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ABSTRACT

The present outlook in power systems is rapidly changing due to the introduction

of (1) new active devices into the grid, such as photovoltaic (PV) panels, wind gen-

erators, and energy storage devices, and (2) new data from sensing and control de-

vices. While this abundant data improves situational awareness and enhances control

schemes, it can make the power grid more vulnerable than ever to cyber-attacks with

dire consequences. Cyberattack withdraws much attention due to its potential im-

pact, its financial losses, and its implications for national security. To understand

the risks, this work looks into the operation of the electric grids, e.g., how to solve

power flow equations. Specifically, this work investigates the good and the bad parts

of existing methods and proposes to have a stochastic solution for power flow analysis

for robustness. The finding is that no matter how the solution method is improved,

system information is crucial to securely analyzing the grid. This gives utilities a false

sense of security by hiding such information. For example, in a false data injection

attack (FDIA), an attacker must know system information and measurements. If

system information is hidden, the grid seems impossible to attack successfully, e.g.,

passing the Chi-square test based on system information. This dissertation shows

that a carefully designed system can not only attack successfully but also with a

strong performance guarantee.
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Chapter 1

INTRODUCTION

The rapid integration of variable energy sources (VRES) into power grids increases the

variability and uncertainty of the net demand, challenging the power system planning,

control, and operation. To solve many of the operation and planning problems in the

electric grid, the power flow (PF) problem is an indispensable tool that has been

studied for the last half-century. Currently, popular algorithms require second-order

methods, which may lead to poor performance when the initialization points are poor

or when the system is stressed. Chapter 2 presents a hybrid first-order and second-

order method that improves the convergence of the PF problem when the initialization

points are poor or when the system is stressed.

To provide a robust grid with new but diversified components (e.g., VRES), mod-

ern power grids are on the road to integrate unprecedented real-time and offline data

for monitoring, control, and protection. However, this new data-driven outlook makes

the power grid more vulnerable than ever to cyber-attacks with dire consequences.

False data injection attacks (FDIAs) are a real and latent threat in modern power

systems networks due to this unprecedented integration of data acquisition systems.

It is of utmost importance to understand attacking mechanisms to design counter-

measures. Chapter 3 studies such power grid vulnerability against a FDIAs under

the current data-driven outlook. Specifically, this Chapter shows that it is possible

to deploy an attack without confidential information (e.g., power system parameters

or topology) by constructing an implicit model with only intercepted sensor mea-

surements. Chapters 4 and 5 analyze the theoretical guarantees of the model-free

FDIA. Altogether, this work focuses on improving modern power systems’ planning,

1



operation, and security. Finally, Chapter 6 presents the conclusions of this work.
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Chapter 2

COMBINING NEWTON-RAPHSON AND STOCHASTIC GRADIENT

DESCENT FOR POWER FLOW ANALYSIS

The power flow problem is an indispensable tool to solve many of the operation and

planning problems in the electric grid and has been studied for the last half-century.

Currently, popular algorithms require second-order methods, which may lead to poor

performance when the initialization points are poor or when the system is stressed.

These conditions are becoming more common as both the generation and load profiles

changes in the grid. In this Chapter, we present a hybrid first-order and second-order

method that effectively escapes local minima that may trap existing algorithms. We

demonstrate the performance of our algorithm on standard IEEE benchmarks.

2.1 Introduction

Power flow (PF) analysis is one of the most important and well-studied problems

in the power system community. It is commonly formulated as finding the solution

to a system of nonlinear algebraic equations, and a host of algorithms have been

proposed to solve this system of equations. Therefore, in order to obtain a solution,

it is necessary to use iterative procedures such as the Gauss-Seidel or Newton-Rapshon

(NR) methods Stott (1974), Tinney and Hart (1967). The most common among these

is the Newton-Raphson (NR) method, where the inverse of the Jacobian is used to

update the solutions iteratively Stott (1974); Tinney and Hart (1967). The popularity

of the NR method (and its variants) is partially because it has a fast convergence

speed. However, convergence is not guaranteed, especially if the initial guess is not

close enough to the final solution or the Jacobian matrix becomes ill-conditioned in

3



the iteration process Milano (2009).

It is well known that the NR method (1) may not converge if the initial guess

is not close enough to the final solution, (2) has a high computational cost of the

computation and inversion of the Jacobian matrix, and (3) may diverge if the Jacobian

matrix is singular or close to singular.

Several studies have been done in the literature to address the above issues. Specif-

ically, we can classify these studies for improving the NR method in two ways: ro-

bustness and computational efficiency. To overcome the above-mentioned issues, the

authors in Bacher and Tinney (1989); Semlyen (1996); Luo and Semlyen (1990);

da Costa et al. (1999) proposed different formulations and variants of the NR to solve

the PF problem. The authors in Expósito and Ramos (2002) presented a power flow

solution using an augmented system with rectangular coordinates. The bus current

injections are introduced as additional variables in this augmented system. Similarly,

the authors in Da Costa and Rosa (2008) compared the convergence of polar, rect-

angular, and current injection Newton-Raphson formulations on well-behaved and

ill-conditioned systems. Another way to improve the convergence of the NR method

is to have good starting points. In this regard, Stott (1971) analyzes selecting ef-

fective starting points. The authors in Sasson et al. (1971); Braz et al. (2000) also

analyze the convergence, considering different factors, e.g., step size at each iteration.

Similarly, in Milano (2009), a power flow formulation to address ill-conditioned power

flow cases is presented; this formulation is based on the vector continuous Newton’s

method. Other works have proposed formulations and methods to improve compu-

tational efficiency Stott and Alsac (1974); Chen and Shen (2006); Abhyankar et al.

(2014). Finally, the authors from Pirnia et al. (2013) take a different approach. They

reformulate the PF problem as an optimization one. That work uses complemen-

tary conditions to solve the switching bus type problem and solves the optimization

4



problem using the generalized reduced gradient method (GRG).

This Chapter presents an algorithm that combines gradient descent (GD) methods

and the NR methods to overcome some of the standard computational challenges

in PF problems. By formulating the PF problem as an optimization one, gradient

descent steps can be taken without inverting the Jacobian matrix. In addition, we use

stochastic gradient descent (SGD) to escape from local optima and saddle-points that

would have trapped deterministic algorithms. Once the iterations are close enough

to the global optimal solution, we can then utilize NR-type methods to accelerate the

convergence.

The rest of the Chapter is organized as follows: Section 2.2 provides the problem

formulation, Section 2.3 presents the algorithm, Section 2.4 shows numerical simula-

tions to validate our theory and makes a comparison between existing methods and

our proposed algorithm. Section 2.5 concludes the Chapter.

2.2 Problem Formulation

2.2.1 Conventional Power Flow Formulation

In order to make the derivation of our formulation, we have to revisit the conven-

tional PF formulation. The power flow problem solution is a steady-state operating

point given a set of bus loads and specified voltage magnitudes. The conventional

power flow equations in polar coordinates for the active and reactive power flow

through lines are given by Wood and Wollenberg (2012)

Pkm =gkm |vk|2

− |vk||vm| [gkm cos (θkm) + bkm sin (θkm)] ,

(2.1a)
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Qkm =− bkm |vk|2

− |vk||vm| [gkm sin (θkm)− bkm cos (θkm)] ,

(2.1b)

where θkm
∆
= θk−θm, vk and vm are the complex phasors at buses k and m, θk and θm

are the bus voltage angles at buses k and m, |vk| and |vm| are the voltage magnitudes

at buses k and m, gkm, and bkm are the conductance and susceptace of line from node

k to node m, respectively. With Eq. (2.1) we can write the nodal equations of the

active and reactive power injection at each bus Lourenco et al. (2010); Arrillaga and

Harker (1983)

pk =
∑
m∈Ωk

Pkm = Re (vkI
∗
k) = Re

(
vk
∑n

j=1
(ykjvj)

∗
)
,

= |vk|
N∑

m=1

|vm| (Gkm cos θkm +Bkm sin θkm),

(2.2a)

qk = −bshk |vk|2 +
∑
m∈Ωk

Qkm = Im (vkI
∗
k) = Im

(
vk
∑n

j=1
(ykjvj)

∗
)
,

= |vk|
N∑

m=1

|vm| (Gkm sin θkm −Bkm cos θkm),

(2.2b)

where Ωk is the set of adjacent buses to bus k, Ik is the injected current at bus k, bshk

is the shunt susceptance of bus k, Gkm and Bkm are the real and imaginary part of

the (k,m) element in the bus admittance matrix, respectively, and N in the number

of buses in the system.

We can write in compact form the set of non-linear algebraic equations, which

represent the PF problem as follows

f (v) =

 ∆p

∆q

 =

 pspec − p

qspec − q

 =

 0

0

 , (2.3)

where ∆p and ∆q are the active and reactive vector of power mismatches, respec-

tively, pspec and qspec are the vectors of specified values of active and reactive power
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injection, respectively, and p and q are the vectors of non-linear algebraic equations

of active and reactive power injections, whose entries are given by Eq. (2.2).

The standard procedure is to apply the Newton-Rapshon method to Eq. (2.3)

Stott (1974); Tinney and Hart (1967); Bacher and Tinney (1989); Semlyen (1996);

Luo and Semlyen (1990); da Costa et al. (1999), which generates the following linear

system

 ∆p

∆q


(t)

= −J
(
v(t)

) ∆θ

∆|v|


(t)

, (2.4)

where θ is the vector of voltage angles, |v| is the vector of voltage magnitudes, J is

the Jacobian matrix, and t represents the iteration number.

The power flow solution can be iteratively obtained by solving the linear system

of equations in Eq. (2.4). The variables are updated as θ(t+1) = θ(t) + ∆θ(t) and

|v|(t+1) = |v|(t) + ∆|v|(t). This process can run into some issues, for instance, if the

Jacobian matrix (J) is singular (or close to singular) the NR will diverge.

2.2.2 Power Flow Reformulation

Consider a power system with n buses. For bus k, we denote its complex voltage,

active power and reactive power as vk, pk and pk, respectively. We use bold fonts

v = (v1, . . . , vn) ∈ Cn, p = (p1, . . . , pn) ∈ Rn and q = (q1, . . . , qn) ∈ Rn to denote the

vector version of the quantities. Let Y ∈ Cn×n denote the admittance bus matrix.

Then the power flow equation can be written in a compact form as

f(v) = p+ jq = diag(vvHYH), (2.5)

where (·)H denotes the Hermitian transpose Zhang and Tse (2013).

Proof. Let’s expand vvHYH
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(
vvH

)
YH =
v1v

∗
1 · · · v1v

∗
n

...
. . .

...

vnv
∗
1 · · · vnv

∗
n




y∗1,1 · · · y∗n,1
...

. . .
...

y∗1,n · · · y∗n,n

 .
(2.6)

If we compute the k-th diagonal element in Eq. (2.6), we get vk
∑n

j=1 (ykjvj)
∗,

which is the expression in Eq. (2.2). ■

Given a complex load vector s, PF solves for the complex voltage vector v such

that f(v) = s. Instead of directly solving this nonlinear equation, we consider the

following optimization problem:

min
v

1

2
||f(v)− s||22 = min

v

1

2

n∑
i=1

(fi (v)− si)
2, (2.7)

where if the PF problem is feasible, then the optimal value of the objective is 0,

and there is a v∗ such that f(v∗) = s. Given that the optimization problem is

unconstrained with a smooth objective function, it is natural to use gradient descent

to solve it.

2.3 Combining Newton-Raphson and SGD for Power Flow Analysis

For notational simplicity, let L denote the objective function in Eq. (2.7). Its

gradient with respect to v is given by the chain rule:

∇vL = JT (f(v)− s), (2.8)

where J is the power flow Jacobian. The standard GD algorithm is given by

vt+1 = vt − η∇vL(vt), (2.9)

where t denotes the iteration number, and η is the step size or learning rate, which

may be constant or adaptive. Let Iref , IPV , and IPQ denote the sets of bus indices
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of the reference bus, PV buses, and PQ buses, respectively. Then, in Eq. (2.9), only

the voltage angles δ{i} for i /∈ Iref and the voltage magnitudes v{m} for i ∈ IPQ will

be updated. Note that by controlling which variables are updated at each iteration,

we can also set specified voltage magnitudes on PV buses. From Eq. (2.8) and

Eq. (2.9), the GD algorithm would stop under two conditions:

i) The global optimal is reached and f(v)− s = 0,

ii) J loses rank and f(v)− s is in the null space of JT.

The latter case means that the iterates vt is trapped in a local minimum or in

a saddle-point. To escape this minimum, it needs to stop following the gradient

(since it is zero) and move in another direction. Of course, the direction it moves in

should not be random. In this work, we advocate for a type of stochastic gradient

(SGD) approach Bertsekas (1997). Instead of computing the exact gradient, each SGD

iteration performs a parameter update for a single term of the objective function in

Eq. (2.7). Specifically, a randomly index i is picked at an iteration, and the gradient

with respect to 1
2
(fi (v)− si)

2
. We denote this gradient as ∇vLivt. The algorithm is

shown in Algorithm 1.

Even when the Jacobian J loses rank, it is typically close to full rank. Therefore,

the SGD gradients ∇vLivt would not all be in the null space of J, and some of

them would still provide useful directions for updating the voltage vector. Since the

PF problem is non-convex, it typically has many local minima. The SGD algorithm

allows the updates to “jump” out of local minima by the fluctuations induced by

the randomness in the bus index selection process. Note if a global minimum is

reached, then 1
2
(fi (v)− si)

2
is zero for all i, so the SGD algorithm terminates as

well. However, SGD can also lead to slow convergence. Hence, we propose a hybrid

method which consists in starting solving the PF problem with NR. If it stalls (when
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Algorithm 1: SGD algorithm for the PF problem.

Inputs : An initial vector v0, the number of maximum iterations niter,max,

for t = 0.

Output: vt

1 while f(v)− s ≤ ϵ or niter ≤ niter,max do

2 Pick a random bus i from {1, . . . , n}

3 Update the voltage vector: vt+1 = vt − η · ∇vLi (vt)

4 end

5 Get vector vt.

the condition number of the Jacobian degrades), we switch to the SGD method. After

we escape from the local minimum, then the method switches back to the NR to reach

the final solution, which is depicted in Fig. 2.1. The computational complexity for

k iterations for the Newton-Raphson’s method is O(k × n3) Battiti (1992). For the

GD-based methods the computational complexity for k iterations is O(k × n).

Apply 

NR-Method

Apply 

SGD method

Solution

 Found

Pick an 
initial pointStart

YesDid it 

converge?

Yes 0?=

NoNo

Figure 2.1: Hybrid Algorithm to Solve Pf Problem.
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2.4 Numerical Results

2.4.1 Escaping Local Minima

We illustrate the behavior of the SGD algorithm using a 3-bus resistive network

that is arranged in a line. We choose this example since we can explicitly plot the local

minima and the saddle-point of the PF problem, as shown in Fig. 2.2a. To compare

the behavior of the SGD and the standard NR algorithms, we initialize a NR solver at

some point and track the error through the iterations. Of course, because of the local

minimum and the saddle-point, a NR solver can get trapped at a suboptimal solution.

At this point, a vanilla gradient algorithm also gets trapped, since the Jacobian loses

rank. According to the algorithm in Algorithm 1, we apply the SGD algorithm. As

shown in Fig. 2.3, the SGD escapes this point and is able to converge to one of the

global optimal solutions.

Zoomed-in

figure 3(b)
area for 

(a) Saddle point and minima. (b) Zoomed-in view.

Figure 2.2: Global and Local Minima of the 3-bus Network.
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Figure 2.3: Objective Function Values of the 3-bus Network.

2.4.2 Stable and unstable PF solutions

One important aspect of the PF solution problem is the stability. In this context,

there are two types of stability perspectives: (1) the PF solution’s stability, and (2)

the stability of an operating point. In the context of the stability of an operating

point in the power system, it is defined as: Power system stability is the ability of

an electric power system, for a given initial operating condition, to regain a state of

operating equilibrium after being subjected to a physical disturbance, with most system

variables bounded so that practically the entire system remains intact Kundur et al.

(2004).

In this manuscript, we do not refer to the former stability notion. When we have

unstable saddle points in the objective function, we are talking about a point on the

surface of the graph of the objective function where the gradient values are all zero

(equilibrium point), but which is not a local or global minimum point Wainwright
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et al. (2005). The proposed formulation cannot distinguish between a stable and

unstable solution. Since we are trying to solve the power flow problem, any solution

that solves the equations would be a global minimum, which corresponds to a valid

mathematical solution to the PF problem.

Detecting unstable and stable operating points in the power system dynamics

context is important. We believe that other metrics and methods that could be

potentially embedded or used with our approach Ajjarapu and Christy (1992); Milano

(2008), and is a direction for future work. We can test the principle of this idea. To do

so, we carried out the following numerical experiment. Take any power test case and

add a bus to the slack one, as shown in Fig. 2.4. If the line reactance on the branch

and the active load power on the bus is large, the voltage magnitude will be low. In

order to raise the voltage magnitude to acceptable levels, we need to compensate for

reactive power on the added bus. Once we inject reactive power on this bus, we will

have an ill-condition power system. In specific, for our added bus and added line, we

have the reactance x = 0.43 p.u.; for the injected power on the added bus, we have

sadded = 2− j1.2 p.u.

Under these conditions, we plot the objective function in Eq. (2.7) associated

with the slack bus and the added bus, which is shown in Fig. 2.5. In this Figure,

we can see that we have two global minimum points and one saddle point (yellow).

The two global minimum points correspond to PF solutions; one solution is stable

(vstableadded = 1.08 −52.3◦, green point) and the other is unstable (vunstableadded = 0.92 −68.5◦,

red point) from the voltage stability perspective Van Cutsem and Vournas (2007). We

note that both solutions are within operating limits, which means that they are close

to each other. In addition, there is a saddle point near these PF solutions, which, as

we have discussed, can cause convergence issues.

Under these conditions, if we solve the PF problem with the NR method (initial-
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izing at flat start) we will get the unstable PF solution. On the other hand, if we use

our proposed hybrid method, we can obtain both stable and unstable PF solutions.

And this is precisely our contribution in this work: To find a path to global minimum

points by jumping around using the inherent randomness of the stochastic gradient

descent (SGD) method.

slack
bus

added
ds

added 
bus

Rest of the 
power system

Figure 2.4: Adding a Bus to a Power System.

We can also solve the PF problem associated with the slack bus and the added

bus, in Fig. 2.4, with the continuation PF algorithm Milano (2008). The result is

shown in Fig. 2.6, where we can see that the continuation PF finds the two same

stable and unstable solutions. However, we cannot directly compare the continuation

PF and our proposed hybrid algorithm because they are conceptually different. The

continuation PF method solves many conventional PF problems with the NR method;

in specific, one PF problem by each point on the blue line in Fig. 2.6. In contrast,

our method only solves one PF problem to find either the stable or unstable solution

in Fig. 2.5. We could, in principle, embed our proposed hybrid algorithm to each

iteration of the continuation PF.
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Figure 2.5: Pf Solutions from the Objective Function.

Figure 2.6: Pf Solutions with the Continuation Pf.
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2.4.3 Voltage stability

We can also give an insight into the voltage stability problem with our framework.

Let’s take the example of a two-bus test case. We have only two variables, the

magnitude voltage v2, and the angle voltage δ2. This means we can visualize our

objective function and the PV curve (from Van Cutsem and Vournas (2007), with

resistance r = 0), as shown in Fig. 2.7. We can see that when we have a normal load,

we have two solutions: (1) one corresponds to a stable equilibrium point and (2) the

other to an unstable one. Note that those solutions are far from each other. When

we increase the load, we can see in Fig. 2.7 that both stable and unstable equilibrium

points get closer to each other. If we keep increasing the load to the maximal power

transfer point, we observe that we only have one solution to the PF problem. If we

increase the load even further, we get no solution to the PF problem, and we get only

a local minimum solution. In this context, no solution exists for the PF problem.

Still, the objective function term associated with that node will give us insight into

problematic buses that hinder the convergence of the PF problem. This is an exciting

topic for future research, as we highlight in the conclusion.
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Figure 2.7: Stable and Unstable Solutions of a Pf Problem.
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2.4.4 Larger Systems

In this section, we illustrate the behavior and benefit of using the hybrid method

in Fig. 2.1 to solve the PF problem for standard IEEE test systems. In the hybrid

method, we start with the NR algorithms, and if we detect divergence (when the

condition number of the Jacobian deteriorates), then we switch over to the SGD

algorithm. After running a few SGD steps, we then again switch over to the NR

iterates and repeat the process until an optimal solution is found.

The reason we switch back and forth between the NR and SGD updates is to

utilize the NR algorithm as much as possible. Because if NR is able to converge, it

will converge much faster (quadratic in the iterations) than when SGD is used. For a

system where the operating points do not change appreciably, the NR algorithm can

usually converge in a few iterations from a good starting point. However, when the

operating conditions vary considerably, for example, when the penetration of renew-

able resources is significant, then finding a good start point becomes challenging Weng

et al. (2019); Molzahn et al. (2013). Therefore, the role of SGD is to “correct” the

actions of the NR algorithm by escaping from suboptimal solutions and saddle-points

when a bad starting point is used.

In order to show the usefulness of this hybrid approach, we performed a set of

simulations. We compare the NR against our hybrid approach. For both PF methods,

we model transformers and phase shifters with specified tap ratios and phase shift

angles that are kept constant throughout the simulation. For all the simulations, we

set specified voltage magnitudes and generator reactive power limits on PV buses.

We enforce reactive power limits by using the conventional procedure Kothari and

Nagrath (1989). That is, if any generator has a violated reactive power limit, its

reactive injection is fixed at the limit, and the corresponding bus is converted to a
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PQ bus. For the SGD simulations, we used an adaptive learning rate. Specifically,

we used the Adam adaptive learning algorithm Kingma and Ba (2014) with stepsize

η = 0.01, and exponential decay rates β1 = 0.9 and β2 = 0.999. We set niter,max = 100.

First, as a baseline, we perform simulations under normal load conditions with a flat

start with the NR method and our proposed one. We can see the results in Table 2.1,

which shows that both methods are successful. However, when the conditions are

changed, the NR method will struggle to find a solution to the PF problem, as we

will show in the next simulations.

0 10 20 30 40 50

# of simulation

0
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15

20
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L

First iteration

Last iteration

Figure 2.8: Values of the First and Last Iteration.

Now, we will change the starting points for the simulations. This means that

the initial guesses will be further away from a solution. The experiment design

is as follows. We first randomly pick a voltage solution vector v∗ and compute the

associated active and reactive power. Subsequently, we randomly pick initial starting

points from a uniform distribution as follows: |v| ∼ U(min (|v|∗) , max (|v|∗)) and

θ ∼ U(min (θ∗) , max (θ∗)) and test whether the algorithms can reach v∗ from the

starting points. We use this random initialization to make more challenging the
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Table 2.1: Convergence Results with a Flat Start.

Case NR Hybrid

14-bus ✓ ✓

39-bus ✓ ✓

57-bus ✓ ✓

118-bus ✓ ✓

300-bus ✓ ✓

convergence when a PF solution exits. We use the 14-bus system as an illustration

to explore the convergence of our hybrid method. The experiment design is

as follows. We randomly initialize voltage angles and magnitudes (as we described

before). Then, we use the SGD method for 50 iterations. Fig. 2.8 shows the result

of 50 simulations, where the value of the objective function at the first iteration (in

blue) is quite large, but the value of the last iteration (in red) is minimal. Then,

we initialize the NR method with the starting points associated with the first value

iteration and the points associated with the last iteration. The result of doing this

experiment is shown in Table 2.2 (under normal load), where the convergence rate

is 10% with the NR method. On the other hand, we have a 100% convergence rate

with our hybrid approach. We carry out the same experiments for the 39-, 57-, 118-,

and 300-bus cases, in which we obtained better results than the conventional NR

approach, as shown in Table 2.2.

For the proposed method under worse conditions, we make simulations with a

higher load level. We increase the power system load by multiplying the active load

by a factor α that will produce an ill-conditioned test case. Table 2.2 shows the

result (under heavy load), where the convergence rate of the hybrid method is better

than the NR method.
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Finally, we explore the convergence of both PF methods around local minimum

and saddle points. For this numerical experiment, we perform two simulations by

test case. In one simulation, we choose the starting point to be a local minimum one,

and in the other simulation, we choose the starting point to be a saddle-point. The

results are shown in Table 2.2. We can see that the NR method does not converge,

whereas we achieve convergence in both simulations with our method. This result is

expected due to the NR Jacobian is singular at the first iteration.

Table 2.2: Convergence of Different Test Cases for the Nr and Hybrid Methods with

Original and Increased Loads.

Convergence rate (%)
Convergence

Result

Normal

Load

Heavy

Load

Local minimums

and saddle points

Case NR Hybrid NR Hybrid NR Hybrid

14-bus 10 100 10 96 ✗ ✓

39-bus 10 100 10 84 ✗ ✓

57-bus 10 90 0 82 ✗ ✓

118-bus 5 80 5 66 ✗ ✓

300-bus 5 75 0 61 ✗ ✓

2.5 Conclusion

To provide a robust solution for the power flow problem for the current challenging

power system operation and control conditions, a novel hybrid method for the power

flow problem was proposed in this Chapter. This method combines the Newton-

Raphson and stochastic gradient algorithms to achieve fast convergence speed as well

as the ability to escape local minima and saddle points. Numerical tests on power
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systems of various sizes and topologies demonstrated the effectiveness and efficiency

of the proposed approach in solving fast and reliable the PF problem under different

load conditions and initial starting points.

Modern power grids are evolving not only with the integration of new active

devices, making it challenging to control and operate but also with the unprecedented

incorporation of new sensing devices that poses security vulnerabilities into the grid.

The next Chapter studies how these abundant data from sensing devices could be

exploited to explore such menace.
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Chapter 3

ATTACK POWER SYSTEM STATE ESTIMATION BY IMPLICITLY

LEARNING THE UNDERLYING MODELS

The last Chapter introduced a hybrid algorithm to solve the power flow problem with

the ongoing stressed grid operating conditions resulting from the inclusion of new ac-

tive devices. Additionally, power systems simultaneously integrate prodigious sensing

devices that could endanger the grid to cyber menaces, such as false data injection

attacks (FDIAs). Thus, to design effective schemes to protect the grid against such

attacks, it is of utmost importance to understand how attackers could exploit these

new massive data from sensing devices. To successfully deploy a FDIA, most past

FDIA strategies need privileged power system information, which is carefully held by

the power system operator. Newer approaches circumvent this issue by solely relying

on intercepted measurement data, but they lack mathematical warranties of succeed-

ing. This Chapter exposes power systems’ vulnerability by showing that it is possible

to deploy an attack without confidential information and, at the same time, to have a

high probability of being successful. We present a scheme that learns (1) the implicit

power system measurement distribution and (2) a surrogate of the unknown state

estimator model. The proposed framework utilizes a Wasserstein generative adver-

sarial network to learn the measurement distribution and an autoencoder to learn the

unknown state estimator model. Additionally, we present a convergence proof that

ensures that the proposed framework converges to the power system measurement

distribution. The proposed method is demonstrated to be successful via extensive

simulation on IEEE 9-, 14-, 57-, 118-, and 300-bus test cases.
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3.1 Introduction

Data revolution takes place worldwide in different disciplines, including power

systems. To provide a robust grid with new but diversified components, modern

power grids are on the road to integrate unprecedented real-time and offline data for

monitoring, control, and protection. However, this new data-driven outlook makes

the power grid more vulnerable than ever to cyber-attacks with dire consequences.

For instance, the power system operator may take wrong corrective actions that can

cause a blackout; wrong actions can also cause inaccurate energy prices in a real-time

electricity market Xie et al. (2010); Xie et al. (2011).

To better protect the system, it is essential to understand potential attack mecha-

nisms. Among various attack categories Li et al. (2012); Zhou et al. (2019); Costilla-

Enriquez and Weng (2021), False Data Injection Attacks (FDIA) gained the attention

of the power system community after the work in Liu et al. (2011), which showed that

unobservable attacks against DC State Estimators (SE) are possible. In this type of

attack, the attacker modifies measurement data such that the estimated states are

different from the real ones Mohammadpourfard et al. (2018, 2019). These first works

have the following assumptions, which may be impractical:

(i) The attacker has access to the entire network information (e.g., line parameters,

grid topology, state estimator model, and estimated states) Hug and Giampapa

(2012); Wang et al. (2020). It is impractical to think that an attacker can gather

all this data without an insider in the Independent System Operator (ISO). Since

this information is guarded by the power system operator it is difficult for an

attacker to have this knowledge.

(ii) These first studies rely upon the DC power flow model when power system

operators use the AC power flow model in real-world settings. The reason, AC-
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based FDIAs are harder to design and deploy due to the inherent complexity

of the nonlinear power flow equations Costilla-Enriquez et al. (2020); Jin et al.

(2019).

Subsequent work relaxed the first assumption. Specifically, Liu et al. (2011); Yuan

et al. (2011); Xie et al. (2011); Valenzuela et al. (2013); Mo et al. (2012); Kosut et al.

(2010); Zhang et al. (2015) propose various frameworks to design FDIAs with only

partial network information, but they still rely on a DC-based model. To relax the

DC model’s assumption, a few studies have focused on FDIA with an AC-based

model Hug and Giampapa (2012); Liu and Li (2017); Jia et al. (2012). However, all

the aforementioned approaches construct an attack vector relying upon the power

system underlying information; we can call these techniques model-based FDIAs.

Later works showed that it is also possible to deploy FDIA without knowing privi-

leged power system information such as power system parameters and topology or the

state estimator model. The only needed information to deploy a FDIA are the power

system measurements, and we classify these kinds of attacks as model-free FDIAs.

In modern power system networks, the information is sent via remote terminal units

that are designed avoid system intrusion Teixeira et al. (2015); Wang and Lu (2013).

However, conventional approaches such as security software and firewalls could be

insufficient to protect the system against breaches and cyber threats Jin et al. (2019).

For example, in 2015, a cyber-attack was successfully deployed on Ukraine’s electricity

infrastructure. Around one year before the attack, the attackers gained access to mul-

tiple industrial networks by using the malware tool BlackEnergy 3 (BE), Styczynski

and Beach-Westmoreland (2019). This malware enables unauthorized network access

with valid (stolen) user credentials to move laterally across internal utilities’ system.

In this incident, the attackers gained access to targeted networks using weaponized

Microsoft Office files by embedding BE in Visual Basic macro scripts. This latent
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risk has been recognized by the National Academies of Sciences, Engineering, and

Medicine National Academies of Sciences, Engineering, and Medicine (2017). In the

same work, they conclude that the United States’ power system network is vulner-

able to cyber-attacks. Thus, for an attacker, it would be feasible to collect sensor

measurements by exploiting the protection schemes Jin et al. (2019).

The authors in Yu and Chin (2015) showed that it is possible to deploy a stealthy

FDIA by using principal component analysis (PCA). The extension of this work

in Chin et al. (2017) proposed a geometric approach to carry out a FDIA based only

on power system measurements. The authors in Kim et al. (2014) proposed a data-

driven attack that learns the system operation subspace from measurements around a

linearized nominal state. The work in Zhang et al. (2021) presented a zero-parameter

information attack that only requires power system’s topology information. The

works in Ahmadian et al. (2018); Mohammadpourfard et al. (2020) employed ma-

chine learning techniques to carry out a FDIA. Specifically, they trained a generative

adversarial network (GAN) to generate tampered power system measurements that

will be stealthy with high probability. While the works in Ahmadian et al. (2018);

Mohammadpourfard et al. (2020) and our work use generative adversarial networks

(GANs) to carry out a FDIA, our approach has some important differences. Both

works in Ahmadian et al. (2018); Mohammadpourfard et al. (2020) use the DC linear

power flow model. In contrast, our proposed approach uses the AC non-linear power

flow model. Whereas the work in Mohammadpourfard et al. (2020) requires normal

and tampered measurements to train a conditional adversarial network (cGAN), our

approach only requires normal measurements, which is a more reasonable assumption.

This means that our attack is more appealing at the level of the information needed

to train our model.

The difficulty with the model-free FDIAs is that it is hard to ensure that the
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model-free approach truly captures some properties of the power system model to by-

pass tests, such as the Chi-squared test to obtain the trust from energy management

systems. To show the power system vulnerability under this setting, we introduce a

data-driven approach that generates tampered measurements with the desired prop-

erties to deploy a FDIA, and at the same time, to have mathematical guarantees

about the model accuracy. We achieve this goal by (1) implicitly learning the power

system measurement distribution from data; and (2) learning a proxy model for the

unknown state estimator.

Specifically, we aim to design a flexible model that captures the complex under-

lying interactions in the power system to learn the measurement distribution from

data. Nonparametric methods are flexible since they build models from data mak-

ing as few assumptions as possible, which usually means utilizing statistical models

that are infinite-dimensional Wasserman (2006). While these type of models are

flexible by keeping the underlying assumptions as weak as possible, they are compu-

tationally demanding due to the required increment of number of parameters Ferraty

and Vieu (2006); Hollander and Sethuraman (2001). For example, the work in Ji

et al. (2017) shows that their nonparametric model grows in complexity as additional

data is used to train the model. As real power systems could have thousands of

buses and data measurements from many years, the number of parameters needed

in non-parametric models are computationally intractable Ferraty and Vieu (2006).

Therefore, we choose parametric models, which can be designed with a fixed number

of parameters that depend upon the specific problem. In recent years, these para-

metric models have had tremendous success in the ML community because they can

learn complex high-dimensional distributions (for example, images in high resolution).

In power systems, for example, the work in Lakshminarayana et al. (2022) physics-

informed parametrized neural networks (PINN) to learn the underlying power grid’s
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parameters. In the parametric models, we introduce a framework utilizing generative

adversarial networks (GANs) to learn the power system measurement distribution

to create spurious measurements to deploy a FDIA, as GAN’s loss function is fully

specified. As a comparison, variational autoencoders (VAEs)’s loss function is only

the evidence lower bound (ELBO), which is hard to be embedded into other learn-

ing. Even more importantly, we can present mathematical proof to show that the

GAN reliably learns the power system measurement distribution. In specific, we use

the Wasserstein Generative Adversarial Network (WGAN), which is guaranteed to

converge under mild assumptions to the actual observed distribution Zhang et al.

(2018).

In addition, to mimic the data distribution, one knowledge we do have is the form

of residual error test. Therefore, we propose to boost our attack capability by learn-

ing the state estimator model for the residual error test. However, learning the state

estimator model directly is difficult because neither the power system nor the state

estimator is known. To circumvent this issue, we use a surrogate model to mimic

the state estimator. The residual error test and an autoencoder (AE) share the same

mathematical structure. Thus, an AE can be trained as a proxy to mimic the state

estimator. We leverage this similarity and employ an AE as a proxy for the residual

test error. Specifically, in our proposed scheme, we include this proxy as a regulariza-

tion term, which helps to improve the quality of the created tampered measurements.

Finally, a second regularization term is added to maximize the impact of the attack.

Whereas the model-based attacks need the complete network information (e.g., line

parameters, grid topology, state estimator model, and estimated states), our proposed

model-free approach needs a dataset of the measurements of the considered network

to work. And such a data set does not need all the measurements to be included,

which is another advantage.
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The performance of the proposed model-free FDIA is verified by simulations on

the standard IEEE 9-, 14-, 57-, 118-, and 300-bus test networks. Also, to contrast

the differences and advantages between our approach and the existing ones in the

literature, we carry out comparisons between our proposed FDIA and three other

successful methods reported in Hug and Giampapa (2012); Chin et al. (2017); Liu and

Li (2017). These results show that our proposed model-free is successful. Specifically,

our proposed model-free attack tampers measurements in a way that can fool the

power system operator with high probability.

3.2 Problem Formulation

To show the proposed model-free FDIA attack, we first review the model-based

approaches based on AC state estimation.

3.2.1 State Estimation with AC Power Flow Model

State estimation (SE) infers the state variables (i.e., voltage angles and voltage

magnitudes) x = (x1, . . . , xn) from a set of measurements z = (z1, . . . , zm) Wood et al.

(2013), where n is the number of buses or nodes in the grid, and m is the number of

measurements. Mathematically, we can describe the problem as z = h (x)+ e, where

h(·) is the physical (non-linear) relationship between state variables and measure-

ments, and e is a vector that represents white noise from the collected measurements

(e.g., SCADA or PMU). In practice, measurements are collected and sent to the power

system operator, which obtains the estimated states x̂ by solving Tarali and Abur

(2012); Weng et al. (2017):

x̂ = argmin
x

(z− h (x))TW−1 (z− h (x)) = SE (z) , (3.1)
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where, for compactness, we define the state estimator operator SE (·). The input of

this operation is a vector of measurements and its output are the estimated states.

However, the vector of measurements zmay contain bad or wrong data due to telecom-

munication failures, meter errors, or even FDIAs Abur and Exposito (2004); Wang

et al. (2020). To estimate the states with confidence, the SE possesses a Bad Data

Detector (BDD) module to detect and filter suspicious data.

Bad Data Detector (BDD)

The measurement errors are assumed to follow a Gaussian distribution ei ∼ N (0, σi)

Abur and Exposito (2004) (where σi is the standard deviation of the i-th measure-

ment). Therefore, the squared measurement residual error r = ∥z− ẑ∥22 follows a

Chi-square distribution χk, where k represents the number of independent variables

in the power system, and ẑ = h (x̂) is the vector of estimated measurements. Then,

the presence of errors in the measurements can be detected with the Chi-square test

(or residual error test) Abur and Exposito (2004); Weng et al. (2016). This test works

as follows:

(i) Select the detection confidence probability p (e.g., 0.95), and compute its asso-

ciated threshold value τ = χ2
k,p with p = Pr

(
J (x̂) ≤ χ2

k,p

)
.

(ii) Compute the normalized measurement error J(x̂) =
∑m

i=1 (zi − hi(x̂i))
2 /σ2

i .

(iii) If the inequality in equation 3.2 holds, bad data will be suspected, or else the

measurements are assumed to be free of bad data.

J (x̂) ≥ τ (3.2)
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3.2.2 Model-based FDIA in AC State Estimation

A FDIA modifies the estimated states x̂ or measurements ẑ by changing the

original SCADA and PMUmeasurements z with a maliciously tampered measurement

vector, that is, za = z+a, where a is an attack vector. The attacker designs this attack

vector to compromise the system’s reliability by creating a wrong state estimate. For

a FDIA to be successful, it must circumvent the bad data detector equation 3.2 He

et al. (2017). The assumptions in the literature for a model-based FDIA about the

attacker’s knowledge are the following Liu et al. (2011); Hug and Giampapa (2012);

Zhang and Sankar (2016): (1) the attackers can intercept and alter the power system

measurements that are used to obtain the estimated states in the grid; (2) the attacker

has access to the power system model, which includes transmission line parameters

and topology information; and (3) the attacker possess the SE model or can obtain

the estimated states of the network. Under these strong assumptions, the attacker

would be able to launch a perfect FDIA Wang et al. (2020). In this perfect FDIA, the

attacker can define the attack vector as a = h (x̂+ c) − h (x̂), where c is the vector

of changes in the estimated states. In this scenario, if the original measurements

z can pass the residual-based bad data detector test in equation 3.2, the corrupted

measurements za will also pass this test Hug and Giampapa (2012).

The work in Hug and Giampapa (2012) proposed an FDIA needing only partial

power system information. In this context, there are two types of variables. (1) Mea-

surements and state variables that are not altered, which are denoted with subscript

1, x̂1 and z1 = h1 (·). (2) Measurements and state variables that are maliciously

altered, which are denoted with subscript 2, x̂2 and z2 = h2 (·). If an attacker

constructs the attack vector as

a2 = h2 (x̂1, x̂2 + c)− h2 (x̂1, x̂2) , (3.3)
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the tampered measurements will have the same residual error as the real ones. Note

that to create the attack vector in equation 3.3, the attacker must know the estimated

values of the state variables appearing in h2, which is still a strong assumption. There

are other types of FDIA. For example, if a ̸= h (x̂+ c)−h (x̂) but equation 3.2 holds,

then the attack is called a generalized FDIA Liang et al. (2017).

3.3 Proposed Model-Free FDIA

Contrary to the model-based FDIAs, the model-free models only make one as-

sumption Yu and Chin (2015); Chin et al. (2017); Ahmadian et al. (2018); Moham-

madpourfard et al. (2020): The attackers can intercept and alter the power system

measurements that are used to obtain the estimated states in the grid. So, in this

section, we show a theoretically sound method to deploy a FDIA by only using the

power system measurements. If we want to deploy an attack without any underlying

power system knowledge, we have to learn an implicit model through observations,

that is, from power system measurements (SCADA and PMU). This implicit model

should capture the inherent non-linearity relationships between different measure-

ments based on residual error tests. Also, this model should be able to create new

tampered measurements such that they are overlooked by the power system operator

but change the estimated states and measurements. To summarize, we present a

data-driven approach based on a WGAN with two regularization terms. First, the

measurement distribution is learned with the WGAN, z + e. Second, to pass the

residual error test, a proxy of the unknown SE model is embedded into the WGAN

as a regularization term, h (z). Finally, a regularization term is added to maximize

the attack impact.
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3.3.1 Learning the Measurement Distribution

Goodfellow et al. (2014) introduced the idea of generative adversarial networks,

which revolutionized the machine learning (ML) field. GAN is a framework to teach

a Deep Learning (DL) model the implicit training data distribution so that we can

sample from it and generate new data from that same distribution; in our case, the

power system measurement distribution. Specifically, rather than sampling directly

from an (assumed) parametric distribution, the target random variable is generated

as a deterministic transformation of a simple, independent noise source, for instance,

a Gaussian distribution. GANs are made of two distinct models, a generator and a

discriminator. Formally, the minimax objective of the GAN is

min
G

max
D

Ez∼PrEλ∼Pλ
[logD (z) + log (1−D (G(λ)))] , (3.4)

where D is a discriminative network, G is a generative network, Pr is the real data

distribution, and λ is the latent space, which it is sampled from an independent

distribution Pλ; that is, λ ∼ Pλ (usually a Gaussian distribution).

However, GANs have some issues, such as vanishing gradient and the lack of guar-

antee to convergence. The work in Arjovsky et al. (2017) presented the Wasserstein

GAN (WGAN) that solves these issues. Also, WGANs possess stronger mathematical

guarantees. For example, the authors in Zhang et al. (2018) proved that (under mild

assumptions) the generator in the WGAN will converge to the true data distribution

Pr. Therefore, in this work, we will use this type of WGAN. These models are made

of two distinct neural networks, a generator G and a discriminator D (or critic). The

minimax objective of the WGAN is

min
G

max
D∈D

Ez∼PrEλ∼Pλ
[D (z)−D (G(λ))] , (3.5)

where D is the set of 1-Lipschitz functions Arjovsky et al. (2017); Pr is the real data
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distribution; λ is known as the latent space, and it is sampled from an independent

distribution Pλ. The generatorG learns the real distribution Pr, which, in our context,

this real distribution is the set of historical observed measurements Z = {zi ∈ Rm}Li=1

(where L is the number of elements in the dataset), where zi = h (xi) + ei. In

other words, G implicitly learns to generate samples from the underlying model z =

h (x) + e.

3.3.2 Learning the State Estimator Model

To gain trust from the power system operator, the created tampered measure-

ments, z̃ = G(λ), must pass the residual error test in equation 3.2. This residual

error for the tampered measurements is given as

r̃ =
∥∥∥z̃− ˆ̃z

∥∥∥2

, (3.6)

where ˆ̃z = h
(
ˆ̃x
)

is the vector of estimated tampered or fake measurements, and

ˆ̃x = SE (z̃) is the vector of estimated states from tampered measurements. As equa-

tion 3.2 suggests, the smaller the residual error r̃, the bigger the probability of passing

the test for a given tampered measurement, z̃. In other words, a given vector of

tampered measurements, z̃, should produce a similar estimated vector, ˆ̃z = h
(
ˆ̃x
)
.

However, in this model-free approach, we do not have access to the state estimator

model h (·). This non-linear function h (·) can be thought of as a mapping from the

measurement space to the estimated measurement space. For a vector of real mea-

surements, the estimated measurements will be similar so that the residual error is

low. This state estimator function h (·) is unknown. Still, given its properties, it is

possible to learn it from data and create a proxy to impose the same behavior in the

tampered measurements.

The residual error expression in equation 3.6 resembles the loss function from an
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autoencoder (AE). Thus an AE model is a natural option to learn a proxy model of

the unknown state estimator function h (·). An autoencoder is a neural network that

aims to produce or replicate its input to its output Goodfellow et al. (2016). To

do this, the autoencoder is trained to learn an encoding for a particular distribution

and then with such encoding, learn to reconstruct the input distribution. To learn a

meaningful encoding, the model’s architecture prioritizes which traits from the input

should be learned. By this process the autoencoder learns to ignore superfluous

data, which could be noise. We will see how this autoencoder property improves the

generation of fake measurements in Section 3.5.5. Mathematically, the autoencoder

is represented as a function, that is, AE (·), and it is trained with the squared loss

function:

∥z− AE (z)∥2 . (3.7)

A trained AE with real measurements with equation 3.7 will learn the unknown

function h (·) that will minimize the residual error in equation 3.6. Once the autoen-

coder is trained (denoted as AE∗), the loss function in equation 3.7 can be embedded

into equation 3.5 to incentivize the generation of tampered measurements that will

produce similar estimated measurements, and thus lower the residual error. This can

be done by adding the regularization term ∥z̃− AE∗ (z̃) ∥22 in equation 3.5:

min
G

max
D∈D

Ez∼PrEλ∼Pλ

[
D (z)−D (z̃)

+ ∥z̃− AE (z̃) ∥2
]
, (3.8)

where z̃ = G(λ).

3.3.3 Maximize the FDIA Impact

The WGAN in equation 3.8 implicitly learns the underlying model that generates

the observed data Goodfellow et al. (2014); Arjovsky et al. (2017). To train a WGAN
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Figure 3.1: Proposed Model-free Architecture with a Wgan and Two Regularization

Terms to Deploy an FDIA.

with equation 3.8, we need to sample z from the true data distribution Pr. However,

the generator in equation 3.8 conventionally takes a random signal as input and maps

it to the true data distribution space; that is, λ ∼ Pλ, where Pλ is usually a Gaussian

distribution. This means that we do not have any control over the created fake mea-

surements. To successfully attack a power system, we want these fake measurements,

produced by our WGAN, to create different states from the actual ones. The attacker

can only see and modify observed measurements. Thus, the attacker can attempt to

markedly change the unobservable states by stealthy and sizeably manipulating the

intercepted measurements to perform a successful FDIA. To accomplish this, we need

to generate tampered measurements from the observed ones.

If we want to generate tampered measurements from the observed ones, rather

than using a random distribution Pλ as latent space to feed our generator, we use

the power system measurements as input to the generator, that is, Pλ = Pr. The

result is that the generator’s latent space is not fed with an arbitrary random dis-

tribution: it is fed with the power system measurement distributionF. Specifically,

we are conditioning the WGAN with respect to the actual measurement vector z,

as depicted in Fig. 3.1. This is desirable because in this way, rather than creating
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tampered measurements from an arbitrary distribution, they are constructed based

on the observed ones. F Furthermore, the created tampered measurements will dif-

fer from those received as input due to a regularization term that we include in our

model, as we explain below.

F To successfully deploy an FDIA, we want to incentivize the generator to con-

struct measurements that will produce different measurements from those received

as input. This will provoke the SE with high a likelihood to produce erroneous

estimated states, the main objective in a FDIA. To accomplish this, we can incen-

tivize the model to generate such fake measurements with the regularization term

wz · d (z, z̃) in equation 3.9 (the first regularization term in Fig. 3.1 in red), where

z̃ = G (z), d (·) is a distance function (e.g., mean squared or mean absolute distance),

d (z, z̃) represents the distance between the original measurement and the generated

one, and wz is a hyper-parameter that represents the weight of this distance. This

regularization term incentivizes the WGAN to produce a tampered measurement vec-

tor z̃ that will generate completely wrong estimated measurements. Finally, we can

explicitly induce sparsity in the attack vector. This sparsity property is desirable and

essential because the attacker has to alter fewer measurements to successfully deploy

a FDIA, Chen et al. (2018). We can add it into the model in equation 3.9 with

the regularization term, wsparse · ∥z− z̃∥1, where wsparse is the weight of the sparsity

regularization term. This leads to the following loss function

min
G

max
D∈D

Ez∼PrEz̃∼Pg

[
D (z)−D (z̃)

+ ∥z̃− AE (z̃) ∥22 + wz · d (z, z̃)+wsparse · ∥z− z̃∥1
]
. (3.9)

Training the WGAN with regularization terms adds complexity to the training

process. If the regularization term becomes too large with respect to the original

WGAN loss, the generator will struggle to learn the correct distribution. If the
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regularization term is too small, it will not have any effect on the training process.

Thus, the regularization term will not fulfill its purpose. To solve this issue, a dynamic

weight is introduced to control the size of d (z, z̃) throughout the training phase.

This weight must maintain a balance between the generator loss term D (z̃) and the

regularization term d (z, z̃), so that the WGAN learns the desired distribution, and

at the same time, the regularization term accomplishes its purpose. We can achieve

this balance by setting the regularization term to be half of the generator loss term.

We express this as 1
2
|D (z̃)| = wz · d (z, z̃). Then, the result of such dynamic weight

wz is described in equation 3.10 where t > 1 is the iteration number in the training

phase. This dynamic weight adapts during training, controlling the impact of the

regularization term.

w(t)
z =

1

2
·
∣∣∣∣∣ D

(
z̃(t−1)

)
d (z(t−1), z̃(t−1))

∣∣∣∣∣ . (3.10)

To summarize, our proposed architecture is shown in Fig. 3.1 with two stages.

First, an autoencoder is trained with historical SCADA and PMU measurement data.

Second, the WGAN is trained with the same data and the two regularization terms:

(1) one incentivizes the WGAN to produce measurements that will pass the residual

error test and (2) another to maximize the impact of the attack. More important

features are described below, and the complete algorithm for our proposed FDIA is

in Algorithm 2.

(i) The inputs for the generative network are actual power system measurements

instead of random noise. This gives us control over the created measurements.

(ii) The generator is incentivized to generate measurements that will be different

than the ones as input, causing an incorrect estimation of state variables and

measurements.

(iii) The generated tampered measurements will have a small residual error, thus
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passing the residual error test with high probability.

Note that our proposed approach can be easily formulated to deploy an attack on

a specific area in the power system, as proposed in Liu and Li (2017). Specifically, a

FDIA can be launched in a specific area by tampering the measurements within the

area under attack and not modifying the sensor measurements at boundary buses. In

this way, the attacker only has to get the sensor measurements in the specific area

under attack, which would reduce the amount of collected data. For conciseness and

sake of clarity, we will analyze our proposed FDIA in the complete power grid.

3.4 WGAN Guarantee

The last section presented a framework to create fake power system measurements

to deploy a FDIA. However, to successfully deploy a FDIA without relying upon the

underlying power system model, we need to be confident that our learned model

will produce measurements that look legit so that the residual error test does not

detect them. To show that our proposed framework converges to the underlying

measurement distribution, we present mathematical proof that certifies the WGAN

convergence to the measurement distribution, thus creating fake measurements that

look real. The only requirement for this proof to work is to have data to train the

WGAN.

Generative adversarial networks can be understood as minimizing a moment match-

ing loss defined by a set of discriminator functions Zhang et al. (2018), mathematically

min
ν∈G


dF (µ̂m, ν) :=

sup
f∈F

Ex∼µ̂mEx̃∼νf (x)− f (x̃) + wz · d (x, x̃)

 , (3.11)

where µ̂m is the empirical measure of the observed data (in this case the power

system measurements), and F and G are the sets of discriminators and generators,
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respectively. The practical WGANs take F as a parametric function class, that is,

Fnn = {fθ (x) : θ ∈ Θ} where fθ (x) is a neural network indexed by parameters θ that

take values in Θ ⊂ Rp.

Notation and definitions. X denotes a subset of Rd. For each continuous function

f : X → R, we define the maximum norm as ∥f∥∞ = supx∈X |f (x)|, and the Lipschitz

norm ∥f∥Lip = sup {|f (x)− f (y)| / ∥x− y∥ : x, y ∈ X, x ̸= y}, and the bounded Lip-

schitz (BL) norm ∥f∥BL = max
{
∥f∥Lip, ∥f∥∞

}
. The set of continuous functions on

X is denoted by C (X), and the Banach space of bounded continuous functions is

Cb (X) = {f ∈ C (X) : ∥f∥∞ < ∞}.

Weak convergence. If F is discriminative, then dF (µ, ν) = 0 implies µ = ν. This

means that the learned distribution is the same as the observed one. In reality, we

cannot strictly get dF (µ, ν) = 0. Rather, we have dF (µ, ν) → 0 for a sequence of νn

and want to establish the weak convergence ν ⇀ µ.

Theorem 1. Let (X, dX) be any metric space. If spanF is dense in Cb (X), we have

limn→∞dF (µ, νn) = 0 implies that the learned distribution νn weakly converges to the

real observed distribution µ.

In our context, the observed distribution µ corresponds to the set of observed power

system measurements. Fig. 3.2 gives the intuition for the convergence proof. The

learned distribution νn (in red) converges to the real one µ (in blue) as n → ∞. In

other words, the WGAN is learning to create samples that look as taken from the

true observed distribution µ.

Proof. Given a function g ∈ Cb (X), we say that g is approximated by F with er-

ror decay function ϵ (r) if for any r ≥ 0, there exists fr ∈ spanF with ∥fr∥F ,1 ≤

r such that ∥f − fr∥∞ ≤ ϵ (r). We note that ϵ (r) is a non-increasing function

with respect to r. We know that the closure of spanF is equal to the space of
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bounded continuous functions Cb (X), that is, cl (spanF) = Cb (X), then we have

limr→∞ϵ (r) = 0. Now denote rn := dF (µ, νn)
− 1

2 , fn := frn and wz = 1/rn. We

have |Eµg − Eνng| + wz · d (x, x̃) ≤ |Eµg − Eµfn| + |Eνg − Eνfn| + |Eµfn − Eνnfn| +

wz · d (x, x̃) ≤ 2ϵ (rn) + rndF (µ, νn) + wz · d (x, x̃) = 2ϵ (rn) + 1/rn + wz · d (x, x̃). If

limr→∞dF (µ, νn) = 0, we have limr→∞rn = ∞. Given that limr→∞ϵ (r) = 0, we prove

that limn→∞ |Eµg − Eνng|+wz · d (x, x̃) = 0. Since this holds true for any g ∈ Cb (X),

we conclude that νn weakly converges to µ. If F ⊆ BLC (X) for some C > 0, we

have dF (µ, ν) ≤ CdBL (µ, ν) for any µ, ν. Because the bounded Lipschitz distance

metrizes the weak convergence, we obtain that νn → µ implies dBL (µ, νn) → 0, and

dF (µ, νn) ⇀ 0. ■

Theorem 1 guarantees us that the learned distribution ν by the WGAN will con-

verge to the observed one µ. This idea is depicted in Fig. 3.2. The blue points rep-

resent the real measurements, and the red ones represent the fake measurements. At

the beginning, the red points are random because the WGAN is not trained (n = 1).

However, as training progresses, the WGAN produces samples (red points) that look

more similar to the blue ones. Ideally, the fake samples will be indistinguishable from

the real ones. In other words, our model will create fake measurements that look

like real ones. This means that the WGAN captures the underlying power system’s

interactions that produce the observed measurements.

3.5 Experiments

This section will show how we deploy FDIAs on power grids with our proposed

WGAN framework without knowing their mathematical or physical model. To show

the contributions and generality of our approach, we carried out extensive experiments

on different power networks.

First, we train a WGAN with historical SCADA and PMU measurements to
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Figure 3.2: Intuition for the Wgan Convergence Proof to the True Observed Distri-

bution.

demonstrate that the output of the WGAN converges to the true distribution of ob-

served power system measurements, z = h(x) + e. Note that the sampling rate of

PMU measurements is faster than the sampling rate of SCADA measurements. We

use PMU measurements alongside with SCADA measurements when the SCADA

measurements are available. We will also show that the fake measurements will pass

the residual error test, corroborating the aforementioned convergence theorem. Sec-

ond, we show that the trained WGAN creates different measurements (and therefore

states) from the actual ones. This will show that the regularization term works, and it

is maximizing the FDIA impact. Next, we show that our proposed framework is more

reliable than the model-based ones by showing that our WGAN produces more real-

istic measurements. This implies that our model is capturing the underlying power

system model. Finally, an ablation study is carried out to show that embedding a

surrogate state estimator model, h(x), improves the proposed framework to create

tampered measurements that pass the residual error test. We carried out the afore-

mentioned experiments in various test cases with similar results. Specifically, we use

the small IEEE 9-bus test case to illustrate how our framework works. Then, we

perform the same simulations in the IEEE 14-, 57-, 118-, and 300-bus networks to

demonstrate that our proposed method scales well with larger power system networks.
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3.5.1 Data Generation and Model Architecture

Data Generation

For both the 9- and 118-bus test cases, we consider all the active and reactive power

flow measurements through transmission lines and transformers as SCADA measure-

ments, and voltage magnitudes and angles as PMU measurements. The 9-bus network

has 9 branches, which gives us 36 SCADA measurements and 18 PMU measurements.

The measurements are arranged as follows: 1–9 correspond to the sent active power

through branches, 10–18 correspond to the sent reactive power, 19–27 are the received

active power measurements, 28–36 are the received reactive power on branches, 37–

45 are the voltage magnitudes, and 46–54 are the voltage angles. The IEEE 118-bus

network has 186 branches; thus, 980 measurements arranged as follows: 1–186 sent

active power, 187–372 sent reactive power, 373–558 received active power, 559–744

received reactive power, 745–862 are the voltage magnitudes, and 863–980 are the

voltage angles.

We obtain the power systems’ measurements by solving L times the AC power

flow under different load conditions using MATPOWER Zimmerman et al. (2011).

To simulate the 24-hour fluctuation, we use the real yearly load data from the Elec-

tric Reliability Council of Texas (ERCOT) for 2021 Electric Reliability Council of

Texas, (ERCOT) (2022). ERCOT reports 8 weather zones: COAST, EAST, FWEST,

NORTH, NCENT, SOUTH, SCENT, and WEST. Fig. 3.3 depicts the load profiles

of these zones for 2 days in 2021. For our simulations, we multiply each busload

with the normalized loading parameter associated with a randomly selected area,

γ, obtained from these realistic profiles. Similarly, we also adjust generation by

scaling the generation profiles by multiplying them by the same loading parameter,

γ, Ajjarapu and Christy (1992); Milano (2008). To make it more realistic, we
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add white noise to all measurements according to the standard deviation associated

with the measurement devices. That is, active power flow: 0.02 p.u., reactive power

flow: 0.04 p.u., active power injection: 0.02 p.u., reactive power injection: 0.04 p.u.,

PMU voltage magnitude: 0.0001 p.u., and PMU voltage angle: 0.006 rad, according

with Shahriar et al. (2018). Finally, if we do not find an AC power flow solution, we

do not include it in the dataset. This data generation approach will give us rich data

variety with the power system under different load conditions. The same procedure

is used to generate data for the IEEE 14-, 57-, and 300-bus test cases.
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Figure 3.3: ERCOT Hourly Normalized Load Data for 2021.

Model Architecture

The architecture of our proposed WGAN model is inspired by the architecture of the

DCGAN Radford et al. (2015) with the following modifications to adapt it to our

power system data. Since the sensor measurement vectors are one-dimensional, we

use fully connected layers instead of convolutional layers. The generator, G, consists

of 5 layers with ReLU activation function for all layers except for the output, which

uses tanh. The discriminator, D, is composed of 5 layers with LeakyReLU activations

with the slope of the leak set to 0.2.
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3.5.2 Learning the Implicit Power System Measurement Model

This section tests if the learned distribution by the WGAN converges to the true

underlying power system measurement distribution, z = h(x) + e. We train the

WGAN according to Algorithm 2 with a dissimilarity weight wz = 0.5. We use the

hyper-parameters from Arjovsky et al. (2017): ncritic = 5, learning rates α = 0.00005

(for autoencoder, generator, and discriminator), clipping parameter c = 0.01, batch

size b = 64, and Adam adaptive learning algorithm Kingma and Ba (2014). Also,

we train the AE and the WGAN models for all test cases for 10 and 100 epochs,

respectively. The normalized load from the Electric Reliability Council of Texas

(ERCOT) for 2021 Electric Reliability Council of Texas, (ERCOT) (2022) contains

hourly data for one year, which means that there are 8,760 load samples. From these

8,760 samples, we split the set into a training and a test dataset with 7,760 and

1,000 randomly chosen samples, respectively. This yearly data contains seasonal

variation, so it captures the behavior of a real power system throughout the year.

Note that both the AE and WGAN models are trained with this data, as indicated

in Algorithm 2. Fig. 3.4a shows 100 measurement samples from the real dataset

and 100 created fake measurements for the 9-bus test case. We can see in Fig. 3.4a

generated fake measurements compared with real measurements from our dataset;

the fake measurements (in red) follow the same pattern or distribution as the real

ones (in blue); in fact, they overlap the real measurements, but they are not exactly

the same. This means that the WGAN learned the true power system measurement

distribution instead of memorizing the dataset. Note that Theorem 1 guarantees

the model convergence with enough training data. In our numerical experiments,

we trained our models by creating training and testing datasets of 7,760 and 1,000

samples, respectively. With these training datasets our models successfully learned
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the underlying power system measurement distribution. Also note that the our

procedure to create the dataset produces rich distributions of sensor measurements,

Fig. 3.4a. For example, the measurement no. 1 has a range from 0p.u. to over 1p.u.

(which corresponds to an active branch power flow measurement).

To assess if the trained WGAN learned the implicit power system measurement

distribution, we carry out a power flow mismatch analysis, as follows. If we add

power injection measurements in the set of measurements, the power flow balance

at the i-th bus should be
∑

j∈δ+(i) f
p
(i,j) + ej = pinji + ei, where δ+(i) is the set of

adjacent buses to bus i, fp
(i,j) is the power flow on branch (i, j), and ej and ei are

the measurement errors associated to active power flow and injection, respectively.

Under this setting, the power flow mismatch will not be zero due to measurement

errors, that is,
∣∣∣∑j∈δ+(i) f

p
(i,j) − pinji

∣∣∣ > 0. We compute this power mismatch error∣∣∣∑j∈δ+(i) f
p
(i,j) − pinji

∣∣∣ for all the buses in the system for both real and fake tampered

measurements. Fig. 3.4b shows the results, where each bar, blue for real and red for

fake measurements, indicates the average power flow mismatch in the whole system

for one simulation. In the same figure, we can see that the power flow mismatches

of the real and tampered fake measurements are very close: 2.66 MW for the real

measurements and 3.54 MW for the tampered fake measurements. This is remarkable

because the WGAN does not know the power system topology, and it does not have

information about which measurements should comply with the power flow balance.

Yet, the WGAN produces fake tampered measurements that are within 1 MW, on

average, with respect to the real measurements, as shown in Fig. 3.4b.

Including variable renewable sources such as wind and solar generation that vary

significally from one day to the next could produce a more diverse sensor measurement

distribution. To test this idea, we use the 9-bus test case, and we take the normalized

wind and solar aggregated generation data from the RTS-GMLC Preston and Barrows

46



(a) Real vs. fake tampered measurements for the

9-bus test case. Note that the fake measurements

look like the real ones.

(b) Power flow mismatch error for the real and

fake measurements.

Figure 3.4: Learning an Implicit Power System Model with the Proposed Wgan

Architecture for the 9-bus Test Case Using Real Load Profiles from Ercot Electric

Reliability Council of Texas, (ERCOT) (2022).

(2018). Then, we include the wind generation on bus 5 and the solar generation

on bus 6 with different penetration values. For a penetration of 30%, we can see

the sensor measurement distribution in Fig. 3.5. This distribution looks a little bit

wider than the one without VRES in Fig. 3.4a. Notice that both sensor measurement

distributions look alike, which means that our original procedure to generate datasets

creates rich sensor measurement distributions. Thus, the datasets for the remaining

experiments will be created without adding VRES into the simulations.
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Figure 3.5: Sensor Measurement Distribution with Vres for the 9-bus Test System.

Analyzing Attack’s Vector Sparsity

We can test the attack vector’s sparsity by taking the absolute difference between the

real and tampered measurement vectors, that is, |z− z̃|. To test this idea, we take

the real and tampered measurements for the 9-bus test case, with wsparse = 0, and we

show two examples of specific sets of real and tampered measurements in Fig. 3.6. In

the top part of the Figure, we can see the real and tampered measurements. In the

inferior part of the Figure, we can see the absolute difference vectors, |z− z̃|. Note

that even though wsparse = 0, these vectors contain many zero values indicating the

property of sparsity.

We train the WGAN following the same procedure for the 9-bus test system with

the addition of the sparsity regularizer with a weight of 0.5, that is, wsparse = 0.5.

To test the sparsity of the results, we follow the same experiment design from the

last example. Specifically, we take the real and tampered measurements for the 9-bus

test case, and we show two examples of specific sets of real and tampered measure-

ments in Fig. 3.7. In the top part of the Figure, we can see the real and tampered

measurements. In the inferior part of the Figure, we can see the absolute difference

vectors, |z− z̃|. As expected, when sparsity is explicitly taken into account, the at-

tack vectors (absolute difference vectors in Fig. 3.7) present more sparsity than those

48



(a)
(b)

Figure 3.6: Examples of Absolute Difference Vectors.

in Fig. 3.6, where no sparsity is expressly considered in the model. However, the

differences between real and tampered measurement vectors for the sparse FDIA are

smaller than the FDIA that does not explicitly take into account the sparsity.

The model’s results without including sparsity, wsparse = 0, present sparsity and

produce more changes in the tampered measurements. Thus, the remaining experi-

ments will be done without explicitly including sparsity.

Analyzing Attack Vector

We can assess an attack vector’s impact by taking the absolute difference between

the real and tampered measurement vectors, that is, |z− z̃|. To test this idea, we

take 1, 000 real and tampered measurements for the 9-bus test case, and we show two

examples of specific sets of real and tampered measurements in Fig. 3.6. In the top

part of the Figure, we can see the real and tampered measurements. In the inferior

part of the Figure, we can see the absolute difference vectors, |z− z̃|. Note that in

the 1, 000 samples, the mean magnitude of the attack vector is 15.05 units. Also, the
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(a) (b)

Figure 3.7: Examples of Absolute Difference Vectors with the Sparsity Regularizer

With wsparse = 0.5.

attack vector, in specific sensor measurements, dramatically changes the real values.

Under this context, the operator could take wrong corrective actions that will interfere

with the correct and safe operation of the electric grid. This means that the attack

will damage the system and lead to catastrophic events.

3.5.3 Deploying FDIAs without Power System Knowledge

In the last section, we showed that a WGAN can learn the power system mea-

surement distribution. This section shows how we deploy a FDIA with our proposed

framework, which is given by equation 3.9 and equation 3.10.

Deploying a FDIA with fake tampered measurements

Our objective is to create fake tampered measurements z̃ that generate estimated

measurements and state variables as different as possible from the real ones. At the

same time, for an attack to be successful, these measurements should pass the residual
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error test. Fig. 3.9 shows an instance of a real measurement vector and a created fake

one for the 9-bus test network. The fake tampered measurements are within the

historical range from the dataset and look similar to the real ones. However, they

produce significant changes in voltage magnitudes v and voltage angles δ with respect

to the real states, as shown in Fig. 3.10. Furthermore, the fake measurements pass the

test in equation 3.2, which means that the control center will not notice the FDIA.

Comparison against other FDIA methods

To assess the advantages and differences between our proposed model-free FDIA

framework, we compare it against the model-based FDIA presented in Hug and Gi-

ampapa (2012) and described by equation 3.3—we will refer to this FDIA as Method 1.

This model-based attack has the same residual error as the original measurements as

proven in Hug and Giampapa (2012). However, the Method 1 produces measurements

that are out of the historical range from the historical measurements.

To prove the last point, we perform the following experiment. We use the fake

vector in Fig. 3.10, where we can see that the voltage magnitude in bus 5 goes from

1 to 1.05 p.u. We use Method 1 to tamper the state v5 = 1.05 p.u. using equa-

tion 3.3. Fig. 3.9 shows the real measurements (in blue), the created tampered mea-

surements by our proposed framework (in red), the created tampered measurements

by Method 1, and the historical measurement range from our data generation (gray

bar). In the same Figure, we see that the created measurements by the WGAN are

within or very close to the historical range. In contrast, some tampered measurements

by Method 1 are far away from the real historical measurements. In specific, we see

in Fig. 3.9 that measurements 18 and 36 show a large distance from the historical

range. The key observation is: Even though Method 1 produces measurements with

the same residual error as the real ones, these measurements will still look suspicious.
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The power system operator would realize that the tampered measurements 18 and

36 are outliers with respect to the historical ones, as shown in Fig. 3.9. In contrast,

in the same Figure, we can see that our fake tampered measurements are within the

range of historical measurements and also pass the residual error test (for a confidence

of p = 0.95). Thus, making them less suspicious for the power system operator. This

means that our attack design is more advantageous at the stealth level.

We also carried out a sensitivity analysis for different confidence values p. In

this sensitivity analysis, we compare our method against three techniques in the

literature: Method 1 introduced in Hug and Giampapa (2012), Method 2 from Chin

et al. (2017), and Method 3 proposed in Liu and Li (2017). This sensitivity analysis is

carried out with the residual error test. Thus, the results only depend on the residual

error produced by the FDIA approaches. In other words, the range of historical

measurements does not affect the success rate. Methods 1 and 2 produce the same

residual error as the real measurements; this means that if the real measurement

passes the residual error test, the tampered measurements by these methods will pass

as well. Method 3 is an attack on a specific area, and we chose to delimit this area by

the buses 5 and 6. An important characteristic of this technique is that the residual

error of the tampered measurements can be lower than the real residual. The authors

in Liu and Li (2017) attribute it to the fact that the tampered measurements will be

more consistent (i.e., free of noise errors); thus, reducing the overall residual error.

To compare these methods, we made 1, 000 simulations with the same procedure

described in section 3.5.1, and we tamper the real noisy measurements with our pro-

posed approach and Methods 1, 2, and 3. For a given confidence value p, we compute

its corresponding threshold τ = χ2
k,p, and obtain the probability of each measurement

to pass the residual error test for the specified threshold, that is, Pr (J(z) ≥ τ). We

repeat this process for each simulation and each aforementioned method, and we ob-
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tain the success rate of passing the residual error test. This is the probability of the

simulations to pass the error test, and we call it ppass. We repeat this experiment for

several values p ∈ (0, 1), and the result is shown in Fig. 3.8. We can see that as the

threshold τ increases, the probability to pass the residual error test ppass increases

as well. Given that Methods 1 and 2 (in brown and purple, respectively) tampered

the measurements such that the residual error is the same as the real one (in blue),

they (almost) follow perfectly the real curve. Method 3 (in green) is close to the real

curve but just slightly above due to the behavior of this technique, as we previously

explained. Note that Methods 1 and 2 produce the same ppass as the real noisy mea-

surements in Fig. 3.8. This is because both methods are guaranteed to have the same

residual error as the real noisy measurements by design, as indicated in equation 3.3

(see proof in Hug and Giampapa (2012)).

It is important to note that we trained our model with noisy measurements, and

the method did not have access to the underlying power system model. The key

finding is that despite using only noisy measurements, our approach produces tam-

pered measurements with lower residual errors, outperforming all other methods.

We ascribe this due to the regularization term that contains the AE in equation 3.9,

∥z̃−AE (z̃) ∥22. As discussed in Section 3.3.2, an autoencoder has a denoising effect on

the on the noisy measurements. This will be proved with an ablation study in 3.5.5.

A summary of the qualitative traits of each of the aforementioned methods is shown

in Table 3.1, where it is shown that our proposed algorithm is the only one that

tampers measurements so that they are within the historical range.

Comparison Against Other Model-free FDIA Method

To make a fair comparison, we train our proposed model with the same methodol-

ogy indicated before with the difference that we use the DC power flow model as the
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Figure 3.8: Comparison of Passing the Residual Error Test with Different Methods

for the 9-bus Test Case.

Figure 3.9: Comparison of the Tampered Measurements by the Model-based

Method 1 Hug and Giampapa (2012) With Our Model-free Approach for the 9-bus

Test Case.

work in Mohammadpourfard et al. (2020) does. This framework requires normal and

tampered measurements to train a conditional adversarial network (cGAN). How-

ever, the work in Mohammadpourfard et al. (2020) does not clearly indicate how the

dataset of tampered measurements is obtained. For simplicity, we use the well-known

FDIA proposed in Hug and Giampapa (2012) to create the dataset of tampered mea-

surements. We evaluate both approaches on the 14-bus test. For a given confidence

value p, we compute its corresponding threshold τ = χ2
k,p, and obtain the probability

of each measurement to pass the residual error test for the specified threshold, that is,
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Figure 3.10: Example of a Real and a Fake Measurement Vector for the 9-bus Test

Case.
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Figure 3.11: Comparison of Passing the Residual Error Test with The cGAN, Mo-

hammadpourfard et al. (2020), For the 14-bus Test Case.

Pr (J(z) ≥ τ). We repeat this process for each simulation and each aforementioned

method, and we obtain the success rate of passing the residual error test. This is the

probability of the simulations to pass the error test, and we call it ppass. We repeat

this experiment for several values p ∈ (0, 1), and the result is shown in Fig. 3.11. We

carry out the same experiments for the IEEE 9-, 57-, 118-, and 300-bus test cases for

a confidence value p = 0.95. The results are shown in Table 3.2.
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Validate Scalability of the Proposed Approach

Finally, we show that our approach scales to bigger power system networks. To

demonstrate it, we test our model-free FDIA on the IEEE 118-bus network. The

created fake tampered measurements pass the residual error test, and Fig. 3.12 shows

that the created fake measurements provoke significant changes in the voltage angles,

leading to a successful FDIA.

Change in voltage
angles

Figure 3.12: Example of a Real Vs a Fake Measurement for the 118-bus Test Case.

Note That the Fake Measurements Produce Different States.

Also, a sensitivity analysis, like the one in the previous section, is carried out

for the IEEE 9-, 14, 57-, 118-, and 300-bus test cases, and the results are shown in

Fig. 3.13. In the same Figure, we can see that our FDIA method outperforms the

ones proposed in the literature.

Finally, we validate the scalability of our proposed approach. As previously men-

tioned, the AE and the WGAN models for all the test cases are trained for 10 and

100, respectively. The number of training samples and the number of iterations for
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(a) 14-bus test case.
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(b) 57-bus test case.
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(c) 118-bus test case.
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(d) 300-bus test case.

Figure 3.13: CDF Comparison for Many Test Cases.

all test cases are fixed since we used real yearly load data from the Electric Reliability

Council of Texas (ERCOT) for 2021 Electric Reliability Council of Texas, (ERCOT)

(2022). Also, the number of layers is fixed to be 5 for both the generator and discrim-

inator for all the experiments. The only component that varies is the dimensionality,

which depends upon the power system size. Thus, our proposed approach presents

good scalability with respect to the power system size. We can test this by measuring

the training times for the AE and WGAN models. Fig. 3.14 shows such training

times. We can see that training the surrogate state estimator (i.e., AE) for 10 epochs

takes less than 40 sec for all test cases. Training the WGAN model for 100 epochs

takes less than 530 sec for all test cases. We can see that the training times for the

models’ convergence for 1 year of data are low. Thus, our proposed attack could be

easily deployed in real-world settings.
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(b) WGAN training times.

Figure 3.14: Training times for Ae and Wgan for Different Test Cases.

3.5.4 Comparison of Different Defenses

The Chi-squared test could be, in some cases, inaccurate due to the approxima-

tions of errors by residuals Abur and Exposito (2004). So, in this section, we show

how our proposed algorithm performs against more sounding defenses. In the lit-

erature, there exist numerous defenses with different traits. For example, defenses

that do not use temporal correlations and ones that make use of them. In the realm

of defenses that exploit temporal patterns to detect FDIAs, there are works such as

the moving-target defense (MTD) Zhang et al. (2019); Lakshminarayana and Yau

(2020) or the work in He et al. (2017). However, our proposed FDIA scheme does not

take into account inter-temporal correlation, so it would be unfair to test our attack

against such defenses. Thus, in this section, we choose defenses that utilize data mea-

surements at a specific time interval to detect spurious data. Specifically, we test our

proposed attack against the largest normalized residual statistical test (LNRT) Abur

and Exposito (2004); Zhao and Mili (2018) and a recent deep learning-based detector

that consists of an adversarial autoencoder Zhang et al. (2020).
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Largest normalized residual statistical test (LNRT)

The LNRT is more robust than the classical Chi-squared test for bad data detection

and identification Abur and Exposito (2004); Zhao and Mili (2018). The normalized

value of the residual for the measurement i can be computed as rnormi = |ri|√
Ωii

, where
√
Ωii is the diagonal entry in the residual covariance matrix. This normalized residual

entry has a standard normal distribution, that is, rnormi ∼ N (0, 1). Then, the largest

element in the set {rnormi }Mi=1 is compared against a chosen threshold to decide if bad

data is presented. If this threshold is set to 3, then the confidence level is 99.7%. We

carry out this test for the 14-bus test system for each real and fake measurement, and

the results are shown in Fig. 3.15, where the average is 99.75% for real measurements

and 99.79% for tampered measurements with our proposed method. We carry out the

same experiments for the IEEE 9-, 57-, 118-, and 300-bus test cases for a confidence

value p = 0.997. The results are shown in Table 3.3.
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Figure 3.15: Largest Normalized Residual Statistical Test for the 14-bus Test System.

Deep Learning-based detector

There are recent learning-based detectors to detect FDIAs. The work in Zhang et al.

(2020), for example, proposed a scheme that consists in an adversarial autoencoder

(AEE). The AAE network is trained in three stages: the reconstruction phase, the

adversarial phase, and the supervised phase. For a model-based FDIA, this AEE
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has a detection accuracy of 96.25% and 97.85% for the 13- and 123-bus distribution

networks. We test this defense against our proposed model-free FDIA for the IEEE

9-, 14-, 57-, 118-, and 300-bus test cases, and the results are shown in Table 3.3.

In this table, we can see that our proposed approach has a lower success rate for

the AAE defense than for the Chi-squared and LNRT. Nonetheless, our method still

exhibits a high success rate (above 80%) for all the tested cases.

3.5.5 Ablation Study

This section presents an ablation study to show the impact of the SE’s surrogate

model in the proposed framework. The experiment design is similar to the one pre-

sented in previous sections. We made 1, 000 simulations with the same procedure

described in section 3.5.1. For a given confidence value p, we compute its correspond-

ing threshold τ = χ2
k,p, and obtain the probability of each measurement to pass the

residual error test for the specified threshold, that is, Pr (J(z) ≥ τ). We repeat this

process for each simulation for the real and proposed framework with and without

AE for the 9-bus test case. Next, we obtain the success rate of passing the residual

error test, ppass. We repeat this experiment for several values p ∈ (0, 1), and the

result is shown in Fig. 3.16. In the same Figure, we can see that the model without

the AE has a lower probability of passing the residual error test throughout all the

thresholds. We can also see that the model without the AE (green line) always have

around the same or lower probability of passing the residual error test than the real

measurements. As discussed in Sections 3.3.2 and 3.5.3, whereas the model with the

AE has a denoising effect the model without the AE can only learn from the noisy

measurement data. We carry out the same experiments for the IEEE 14-, 57-, 118-,

and 300-bus test cases for a confidence value p = 0.95. The results are shown in

Table 3.4, which shows that the model with the AE has a higher success rate than
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the one without it.
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Figure 3.16: Probability of Passing the Residual Error Test for 9-bus Test Case with

and Without AE.

3.6 Conclusion

We presented an architecture to create tampered measurement vectors to carry

out a FDIA without knowing the power system underlying information. The ar-

chitecture is framed into an optimization framework that considers the WGAN loss

function and two regularization terms to control the attack measurement vectors. We

validated our proposed framework with several power systems, in which we created

fake measurements to create a bad data injection attack without knowing the under-

lying power system model. These fake measurements passed the residual error test

to detect bad data and gave completely wrong estimated state variables and mea-

surements, which would compromise the electric grid’s reliability. This work proves

that for an attacker, it is not required to have access to all power system information.

Thus, more research is needed to keep power systems safe from these attacks.
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Algorithm 2: Training Process of the Proposed Scheme to Create Tampered

Measurements to Deploy a FDIA.

Inputs : Dataset M = {zi ∈ Rm}Li=1, batch size b, number of iterations of

the critic per generator iteration ncritic, generator and discriminator

learning rates α, clipping parameter c.

Output: Generator (G) network.

1 Train an AE with the real measurements from the dataset M and the loss

function L = ∥z− AE (z)∥2.

2 for number of training iterations do

3 for k = 1, . . . , ncritic do

4 Sample a minibatch of b samples{
z
(1)
D , . . . , z

(b)
D

}
=

{
z(1), . . . , z(b)

}
∼ Pr from the measurement dataset

M.

5 Sample a different minibatch of b samples and create a minibatch of

fake measurements
{
G
(
z
(1)
G

)
, . . . , G

(
z
(b)
G

)}
=

{
z̃(1), . . . , z̃(b)

}
∼ Pg.

6 Train the critic (or discriminator): Gradient ascent on the critic:

max
D∈D

Ez∼PrEz̃∼PgD (z)−D (z̃).

7 Clip discriminator weights in the range [−c, c].

8 end

9 Sample real and fake measurements:
{
z(1), . . . , z(b)

}
∼ Pr and{

z̃(1), . . . , m̃(b)
}
∼ Pg.

10 Train the Generator: Gradient descent on generator:

min
G

Ez∼PrEz̃∼Pg

[
D (z)−D (z̃) + wd · d (z, z̃) + ∥z̃− AE (z̃) ∥22

]
.

11 end

12 Get generator G that creates tampered measurements.
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Table 3.1: Comparison of Different FDIAs.

Ours M1 M2 M3

Is power system

model needed?
✗ ✓ ✗ ✓

Same residual

as originals?
✗ ✓ ✗ ✓

Measurements

needed to

deploy attack

All or

Area

under attack

All All
Area under

attack

Tampered

measurements

within

historical range?

✓ ✗ ✗ ✗

Table 3.2: Comparison of Passing the Residual Error Test with The cGAN, Moham-

madpourfard et al. (2020).

Test Case
Success Rate (%)

Ours cGAN

9-bus 95.5 92.7

14-bus 95.7 95.78

57-bus 89.3 93.6

118-bus 97 91.4

300-bus 91 93.1
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Table 3.3: Comparison of Different Defense Mechanisms Against A FDIA. *p = 0.997,

†p = 0.95.

Test Case
Success Rate (%)

LNRT* Chi-squared† AEE Zhang et al. (2020)

9-bus 98.3 95.5 93

14-bus 99.79 95.7 92.6

57-bus 92 89.3 86.5

118-bus 99.4 97 92.3

300-bus 93.5 91 84.4

Table 3.4: Impact of Including an AE.

Test Case
Success Rate (%)

With AE Without AE

9-bus 95.5 63.7

14-bus 95.7 81.1

57-bus 89.3 61

118-bus 97 54.33

300-bus 91 70.6
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Chapter 4

ATTACK ON THE DC STATE ESTIMATOR WITHOUT SYSTEM

INFORMATION AND PERFORMANCE GUARANTEE

The previous chapter introduced a model-free attack using an AE and a WGAN

to create tampered measurements. However, this work lacks a formal analysis of the

mechanism of the attack. While the presented model-free is innovative, relaxing the

assumption on the attacker’s system knowledge, it is apparent that there are still

limitations that warrant further study. For example, fundamental questions are not

answered, such as why the AE reduces the residual error. They also don’t include

assessing the model hyper-parameters selection to regulate the attack’s aggressiveness

and success rate.

To address such limitations, in this chapter, we introduce a FDIA that (1) does not

need any grid information, (2) does not require a dataset of perturbed measurements,

(3) maximizes the attack impact while being stealthy, and (4) has formal performance

guarantees. Our proposed framework is composed of (i) a GAN to create realistic,

high-quality samples, (ii) an attack regularization term to maximize the attack im-

pact, (iii) a residual error regularization term based on an autoencoder that ensures

the attack’s stealthiness, and (iv) formal analysis on the framework’s performance.

Simulations on the IEEE 14-bus, 118-bus, RTS-GMLC, and 200-bus Illinois syn-

thetic model test cases verify the performance of the proposed model-free FDIA. Also,

to contrast the differences and advantages between our approach and the existing ones

in the literature, we carry out comparisons between our proposed FDIA and three

other successful methods reported in Hug and Giampapa (2012); Chin et al. (2017);

Mohammadpourfard et al. (2020); Costilla-Enriquez and Weng (2022).
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4.1 Problem Formulation

To show the proposed model-free FDIA attack, we first review the model-based

approaches based on DC state estimation.

4.1.1 State Estimation with DC Power Flow Model

State estimation (SE) infers the state variables (i.e., voltage angles and voltage

magnitudes) x = (x1, . . . , xn) from a set of measurements z = (z1, . . . , zm) Wood et al.

(2013), where n is the number of buses or nodes in the grid, and m is the number of

measurements. Mathematically, we can describe the problem as z = Hx + e, where

H is the physical (linear) relationship between state variables and measurements,

and e is a vector representing white noise from the collected measurements (e.g.,

SCADA or PMU). In practice, measurements are collected and sent to the power

system operator, which obtains the estimated states x̂ by solving Tarali and Abur

(2012); Weng et al. (2017):

x̂ = argmin
x

J (x) = (z−Hx)TR−1 (z−Hx) ,

=
m∑
i=1

(zi −Hix)
2

σ2
i

,
(4.1)

where Hi is the i-th row of the matrix H. However, the vector of measurements z

may contain bad or wrong data due to telecommunication failures, meter errors, or

even FDIAs Abur and Exposito (2004); Wang et al. (2020). To confidently estimate

the states, the SE possesses a Bad Data Detector (BDD) module to detect and filter

suspicious data.

Bad Data Detector (BDD)

The measurement errors are assumed to follow a Gaussian distribution ei ∼ N (0, σi) Abur

and Exposito (2004) (where σi is the standard deviation of the i-th measurement).
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Therefore, the squared measurement residual error r = ∥z− ẑ∥22 follows a Chi-square

distribution χk, where k represents the number of independent variables in the power

system, and ẑ = Hx̂ is the vector of estimated measurements. Then, the presence

of errors in the measurements can be detected with the Chi-square test (or residual

error test) Abur and Exposito (2004); Weng et al. (2016). This test works as follows:

(i) Select the detection confidence probability p (e.g., 0.95), and compute its asso-

ciated threshold value τ = χ2
(m−n),p with p = Pr

(
J (x̂) ≤ χ2

(m−n),p

)
. (ii) Compute

the normalized measurement error J(x̂) =
∑m

i=1 (zi −Hx̂i)
2 /σ2

i . (iii) If the inequal-

ity in equation 4.2 holds, bad data will be suspected, or else the measurements are

assumed to be free of bad data.

J (x̂) ≥ τ (4.2)

4.1.2 Model-based FDIAs

A FDIA modifies the estimated states x̂ or measurements ẑ by changing the

original measurements z with a maliciously tampered measurement vector, that is,

za = z + a, where a is an attack vector. The attacker designs this attack vector to

compromise the system’s reliability by creating a wrong state estimate. For a FDIA to

be successful, it must circumvent the bad data detector Eq. (3.2) He et al. (2017). The

assumptions in the literature for a model-based FDIA about the attacker’s knowledge

are the following Liu et al. (2011); Hug and Giampapa (2012); Zhang and Sankar

(2016): (1) the attackers can intercept and alter the power system measurements

that are used to obtain the estimated states in the grid; (2) the attacker has access to

the power system model, which includes transmission line parameters and topology

information; and (3) the attacker possesses the SE model or can obtain the estimated

states of the network. Under these strong assumptions, the attacker could launch a

perfect FDIA Wang et al. (2020). In this perfect FDIA, the attacker can define the
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attack vector as a = Hc, where c is an arbitrary vector of changes in the estimated

states. In this scenario, if the original measurements z can pass the residual-based

bad data detector test in Eq. (3.2), the corrupted measurements za will also pass this

test Hug and Giampapa (2012).

4.2 Proposed Method

In this section, the model-free attack from last chapter is introduced.

4.2.1 Creating Realistic and High-Quality Samples

As in the previous chapter, we will use the WGAN. These models have two distinct

neural networks, a generator G and a discriminator D (or critic). The minimax

objective of the WGAN is

min
G

max
D∈D

Ez∼PrEλ∼Pλ
[D (z)−D (G(λ))] , (4.3)

where D is the set of 1-Lipschitz functions Arjovsky et al. (2017); Pr is the real

data distribution; λ is known as the latent space, and it is sampled from an inde-

pendent distribution Pλ. The generator G learns the real distribution Pr, which,

in our context, this real distribution is the set of historically observed measure-

ments Z = {zi ∈ Rm}Li=1 (where L is the number of elements in the dataset), where

zi = Hxi + ei.

4.2.2 Minimizing the Residual Error in the State Estimator

To gain trust from the power system operator, the created tampered measure-

ments, z̃ = G(λ), must pass the residual error test in Eq. (4.2). This normalized

residual error ε for the tampered measurements is given as

ε = (z−Hx̂)TR−1 (z−Hx̂) =
m∑
i=1

(zi −Hix̂)
2

σ2
i

. (4.4)
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As Eq. (4.2) suggests, the smaller the residual error ε, the bigger the probability of

passing the test for a given tampered measurement. In other words, a given vector

of tampered measurements, z̃, should produce a small residual error. However, in

the model-free attack setting, the attacker does not know the state estimator model

or system parameters H. Thus, for an attacker, it is not possible to compute the

residual error ε because it depends on the system model, H. Nonetheless, based on

universal power system knowledge, we know there exists a mapping function from

measurement space to state space h : Rm 7→ Rn and mapping back from state space

to measurement space SE : Rn 7→ Rm that makes the squared residual error zero:

ε = ∥z − h (SE (z))∥2. Then, it is possible to learn such implicit functions through

data with an autoencoder.

Based on the hidden dimension size, a trained AE with real measurements will

minimize the residual error in Eq. (4.4). A formal analysis is presented in the following

section on Theorem 4. Once the autoencoder is trained (denoted as AE∗), the AE loss

function can be embedded into Eq. (4.3) to incentivize the generation of tampered

measurements that will produce similar estimated measurements and thus lower the

residual error. This can be done by adding the regularization term ∥z̃ − AE∗ (z̃) ∥22
in Eq. (4.3):

min
G

max
D∈D

Ez∼PrEλ∼Pλ

[
D (z) − D (z̃) + λAE · ∥z̃ − AE∗ (z̃) ∥2

]
, (4.5)

where z̃ = G(λ) and λAE is the autoencoder regularization weight.

4.2.3 Maximize the FDIA Impact

To successfully deploy an FDIA, we want to incentivize the generator to construct

measurements with a high attack vector norm ∥a∥2. This will provoke the SE with a

high likelihood to produce erroneous estimated states, the main objective in a FDIA.
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To accomplish this, we can incentivize the model to generate such fake measurements

with the regularization term λattack · d (z, z̃) in Eq. (3.9), where z̃ = G (z), d (z, z̃) =

∥a∥2 represents attack vector size, and λattack is a hyper-parameter that represents

the weight regularization term. This regularization term incentivizes the WGAN

to produce a tampered measurement vector z̃ that will generate completely wrong

estimated measurements. This leads to the following loss function

min
G

max
D∈D

Ez∼PrEz̃∼Pg

[
D (z)−D (z̃)

+ λAE · ∥z̃− AE (z̃) ∥22 − λattack · d (z, z̃)
]
. (4.6)

4.2.4 Summary of our Proposed Model-free Attack

To summarize, our proposed architecture is shown in Fig. 4.1 with two stages.

First, an autoencoder is trained with historical measurement data to minimize the

residual error in the state estimator. Second, the WGAN is trained with the same

data and the two regularization terms: (1) one incentivizes the WGAN to produce

measurements that will pass the residual error test and (2) another to maximize

the attack’s impact. In the next section, we formally analyze the proposed attack

framework.

4.3 Mathematical Analysis for the Proposed Method

The last section presented our proposed framework to create fake power system

measurements to deploy a FDIA. However, to successfully deploy a FDIA without

relying upon the underlying power system model, we need to be confident that our

learned model will produce measurements that (i) look legit, (ii) cause an impact,

and (iii) bypass the bad data detector. This section formally analyzes our proposed

framework to demonstrate that it satisfies all the required properties to create effective
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AE∗ = argmin 𝒛𝒊 − AE 𝒛Encoder Decoder⋮𝒛 AE(𝒛)

Real/Fake

Generator
(G)

Discriminator
(D)

AE∗(𝒛)

minmax 𝔼𝒛~ℙ 𝔼 𝒛 ~ℙ 𝐷 𝒛 − 𝐷 𝐺 𝒛 + 𝜆 𝐺 𝒛 − AE∗ 𝐺 𝒛 − 𝜆 𝑑(𝒛, 𝐺 𝒛 )

C. [Minimize residual error]

𝒛 = 𝐺 𝒛

⋮

𝒛

Physical Shape
Supervision

Mimic Chi-Squared Test
Physics-based
Generation

𝒛

0. [Learn a “virtual” Chi-squared test]

A. [Sample high-quality fake data]

B. [Maximize attack size]

Figure 4.1: Proposed Model-free Architecture with a Wgan and Two Regularization

Terms to Deploy an FDIA.

attacks. Such requirements are met and summarized in Theorem 3. However, we must

first formally analyze (i) the autoencoder and (ii) the state estimator’s residual error.

4.3.1 Connection between PCA and Autoencoders

We first analyze the connection between the autoencoder and PCA. Let X =

{x1, . . . ,xm} be a set of zero-centered data points xi ∈ Rn×1. We define the data

matrix as X = [x1, . . . ,xm] ∈ Rn×m. PCA uses the top eigenspace of XXT to

approximate/fit the dataset Li et al. (2020). The autoencoder is a neural network

model for unsupervised learning composed of an encoder and a decoder. The simplest

case consists of a linear encoder A ∈ Rp×n that usually maps the input into a low

dimensional space (latent space with a p-dimension) and a linear decoder B ∈ Rn×p

that maps back the latent space to the original space, that is, X ≈ ABX. This

problem is formulated as

min
A,B

∥X −BAX∥2F . (4.7)

The work in Baldi and Hornik (1989) identified the connection between autoen-
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coders and PCA: under mild nondegeneracy conditions, any B at a local minimizer

recovers the top rank-p eigen space of XXT. The problem in Eq. (4.7) can be

expressed as minB,Z ∥X −BZ∥2F , where Z ∈ Rp×m. It can be proved that the top

rank-p eigenspace can be recovered from any local minimizer. Therefore, the autoen-

coder, from a geometric point of view, performs PCA on X.

Theorem 2. Equivelancy of autoencoder and PCA. Assume that X ∈ Rn×m (with

m ≥ n) is full-rank and that XXT has distinct eigenvalues. Then, at any local

minimizer of the optimization problem

min
B∈Rn×p,Z∈Rp×m

∥X −BZ∥2F p ≤ n, (4.8)

B spans the top rank-p eigenspace of XXT. Furthermore, all these local minimums

are also global minimums Li et al. (2020).

Low-ranking dataset approximation

Now that we know that the autoencoder is equivalent to the PCA, Theorem 2, to pave

our way to understand the residual error in the state estimator, we analyze the norm

of the autoencoded measurements utilizing the singular value decomposition. Let’s

assume the data has been properly centered and scaled for this analysis. The SVD

of the dataset measurement matrix, Z, is expressed as Brunton and Kutz (2019):

Z = UΣV T =
∑m

i=1 σiuiv
T
i , where U ∈ Rm×m and V ∈ Rn×m are unitary matrices,

and Σ ∈ Rm×m is a diagonal matrix with non-negative entries. The SVD provides

an optimal low-rank approximation to the matrix Z. Specifically, we can obtain

the rank-r approximation by keeping the leading r singular values and vectors and

discarding the rest: Z ≈ Z(r) = U(r)Σ(r)V
T
(r) =

∑r
i=1 σiuiv

T
i , where Z(r) ∈ Rm×T is

the rank-r approximation of the dataset matrix Z, U(r) ∈ Rm×r is the truncated U
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matrix, V(r) ∈ Rn×r is the truncated V matrix, and Σ(r) ∈ Rr×r is the truncated Σ

with the lead r singular values.

4.3.2 Residual error analysis

This subsection analyzes the state estimator’s residual error. Let Z = {zi}Ti=1

be the measurement dataset with each sample zi ∈ Rm×1. We define the matrix of

collected measurements as Z =

[
z1 z2 · · · zT

]
∈ Rm×T . The data generation

process for each sample is the following

zi =Hx
∗
i + ei, (4.9)

where x∗
i ∈ Rn×1 is the vector of the underlying system states, H ∈ Rm×n (n < m)

represents the physical relationship between state variables and measurements, ei ∼

N (0,R) are measurement errors, and R = diag (σ2
i , . . . , σ

2
m) is the covariance matrix

of the measurement errors. The model in Eq. (4.9) can be written in matrix form

as Z = HX∗ +E, where X∗ =

[
x∗
1 x∗

2 · · · x∗
T

]
∈ Rn×T is the matrix of system

states, and E =

[
e1 e2 · · · eT

]
∈ Rm×T ,H ∈ Rm×n is the matrix of measurement

noises.

State estimation

State estimation (SE) infers the system state variables xi ∈ Rn×1 from a measurement

vector zi ∈ Rm×1. The state estimation minimizes

x̂i = argmin
x

(zi −Hxi)
TR−1 (zi −Hxi) . (4.10)

The solution of Eq. (4.10) is

x̂i =
(
HTR−1H

)−1
HTR−1zi = G

−1HTR−1zi, (4.11)
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where G =HTR−1H ∈ Rn×n. The estimated vector measurement is

ẑi =Hx̂i =HG
−1HTR−1zi =Kzi, (4.12)

where K = HG−1HTR−1 ∈ Rm×m is known as the hat matrix Abur and Exposito

(2004).

The measurement residual vector for the i-th sample εi ∈ Rm×1 is expressed as

follows

εi = zi − ẑi = zi −Kzi = (I −K) zi = Szi, (4.13)

where the matrix S = (I −K) ∈ Rm×m is called the residual sensitivity matrix. The

residual matrix for the whole dataset matrix can be succinctly written as

E =KZ =

[
ε1 ε2 · · · εT

]
∈ Rm×T . (4.14)

Bad Data Detector (BDD)

The state estimator SE possesses a Bad Data Detector (BDD) module to detect

and filter suspicious data. The vector of measurement errors is assumed to follow a

Gaussian distribution and be independent ei ∼ N (0,R) Abur and Exposito (2004).

Therefore, the normalized squared measurement residual error of the i-th sample

∥εi∥2 = ∥zi − ẑi∥2 ∼ χ2
ν (4.15)

follows a chi-squared distribution χ2
ν , where ν = m − n is a positive integer that

specifies the number of degrees of freedom, representing the number of independent

variables in the power system. Note that in Eq. (4.15), we assume that all the

diagonal elements of R are equal for simplicity. If this is not the case, then ∥εi∥2 =∥∥∥R− 1
2 (zi − ẑi)

∥∥∥2

.
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Based on the statistical properties of ∥εi∥2, the presence of errors in the measure-

ments can be detected with the chi-squared test (or residual error test) Abur and

Exposito (2004); Weng et al. (2016). This test works as follows:

(i) Select the detection confidence probability p (e.g., 0.95), and compute its asso-

ciated threshold value τ = χ2
ν,p with p = Pr

(
J (x̂) ≤ χ2

ν,p

)
.

(ii) Compute the normalized measurement error ∥εi∥2.

(iii) If the inequality in Eq. (4.16) holds, bad data will be suspected, or else the

measurements are assumed to be free of bad data.

∥εi∥2 ≥ τ (4.16)

4.3.3 Performance guarantees

Theorem 3. FDIA in fully-observable case. Given a measurement vector z, and

assuming that the system is observable from this set of measurements, our proposed

model can generate false data z̃ that satisfies:

(i) It generates high-quality fake measurements that look “real,” Lemma 1.

(ii) The attack size follows ∥z̃ − Kz̃∥2 ≥ O
(
λattack

)
, where λattack is the penalty

term of z̃ and z being too close, leading to ∥z̃ − z∥2 ≥ O
(
λattack

)
in DC

grids, Lemma 2.

(iii) The residual error of z̃ is lower or equal to the residual error of z, i.e., E∥z̃ −

Kz̃∥2 ≤ E∥z − Kz∥2 provided sufficient data and training capacity, where K

is the matrix related to the state estimation process. Thus, the probability of z̃

passing the Chi-squared test is lower or equal to that of z passing the Chi-squared

test, Theorem 4.
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Lemma 1. Distribution Match of GAN. The JS divergence between the learned distri-

bution gGAN (z) and the noisy distribution gnoisy (z) is minimized with sufficient data

and training capacity, that is, O
(
λattack

)
· JS (gnoisy (z) || gGAN (z)) ≤

JS (gnoisy (z) || gGAN (z)).

Lemma 2. Larger Attack via Regularization. The attack impact, quantified by

∥z− z̃∥2, has a lower bound ∥z− z̃∥2 ≥ O
(
λattack

)
, where λattack is the penalty term

of z and z̃ being too close. Thus, a larger penalty λattack leads to a larger attack impact

on power.

Theorem 4. Residual error of autoencoded measurements (lineal autoencoder). Given

a matrix of collected measurements Z =

[
z1 z2 · · · zT

]
∈ Rm×T , where zi ∈ Rm×1

is the i-th sample, the residual error of the r-rank compression of the dataset
∥∥E(r)∥∥2

F
is

smaller than the residual error of the original dataset ∥E∥2F :
∥∥E(r)∥∥2

F
< ∥E∥2F r <

m.

Proof. Proof of Theorem 4. The squared residual error of the measurement dataset

Eq. (4.14) is given as ∥E∥2F = ∥KZ∥2F =
∑T

i=1 ∥εi∥
2 .

The squared residual error of the r-rank dataset is given as∥∥E(r)∥∥2

F
=

∥∥KZ(r)

∥∥2

F
=

∥∥KU(r)Σ(r)V
T
(r)

∥∥2

F

=
∥∥KU(r)Σ(r)

∥∥2

F

=

∥∥∥∥K [
u1σ1 u2σ2 · · · urσr

]∥∥∥∥2

F

=
r∑

i=1

∥Kuiσi∥2 .

(4.17)

From Eq. (4.17), we conclude that the dataset residual error
∥∥E(r)∥∥2

F
is propor-

tional to r. Thus ∥∥E(r)∥∥2

F
< ∥E∥2F r < m. (4.18)

■
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Lemma 3. Reconstruction error. The reconstruction error ε
(
Z,Z(r)

)
is inversely

proportional to r, as follows ε
(
Z,Z(r)

)
=

∥∥Z −Z(r)

∥∥2

F
.

4.4 Numerical Experiments

This section shows how we deploy FDIAs on power grids with our proposed frame-

work without knowing their mathematical or physical model. We conducted extensive

experiments on different power networks to show the contributions and generality of

our approach.

We train a WGAN with historical measurements with the model in Eq. (4.6)

to demonstrate that (i) the model produces realistic, high-quality samples, (ii) the

fake measurements successfully pass the residual error test with a high success rate,

corroborating the mathematical analysis, and (iii) show that the trained WGAN

creates different measurements (and therefore states) from the actual ones. This shows

that the regularization terms work, maximizing the attack’s impact and reducing the

residual error in the state estimator. We carried out the aforementioned experiments

in various test cases with similar results. Specifically, we use the IEEE 14-bus case, the

IEEE 118-bus case, the Reliability Test System - Grid Modernization Lab Consortium

(RTS-GMLC) test system, and the 200-bus Illinois synthetic model.

4.4.1 Data Generation and Model Architecture

Data Generation

For all test cases, we consider the DC power flow model and obtain all the active power

flow measurements through transmission lines and transformers as measurements.

The IEEE 14-bus case is composed of 20 measurements and 14 states, the IEEE 118-

bus case has 186 measurements and 118 states, the RTS-GMLC test system contains

120 measurements and 73 states, and the 200-bus Illinois synthetic model has 245
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measurements and 200 states.

We obtain the power systems’ measurements by solving L times the DC power

flow under different load conditions using MATPOWER Zimmerman et al. (2011).

To simulate the 24-hour fluctuation, we use the real yearly load data from the Electric

Reliability Council of Texas (ERCOT) for 2021 Electric Reliability Council of Texas,

(ERCOT) (2022). For our simulations, we multiply each busload with the normalized

loading parameter associated with a randomly selected area, γ, obtained from these

realistic profiles. Similarly, we also adjust generation by scaling the generation profiles

by multiplying them by the same loading parameter, γ, Ajjarapu and Christy (1992);

Milano (2008). To make it more realistic, we add white noise to all measurements

according to the standard deviation associated with the measurement devices. That

is active power flow: 0.02 p.u., according to Shahriar et al. (2018). Finally, if we

do not find an AC power flow solution, we do not include it in the dataset. This

data generation approach will give us rich data variety with the power system under

different load conditions.

Model Architecture

The architecture of our proposed WGAN model is inspired by the architecture of the

DCGAN Radford et al. (2015) with the following modifications to adapt it to our

power system data. Since the sensor measurement vectors are one-dimensional, we

use fully connected layers instead of convolutional layers. The generator, G, consists

of 5 layers with ReLU activation function for all layers except for the output, which

uses tanh. The discriminator, D, comprises 5 layers with LeakyReLU activations

with the slope of the leak set to 0.2.
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4.4.2 Validation of Performance Guaranties

To demonstrate the stealthiness of our framework, we evaluate the performance

guarantees in Theorem 4 and Lemma 3. These numerical quantifications are the

residual and reconstruction errors for the 14-bus test case, with 13 system states and

20 measurements for the noiseless and noisy cases. Since the performance guarantees

are based on the number of singular values used to reconstruct the measurements, we

evaluate such quantities when varying the AE’s latent dimension from 1 to 20.

Noiseless case

Theorem 4 states that the residual error, ε, is proportional to the AE’s size of the

hidden dimension. However, in the noiseless case, the state estimation for the original

measurement will always be perfect. Thus producing a zero residual error, ε̂. Since

the autoencoded residual error, ε̂AE, is upper bounded by the original residual error,

ε̂, then ε̂AE = 0 for all hidden sizes. This is illustrated in Fig. 4.2a. Lemma 3 states

that the reconstruction error is inversely proportional to the hidden dimension size.

This makes sense since an AE with a hidden dimension size equal to the input’s size

can reconstruct any input by trivially learning an identity matrix. Fig. 4.2b shows the

reconstruction error for different numbers of hidden dimensions. It can be seen that

the reconstruction error decreases as the hidden size increases. Such error achieves

zero with a hidden size of 13. The reason is that there is no noise in the dataset, and

the measurements were constructed with 13 states.

Noisy case

Theorem 4 states that the residual error, ε, is proportional to the AE’s size of the hid-

den dimension. We know that the autoencoded residual error, ε̂AE, is upper bounded

79



Zero residual error

(a) Residual error, ε̂AE. This error is

proportional to the size of the latent

dimension. ε̂AE brown line Eq. (4.18).

Zero reconstruction error

(b) Reconstruction error is inversely

proportional to the hidden size.

ε
(
Z, Z̃AE

)
blue line, Lemma 3.

Figure 4.2: Residual and Reconstruction Errors for Clean 14-bus Dataset.

by the original residual error, ε̂. This implies that the residual error will be the

smallest when the hidden dimension is the smallest. This is illustrated in Fig. 4.3a,

where the solid lines represent the mean of the samples, and the surrounding areas

show the lowest and highest values. It can be seen that ε̂AE ≤ ε̂ along all the hidden

dimensions, as expected by Theorem 4. Lemma 3 states that the reconstruction error

is inversely proportional to the hidden dimension size. Fig. 4.3b shows the recon-

struction error for different numbers of hidden dimensions. It can be seen that the

reconstruction error decreases as the hidden size increases. The blue line represents

the AE’s reconstruction error, achieving zero for a hidden size of 20. This is expected

as the AE has enough capacity to learn all the information, including noise.

4.4.3 The Trade-off of Regularization Weights

To design an effective attack, the fake measurements must (1) pass the chi-squared

test and (2) create an impactful attack vector. We measure these two requirements

by the success rate and the attack vector size. Thus, we need a high success rate and

a high attack vector for an effective attack. From the model in Eq. (4.6), we can see
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Residual error is small for 

low hidden dimension size 

(a) Residual error, ε̂AE. This error is

proportional to the size of the latent

dimension, ε̂AE brown line Eq. (4.18).

Large reconstruction error 

with small hidden dimension

(b) Reconstruction error is inversely

proportional to the hidden size.

ε
(
Z, Z̃AE

)
blue line, Lemma 3.

Figure 4.3: Residual and Reconstruction Errors for the Noisy 14-bus Test Case.

that λAE and λattack have contradictive objectives. λAE is proportional to the success

rate and inversely proportional to the attack vector size. Similarly, λattack is inversely

proportional to the success rate and proportional to the attack size. To illustrate this,

let λAE to have a fixed value, and λattack to monotonically increase. It can be seen

in Fig. 4.4 that as λattack gets larger, the attack impact increases, but the success rate

decreases. Fig. 4.4a shows a conservative set of regularization weights that produce

a high success rate of 100%. Fig. 4.4b shows a set of regularization weights that

produce a high success rate of 96%, which is similar to the real data. Fig. 4.4c shows

an agressive set of regularization weights that produce a low success rate of 60%.

Therefore, for the model in Eq. (4.6) to optimally work, it is essential to carefully

choose λattack and λAE. To choose an appropriate weight configuration, we explore the

sensitivity of the success rate and the attack vector size for λattack ∈ [0, 1] and λAE ∈

[0, 1]. The sensitivity of the success rate is shown in Fig. 4.5a, and the sensitivity

of the attack vector size is shown in Fig. 4.5b. We first want to deploy a stealthy

attack. This means we want a specified high success rate, pspecified. Secondly, given

our specified success rate, we want to produce the largest feasible attack vector, ∥a∥2.
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Figure 4.4: Attack Regularization Weight Effect on Residual Error Distribution.

This can be cast as the following optimization problem:

max
λAE,λattack

∥∥a (λAE, λattack
)∥∥2

,

s.t. p
(
λAE, λattack

)
= pspecified.

(4.19)

We solve the optimization problem in Eq. (4.19) with pspecified = 0.99 and we obtain

the optimal regularization weights of λAE∗
= 0.7 and λattack∗ = 0.1, which are indi-

cated in Fig. 4.5. Thus, we use these regularization weights in the rest of the work to

carry out the simulations.

(a) Sensitivity of attack success rate

with respect to λAE and λattack.

(b) Sensitivity of attack vector norm

with respect to λAE and λattack.

Figure 4.5: Sensitivity Regularization Weights. λAE∗
= 0.7 and λattack∗ = 0.1.
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4.4.4 Validation of Attack’s Performance

This section analyzes the attack’s performance on different test cases. Specifically,

it analyzes (1) the quality of the created samples, (2) the change in system states,

(3) the attack stealthiness via the success rate, and (4) the attack sensitivity with

respect to the number of measurements in the system.

Quality of Created Samples

Fig. 4.6 shows the real measurements (in blue) and the fake measurements (in red)

produced by our proposed framework. In the same figure, we can see that the fake

measurements look like real ones but do not completely overlap. This means that our

framework produces samples not in the original dataset. This is expected as the attack

regularization term incentivizes the GAN to produce such measurements, Lemma 2.

Perturbation of System States

Fig. 4.7 shows the real system states (in blue) and the states produced by the fake

measurements (in red). It can be seen that the fake states are more widespread than

the real states. This accomplishes the attacker’s target of dramatically changing the

system states by exclusively tampering the measurements.

Evaluating Attack Stealthiness

Fig. 4.8 shows the residual error’s PDF for the real (in blue) and fake measurements

(in red). It is important to underscore that the residual errors of the fake measure-

ments are consistently smaller than those of the real measurements. This validates

the Theorem 4. That is, the autoencoded measurements produce smaller residual

errors than the real ones. Thus, the fake measurements are more likely to pass the
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(a) IEEE 14-bus case. (b) RTS-GMLC test case.

(c) IEEE 118-bus case. (d) 200-bus Illinois synthetic model.

Figure 4.6: Measurement Distribution for Different Test Networks.

chi-squared test. We also carry out a sensitivity analysis of the success rate with re-

spect to a given threshold. the experiment design is as follows. For a given confidence

value p, we compute its corresponding threshold τ = χ2
k,p, and obtain the probability

of each measurement to pass the residual error test for the specified threshold, that

is, Pr (J(z) ≥ τ). We repeat this process for each simulation and obtain the success

rate of passing the residual error test. This is the simulation’s probability of passing

the error test. We repeat this experiment for several values p ∈ (0, 1). Fig. 4.9 shows

the result of this sensitivity for the real (in blue) and the fake (in red) measurements

for different test grids.

It can be seen that the fake measurements always have a higher success rate than

the real ones. Thus, the attack is not likely to be detected for any chosen threshold

τ .
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(a) IEEE 14-bus case. (b) RTS-GMLC test case.

(c) IEEE 118-bus case. (d) 200-bus Illinois synthetic model.

Figure 4.7: Real and Fake States Distribution for Different Test Networks.

Sensitivity of Attack’s Regularization Weight

In this part, we explore the sensitivity of the attack’s regularization weight λattack

while keeping λAE fixed, as previously illustrated in Fig. 4.4. Fig. 4.8 shows the

results for a set of conservative weights that produce a high success rate. Fig. 4.10

shows the results for a larger attack weight that shifts the residual error distribution

to the right to overlap the real underlying distribution. Fig. 4.11 shows the results

for an aggressive attack weight that creates larger attack vectors but produces lower

success rates.
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(a) IEEE 14-bus case. (b) RTS-GMLC test case.

(c) IEEE 118-bus case. (d) 200-bus Illinois synthetic model.

Figure 4.8: Residual Error’s PDFs.

Attack Analysis with Limited Tampered Measurements

Risk (ρ) is the expectation of loss Wald (1945); DeGroot (2005), and in this context,

it can be interpreted as the attack impact. This is given as ρ = P × ξ, where P is

the probability of bypassing the residual error test, and ξ is the magnitude of the

attack. P is the attack success rate and ξ = ∥a∥2 is the attack vector magnitude. P

is obtained by computing the attack’s success rate when nunknown measurements are

in the system. In this case, the defender has access to all the measurements in the

system, and the attacker can only modify a subset of the measurements.

To assess the attack’s impact, two scenarios are tested with respect to the at-

tacker’s measurement knowledge. In the first scenario, the attacker can see all the

measurement information in the system but can only modify a subset of the observed
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(a) IEEE 14-bus case. (b) RTS-GMLC test case.

(c) IEEE 118-bus case. (d) 200-bus Illinois synthetic model.

Figure 4.9: Residual Error’s CDFs.

measurements. Under this scenario, for the IEEE 14-bus test case, Fig. 4.12a shows

the success rate and Fig. 4.12b shows the attack vector magnitude ξ = ∥a∥2. Based

on these results, the risk is computed as ρ = P × ξ, and the results for the IEEE

14-bus test case and for the 200-bus Illinois synthetic model are shown in Figs. 4.13a

and 4.13b. In the second scenario, the attacker can only see and modify a subset

of the measurements in the system. The results for the IEEE 14-bus test case and

for the 200-bus Illinois synthetic model are shown in Figs. 4.13c and 4.13d. It can

be observed that the attack impact is lower than in the first scenario. In the first

scenario, the attacker trains the models with all the measurement information, but in

the second case, the attacker is myopic to train the models with reduced measurement

information.
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(a) IEEE 14-bus case. (b) RTS-GMLC test case.

(c) IEEE 118-bus case. (d) 200-bus Illinois synthetic model.

Figure 4.10: Residual Error’s PDFs with λattack Tuned to Mimic the Residual Error

Distribution.

Sensitivity with respect to Measurement coverage

Theorem 3 states that our framework can produce high-quality samples that bypass

the residual error test given that the system is observable. In this part, we analyze

the sensitivity of this claim by evaluating the attack success rate with respect to the

measurement coverage. To do this, we randomly remove nunknown ∈ Z measurements

and carry out the attack. This process is done for nunknown ∈ [0,m]. Fig. 4.14 shows

the test cases’ success rates. The trend is the same for all test cases: The success

rate decreases as the number of removed measurements increases. This is expected

as the attack is carried out with less information. Thus, it is more challenging.

Another observation is that the success rate drops to zero after a certain number of
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(a) IEEE 14-bus case. (b) RTS-GMLC test case.

(c) IEEE 118-bus case. (d) 200-bus Illinois synthetic model.

Figure 4.11: Residual Error’s PDFs with aggressive λattack That Skews the Distribu-

tion to Produce a Low Success Rate.

removed measurements. This is because the system becomes unobservable, and the

state estimation problem becomes underdetermined. For instance, Fig. 4.14a shows

the results for the 14-bus test case, where we can see that when nunknown ≥ 7, the

success rate drops to zero. As this system has 20 measurements and 13 states, if 7 or

more measurements are removed, then the system becomes unobservable. The same

is true for the other cases.

Comparison against other FDIA methods

To assess the advantages and differences between our proposed model-free FDIA

framework, we compare our method against two model-based and two model-free

attacks. The model-based attacks are: MB 1 introduced in Hug and Giampapa (2012)
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(a) Success rate. (b) Attack size vector.

Figure 4.12: Success Rate and Attack Vector Size with Partial Observability for the

IEEE 14-bus Test Case.

and MB 2 from Chin et al. (2017). The model-free attacks are: MF 1 introduced

in Mohammadpourfard et al. (2020) and MF 2 proposed in Costilla-Enriquez and

Weng (2022). For the model-based attacks, we inject random attack vectors. For

the model-free attacks, we train them with exclusively historical measurements. To

compare these methods, we generate samples with the same procedure described in

section 4.4.1 and tamper the real noisy measurements with our proposed approach

and Methods: MB 1, MB 2, MF 1, MF 2. We track two essential metrics in these

comparisons: (i) attack success rate and (ii) attack vector size.

To evaluate the success rate of all approaches, we carry out the following proce-

dure. For a given confidence value p, we compute its corresponding threshold τ = χ2
k,p,

and obtain the probability of each measurement to pass the residual error test for the

specified threshold, that is, Pr (J(z) ≥ τ). Specifically, we select a confidence value

p = 0.95. The results are shown in Table 4.1. It can be observed that our method

produces success rates above 95%. This is because our framework reduces the residual

error of tampered samples. The model-based methods, MB 1 and MB 2, have success

rates around 95%. This is because both methods are guaranteed to have the same

residual error as the real noisy measurements by design (see proof in Hug and Gi-
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(a) Attack impact with knowledge of

all measurements for IEEE 14-bus test

case.

(b) Attack impact with knowledge of

all measurements for 200-bus Illinois

synthetic model.

(c) Attack impact with limited knowl-

edge measurements for IEEE 14-bus

test case.

(d) Attack impact with limited knowl-

edge measurements for 200-bus Illinois

synthetic model.

Figure 4.13: Attack Impact Analysis with Partial Observability.

ampapa (2012)). Similarly, the MF 1 framework has success rates around 95% with

more variability due to the training process and lack of mathematical guarantees.

The MF 2 approach has higher success rates than 95% due to its architecture that

reduces residual errors.

Now, we evaluate the attack vector size ∥a∥2. For this evaluation, we only report

the attack vector norms for the model-free attacks. The reason is that model-free

attacks can inject an arbitrarily large attack vector. The results for our framework,

MF 1, and MF 2 are shown in Table 4.2, where it can be seen that our approach
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(a) IEEE 14-bus case. (b) RTS-GMLC test case.

(c) IEEE 118-bus case. (d) 200-bus Illinois synthetic model.

Figure 4.14: Sensitivity of Measurement Coverage.

produces the largest attack vectors. Thus, our attack is the most effective.

4.5 Conclusion

This chapter formally analyzed the proposed model-free FDIA to create tampered

measurement vectors to carry out a False Data Injection Attack (FDIA) without

knowing any underlying information about the power system. This work proves that

an attacker can deploy a guaranteed attack and is not required to have access to all

power system information, which poses a significant threat to the security of power

systems.

92



Table 4.1: Comparison of Attack Success Rates.

Test Case
Success Rate (%)

Ours MB 1 MB 2 MF 1 MF 2

14-bus 100 94.7 94.7 94.4 95.7

RTS-GMLC 99.7 94.4 94.4 93.3 98.3

118-bus 100 95.2 95.2 91.4 97.1

200-bus 98.2 94.2 94.2 92.2 96.3

Table 4.2: Comparison of Attack Vector Size.

Test Case
Attack vector norm, ∥a∥2

Ours MF 1 MF 2

14-bus 0.0224 0.0106 0.0186

RTS-GMLC 0.0275 0.0185 0.0276

118-bus 0.0421 0.0274 0.0365

200-bus 0.0355 0.0385 0.0309
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Chapter 5

ATTACK ON THE AC STATE ESTIMATOR WITHOUT SYSTEM

INFORMATION AND PERFORMANCE GUARANTEE

5.1 Introduction

The last chapter introduced a formal analysis of a model-free FDIA on a linear

model. However, the linear model does not truly capture the non-linear power system

nature. To address such limitations, based on general knowledge about the power

system, this chapter introduces a FDIA on an AC model that only requires one piece

of information: (i) historical system measurements. The proposed framework relies

on the fact that the footprint of the system model may be hidden in the historical

data implicitly, as depicted in Fig. 5.1.

Extensive simulations on both transmission (IEEE 14-bus, 118-bus, 300-bus, and

RTS-GMLC) and distribution networks (22-bus, 85-bus, 123-bus, and 144-bus radial)

model test cases verify the performance of the proposed model-free FDIA. Further-

more, to highlight the distinctions and benefits of our approach compared to those

documented in the existing literature, we conduct comparative assessments involv-

ing our proposed FDIA and three other well-established methods outlined in Hug

and Giampapa (2012); Chin et al. (2017); Mohammadpourfard et al. (2020); Costilla-

Enriquez and Weng (2022).

5.2 Mathematical Analysis for the Proposed Method

The previous section introduced our framework for generating counterfeit power

system measurements to deploy a FDIA. To ensure the successful deployment of a
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Figure 5.1: Information Flow of the Proposed Model-Free Architecture FDIA.

FDIA without relying on the power system model, our framework must guarantee

that its learned model can produce measurements that (i) appear legitimate, (ii)

have a substantial impact, and (iii) evade detection by the bad data detector. This

section conducts a formal analysis of our framework to demonstrate its ability to meet

these requirements. These prerequisites are formally examined and summarized in

Theorem 6. However, before that, we perform a formal analysis of (i) the autoencoder

and (ii) the residual error of the state estimator.

5.2.1 Non-linear autoencoder

The non-linear autoencoder is a generalization of the linear autoencoder into a

non-linear form

min
v,w

∥X − gv (fw (X))∥2F , (5.1)

where fw : Rm 7→ Rr is a nonlinear encoder parametrized by w and gv : Rr 7→ Rm is a

nonlinear decoder parametrized by v. The encoder fw transforms an input x ∈ Rm×1

into a hidden representation y = fw (x) ∈ Rr×1. The resulting hidden representation

y is then mapped back to a reconstructed vector x̂ = gv (y) ∈ Rm×1. Generally,

x̂ is not an exact reconstruction of x. The optimization problem in Eq. (5.1) can
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be trivially minimized by setting Y = X. An autoencoder where Y is of the same

dimensionality asX (or larger) can perfectly reconstruct the input by simply learning

the identity mapping. Non-trivial solutions arise when further constraints are applied

to the autoencoder. The typical autoencoders use a bottleneck to produce an under-

complete representation where r < m. The resulting lower dimensional Y then

is a lossy compressed representation of X. Such representation will reconstruct a

lossy compressed signal X̂ Vincent et al. (2010). This will then result in a non-zero

reconstruction error.

Autoencoders with nonlinear encoder functions f and nonlinear decoder func-

tions g can thus learn a more powerful nonlinear generalization of PCA Goodfel-

low et al. (2016). In other words, autoencoders can learn to represent data in a

lower-dimensional space while preserving the most important information, even if the

data has complex nonlinear relationships. The reason, autoencoders are feedforward

networks and the universal approximation theorem applies to them. This theorem

guarantees that a feedforward neural network with at least one hidden layer can

represent an approximation of any function (within a broad class) to an arbitrary

degree of accuracy, provided that it has enough hidden units. these advantages also

apply to autoencoders Hornik et al. (1989); Cybenko (1989). Experimentally, deep

autoencoders yield much better compression than corresponding shallow or linear

autoencoders Hinton and Salakhutdinov (2006).

5.2.2 An AE can Implicitly Learn the Power System Model

Assumption 1. The manifold assumption states that the (high-dimensional) data

lie (roughly) on a low-dimensional manifold Chapelle et al. (2009). According to our

data generation process in Eq. (5.4), the measurement data, z ∈ Rm, can be fully

characterized by the set of variables x ∈ Rn. Since n < m then the high-dimensional
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measurement data lie on a low-dimensional manifold. Thus, the manifold assumption

applies to our analysis.

Theorem 5. Zero residual error for a non-linear AE. For a fully observable system

(i.e., redundant measurements), we know there exists a mapping function from mea-

surement space to state space h : Rm 7→ Rn and a mapping back from state space to

measurement space SE : Rn 7→ Rm that makes the squared residual error zero

ε = ∥z − ẑ∥2 = ∥z − h (x̂)∥2 = ∥z − h (SE (z))∥2 (5.2)

Then, it is possible to learn such functions with an autoencoder

εAE =
∥∥z − zSE

∥∥2
= ∥z − g (f (z))∥2 , (5.3)

where fw is an encoder and gv is a decoder. The decoder transforms an input

z ∈ Rm×1 into a hidden representation ψi = fw (z) ∈ Rn×1. The resulting hidden rep-

resentation ψi is then mapped back to a reconstructed vector zAE = gv (ψi) ∈ Rm×1.

Proof. Proof of Theorem 5. For an AE, we know that its objective is to minimize the

reconstruction error for any measurement vector z based on the given dimension in

the hidden layer. This means that in an ideal case (i.e., a good DNN approximation

for the encoder and decoder functions) ∥z − g (f (z))∥2 is minimized: achieving the

global optimum.

Assume we know the number of states in the system, n. Let’s design the dimension

in the latent layer to be n. Let’s also assume that there is a function f : Rm 7→ Rn that

can universally approximate h−1 = SE : Rm 7→ Rn, where f maps the measurements

z to the state variables x. Additionally, let’s assume there is a function g : Rn 7→ Rm

that can universally approximate h : Rn 7→ Rm, where g maps the state variables

x to the measurements z. This means the AE can have a zero reconstruction error

based on the above assumptions. Note that these are valid assumptions because the
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encoder f and decoder g are feedforward networks, and the universal approximation

theorem applies to them. This theorem guarantees that a feedforward neural network

with at least one hidden layer can represent an approximation of any function (within

a broad class) to an arbitrary degree of accuracy, provided that it has enough hidden

units Hornik et al. (1989); Cybenko (1989). Thus, both the encoder and decoder can

approximate any arbitrary function. Based on the AE’s model, i.e., minimizing the

reconstruction error Eq. (5.1), we know that an AE with a latent layer dimension

equal to the number of system states n shall be able to achieve zero reconstruction

error. ■

5.2.3 Residual Error on the State Estimator

5.2.4 Residual error analysis

This subsection analyzes the state estimator’s residual error. Let Z = {zi}Ti=1

be the measurement dataset with each sample zi ∈ Rm×1. We define the matrix of

collected measurements as Z =

[
z1 z2 · · · zT

]
∈ Rm×T . Consider the linearized

measurement equations

∆zi =H∆x∗
i + ei, (5.4)

where x∗
i ∈ Rn×1 is the vector of the underlying system states, H ∈ Rm×n (n <

m) represents the physical relationship between state variables and measurements,

ei ∼ N (0,R) are measurement errors, and R = diag (σ2
i , . . . , σ

2
m) is the covariance

matrix of the measurement errors. The model in Eq. (5.4) can be written in matrix

form as ∆Z = H∆X∗ + E, where X∗ =

[
x∗
1 x∗

2 · · · x∗
T

]
∈ Rn×T is the matrix

of system states, and E =

[
e1 e2 · · · eT

]
∈ Rm×T , H ∈ Rm×n is the matrix of

measurement noises.

Then, the linearized state vector from Eq. (3.1) is given by
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∆x̂i =
(
HTR−1H

)−1
HTR−1∆zi = G−1HTR−1∆zi, where G = HTR−1H ∈

Rn×n. The estimated vector measurement is ∆ẑi = Hx̂i = HG−1HTR−1∆zi =

K∆zi, where K = HG−1HTR−1 ∈ Rm×m is known as the hat matrix Abur and

Exposito (2004). The measurement residual vector for the i-th sample εi ∈ Rm×1 is

expressed as follows

εi = ∆zi −∆ẑi = ∆zi −K∆zi = (I −K)∆zi = S∆zi, (5.5)

where the matrix S = (I −K) ∈ Rm×m is called the residual sensitivity matrix. The

residual matrix for the whole dataset matrix can be succinctly written as

E =K∆Z =

[
ε1 ε2 · · · εT

]
∈ Rm×T . (5.6)

5.2.5 Performance guarantees

Theorem 6. FDIA in the fully-observable case for the AC state estimator model.

Given a measurement vector z, and assuming that the system is observable from this

set of measurements, our proposed model can generate false data z̃ that satisfies:

(i) It generates high-quality fake measurements that look “real,” Lemma 1.

(ii) Around an linealized point, the attack size follows ∥∆z̃−K∆z̃∥2 ≥ O
(
λattack

)
,

where λattack is the penalty term of z̃ and z being too close, leading to ∥z̃−z∥2 ≥

O
(
λattack

)
in AC grids, Lemma 2.

(iii) The residual error of z̃ is lower or equal to the residual error of z, i.e., E∥z̃ −

Kz̃∥2 ≤ E∥z − Kz∥2 provided sufficient data and training capacity, where K

is the matrix related to the state estimation process. Thus, the probability of z̃

passing the Chi-squared test is lower or equal to that of z passing the Chi-squared

test, Theorems 5 and 7.
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Assumption 2. Autoencoders with nonlinear encoder functions f and nonlinear de-

coder functions g can thus learn a more powerful nonlinear generalization of PCA Good-

fellow et al. (2016). In other words, autoencoders can learn to represent data in a

lower-dimensional space while preserving the most important information, even if the

data has complex nonlinear relationships.

Theorem 7. Residual error of compressed measurements (non-lineal autoencoder).

Given a matrix of collected measurements Z =

[
z1 z2 · · · zT

]
∈ Rm×T , where

zi ∈ Rm×1 is the i-th sample, and an autoencoder that produces an under-complete

reconstruction of the input data ZAE
(r) =

∑r
i=1 σiuiv

T
i (Assumption 2), where r < m,

then the squared residual error of under-complete reconstruction
∥∥∥EAE

(r)

∥∥∥2

F
is smaller

than the residual error of the original dataset ∥E∥2F
∥∥∥EAE

(r)

∥∥∥2

F
< ∥E∥2F r < m.

Proof. Proof of Theorem 7. The squared residual error of the measurement dataset

Eq. (5.6) is given as

∥E∥2F = ∥KZ∥2F

=
T∑
i=1

∥εi∥2
(5.7)

The squared residual error of under-complete reconstruction of the dataset ZAE
(r)

is given as ∥∥EAE
(r)

∥∥2

F
=

∥∥KZAE
(r)

∥∥2

F
=

∥∥KU(r)Σ(r)V
T
(r)

∥∥2

F

=
∥∥KU(r)Σ(r)

∥∥2

F
=

r∑
i=1

∥Kuiσi∥2 .
(5.8)

From Eq. (5.8), we conclude that the dataset residual error
∥∥E(r)∥∥2

F
is proportional

to r. Note that if the autoencoder produces a lossy compressed reconstruction, then

we have ZAE
(r) =

∑r
i=1 σiuiv

T
i , where r < m. Thus, the following inequality holds∥∥E(r)∥∥2

F
< ∥E∥2F r < m. (5.9)

■
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5.3 Numerical Experiments

This section shows how we deploy FDIAs on power grids with our proposed frame-

work without knowing their mathematical or physical model. We conducted extensive

experiments on different power networks to show our approach’s contributions and

generality.

We train a WGAN with historical measurements with the model in Eq. (4.6)

to demonstrate that (i) the model produces realistic, high-quality samples, (ii) the

fake measurements successfully pass the residual error test with a high success rate,

corroborating the mathematical analysis, and (iii) show that the trained WGAN

creates different measurements (and therefore states) from the actual ones. This shows

that the regularization terms work, maximizing the attack’s impact and reducing the

residual error in the state estimator. We carried out the aforementioned experiments

in various test cases with similar results. Specifically, we use the IEEE 14-bus case, the

IEEE 118-bus case, the Reliability Test System - Grid Modernization Lab Consortium

(RTS-GMLC) test system, and the 200-bus Illinois synthetic model.

5.3.1 Data Generation and Model Architecture

Data Generation

For all test cases, we consider the AC power flow model and obtain all the active

and reactive power flow measurements through transmission lines and transformers

as measurements for four transmission grids: IEEE 14-bus, 118-bus, 300-bus, and

RTS-GMLC; and four distribution systems: 22-bus, 85-bus, 123-bus, and 144-bus

radial. The data generation process is the same as in the previous chapter.
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5.3.2 Validation of Performance Guaranties

To demonstrate the stealthiness of our framework, we evaluate the performance

guarantees in Theorem 7 and Lemma 3. These numerical quantifications are the

residual and reconstruction errors for the 14-bus test case for the noiseless and noisy

cases.

Noiseless case

In Theorem 7, it is noted that the residual error, ε, is proportional to the hidden

dimension of the AE. In the noiseless case, the original measurement results in perfect

state estimation, yielding a zero residual error, ε̂. The autoencoded residual error,

ε̂AE, is always upper bounded by ε̂, resulting in ε̂AE = 0 for all hidden sizes, as shown

in Fig. 5.2a. Furthermore, Lemma 3 states that the reconstruction error is inversely

proportional to the hidden dimension size. This relationship is illustrated in Fig. 5.2b

for various hidden dimensions.

Zero residual error

(a) Residual error.

Zero reconstruction error

(b) Reconstruction error.

Figure 5.2: Errors for Clean 14-bus Dataset.
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Noisy case

Theorem 7 asserts that ε is proportional to AE’s hidden dimension. ε̂AE ≤ ε̂ implies

the smallest error with the smallest hidden dimension, as in Fig. 5.3a. This aligns

with Theorem 7. Lemma 3 states reconstruction error inversely scales with hidden

dimension. In Fig. 5.3b, the error decreases as the hidden size increases.

Residual error is small for 

low hidden dimension size 

(a) Residual error.

Large reconstruction error 

with small hidden dimension

(b) Reconstruction error.

Figure 5.3: Errors for the Noisy 14-bus Test Case.

Relationship between System States and AE’s Latent Variables

In this section, we test the Assumption 1 and Theorem 5. Specifically, we measure

the distance/error between the underlying system states and the AE’s latent repre-

sentations. Let zi ∈ Rm×1 be a measurement sample and xi ∈ Rn×1 be the vector of

the underlying system states associated with the i-th measurement vector zi.

In Eq. (5.1), the encoder fw transforms an input zi ∈ Rm×1 into a hidden rep-

resentation ψi = fw (zi) ∈ Rn×1. The resulting hidden representation ψi is then

mapped back to a reconstructed vector zAE
i = gv (ψi) ∈ Rm×1. In the given setup, we

seek the connection between system states vi and AE’s hidden representations ψi. To

bridge the difference in their learned representations, we apply a linear transformation:

xi = Tψi. where T ∈ Rn×n is a matrix that represents the linear transformation.
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This problem can formulated as minT ∥vi − Tψi∥2. After solving this problem for

each sample, we obtain the mean absolute percentage error (MAPE) between system

states and transformed hidden representations. This metric MAPE (·) is widely used

in the literature due to its properties, such as scale-independency and interoperabil-

ity. Table 5.1 shows the results for all the test systems, where we can see that all the

MAPEs have small values, giving indication that Assumption 1 and Theorem 5 hold

in practice.

Table 5.1: MAPE Between System States and Transformed Ae’s Latent Representa-

tions.

Test case MAPE (%)

T
ra
n
s.

14-bus 1.0462

RTS-GMLC 6.9421

118-bus 4.9311

300-bus 8.6370

D
is
t.

22-bus radial 2.046

85-bus radial 0.7224

123-bus radial 0.2386

141-bus radial 5.8980

5.3.3 Evaluating Attack Performance

In this section, we assess the attack’s performance across various test cases, focus-

ing on (1) sample quality, (2) system state alteration, (3) attack stealthiness measured

by success rate, and (4) attack sensitivity concerning the number of system measure-

ments.
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Quality of Created Samples

In Fig. 5.4, real measurements (blue) and fake measurements (red) generated by our

framework are displayed. While the fake measurements resemble real ones, they do

not entirely overlap, indicating the generation of novel samples outside the original

dataset. This aligns with our expectations due to the attack regularization term’s

influence, as discussed in Lemma 2.

(a) IEEE 14-bus case. (b) IEEE 118-bus case.

(c) 22-bus radial distribution system. (d) 85-bus radial distribution system.

Figure 5.4: Measurement Distribution for Different Test Networks.

Perturbation of System States

In Fig. 5.5, real system states (blue) and fake measurements’ states (red) are com-

pared. Fake states exhibit increased dispersion, fulfilling the attacker’s objective of

significantly altering system states solely through measurement tampering.
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(a) IEEE 14-bus case. (b) IEEE 118-bus case.

(c) 22-bus radial distribution system. (d) 85-bus radial distribution system.

Figure 5.5: Real and Fake States Distribution for Different Test Networks.

Assessing Attack Stealth

In Fig. 5.6, the PDF of residual errors for real (blue) and fake (red) measurements

is depicted. Notably, fake measurements consistently yield smaller residual errors

than real ones, validating the concept described in Theorem 7. In other words, au-

toencoded measurements exhibit smaller residual errors than real ones, making fake

measurements more likely to pass the chi-squared test. We conduct a sensitivity

analysis regarding the success rate with a given threshold. The experiment involves

determining the threshold τ corresponding to a confidence value p (i.e., τ = χ2
k,p) and

calculating the probability of each measurement passing the residual error test at this

threshold, denoted as Pr (J(z) ≥ τ). This process is repeated for each simulation to

yield the success rate of passing the error test, representing the simulation’s probabil-
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(a) IEEE 14-bus case. (b) IEEE 118-bus case.

(c) 22-bus radial distribution system. (d) 85-bus radial distribution system.

Figure 5.6: Residual Error’s PDFs.

ity of success. We repeat this experiment for various p values in the range (0,1). The

results, depicted in Fig. 5.7 illustrates this sensitivity analysis for both real (blue) and

fake (red) measurements across different test grids. Fake measurements consistently

exhibit a higher success rate than real ones, making it unlikely for the attack to be

detected with any chosen threshold (τ).

Measurement Coverage Sensitivity

Theorem 6 confirms our framework’s ability to generate quality samples that evade

the residual error test when the system is observable. We assess the validity of this

assertion by examining the attack’s success rate in relation to measurement coverage.

To accomplish this, we randomly eliminate nunknown ∈ Z measurements and conduct

the attack, repeating the process for nunknown ∈ [0,m]. In Fig. 5.8, the success rates
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(a) IEEE 14-bus case. (b) IEEE 118-bus case.

(c) 22-bus radial distribution system. (d) 85-bus radial distribution system.

Figure 5.7: Residual Error’s CDFs.

for test cases follow a consistent pattern: they decrease as more measurements are re-

moved, making the attack more challenging due to reduced information. Additionally,

the success rate drops to zero after a certain threshold of removed measurements as

the system becomes unobservable, resulting in an underdetermined state estimation

problem.

Attack Analysis with Limited Tampered Measurements

Risk (ρ) is the expectation of loss Wald (1945); DeGroot (2005); in this context, it

can be interpreted as the attack impact. This is given as ρ = P × ξ, where P is

the probability of bypassing the residual error test, and ξ is the magnitude of the

attack. P is the attack success rate and ξ = ∥a∥2 is the attack vector magnitude. P
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(a) IEEE 14-bus case.
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(b) IEEE 118-bus case.
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(c) 22-bus radial distribution system.
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(d) 85-bus radial distribution system.

Figure 5.8: Sensitivity of Measurement Coverage.

is obtained by computing the attack’s success rate when nunknown measurements are

in the system. In this case, the defender has access to all the measurements in the

system, and the attacker can only modify a subset of the measurements.

To assess the attack’s impact, three scenarios are evaluated with respect to the

attacker’s measurement knowledge. Scenario A: The attacker can see all the mea-

surement information in the system but can only modify a subset of the observed

measurements. Under this scenario, the attacker has enough knowledge about the

number of states that are directly related to the attack. Thus, the AE’s latent di-

mension is set as the number of observed states by the measurements under attack.

Scenario B : The attacker can see and change only a subset of observed measurements.

He also has enough system knowledge to infer the number of states associated with
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the observed measurements. Thus, the AE’s latent dimension is set as the number

of observed states by the measurements under attack. Scenario C : The attacker can

see and change only a subset of observed measurements. In this case, he lacks system

knowledge to infer the number of states associated with the observed measurements.

Thus, the AE’s latent dimension is set as the number of states in the system. If the

number or measurements is lower than the summer of states in the system, then the

AE is omitted in the model.

The proposed model is evaluated under the three aforementioned cases with

different unknown measurements. Specifically, for each case, we randomly elimi-

nate nunknown ∈ Z measurements and conduct the attack, repeating the process for

nunknown ∈ [0,m]. The result success rate P and the attack size ∥a∥2 for the IEEE

14-bus test case are shown in Fig. 5.9a and Fig. 5.9b, respectively. Based on these

results, the risk is computed as ρ = P × ξ, and the results for the three cases are

shown in Fig. 5.10a. The same procedure is carried out on the 85-bus radial distribu-

tion system, and the results for the three cases are shown in Fig. 5.10b. Figs. 5.10a

and 5.10b show the same trend: The attack impact is the highest for scenario A and

decreases for scenario B and scenario C being the latter the one with the lowest

attack impact. In other words, reducing the attacker’s knowledge lessens the attack’s

impact.

The available measurements for the previous simulations were the active and re-

active power flow on transmission lines on one end. We also investigate the effect of

different measurements on the attack under the three aforementioned scenarios. More

measurements are available to evaluate such an effect. Specifically, active and reac-

tive flow measurements on both line ends. Additionally, measurements for voltage

magnitudes and angles are included in this case. Fig. 5.11 shows the results for the

three scenarios for the IEEE 14-bus test case. Despite including more diverse mea-
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(a) Success rate.
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(b) Attack size vector.

Figure 5.9: Success Rate and Attack Vector Size with Partial Observability for the

IEEE 14-bus Test Case.

surements, the same trend continues: The system risk decreases as less information

is available for the attacker.

Comparison with alternative FDIA methods

To evaluate our model-free FDIA framework, we compare it to two model-based

(MB 1 introduced in Hug and Giampapa (2012) and MB 2 from Chin et al. (2017))

and two model-free attacks (MF 1 introduced in Mohammadpourfard et al. (2020)

and MF 2 proposed in Costilla-Enriquez and Weng (2022)). For model-based attacks,

random attack vectors are injected, while model-free attacks are trained exclusively

on historical measurements. To facilitate a comparison between these methods, we

follow the sample generation process outlined in Section 3.5.1 and apply our proposed

approach along with Methods MB 1, MB 2, MF 1, and MF 2 to tamper the real noisy

measurements. During these comparisons, we monitor two critical metrics: (i) the

attack success rate and (ii) the size of the attack vector.

We assess success rates for all methods by calculating the probability of measure-

ments passing a residual error test at a confidence level of 0.95, using the threshold
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Scenario A Scenario B Scenario C

Less Information

(a) Attack impact for the IEEE 14-bus test case.

Scenario A Scenario B Scenario C

Less Information

(b) Attack impact for the 85-bus radial distribution system.

Figure 5.10: Attack Impact Analysis with Partial Observability for Different Levels

of Knowledge.

τ = χ2
k,0.95. Results are presented in Table 5.2. Our method consistently achieves

success rates above 95% by reducing tampered sample error. Model-based methods

MB1 and MB2 also maintain a 95% success rate, guaranteed by their design (proof

in Hug and Giampapa (2012)). MF1 shows around 95% success with variability due

to training and no guarantees. MF2 exceeds 95% success, thanks to error-reducing

architecture.

Note that model-based attacks can introduce arbitrarily large attack vectors.

Thus, we assess the attack vector size (|a|2) only for model-free attacks. The results
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Scenario A Scenario B Scenario C

Less Information

Figure 5.11: Attack Impact Analysis with Partial Observability for Different Levels

of Knowledge with All Measurements for the IEEE 14-bus Test Case.

Table 5.2: Comparison of Attack Success Rates.

Test case
Success Rate (%)

Ours MB 1 MB 2 MF 1 MF 2

T
ra
n
s.

14-bus 100 94.9 96.6 94 98.2

RTS-GMLC 97 94.5 95.9 93.8 96.8

118-bus 100 95.7 95 95 98.6

300-bus 97.7 94.9 95.9 94 98.4

D
is
t.

22-bus radial 99.6 94.2 95.8 96.8 96.4

85-bus radial 100 95 95.6 93.4 96.2

123-bus radial 96 94 95.3 95.4 91.6

141-bus radial 98.7 95.9 94 91.2 93.2

in Table 5.3 reveal that our approach generates the largest attack vectors, demon-

strating its superior effectiveness.

5.4 Conclusion

This study introduced an innovative architecture for generating tampered mea-

surement vectors, enabling a FDIA without prior knowledge of the power system’s
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Table 5.3: Comparison of Attack Vector Size.

Test case
Attack vector norm, ∥a∥2

Ours MF 1 MF 2

T
ra
n
s.

14-bus 0.0460 0.0114 0.0442

RTS-GMLC 0.7419 0.4555 0.5701

118-bus 0.1272 0.0571 0.1088

300-bus 0.5431 0.4857 0.3619

D
is
t.

22-bus radial 0.0069 0.0035 0.0066

85-bus radial 0.0144 0.0079 0.0104

123-bus radial 0.0055 0.0048 0.0036

141-bus radial 0.0014 0.0008 0.0012

details. Our approach is embedded within an optimization framework incorporat-

ing the WGAN and two regularization terms for controlling the attack vectors. We

validate this framework across various power systems, demonstrating its ability to in-

troduce deceptive measurements for a bad data injection attack without the need for

in-depth knowledge of the underlying power system model. These manipulated mea-

surements successfully pass the residual error test, resulting in inaccurate estimated

state variables and measurements, thereby posing a significant threat to the reliability

of the electric grid. This research underscores that attackers can compromise power

system security without complete access to system information.
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Chapter 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

Modern power systems must adapt to the ongoing changes, such as introducing

active devices (e.g., PV panels, wind generators, and energy storage devices) and the

burgeoning integration of measurement devices to monitor, control, and protect the

power grid. However, increasing uncertainties and stress can make analytical solu-

tions fail, and new sensing and communication capability may expose the power grid

to rising cyber-attacks. To solve the first problem, Chapter 2 proposed a novel hybrid

method that improves the power flow problem’s convergence. This method combines

the Newton-Raphson and stochastic gradient algorithms, which improves the conver-

gence of the power flow problem when the initialization points are poor or when the

system is stressed. To solve the second cyber-security problem, Chapter 3 exposed

a vulnerability in security on power systems. Specifically, this work shows that an

attacker is not required to access all power system information to launch a FDIA

successfully. Chapters 4 and 5 formally analyzed the architecture to create tampered

measurement vectors to carry out a FDIA on DC and AC models without knowing

the power system’s underlying information. Overall, this work aims to explore and

propose approaches to enhance the robust system planning, control, and operation

with increasingly distributed energy resources. To add a layer of security simultane-

ously, we analyze the system vulnerability for systematic solutions for defenses. If

successful, this work can lay down the foundation for security-aware system operation

in the future.
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6.2 Future Work

We now highlight directions for future work for (I) the proposed hybrid method

to solve the power flow problem and (II) to analyze and defend the system against

false data injection attacks.

Hybrid Newton-Raphson and Stochastic Gradient Descend Method

• Investigate the proposed hybrid method utilizing the Jacobian approximation

at each iteration.

• Find feasible operating points on the AC model based on an optimal solution

from a DC model.

Model-Free False Data Injection Attack

• Consider inter-temporal restrictions in the attack model.

• Assess the attack’s impact on the system. For example, to determine if an

attacker can lead the system to a blackout.

• Develop a theoretically sound defense to detect both model-based and model-

free attacks. Such a defense model should consider the lack of attack samples

in the training dataset.
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Pirnia, M., C. A. Cañizares and K. Bhattacharya, “Revisiting the power flow prob-
lem based on a mixed complementarity formulation approach”, IET Generation,
Transmission & Distribution 7, 11, 1194–1201 (2013).

Preston, E. and C. Barrows, “Evaluation of year 2020 IEEE RTS generation reliability
indices”, in “IEEE International Conference on Probabilistic Methods Applied to
Power Systems”, pp. 1–5 (2018).

Radford, A., L. Metz and S. Chintala, “Unsupervised representation learn-
ing with deep convolutional generative adversarial networks”, arXiv preprint
arXiv:1511.06434 (2015).

Sasson, A. M., C. Trevino and F. Aboytes, “Improved newton’s load flow through a
minimization technique”, IEEE Transactions on Power Apparatus and Systems ,
5, 1974–1981 (1971).

Semlyen, A., “Fundamental concepts of a krylov subspace power flow methodology”,
IEEE Transactions on Power Systems 11, 3, 1528–1537 (1996).

Shahriar, M. S., I. O. Habiballah and H. Hussein, “Optimization of phasor measure-
ment unit (pmu) placement in supervisory control and data acquisition (scada)-
based power system for better state-estimation performance”, Energies 11, 3, 570
(2018).

Stott, B., “Effective starting process for newton-raphson load flows”, 118, 8, 983–987
(1971).

Stott, B., “Review of load-flow calculation methods”, Proceedings of the IEEE 62,
7, 916–929 (1974).

Stott, B. and O. Alsac, “Fast decoupled load flow”, IEEE transactions on power
apparatus and systems , 3, 859–869 (1974).

Styczynski, J. and N. Beach-Westmoreland, “When The Lights Went Out: A Com-
prehensive Review Of The 2015 Attacks On Ukrainian Critical Infrastructure”,
URL https://www.boozallen.com/s/insight/thought-leadership/lessons-
from-ukranians-energy-grid-cyber-attack.html (2019).

Tarali, A. and A. Abur, “Bad data detection in two-stage state estimation using pha-
sor measurements”, in “IEEE PES Innovative Smart Grid Technologies Europe”,
pp. 1–8 (2012).

121

https://www.boozallen.com/s/insight/thought-leadership/lessons-from-ukranians-energy-grid-cyber-attack.html
https://www.boozallen.com/s/insight/thought-leadership/lessons-from-ukranians-energy-grid-cyber-attack.html


Teixeira, A., K. C. Sou, H. Sandberg and K. H. Johansson, “Secure control systems:
A quantitative risk management approach”, IEEE Control Systems Magazine 35,
1, 24–45 (2015).

Tinney, W. F. and C. E. Hart, “Power flow solution by newton’s method”, IEEE
Transactions on Power Apparatus and systems , 11, 1449–1460 (1967).

Valenzuela, J., J. Wang and N. Bissinger, “Real-time intrusion detection in power
system operations”, IEEE Transactions on Power Systems 28, 2, 1052–1062 (2013).

Van Cutsem, T. and C. Vournas, Voltage stability of electric power systems (Springer
Science & Business Media, 2007).

Vincent, P., H. Larochelle, I. Lajoie, Y. Bengio, P.-A. Manzagol and L. Bottou,
“Stacked denoising autoencoders: Learning useful representations in a deep network
with a local denoising criterion.”, Journal of machine learning research 11, 12
(2010).

Wainwright, K. et al., Fundamental methods of mathematical economics/Alpha C.
Chiang, Kevin Wainwright. (Boston, Mass.: McGraw-Hill/Irwin,, 2005).

Wald, A., “Statistical decision functions which minimize the maximum risk”, Annals
of Mathematics 46, 2, 265–280, URL http://www.jstor.org/stable/1969022
(1945).

Wang, W. and Z. Lu, “Cyber security in the smart grid: Survey and challenges”,
Computer networks 57, 5, 1344–1371 (2013).

Wang, Z., H. He, Z. Wan and Y. Sun, “Detection of false data injection attacks in ac
state estimation using phasor measurements”, IEEE Transactions on Smart Grid
pp. 1–1 (2020).

Wasserman, L., All of nonparametric statistics (Springer Science & Business Media,
2006).

Weng, Y., R. Negi, C. Faloutsos and M. D. Ilić, “Robust data-driven state estimation
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