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ABSTRACT

This thesis explores several questions concerning the preservation of geometric struc-

ture under the Ricci flow, an evolution equation for Riemannian metrics. Within the

class of complete solutions with bounded curvature, short-time existence and unique-

ness of solutions guarantee that symmetries and many other geometric features are

preserved along the flow. However, much less is known about the analytic and geomet-

ric properties of solutions of potentially unbounded curvature. The first part of this

thesis contains a proof that the full holonomy group is preserved, up to isomorphism,

forward and backward in time. The argument reduces the problem to the preservation

of reduced holonomy via an analysis of the equation satisfied by parallel translation

around a loop with respect to the evolving metric. The subsequent chapter examines

solutions satisfying a certain instantaneous, but nonuniform, curvature bound, and

shows that when such solutions split as a product initially, they will continue to split

for all time. This problem is encoded as one of uniqueness for an auxiliary system

constructed from a family of time-dependent, orthogonal distributions of the tangent

bundle. The final section presents some details of an ongoing project concerning the

uniqueness of asymptotically product gradient shrinking Ricci solitons, including the

construction of a certain system of mixed differential inequalities which measures the

extent to which such a soliton fails to split.

i



ACKNOWLEDGMENTS

First, I would like to thank my advisor, Professor Brett Kotschwar, for his help and

guidance during my Ph.D. study. His kindness, knowledge, and advice have been

invaluable to me, and I would not be where I am today without his mentorship.

I would also like to thank the rest of my supervisory committee, Professors Su-

sanna Fishel, Matthias Kawski, Steven Kaliszewski, and Julien Paupert, for their

support and encouragement throughout my time at Arizona State.

Finally, I would like to thank my family: in particular, my parents Anne and

Gary, my sister Ellen, and my husband Danny. I am forever grateful for your love

and support.

ii



TABLE OF CONTENTS

Page

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 The Preservation of Structure Under the Ricci Flow . . . . . . . . . . . . . . . 2

1.2 Preservation of Holonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 The Preservation of Holonomy for Solutions of Potentially

Unbounded Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Future Directions: Asymptotically Product Shrinking Ricci Solitons 6

2 GEOMETRIC PRELIMINARIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Connections and Parallel Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 The Levi-Civita Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 The Holonomy Group of a Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.1 Berger’s Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.2 Parallel Tensors and Fixed Points of the Holonomy Group . . 15

3 THE RICCI FLOW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 The equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Well-posedness for the Ricci flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.1 Ricci flow with bounded curvature . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.2 Ricci Flow of Spaces of Potentially Unbounded Curvature . . . 20

3.2.3 Instantaneously Complete Ricci Flow on Surfaces . . . . . . . . . . 23

3.3 Well-posedness and the Preservation of Geometric Structures . . . . . . 24

4 PRESERVATION OF THE HOLONOMY GROUP UNDER THE RICCI

FLOW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

iii



CHAPTER Page

4.2 The Preservation of Reduced Holonomy and a Reformulation . . . . . . 30

4.2.1 Uhlenbeck’s Trick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2.2 Preservation of Reduced Holonomy . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3 Invariance of the Full Holonomy Group . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.4 Preservation of Parallel Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 THE PRESERVATION OF PRODUCT STRUCTURES UNDER THE

RICCI FLOW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2 Tracking the Product Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2.1 Extending the Projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2.2 Evolution Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2.3 Constructing a PDE-ODE System. . . . . . . . . . . . . . . . . . . . . . . . . 48

5.3 A General Uniqueness Theorem for PDE-ODE Systems. . . . . . . . . . . . 49

5.4 Proof of Theorem 5.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.4.1 Vanishing of Time Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.4.2 Preservation of Product Structures . . . . . . . . . . . . . . . . . . . . . . . . 59

5.5 Further Questions: Preservation of Holonomy Under a Non-uniform

Curvature Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6 ASYMPTOTICALLY PRODUCT SHRINKING RICCI SOLITONS. . . . . 62

6.1 Asymptotic Behavior of Shrinking Ricci Solitons . . . . . . . . . . . . . . . . . . 62

6.2 Constructing a PDE-ODE System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.3 The PDE-ODE System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

iv



LIST OF FIGURES

Figure Page

3.1 Sn−1 × R with Infinitely Many Necks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Flat Sided Sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

v



Chapter 1

INTRODUCTION

The primary subject of this thesis is the Ricci flow, the equation

∂

∂t
g(t) = −2Rc(g(t)) (1.1)

for families of Riemannian manifolds (M, g(t)), which was introduced by Richard

Hamilton [32] in 1982. The study of the Ricci flow belongs to what might be called

the “heat flow” method in geometry, a program which has its origins in the work of

Eells-Sampson [23] on harmonic maps. The idea is to take a reasonably generic initial

metric and deform it into something which is more uniform or canonical–in the best

case, perhaps an Einstein or constant curvature manifold.

The Ricci flow has proven to be a powerful tool for solving problems in geometry

and topology. In his original paper, Hamilton showed that on any compact three-

manifold with positive Ricci curvature, the volume-normalized Ricci flow exists for all

time and converges to a metric of constant positive curvature. Thus the manifold itself

is a quotient of S3. Subsequent work of Hamilton and others laid the groundwork

for a program of Ricci flow with surgery in dimension three (e.g., [37, 38, 36, 35]).

A version of this program was completed by Perelman [63, 64, 65], culminating in

his landmark proof of Thurston’s Geometrization Conjecture (which subsumes the

Poincaré conjecture). Since Perelman’s work, the Ricci flow has featured in the proofs

of a variety of other notable results, including Böhm and Wilking’s proof that compact

manifolds with 2-positive curvature operator are space forms [9], Brendle and Schoen’s

proof of the Differentiable Sphere Theorem [10], and Bamler and Kleiner’s proof of

the Generalized Smale Conjecture [5].

1



The results in this thesis belong to two categories of problems having to do with

fundamental analytic properties of the Ricci flow. The first concerns questions of

uniqueness and the preservation of structures under the Ricci flow, while the sec-

ond pertains to the classification of complete noncompact shrinking Ricci solitons

according to their asymptotic behavior.

1.1 The Preservation of Structure Under the Ricci Flow

Much of the utility of the Ricci flow rests on the fact that it is fundamentally a

geometric equation–that it preserves (in some generality) any symmetry or otherwise

special structure the initial metric might have. It is important to remember that

this preservation of structure is not an automatic feature of the equation itself, but

a consequence of various statements of uniqueness within classes of solutions whose

behavior is not overly pathological. For example, in the class of complete solutions

with bounded curvature (the traditional setting for the study of the Ricci flow), one

has both the short-time existence and uniqueness of solutions ([15],[22],[32], [68], see

Theorem 3.2.1). The uniqueness of solutions immediately implies that symmetries

are preserved in the class of complete solutions with bounded curvature, since if φ

is an isometry of g0, then φ∗g(t) and g(t) are both solutions to (1.1) with the same

initial condition (see Section 3.2.1).

Similarly, short-time existence and uniqueness together imply the preservation of

other structural features under the flow. Consider, for example, a solution g(t) on a

product manifold M = M̂ × M̌ , which splits initially as g(0) = ĝ0 ⊕ ǧ0. Then, the

short-time existence of solutions implies we can construct solutions ĝ(t) and ǧ(t) on

the factors M̂ and M̌ respectively. Their product ĝ(t) ⊕ ǧ(t) is a solution on all of

M which is complete and of bounded curvature. By uniqueness, ĝ(t)⊕ ǧ(t) and g(t)

must coincide for all time, so the solution g(t) continues to split as a product (see
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Section 3.3).

However, outside of the class of complete solutions with bounded curvature, the

basic analytic properties of the Ricci flow are still not yet well-understood. It remains

an important question how much these assumptions on the class of solutions can be

weakened while still ensuring uniqueness of solutions or the preservation of certain

geometric structures under the flow. While completeness is easily seen to be necessary

to ensure the preservation of symmetry and other structural features, it is less clear

what, if any, other global restrictions are needed. For example, if (M, g(t)) is a smooth

complete solution to (1.1) for t ∈ [0, T ), the following questions are still unknown in

general:

� If g(0) splits as a product, does g(t) continue to split as a product for all

t ∈ [0, T )?

� If g(0) is Kähler, is g(t) Kähler for all t ∈ [0, T )?

� Does the isometry group of g(t) remain fixed for all t ∈ [0, T )?

A common thread tying these types of questions together is their relationship to

the uniqueness of solutions to the Ricci flow. Beyond these applications, a stronger

theory of well-posedness for the Ricci flow on general complete manifolds would have

applications to Ricci flow with surgery and the analysis of singularity models. There

are by now many natural constructions of solutions to (4.2) (see, e.g., [11], [39], [70])

which have unbounded curvature on each time-slice or whose curvature is instanta-

neously, but not uniformly, bounded. In this setting, solutions can exhibit behavior

which is unexpected or counter-intuitive, such as curvature which becomes unbounded

and then bounded again [29]. A characterization of the conditions under which solu-

tions to the Ricci flow must be unique would help to clarify the above questions of

preservation of structure.
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There are some results in this direction, notably in the work of Giesen and Topping

([28], [27], [73]), which has established an essentially complete theory of well-posedness

for Ricci flow in dimension two. Their work shows that any surface, even one which

is incomplete or has unbounded curvature, admits a unique instantaneously complete

short-time solution to the Ricci flow. However, the proof is crucially dependent

on the conformal nature of the equation in dimension two. In [55], Lee proves that

solutions are unique in the class of metrics bounded above by ε/t where ε is a constant

depending only on the dimension (see Section 3.2.2). In general, it is unknown to

what extent one can weaken the assumption that curvature is uniformly bounded and

still guarantee uniqueness.

1.2 Preservation of Holonomy

The Riemannian holonomy is an algebraic invariant of a manifold (M, g) which

measures, roughly, the extent to which parallel translation relative to the Levi-Civita

connection of g deviates from that of Euclidean space. It is an old observation of

Hamilton ([33], [37]) that, in the class of complete solutions with bounded curvature,

the reduced holonomy group Hol0(g(t)) cannot expand. This can be proven using

the existing theory in a variety of ways. The simplest, perhaps, is to use Berger’s

classification and apply an argument similar to the one sketched above for product

structures. It was later proven in [45] that the reduced holonomy also cannot con-

tract. Here, however, the same type of argument does not apply to every case: since

the terminal value problem for the Ricci flow is ill-posed, one cannot construct the

“competitor” product or Kähler solutions one needs in order to appeal to the back-

ward uniqueness of the Ricci flow. Instead, the problem is framed as one of backward

uniqueness of the solutions to a related prolonged system.

Left open by the previous work (at least in full generality) is the question of

4



whether the full holonomy is preserved under the flow. In Theorem 4.1.1 of Chapter

4, we show that the matter of the preservation of the full holonomy can be reduced

to the preservation of the reduced holonomy. In particular, this shows that the full

holonomy is preserved for complete solutions of bounded curvature. As a consequence,

one sees that if a complete solution to (4.2) with bounded curvature is Kähler or splits

locally as a product on any time-slice, it does so on any time-slice. The proof we give

is symmetric in time and is based on an explicit analysis of the equation satisfied by

the parallel transport of a vector around a fixed loop with respect to the evolving

metric.

1.2.1 The Preservation of Holonomy for Solutions of Potentially Unbounded

Curvature

Theorem 4.1.1 raises the question of what global hypotheses on the class of so-

lutions are needed to ensure preservation of holonomy. When the initial metric is

not complete, it is easy to cook up examples where the reduced holonomy is not

preserved (see, e.g., “flat-sided sphere” in Section 3.2.2, a two-dimensional, simply-

connected solution which has trivial holonomy initially and holonomy SO(2) for all

positive time). It is less clear, however, the role that bounded curvature plays, and

whether that condition can be relaxed. One important test case is the question of

the preservation of product structures under the flow when the solution no longer is

assumed to have a uniform curvature bound.

Given the variety of recent constructions of solutions (e.g., [39], [54], [70]) with

instantaneous, but not uniform curvature bounds, it is natural to ask whether a

complete solution to (4.2) satisfying |Rm | ≤ C
t

and such that g(0) splits as a product

continues to split for t > 0. In Theorem 5.1.1 of Chapter 5, we obtain a partial result

in this direction. We show that there is a constant ε = ε(n) depending only on the
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dimension such that, if the initial metric g(0) for a solution (M, g(t)) to (1.1) splits

and the curvature satisfies |Rm | ≤ ε
t
, then the solution continues to split for all time

such that it exists.

This result should be compared to that in the recent paper of Lee [55]. There, the

author has established (by somewhat different methods) the uniqueness of general

solutions satisfying a curvature bound of the form ε/t for some ε sufficiently small.

Whereas we have seen that uniqueness of classical solutions to Ricci flow enables of

the preservation of product structures in that class, our result in Chapter 5 cannot

be derived as a simple consequence of Lee’s result in the same way. Since we make no

assumption on g0 other than that it is complete, there is no statement of short-time

existence to which we can appeal in order to solve the flow on the individual factors

of M to produce a competitor solution to which we might apply the theorem in [55].

Instead, our proof frames the problem as one of uniqueness for a certain auxillary

system of differential inequalities. From there, we proceed analytically as in the work

of Huang-Tam [40] and Liu-Székelyhidi [56], making use of an adapted version of the

maximum principle from these papers. The details of this work appear in the preprint

[18]

1.3 Future Directions: Asymptotically Product Shrinking Ricci Solitons

To understand the singular behavior of the Ricci flow, it is important to study

the classification of shrinking Ricci solitons, Riemannian manifolds which correspond

to homothetically contracting self-similar solutions to the Ricci flow. Via this cor-

respondence, determining whether or not two solitons which are asymptotic to each

other along an end much be isometric can be framed as a (possibly singular) question

of backward uniqueness to the Ricci flow or a related system.

This point of view has been adopted, e.g., in the work of [50], [51], [75], [74]. In
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the manuscript [19], currently in preparation, we combine this perspective together

with the framework of Chapter 5 to study the problem of uniqueness of shrinking

Ricci solitons which agree to infinite order at infinity along an end with a product

shrinker of the form Rn−k × Σk, where Σ is a compact shrinker. In Chapter 6, we

detail the reduction of the problem of uniqueness to one of unique continuation for a

system of mixed differential inequalities.
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Chapter 2

GEOMETRIC PRELIMINARIES

Before we begin the presentation of our primary results, we will review some of

fundamental geometric concepts on which they rely, fixing some notation as we go.

2.1 Connections and Parallel Translation

Let M be a smooth manifold and TM its tangent bundle. For any vector bundle E

over M , we define C∞(E) to be the set of smooth sections of E. Suppose π : E →M

is a vector bundle over M . A connection is a map ∇ : C∞(TM)×C∞(E)→ C∞(E),

denoted by ∇(X, Y ) = ∇XY , which satisfies the following properties:

1. For any smooth functions f1, f2 : M → R, ∇f1X1+f2X2Y = f1∇X1Y + f2∇X2Y ,

2. For any c1, c2 ∈ R, ∇X(c1Y1 + c2Y2) = c1∇XY1 + c2∇XY2,

3. ∇ satisfies the product rule∇X(fY ) = f∇XY +(Xf)Y for any smooth function

f : M → R.

Suppose ∇ is a connection on E and p ∈ E. Let {Ei} and {Fα} be smooth local

frames for TM and E defined on a neighborhood U of π(p) ∈ M . The functions

Γβiα : U → R defined by

∇EiFα = ΓβiαFβ

are called the connection coefficients for ∇.

A connection ∇ on the vector bundle E defines a connection on the dual bundle

E∗ via the correspondence

(∇Xω)(Y ) = X(ω(Y ))− ω(∇XY )

8



for ω ∈ C∞(E∗). Furthermore, the connection can also act on sections A of E(k,l) :=

(E∗)⊗
k ⊗ E⊗l via

(∇XA)(X1, . . . , Xk, ω
1, . . . , ωl) = X(A(X1, . . . , Xk, ω

1, . . . , ωl))

−
k∑
i=1

A(X1, . . . ,∇XXi, . . . , Xk, ω
1, . . . , ωl)

−
l∑

i=1

A(X1, . . . , Xk, ω
1, . . . ,∇Xω

i, . . . , ωl).

In terms of the local frames {Ei}, {Fα}, and the dual coframe {F γ} for E∗, this

can be written as

∇mA
γ1,...,γl
α1,...,αk

= Em(Aγ1,...,γlα1,...,αk
) +

l∑
n=1

Aγ1,...,β,...,γlα1,...,αk
Γγnmβ −

k∑
n=1

Aγ1,...,γlγ1,...,β,...,γk
Γβmαn .

Now consider a smooth curve γ : [0, 1] → M . The connection ∇ on E induces a

connection on the pullback bundle γ∗(E) over [0, 1] called the pullback connection. A

section Y ∈ C∞(γ∗(E)) is said to be parallel along γ if its derivative in the direction

γ̇(t) with respect to the pullback connection is zero. As before, the pullback connec-

tion can be extended to bundles of tensors of any rank, and sections of these bundles

along γ are also said to be parallel along γ if their covariant derivative is zero.

Let p = γ(0) and q = γ(1). Then, for any nonzero Xp ∈ Ep, there is a unique

vector field X along γ such that X|0 = Xp and X is parallel along γ with respect to

∇. This defines a map

Pp,γ(t) :Ep → Eγ(t)

Xp 7→ Xγ(t).

for each t ∈ [0, 1], called the parallel translation along γ. Again, this can be extended

to tensors of any rank. For example, if A ∈ T 2(T ∗pM), then we define PA = Pp,γ(t)A ∈

T 2(T ∗pM) by

PA(X, Y ) = A(P−1X,P−1Y ),

for any X, Y ∈ Tγ(t)M .

9



2.2 The Levi-Civita Connection

A connection ∇ : C∞(TM)×C∞(TM)→ C∞(TM) is said to be compatible with

the metric g if it satisfies

∇X(g(Y, Z)) = g(∇XY, Z) + g(Y,∇XZ).

We say that it is torsion-free if it satisfies

∇XY −∇YX = [X, Y ].

It is a fundamental result of Riemannian geometry that there exists a unique con-

nection on any Riemannian manifold which is both compatible with the metric and

torsion-free. This connection is called the Levi-Civita connection. Note that there are

several different ways we can characterize compatibility with the metric. For example,

it is equivalent to the condition ∇g ≡ 0 or to the property that the inner product of

any two parallel vector fields along a curve is constant along that curve.

2.3 Curvature

Let (M, g) be a Riemannian manifold and ∇ the Levi-Civita connection of g. The

Riemann curvature endomorphism is defined as the map R : C∞(TM)×C∞(TM)×

C∞(TM)→ C∞(TM) defined by

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z.

It is easy to check that this map is linear over C∞(M) in every argument, and thus

defines a (3, 1) tensor field over M , which we call the (3,1)-Riemann curvature tensor.

We will also often use the (4,0)-Riemann curvature tensor, given by

R(X, Y, Z,W ) = 〈R(X, Y )Z,W 〉.
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In local coordinates, we write this as

Rijkl = glmR
m
ijk,

i.e., our convention is to lower the index to the fourth position. The curvature tensor

has the following algebraic symmetries:

� R(X, Y, Z,W ) = −R(Y,X,Z,W ),

� R(X, Y, Z,W ) = −R(X, Y,W,Z),

� R(X, Y, Z,W ) = R(Z,W,X, Y ),

� R(X, Y, Z,W ) +R(Y, Z,X,W ) +R(Z,X, Y,W ) = 0.

The last of these is known as the first Bianchi identity. The curvature tensor also

satisfies

∇VR(X, Y, Z,W ) +∇ZR(X, Y,W, V ) +∇WR(X, Y, V, Z) = 0.

This equation, known as the second Bianchi identity, has the form

∇mRijkl +∇kRijlm +∇lRijmk = 0,

and taking two successive traces of both sides of this equation yields

∇kRij −∇jRik +∇mR
m
ijk = 0,

and

∇kRkj =
1

2
∇jR.

This final equality is called the contracted second Bianchi identity.
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2.4 The Holonomy Group of a Connection

We will now review holonomy, a fundamental algebraic invariant of a connection.

For this discussion, let M be a connected manifold, E a vector bundle over M , and

∇ a connection on E.

Consider a piecewise smooth loop γ : [0, 1]→M such that γ(0) = γ(1) = p. Par-

allel translation of elements of the fiber Ep around γ induces a linear transformation

of Ep. The holonomy group based at p is defined by

Holp(∇) := {Pγ = Pγ(0),γ(1) : γ is a piecewise smooth loop based at p}.

This set has a natural group structure, where the group operation corresponds to the

composition of linear maps. The uniqueness of parallel transport implies that the

elements of Holp(∇) are invertible, and that the inverse of each element Pγ(0),γ(1) is

given by Pγ(0),γ(1), where γ(t) = γ(1− t) is the reverse parameterization of γ. In light

of this, we may view Holp(∇) as a subgroup of GL(Ep).

It is not hard to see that the holonomy group is independent of basepoint, up to

conjugation. So, we will usually omit the basepoint and simply write Hol(∇). This

gives a natural representation of Hol(∇) as a subgroup of GL(Ep), which is called the

holonomy representation.

The reduced holonomy Hol0p(∇) of ∇ at p is defined as

Hol0p(∇) := {Pγ : γ is a nullhomotopic loop based at p}.

The group Hol0p(∇) is a connected Lie subgroup of SO(n), and coincides with the

identity component of Holp(∇). As with the full holonomy group, this is independent

of basepoint, up to conjugation. Clearly, if M is simply connected, Hol(∇) = Hol0(∇).

Because Hol0(∇) is the identity component of Hol(∇), the two have isomorphic Lie

algebras, which we denote by hol(∇).
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When E = TM and ∇ is the Levi-Civita connection of a Riemannian metric

on M , we call Hol(∇) the Riemannian holonomy group, and will often denote it by

Hol(g).

Since parallel translation along a curve γ with respect to ∇ preserves orthonormal

frames for TM , it defines an isometry from (Tγ(0)M, g) to (Tγ(t)M, g). Thus for

Riemannian holonomy we have Holp(g) ≤ O(TpM) (respectively SO(TpM) if M is

orientable), and Hol0(g) ≤ SO(TpM).

If M̃ is the universal cover of M , and ∇̃ is the Levi-Civita connection of the lift

g̃ of the metric on M to M̃ , then Hol0(∇) ∼= Hol(∇̃).

2.4.1 Berger’s Classification

When the holonomy Hol(g) of a manifold (M, g) is isomorphic to a proper sub-

group of SO(n), we say that the manifold has restricted holonomy. According to

a fundamental theorem of Berger [7], the possibilities for a Riemannian manifold to

have restricted holonomy are fairly limited. Before stating this theorem, we will make

a few simplifying observations.

First, in light of the discussion above, in order to determine which groups may

arise as the reduced holonomy of a Riemannian manifold, it is enough to consider

the holonomy of the universal cover. Thus, we may restrict our attention to simply

connected manifolds.

Next, recall that a manifold (M, g) is called reducible if it is isometric to a Rieman-

nian product manifold, and locally reducible if each point of M has a neighborhood

which is reducible. For a product manifold, we have

Hol(g1 ⊕ g2) = Hol(g1)× Hol(g2).

So, the holonomy representation of a reducible manifold is itself reducible. De Rham’s
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Theorem offers a partial converse: if the holonomy is reducible, then the underlying

manifold is at least locally reducible [8]. Thus, in order to consider only irreducible

holonomy groups, it suffices to consider only irreducible manifolds.

Finally, we say that a manifold (M, g) is a (Riemannian) symmetric space if, for

every p ∈ M , there exists an involutive isometry ip : M → M such that p is a fixed

point of ip. We say that (M, g) is locally symmetric if it is locally isometric to a

simply connected symmetric Riemannian manifold. These spaces and their holonomy

groups have been classified by Cartan, and thus are excluded from this classification.

The following theorem effectively classifies the possibilities for restricted reduced

holonomy.

Theorem 2.4.1. [[7], see also [42]] Suppose M is a simply-connected manifold of

dimension n, and g is an irreducible, nonsymmetric Riemannian metric on M . Then

exactly one of the following seven cases holds:

1. Hol(∇) = SO(n),

2. n = 2m with m ≥ 2, and Hol(∇) ∼= U(m) in SO(n),

3. n = 2m with m ≥ 2, and Hol(∇) ∼= SU(m) in SO(n),

4. n = 4m with m ≥ 2, and Hol(∇) ∼= Sp(m) in SO(4m),

5. n = 4m with m ≥ 2, and Hol(∇) ∼= Sp(m)Sp(1) in SO(4m),

6. n = 7 and Hol(∇) ∼= G2 in SO(7), or

7. n = 8 and Hol(∇) ∼= Spin(7) in SO(8).

Remark 2.4.1. In cases 3-7 (and also when g is locally symmetric), g is necessarily

Einstein. In fact, in cases 3,4,6, and 7, g is necessarily Ricci-flat.
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2.4.2 Parallel Tensors and Fixed Points of the Holonomy Group

The action of the holonomy group on TM can naturally be extended to an action

on tensors of any rank. For example, for P ∈ Holp(∇), A ∈ T 2(T ∗pM), we can say

PAp(X, Y ) = Ap(PX,PY )

for X, Y ∈ TpM . A basic fact about the Riemannian holonomy group is that, on a

connected manifold, fixed points of this action are in one-to-one correspondence with

parallel tensors, i.e., tensors whose covariant derivative vanishes on all of M . More

precisely, we have the following proposition.

Proposition 2.4.2. Let (M, g) be a connected Riemannian manifold, and A a parallel

tensor on M . Then, for p ∈ M , Ap is fixed by the action of Holp(∇). Conversely, if

Ap ∈ TpM is fixed by the action of Holp(∇), then there exists some parallel tensor A

on M such that A|p = Ap.

15



Chapter 3

THE RICCI FLOW

3.1 The equation

We say that a one-parameter family of Riemannian metrics (M, g(t)), t ∈ [0, T ) is

a solution to the Ricci flow if it satisfies

∂

∂t
g(t) = −2 Rc(g(t))

for all t ∈ [0, T ).

The Ricci flow is often described as a heat equation for Riemannian metrics, given

its formal and qualitative resemblance to the equation

∂

∂t
u = ∆u.

for scalar functions. For example, in harmonic coordinates, i.e., local coordinates {xi}

satisfying ∆gx
i = 0, the right hand side of the Ricci flow equation has the form

−2Rij = ∆g(gij) +Qij(g
−1, ∂g),

where Q is quadratic in g−1 and first derivatives of g. Thus, −2 Rc can be regarded

as a type of Laplacian for metrics. See [16], Chapter 3 for additional details.

Heuristically, the heat equation smooths and averages out an initial temperature

distribution u0, lowering the temperature in areas with high heat and raising it in

areas with low heat to approach something more uniform. This is also what we expect

from the Ricci flow, at least in the short term–the flow will tend to make the geometry

of the space more homogeneous, at least on a small time scale. Note, too, that the
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Ricci flow tends to shrink distances in regions with positive curvature and expand

them in regions with negative curvature. This phenomenon completely describes the

dynamics in the following simple example.

Recall that an Einstein manifold (M, g) is a manifold on which Rc(g) = λg for

some λ ∈ R. These include among them the constant curvature spaces, in particular

Euclidean space Rn and the round sphere Sn.

Example 3.1.1. Suppose (M, g0) is Einstein. Consider the one-parameter family of

metrics

g(t) = (1− 2λt)g0.

Then g(0) = g0, and because the Ricci tensor is invariant under scaling of the metric,

∂

∂t
g = −2λg0 = −2 Rc(g0) = −2 Rc(g(t)).

Thus, g(t) is a solution to Ricci flow with initial condition (M, g0). The interval for

which the flow exists depends on λ. When λ > 0, the flow exists for t ∈ (−∞, 1
2λ

).

When λ < 0, the flow exists for t ∈ ( 1
2λ
,∞). Finally, when λ = 0, (i.e., (M, g0) is

Ricci flat) the solution is static and exists for all time.

3.2 Well-posedness for the Ricci flow

Perhaps the most fundamental question one can ask of any PDE is: when does it

admit solutions, and when are they unique? These (and related questions) are often

discussed under the heading of “well-posedness”, and for evolution equations such as

the Ricci flow, generally in reference to the restriction of the equation to some fixed

class of solutions and initial data. Here, we discuss the theory of well-posedness for

the Ricci flow.
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3.2.1 Ricci flow with bounded curvature

The Ricci flow has traditionally been considered within the class of complete

solutions with uniformly bounded curvature, that is, the class of solutions on M ×

[0, T ) such that (M, g(t)) is complete for each t and

sup
M×[0,a]

|Rm | <∞

for all a < T . We will refer to members of this traditional class as classical solutions.

The problems of existence and uniqueness for classical solutions have been completely

resolved.

Theorem 3.2.1. [Hamilton [32], DeTurck [22], Shi [68], Chen-Zhu [15]] Let (M, g0)

be a smooth, complete Riemannian manifold satisfying

sup
M
|Rm | ≤ K0

for some K0 > 0. Then there exist a unique T = T (K0, n) > 0 and a smooth solution

to the Ricci flow g(t) for t ∈ [0, T ) satisfying g(0) = g0. Moreover, (M, g(t)) is

complete for each t and

sup
M×[0,a]

|Rm | <∞ (3.1)

for any a ∈ [0, T ), and T is maximal in the sense that if T <∞,

lim sup
t↗T

(
sup
M
|Rm |

)
=∞.

Finally, if g̃(t) is any other complete solution for t ∈ [0, T̃ ) with g̃(0) = g0 which

satisfies (3.1), then g̃(t) = g(t) for all t ∈ [0,min(T, T̃ )).

This statement was proven by Hamilton in [32] in the case that the initial manifold

(M, g0) is compact. His proof, which made use of a variation on the Nash-Moser
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Inverse Function Theorem, was shortly thereafter simplified by DeTurck [22]. Short-

time existence for the case of a complete, noncompact initial metric with bounded

curvature was proven by W.-X. Shi in [68]. The full statement of uniqueness for

classical solutions was proven by Chen and Zhu in [15].

By now, the short-time analytic behavior of classical solutions is fairly well-

understood. For example, it is known that classical solutions to the Ricci flow are also

unique going backward in time [52], in the sense that if g(t), g̃(t) are two solutions

to Ricci flow on a manifold M and g(t0) = g̃(t0) for some t0 > 0, then g(t) = g̃(t)

for 0 ≤ t ≤ t0. An interesting consequence of forward and backward uniqueness is

that the isometry group is preserved under the Ricci flow. One one hand, the forward

uniqueness of solutions implies that the isometry group cannot shrink. Indeed, if

(M, g(t)) is a solution to Ricci flow and ϕ ∈ Isom(g0), then g̃(t) = ϕ∗g(t) is another

solution to Ricci flow with the same initial conditions. This is a consequence of the

diffeomorphism invariance of the Ricci tensor:

∂

∂t
g̃(t) = ϕ∗

( ∂
∂t
g(t)

)
= −2ϕ∗Rc(g(t))

= −2 Rc(ϕ∗g(t)).

Thus, by forward uniqueness, g̃(t) = g(t), or in other words, ϕ is an isometry of

(M, g(t)) for all t ∈ [0, T ]. Similarly, backward uniqueness implies that the group of

isometries cannot expand, so that the group of isometries is exactly preserved by the

flow.

In fact, solutions to Ricci flow with uniformly bounded curvature are real analytic

in both space and time for t > 0. Instantaneous analyticity in space was proven in

the compact case by Bando in [6].

Theorem 3.2.2 ([6]). Let (M, g(t)) be a solution to Ricci flow. Then at any t ∈ (0, T ],
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g(t) is analytic with respect to normal coordinates.

Analyticity in time and local space-time analyticity was proven by Kotschwar in

[53], [46] (see also [67]).

3.2.2 Ricci Flow of Spaces of Potentially Unbounded Curvature

The existence and uniqueness results discussed above imply that many geometric

properties are preserved along the flow for classical solutions (we have already dis-

cussed how uniqueness implies that the isometry group is preserved, and we expand

this to the preservation of other structures in Section 3.3). It is an important problem

to determine the extent to which the same is true for general smooth solutions to the

Ricci flow.

Question 3.2.1. Under what conditions on a Riemannian manifold (M, g0) is there

guaranteed to exist a smooth short-time solution (M, g(t)) to (1.1) with g(0) = g0?

Question 3.2.2. Under what conditions on solutions (M, ĝ(t)) and (M, ǧ(t)) to (1.1)

satisfying ĝ(0) = ǧ(0) is it guaranteed that ĝ(t) = ǧ(t) for all t such that both solutions

exist?

The following two examples show that one cannot expect unconditional statements

of existence and uniqueness.

Example 3.2.3. Suppose n ≥ 3 and let M be given by Sn−1×R with infinitely many

necks, the radii of which approach zero as the manifold approaches spatial infinity,

and which are separated by spheres of a fixed radius. Since a cylindrical solution forms

a singularity in time proportional to the square of radius of the cylinder, it is expected

that a complete Ricci flow with this initial condition could not exist on any interval

[0, ε) (see [72]).
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Figure 3.1: Sn−1 × R with Infinitely Many Necks

Example 3.2.4. [Flat-sided sphere] Let U ⊂ S2 be an open neighborhood with U 6=

S2. Let g0 be a metric that is flat on U , but has nonnegative Gaussian curvature

everywhere else, and strictly positive curvature somewhere (such a metric exists by a

theorem of Kazdan and Warner, [43]). Consider the Ricci flow g(t) on U given by

the restriction of the Ricci flow with initial condition (S2, g0). At any positive time,

(U, g(t)) will have uniformly positive curvature (this follows from an application of

the strong maximum principle to the flow on all of S2). However, the restriction of

g0 to U is flat, so the constant metric g̃(t) = g0 is another solution to the Ricci flow

on U with the same initial condition.

Figure 3.2: Flat Sided Sphere

(U,g(0)) (U,g(t))

Example 3.2.4 indicates that completeness (or some appropriate substitute) is

needed to ensure uniqueness of solutions in general. One might ask if completeness

alone is sufficient. In dimension two, the recent work of Giesen and Topping shows

that this is indeed true (see Section 3.2.3 below). However, in higher dimensions it
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is less clear what to expect, as Example 3.2.3 shows that short time existence likely

does not hold for general initial metrics. The possibility remains that there is some

other condition on the curvature which ensures uniqueness and short-time existence

of solutions to Ricci flow. For example, in the work of [11], [39], and [54], there are

constructions which produce solutions emanating from initial metrics satisfying only

(one-sided) lower bounds on curvature. It is unknown whether the solutions produced

by these constructions are unique, however, under certain additional non-collapsing

conditions, these solutions satisfy an instantaneous curvature bound of the form

|Rm | ≤ c

t
,

for some constant c > 0. This type of curvature bound also arises in a number of

other recent constructions of non-classical solutions, for example, [66] and [69]. This

suggests that solutions satisfying such instantaneous curvature bounds are a natural

class to test the extent to which the uniqueness result of Chen-Zhu can be generalized.

Lee [55] has proven a recent result in this direction.

Theorem 3.2.5 ([55]). For any m ∈ N, ∃ε = ε(m) > 0 such that the following holds:

Suppose (M, g0) is a complete noncompact manifold satisfying

|Rm(g0)| ≤ C0(d(x, p) + 1)m

for some C0 > 0 and a fixed point p ∈ M . If g(t) and g̃(t) are two smooth solutions

to Ricci flow on M × [0, T ] with g(0) = g̃(0) = g0 for which

|Rm g̃(t)|g̃(t) + |Rm(g(t))|g(t) ≤
ε

t

on M × (0, T ], then g(t) = g̃(t) for all t ∈ [0, T ].
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3.2.3 Instantaneously Complete Ricci Flow on Surfaces

There is one situation in which the assumptions that guarantee existence and

uniqueness of solutions have been essentially completely determined. The program

of Topping and Giesen-Topping [27, 28, 30, 31, 71, 73] has extablished existence of a

Ricci flow with arbitrary initial metric (M, g0) when M has dimension two. Moreover,

this solution will be complete for any t > 0, and unique among solutions with this

property. These instantaneously complete solutions are a useful source of insight into

the nature of solutions to Ricci flow with potentially unbounded curvature.

Theorem 3.2.3 ([27, 28, 73]). Let (M2, g0) be any smooth Riemannian surface, pos-

sibly incomplete and/or with unbounded curvature. Depending on the conformal type,

we define T ∈ (0,∞] by

T :=


1

4πχ(M)
Volg0M if (M, g0) ∼= S2,C, or RP 2,

∞ otherwise.

Then there exists a unique smooth Ricci flow g(t) on M2, defined for t ∈ [0, T ) such

that

1. g(0) = g0;

2. g(t) is instantaneously complete.

The existence of such a solution with an arbitrary initial metric was proven by

Giesen and Topping in [28]. Uniqueness for solutions whose initial metric has uni-

formly negative curvature was shown by the same authors in [27], and the full result

was proven in [73] by Topping. The unique flow guaranteed to exist by the theorem

is called the instantaneously complete Ricci flow.

As the method of Giesen and Topping relies on the conformal nature of the flow

in dimension two, it is unclear how much of this theory might reasonably be hoped

23



to extend to higher dimensions. In particular, in view of Example 3.2.3, there is not

much hope for a similar statement of existence in dimensions three and above. Still,

the work of Giesen and Topping shows that in dimension two, completeness is enough

to imply the uniqueness of solutions on its own. This suggests the following question.

Question 3.2.6. If (M, ĝ(t)) and (M, ǧ(t)) are complete solutions to (1.1) with

ĝ(0) = ǧ(0), must ĝ(t) = ǧ(t) for as long as both solutions exist?

3.3 Well-posedness and the Preservation of Geometric Structures

As discussed in Section 3.2.1, uniqueness of solutions to the Ricci flow implies

that the isometry group of the initial metric is preserved. It is easy to see that well-

posedness implies that certain other structures are preserved as well. The following

result, in particular, is standard: we give a detailed proof here in order to provide

context for the result of Chapter 5.

Proposition 3.3.1. Let (M, g0) = (M̂ × M̌, ĝ0 ⊕ ǧ0) be a complete manifold which

splits as a product, and let (M, g(t)) be a solution to (1.1) for t ∈ [0, T ] with g(0) = g0

and with uniformly bounded curvature. Then there exist metrics ĝ(t), ǧ(t) on M̂ and

M̌ , respectively, with ĝ(0) = ĝ0 and ǧ(0) = ǧ0 such that g(t) = ĝ(t) ⊕ ǧ(t) for all

t ∈ [0, T ].

Proof. Using the existence component of Theorem 3.2.1, we know that there exist

solutions ĝ(t), ǧ(t) to (1.1) with ĝ(0) = ĝ0 and ǧ(0) = ǧ0, both with uniformly bounded

curvature. Let T̂ be the maximal existence time for ĝ, and Ť the maximal existence

time for ǧ. Their product (ĝ⊕ ǧ)(t) is then a solution on M with the required initial

condition, and also has bounded curvature. Thus, by the uniqueness component of

Theorem 3.2.1, we must have g(t) = (ĝ ⊕ ǧ)(t) for t ∈ [0,min(T̂ , Ť , T )). Suppose
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without loss of generality that T̂ < T . Then, again by Theorem 3.2.1, we must have

lim sup
t↗T

(
sup
M
|Rm |ĝ(t)|

)
=∞

as t↗ T̂ . But, this would imply that

lim sup
t↗T

(
sup
M
|Rmĝ(t)⊕ǧ(t) |

)
→∞

as t↗ T̂ , contradicting the assumption that g(t) must satisfy

sup
M×[0,T̂ ]

|Rmg(t) | ≤ K

for some K < ∞. Therefore, we must have T̂ , Ť ≥ T , and g(t) = ĝ(t) ⊕ ǧ(t) for all

t ∈ [0, T ).

In Chapter 5, we extend this statement to the class of solutions satisfying a curva-

ture bound of the form |Rm | ≤ ε/t, where ε = ε(n) depends only on the dimension.

Our proof, however, relies on a substantially different approach. Note that we cannot

simply follow the template of the theorem above, substituting the theorem of Lee

for that of Chen-Zhu, as the argument for Proposition 3.3.1 relies on our ability to

construct the ‘competitor’ solutions ĝ(t) and ǧ(t) on the factors M̂ and M̌ . As we

assume nothing other than the completeness of g0, there is no short-time existence

result to which we could appeal. Instead, we reformulate the problem as one of

uniqueness of solutions to a certain auxiliary system. The components of this system

are constructed from an evolving family of complementary orthogonal projections

onto subspaces of the tangent bundle which, in a sense, mimic the natural projec-

tions induced by the product structure at time t = 0. The evolution equations of

the components of this system can be organized into a system of mixed differential

inequalities. Adapting a version of the maximum principle from [40] (see also [56])

for systems of this type, we are able to show that the components of this system must
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vanish, and thus that the time-dependent projections remain parallel with respect to

g(t). This implies that the solution continues to split for all time.

26



Chapter 4

PRESERVATION OF THE HOLONOMY GROUP UNDER THE RICCI FLOW

This chapter is joint work with Brett Kotschwar and an article based on its con-

tents has been accepted for publication in the Proceedings of the American Mathe-

matical Society ([20]). With his permission, it has been faithfully reproduced here

with only minor modifications. The question addressed here was brought to the au-

thors’ attention by Thomas Leinster and Miles Simon. The authors are grateful to

them for their interest and for subsequent related discussions.

4.1 Introduction

In this chapter, we consider the holonomy of a family of manifolds (M, g(t)) evolv-

ing by the Ricci flow. It is an old observation of Hamilton [33, 37] that, under mild

hypotheses on the solution g(t), the reduced holonomy Hol0(g(t)) cannot expand : if

Hol0(g(t)) is initially restricted to some subgroup G ⊂ SO(n), then it remains so, pro-

vided that the solution is complete and of bounded curvature or otherwise belongs

to some class in which the equation is well-posed. As we have discussed previously,

this can be proven with a short argument using only general ingredients. First, one

passes to the universal cover and applies Berger’s classification (see Theorem 2.4.1).

It follows from this classification that one need only verify that Einstein, product, and

Kähler structures are preserved by the flow. Using the short-time existence compo-

nent of Theorem 3.2.1 where needed, one can construct complete Einstein, product,

and Kähler solutions to the flow starting from given initial data with those charac-

teristics. The uniqueness results of Hamilton and Chen-Zhu [32, 15] (Theorem 3.2.1)

then imply that these special solutions are the only solutions within the class with
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the given initial data.

In [45], Kotschwar later showed that the reduced holonomy Hol0(g(t)) of a com-

plete solution of uniformly bounded curvature also cannot contract and, consequently,

that Hol0(g(t)) ∼= Hol0(g(0)) for all time t. However, even with Berger’s classification,

the problem of non-contraction does not reduce in the same way to one of backward

uniqueness of solutions to the Ricci flow. While it is still only necessary to verify that

the above three special structures are preserved under the flow, it is not in general

possible to solve the parabolic terminal-value problems needed to obtain “competitor”

solutions with these special structures to compare against the original solution. (The

one exception is the Einstein case, in which suitable competitors can be obtained by

scaling the initial metric homothetically.) Instead, in [45], the problem is framed as

one of backward uniqueness of the solutions to a related prolonged system which may

in turn be treated by the general methods of [52, 47]. This formulation also leads to

an alternative proof of the non-expansion of Hol0(g(t)) (which is closer in spirit to

that suggested in [37] than the argument sketched above).

The above results leave open the question of whether the full holonomy Hol(g(t))

is preserved by the Ricci flow. Both Hol(g) and Hol0(g) are fundamentally global

invariants of the manifold, however, at each p, the reduced holonomy Hol0p(g) is the

connected component of the identity in Holp(g), and is determined by the holonomy

Lie algebra holp(g). Since the latter contains the image of the curvature operator Rm

at each point p, it is possible to test for the preservation of the reduced holonomy

along the flow by studying the kernel of the curvature operator of the solution.

For the full holonomy, which carries information about the global topology of the

manifold, there is no such convenient infinitesimal characterization. Assuming the

invariance of the reduced holonomy along the flow, the essence of the problem one

faces is this: if the lift (M̃, g̃(t)) to the universal cover M̃ of a solution (M, g(t)) to
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the Ricci flow admits a parallel family of tensors Ã(t), and if, at some time t0, the

tensor Ã(t0) descends to a parallel tensor A(t0) on M , then does Ã(t) descend to a

smooth parallel family of tensors A(t) on M at all times t? One natural strategy to

attack this problem is to extend A(t0) to a family of tensors defined for t > t0 as

the solution of an appropriate heat-type equation coupled with the Ricci flow and to

argue from the maximum principle that ∇g(t)A(t) ≡ 0; however, this approach does

not apply to times t < t0.

Here, we show that the invariance (up to isomorphism) of Hol(g(t)) along a so-

lution g(t) to the Ricci flow can nevertheless be obtained from that of Hol0(g(t)) by

a direct argument which applies equally well forward and backward in time. The

precise statement of the main theorem of this chapter is the following.

Theorem 4.1.1. Let g(t) be a solution to the Ricci flow on M × [0, T ] such that

(M, g(t)) is complete for each t ∈ [0, T ], and supM×[0,T ] |Rm |(x, t) < ∞. Then, for

all q ∈M and t ∈ [0, T ],

Holq(g(t)) = ψt ◦ Holq(g(0)) ◦ ψ−1
t , (4.1)

where ψt ∈ O(TqM, gq(t)) satisfies

dψt
dt

= Rc ◦ψt, ψ0 = Id,

for t ∈ [0, T ]. Here Rc = Rc(gq(t)) : TqM → TqM .

In particular, Theorem 4.1.1 implies that if a complete Ricci flow with bounded

curvature is Kähler or splits as a product on any time-slice, it must be Kähler or

split as a product on all time-slices. In Section 4.4 we show that the complex and

product structures will in these cases be independent of time. The preservation of such

structures forward in time is of course a well-known property of the Ricci flow. We

have already sketched one proof of this fact above; one feature of the argument below
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(when used in conjunction with [45]) is that it does not make use of the short-time

existence and uniqueness of solutions to the equation.

In [49], Kotschwar has also previously shown that the preservation of global

Kählerity under the flow follows from the preservation of local Kählerity. Our proof

of Theorem 4.1.1 is in some sense a generalization of the argument given there. Fur-

ther results concerning the preservation of the Kähler property for Ricci flows with

instantaneously bounded curvature can be found in [40, 56].

4.2 The Preservation of Reduced Holonomy and a Reformulation

Let g(t) be a smooth solution to the Ricci flow

∂

∂t
g = −2 Rc(g), (4.2)

on M × [0, T ]. The holonomy groups Hol0p(g(t)) and Holp(g(t)) based at a point

p ∈M are naturally represented as subgroups of the orthogonal group O(TpM, gp(t))

relative to the time-varying inner product gp(t) at p. Using Uhlenbeck’s trick, we

can transform Theorem 4.1.1 into an equivalent statement for a family of connections

whose holonomy groups are instead realized as subgroups of some fixed representation

of the orthogonal group.

4.2.1 Uhlenbeck’s Trick

Fix t0 ∈ [0, T ] and let E be a vector bundle isomorphic to TM by some fixed

isomorphism ıt0 : E → TM . Using ıt0 , we equip E with the bundle metric h defined

by

hq(V,W ) = gq(t0)(ıt0V, ıt0W )
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for q ∈M and V , W ∈ Eq. Then, we extend ıt0 forward and backward in time as the

solution to the fiber-wise ODE

∂ıt
∂t

= Rc ◦ıt, (4.3)

where Rc = Rc(gq(t)), to obtain a family ıt : E → TM of bundle isomorphisms for

t ∈ [0, T ]. With this extension, ıt : (E, h) → (TM, g(t)) is in fact a bundle isometry

for each t ∈ [0, T ].

Let∇ = ∇t denote the Levi-Civita connection of g(t). We will study the holonomy

of ∇ via that of the family of pull-back connections ∇ = ∇t
on E defined by

∇t

XV = ı−1
t (∇t

X(ıtV )) (4.4)

for X ∈ TM and V ∈ Γ(E), where Γ(E) denotes the space of smooth sections of E.

The metric h is compatible with the connection ∇t
, and the holonomy groups of ∇t

and ∇t are related by

Holq(∇
t
) = ı−1

t ◦ Holq(∇t) ◦ ıt. (4.5)

4.2.2 Preservation of Reduced Holonomy

As discussed in the introduction, the results in [37], [45] imply that when (M, g(t))

is complete and of uniformly bounded curvature, the reduced holonomy group of ∇t

is isomorphic to the reduced holonomy of ∇t0 for any t, t0 ∈ [0, T ]. While the analytic

arguments used in the verification of this fact for t < t0 are fundamentally different

from those used for the case t0 < t, the backward-time and forward-time problems can

still be formulated in a unified way in terms of the image of the curvature operator

Rm = Rm(g(t)) of the solution in the bundle of two-forms.

Let hol(∇t) be the subbundle of End(TM) whose fiber holq(∇t) ⊂ so(TqM, gq(t))

at q is the Lie algebra of Hol0q(∇t) ⊂ O(TqM, gq(t)). Let H(∇t) ⊂ ∧2T ∗M be the
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bundle of two-forms isomorphic to hol(∇t) via the correspondence

A ∈ holq(∇t) 7→ gq(t)(A·, ·) ∈ Hq(∇t),

and let hol(∇t
) ⊂ End(E) and H(∇t

) ⊂ ∧2E∗ denote the analogous families of

bundles relative to the connection ∇t
.

In Theorem 1.4 and Appendix A of [45] (compare Theorem 4.1 of [37]), it is shown

that H(∇t) is time-invariant by first showing that the family of subbundles

H(t) = (ıt)∗H(∇t0
) ⊂ ∧2(T ∗M)

is a ∇t-parallel subalgebra which contains the image of Rm(g(t)). From this, we

deduce that H(t) must coincide with H(∇t). Then, using the definition of ıt and the

fact that H(t) contains the image of Rm(g(t)), one verifies by a short calculation that

H(t) must actually be independent of time. Thus,

H(∇t) = H(t) = H(t0) = ı∗t0H(∇t0
) = H(∇t0).

But, H(∇t
) = ı∗tH(∇t), so

H(∇t
) = ı∗tH(t) = H(∇t0

),

and H(∇t
) is also independent of time.

Whereas the fibers of hol(∇t) are related to the fibers of H(∇t) via the time-

dependent isomorphisms A 7→ g(t)(A·, ·), the fibers of hol(∇t
) and H(∇t

) are related

by the time-independent isomorphism A 7→ h(A·, ·). Thus, the fibers holq(∇
t
) ⊂

so(Eq, h) are also independent of time, and it follows that the same is true of Hol0q(∇
t
) ⊂

O(Eq, h).

In terms of the framework we have established, the preservation of reduced holon-

omy can be restated precisely as follows
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Theorem 4.2.1 ([37], [45]). Let g(t), ∇t, and ∇t
be as above, and assume that

(M, g(t)) is complete and of uniformly bounded curvature for t ∈ [0, T ]. Then holq(∇
t
) ⊂

so(Eq, h) is independent of t for all q ∈M . Hence,

Hol0q(∇
t
) = Hol0q(∇

t0
), Hol0q(∇t) = ψt ◦ Hol0q(∇t0) ◦ ψ−1

t ,

for all q ∈M , t ∈ [0, T ], where ψt = ıt ◦ ı−1
t0 .

Theorem 4.1.1 can now also be restated in terms of the family of connections ∇t
.

Theorem 4.2.2. Provided (M, g(t)) is complete and of uniformly bounded curvature,

Holq(∇
t
) = Holq(∇

t0
)

for all t ∈ [0, T ] and q ∈M . Consequently,

Holq(∇t) = ψt ◦ Holq(∇t0) ◦ ψ−1
t ,

where ψt = ıt ◦ ı−1
t0 .

4.3 Invariance of the Full Holonomy Group

Given a piecewise smooth curve γ : [a, b] → M , we will use Ds = Dt
s to denote

the covariant derivative along γ induced by ∇ = ∇t
. We will temporarily suppress

the subscript t on the maps ı = ıt.

The key to the proof of Theorem 4.2.2 is the following identity.

Proposition 4.3.1. Let γ : [a, b] → M denote a smooth curve and V = V (s, t) be a

smooth family of smooth sections of E along γ = γ(s) which is parallel along γ with

respect to Ds = Dt
s for all t ∈ [0, T ]. Then V satisfies

Ds
∂

∂t
V = −ı−1div Rm(γ̇)ıV.
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Here, div Rm is the section of T ∗M ⊗End(TM) defined as follows: for any p ∈M

and X ∈ TpM , div Rmp(X) ∈ End(TpM) acts on Y ∈ TpM by

div Rmp(X)Y =
n∑
l=1

∇elRp(el, X)Y,

where {el}nl=1 is a g(t)-orthonormal basis of TpM . Note that div Rmp(X) ∈ holp(∇t)

for any X ∈ TpM . Indeed, the curvature endomorphisms Rp ∈ T (3,1)(TpM) belong to

Hp(t)⊗ holp(∇t), and so do ∇X1∇X2 · · · ∇XkRp for any X1, X2, . . . , Xk ∈ TpM .

Proof of Proposition 4.3.1. Let s0 ∈ [a, b] be fixed. Choose local frames (Eα)nα=1 for

E and (ei)
n
i=1 for TM on a neighborhood of γ(s0), and let Γ

β

iα be the coefficients of

∇ in terms of these frames, i.e., ∇eiEα = Γ
β

iαEβ.

First, since V (·, t) is parallel for all t,

0 =
∂

∂t
DsV =

∂2V α

∂s∂t
Eα +

∂V α

∂t
∇γ̇Eα + γ̇iV α∂Γ

β

iα

∂t
Eβ

at any (s0, t). On the other hand, for s near s0,

∂V

∂t
(s, t) =

∂V α

∂t
(s, t)Eα(γ(s)),

and so

Ds
∂V

∂t
=
∂2V α

∂s∂t
Eα +

∂V α

∂t
∇γ̇Eα

= −γ̇iV α∂Γ
β

iα

∂t
Eβ (4.6)

at (s0, t).

Now, fix α and temporarily write X = ıEα. Then we have ∂
∂t
X = Rc(X), and,

using that

∂Γkij
∂t

= ∇kRij −∇iR
k
j −∇jR

k
i , ∇kRji −∇jR

k
i = glm∇lR

k
mij,
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where Γkij denotes the components of ∇ in terms of {ei}ni=1, we see that

∂

∂t
(∇eiX) = ∇ei

(
∂

∂t
X

)
+

(
∂Γkij
∂t

)
Xjek

= ∇ei(Rc(X))− (∇ei Rc)(X)− (∇X Rc)(ei) + (∇k Rc)(ei, X)ek

= Rc(∇eiX) + div Rm(ei)X.

Thus,

∂Γ
β

iα

∂t
Eβ =

∂

∂t

(
∇eiEα

)
=

∂

∂t

(
ı−1∇eiı(Eα)

)
= −ı−1 ◦ Rc(∇eiıEα) + ı−1

(
∂

∂t
(∇eiıEα)

)
= ı−1div Rm(ei)ıEα.

Inserting this expression into (4.6) for Ds
∂V
∂t

completes the proof.

Next we use Proposition 4.3.1 to determine the evolution of parallel transport

along a fixed loop.

Proposition 4.3.2. Let q ∈ M and let γ : [0, 1] → M be a piecewise smooth loop

with γ(0) = γ(1) = q. Let Ps,t : Eq → Eγ(s) be parallel translation along γ with respect

to Ds = Dt
s. Then

∂

∂t
P1,t = P1,tB

for some B = B(t) ∈ holq(∇).

Proof. It suffices to show that

P−1
1,t

∂

∂t
P1,t ∈ holq(∇).

Let 0 = a0 < a1 < . . . < ak = 1 be such that γ|[ai−1,ai] is smooth and fix an arbitrary

W ∈ Eq. Applying the previous lemma to V = Ps,tW on any subinterval [ai−1, ai],
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we find that

d

ds

(
P−1
s,t

∂

∂t
Ps,tW

)
= P−1

s,t

(
Ds

∂

∂t
Ps,tW

)
= −P−1

s,t

(
ı−1div Rmγ(s)(γ̇)ı(Ps,tW )

)
.

In other words,

d

ds

(
P−1
s,t

∂

∂t
Ps,t

)
= −P−1

s,t ◦ ı−1 ◦ div Rmγ(s)(γ̇) ◦ ı ◦ Ps,t + A(s, t).

But div Rmγ(s)(γ̇) ∈ holγ(s)(∇) for each s, so ı−1 ◦div Rmγ(s)(γ̇)◦ ı ∈ holγ(s)(∇) for

each s. Since hol(∇) is invariant under parallel translation, it follows that A(s, t) ∈

holq(∇) for all s ∈ (ai−1, ai) and t ∈ [0, T ].

Now let hol⊥q (∇) denote the orthogonal complement of holq(∇) in End(E) and let

L ∈ hol⊥q (∇) be arbitrary. Then

F (s) =

〈
L, P−1

s,t

∂

∂t
Ps,t

〉
hq

=

〈
Ps,t ◦ L ◦ P−1

s,t ,
∂

∂t
Ps,t ◦ P−1

s,t

〉
hγ(s)

is continuous on [0, 1] and smooth on each interval (ai−1, ai). For s in any such

interval,

F ′(s) = 〈L,A(s, t)〉hq = 0.

Thus F |[ai−1,ai] is constant for each i.

But P0,t = P−1
0,t = Id for all t, so P−1

0,t
∂
∂t
P0,t = 0 and F (0) = 0. Thus F (s) = 0 for

all s ∈ [0, 1]. Since L ∈ hol⊥q (∇) was arbitrary, it follows that

B(t) + P−1
1,t

∂

∂t
P1,t ∈ holq(∇),

completing the proof.

We will use Proposition 4.3.2 in conjunction with the following simple fact.
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Lemma 4.3.3. Suppose H is a Lie subgroup of the Lie group G, B(t) is a smooth

family of tangent vectors in TeH ⊂ TeG for t ∈ [0, T ], and X = X(g, t) is the left-

invariant extension of B(t) to G for each t. If α : [0, T ]→ G is an integral curve of

X passing through a ∈ H at t = t0 then α(t) ∈ H for all t ∈ [0, T ].

Proof. Since B(t) ∈ TeH, we may separately form the left-invariant extension X of

B(t) on H and obtain α : [0, T ]→ H solving α′(t) = X(α(t), t) with α(t0) = a. Then,

the inclusion ι ◦ α of α into G will be an integral curve of X passing through a at

t = t0 whose image lies in H ⊂ G. By uniqueness, it must coincide with α.

Now we put the above pieces together to prove Theorem 4.2.2.

Proof of Theorem 4.2.2. Fix q ∈ M and t0 ∈ [0, T ]. We will show that Holq(∇
t
) ⊂

Holq(∇
t0

) for all t ∈ [0, T ]. Let γ : [0, 1]→M be an arbitrary piecewise-smooth loop

based at q and let P (t) = P1,t : Eq → Eq be parallel translation along γ with respect

to the covariant derivative Ds = Dt
s relative to ∇t

. By Proposition 4.3.2, ∂P
∂t

= PB

for some B = B(t) in the time-invariant subalgebra holq(∇
t
) = holq(∇

t0
) ⊂ so(Eq, h).

For each t ∈ [0, T ], let X(·, t) be the left-invariant extension of B(t) to all of O(Eq, h),

given by X(A, t) = AB(t).

Then P (t) is an integral curve of the left-invariant vector field X(·, t), and applying

Lemma 4.3.3 with H = Holq(∇
t0

), G = O(Eq, h), α(t) = P (t), and a = P (t0), we

obtain that P (t) ∈ Holq(∇
t0

) for all t. But P (t) represents ∇t
-parallel translation

along an arbitrary piecewise smooth loop γ based at q, so Holq(∇
t
) ⊂ Holq(∇

t0
) for

all t as claimed.

4.4 Preservation of Parallel Tensors

One consequence of Theorem 4.1.1 is that if g(t) is a complete solution to the Ricci

flow of uniformly bounded curvature on M × [0, T ] and A0 is a smooth ∇t0-parallel
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tensor for some t0 ∈ [0, T ], then there is a smooth family A(t) of ∇t-parallel tensors

on M × [0, T ] with A(t0) = A0.

Corollary 4.4.1. If the tensor field A0 ∈ Γ(T k,l(M)) is ∇t0-parallel for some t0 ∈

[0, T ], then A(t) = (ıt)∗ı
∗
t0
A0 is ∇t-parallel for all t.

Indeed, the section B0 = ı∗t0A0 of the corresponding tensor product of E is ∇t0
-

parallel, and Theorem 4.2.2 shows that Holq(∇
t
) is independent of time for each q.

So B0 is ∇t
-parallel, and A(t) = (ıt)∗B0 therefore ∇t-parallel, for each t ∈ [0, T ].

The family A(t) in Corollary 4.4.1 can be explicitly described as the solution of the

fiberwise linear system

∂

∂t
Aa1...alb1...bk

= Rc
b1
Aa1...alcb2...bk

+ · · ·+Rc
bk
Aa1...alb1b2...c

−Ra1
c A

ca2...al
b1...bk

− · · · −Ral
c A

a1...c
b1...bk

,

A(t0) = A0,

of ordinary differential equations.

In some cases, the extended family of parallel tensors A(t) will be independent

of time. This is true, for example, when the time-slice (M, g(t0)) = (M̃ × M̂, g̃ ⊕ ĝ)

is a Riemannian product, and A0 is one of the associated complementary orthogonal

projections P̃ , P̂ ∈ End(TM). It is also true when the time-slice (M, g(t0)) is Kähler

and A0 = J is its complex structure. We give the argument for these two special

cases below.

Product structures

Suppose M = M̃ × M̂ and g(t0) = g̃ ⊕ ĝ is a Riemannian product. Let P̃0 and P̂0

denote the orthogonal projections onto the subbundles of TM isomorphic to TM̃ and

TM̂ , respectively. These sections of End(TM) are parallel at t = t0, and therefore,
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by Corollary 4.4.1, their extensions defined by

∂P̃

∂t
= P̃ ◦ Rc−Rc ◦P̃ , P̃ (t0) = P̃0,

∂P̂

∂t
= P̂ ◦ Rc−Rc ◦P̂ , P̂ (t0) = P̂0,

(4.7)

are ∇t-parallel for each t. It also follows directly from (4.7) that P̃ (t) and P̂ (t) will

remain complementary g(t)-orthogonal projections. But these properties imply that

P̃ ◦Rc = Rc ◦P̃ and P̂ ◦Rc = Rc ◦P̂ identically on M × [0, T ]. So ∂P̃
∂t

= ∂P̂
∂t

= 0, and

the product structure these projections define is constant in time.

Complex Structures

Similarly, suppose (M, g(t0)) is Kähler with complex structure J0. As above, the

family J = J(t) defined by

∂J

∂t
= J ◦ Rc−Rc ◦J, J(t0) = J0,

will be ∇t-parallel and will satisfy J2 = − Id and g(J ·, J ·) = g(·, ·) for all t. However,

these conditions likewise imply that Rc ◦J = J ◦Rc for each t, and hence that ∂J
∂t

= 0,

so (M, g(t)) is Kähler relative to the fixed complex structure J0 for all t. (Compare

Section 3 of [49].)
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Chapter 5

THE PRESERVATION OF PRODUCT STRUCTURES UNDER THE RICCI

FLOW

5.1 Introduction

In this chapter, we consider the problem of whether a solution to the Ricci flow

which splits as a product at t = 0 continues to do so for all time. As we have

discussed in Section 3.3, this problem is closely related, but not strictly equivalent, to

the question of uniqueness of solutions to the Ricci flow. For example (see Proposition

3.3.1), when (M̂ × M̌, ĝ0 ⊕ ǧ0), Shi’s existence theorem [68] implies that there exist

complete, bounded curvature solutions (M̂, ĝ(t)) and (M̌, ǧ(t)) with initial conditions

ĝ0 and ǧ0, respectively, which exist on some common time interval [0, T ]. Then,

ĝ(t)⊕ ǧ(t) solves (1.1) on M̂ × M̌ for t ∈ [0, T ] and is also complete and of bounded

curvature. But, according to the uniqueness results of Hamilton [32] and Chen-Zhu

[15], such a solution is unique among those which are complete and have bounded

curvature. Thus, any solution in that class starting at ĝ0 ⊕ ǧ0 continues to split as a

product.

Outside of this class, less is known. While there are elementary examples which

show that without completeness, a solution may instantaneously cease to be a product

(see Example 3.2.4), the extent to which the uniform curvature bound can be relaxed

is less well-understood. (One exception is in dimension two, where the work of Giesen

and Topping [28, 27] has established an essentially complete theory of existence and

uniqueness for (1.1). In particular, in [73], Topping shows that any two complete

solutions with the same initial data must agree. See Section 3.2.3.)
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One class of particular interest is that of solutions satisfying a curvature bound of

the form c/t for some constant c, which arise naturally as limits of exhaustions (see,

e.g., [11], [39], [70]). The purpose of this note is to prove the following.

Theorem 5.1.1. Let (M̂, ĝ0) and (M̌, ǧ0) be two Riemannian manifolds and let M =

M̂ × M̌ and g0 = ĝ0 ⊕ ǧ0. Then there exists a constant ε = ε(n) > 0, where n =

dim(M), such that if g(t) is a complete solution to (1.1) on M × [0, T ] with g(0) = g0

satisfying

|Rm |(x, t) ≤ ε

t
, (5.1)

then g(t) splits as a product for all t ∈ [0, T ], i.e., g(t) = ĝ(t)⊕ ǧ(t), where ĝ(t) and

ǧ(t) are solutions to (1.1) on M̂ and M̌ , respectively, for t ∈ [0, T ].

Lee [55] has already established the uniqueness of complete solutions satisfying

the bound (5.1). However, his result does not directly imply Theorem 5.1.1: without

any restrictions on the curvatures of ĝ0 and ǧ0, we lack the short-time existence theory

to guarantee that there are any solutions on M̂ and M̌ , respectively, with the given

initial data, let alone solutions satisfying a bound of the form (5.1) for sufficiently

small ε. Thus we are unable to construct a competing product solution on M̂ × M̌

to which we might apply Lee’s theorem.

Instead, we frame the problem as one of uniqueness for a related system, using

a perspective similar to that of [56] and [45]. The key ingredient is a maximum

principle closely based on one due to Huang-Tam [40] and modified by Liu-Székelyhidi

[56]. These references establish, among other things, related results concerning the

preservation of Kähler structures under instantaneous curvature bounds.
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5.2 Tracking the Product Structure

Our first step toward proving Theorem 5.1.1 is to construct a system associated

to a solution to Ricci flow which measures the degree to which a solution which

initially splits as a product fails to remain a product. Consider a Riemannian product

(M, g0) = (M̂ × M̌, ĝ0 ⊕ ǧ0), and let g(t) be a smooth solution to the Ricci flow on

M × [0, T ] with g(0) = g0. For the time being, we make no assumptions on the

completeness of g(t) or bounds on its curvature.

5.2.1 Extending the Projections

Let π̂ : M → M̂ and π̌ : M → M̌ be the projections on each factor, and let

Ĥ = ker(dπ̌) and Ȟ = ker(dπ̂). We define P̂0, P̌0 ∈ End(TM) to be the orthogonal

projections onto Ĥ and Ȟ determined by g0.

Following [45], we extend each of them to a time-dependent family of projections

for t ∈ [0, T ] by solving the fiber-wise ODEs
∂tP̂ (t) = Rc ◦P̂ − P̂ ◦ Rc

P̂ (0) = P̂0

,


∂tP̌ (t) = Rc ◦P̌ − P̌ ◦ Rc

P̌ (0) = P̌0

. (5.2)

From P̂ and P̌ , we construct time-dependent endomorphisms P ,P ∈ End(Λ2T ∗M)

by

Pω(X, Y ) = ω(P̂X, P̌Y ) + ω(P̌X, P̂Y ),

Pω(X, Y ) = ω(P̂X, P̂Y ) + ω(P̌X, P̌Y ).

Let Rm : Λ2T ∗M → Λ2T ∗M be the curvature operator, and define the following:

R = Rm ◦P , R = Rm ◦P ,

S = (∇Rm) ◦ (Id× P), T = (∇∇Rm) ◦ (Id× Id× P).
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In order to study the evolution of R, it will be convenient to introduce an operator

Λa
b which acts algebraically on tensors via

Λa
bA

j1...jk
i1...il

= δai1A
j1...jk
bi2...il

+ · · ·+ δailA
j1...jk
i1··· − δ

j1
b A

a...jk
i1...il
− · · · − δjkb A

j1...a
i1...il

.

We will also consider the operator

Dt := ∂t +Rabg
bcΛa

c .

This operator has the property that Dtg = 0, and for any time-dependent tensor

fields A and B,

Dt〈A,B〉 = 〈DtA,B〉+ 〈A,DtB〉,

where 〈·, ·〉 is the metric induced by g(t). Note that by construction the projections

satisfy

DtP̂ ≡ 0, DtP̌ ≡ 0, DtP ≡ 0, DtP ≡ 0.

5.2.2 Evolution Equations

In order to determine how the components of X and Y evolve, we will make use

of the following commutation formulas (see [45], Lemma 4.3):

[Dt,∇a] = ∇pRpacbΛ
b
c +Rac∇c, (5.3)

[Dt −∆,∇a] = 2RabdcΛ
c
d∇b + 2Rab∇b. (5.4)

Additionally, we will need to examine the sharp operator on endomorphisms of

two forms. For any A,B ∈ End(Λ2T ∗M),

〈A#B(ϕ), ψ〉 =
1

2

∑
α,β

〈[A(ωα), B(ωβ)], ϕ〉 · 〈[ωα, ωβ], ψ〉, (5.5)

where ϕ, ψ ∈ Λ2T ∗M and {ωα} is an orthonormal basis for Λ2T ∗M . Recall that the

curvature operator evolves according to

(Dt −∆) Rm = Q(Rm,Rm),
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under the Ricci flow, where Q(A,B) = 1
2
(AB +BA) + A#B.

Proposition 5.2.1. We have the following evolution equations for the projection P:

Dt∇P = Rm ∗∇P + P ∗ S,

Dt∇2P = Rm ∗∇2P +∇Rm ∗∇P + P ∗ T +∇Rm ∗P ∗ ∇P .

In particular, there exists a constant C = C(n) such that

|Dt∇P| ≤ C(|Rm ||∇P|+ |S|),

|Dt∇2P| ≤ C(|Rm ||∇2P|+ |∇Rm ||∇P|+ |T |).
(5.6)

Here, for tensors A,B, the notation A ∗B refers to some finite linear combination

of contractions of A⊗B.

Proof. Using equation (5.3) and the fact that DtP = 0, we can see that Dt∇P =

[Dt,∇]P . With some additional computation, we can then see (as in Propositions 4.5

and 4.6 from [45]) that

Dt∇P = Rm ∗∇P + P ∗ S.

Similarly, using this equation together with (5.3) and the fact that ∇S = T +

∇Rm ∗∇P , we have

Dt∇2P = [Dt,∇]∇P +∇(Dt∇P)

= Rm ∗∇2P +∇Rm ∗∇P + P ∗ T +∇Rm ∗P ∗ ∇P ,

as claimed.

In order compute similar evolution equations for R,S, and T , we will need the

following lemma.
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Lemma 5.2.2. Let A,B ∈ End(Λ2T ∗M) be self-adjoint operators. There exists C =

C(n) > 0 such that

|Q(A,B) ◦ P| ≤ C (|A ◦ P||B|+ |A||B ◦ P|) .

Proof. Clearly,

|(A ◦B +B ◦ A) ◦ P| ≤ |A ◦ P||B|+ |A||B ◦ P|.

Furthermore, for η ∈ Λ2T ∗M ,

(
(A#B) ◦ P

)
(η) =

1

2

∑
α,β

〈[Aωα, Bωβ],Pη〉 · [ωα, ωβ]

=
1

2

∑
α,β

〈[P ◦ Aωα,P ◦Bωβ],Pη〉 · [ωα, ωβ]

+
1

2

∑
α,β

〈[P ◦ Aωα,P ◦Bωβ],Pη〉 · [ωα, ωβ]

+
1

2

∑
α,β

〈[P ◦ Aωα,P ◦Bωβ],Pη〉 · [ωα, ωβ]

+
1

2

∑
α,β

〈[P ◦ Aωα,P ◦Bωβ],Pη〉 · [ωα, ωβ],

where {ωα} is an orthonormal basis for Λ2T ∗M . The final term on the right hand

side is zero (see [45], Lemma 3.5); the point is that the image of P is closed under

the bracket and is perpendicular to the image of P . Moreover, P ◦A = (A ◦ P)∗ and

P ◦B = (B ◦ P)∗, so it follows that

|(A#B) ◦ P| ≤ C
(
|A ◦ P||B ◦ P|+ |A ◦ P||B ◦ P|+ |A ◦ P||B ◦ P|

)
≤ C

(
|A ◦ P||B|+ |A||B ◦ P|

)
,

completing the proof.

Proposition 5.2.3. As defined above, R, S, and T satisfy the inequalities
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|(Dt −∆)R| ≤ C(|Rm ||R|+ |∇Rm ||∇P|+ |Rm ||∇2P|),

|(Dt −∆)S| ≤ C(|∇Rm ||R|+ |Rm ||S|+ |∇2 Rm ||∇P|+ |∇Rm ||∇2P|),

|(Dt −∆)T | ≤ C(|∇2 Rm ||R|+ |∇Rm ||S|+ |Rm ||T |

+ (|∇Rm ||Rm |+ |∇3 Rm |)|∇P|+ |∇2R||∇2P|),

(5.7)

where C = C(n) > 0.

Proof. Using the evolution equation for Rm, we have

(Dt −∆)R = Q(Rm,Rm) ◦ P + Rm ◦∆P + 2∇Rm ∗∇P .

The first inequality then follows immediately from Lemma 5.2.2.

We now compute the evolution equation for S. First, note that

(Dt −∆)S = ([Dt −∆,∇] Rm) ◦ P +∇((Dt −∆) Rm) ◦ P

+∇2 Rm ∗∇P +∇Rm ∗∇2P .
(5.8)

For the first term, using the commutator (5.4), we have

[(Dt −∆),∇a]Rijkl = 2RabdcΛ
c
d∇bRijkl + 2Rab∇bRijkl.

As in the computation in Proposition 4.13 from [45], we have

RabdcΛ
c
d∇bRmnklPijmn = Rm ∗S +∇Rm ∗R ∗ P ,

which gives us

([Dt −∆,∇] Rm) ◦ P = Rm ∗S +∇Rm ∗R ∗ P . (5.9)

We then compute

∇((Dt −∆) Rm) = ∇Q(Rm,Rm)

= ∇Rm ◦Rm + Rm ◦∇Rm +∇Rm # Rm + Rm #∇Rm

= 2Q(∇Rm,Rm),
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where we regard ∇Rm as a one form with values in Sym(Λ2T ∗M). Then, applying

Lemma 5.2.2 and combining the result in (5.9) with (5.8), we obtain the second

inequality.

For the third inequality, we begin with the identity

(Dt −∆)T =
(
(Dt −∆)∇2 Rm

)
◦ P +∇2 Rm ∗∇2P +∇3 Rm ∗∇P .

The first term can be rewritten as

((Dt −∆)∇2 Rm) ◦ P = ([Dt −∆,∇]∇Rm) ◦ P + (∇[Dt −∆,∇] Rm) ◦ P

+ (∇∇(Dt −∆) Rm) ◦ P .

Applying equation (5.4) once again gives us

((Dt −∆)∇a∇Rm)◦P−(∇a(Dt −∆)∇Rm)◦P = (2RabdcΛ
c
d∇b∇Rm +2Rab∇b∇Rm)◦P ,

and we have

RabdcΛ
c
d∇b∇Rm ◦P = Rm ∗T +∇2 Rm ∗R ∗ P

(again see [45], Proposition 4.13, also [56]). We can see that

(∇[Dt −∆,∇] Rm) ◦ P = ∇(([Dt −∆,∇] Rm) ◦ P) + ([Dt −∆,∇] Rm) ∗ ∇P

= ∇Rm ∗S + Rm ∗T + Rm ∗∇Rm ∗∇P +∇2 Rm ∗R ∗ P +∇Rm ∗S ∗ P

+∇Rm ∗Rm ∗∇P ∗ P +∇Rm ∗R ∗ ∇P + Rm ∗∇Rm ∗∇P

where we again use the facts that ∇R = S + Rm ∗∇P and ∇S = T +∇Rm ∗∇P .

Additionally,

(∇∇(Dt −∆) Rm) ◦ P = 2Q(∇2 Rm,Rm) ◦ P + 2Q(∇Rm,∇Rm) ◦ P .

Combining the above identities and again applying Lemma 5.2.2 to the last term, we

obtain the third inequality.
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5.2.3 Constructing a PDE-ODE System

With an eye toward Theorem 5.1.1, we now organize the tensors ∇P , ∇2P , R, S,

and T into groupings which satisfy a closed system of differential inequalities. Let

X = T 4(T ∗M)⊕ T 5(T ∗M)⊕ T 6(T ∗M), Y = T 5(T ∗M)⊕ T 6(T ∗M),

and define families of sections X = X(t) of X and Y = Y(t) of Y for t ∈ (0, T ] by

X =

(
R
t
,
S
t1/2

, T
)
, Y =

(
∇P
t1/2

,∇2P
)
. (5.10)

Proposition 5.2.4. If g(t) is a smooth solution to Ricci flow on M × [0, T ] with

|Rm |(x, t) < a/t for some a > 0, then there exists a constant C = C(a, n) > 0 such

that X and Y satisfy

|(Dt −∆)X| ≤ C

(
1

t
|X|+ 1

t2
|Y|
)
, |DtY| ≤ C

(
|X|+ 1

t
|Y|
)
, (5.11)

on M × (0, T ].

Remark 5.2.1. Inspection of the proof reveals that the constant C in fact has the

form C = aC̃, where C̃ depends only on n and max{a, 1}.

This follows directly from Propositions 5.2.1 and 5.2.3 with the help of the follow-

ing curvature bounds, which can be obtained from the classical estimates of Shi [68]

with a simple rescaling argument.

Proposition 5.2.5. Suppose (M, g(t)) is a complete solution to Ricci flow for t ∈

[0, T ] which satisfies

|Rm |(x, t) ≤ a

t

for some constant a > 0. Then for each m > 0, there exists a constant C = C(m,n)

such that

|∇(m) Rm |(x, t) ≤ aC

tm/2+1
(1 + am/2).
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Proof of Proposition 5.2.4. Throughout this proof, C will denote a constant which

may change from line to line but depends only on n and a. Using (5.6) in combination

with the curvature estimates, we obtain

|DtY| ≤
1

2
t−3/2|∇P|+ t−1/2|Dt∇P|+ |Dt∇2P|

≤ Ct−1/2|S|+ C|T |+ Ct−3/2|∇P|+ Ct−1|∇2P|

≤ C|X|+ C

t
|Y|.

Applying the curvature estimates to the inequalities (5.7) for R, S, and T , we get

|(Dt −∆)R| ≤ Ct−1|R|+ Ct−3/2|∇P|+ Ct−1|∇2P|,

|(Dt −∆)S| ≤ Ct−3/2|R|+ Ct−1|S|+ Ct−2|∇P|+ Ct−3/2|∇2P|,

and

|(Dt −∆)T | ≤ Ct−2|R|+ Ct−3/2|S|+ Ct−1|T |+ Ct−5/2|∇P|+ t−2|∇2P|.

Combining these equations, we have

|(Dt −∆)X| ≤ t−1|(Dt −∆)R|+ t−2|R|+ t−1/2|(Dt −∆)S|+ 1

2
t−3/2|S|

+ |(Dt −∆)T |

≤ Ct−2|R|+ Ct−3/2|S|+ Ct−1|T |+ Ct−5/2|∇P|+ Ct−2|∇2P|

≤ Ct−1|X|+ Ct−2|Y|,

as desired.

5.3 A General Uniqueness Theorem for PDE-ODE Systems

We now aim to show that X and Y vanish using a maximum principle from [40]

by adapting it to apply to a general PDE-ODE system. The following theorem is

essentially a reformulation of Lemma 2.3 in [40] and Lemma 2.1 in [56].
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Theorem 5.3.1. Let M = Mn and X and Y be finite direct sums of T kl (M). There

exists an ε = ε(n) > 0 with the following property: Whenever g(t) is a smooth,

complete solution to the Ricci flow on M satisfying

|Rm |(x, t) ≤ ε

t

on M × (0, T ], and X = X(t) and Y = Y(t) are families of smooth sections of X and

Y satisfying

|(Dt −∆)X| ≤ C

t
|X|+ C

t2
|Y|, |DtY| ≤ C|X|+ C

t
|Y|,

Dk
tY = 0, Dk

tX = 0 for k ≥ 0 at t = 0,

and

|X| ≤ Ct−l,

for some C > 0, l > 0, then X ≡ 0 and Y ≡ 0 on M × [0, T ].

The key ingredient in the proof of Theorem 5.3.1 is an the following scalar maxi-

mum principle due to Huang-Tam [40] (and its variant in [56]). Though the statement

has been slightly changed from its appearance in [40], the proof is nearly identical.

We detail here the modifications we make for completeness.

Proposition 5.3.2 (c.f. [40], Lemma 2.3 and [56], Lemma 2.1). Let M be a smooth

n-dimensional manifold. There exists an ε = ε(n) > 0 such that the following holds:

Whenever g(t) is a smooth complete solution to the Ricci flow on M× [0, T ] such that

the curvature satisfies |Rm |(x, t) ≤ ε/t for some and f ≥ 0 is a smooth function on

M × [0, T ] satisfying

1. (∂t −∆) f(x, t) ≤ at−1 max0≤s≤t f(x, s),

2. ∂kt
∣∣
t=0
f = 0 for all k ≥ 0,
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3. supx∈M f(x, t) ≤ Ct−l for some positive integer l for some constant C,

then f ≡ 0 on M × [0, T ].

Proof. For the time-being, we will assume ε > 0 is fixed and that g(t) is a smooth,

complete solution to Ricci flow on M × [0, T ] satisfying |Rm | ≤ ε/t. We will then

specify ε over the course of the proof.

As in [40] we may assume T ≤ 1. We will first show that for any k > a, there

exists a constant Bk such that

sup
x∈M

f(x, t) ≤ Bkt
k.

Let φ be a cutoff function as in [40], i.e., choose φ ∈ C∞([0,∞)) such that 0 ≤

φ ≤ 1 and

φ(s) =


1 0 ≤ s ≤ 1,

0 2 ≤ s,

− C0 ≤ φ′ ≤ 0, |φ′′| ≤ C0,

for some constant C0 > 0. Then let Φ = φm for m > 2 to be chosen later and define

q = 1− 2
m

. Then

0 ≥ Φ′ ≥ −C(m)Φq, |Φ′′| ≤ C(m)Φq.

where C(m) > 0 is a constant depending only on m (and on C0).

Fix a point y ∈ M . As in Lemma 2.2 of [40], there exists some ρ ∈ C∞(M) such

that

dg(T )(x, y) + 1 ≤ ρ(x) ≤ C ′(dg(T )(x, y) + 1), |∇g(T )ρ|g(T ) + |∇2
g(T )ρ|g(T ) ≤ C ′,

where C ′ is a positive constant depending only on n and ε
T

. This function then also

satisfies

|∇ρ| ≤ C1t
−cε, |∆ρ| ≤ C2t

−1/2−cε,
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where C1, C2 are constants depending only on n, T and ε, and c > 0 depends only

on the dimension n. We may assume ε is small enough so that cε < 1/4. Let

Ψ(x) = Ψr(x) = Φ(ρ(x)/r) for r � 1. Define also θ = exp(−αt1−β), where α > 0 and

0 < β < 1. By the estimates on the derivatives of ρ, we have

|∇Ψ| = r−1|Φ′(ρ/r)||∇ρ| ≤ r−1C(m)C1Φq(ρ/r)t−cε ≤ C(m)Ψqt−1/4

and

|∆Ψ| = |r−2Φ′′(ρ/r)|∇ρ|2 + r−1Φ′(ρ/r)∆ρ|

≤ r−2C(m)Φq(ρ/r)t−2cε + r−1C(m)Φq(ρ)t−1/2−cε

≤ C(m)Ψqt−3/4.

For k > a, let F = t−kf . Then F satisfies

(∂t −∆)F = −kt−k−1f + t−k(∂t −∆)f

≤ −kt−k−1f(x, t) + at−k−1 max
0≤s≤t

f(x, s)

and F ≤ Ct−l−k.

Let H = θΨF and suppose that H attains a positive maximum at the point

(x0, t0). Then, at this point, we have Ψ > 0 and both (∂t −∆)H ≥ 0 and ∇H = 0.

Since ∇H = 0, we have

∇Ψ · ∇F = −F |∇Ψ|2

Ψ
.

Additionally, since Ψ is independent of time,

θ(s)F (x0, s) ≤ θ(t0)F (x0, t0)

for all s ≤ t0. Because θ is decreasing, we have

s−kf(x0, s) = F (x0, s) ≤ F (x0, t0) = t−k0 f(x0, t0)
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for s ≤ t0, which in turn implies

max
0≤s≤t0

f(x, s) = f(x, t0).

Thus, at (x0, t0) we have

(∂t −∆)F ≤ (−k + a)t−1
0 F ≤ 0.

Thus at (x0, t0) we have

∆H = θF∆Ψ + θΨ∆F + 2θ∇F · ∇Ψ

= θF∆Ψ + θΨ∆F − 2θ
F |∇Ψ|2

Ψ

≥ −C(m)θFΨqt
−3/4
0 − C(m)θFΨ2q−1t

−3/4
0 + θΨ∆F

and

∂tH = −α(1− β)t−β0 θΨF + θΨ∂tF.

We can then compute

0 ≤ (∂t −∆)H

≤ θΨ(∂t −∆)F − α(1− β)t−β0 θΨF + C(m)θΨqFt
−3/4
0 + C(m)θΨ2q−1Ft

−3/4
0

≤ −α(1− β)t−β0 θΨF + C(m)θ(ΨF )qt
−3/4−(1−q)(l+k)
0

+ C(m)θ(ΨF )2q−1t
−3/4−(2−2q)(l+k)
0 .

We now choose m and β so that the powers of t0 in the denominators of the last

two terms are less than β. We take β to be 7/8 (any β ∈ (3/4, 1) will do). Recalling

that q = 1− 2/m, we choose m large enough so that 7/8 > 3/4 + (1− q)(l + k) and

7/8 > 3/4 + (2− 2q)(l + k). Then

α

8
ΨF = α(1− β)ΨF ≤ C(m)

(
(ΨF )q + (ΨF )2q−1

)
.

Finally, we choose α large enough so that α > 16C(m). Then

2ΨF ≤ (ΨF )q + (ΨF )2q−2,

53



implying that (ΨF )(x0, t0) ≤ 1, and hence H ≤ 1 everywhere. In particular, for any

x ∈ {ρ ≤ r}, f(x, t) = tkF (x, t) ≤ eαtk := Bkt
k. Sending r to infinity then proves

that f(x, t) ≤ Bkt
k.

Next, again as in [40], we define the function η(x, t) = ρ(x) exp
(

2C2

1−bt
1−b) for b > 1.

Since |∆ρ| ≤ C2t
−b, we have

(∂t −∆) η > 0, ∂tη > 0.

Let F = t−af . Fix δ > 0 and consider the function F − δη − δt. Note that by our

previous argument, F ≤ Ct2, and in particular is bounded. For some t1 > 0 depending

on δ and c, F − δt < 0 for t ≤ t1 and for t ≥ t1, F − δη < 0 outside some compact

set. So, if F − δη − δt is ever positive, there must exist some (x0, t0) ∈M × (0, T ] at

which it attains a positive maximum. Because −δη− δt is decreasing in time, for any

s < t0 from the inequality

F (x0, s)− δη(x0, s)− δs ≤ F (x0, t0)− δη(x0, t0)− δt0,

we conclude

F (x0, s) ≤ F (x0, t0).

As in our previous argument, this implies that f(x0, t0) = max0≤s≤t0 f(x0, s), so that

at (x0, t0)

(∂t −∆)(F − δη − δt) < 0,

a contradiction. Thus, for any δ > 0, F − δη − δt ≤ 0. Taking δ → 0 then implies

that F = 0.

We can now prove Theorem 5.3.1.

Proof of Theorem 5.3.1. For k > 0 to be determined later, define the functions F

and G on M × [0, T ] by F = t−k|X|2, G = t−(k+1)|Y|2 for t ∈ (0, T ] and F (x, 0) =
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G(x, 0) = 0. From the assumption that Dl
tX = Dl

tY = 0 for all l ≥ 0, it follows that

both F and G are smooth on M × [0, T ] and that ∂ltF = ∂ltG = 0 for all l ≥ 0.

We have

(∂t −∆)F = −kt−(k+1)|X|2 + 2t−k〈(Dt −∆)X,X〉 − 2t−k|∇X|2

≤ −kt−(k+1)|X|2 + 2t−k|(Dt −∆)X||X|

≤ t−(k+1)(2C − k)|X|2 + 2Ct−(k+2)|X||Y|

≤ t−1(3C − k)F + Ct−2G

and

∂tG = −(k + 1)t−(k+2)|Y|2 + 2t−(k+1)〈DtY,Y〉

≤ (2C − k − 1)t−(k+2)|Y|2 + 2Ct−(k+1)|X||Y|

≤ CF + t−1(3C − k − 1)G.

Choosing k > 3C, this becomes

(∂t −∆)F ≤ t−2CG, ∂tG ≤ CF.

In particular this implies that

G(x, t) ≤ Ct max
0≤s≤t

F (x, s),

and therefore

(∂t −∆)F ≤ t−1C2 max
0≤s≤t

F (x, s).

By our assumption on X, F ≤ Ct−2l−k. Thus F satisfies the hypotheses of Proposition

5.3.2, and must vanish identically. We then conclude that G, hence Y, vanishes as

well.

5.4 Proof of Theorem 5.1.1

We are now almost ready to prove Theorem 5.1.1. We just need to first verify

that X and Y satisfy the last major remaining hypothesis of Theorem 5.3.1, that is,

that all time derivatives of X and Y vanish at t = 0.
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5.4.1 Vanishing of Time Derivatives

We begin by recording a standard commutator formula, which is in fact valid

(with obvious modifications) for any family of smooth metrics.

Proposition 5.4.1. Let (M, g(t)) be a smooth solution to the Ricci flow for t ∈

[0, T ].Then, for any l ≥ 1, the formula

[Dt,∇(l)]A =
l∑

k=1

∇(k−1)[Dt,∇]∇(l−k)A (5.12)

is valid for any smooth family of tensor fields A on M × [0, T ].

Proof. We proceed by induction on l. The base case, l = 1, is trivial. Now, suppose

that (5.12) holds for l ≤ m for some m ≥ 1. Then,

[Dt,∇(m+1)]A = Dt∇(m+1)A−∇(m+1)DtA

= [Dt,∇(m)]∇A+∇mDt∇A−∇(m+1)DtA

= [Dt,∇(m)]∇A+∇(m)[Dt,∇]A

=
m∑
k=1

∇(k−1)[Dt,∇]∇(m−k)(∇A) +∇(m)[Dt,∇]A

=
m+1∑
k=1

∇(k−1)[Dt,∇]∇(m+1−k)A,

as desired.

Now we argue inductively that Dk
tX = 0 and Dk

tY = 0 at t = 0.

Proposition 5.4.2. Let M = M̂ × M̌ be a smooth manifold and g(t) be a smooth,

complete solution to the Ricci flow such that g(0) splits as a product. Define P and

R as in Section 2. The following equations hold at t = 0 for all k, l ≥ 0:

Dk
t∇(l)R = 0, Dk

t∇(l+1)P = 0.
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Proof. We proceed by induction on k, beginning with the base case k = 0. Because

the metric splits as a product initially, at t = 0 we have ∇(l)P̂ ≡ ∇(l)P̌ ≡ 0 for all

l ≥ 0 and

R(P̂ (·), P̌ (·), ·, ·) ≡ 0.

From this we get that, for any X, Y, Z,W ∈ TM ,

R(X∗ ∧ Y ∗)(Z,W ) = 2R(P̂X, P̌Y,W,Z) + 2R(P̌X, P̂Y,W,Z) = 0.

Combining these facts, we conclude

∇(l+1)P ≡ 0, ∇(l)R ≡ 0, ∇(l)R∗ ≡ 0,

at t = 0, where R∗ = P ◦ Rm denotes the adjoint of R with respect to g.

Now starting the induction step, suppose that for some k ≥ 0, for all l ≥ 0 and

any m ≤ k,

Dm
t ∇(l+1)P = 0, Dm

t ∇(l)R = 0,

hence also Dm
t ∇(l)R∗ = 0. Recall that

(Dt −∆) Rm = Q(Rm,Rm).

As in [45], Lemma 4.9, Q(Rm,Rm) ◦ P = R ∗ U1 + R∗ ∗ U2, where U1 and U2 are

smooth families of tensors on M . Thus we can compute

DtR = (Dt Rm) ◦ P + Rm ◦(DtP)

= (∆ Rm) ◦ P +Q(Rm,Rm) ◦ P ,

and thus

Dk+1
t R = Dk

t ((∆ Rm) ◦ P) +Dk
t (Q(Rm,Rm) ◦ P) . (5.13)

Because

∆R = (∆ Rm) ◦ P + Rm ◦∆P + 2∇i Rm ◦∇iP ,
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by the induction hypothesis Dk
t ((∆ Rm) ◦ P) ≡ 0 at t = 0. Similarly,

Dk
t

(
Q(Rm,Rm) ◦ P

)
= Dk

t (R ∗ U1) +Dk
t (R∗ ∗ U2) = 0.

We conclude that Dk+1
t R ≡ 0, and thus Dk+1

t R∗ ≡ 0.

Now, using the commutator from equation (5.3) and Proposition 5.4.1, for any

l > 0 we have

Dt∇(l)R =
l∑

m=1

∇(m−1)[Dt,∇]∇(l−m)R+∇(l)DtR

=
l∑

m=1

∇(m−1)
(
∇Rm ∗∇(l−m)R+ Rm ∗∇(l−m+1)R

)
+∇(l)DtR,

and thus

Dk+1
t ∇(l)R =

l∑
m=1

Dk
t∇(m−1)

(
∇Rm ∗∇(l−m)R+ Rm ∗∇(l−m+1)R

)
+Dk

t∇(l)DtR.

Expanding using the product rule and applying the induction hypothesis, all terms

in the first sum vanish at t = 0. For the remaining term, we again use the evolution

equation for R. We have

Dk
t∇(l)DtR = Dk

t∇(l) ((∆ Rm) ◦ P +Q(Rm,Rm) ◦ P) .

As before, rewriting Q(Rm,Rm) ◦ P in terms of R and R∗ and expanding using the

product rule, it follows that Dk
t∇(l)DtR ≡ 0 at t = 0.

We now move on to the derivatives of P . Recall that

Dt∇P = [Dt,∇]P = Rm ∗∇P + P ∗ S.

Applying this in combination with Proposition 5.4.1, we get, for any l ≥ 1,

Dk+1
t ∇(l)P =

l∑
m=1

Dk
t∇(m−1)[Dt,∇]∇(l−m)P +Dk

t∇(l)DtP

=
l−1∑
m=1

Dk
t∇(m−1)

(
∇Rm ∗∇(l−m)P + Rm ∗∇(l−m+1)P

)
+Dk

t∇(l−1)[Dt,∇]P +Dk
t∇(l)DtP .
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As before, every term in the first sum vanishes by the induction hypothesis, while the

final term vanishes because DtP ≡ 0. Finally we can see that

Dk
t∇(l−1)[Dt,∇]P = Dk

t∇(l−1)(Rm ∗∇P + P ∗ S),

and because S = (∇Rm)◦P = ∇R+Rm ∗∇P , Dk
t∇(l−1)[Dt,∇]P ≡ 0 at t = 0. This

completes the proof.

5.4.2 Preservation of Product Structures

In the proof of Theorem 5.1.1, we will use the operator F : Λ2T ∗M → Λ2T ∗M

defined by

Fω(X, Y ) = ω(P̂X, P̌Y )− ω(P̌X, P̂Y ).

(See, for example, Section 2.2 of [49].) Observe that

P ◦ Fω(X, Y ) = Fω(P̂X, P̌Y ) + Fω(P̌X, P̂Y )

= ω(P̂ 2X, P̌ 2Y )− ω(P̌ P̂X, P̂ P̌Y ) + ω(P̂ P̌X, P̌ P̂Y )− ω(P̌ 2X, P̂ 2Y )

= ω(P̂X, P̌Y )− ω(P̌X, P̂Y ).

Therefore P ◦ F ≡ F .

Proof of Theorem 5.1.1. We have shown in Propositions 5.2.4 and 5.4.2 that the sys-

tem X,Y satisfies the first two hypotheses of Theorem 5.3.1. Additionally, the curva-

ture bounds from Proposition 5.2.5 imply that |X| ≤ Ct−2. Thus, X ≡ 0 and Y ≡ 0

on M × [0, T ]. In particular, we know that R ≡ 0 and ∇P ≡ 0 on M × [0, T ].

We claim that ∇P̂ ≡ ∇P̌ ≡ 0 and ∂tP̂ ≡ ∂tP̌ ≡ 0. Similar to the proof of Lemma

7 in [49], if we define W = ∇P̂ , then

DtW
j
ai = [Dt,∇a]P̂

j
i = ∇pR

c
paiP̂

j
c −∇pR

j
pabP̂

b
i +Rc

aW
j
ci.
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Note that the first two terms combine to give

〈∇epR(ep, ea)P̌ ei, P̂ ej〉 − 〈∇epR(ep, ea)P̂ ei, P̌ ej〉

=
1

2

(
∇ep Rm(P̌ e∗i ∧ P̂ e∗j)(ep, ea)−∇ep Rm(P̂ e∗i ∧ P̌ e∗j)(ep, ea)

)
= −1

2
∇ep Rm ◦F(e∗i ∧ e∗j)(ep, ea).

But, since P ◦ F = F ,

∇Rm ◦F = ∇Rm ◦P ◦ F = S ◦ F = 0,

so DtW
j
ai = Rc

aW
j
ci. Thus, for any point x ∈ M , the function f(t) = |∇P̂ |2(x, t)

satisfies

f ′(t) ≤ Cf

for some C depending on x. Since f(0) = 0, f is identically zero. Thus P̂ (and

similarly P̌ ) remain parallel.

Hence, we have

R(·, ·, P̂ (·), P̌ (·)) = 0,

which implies that Rc ◦P̂ = P̂ ◦ Rc and Rc ◦P̌ = P̌ ◦ Rc, and thus, from (5.2),

∂tP̂ = ∂tP̌ = 0 on [0, T ]. Theorem 5.1.1 follows.

5.5 Further Questions: Preservation of Holonomy Under a Non-uniform Curvature

Bound

It would be interesting to know if the statement of Theorem 5.1.1 holds for solu-

tions satisfying the more general curvature bound

sup
x∈M
|Rm |(x, t) ≤ c

t
, (5.14)

where c > 0 is an arbitrary constant. It isn’t clear whether the restriction to c ≤ ε(n)

is essential or simply an artifact of our particular proof of the maximum principle

(Theorem 5.3.1).
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Question 5.5.1. Let (M, g(t)) be a complete solution to (1.1) satisfying

sup
M
|Rm(g(t))| ≤ c

t

for some c > 0. Then, if g(0) splits as a product, must g(t) split for all time such

that the solution exists?

The analogous statement in the context of Kähler structures has been considered by

Huang and Tam [40].

Notice that the geometric assumptions of Theorem 5.1.1 were really only used in

the derivation of the PDE-ODE system (5.11). After that, the argument only made

use of the structure of (5.11), and not of the internal structure of our specific choices

of X and Y. In [44], [48], [55] the problem of uniqueness for the Ricci flow is reduced

to that of solutions to a PDE-ODE system of a similar, but not identical, form. It is

an interesting question whether a version of the maximum principle (Theorem 5.3.1)

might be proven for systems of this form. Such a maximum principle could potentially

be of use in the study of the uniqueness of solutions to the Ricci flow satisfying a

general instantaneous curvature bound.
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Chapter 6

ASYMPTOTICALLY PRODUCT SHRINKING RICCI SOLITONS

6.1 Asymptotic Behavior of Shrinking Ricci Solitons

Recall that a gradient shrinking Ricci soliton is a Riemannian manifold (M, g)

satisfying

Rc(g) +∇∇f =
g

2
(6.1)

for some f ∈ C∞(M).

Ricci solitons correspond to generalized fixed points of the flow: self-similar so-

lutions which change only by scaling and diffeomorphisms. Shrinking Ricci solitons

are of particular importance to the study of the singular behavior of the flow. The

work of [37], [61], [63], culminating in [24], has shown, e.g., that from a blow-up se-

quence taken about a Type-I singular point, one can extract a sequence converging to

a nontrivial shrinking gradient Ricci soliton. Recent work of Bamler [2, 3, 4] has now

shown that essentially any singularity can be modeled by a shrinking gradient Ricci

soliton (except maybe on a singular set of lower dimension). For potential future

topological applications of the flow, it is desirable to have as complete a classification

of gradient shrinkers as possible.

Complete shrinking Ricci solitons are completely classified in dimensions two and

three. It is a result of Hamilton [34] that the only nontrivial complete shrinking Ricci

solitons in dimension two are the round metrics on S2 and RP 2. In dimension three,

the combined results of Hamilton [37], Ivey [41], Perelman [63], Ni-Wallach [62], and

Cao-Chen-Zhu [12] show that the only nontrivial complete examples are quotients

of S3 or R × S2, both with their standard metrics. While a complete classification
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in dimension four and above is not expected, the class of 4-D complete noncompact

shrinking Ricci solitons may be rigid enough to support a classification, perhaps in

terms of their asymptotic geometries. Broadly, we are interested in exploring the

following question:

� What are the possibilities for the asymptotic geometry of a gradient shrinking

Ricci soliton?

Cao-Zhou [13] have proven sharp bounds on the potential function for a gradient

shrinking Ricci soliton of any dimension, as well as sharp upper and lower bounds

on its volume growth. In 4-D, the picture is becoming more refined. The work of

Munteanu and Wang [57, 58, 59, 60] has established a near dichotomy: If R ≥ c, then

each end of the soliton is either asymptotic to a quotient of R × S3 or converges to

a quotient of R2 × S2 along integral curves of ∇f . If R → 0 along an end, then the

soliton is asymptotic to a cone (recall that by [14], R ≥ 0 on any complete shrinker).

At present, all complete noncompact examples in any dimension either split locally

or are asymptotic to a cone, and in the latter case, there are still relatively few known

examples (to the author’s knowledge, the examples found in [1], [21], [26], and [76]

form a complete list). In dimension four, there is currently only one nontrivial example

known–the construction due to Feldman, Ilmanen, and Knopf [26]. According to [17],

it is unique among Kähler examples.

These observations suggest the following questions.

� If a gradient shrinker is asymptotic to a product along some end, does it split

globally as a product?

� If a gradient shrinker is, in some sense, sufficiently close to a known shrinker

along some end, are the two isometric?
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In this direction, Kotschwar and Wang have proven the following.

Theorem 6.1.1 ([50], [51]). Let (M, g, f) be a shrinking gradient Ricci soliton.

(1) If two shrinkers are asymptotic to a regular cone ((0,∞)×Σ, dr2 +r2gΣ) along

some end, then the two are isometric on a neighborhood of infinity.

(2) If a gradient shrinking soliton (M, g) is strongly asymptotic to an end of the

standard cylinder Rn−k × Sk, k ≥ 2 along some end E ⊂ M , then it is isometric to

the cylinder along that end.

Here, strongly asymptotic means that g converges to the cylindrical metric to

“infinite order at spatial infinity”, that is,

sup
(z,θ)∈Rn−k×Sk

{
|z|l|∇(m)

gcyl
(Φ∗g − gcyl)|(z, θ)

}
<∞

for all l,m ≥ 0, where Φ : Ẽ → E is some diffeomorphism from an end Ẽ of the cylin-

der to E. The proof in [51] converts the problem into problem of backward uniqueness

for a PDE-ODE system, which is then analyzed using Carleman inequalities, similar

to the method from [25].

Although the assumption that the soliton is actually strongly asymptotic to the

cylinder is apparently very restrictive, it is likely that, in the generality of the state-

ment, the condition cannot be significantly relaxed. Wang [75] has shown, for exam-

ple, that there are (incomplete) self-shrinkers to the mean curvature flow which are

not rotationally symmetric but agree to arbitrary finite order with the round cylinder

R× Sn−1 at infinity. Similar examples likely also exist for the Ricci flow.

The work above suggests several immediate questions.

� If a gradient shrinking Ricci soliton is strongly asymptotic to a general product

along some end, does it locally split as a product?
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� If a complete gradient shrinking Ricci soliton is asymptotic to a cone, cylinder,

or other product, must it approach the model at some fixed minimum rate?

In a current project [19], motivated by the first question, we consider the unique-

ness of shrinkers strongly asymptotic to a general product of the form Rn−k×Σ where

Σ is an arbitrary compact shrinker. While the large-scale strategy is much the same

as in [51], our approach differs fundamentally in a few key places. After some initial

normalizations, we connect the problem to one of parabolic unique continuation for a

PDE-ODE system akin to the one from [18] discussed above. Below, we discuss this

reduction process in greater detail.

6.2 Constructing a PDE-ODE System

A shrinking Ricci soliton corresponds (at least locally) to a solution (M, g(τ)) to

the backward Ricci flow, i.e., the equation

∂

∂τ
g = 2 Rc . (6.2)

Indeed, if (M, g1, f) solves (6.1), then, solving the equation

∂

∂τ
Φ = −1

τ
∇g1f ◦ Φ, Φ1 = Id,

we obtain a locally defined solution g(τ) to (6.2) with g(1) = g1 by setting g(τ) =

τΦ∗τg1. When (M, g1) is complete, it is a theorem of Zhang [77] that∇g1f is a complete

vector field, and in this case the solution g(τ) will be defined on M × (0,∞).

In [19], after some initial reductions, the problem boils down to the consideration

of the following situation: we have an unknown shrinking soliton (M, g, f) which is

strongly asymptotic to (M, g̃, f̃), where

M = Ma =


(
Rn−k \Ba(0)

)
× Σ, 2 ≤ k < n− 1,

(a,∞)× Σ, k = n− 1,
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(Σ, gΣ, fΣ) is a compact k-dimensional shrinking soliton, g̃ = g ⊕ gΣ is the product

of the Euclidean metric g with gΣ, and f̃(z, σ) = |z|2
4

+ fΣ(σ). As in [51], we may

assume further that

∇f = ∇̃f̃ := X =
n−k∑
i=1

zi

2

∂

∂zi
+∇ΣfΣ.

In this case, the solutions to (6.2) associated to the unknown and model solitons flow

along the same vector field and are of the form g(τ) = τΦ∗τg and g̃(τ) = τΦ∗τ g̃, where

Φτ has the form Φτ (z, σ) = ( z√
τ
, ϕτ (σ)). These (incomplete) solutions are defined on

M × (0, 1]. Note that g̃(τ) = g ⊕ τϕ∗τgΣ.

The assumption that g is strongly asymptotic to g̃ on M implies that we have the

space-time decay bounds

sup
M×(0,1]

{
|z|2l

τ l
|∇̃(m)(g̃ − g)|g̃(z, σ, τ)

}
<∞. (6.3)

Thus, our original problem of unique continuation at infinity has been converted to a

problem of parabolic unique continuation for the backward Ricci flow at the singular

time.

Rather than to try to estimate the difference of g̃(τ) and g(τ) directly as in [51], we

instead analyze the solution g(τ) directly and show that the fact that it is asymptotic

to a product implies that it is itself a product. We measure the failure of g(τ) to be

a product as follows.

From the bounds (6.3), we obtain (from a limiting argument similar to that in

Appendix 4 of [51]) families of smooth sections P̂ (τ), P̌ (τ) of End(TM) for τ ∈ (0, 1]

which satisfy

1. P̂ and P̌ are projections onto complementarary g(τ)-orthogonal families of sub-

bundles

H = Hτ = P̂τ (TM), K = Kτ = P̌τ (TM).
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2. Dτ P̂ ≡ Dτ P̌ ≡ 0.

3. P̂ and P̌ agree to infinite order as |z| → ∞ and τ → 0 with the g̃-orthogonal

projections P̂g̃ and P̌g̃, and in fact,

sup
M×(0,1]

{
|z|2l

τ l
|∇(m)

g(τ)P̂τ |g(τ)

}
<∞

for all l and m ≥ 1 (and similarly for P̌τ ).

Next, in the spirit of Chapter 5, from P̂ and P̌ we define smooth families of

projections P = P(τ),P = P(τ) ∈ C∞(E), where E = End(Λ2(T ∗M)), by

Pω(X, Y ) = ω(P̂X, P̌Y ) + ω(P̌X, P̂Y ),

Pω(X, Y ) = ω(P̂X, P̂Y ) + ω(P̌X, P̌Y ).

Then we let

R = Rm−P ◦R ◦ P , E = P ◦R ◦ P ,

S = ∇R− P ◦ ∇Rm ◦P , F = P ◦ ∇R ◦ P ,

for Rm ∈ C∞(Es), where Es denotes self-adjoint elements of E and Rm again denotes

the Riemann curvature operator. Under the assumption (6.3), both R and S will

vanish to infinite order as τ → 0 and |z| → ∞.

As in Chapter 5, to show that (M, g(τ)) splits, it is enough to show that ∇P̂ (τ) ≡

0, however, the evolution of ∇P̂ (τ) depends on the curvature tensor of g(τ) and its

derivatives. The reason we instead consider a system consisting of ∇P , ∇2P and S

(as in [45] and [18]) is that these objects together satisfy a closed system of differential

inequalities. The approach in [19] is to argue from this closed system that ∇P , ∇2P ,

and S vanish identically. This implies that ∇P̂ vanishes identically, and is in fact

independent of time. Hence the splitting for g is independent of time. Below, we

discuss the derivation of this system in detail.
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6.3 The PDE-ODE System

First, we introduce two operators which will appear in the evolution equation for

S. We define L,Q : (T ∗M ⊗ E)× E → T ∗M ⊗ E by

L(A,B)eabcd = ApqbcdBaqep − ApqacdBbqep + ApqdabBcqep − ApqcabBdqep

= −(Bpeqm(δmnΛn
q − δqnΛn

m)Apabcd),

where Λn
q is defined as in Chapter 5, and

Q(A,B) = AB +BA+ 2A#B.

Here, A#B(V, ω, η) := (A(V, ·)#B)(ω, η), and # is defined as in Chapter 5. There is

a natural identification of the space E with Λ2(T ∗M)⊗ Λ2(T ∗M), where an element

A ∈ Λ2(T ∗M)⊗ Λ2(T ∗M) is identified with the operator A ∈ E given by

A(η)ab = A(η)(ea, eb) = −Aabcdηcd,

where {ei} is a local orthonormal frame for TM . (The minus sign on the right hand

side is chosen so that, by our convention for the (4, 0)-curvature tensor, the curvature

operator Rm has positive eigenvalues on the sphere.) In particular ωij = e∗i ∧ e∗j , then

〈A(ωab), ωcd〉 = −4Aabcd.

Finally, we define B : (T ∗M ⊗ Es) × Es → T ∗M ⊗ Es by B(·) = L(·, E) +Q(·, E). It

is not hard to see that B is self-adjoint.

Proposition 6.3.1. The sections X = S,Y = (∇P ,∇2P) satisfy the system

|(Dτ + ∆ + B)X| ≤ C(|R||X|+ (|∇Rm |+ |∇2 Rm |+ |∇P|)|Y|),

|DτY| ≤ C(|X|+ |∇X|+ (|Rm |+ |∇Rm |)|Y|),

on M × (0, 1] for some constant C > 0.
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Here, Dτ = ∂
∂τ
−Rp

qΛ
q
p. This system should be compared to Proposition 4.1 in [51].

The advantage of this formulation (based on the elliptic operator ∆ + B) is the that

the coefficient of |X| on the right hand side of the first equation vanishes to infinite

order in space and time.

To prove Proposition 6.3.1, we first compute evolution equations for S,∇P , and

∇2P . As in Chapter 5, recall that for tensors A,B, the notation A ∗B refers to some

finite linear combination of contractions of A⊗B.

Proposition 6.3.2.

(Dτ + ∆ +B)S = S ∗R+R∗F + ∆P ∗∇Rm ∗P+ (∇P)2 ∗∇Rm +P ∗∇P ∗∇2 Rm .

Proof. We can immediately see that

(Dτ + ∆)S = (Dτ + ∆)(∇Rm−P ◦ ∇Rm ◦P)

= [Dτ + ∆,∇] Rm−P ◦
(
[Dτ + ∆,∇] Rm

)
◦ P + l(P ,∇P ,∇2P ,∇Rm)

+∇(Dτ + ∆) Rm−P ◦
(
∇(Dτ + ∆) Rm

)
◦ P ,

where l denotes lower order terms involving covariant derivatives of P (see (6.5)

below). We split this equation into three terms:

T (1) = [Dτ + ∆,∇] Rm−P ◦
(
[Dτ + ∆,∇] Rm

)
◦ P ,

T (2) = ∇(Dτ + ∆) Rm−P ◦
(
∇(Dτ + ∆) Rm

)
◦ P ,

T (3) = l(P ,∇P ,∇2P ,∇Rm).

We will further analyze the commutators using the formula (see [45], Chapter 4)

[Dτ + ∆,∇a] = −Rabdc∇b(δcbΛ
b
d − δdbΛb

c).
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Then,

([(Dτ + ∆),∇e] Rm)abcd = −1

2

(
Rpeqm∇p(δmnΛn

q − δqnΛn
m)Rabcd

)
= −1

2
(2Raqep∇pRqbcd − 2Rbqcp∇pRqacd + 2Rcqep∇pRqdab

− 2Rdqep∇pRqcab)

= −L(∇Rm,Rm)eabcd,

and thus

T (1) = P ◦ L(∇Rm,Rm) ◦ P − L(∇Rm,Rm).

For a local orthonormal frame {ei}, let ωij = e∗i ∧ e∗j for i < j. Note that, for

A ∈ T ∗M ⊗ Es, B ∈ Es, respectively, we have

L(A,B)eabcd =
1

4
(〈[B(ωep), Ap(ωcd)], ωab〉+ 〈[B(ωep), Ap(ωab)], ωcd〉)

= −1

4
〈Le(A,B)(ωcd), ωab〉,

(6.4)

where Le(·, ·) = L(ee, ·, ·) and Ap(·) = A(ep, ·).

Now, we can rewrite T (1) as

T (1) = P ◦ L(S,R) ◦ P − L(S,R) + P ◦ L(S, E) ◦ P − L(S, E) + P ◦ L(F,R) ◦ P

− L(F,R) + P ◦ L(F,E) ◦ P − L(F,E).

Note that (see Lemma 3.5, [45])

〈[P(·),P(·)],P(·)〉 = −〈[P(·),P(·)],P(·)〉 = 0.

Using this we can see that

〈P ◦ Le(F,E) ◦ P(φ), η) = −〈[E(ωep), Fp(Pφ)],P(η)〉 − 〈[E(ωep), Fp(Pη)],P(φ)〉

= 〈Le(F,E)(φ), η〉,
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and, similarly,

〈P ◦ Le(S, E) ◦ P(φ), η〉 = −〈[E(ωep),Sp ◦ P(φ)],P(η)〉

− 〈[E(ωep),Sp ◦ P(η)],P(φ)〉

= −〈[E(ωep),P ◦ ∇p Rm ◦P(φ)],P(η)〉

− 〈[E(ωep),P ◦ ∇p Rm ◦P(η)],P(φ)〉

= 0.

Thus,

T (1) = P ◦ L(S,R) ◦ P − L(S,R)− L(S, E) + P ◦ L(F,R) ◦ P − L(F,R).

We now analyze the term T (2).

T (2) = ∇(Dτ + ∆) Rm−P ◦ (∇(Dτ + ∆) Rm) ◦ P .

Here, we use the fact that

(Dt −∆) Rm = Rm2 + Rm#,

which implies

(Dτ + ∆) Rm = −Rm ◦Rm−Rm # Rm,

and finally

T (2) = −∇Rm ◦Rm−Rm ◦∇Rm−2(∇Rm # Rm)

− P ◦ (−∇Rm ◦Rm−Rm ◦∇Rm−2(∇Rm # Rm)) ◦ P .

So, again we need to examine how these operations interact with the projections.

We can rewrite a term of the form ∇Rm # Rm as

∇Rm # Rm = (S + F )#(R+ E)

= S#R+ S#E + F#R+ F#E.
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Now, we can see that

〈P ◦ (F#E) ◦ P(φ), η) =
1

2

∑
α,β

〈[F (ωα), E(ωβ)],P(φ)〉 · 〈[ωα, ωβ],P(η)〉

=
1

2

∑
α,β

〈[F (ωα), E(ωβ)], φ〉 · 〈[P(ωα),P(ωβ)], η〉

= 〈(F#E)(φ), η〉,

〈P ◦ (S#E) ◦ P(φ), η〉 =
1

2

∑
α,β

〈[S(ωα), E(ωβ)],P(φ)〉 · 〈[ωα, ωβ],P(η)〉

=
1

2

∑
α,β

〈[S(ωα), E(ωβ)],P(φ)〉 · 〈[ωα,P(ωβ)],P(η)〉

=
1

2

∑
α,β

〈[(P ◦ ∇R ◦ P)(ωα), E(ωβ)],P(φ)〉

· 〈[P(ωα),P(ωβ)],P(η)〉

= 0,

and

〈P ◦ (F#R) ◦ P(φ), η〉 =
1

2

∑
α,β

〈[F (ωα),R(ωβ)],P(φ)〉 · 〈[ωα, ωβ],P(η)〉

=
1

2

∑
α,β

〈[F (ωα), (P ◦R ◦ P)(ωβ)],P(φ)〉

· 〈[P(ωα),P(ωβ)],P(η)〉

= 0.

Therefore, we have

P ◦ (∇Rm # Rm) ◦ P −∇Rm # Rm = P ◦ (S#R) ◦ P − S#R− S#E − F#R.

As for the other parts of T (2), we have

P ◦ (∇Rm ◦Rm) ◦ P −∇Rm ◦Rm = P(S ◦ R)P − S ◦ R− F ◦ R − S ◦ E,

and similarly for P ◦ (Rm ◦∇Rm) ◦ P − Rm ◦∇Rm. So,

T (2) = P ◦ (Q(S,R)) ◦ P −Q(S,R)−Q(F,R)−Q(S, E).
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The term T (3) consists only of the lower order terms:

T (3) = −∆P ◦ ∇Rm ◦P − 2∇iP ◦ ∇i∇Rm ◦P − 2∇iP ◦ ∇Rm ◦∇iP

− 2P ◦ ∇i∇Rm ◦∇iP − P ◦ ∇Rm ◦∆P .
(6.5)

We have finally determined that

(Dτ + ∆)S = P ◦
(
L(S,R) +Q(S,R)

)
◦ P − L(S,R)−Q(S,R)− L(S, E)−Q(S, E)

− L(F,R)−Q(F,R) + P ◦ L(F,R) ◦ P∆P ◦ ∇Rm ◦P

− 2∇iP ◦ ∇i∇Rm ◦P − 2∇iP ◦ ∇Rm ◦∇iP − 2P ◦ ∇i∇Rm ◦∇iP

− P ◦ ∇Rm ◦∆P .

Rearranging this equation yields

(Dτ + ∆ +B)S = S ∗R+R∗F + ∆P ∗∇Rm ∗P+ (∇P)2 ∗∇Rm +P ∗∇P ∗∇2 Rm .

Proposition 6.3.3.

Dτ∇P = S ∗ P + Rm ∗∇P ,

Dτ∇2P = Rm ∗∇2P +∇Rm ∗∇P +∇S ∗ P + S ∗ P .

Proof. We follow Section 4 from [45], starting with the commutator formula

[Dτ ,∇a] = −∇pRpacbΛ
b
c −Rac∇c. (6.6)

Note that, following Proposition 4.5 from [45],

∇pRpacbΛ
b
cPijkl = (∇Rm ◦P)ppacbΛ

b
cPijkl

= ((S + F ) ◦ P)ppacb)Λ
b
cPijkl.
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Let {ei} be a local orthonormal frame for TM and define ωij = e∗i ∧ e∗j . As in

Lemma 4.4 from [45] and the fact that Im(P) is closed under the bracket, we have

−4(P ◦ ∇Rm ◦P)ppacbΛ
b
cPijkl = 〈[P(ωkl),P ◦ ∇p Rm ◦P(ωpa)], ωij〉

+ 〈[P(ωij),P ◦ ∇p Rm ◦P(ωpa)], ωkl〉

= 〈[P(ωkl),P ◦ ∇p Rm ◦P(ωpa)],P(ωij)〉

+ 〈[P(ωij),P ◦ ∇p Rm ◦P(ωpa)],P(ωkl)〉,

which vanishes by the full antisymmetry of the map (ω, η, φ) 7→ 〈[ω, η], φ〉. Now,

using the fact that Dτ∇P = [Dτ ,∇]P , we obtain

Dτ∇P = S ∗ P + Rm ∗∇P .

For the second identity, we proceed as in Chapter 5, using again the fact that

Dτ∇2P = [Dτ ,∇]∇P +∇Dτ∇P .

Applying (6.6) again, we obtain

[Dτ ,∇]∇P = Rm ∗∇2P +∇Rm ∗∇P +∇S ∗ P ,

from which the conclusion follows.

We are now ready to prove Proposition 6.3.1.

Proof of Proposition 6.3.1. The second inequality follows immediately from Propo-

sition 6.3.3. As for the first inequality, commuting two covariant derivatives of P̂

gives

∇k∇lP̂ij −∇l∇kP̂ij = −R(ek, el, ei, P̂ (ej))−R(ek, el, ej, P̂ (ei))

= −R(ek, el, P̌ (ei), P̂ (ej))−R(ek, el, P̂ (ei), P̌ (ej))

=
1

4
〈Rm ◦P(e∗i ∧ e∗j), e∗k ∧ e∗l )〉.
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Therefore,

|P ◦ Rm ◦P| ≤ |Rm ◦P| ≤ C|∇2P̂ |,

and similarly

|P ◦ Rm ◦P| ≤ C|∇2P̂ |.

Finally, P◦Rm ◦P is the adjoint of P◦Rm ◦P , so the two have the same norm. Thus,

|R| ≤ C|∇2P̂ | ≤ C|∇2P|

and finally

|R||F | ≤ C|∇2P||∇Rm |.

This, combined with Proposition 6.3.2, implies the first inequality.

6.4 Future Work

From here, the approach we pursue in [19] roughly follows that in [51], [75], using

the method of Carleman estimates to conclude that X and Y vanish identically.

For this we derive two sets of Carleman estimates for the system from Proposition

6.3.1: one to show that X and Y vanish at least at an exponential rate, and the

second, which makes use of this rapid decay, to show that they must be zero (see

[25], [51], and [75] for applications of this type of estimates to similar systems). Our

particular formulation of the PDE-ODE system, and in particular our consideration

of the operator ∆ +B, is designed to enable a more efficient proof of the exponential

decay portion than that in [51].

Finally, though here we consider the case that an unknown soliton is asymptotic

to a model soliton of the form (Rn−k×Σk, g⊕gΣ), we expect that our approach carries

over to more general products of the form Nn−k × Σk where Nn−k is asymptotically
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conical. We are interested more generally in the extent to which the decay assumption

can be weakened when (M, g) is assumed to be complete.
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