − 1, the posterior distribution

of the state has been computed using all of the measurements collected at discrete times

1, 2, . . . , t− 1. We further assume that, at time t− 1, we can describe the posterior distribu­

tion of the state st−1 in terms of the maximum­entropy distribution (with respect to a fixed

first moment) with mean parameter ŝt−1 and concentration parameter κt−1. We write the

posterior density at time t− 1 as

fst(s
+
t−1) = cn(κ

+
t−1) exp

{
κ+t−1

∣∣∣(ŝ+t−1)
⊤s+t−1

∣∣∣} .

The dynamical model in this research assumes that the state at time t − 1 changes via an

action of a special orthogonal matrix (the group of orthogonal matrices acts transitively on

RPn by left multiplication) to yield the state at time t. That is, the dynamics are governed

by the equation

st = Rtst−1,

where Rt is a deterministic and known element of SO(n + 1). Because we assume Rt is

known (for each t), the prior probability distribution of the state at time t is characterized

by

fst(st) = cn(κt−1) exp
{
κt−1

∣∣∣(Rtŝt−1)
⊤ st

∣∣∣} , (4.5)

and hence the mean and concentration parameters at time t are, respectively,

ŝt = Rtŝt−1
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κt = κt−1.

When the state space isCPn, the only difference lies in the assumptions of the dynamics.

The state st−1 at time t−1 changes via an action of a special unitarymatrix to yield the state

st at time t. That is, the dynamics are governed by the equation

st = Utst−1,

whereUt is a deterministic and known element of SU(n+1). The prior probability density

is thus

fst(st) = cn(κt−1) exp
{
κt−1

∣∣∣(Utŝt−1)
† st

∣∣∣} , (4.6)

and hence the mean and concentration parameters at time t are, respectively,

ŝt = Utŝt−1

κt = κt−1.

4.2.2 A Measurement and the Bayesian Update

A measurement is collected in each time epoch and also follows the maximum­entropy

distribution on RPn, as promised. At time t, st is the mean and ηt is the concentration

parameter of the distribution of the measurement. The measurement likelihood is thus

fxt(xt|st) = cn(ηt) exp
{
ηt

∣∣∣s⊤t xt

∣∣∣} .

We want to find a probability density for the update (the posterior probability density)

which belongs to the same class of maximum­entropy probability densities as the prior.

We begin calculating the posterior by application of Bayes’ Rule:

fst(st|xt) ∝ fxt(xt|st)fst(st)

∝ exp
{
κt

∣∣∣ŝ⊤t st∣∣∣} exp
{
ηt

∣∣∣s⊤t xt

∣∣∣}
= exp

{
κt

∣∣∣ŝ⊤t st∣∣∣+ ηt

∣∣∣s⊤t xt

∣∣∣} .

(4.7)

Because this density does not always belong to the desired class of maximally entropic den­

sities on the state space, we approximate the density in Equation 4.7 by amaximum­entropy
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distribution (with respect to a fixed first moment) on RPn with matching first moment.

Presently, this moment­matching procedure is performed numerically.

4.2.3 A Numerical Example

Asimple numerical example illustrates the theory developed for the idealized case, when

the measurement collected at each epoch is a realization of a random variable whose dis­

tribution follows the maximum­entropy distribution on RP1, with mean equal to the true

subspace at time t and concentration parameter η = 3. Plotted in Figure 4.3 are the angles

(ranging from −π/2 to π/2) corresponding to elements of RP1. In each epoch, the angle of

the subspace is rotated by a fixed element of SO(2) and the estimation is performed by the

recursive estimation routine described here.

Figure 4.3: Results of an idealized estimation routine on RP1.

4.3 A Sensing Model

As demonstrated in the presentation, the development of the bayesian estimators of a

one­dimensional subspace evolving on real projective space, when themeasurementmodel

is idealized, is essentially identical to its complex generalization. The same is not true when

the measurements model the practical multistatic sensor system set up at the beginning of

this chapter. We focus our attention first on the real case.
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4.3.1 On Real Projective Space

The Prediction

We hold on to the initial assumptions made of the state and dynamics in the preceding sec­

tion: the posterior distribution of the state at time t−1 is assumed to follow themaximum­

entropy distribution (with respect to a fixed moment) with mean parameter ŝt−1 and con­

centration parameter κt−1; the dynamical model assumes the state at time t−1 changes via

an action of a deterministic and known special orthogonal matrix to yield the state at time

t. We begin with the prior probability density of the state at time t.

fst(st) = cn(κt−1) exp
{
κt−1

∣∣∣(Rtŝt−1)
⊤ st

∣∣∣} , (4.5 revisited)

and hence the mean and concentration parameters at time t are, respectively,

ŝt = Rŝt−1

κt = κt−1.

Measurements and the Bayesian Update

At each time epoch, we collect nowm samples in Rn+1 of a noisy signal whose subspace is

defined by the state st ∈ RPn. According to the measurement model set forth at the start of

this chapter, the measurements are modeled as the (n+ 1)­by­m data matrix

Xt = stat + νt,

where the elements of them­vector a are the amplitudes of the component of the signal in

themth measurement and ν is the additive noise matrix whose columns are realizations of

identically and independently distributed as gaussian random vectors with zero mean and

covariance matrix σ2In+1. In this development, we only ever treat σ2 as a known quantity

so that we have control over the signal­to­noise ratio in our numerical simulations.

As each column ofXt represents a measurement at time t, we can also write

xi
t = sta

i
t + νi

t , i = 1, . . . ,m
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to denote the ith measurement in Rn+1. As each xi
t lives in Rn+1, we define zi

t ∈ RPn to be

the radial projection of the xi
t with positive first component.[2] Figure 4.4 illustratesm = 5

measurements in R2 generated from a one­dimensional subspace, plotted as crosses (x),

radially projected onto RP1, plotted as dots (•).

Figure 4.4: Measurements in R2 generated from a point in RP1.

For each i = 1, . . . ,m the likelihood function of the ith measurement at time t, zi
t, is

fzit(z
i
t|st, ait,σ2) =

∫
⟨zi

t⟩

fxit(x
i
t|st, ait,σ2)dxi

t,

where the integral is the Lebesgue line integral over the span of zi
t. We temporarily suppress

subscripts and superscripts to simplify notation and curb confusion. As x is a realization of

gaussian random vector x with mean sa and covariance matrix σ2In+1 by assumption, the

density function corresponding to the distribution of x is

fx(x|a, s,σ2) = (2π)−
n+1
2 exp

{
− 1

2σ2
(x− sa)⊤(x− sa)

}
.

[2]Situations where such a projection does not exist are negligible.
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Consider the change of coordinates

x =



x1

x2

...

xn

xn+1


7→



r cos θ1

r sin θ1 cos θ2

...

r sin θ1 sin θ2 · · · sin θn−1 cos θn

r sin θ1 sin θ2 · · · sin θn


, (4.8)

where θ1 ∈
(
−π

2 ,
π
2

)
, θi ∈ (0,π), for i = 2, . . . ,n and r ∈ (−∞,∞). Figure 4.4 emphasizes

the need for the domain of r to include the entire real line when we restrict the domain of

θ1 to be
(
−π

2 ,
π
2

)
. Underpinning these coordinates are the hyperspherical coordinates on

RPn ⊂ Rn+1. Indeed, using these coordinates for x will yield the following for z, again,

equal to the radial projection of x with a positive first component:

z =



cos θ1

sin θ1 cos θ2

...

sin θ1 sin θ2 · · · sin θn−1 cos θn

sin θ1 sin θ2 · · · sin θn


∈ RPn.

The Jacobian accompanying the transformation in Equation 4.8 is

Jn = rn
n+1∏
j=2

sinn+1−j θj−1,

from which it follows the joint probability density of r, θ1, . . . , θn is given by

fr,θ1,...,θn

(
r, θ1, . . . , θn|a, s

)
= (2π)−

n+1
2 |rn| exp

{
−1

2
(xθ − as)

⊤
(xθ − as)

}

·

∣∣∣∣∣∣
n+1∏
j=2

sinn+1−j θj−1

∣∣∣∣∣∣ .
(4.9)

The likelihood function of zit, the i
th measurement at time t, is thus computed bymarginal­

izing out r in Equation 4.9. That is (after some simplification),

fzit

(
zi
t

∣∣ s, a,σ2
)
= (2π)−

n+1
2 exp

{
− 1

2σ2

(
‖a‖2 − 〈zi

t, sa〉2
)}

·
∫
R

|rn| exp
{
− 1

2σ2

(
r − 〈zi

t, sa〉
)2}

dr.
(4.10)
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For n even, say n = 2ℓ,

fzit

(
zi
t

∣∣ s, a,σ2
)
= 2ℓ+

1
2 e−

α2

2σ2 σ2ℓ+1Γ

(
ℓ+

1

2

)
1F1

(
ℓ+

1

2
;
1

2
;
α2

2σ2

)
, (4.10a)

and for n odd, say n = 2ℓ+ 1,

fzit

(
zi
t

∣∣ s, a,σ2
)
= 2ℓ+1σ2(ℓ+1)Γ(ℓ+ 1) 1F1

(
−ℓ− 1

2
;
1

2
;− α2

2σ2

)
, (4.10b)

whereΓ is theGamma function and 1F1 is the confluent hypergeometric function of the first

kind [1]. As these results comprise special functions, Table 4.1 gives a more favorable form

of the measurement likelihood function on RPn for select (small) n. In each expression,

α = αi
t = 〈zi

t, sa〉 and erf (·) is the standard error function.

n f
(
zi
t

∣∣ s, a,σ2
)

1 2σ2e−
α2

2σ2 +
√
2πσ2αerf

(
α√
2σ2

)
2

√
2πσ2

(
α2 + σ2

)
3

√
2πσ2

(
α2 + σ2

)
+
(
α2 + 3σ2

)√
2πσ2αerf

(
α√
2σ2

)
4

√
2πσ2

(
α4 + 6α2σ2 + 3σ2

)
Table 4.1: Measurement likelihood functions on RPn, for select n.

Since introducing a bayesian prior to marginalize out of the likelihood function the nui­

sance parameter ait presents a formidable calculation, we instead formulate its maximum­

likelihood estimate using the maximum­likelihood estimate of st, as given in Chapter 2. To

be clear, we replace ait in Equation 4.10 with âit, where

âit = ŝ⊤MLx
i
t.

Weultimately fuse together allmmeasurements to arrive at our likelihood function defined

on RPn:

fzt(zt|st) =
1

m

m∑
i=1

fzit(z
i
t|st,σ2). (4.11)
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Similar to the update step presented in Section 4.2.2, the posterior probability density at

time t is computed by an application of Bayes’ Rule:

fst(st|zt) =
fz(zt|st)fst(st)∫

RPn fzt(zt|st)fst(st)dst
. (4.12)

It’s important to note that this posterior density is certainly not in the class of maximum­

entropy distributions on RPn. We therefore approximate the distribution in Equation 4.12

by a maximum­entropy distribution on RPn with matching first moment. As with the

moment­matching procedure offered in the idealized scenario, this is computed numeri­

cally.

A Numerical Example

Anumerical example illustrates the theory developed for the tracker onRP4, when themea­

surements collected at each epoch are noisy samples of a signal whose subspace is defined

by the true state at time t. The parameters σ2 and at are adjusted to control the signal­to­

noise ratio (SNR) for each measurement.

Figure 4.5: Tracking on RP4 with measurements in R5 that are samples of a noisy signal
whose subspace is defined by an element of RP4.

The true, veiled subspace is rotated by a deterministic and known element of SO(5)

and the recursive estimation algorithm described here is performed. At each time epoch,

the maximum a posteriori point estimate ŝtMAP of the unknown subspace is computed from

its posterior distribution, as well as the maximum­likelihood point estimate ŝtML from the
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sensor measurements in R5. Both point estimates are compared to the true subspace at

time t. Plotted on a log scale in Figure 4.5 are the distances between the two point esti­

mates and the truth, defined by the projection 2­norm, i.e., by the sine of the principal angle

between the two subspaces.[3] The distance between the recursive maximum a posteriori

point estimate ŝtMAP and the truth decreases with each iteration of bayesian estimation al­

gorithm, while the distance between the maximum­likelihood point estimate ŝtML remains

effectively static and significantly inferior to the recursive maximum a posteriori point es­

timate. There arem = 10measurements observed at each time epoch, and the SNR on each

sensor is set to approximately 0 dB.

4.3.2 On Complex Projective Space

The Prediction

Recall the initial assumptions in recursively estimating the state st ∈ CPn of a dynamical

system at time t: the posterior distribution of the state has been computed using all of the

measurements collected at discrete times 1, 2, . . . , t− 1 and follows the maximum­entropy

distribution (with respect to a fixedmoment) with parameters ŝt−1 and κt−1; the dynamical

model is completely characterized by a deterministic and known special unitarymatrix; and

the prior distribution of the state at time t is described by the density

fst(st) = cn(κt−1) exp
{
κt−1

∣∣∣(Utŝt−1)
† st

∣∣∣} , (4.6 revisited)

Measurements and the Bayesian Update

At each time epoch, we collect nowm samples in Cn+1 of a noisy signal whose subspace is

defined by the state st ∈ CPn. Themeasurements are modeled as the (n+1)­by­m complex

data matrix

Xt = stat + νt,

[3]As previously mentioned, explicit distance functions on grassmannians will be discussed in detail in Chap­

ter 5.
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where the m­vector, a, are complex amplitudes of the component of the signal in the mth

measurement and ν is the additive noise matrix whose columns are realizations of identi­

cally and independently distributed as complex gaussian random vectors with zero mean

and covariance matrix σ2In+1. Just as in the real case, because each column of Xt repre­

sents a measurement at time t, we can also write

xi
t = sta

i
t + νi

t , i = 1, . . . ,m

to denote the ith measurement in Cn+1. As each xi
t lives in Cn+1, we define zi

t ∈ CPn to

be the radial projection of the xi
t whose first component is positive and real. Rather than

changing coordinates and computing a closed­form expression for the likelihood function

fzit(z
i
t|s, a,σ2) of the ith measurement at time t, as we did for the real case, we use the m

independent and identically distributed data points z1
t , z

2
t , . . . z

m
t to compute maximum­

likelihood estimates of parameters of an assumed maximum­entropy probability density

function, justified by the fact that application ofBayes’ Rule for computation of the posterior

distribution requires this approximation anyway. For completeness,

fzit(z
i
t|s, a,σ2) = cn(κ̂tML) exp

{
κ̂tML

∣∣∣µ̂t
†
MLz

i
t

∣∣∣} , (4.13)

where µ̂tML and κ̂tML denote the maximum­likelihood estimates of the mean value and con­

centration parameters of the maximum­entropy distribution on CPn, respectively. With a

density of this form, the bayesian update is computed exactly as in Section 4.2.

A Numerical Example

Anumerical example illustrates the theory developed for the tracker onCP2, when themea­

surements collected at each epoch are noisy samples of a signal whose subspace is defined

by the true state at time t. As in the real case, the parameters σ2 and at are adjusted to

control the signal­to­noise ratio (SNR) for each measurement.
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Figure 4.6: Tracking on CP2 with measurements in C3 that are samples of a noisy signal
whose subspace is defined by an element of CP2.

Analogous to the numerical example presented in Section 4.3.1, the true, veiled sub­

space is rotated by a deterministic and known element of SU(3) and the recursive estima­

tion algorithm described here is performed. At each time epoch, themaximum a posteriori

point estimate ŝtMAP of the unknown subspace is computed from its posterior distribution,

as well as the maximum­likelihood point estimate ŝtML from the sensor measurements in

C3. Both point estimates are compared to the true subspace at time t. Plotted on a log scale

in Figure 4.6 are the distances between the two point estimates and the truth, defined by

the projection 2­norm, i.e., by the sine of the principal angle between the two subspaces.

The distance between the recursive maximum a posteriori point estimate ŝtMAP and the

truth decreases with each iteration of bayesian estimation algorithm, while the distance

between the maximum­likelihood point estimate ŝtML remains effectively static and signif­

icantly inferior to the recursive maximum a posteriori point estimate. There are m = 10

measurements observed at each time epoch, and the SNR is set to approximately 0 dB on

each sensor.

We remark that while the recursive estimation algorithm set forth in this chapter allows

for direct implementation in principle, the numerical methods used to generate the results

in Figures 4.5 and 4.6 are evidently computationally feasible for only considerably mod­

est n. We address particular numerical limitations of our current methods specifically in

Chapter 6.
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Chapter 5

TOWARD GRASSMANNMANIFOLDS

The motivating multi­sensor remote sensing application underpinning this thesis and

fully characterized at the start of Chapter 4 requires the extension from the casewherein the

signal subspace is one­dimensional to the casewherein the signal subspace is k­dimensional

(k ≥ 1). The proper setting is thus the general, complex Grassmann manifold. This chap­

ter lays the groundwork for this ultimate extension, including a self­contained derivation

of the differential form for the invariant measure on GC(k,n). This is a result originally

obtained in [44], however. A complete extension to GC(k,n) is presently hamstrung by

the challenges that arise in deriving a maximum­entropy distribution to a priorimodel the

subspace, as we did for the cases RPn and CPn.

While the dynamical model underlying the recursive estimation algorithms posed on

RPn and CPn in the preceding chapter does not explicitly assume the subspace evolves

along a (piecewise) geodesic, this is a most natural generalization that holds significant

practical merit. In service of generalizing our dynamical model to be governed by geodesic

motions inGC(k,n), this chapter begins by providing a collection of self­contained deriva­

tions of closed­form analytic expressions for tangent vectors, metrics, and geodesics which

can be specialized to the case of complex projective space. Rigorous justification of these

sometimes classical results are not readily available in the literature.

In this chapter we focus on the complex Grassmann manifold; most results and formu­

lae carry throughmutatis mutandis for the real Grassmann manifold.

Definition 5.1. Let n, k be fixed integers, with n ≥ 0 and 0 ≤ k ≤ n. The Grassmann

manifold, also referred to as the grassmannian, is the set of all k­dimensional lin­

ear subspaces of Rn. We denote this space G(k,n). The set of all k­dimensional linear

subspaces of Cn is defined to be the complex Grassmann manifold, or the complex

76



grassmannian, and is denotedGC(k,n).

While this definition presents the real and complex Grassmann manifolds as sets, we’ll

soon see that, as very natural generalizations of projective spaces, they are smooth, compact

manifolds of real dimension k(n−k) and 2k(n−k), respectively. As the chapter progresses,

we will often omit the word “complex” from “complex Grassmann manifold” and “complex

grassmannian,” except when highlighting a particular distinction.

A point X on the Grassmann manifold GC(k,n) is a linear subspace, which may be

specified by an arbitrary basis of k linearly independent, complex n­vectors comprising an

n­by­k complex matrix:

X =



∣∣∣∣ ∣∣∣∣
x1 · · · xk∣∣∣∣ ∣∣∣∣

 .

Partitioning X into submatrices X1 and X2 of size k­by­k and (n − k)­by­k, respectively,

allows us to define the following form for an element of the grassmannian:[1]

X ′ =

 Ik

Z

 ,

where Z = X2X
−1
1 , which is then orthonormalized to give the following standard repre­

sentation of a element inGC(k,n).

XZ =

 Ik

Z

(Ik +Z†Z
)−1/2

. (5.1)

Equation 5.1 presents local coordinates on the grassmannian from an orthonormal basis

perspective. Wemay write

X = col(X) = col(XZ)

[1]We acknowledge that this standard form is viable only for subspaces for whichX1 is invertible! The set of

excluded subspaces has measure zero.

77



to emphasize that the point X on the grassmannian is the column space of X, which is of

course equivalent to the column space ofXZ . When Z = 0,X is the subspace spanned by

the first k standard basis vectors of Cn; that is,

X0 =

 Ik

0

 . (5.2)

The element X0 will play an important role in the presentation of the grassmannian as a

homogeneous manifold.

Associated uniquely to each k­dimensional subspace X of Cn is a rank­k, hermitian

projection operator PX in Cn×n, which for any basisX such that col(X) = X is given by

PX = X
(
X†X

)−1
X†.

This one­to­one correspondence gives rise to the following proposition.

Proposition 5.1. Let n, k be fixed integers, with n ≥ 0 and 0 ≤ k ≤ n. Let P(k,n) be the

set of all rank­k, hermitian projection operators on Cn. That is,

P(k,n) ∆
=

{
P ∈ Cn×n

∣∣∣∣P † = P 2 = P , rank(P ) = k

}
. (5.3)

There exists a bijection between the Grassmann manifoldGC(k,n) and P(k,n).

We turn an interested reader to [18] for the construction of a natural bijection between

GC(k,n) and P(k,n) and a proof that, with respect to a designated topology, it defines a

diffeomeorphism. Regarding the Grassmann manifold as the set of all rank­k, hermitian

projection operators has particular advantages: notably a characterization of an embed­

ded submanifold of the manifold consisting of all n­by­n hermitian matrices where the

differentiable and riemannian structures are inferred. Our geometric development of the

Grassmann manifold hinges instead on a particular Lie group action, inheriting much of

the differential and riemannian structure of the Lie group.
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The standard form for a basis of a k­dimensional subspace in Equation 5.1 has the fol­

lowing associated standard form for a rank­k, hermitian projection operator:

PXZ
= XZX

†
Z =

 (
Ik +Z†Z

)−1 (
Ik +Z†Z

)−1
Z†

Z
(
Ik +Z†Z

)−1
Z
(
Ik +Z†Z

)−1
Z†

 , (5.4)

which presents local coordinates on the grassmannian from a hermitian projector perspec­

tive. We introduce

P0 =

 Ik 0

0 0

 , (5.5)

which is the matrix representation of the canonical projection onto the subspace spanned

by X0 in Equation 5.2. The element P0 plays the role of X0 in the presentation of the

grassmannian as a homogeneous manifold.

Having chosen the standardized orthonormal basis comprising the columns of XZ for

the k­dimensional subspace X of Cn, there exists a corresponding standardized orthonor­

mal basis for the orthogonal complement X⊥ of X in Cn comprising the columns of the

n­by­(n− k)matrix we denoteX⊥
Z . In coordinates,

X⊥
Z =

 −Z†

In−k

(In−k +ZZ†
)−1/2

. (5.6)

Together,XZ andX⊥
Z define a set of n­by­n unitary matrices

UZ =

[
XZ X⊥

Z

]
=

 (
Ik +Z†Z

)−1/2 −Z† (In−k +ZZ†)−1/2

Z
(
Ik +Z†Z

)−1/2 (
In−k +ZZ†)−1/2

 , (5.7)

parameterized by the matrix Z. In terms of UZ ,

PXZ
= UZP0U

†
Z .

5.1 The Geometry of the Grassmann Manifold

While it is certainly possible to equip the set of k­dimensional subspaces of Cn (and the

set of rank­k, hermitian projection operators) with a differentiable structure (e.g., Plücker
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coordinates [38]), our goal is to instead present theGrassmannmanifold as a homogeneous

manifold, using the complementary coordinate representations introduced inEquations 5.1

and 5.6, and leverage the geometric theory developed in Chapter 2, which guarantees the

existence of a differentiable structure on GC(k,n). The presentation of the grassmannian

as a homogeneous manifold will help too in describing particular geometric objects, such

as tangent vectors, metrics, and geodesics, as we will see.

From the orthonormal basis perspective, letU(n) act on the grassmannian (defined as

a set of k­dimensional subspaces of Cn) via left multiplication; that is for a k­dimensional

subspaceX inCn, letx1, . . . ,xk be k linearly independent, orthonormal, complexn­vectors

spanningX . The group action is given by

U • span {x1, . . . ,xk} = span {Ux1, . . . ,Uxk} . (5.8)

Elementary linear algebra assures that any two orthonormal bases for Cn are related via a

unitarymatrix, fromwhich it follows that this action is evidently transitive. We refer to this

group action as the natural action ofU(n).

From the hermitian projector perspective, the natural action of U(n) on P(k,n) mani­

fests as conjugation; that is, for a rank­k, hermitian projection matrix P ,

U • P = UPU †. (5.9)

While perhaps not as straightforward, the natural action on P(k,n) is transitive. Indeed,

given two elements, P1 and P2, in P(k,n), they must decompose as

P1 = V1P0V
†
1 and P2 = V2P0V

†
2 ,

where V1 and V2 are unitary matrices, andP0 is as in Equation 5.5. For V = V2V
†
1 ∈ U(n),

V P1V
† = V2V

†
1 P1V1V

†
2 = V2V

†
1 V1P0V

†
1 V1V

†
2 = V2P0V

†
2 = P2,

ultimately verifying that this action is transitive. The natural actions of U(n) on GC(k,n)

and ofU(n) on P(k,n) give rise to the following familiar result.
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Theorem 5.1. The grassmannian manifold is diffeomorphic to the quotient manifold

U(n)/ (U(k)×U(n− k)) . (5.10)

It follows, in particular, that GC(k,n) (similarly, P(k,n)) is a compact and connected

smooth manifold of real dimension 2k(n− k).

Proof. This result follows precisely from the discussion presented in Section 2.1.2. The sta­

bilizer subgroup of the point defined byX0 (in Equation 5.2) by the natural action ofU(n)

on GC(k,n) is given by the group of unitary operators that leave the subspaces spanned

by the columns of [Ik 0]⊤ and [0k In−k]
⊤ invariant; this group is clearly isomorphic to

U(k) ×U(n − k). A special case of the Quotient Manifold Theorem (see [32]) guarantees

that the coset space U(n)/StabX0 is a topological manifold endowed with a unique differ­

entiable structure such that the quotient map is a smooth submersion. Because the natural

action is transitive, the one­to­one correspondence

β : U(n)/ (U(k)×U(n− k)) −→ GC(k,n), (5.11)

defined by

β ([X]) = X • X0

is a smooth diffeomorphism and the result follows. ■

In the proof of Theorem 5.1, the form of the stabilizer subgroup uses the orthonormal

basis representation of a particular element in the grassmannian. The same form can be ob­

tained using the rank­k, hermitian projector representation of a particular element, namely

P0 in Equation 5.5, but it is simply not as immediate.

It should be noted that there is yet another way of viewing the Grassmannmanifold as a

quotient. Instead of taking equivalence classes in the unitary group, one can take the quo­

tient of the non­compact Stiefelmanifold by the general linear group overC. The geometric

treatment under this approach can be found in Absil [2].
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For the remainder of the geometric development of the Grassmann manifold, we will

identifyU(n)/ (U(k)×U(n− k))withGC(k,n) so that any k­dimensional linear subspace

of Cn will take the form

[X] = X

 Uk 0

0 Un−k

 , (5.12)

where Uk is inU(k),Un−k is inU(n− k), andX is inU(n). It is often more convenient to

define the unitary matrixX by

X =

[
XZ X⊥

Z

]
,

as in Equation 5.7.

When the specification of a basis bears no importance, we will use X to denote an ele­

ment of G(k,n); when the specification is important, we will often identify X with either

the n­by­kmatrixXZ or the n­by­nmatrix [X]. Table 5.2 provides a quick reference to the

various representations of an elementX ∈ GC(k,n) we’ve so far discussed.

Coordinate Representations ofX ∈ GC(k,n)

X col(X) = X

XZ

[
Ik
Z

] (
Ik +Z†Z

)−1/2

[X]
[
XZ X⊥

Z

] [ Uk 0
0 Un−k

]

PX X(X†X)−1X†

PXZ XZX
†
Z

Table 5.2: Various coordinate representations ofX ∈ GC(k,n).
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5.1.1 The Tangent Space

In this section we will completely characterize the tangent space at a point to the Grass­

mann manifold vis­á­vis the tangent space at a point to the unitary group. As discussed

in Chapter 2, the tangent space at the identity element In in U(n) coincides with the Lie

algebra ofU(n), known to be the set of skew­hermitian matrices; that is,

TIU(n) = u(n)
∆
=
{
A ∈ gl(n,C) : A† = −A

}
.

Via left­translation, the tangent space toU(n) at the point U , for any U inU(n), is

TUU(n) = Uu(n) = {UA : A ∈ u(n)} .

Making use of Proposition 2.4 in Chapter 2, the Hilbert­Schmidt inner product defined on

the finite­dimensional vector space of all matrices of a fixed dimension by

〈U ,V 〉H.S.
∆
= tr

(
U †V

)
(5.13)

induces a unique bi­invariant riemannian metric onU(n)when restricted to skew­symme­

tric matrices.[2] It follows from (a special case of) the Quotient Manifold Theorem, the

standard quotient map

π : U(n) → U(n)/ (U(k)×U(n− k)) (5.14)

is a smooth, surjective submersion, whence, for anyU ∈ U(n), the tangent space toU(n) at

the pointU decomposes into an orthogonal (with respect to this riemannian metric) direct

sum of its vertical and horizontal components. That is,

Uu(n) = VU ⊕HU ,

where VU = ker dπU andHU = V⊥
U . Referring to Section 2.1.2,

dπU : TUU(n) −→ Tπ(U) (U(n)/ (U(k)×U(n− k)))

[2]With no such restriction, the Hilbert­Schmidt inner product induces a bi­invariant metric onGL(n).
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is a surjective linear map whose kernel is precisely the tangent space atU to the orbit ofU

under the action of U(k) × U(n − k) on U(n) defined by right translation. That is, when

U = I,

VI = ker dπI = TI ((U(n)×U(n− k)) ⋆ I)

= TI (U(n)×U(n− k))

= u(n)⊕ u(n− k).

It follows that the vertical component of the tangent space to U(n) at the point U , for any

U inU(n), is

VU = UVI =

U

 Vk 0

0 Vn−k


∣∣∣∣∣∣∣Vk ∈ u(k), Vn−k ∈ u(n− k)

 ,

and its orthogonal complement, with respect to the riemannian metric induced by the Hil­

bert­Schmidt inner product, is the horizontal component of the tangent space to U(n) at

the point U , given by

HU
∆
= UV⊥

I =

U

 0 −B†

B 0


∣∣∣∣∣∣∣B ∈ C(n−k)×k

 .

As discussed in Section 2.1.2, for a point [X] in GC(k,n), we identify each element in the

tangent space toGC(k,n) at the point [X] with an element of a horizontal space toU(n) at

a point in the fiber above [X]. We write

T[X]GC(k,n) = HX =

X

 0 −B†

B 0


∣∣∣∣∣∣∣B ∈ C(n−k)×k

 . (5.15)

5.1.2 Geodesics

In this section, we derive from the theoretical framework built in Chapter 2, specifi­

cally Section 2.1.2, explicit formulae for a geodesic curve on the Grassmann manifold. As

we’ve previously mentioned, the formulae derived here can be found in the literature. In
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fact, formulae for geodesics on the Grassmann manifold exist in a variety of forms [2, 8]

(and references cited therein), but the explicit development, exploitation, and application

of the theoretical framework supporting an approach to solving specific dynamical estima­

tion problems on Lie groups and homogeneous spaces is so fundamental to this thesis that

we include our own derivations.

As detailed in Section 2.1.2, the horizontal tangent space ofU(n) plays a critical role in

the characterization of metrics and geodesics in the quotient space

GC(k,n) ∼= U(n)/ (U(k)×U(n− k)) .

Because the unitary group is equipped with a bi­invariant riemannian metric (induced by

theHilbert­Schmidt inner product defined on u(n)), Proposition 2.3 and Theorem2.3 guar­

antee that geodesics γ in U(n), with γ(0) = I, are precisely the one­parameter subgroups

ofU(n), which are characterized exactly by the exponential map. Thus, for a fixed pointU

inU(n) and a tangent vectorX in u(n), the unique geodesic passing through U at t = 0 in

the direction ofX is written

γ(t) = U exp(tX). (5.16)

The formula describing these horizontal geodesics inU(n), together with Theorem 2.4 un­

derscore the derivation of one possible characterization of geodesics on the Grassmann

manifold in the following theorem.

Theorem 5.2. For [X] inGC(k,n), the unit speed geodesics inGC(k,n) passing through

the point [X] (at time t = 0) are of the form

γ : [a, b] → GC(k,n), γ(t) = X exp (tΩ)

 Ik

0

 , (5.17)

whereX =
[
XZ X⊥

Z

]
is defined in Equation 5.7 and

Ω =

 0 −B†

B 0

 , (5.18)

for someB ∈ C(n−k)×k.
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Proof. We will provide a sketch proof here as we have provided rigorous justification for

all technical intricacies throughout this thesis. Let γ(t) be a geodesic in GC(k,n) with

γ(0) = [X]. Geodesics in GC(k,n) are made explicit via the corresponding geodesics in

U(n), since GC(k,n) can be identified with the quotient space U(n)/ (U(k)×U(n− k)).

The geodesics in U(n), passing through a point X =
[
XZ X⊥

Z

]
∈ U(n), are the one­

parameter subgroups of the type α(t) = X exp(tΩ) for anyΩ in u(n). By Theorem 2.4, the

geodesic α inU(n) projects down to a geodesic γ inGC(k,n) if and only ifΩ belongs to the

orthogonal complement of the vertical space in u(n); that is, if and only ifΩ is of the form

Ω =

 0 −B†

B 0

 ,

for some B ∈ C(n−k)×k. Finally, the projection of α to GC(k,n) gives γ, using the diffeo­

morphism β in Equation 5.11,

γ(t) = β (α(t)) = X exp

t

 0 −B†

B 0


 •

 Ik

0


= span

X exp

t

 0 −B†

B 0



 Ik

0


 ,

as desired. ■

Wenote that γ(t) in Equation 5.17 is the span of an n­by­kmatrix whose columns define

a k­dimensional subspace in Cn. The formula for a geodesic that is a rank­k, hermitian

projection operator is given by the following (perhaps more common) formula:

γ(t) = exp (tΩ)PXZ
exp (−tΩ) , (5.19)

where PXZ
is given in Equation 5.4 andΩ is given in Equation 5.18.

Computing the Length of a Geodesic

Heretofore, Theorem 5.1 has allowed us to define geodesics on the Grassmann manifold as

images of horizontal geodesics in the unitary group. In this section, though, we will appeal
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to the stronger result offered by Theorem 5.1: that if γ̃(t) is a horizontal geodesic in U(n),

not only is its image under the quotient map a geodesic inGC(k,n), but its image under the

quotient map is a geodesic inGC(k,n) of the same length as γ̃.

Let X and Y be two points inGC(k,n) and let γ(t) be a geodesic connecting X and Y .

Using the result of Theorem 5.2, the geodesic connectingX andY inGC(k,n) has the form

γ(t) = X exp (tΩ)

 Ik

0

 ,

whereΩ is a skew­hermitian, block diagonal matrix of the form

Ω =

 0 −B†

B 0

 , B ∈ C(n−k)×k

and where X is a unitary matrix whose first k columns span the subspace defined by X .

The horizontal geodesic inU(n) whose image is γ(t) has the form[3]

γ̃(t) = X exp (tΩ)

and the length of γ can be computed by computing the length of γ̃ using the riemannian

metric onU(n) induced by theHilbert­Schmidt inner product restricted to the vector space

of skew­hermitian matrices. Observing first that

d

dt
γ̃(t) = XΩ exp (tΩ) = X exp (tΩ)Ω,

it follows that

L(γ) = L(γ̃) =

1∫
0

〈 d

dt
γ̃(t),

d

dt
γ̃(t)

〉 1
2
dt

=

1∫
0

tr
(
Ω† exp (−tΩ)U †

ZUZ exp (tΩ)Ω
) 1

2
dt

= tr
(
Ω†Ω

) 1
2
.

Exploiting the matrix structure ofΩ gives

L(γ) =
√
2 tr

(
B†B

) 1
2
=

√
2‖B‖H.S.. (5.20)

[3]The curve γ̃ is often termed the “horizontal lift” of γ.
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5.1.3 Distance Functions

In this section, we will present an overview of viable metrics that may be used to com­

pute the distance between two points on the Grassmann manifold. In particular, we will

formulate the riemannian distance metric as the metric induced by the two­norm of the

principal angles between subspaces. Throughout this discussion,X and Y will denote two

k­dimensional subspaces of Cn;X and Y will be n­by­k matrices whose columns form or­

thonormal bases for X and Y , respectively; and PX = XX† and PY = Y Y † will be the

rank­k, hermitian projection operators onto the subspacesX and Y , again, respectively.

On a riemannianmanifold, the riemannian distance between a pair of points is defined,

as in Chapter 2, to be the infimum of the lengths of all curve segments joining the pair.

Because a geodesic joining X and Y is only locally length minimizing, its length may not

realize the riemannian distance between its end points, e.g., the long great circle route be­

tween two non­antipodal points on S2 is a geodesic but is not the shortest geodesic between

the points on S2. In this thesis, we assume two pointsX andY are sufficiently close so that

the length of the geodesic joining X to Y does in fact realize the greatest lower bound of

the lengths of all possible geodesics connecting X and Y .

We let γ : [0, 1] → GC(k,n) denote the unit­speed geodesic inGC(k,n) emanating from

X and reaching Y in unit time. Using the result of Theorem 5.2,

Y = span

[ XZ X⊥
Z

]
exp (tΩ)

 Ik

0


 ,

whereΩ is a skew­hermitian, block diagonal matrix of the form

Ω =

 0 −B†

B 0

 , B ∈ C(n−k)×k.

The riemannian distance betweenX and Y is computed as

dgeo (X ,Y) = ‖Ω‖H.S. =
√
2 ‖B‖H.S. . (5.21)

88



Principal Angles Between Subspaces

Let X and Y be two points on the real Grassmann manifold, GC(k,n). When k = 1 and

X and Y are one­dimensional subspaces of Rn, there is a canonical notion of the distance

between X and Y defined by the (acute) angle between two n­dimensional vectors whose

spans defineX and Y , respectively. That is,

dang (X ,Y)
∆
= arccos

∣∣∣X†Y
∣∣∣ .

This notion of a distancemetric defined by the acute angle between two (unit) vectors span­

ning one­dimensional subspaces can be recursively extended to define the principal angles

between k­dimensional subspaces [15][4].

Definition 5.1. LetX and Y be k­dimensional subspaces of Cn. The principal angles

(sometimes called canonical angles) θi ∈
[
0, π2

]
, i = 1, . . . , k between X and Y are

defined recursively by

cos θi
∆
= max

x∈X
max
y∈Y

∣∣∣X†Y
∣∣∣ = ∣∣∣x†

iyi

∣∣∣ (5.22)

subject to ‖x‖ = ‖y‖ = 1, x†xj = 0 and y†yj = 0 for j = 1, . . . , i− 1.

Importantly, the angles defined by Equation 5.22 satisfy the ordering 0 ≤ θ1 ≤ · · · ≤

θk ≤ π
2 . The vector θ = [θ1 · · · θk] of principal angles between X and Y induce several

distance metrics on the Grassmann manifold, one of which is equivalent to the geodesic

distance expressed in Equation 5.21 as a result of the following proposition [15].

Proposition 5.1. Let X and Y be inGC(k,n) and letX and Y denote n­by−k matrices

whose columns form orthonormal bases forX and Y , respectively. Consider the singular

value decomposition ofX†Y , given as

X†Y = UCV †,

[4]This reference provides definitions, theorems, and proofs for the real case; the complex case considered

here follows from the real case in the obvious way.
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where U and V are in U(k) and C is a k­by­k diagonal matrix C = diag(c1, . . . ck) of

non­negative singular values. Ordering c1 ≥ c2 ≥ · · · ≥ ck, the principal angles θ1, . . . , θk

associated with the subspacesX and Y satisfy

cos θi = ci, i = 1, . . . , k.

Recognizing the Hilbert­Schmidt norm of a matrix in Equation 5.21 as the sum of the

squares of its singular values, and the singular values of the submatrix B of the direction

matrix Ω as the principal angles of the subspaces X and Y from Proposition 5.1, the rie­

mannian distance betweenX and Y inGC(k,n) is related to the following distance metric

induced by their principal angles.

dgeo (X ,Y) =
√
2 ‖θ‖2 , (5.23)

where θ is the k­vector of principal angles betweenX and Y .

Furthermore, the singular values of the difference PX − PY are precisely the sines of

the principal angles betweenX and Y , which leads us to another possible characterization

of the distance between X and Y:

dH.S. (X ,Y) = ‖PX − PY ‖H.S. = ‖sinθ‖2 . (5.24)

It is important to note that, since sin θ ≤ θ for all θ in
(
0, π2

)
, ‖sinθ‖2 ≤ ‖θ‖2, so that

this Hilbert­Schmidt distance function is monotonically related to the riemannian distance

function.

One final possible characterization of the distance between k­dimensional subspaceswe

include is the projection two­norm, which is defined to be the spectral norm of the differ­

ence between projection matrices PX and PY . The distance induce by this norm is called

the subspace distance in [15] and has been widely adapted in the engineering and image

processing literature. It is straightforward to see (a proof is detailed in [15]) that this pro­

jection two­norm is equal to the supremumnormof the sine of the principal angles between

X and Y . That is,

dP2 (X ,Y) = ‖PX − PY ‖2 = ‖sinθ‖∞ . (5.25)
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Table 5.3 provides a quick reference to the distance functions on the Grassmann manifold

discussed here, as functions of the principal angles between the two subspaces.

Metric Name Mathematical Expression

Geodesic dgeo (X ,Y) =
√
2 ‖θ‖2

Hilbert­Schmidt dH.S. (X ,Y) = ‖sinθ‖2

Projection 2­norm dP2 (X ,Y) = ‖sinθ‖∞

Table 5.3: Distance functions on the grassmannian, as functions of principal angles be­
tween subspaces.

5.2 The Differential Form for the Invariant Measure

For the remainder of this chapter, we return to the coordinate system defined by Equa­

tion 5.1. For eachX ∈ GC(k,n), letXZ be the n­by­k­dimensional matrix of the form

XZ =

 Ik

Z

(Ik +Z†Z
)−1/2

. (5.1 revisited)

whereZ ∈ C(n−k)×k. The corresponding orthonormal basis for the orthogonal complement

ofX in Cn comprises the columns of the following n­by­(n− k)matrix:

X⊥
Z =

 −Z†

In−k

(In−k +ZZ†
)−1/2

. (5.6 revisited)

Together,XZ andX⊥
Z define a set of n­by­n unitary matrices, indexed by Z:

UZ =

[
XZ X⊥

Z

]
=

 (
Ik +Z†Z

)−1/2 −Z† (In−k +ZZ†)−1/2

Z
(
Ik +Z†Z

)−1/2 (
In−k +ZZ†)−1/2

 . (5.7 revisited)

By analogy with James’ invariant measure for the real grassmannian, the differential

form for the invariant measure can be defined for pointsXZ in a neighborhood of a point

X ∈ GC(k,n):

ωk
n(XZ)

∆
=

(
i

2

)k(n−k)
 k∧

i=1

n−k∧
j=1

b†jdxzi ∧
k∧

i=1

n−k∧
j=1

dxz
†
ibj

 . (5.26)
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In this expression, the n­vectors xzi, for i = 1, . . . , k, comprise the columns in the matrix

XZ defining an orthonormal basis for the subspace X ; the n­vectors b1, . . . , bn−k are the

orthonormal n­vectors comprising the matrixX⊥
Z ; and the factor

(
i
2

)
accounts for the fact

that decomposing any form into its real and imaginary components, say x and y, respec­

tively, yields the following relation:

(x+ iy) ∧ (x− iy) = −2i(x ∧ y).

Observing that
∧k

i=1

∧n−k
j=1 b†jdxzi in Equation 5.26 can be interpreted as the exterior prod­

uct of the k(n − k) elements in the northeast k­by­(n − k) block of the matrix resulting

from the productU †
ZdUZ , we leverage elementary linear algebra in the computation of the

invariant volume form onGC(k,n) in contrast to the direct derivations for RPn and CPn.

We write UZ as the following product of matrices

UZ =

 Ik −Z†

Z In−k


 (Ik +Z†Z

)−1/2
0

0
(
In−k +ZZ†)−1/2


=

 Ik −Z†

Z In−k


 Q1(Z) 0

0 Q2(Z)


to facilitate the computation of dUZ :

dUZ =

 0 −dZ†

dZ 0


 Q1(Z) 0

0 Q2(Z)

+

 Ik −Z†

Z In−k


 dQ1(Z) 0

0 dQ2(Z)

 .

It follows that

U †
ZdUZ =

 Q1(Z) Q1(Z)Z†

−Q1(Z)Z Q2(Z)

 dQ1(Z) −dZ†Q2(Z)−Z†dQ2(Z)

dZQ1(Z) +ZdQ1(Z) dQ2(Z)


=

 Q1(Z)Z†dZQ1(Z) +Q−1
1 (Z)dQ1(Z) −

(
Q1(Z)dZ†Q2(Z)

)
Q2(Z)dZQ1(Z) Q2(Z)ZdZ†Q2(Z) +Q−1

2 (Z)dQ2(Z)

 .

Toward the computation of the invariant measure, we compute the exterior product of the

k(n− k) elements in the northeast block:

k∧
i=1

n−k∧
j=1

[
−Q1(Z)dZ†Q2(Z)

]
ij
= (−1)k(n−k)

k(n−k)∧
i=1

vec (Q2(Z)dZQ1(Z))i
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= (−1)k(n−k)

k(n−k)∧
i=1

Q1(Z)⊗Q2(Z)vec (dZ)i

= (−1)k(n−k) det (Q1(Z)⊗Q2(Z))

k(n−k)∧
i=1

vec (dZ)i

= (−1)k(n−k) det
((

Ik +Z†Z
)− 1

2 ⊗
(
In−k +ZZ†)− 1

2

) k∧
i=1

n−k∧
j=1

dzij

= (−1)k(n−k) det
(
Ik +Z†Z

)− k
2 det

(
In−k +ZZ†)− (n−k)

2

k∧
i=1

n−k∧
j=1

dzij .

Here, vec(A) denotes the vectorization of the matrix A, formed by stacking each column

of A into a single column vector, and the symbol ⊗ denotes the Kronecker product of two

matrices. Finally, applying (a generalization of) the Matrix Determinant Lemma yields

k∧
i=1

n−k∧
j=1

[
−Q1(Z)dZ†Q2(Z)

]
ij
= (−1)k(n−k) det

(
Ik +Z†Z

)−n
2

k∧
i=1

n−k∧
j=1

dzij ,

whence

ωk
n(XZ) = 2−k(n−k)ik

2(n−k)2 det
(
Ik +Z†Z

)−n
k∧

i=1

n−k∧
j=1

dzij ∧ dzij . (5.27)

As CPn isGC(1,n+ 1), this special case of Equation 5.27 becomes

ω1
n+1 (xz) =

(
i

2

)n (
1 + z†z

)−(n+1)
dz ∧ dz,

which matches exactly Equation 3.22, the differential form for the invariant measure on

CPn derived in Chapter 3.

We highlight too that the differential form for the invariant measure on the real Grass­

mann manifold is defined for pointsXZ in a neighborhood of a pointX ∈ G(k,n) by

ωk
n (XZ)

∆
=

k∧
i=1

n−k∧
j=1

b⊤j dxzi

= det
(
Ik +Z⊤Z

)−n
2

k∧
i=1

n−k∧
j=1

dzij .

(5.28)

Here, xzi are the k orthonormal n­vectors comprising the columns of the matrix

XZ =

 Ik

Z

(Ik +Z⊤Z
)−1/2

,
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withZ now inR(n−k)×k, and bj are the n−k orthonormal n­vectors comprising the columns

of the matrix

X⊥
Z =

 −Z⊤

In−k

(In−k +ZZ⊤
)−1/2

,

defining a basis for the orthogonal complement ofX in Rn. Equation 5.28 specializes to

ω1
n+1(xz) =

(
1 + z⊤z

)−n+1
2

dz1 ∧ · · · ∧ dzn,

whichmatches exactly Equation 3.8, the differential form for the invariantmeasure onRPn

derived in Chapter 3.

5.2.1 Integrating the Differential Form

As in Chapter 3, evaluation of the integral of the invariant measures over the entire

manifold yields the normalized invariant measure, that is, the uniform distribution on the

Grassmann manifold. In the case of the real Grassmann manifold, we have

Vol(G(k,n)) =

∫
G(k,n)

ωk
n(XZ)

=

∫
Rk(n−k)

det
(
Ik +Z⊤Z

)−n
2

k∏
i=1

n−k∏
j=1

dzij ,

(5.29)

and in the case of the complex Grassmann manifold we have

Vol(GC(k,n)) =

∫
GC(k,n)

ωk
n(XZ)

=

∫
Rk(n−k)

2−k(n−k)ik
2(n−k)2 det

(
Ik +Z†Z

)−n
k∏

i=1

n−k∏
j=1

dzij .

(5.30)

In the special casesG(1,n+1) andGC(1,n+1) addressed specifically in Chapter 3, wewere

able to directly compute these integrals via transformations to hyperspherical coordinatiza­

tions, which are presently unique to these cases. It should be noted that expressions for the

solutions to Equations 5.29 and 5.30 are known in the literature, but, as demonstrated even

by James, results are obtained not by the direct integration of forms but rather by invoking
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theorems about volumes of the product spaces and quotient spaces. For completeness,

Vol(G(k,n)) =

∏n
ℓ=n−k+1Aℓ∏k

ℓ=1Aℓ

,

and

Vol(GC(k,n)) =

∏n
ℓ=n−k+1A2ℓ−1∏k

ℓ=1A2ℓ−1

,

where Aℓ is the volume of the unit sphere in Rℓ:

Aℓ =
2πn/2

Γ
(
n
2

) .
While the integrals in Equations 5.29 and 5.30 are undeniably amenable to numerical in­

tegration techniques, for reasons discussed in more detail in the next chapter, this is not

fully satisfactory for application of our bayesian estimators.
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Chapter 6

CONCLUSIONS

Over the past three decades, linear subspace data models and corresponding linear

subspace­based methods of signal processing have become standard tools in statistical sig­

nal processing. With ongoing advances in technologies that enable multi­channel archi­

tectures in telecommunications and sensing, the importance of such models and methods

continues to grow. An appealing feature of the linear subspace perspective is that it often

admits geometric views of problems and algorithms that can provide valuable insight. The

literature is rich with with examples of enlightening geometric interpretations of results

that were initially obtained from purely statistical formulations and analysis, and there are

also many documented cases in which approaches have arisen from geometric reasoning

and later derived using more classical statistical techniques.

Interest in geometrical structures beyond linear manifolds has recently surged among

researchers in signal and information engineering [37]. Examples of topics that under­

pin recent research in signal analysis include: information geometry, initially popular­

ized by Amari and his collaborators [3], and nonlinear dimensionality reduction, which

incorporates the modeling assumption that data in a high­dimensional ambient space lie

on (or near) a manifold of much lower dimension [30]. Settings involving identification

and characterization of unknown subspaces in high­dimensional vector spaces using noisy

measurement data, as exemplified in this thesis, have been of considerable interest formul­

tistatic radar and multiple­input/multiple­output (MIMO) wireless communications over

the past decade. We have already noted that grassmannians are the natural setting for such

problems.

This thesis has taken a geometric­statistical perspective on a class of estimation prob­

lems posed on the Grassmann manifold. This led to the parallel development and imple­
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mentation of new mathematical theory and computational algorithms framed by bayesian

recursion on projective spaces and to formulations of such problems in the more general

grassmannian setting. Our specific contributions include: (1) derivation and statistical

analysis ofmaximum­entropy probability distributions on both real and complex projective

space; (2) design of two recursive bayesian estimation algorithms relying on noisymeasure­

ments on both real and complex projective space; (3) numerical implementations of these

algorithms, which empirically demonstrate that, under mild assumptions, both achieve

precise estimation. These contributions serve the goal of developing a geometric theory

of signal processing that is as broad in its scope and as precise in its methodologies as mul­

tivariate analysis and matrix algebra. This thesis shows promise that this goal can be fully

achieved, and the forthcoming discussions show robust opportunities for extensions and

generalizations.

6.1 Ongoing Work and New Directions

An earnest effort is made in this section to write for posterity, for the work presented

in this thesis and the ensuing discussions should serve to guide the next mathematician as

she launches her own research.

6.1.1 Ultimate Extensions to Grassmannians

The demonstrated success of the geometric­statistical approach to the recursive estima­

tion of one­dimensional subspaces of n­dimensional real and complex vector spaces holds

great promise for the extension to general k­dimensional subspaces of n­dimensional real

and complex vector spaces. As suggested by the motivating practical application under­

pinning much of this research, ultimate interest in this further application of our approach

to general real and complex grassmannians carries increasingly great practical importance.

But, ourwork toward the general grassmannian, as presented inChapter 5, is but a seedling.

The novelty of the bayesian framework set forth in Chapter 4 for recursive estimation

of RPn and CPn lies in the use of the derived maximum­entropy probability measures as
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models for prior probability distributions of an unknown one­dimensional subspace. The

derivation of the maximum­entropy probability measures hinges explicitly on particular

coordinatizations of RPn and CPn that grant the ability to explicitly integrate by classical

means. The generalization of these hyperspherical and complex hyperspherical coordina­

tizations to coordinatizations for general grassmannians remains ongoing.

6.1.2 Robust Numerical Integration Methods

While our framework for bayesian recursion indeed allows for direct implementation in

principle, current numerical methods are evidently only computationally feasible for con­

siderably modest n. Table 6.2 demonstrates the computational inefficiency and numerical

instability of the admittedly unsophisticated numerical techniques presently implemented.

Computational time drastically increases and integration accuracy decreases for numerical

integration performed with respect to a uniformly discretized domain. As each iteration re­

quires the numerical computation of two integrals, current methods impose heavy runtime

demands and offer unreliable results.

Gridpoints 103 104 105 106 107 108

RP1
Accuracy 10−7 10−11 10−12 10−14 10−15 10−16

Runtime (s) 0.00 0.00 0.01 0.05 1 9.35

RP2
Accuracy 10−3 10−5 10−6 10−7 10−8 10−9

Runtime (s) 0.00 0.00 0.01 0.08 1.01 10.38

RP3
Accuracy 0.01 10−3 10−4 10−4 10−5 10−6

Runtime (s) 0.00 0.00 0.01 0.11 1.63 16.15

RP4
Accuracy 0.05 0.01 0.00 10−3 10−4 10−5

Runtime (s) 0.00 0.00 0.02 0.19 2.62 27.06

RP5
Accuracy 0.38 0.04 0.01 10−3 10−3 10−4

Runtime (s) 0.00 0.00 0.03 0.23 3.65 34.78
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RP6
Accuracy 0.23 0.09 0.04 0.01 10−3 10−3

Runtime (s) 0.00 0.00 0.02 0.45 3.75 41.39

RP7
Accuracy 1.02 0.56 0.11 0.02 0.01 0.01

Runtime (s) 0.01 0.01 0.03 0.4 6.13 36.23

RP8
Accuracy 2.01 1.75 0.03 0.15 0.04 0.04

Runtime (s) 0.01 0.04 0.04 0.20 3.8 149.24

Table 6.2: Runtime (in seconds) and accuracy to compute one integral taken over a uni­
formly discretized domain whose number of total gridpoints increases from 103 (left) to 108

(right).

There are two computational bottlenecks in integrating the maximum­entropy proba­

bility density overRPn, which continue to manifest in all instances of implemented estima­

tion procedures. First, the normalizing constants of the densities are explicit functions of

modified Bessel and Struve functions, both of which are known to present computational

difficulties. Although both Iν(z) and Lν(z) have simple power series expansions that are

everywhere convergent, they exhibit approximately periodic behavior which makes the di­

rect use of these power series impractically slow and numerically unstable. Algorithms that

make use of their backward recurrence relations for numerical computation exist, but have

not been explored. Second, the numerical integration techniques presently implemented

use Newton–Cotes formulas (e.g., the trapezoidal rule and Simpson’s rule from elementary

calculus) that approximate the values of these multi­dimensional integrals with respect to

uniformly discretized domains. While we have considered it to be beyond the scope of this

research, there certainly exist a host of numerical integration techniques from the numer­

ical analysis literature that would all substantially improve our geometric­computational

methods. Implementation and analysis of these techniques should serve as the subject of

future research.
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6.1.3 Changes in Dynamical Assumptions

In both recursive estimation algorithms developed on real and complex projective space

in Chapter 4, we chose to model the system dynamics as rotations resulting from an action

of elements of the (special) orthogonal and unitary groups. There is incredible practical and

theoretical interest in the assumption that a k­dimensional subspace of an n­dimensional

vector space evolves onG(k,n) (or onGC(k,n)) along a (piecewise) geodesic. In fact, em­

bryonic efforts of thework presented in this dissertationmaintained this assumption. Moti­

vated in part by the work of Suvorova et al. [47], we devised a rudimentary but heuristically

justified recursive estimation algorithm fit for implementation on the orthogonal and uni­

tary groups, where the system dynamics were governed by geodesics in these spaces. Quick

success appeared to hold great promise in descending fromU(n) to the complex grassman­

nian, regarded of course as the quotient space U(n)/ (U(k)×U(n− k)). Indeed, many of

the differential geometric objects on the complex grassmannian (derivations of formulae

for tangent spaces, metrics, geodesics) as developed in Chapter 5 were the fruits of this ap­

proach. The inherit nature of the riemannian structure of the grassmannian presented as

a primary roadblock in our approach: even modest perturbations in the posterior state es­

timate at time t− 1may have unwieldy effects in the prior state estimate at time t. Indeed,

to arrive a prior state estimate at time t, propagation of the posterior state estimate at time

t− 1 along a known geodesic requires the general notion of parallel transport. Concretely,

given one (unit­speed) geodesic curve joining points P and Q and another joining P and

P̂ , parallel transporting the tangent vector of the curve joining P and P̂ from P to Q re­

sults in a tangent vector at Q which generates a (unit­speed) geodesic whose end point is

Q̂. Evidently, the length of this geodesic constructed to join Q to Q̂ is different than the

length of the geodesic joining P to P̂ . Though the difference can be measured by the Rie­

mann curvature tensor [5], the result remains unsatisfactory for application of recursive

estimation. While we understand its intricacies, the theoretically principled treatment of

the riemannian structure of the grassmannian in the context of recursive estimation is left
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as an open problem.

Returning to a dynamical model governed by a transitive group action, we largely fo­

cused on actions of the (special) orthogonal and unitary groups on real and complex pro­

jective space by deterministic elements when there is opportunity to introduce probabilistic

formulations. For example, one might assume the rotation matrix defining the dynamical

model itself is a random variable on O(n) (or U(n)) that is perhaps distributed accord­

ing to the von Mises­Fisher matrix distribution, which can be completely characterized by

known parameter values. The key stumbling block is that such a stochastic assumption

would complicate significantly the Chapman­Kolmogorov equation used to obtain a prior

probability density of the state at time t from its posterior density at time t − 1, possibly

presenting as an integral not amenable to direct computation by classical means. Should

the convolution of the maximum­entropy density on projective space with the von Mises­

Fisher matrix distribution on the orthogonal (or unitary) group be analytically feasible to

compute, it will almost certainly result in a prior distribution that would need to be approx­

imated by a maximum­entropy distribution on projective space in order to maintain the

recursive nature of estimation presented here. We leave the precise characterization and

implementation of a probabilistic formulation of the dynamical model as an open problem.

Even further extensions of this work bear their own intriguing research questions: how

robust is the bayesian framework for recursive estimation to deterministically incorrect

dynamical assumptions? Can our proposedmethod for recursive estimation in the abstract

spaces be amenable to problems formulated in a bayesian fashion with risk functions that

involve a decision at each epoch? How applicable is the geometric­statistical machinery

developed in this thesis to the topic of registration onmanifolds? We view this dissertation

as only the beginning. With clear opportunities to both expand the scope of the framework

and to apply it to a number of practical applications, there is no end of work in sight.
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APPENDIX A

SPECIAL FUNCTIONS AND INTEGRALS
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The primary objective of this appendix is to present a sampling of useful results regard­
ing special mathematical functions within the limits of what appears in the work presented
throughout this thesis. Almost every result presented hereto is lifted from the distinguished
Handbook of Mathematical Functions prepared by Abromowitz and Stegun [1]. Results
from any other source are cited appropriately.

A.1 The Gamma Function

The Gamma function, first introduced by Euler in the early 1700s, is a common exten­
sion of the factorial function to complex numbers. If the real part of a complex number z is
strictly positive, the Gamma function is defined by the following integral

Γ(z) =

∞∫
0

xz−1e−xdx, (A.1)

which converges absolutely.

Theorem 1.1. Γ(z + 1) = zΓ(z).

Proof. Integrating by parts Γ(z + 1) as defined in Equation A.1, will give

Γ(z + 1) =

∞∫
0

xze−xdx

= −xze−x

∣∣∣∣∞
0

+

∞∫
0

zxz−1e−xdx

= z

∞∫
0

xz−1e−xdx

= zΓ(z). ■

Given this recurrence relation, together with the value of

Γ(1) =

∞∫
0

e−xdx = 1,

it follows that for all positive integers n,

Γ(n) = 1 · 2 · 3 · · · (n− 1) = (n− 1)! (A.2)

An important special case that comes up quite often is the value of Γ
(
1
2

)
, which can be

computed directly from the definition:

Γ

(
1

2

)
=

∞∫
0

e−x

√
x
dx = 2

∞∫
0

e−u2
du =

√
π. (A.3)
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Alternatively, we maymake use of the following result for non­negative integer values of n:

Γ

(
1

2
+ n

)
=

(2n− 1)!!

2n
√
π, (A.4)

where n!! denotes the double factorial of n and, when n = 0, n!! = 1.[1] As Appendix A.1.1
will make use of this result and the double factorial function itself, let us record a few of its
important identities here.

• For an even non­negative integer n = 2k, with k ≥ 0,

n!! = 2kk!. (A.5a)

• For an odd positive integer n = 2k − 1, with k ≥ 1,

n!! =
(2k)!

2kk!
=

(2k − 1)!

2k−1(k − 1)!
. (A.5b)

A.1.1 The sinn(x)dx Integral

The normalizing constants of themaximum­entropy distributions presented in this the­
sis notably rely on the value of the integral of the function sinn(x)dx. While the result can
be found in several different sources, this section presents its own derivation.

Theorem 1.2. For n ≥ 0,
π∫

0

sinn θdθ =

√
πΓ
(
n+1
2

)
Γ
(
n+2
2

) .

Proof. Via integration by parts, we have

In =

π∫
0

sinn θdθ

= − sinn−1 θ cos θ

∣∣∣∣π
0

+ (n− 1)

π∫
0

sinn−2 θ cos2 θdθ

= (n− 1)

π∫
0

sinn−2 θdθ − (n− 1)

π∫
0

sinn θdθ.

From which it follows nIn = (n− 1)In−2, for all integers n ≥ 2 whence we have two sets of
formulae for In, depending on whether n is odd or even:

I2k =
2k − 1

2k
· k − 3

2k − 2
· · · 1

2
I0 =

(2k − 1)!!

(2k)!!
I0

I2k+1 =
2k

2k + 1
· 2k − 2

2k − 1
· · · 2

3
I1 =

(2k)!!

(2k + 1)!!
I1

(A.6)

[1]The double factorial should never be confused with the factorial function iterated twice!
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Equations A.5a and A.4, together with the values of I0 = π and I1 = 2, give us

I2k =

√
πΓ
(
k + 1

2

)
Γ (k + 1)

,

and

I2k+1 =

√
πΓ (k + 1)

Γ
(
1
2 + k + 1

) ,
from which it follows, regardless of the parity of n,

In =

√
πΓ
(
n+1
2

)
Γ
(
n+2
2

) , (A.7)

as desired. ■

A.2 The Modified Bessel Function of the First Kind

The standard definition for the modified Bessel function of the first kind and of order ν
is

Iν(κ) =

∞∑
r=0

1

r!Γ (r + ν + 1)

(κ
2

)2r+ν
. (A.8)

Its integral representation is usually given by

Iν(κ) =
1

2π

2π∫
0

cos(νθ)eκ cos θdθ, (A.9)

which is equivalent to [48]

Iν(κ) =
2−νκν

Γ (ν + 1/2) Γ (1/2)

π∫
0

eκ cos θ sin2ν θdθ. (A.10)

Substituting t = cos θ in Equation A.10 yields the following integral representation, which
is suitable for numerical integration procedures when ν > −1

2 :

Iν(κ) =
2−(ν−1)κν

Γ (ν + 1/2) Γ (1/2)

1∫
0

cosh(κt)(1− t2)ν−1/2dt. (A.11)

It is immediate from the series representation in Equation A.8, and the standard for­
mulas Γ

(
3
2

)
=

√
π
2 and zΓ(z) = Γ(z + 1) that, as κ → 0,

Iν(κ) ∼
κν

2νΓ (ν + 1)
, (A.12)

for ν > −1. Similarly, as κ → ∞,

Iν(κ) ∼
eκ√
2πκ

(
1− 4ν2 − 1

8κ
+

(
4ν2 − 1

) (
4ν2 − 9

)
128κ2

)
, (A.13)
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for ν ∈ R. The modified Bessel function Iν(κ) satisfies the following relations, where I ′ν is
the derivative of I ′ν(κ), with respect to κ:

I ′ν = Iν−1 −
ν

κ
Iν , (A.14a)

I ′ν = Iν+1 +
ν

κ
Iν , and (A.14b)

2I ′ν = Iν−1 + Iν+1. (A.14c)

A.3 Struve Functions

Related to the modified Bessel function of the first kind is the modified Struve function
defined by

Lν(κ) =

∞∑
r=0

1

Γ
(
r + 3

2

)
Γ
(
r + ν + 3

2

) (κ
2

)2r+ν+1
. (A.15)

Analogous to the integral representation for the modified Bessel function of the first
kind in Equation A.11 there exists the following integral representation for the modified
Struve function, which is suitable for numerical integration procedures when ν > −1

2 :

Lν(κ) =
2−(ν−1)κν

Γ (ν + 1/2) Γ (1/2)

1∫
0

sinh(κt)(1− t2)ν−1/2dt. (A.16)

The limiting behavior of themodified Struve function is incredibly similar to the limiting
behavior of the modified Bessel function of the first kind. As κ → 0,

Lν(κ) ∼
κν+1

√
π2νΓ

(
ν + 3

2

) (1 + κ2

3(2ν + 3)

)
, (A.17)

for ν > −3
2 . And, as κ → ∞,

Lν(κ) ∼
eκ√
2πκ

(
1− 4ν2 − 1

8κ
+

(
4ν2 − 1

) (
4ν2 − 9

)
128κ2

)
, (A.18)

for ν ∈ R. The modified Struve function Lν(κ) satisfies the following relations, where L′
ν is

the derivative of Lν(κ), with respect to κ:

Lν−1 − Lν+1 =
2ν

κ
Lν +

(κ/2)ν

Γ
(
1
2

)
Γ
(
ν + 3

2

) , and (A.19a)

Lν−1 + Lν+1 = 2L′
ν +

(κ/2)ν

Γ
(
1
2

)
Γ
(
ν + 3

2

) (A.19b)

Rearranging terms in Equation A.19b and applying Equation A.19a yields a simplified ex­
pression for the derivative of Lν(κ):

L′
ν = Lν−1 −

ν

κ
Lν . (A.20)

109



Of principal importance to the derivation of normalizing constants for probability den­
sities defined on real and complex projective space is the sum of a modified Bessel function
(of the first kind) and a modified Struve function:

Iν(κ) + Lν(κ) =
2−(ν−1)κν

Γ (ν + 1/2) Γ (1/2)

1∫
0

eκt(1− t2)ν−1/2dt. (A.21)

With the substitution t = cos θ, Equation A.21 has an equivalent form given by

Iν(κ) + Lν(κ) =
2−(ν−1)κν

Γ (ν + 1/2) Γ (1/2)

±π
2∫

0

eκ cos θ sin2ν θdθ. (A.22)

110



APPENDIX B

COORDINATE TRANSFORMATIONS ON PROJECTIVE SPACES
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The notion of coordinates plays an important role in manifold theory. Throughout the
document, we presented and worked with two useful coordinate systems for both real and
complex projective spaces: standard coordinates from theperspective of orthonormal bases
andwhatwe termed hyperspherical coordinates. This appendix computes the determinant
of the Jacobianmatrices corresponding to the transformations between the two coordinate
systems on RPn and on CPn.

B.1 Hyperspherical Coordinates on Real Projective Space

As in much of the document, let xz be the (n+ 1)­dimensional unit vector of the form

xz =

[
1
z

](
1 + z⊤z

)−1/2
, (B.1)

with z =
[
z1 z2 · · · zn

]⊤ ∈ Rn. In these coordinates, the differential form for the invari­
ant measure on RPn is given by

ωn(xz) =
(
1 + z⊤z

)−(n+1)/2
dz1 ∧ dz2 ∧ · · · ∧ dzn. (B.2)

Consider the transformation

zk = tan θ1

k∏
i=1

sin θi cos θk+1 k < n

zn = tan θ1

n∏
i=1

sin θi

(B.3)

with θ1 ∈ (−π/2,π/2) and θi ∈ (0,π) for i > 1. The transformation law for a differential
n­form [32] involves the absolute value of the determinant of the n × n Jacobian matrix,
whose element in the ith row and jth column is

J ij
n =

∂zi
∂θj

.

Because only zn−1 and zn in Equation B.3 are functions of θn, calculating the determi­
nant of the Jacobian ismost easily done via cofactor expansion along thenth row. Exploiting
the matrix structure of the Jacobian in this cofactor expansion yields the following recur­
rence relation for the equation of the determinant:

detJn = (−1)n
(
∂zn−1

∂θn
sin θn detJn−1 −

∂zn
∂θn

cos θn detJn−1

)
. (B.4)

Using this recurrence in a simple proof by mathematical induction will confirm that

detJn =
1

cosn+1 (θ1)

n∏
j=1

sinn−j(θj). (B.5)

Observing that, with respect to this coordinate transformation,(
1 + z⊤z

)(n+1)/2
= cosn+1

(
arctan

(√
z⊤z

))
= cosn+1 (θ1) ,
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the differential forms for the invariant measure in the two coordinate systems are related
via

(
1 + z⊤z

)−(n+1)/2
dz1 ∧ dz2 ∧ · · · ∧ dzn =

∣∣∣∣∣∣
n∏

j=1

sinn−j(θj)

∣∣∣∣∣∣ dθ1 ∧ dθ2 ∧ · · · ∧ dθn. (B.6)

With this coordinate transformation, we can explicitly calculate

Vol(RPn) =

∫
RPn

ωn(xz)

=

∫
Rn

(
1 + z⊤z

)−(n+1)/2
dz1dz2 · · · dzn

=

π∫
0

· · ·
π∫

0

π/2∫
−π/2

∣∣∣∣∣∣
n∏

j=1

sinn−j(θj)

∣∣∣∣∣∣ dθ1dθ2 · · · dθn
=

π
2∫

−π
2

∣∣sinn−1 (θ1)
∣∣ dθ1 n∏

j=2

π∫
0

sinn−j (θj) dθj

=

√
πΓ
(
n
2

)
Γ
(
n+1
2

) n∏
j=2

√
πΓ
(
1+n−j

2

)
Γ
(
2+n−j

2

)
=

πn/2Γ
(
n
2

)
Γ
(
1
2

)
Γ
(
n+1
2

)
Γ
(
n
2

)
=

π
n+1
2

Γ
(
n+1
2

) ,
which is exactly half the volume of the n­sphere, as expected.

B.2 Complex Hyperspherical Coordinates on Complex Projective Space

Analogously, we begin with the (n+ 1)­dimensional complex unit vector of the form

xz =

[
1
z

](
1 + z†z

)−1/2
, (B.7)

with z =
[
z1 z1 · · · zn

]⊤ in Cn. In these coordinates, the differential form for the invari­
ant measure on CPn is given by

ωn(xz) =

(
i

2

)n (
1 + z†z

)−(n+1)
n∧

i=1

dzi

n∧
i=1

dz̄i

=
(
1 + u⊤u+ v⊤v

)−(n+1)
n∧

i=1

dui ∧ dvi,
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where we have introduced z = u+ iv for u and v in Rn. We consider the transformation

zk = eiφk tan θ1

k∏
i=2

sin θi cos θk+1, k < n

zn = eiφn tan θ1

n∏
i=2

sin θi.

In terms of the real and imaginary parts of each zk, the transformation is

uk = cosφk tan θ1

k∏
i=2

sin θi cos θk+1, k < n

un = cosφn tan θ1

n∏
i=2

sin θi

vk = sinφk tan θ1

k∏
i=2

sin θi cos θk+1, k < n

vn = sinφn tan θ1

n∏
i=2

sin θi

As in the case of the hyperspherical coordinate transformation above, the transformation
law for a differential n­form involves the absolute value of the determinant of the Jacobian
matrix, which for the case of this transformation to complex hyperspherical coordinates is
a 2n­by­2nmatrix whose structure is given by

Jn =



∂u1
∂θ1

· · · ∂un
∂θ1

∂v1
∂θ1

· · · ∂vn
∂θ1

...
...

...
...

∂u1
∂θn

· · · ∂un
∂θn

∂v1
∂θn

· · · ∂vn
∂θn

∂u1
∂φ1

· · · ∂un
∂φ1

∂v1
∂φ1

· · · ∂vn
∂φ1

...
...

...
...

∂u1
∂φn

· · · ∂un
∂φn

∂v1
∂φn

· · · ∂vn
∂φn


.

Exploiting this matrix structure will confirm that

detJn =
sin2n−1 θ1
cos2n+1 θ1

n∏
i=2

sin2(n−i)+1 θi cos θi.

Observing that, with respect to this coordinate transformation,(
1 + u⊤u+ v⊤v

)−(n+1)
= cos2(n+1)

(
arctan

(√
u⊤u+ v⊤v

))
= cos2(n+1) (θ1) ,
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the differential forms for the invariant measure in the two coordinate systems are related
via (

1 + u⊤u+ v⊤v
)−(n+1)

du1 ∧ dv1 ∧ · · · ∧ dun ∧ dvn

=

∣∣∣∣∣∣
n∏

j=1

sin2(n−j)+1 θj cos θj

∣∣∣∣∣∣ dθ1 ∧ · · · ∧ dθn ∧ dφ1 ∧ · · · ∧ dφn.
(B.8)

Using this transformation, we can explicitly calculate

Vol(CPn) =

∫
CPn

ω(x) =

∫
R2n

(
1 + u⊤u+ v⊤v

)−(n+1)
du1dv1 · · · dundvn

=

2π∫
0

· · ·
2π∫
0

n∏
i=1

dφi

·
π/2∫
0

· · ·
π/2∫
0

sin2n−1 θ1 cos θ1dθ1

n∏
i=2

sin2(n−i)+1 θi cos θidθi

= (2π)n ·
π/2∫
0

sin2n−1 θ1 cos θ1dθ1

n∏
i=2

π/2∫
0

sin2(n−i)+1 θi cos θidθi

= (2π)n · 1

2n
· 1

2n−1(n− 1)!

=
πn

n!
,

as expected.
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