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ABSTRACT 
Evolutionary theory provides a rich framework for understanding cancer dynamics 

across scales of biological organization. The field of cancer evolution has largely been divided 

into two domains, comparative oncology - the study of cancer across the tree of life, and tumor 

evolution. This work provides a theoretical framework to unify these subfields with the intent that 

an understanding of the evolutionary dynamics driving cancer risk at one scale can inform the 

understanding of the dynamics on another scale. The evolution of multicellular life and the 

unique vulnerabilities in the cellular mechanisms that underpin it explain the ubiquity of cancer 

prevalence across the tree of life. The breakdown in cellular cooperation and communication 

that were required for multicellular life define the hallmarks of cancer. As divergent life histories 

drove speciation events, it similarly drove divergences in fundamental cancer risk across 

species. An understanding of the impact that species’ life history theory has on the underlying 

network of multicellular cooperation and somatic evolution allows for robust predictions on 

cross-species cancer risk. A large-scale veterinary cancer database is utilized to validate many 

of the predictions on cancer risk made from life history evolution. Changing scales to the cellular 

level, it lays predictions on the fate of somatic mutations and the fitness benefits they confer to 

neoplastic cells compared to their healthy counterparts. The cancer hallmarks, far more than 

just a way to unify the many seemingly unique pathologies defined as cancer, is a powerful 

toolset to understand how specific mutations may change the fitness of somatic cells throughout 

carcinogenesis and tumor progression. Alongside highlighting the significant advances in 

evolutionary approaches to cancer across scales, this work provides a lucid confirmation that an 

understanding of both scales provides the most complete portrait of evolutionary cancer 

dynamics. 
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PREFACE 

My hope is that the addition of the introductory chapter, The Nature of Cancer Evolution, 

to my formal dissertation will serve as a scaffold for both understanding the scientific 

manuscripts included and what my intentions were for choosing the work I pursued. The 

language and framework used in this introduction is also employed in the chapter 

introductions I attached ahead of each of the manuscripts included as part of this thesis. 

This work rests on the shoulders of giants, many of whom are members of my thesis 

committee. But each of these chapters also rests on a complicated prelude, which I take 

the time in the chapters’ introductions to address and clarify. For all the ways cancer 

evolution is distinct among scientific fields, it is alike with the rest in that many of its 

advances are predicated on arguments and infighting. I intend to use these 

introductions to show my appreciation for these arguments and where I lie within them. 

Therefore, the chapter introductions are largely without citations, the criticisms I address 

and those I propose should be generally applicable without having to point the finger at 

any specific publication. These introductory spaces are also used to address important 

intersections that this work makes with the history of science and society. Lastly, as 

much as this work was an evolutionary theorist’s investigation into cancer biology, it was 

equally a cancer biologist’s investigation into evolutionary theory. Although cancer is 

often a tale of tragedy and loss, it is also the story of us. A story that unites humankind 

with so much of the life on this planet and a constant reminder of our lowly origins. 
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CHAPTER 1 

THE NATURE OF CANCER EVOLUTION 
 
The Natural History of Cancer 
 

The natural history of cancer sets the prologue to the permanence of the 

disease in multicellular life and offers insights into how we may ultimately gain a 

clinical governance over it. Recent paleontological discoveries extend our 

knowledge of the pervasiveness of clinically distinguishable cancers (CDCs) in 

non-humans to the Jurassic era (Rothschild et al., 1999). Additionally, 

archaeological surveys demonstrate, at least to some extent, that cancer in 

humans reaches out to prehistory (David & Zimmerman, 2010; Marques et 

al.,2022; Prates et al., 2011). The radical changes in Western lifestyle mixed with 

novel carcinogenic factors humans are exposed to in the past 100 years have led 

many to believe cancer is a principal side effect of a mismatched environment. 

While these shifts in environmental factors certainly have modulated humans’ 

cancer risk (Greaves & Aktipis, 2016; Hochberg & Noble, 2017) some 

clarification is required here. Before we can fully digest the evolutionary history of 

cancer across species we must land on some agreeable points on its history in 

humans. These assumptions can allow us to avert much of the arguments over 

the complex genotype-environment interactions that determine both individual 

level and species level cancer risk. Cancer can be measured across species in 

two factors. The binary – species does or does not get cancer – and then the 

more epidemiological measurements of prevalence of the disease in the 

https://paperpile.com/c/QfSXEN/RttRB
https://paperpile.com/c/QfSXEN/YY1Om%2BbT1dH%2BcyBGc
https://paperpile.com/c/QfSXEN/YY1Om%2BbT1dH%2BcyBGc
https://paperpile.com/c/QfSXEN/YY1Om%2BbT1dH%2BcyBGc
https://paperpile.com/c/QfSXEN/HPT4%2BZNee
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population. To appreciate the evolutionary history of cancer and its impact on 

disease risk across species we have to first agree on the binary measurement, 

humans have some baseline lifetime risk of cancer. If we were to freeze a 

moment in evolutionary history to the transition from our most recent bipedal 

ancestor to anatomically modern humans that population would have some, 

albeit undetermined, risk of developing cancer. This is true even if factors like 

predation, infant mortality, and disease precluded that risk from ever being 

actualized. 

We need not ever find fossil evidence of tumors in early hominids to know 

this to be true. The theoretical framework from multicellular cooperation and 

somatic evolution points to its legitimacy (A. Aktipis, 2016; Aktipis C. Athena et 

al., 2015; Michod & Nedelcu, 2003; Trigos et al., 2018). A counter to my own 

argument here is that there is a plethora of the non-cancer pathologies that stem 

from somatic dysfunction, originating ultimately from breakdowns in multicellular 

cooperation that are like those found in cancer. That being true, the fitness of 

healthy cells is so drastically lower than that of somatic cells harboring oncogenic 

mutations that cancer should be seen as inevitable at the population level(Di 

Gregorio et al., 2016). Of course, once we have landed this conceptual baseline 

of cancer risk in humans it takes little leap in logic to apply it to non-human 

species. In the introduction to Cancer Across Vertebrates I address many of the 

criticisms brought against the use of zoo data in accurately determining cross- 

species cancer risk. 

  

https://paperpile.com/c/QfSXEN/KlKsR%2BmoiRy%2B3Yb1e%2Bxf3fd
https://paperpile.com/c/QfSXEN/KlKsR%2BmoiRy%2B3Yb1e%2Bxf3fd
https://paperpile.com/c/QfSXEN/RW5Or
https://paperpile.com/c/QfSXEN/RW5Or
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Making Sense of Cancer with Evolution 

Evolution offers a terrific complex of theoretical and quantitative tools to explore 

nearly all biological questions. While standard organismal biology has long 

embraced these approaches, it is only in recent decades that the massive 

amounts of public funding and focus on human disease have begun to agree with 

the late Dobzhansky’s adage. Evolutionary theory not only describes processes 

such as carcinogenesis and tumor subclone evolution, it also provides an 

explanatory framework for the intrinsic cancer risk across species. 

A plethora of scientific publications and proposals in the past decade have 

leaned into a phrase that manifests in a common way; evolutionary theory can be 

used to understand tumor dynamics and therapeutic resistance. But this implies 

special usages of evolutionary theory, or that tumor evolution serves as some 

microcosm of evolution. At worst, it implies that evolutionary theory serves as 

some interpretive framework for tumor dynamics. These processes are not some 

abstract manifestation of evolutionary mechanisms but rather they are evolution. 

The mechanisms of evolution exist and churn without any imperative scale. The 

same evolutionary processes that brought upon the diversification in the finch 

species of the Galapagos, or drives the ever-problematic interactions between 

viral agents and humans, are the same processes that dictate cancer initiation 

and the selective forces that shape the emergence of resistance. 

Similar language has been invoked when discussing my work 

implementing phylogenetic comparative methods (PCMs) to study cancer risk as 

a species’ trait. In the sense of applying the central methods from each discipline, 
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tumor evolution is not a particularly unique evolutionary system, nor is cancer risk 

a particularly unique species’ trait. This clarification may seem like semantics but 

it opens the door to simple truths that widen the approaches we may take to 

understand cancer biology. Two of these truths should be most apparent. First, 

there should be limited instances of theoretical or quantifiable approaches from 

organismal evolutionary biology that cannot be translated to study cancer 

biology. Measurements of complex ecological interactions, modes of 

diversification, identification of selective pressures and their respective strengths, 

and the rich depth of comparative phylogenetics should be relevant in tumor 

evolution. Secondly, as with all truths, the inverse should also be true. If all of 

evolutionary theory can be utilized to study cancer biology, then cancer biology 

should be a relevant model to understand evolutionary biology. Further, this 

should remain true across the relevant scales of cancer biology, specifically 

when we cross scales from tumor evolution to the evolution of intrinsic cancer 

risk across species. In applying evolutionary methods to these questions we 

should be just as prepared to make discoveries about evolutionary biology as we 

are to make discoveries about cancer biology. 

The meeting proceeds from all the major cancer research societies 

starting in the 1990s emerged with a unifying theme; cancer is a complex 

disease. This sentiment, and the unhelpful condescension it implies, highlights 

the desperate need for an evolutionary-ecology framework for cancer biology. It 

is difficult to get within earshot of ecologist turned cancer biologist Dr. Joel Brown 

without hearing that, of course, “cancer is no more complex than any other 
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ecological network, perhaps even far less complex than some found in your own 

backyard”. As the publications describing the ecology of tumors amass, his 

statement continues to take on a deeper relevance. 

Despite the preeminence of evolutionary theory in cancer biology it wasn’t 

described as an evolutionary system until Peter Nowell’s somewhat understated 

1976 Science article. As thinking about cancer as an evolutionary process 

continued to build in the early 2000s, one of the most famous frameworks for 

understanding cancer was simultaneously being constructed. I have often 

wondered who has the better perspective, the cancer biologist that adopts the 

evolutionary approach to their field or the evolutionary biologist who has made 

their way into the cancer lab. As a member of the former camp but now nearly 

more evolutionary biologist than cancer biologist I have written this introduction to 

the first camp. A large reason for the rapidly spreading employment of 

evolutionary theory in cancer biology is its seamless integration. Studying cancer 

as an evolutionary system is like reading the Old Testament in Hebrew, and so 

much of early cancer biology was lost in translation. 

Lastly, although we have made quite the pass that of course cancer 

biology only makes sense as an evolutionary process we should recall here that 

virtually all of the progress made in treating cancers – including the occasional 

cure - have been done without evolution's invocation in the field. We should also 

be cognizant of the humbling, infrequent extensions to patients’ lives we have so 

far been able to offer. Which leaves several important questions. What does 

evolutionary theory have to offer cancer biology? If cancer as an evolutionary 
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process is such a fundamental framework for understanding the disease, why has 

the emergence of the field of cancer evolution come so late? How can an 

understanding of cancer in non-human species translate into increased clinical 

knowledge? And perhaps most importantly, what hindrances still exist for a more 

broad integration of evolutionary theory with cancer biology? While many of 

these questions are addressed in the manuscripts that follow, the next decade 

will be flush with comprehensive solutions that we should be excited for. I finish 

this dissertation ever more convinced of the essential need for evolutionary 

theory in cancer biology and the promise of comparative oncology. There is 

grandeur in this view of life. 
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CHAPTER 2 
 

A MISSING HALLMARK OF CANCER: DYSREGULATION OF 

DIFFERENTIATION 

Chapter Introduction: Evolution All the Way Down 

 
I am very fortunate in that much of the hard road ahead of applying 

evolutionary principles to cancer had already been paved for me by the time I 

began my doctoral work. Mutated somatic cells gaining a selective advantage 

over their healthy counterparts is a well-accepted evolutionary dynamic that 

defines carcinogenesis and disease progression. As is the selection pressure 

placed on tumors by cancer treatments that ultimately shape tumor resistance. 

However, given that the following manuscript was rejected by a prominent journal 

because “a cancer cell cannot have a fitness” I feel it is important to add some 

preceding clarification. As detailed in the general introduction, cancer evolution is 

not a special case or derived application of evolutionary theory. Such as are all 

scientific truths, cancers were commanded by Darwinian principles before they 

were described as such. And if we can agree that cancer is an evolutionary 

system then the very foundations of our modern understanding of cancer 

phenotypes, the hallmarks of cancer, must then be able to be described in an 

evolutionary context. To further this argument, given the evolutionary success of 

cancerous tumors compared to their surrounding tissue, an adaptationist lens is 

highly explanatory in defining cancer hallmarks. 

When I first read Hanahan & Weinberg’s The Hallmarks of Cancer for the 

first time, their clarified simplicity introduced to me a very heterogeneous disease 
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that can yet be described by a discrete set of unifying phenotypes. The unifying 

logic of their seminal paper both assisted a 16 year old me in persevering 

through my first cancer research job and instilled in me a lasting appreciation for 

the cancer hallmarks. Still, as it was with Dmitri Mendeleev’s first organization of 

the elements, few were aware that this list of phenotypes would continue to grow. 

The duo themselves have since published a “next-generation” of cancer 

hallmarks which both added to the original list as well as invented a new category 

of pseudo hallmarks termed “enabling characteristics”. Their 2011 paper argued 

that genome instability and tumor-promoting inflammation, although too transitory 

to be hallmarks, were so crucial to the successful acquisition of the hallmark 

phenotypes that they should be described adjacently. Now over a decade later 

Hanahan published yet a third hallmarks paper, which formally added the 

previous enabling characteristics as hallmarks and proposed an additional two; 

senescent cancer cells and phenotypic plasticity. Hanahan’s publication in 

Cancer Discovery came after I received a lengthy rejection email from the editors 

at Nature Reviews Cancer, much of which emphasized the non-applicability of 

evolutionary principles in defining cancer hallmarks. 

It was more than six months after Hanahan’s publication that I, after 

continued struggles getting my own work through peer-review, took the 

concession of uploading my proposed hallmark onto a preprint server. 

Admittedly, the draft was well received but several individuals inquired on social 

media what I imagine many others were asking privately – is there, if any, 

difference between dysregulation of differentiation and phenotypic plasticity? In 
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Hallmarks of Cancer: New Dimensions Hanahan makes clear the strong 

relationship between phenotypic plasticity and lack of terminal differentiation, you 

cannot have one without the other. Which leaves what is the utilitarian difference 

in how each of the two proposed hallmarks are defined. Below I lay the 

foundation not only for why specifically dysregulated differentiation should be 

considered a hallmark but, perhaps more importantly, for how we should define 

hallmarks altogether. 

Abstract 

Cancer cells possess a nearly universal set of characteristics termed the 

hallmarks of cancer, including replicative immortality and resisting cell death. 

Dysregulated differentiation is present in virtually all cancers yet has not yet been 

described as a cancer hallmark. Like other hallmarks, dysregulated differentiation 

involves a breakdown of the cellular cooperation that typically makes 

multicellularity possible - in this case disrupting the division of labor among the 

cells of a body. At the time that the original hallmarks of cancer were described, it 

was not known that dysregulated differentiation was mechanistically distinct from 

growth inhibition, but now that this is known, it is a further reason to consider 

dysregulated differentiation a hallmark of cancer. Dysregulated differentiation 

also has clinical utility, as it forms the basis of pathological grading, predicts 

clinical outcomes, and is a viable target for therapies aimed at inducing 

differentiation. Here we argue that hallmarks of cancer should be near universal, 

mechanistically distinct, and have clinical utility for prognosis and/or therapy. 

Dysregulated differentiation meets all of these criteria. 
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Introduction 
 

The identification of the hallmarks of cancer has been one of the most 

helpful and influential contributions to understanding cancer, because it brings 

simplicity, consistency and coherence to the otherwise overwhelming complexity 

of cancers(Hanahan & Weinberg, 2000, 2011). While cancer genomics has 

shown that each cancer is a unique mosaic of diverse genetic clones, 

evolutionary theory helps us understand why this diversity often converges on 

strikingly similar phenotypes represented by the hallmarks(Fortunato et al.,2017). 

We can view the hallmarks of cancer as the characteristics that are common 

across cancers, evolving consistently and independently in each cancer, because 

they confer a fitness benefit to the neoplastic cells over the surrounding normal 

somatic cells(Fortunato et al., 2017). All complex multicellular organisms require 

cooperation between their individual somatic cells(Aktipis C. Athena et al., 2015). 

Although complex multicellularity has evolved at least seven times(Knoll, 2011), 

there are five forms of cooperation upon which all multicellular organisms have 

converged: suppression of cell proliferation, controlled cell death, resource 

allocation, maintenance of the extracellular environment, and division of labor 

among the somatic cells(Aktipis C. Athena et al., 2015). Cancer, as a more 

general problem for multicellularity, can be understood as cells that cheat on the 

forms of cooperation necessary for building and maintaining a multicellular entity 

(Figure 1). All the current hallmarks of cancer map onto the five foundations of 

multicellularity, with one exception: there is no hallmark that corresponds to 

cheating on the division of labor among cells(Aktipis C. Athena et al., 2015). Here 

https://paperpile.com/c/QfSXEN/ItkcZ%2BJjuo2
https://paperpile.com/c/QfSXEN/ogY43
https://paperpile.com/c/QfSXEN/ogY43
https://paperpile.com/c/QfSXEN/ogY43
https://paperpile.com/c/QfSXEN/moiRy
https://paperpile.com/c/QfSXEN/vZyHW
https://paperpile.com/c/QfSXEN/vZyHW
https://paperpile.com/c/QfSXEN/moiRy
https://paperpile.com/c/QfSXEN/moiRy
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we suggest that there should be an additional hallmark of cancer which 

corresponds to this breakdown in division of labor. A breakdown of division of 

labor among cells would manifest as cells not adopting the proper cell types that 

are necessary for the proper functioning of the organism, i.e., dysregulated 

differentiation. 

 
 

Figure 1. Cancer represents a breakdown of the foundations of multicellular 

cooperation that are necessary for multicellularity to succeed. The breakdown of 

every foundation of multicellularity corresponds to one or more of the existing 

hallmarks of cancer, with the exception of division of labor. Adding dysregulated 

differentiation as an additional hallmark of cancer fills this gap, corresponding to 

a breakdown in division of labor. There may well be other missing hallmarks, 
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represented here as other gaps in the periphery. 

 
 

Not only does dysregulated differentiation fill this gap, it also is already a 

well-recognized universal feature of cancer that is mechanistically distinct from 

other hallmarks, important for prognosis and a promising target for therapy. As we 

will argue in this perspective, the cancer hallmarks should not only be universal 

across cancers, but they should also be mechanistically distinct from one another, 

as well as diagnostically and therapeutically useful (Table 1). By these criteria, 

dysregulation of differentiation should be considered a hallmark of cancer. 

 

Cancer 
Hallmark 

Mechanistically 
Distinct 

Diagnostically 
Functional 

Therapeutically 
Relevant 

Sustained 

Proliferative 
Signaling 

Constitutive activation of 
proliferative pathways 
(G. I. Evan & Vousden, 
2001) 

Proliferative markers 
such as Ki- 67 have been 
long used in 
staging/grading cancers 
(Gerdes, 1990) 

Numerous compounds 
have demonstrated 
efficacy against known 
proliferative pathways 
(Feitelson et al., 2015) 

Evade Growth 
Suppressors 

Tumor suppressor 
pathways cannot be fully 
functional in metastatic 
disease (Amin et al., 
2015) 

Although characterized in 
childhood retinoblastoma, 
the RB pathway is 
mutated the majority of 
human cancers (Du & 
Searle, 2009) 

RB mutation status 
can significantly guide 
the clinical 
management of a 
variety of cancer types 
(Du & Searle, 2009) 

https://paperpile.com/c/QfSXEN/m1jLU
https://paperpile.com/c/QfSXEN/m1jLU
https://paperpile.com/c/QfSXEN/m1jLU
https://paperpile.com/c/QfSXEN/BI0f1
https://paperpile.com/c/QfSXEN/BI0f1
https://paperpile.com/c/QfSXEN/vDE7A
https://paperpile.com/c/QfSXEN/vDE7A
https://paperpile.com/c/QfSXEN/1AO9Y
https://paperpile.com/c/QfSXEN/1AO9Y
https://paperpile.com/c/QfSXEN/bLMi2
https://paperpile.com/c/QfSXEN/bLMi2
https://paperpile.com/c/QfSXEN/bLMi2
https://paperpile.com/c/QfSXEN/bLMi2
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Avoid Immune 
Destruction 

Through the expression 
of self antigens and 
manipulation via the 
tumor microenvironment, 
many tumor cells 
escape immune 
destruction (Finn, 2012) 

Intratumor leukocyte 
infiltration can be used as 
a prognostic index 
determining anti- tumor 
immune activity (Fridman 
et al., 2011) 

There a several 
therapeutic targets 
such as PD-1, PD- L1, 
CTLA4, and Th1 that 
can potentially counter 
immune evasion 
(Ribas & Wolchok, 
2018; Vinay et al., 
2015) 

Enable 
Replicative 
Immortality 

Cancer cells are able to 
restore and maintain 
telomere 
functionality(Hahn & 
Meyerson, 2001) 

Telomerase activity 
provides insight to tumor 
differentiation status(N. 
W. Kim, 1997) 

Targeting cyclin 
dependent kinases 
such as PI3K could 
trigger cancer cell 
senescence(Yaswe n 
et al., 2015). 
Telomerase is a target 
for cancer therapy(H.-
S. Lee et al., 2018) 

Activate Invasion 
& Metastasis 

The ability of cancer 
cells to penetrate the 
basement membrane 
and disseminate into 
different tissues(Gupta & 
Massagué, 2006; 
Pachmayr et al., 2017) 

Circulating tumor cells 
(CTCs) can be assayed 
for early detection of 
metastatic 
disease(Maheswar an & 
Haber, 2010) 

Cell adhesion 
pathways can be 
targeted for 
therapy(D.-M. Li & 
Feng, 2011) 

Induce 
Angiogenesis 

Tumors cannot grow 

beyond 1-2mm3 without 
establishing their own 
vasculature(Carmeli et & 
Jain, 2000) 

Density of tumor 
supporting vasculature a 
useful prognostic 
tool(Weidner, 1995) 

Anti-angiogenesis 
therapies target tumor 
resource 
delivery(Cherringto n 
et al., 2000) 

https://paperpile.com/c/QfSXEN/cNB9Q
https://paperpile.com/c/QfSXEN/cNB9Q
https://paperpile.com/c/QfSXEN/qP1do
https://paperpile.com/c/QfSXEN/qP1do
https://paperpile.com/c/QfSXEN/qP1do
https://paperpile.com/c/QfSXEN/hyGEW%2BkeSrv
https://paperpile.com/c/QfSXEN/hyGEW%2BkeSrv
https://paperpile.com/c/QfSXEN/hyGEW%2BkeSrv
https://paperpile.com/c/QfSXEN/hyGEW%2BkeSrv
https://paperpile.com/c/QfSXEN/hyGEW%2BkeSrv
https://paperpile.com/c/QfSXEN/Z5Nm9
https://paperpile.com/c/QfSXEN/Z5Nm9
https://paperpile.com/c/QfSXEN/N106N
https://paperpile.com/c/QfSXEN/N106N
https://paperpile.com/c/QfSXEN/N106N
https://paperpile.com/c/QfSXEN/4p3C8
https://paperpile.com/c/QfSXEN/4p3C8
https://paperpile.com/c/QfSXEN/4p3C8
https://paperpile.com/c/QfSXEN/ovpJB
https://paperpile.com/c/QfSXEN/ovpJB
https://paperpile.com/c/QfSXEN/ovpJB
https://paperpile.com/c/QfSXEN/VPO8i%2B1kw7E
https://paperpile.com/c/QfSXEN/VPO8i%2B1kw7E
https://paperpile.com/c/QfSXEN/VPO8i%2B1kw7E
https://paperpile.com/c/QfSXEN/VPO8i%2B1kw7E
https://paperpile.com/c/QfSXEN/2ywEl
https://paperpile.com/c/QfSXEN/2ywEl
https://paperpile.com/c/QfSXEN/2ywEl
https://paperpile.com/c/QfSXEN/5emSh
https://paperpile.com/c/QfSXEN/5emSh
https://paperpile.com/c/QfSXEN/smMxs
https://paperpile.com/c/QfSXEN/smMxs
https://paperpile.com/c/QfSXEN/smMxs
https://paperpile.com/c/QfSXEN/Ml33B
https://paperpile.com/c/QfSXEN/DTe70
https://paperpile.com/c/QfSXEN/DTe70
https://paperpile.com/c/QfSXEN/DTe70
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Resist  

Cell Death 

Disruption in the Bcl-2 
signaling pathway 
precludes apoptotic 
response to DNA 
damage (Adams & Cory, 
2007) 

Determining the activity 
of BLC2 family proteins 
can reveal cells’ ability to 
resist apoptosis (Glinsky 
& Glinsky, 1996; 

Letai, 2008) 

Targeting death 
receptor ligands can 
trigger tumor cell death 
(Fisher, 1994; Kelley & 
Ashkenazi, 2004) 

Deregulate 
Cellular 

Energetics 

Cancer cells forgo 
oxidative 
phosphorylation, relying 
almost exclusively on 
glycolysis (R. A. Cairns 
et al., 2011) 

Cancer cell metabolic 
phenotype predicts 
disease progression 
(Isidoro et al., 2005) 

Recognized metabolic 
alterations are 
emerging as 
therapeutic targets 
(Teicher et al., 2012) 

Dysregulated 
Differentiation 

Tumor genomic profiles 
outline key genetic 
lesions that grant cancer 
cells their stem cell 
qualities (Ben-Porath et 
al., 2008) 

Differentiation is the 
foundation of tumor 
grading (Elston & Ellis, 
1991) 

Differentiation therapy 
provides a unique 
therapeutic target with 
minimal toxicity 
(Nowak et al., 2009) 

 

Table 1. Dysregulated differentiation, alongside all of the existing hallmarks, all 

meet our proposed criteria for hallmarks. 

 
A universal feature of cancer 

Dysregulation of differentiation is a universal feature of cancers (Hanahan, 

2022; Tenen, 2003). Both genomic and histological evidence indicate that 

dysregulated differentiation is pervasive (Table 2). Cancers are generally 

diagnosed by histological features, detectable under a light microscope, that 

indicate that something has gone wrong in differentiation. Histological 

examination of differentiation status is a foundational method in the cancer 

grading system which has long been the cornerstone determining patient 

prognosis (Bansal et al., 2014; Bostwick, 1994). These histological aberrations of 

https://paperpile.com/c/QfSXEN/IgMkX
https://paperpile.com/c/QfSXEN/IgMkX
https://paperpile.com/c/QfSXEN/IgMkX
https://paperpile.com/c/QfSXEN/aJi48%2BPutp3
https://paperpile.com/c/QfSXEN/aJi48%2BPutp3
https://paperpile.com/c/QfSXEN/aJi48%2BPutp3
https://paperpile.com/c/QfSXEN/aJi48%2BPutp3
https://paperpile.com/c/QfSXEN/1GKKN%2BYBpO0
https://paperpile.com/c/QfSXEN/1GKKN%2BYBpO0
https://paperpile.com/c/QfSXEN/1GKKN%2BYBpO0
https://paperpile.com/c/QfSXEN/4gGOM
https://paperpile.com/c/QfSXEN/4gGOM
https://paperpile.com/c/QfSXEN/4gGOM
https://paperpile.com/c/QfSXEN/Q1MnA
https://paperpile.com/c/QfSXEN/Q1MnA
https://paperpile.com/c/QfSXEN/7XZ3P
https://paperpile.com/c/QfSXEN/7XZ3P
https://paperpile.com/c/QfSXEN/CWnzw
https://paperpile.com/c/QfSXEN/CWnzw
https://paperpile.com/c/QfSXEN/CWnzw
https://paperpile.com/c/QfSXEN/jNuBX
https://paperpile.com/c/QfSXEN/jNuBX
https://paperpile.com/c/QfSXEN/jNuBX
https://paperpile.com/c/QfSXEN/C8Oxi
https://paperpile.com/c/QfSXEN/C8Oxi
https://paperpile.com/c/QfSXEN/flc8r%2BVpZ5O
https://paperpile.com/c/QfSXEN/flc8r%2BVpZ5O
https://paperpile.com/c/QfSXEN/flc8r%2BVpZ5O
https://paperpile.com/c/QfSXEN/XBVJ6%2BVHZda
https://paperpile.com/c/QfSXEN/XBVJ6%2BVHZda
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differentiation are far ranging, including glands are that improperly formed or are 

missing altogether. Sometimes there is loss of regulation over a progenitor cell 

population, that has not fully differentiated, such that it expands to a pathological 

level, as occurs in most of the hematopoietic neoplasms (Tenen, 2003) as well 

as the undifferentiated clonal expansions in carcinomas. In fact, the generation of 

a new mass, a neoplasm, is probably impossible as long as differentiation is 

being properly regulated. Differentiation regulates the proper proportions and 

number of different cell types in every tissue. The epithelial-to-mesenchymal 

transition (EMT) common to many cancers is a further example of aberrant 

differentiation(L. Li & Li, 2015; H. Wang & Unternaehrer, 2019). 

 

Cancer Type Genomic Evidence of 
Dysregulated Differentiation 

Histological Evidence of 
Dysregulated Differentiation 

Breast Down regulation of Gata-3 
precludes healthy gland 
differentiation and disrupts luminal 
cell fate.(Asselin-Labat et al., 2007; 
Gawrzak et al., 2018; Kouros-Mehr 
et al., 2006, 

2008) 

Tumor differentiation status 
defines grading scale and strongly 
predicts patient prognosis(Elston, 
1984; Elston & Ellis, 1991; Petushi 
et al., 2006) 

Colorectal NDRG2 is expressed at low or 
undetectable levels in high risk/poor 
prognosis colorectal 
adenomas(Lorentzen et al., 

2007),(L. Shen et al., 2018) 

Differentiation status of a tumor 
was more predictive of prognosis 
than invasive margin and DNA 
ploidy(Purdie & Piris, 2000) 

Prostate  
FOXA1 suppression in prostate 
carcinoma indicative of irregular 
differentiation patterns(Qin et al., 

2012),(J. Kim et al., 2017),(W.-Y. 
Chen et al., 2019) 

Lack of full differentiation in 
prostate cancer precludes the 
usefulness of serum prostate 
specific antigen in measuring 
tumor burden.(Bostwick, 1994; 
Partin et al., 1990) 

https://paperpile.com/c/QfSXEN/flc8r
https://paperpile.com/c/QfSXEN/Aw3WG%2BFOegJ
https://paperpile.com/c/QfSXEN/mi3hg%2B11cHU%2BQUnKc%2BRzgpG
https://paperpile.com/c/QfSXEN/mi3hg%2B11cHU%2BQUnKc%2BRzgpG
https://paperpile.com/c/QfSXEN/mi3hg%2B11cHU%2BQUnKc%2BRzgpG
https://paperpile.com/c/QfSXEN/mi3hg%2B11cHU%2BQUnKc%2BRzgpG
https://paperpile.com/c/QfSXEN/mi3hg%2B11cHU%2BQUnKc%2BRzgpG
https://paperpile.com/c/QfSXEN/mi3hg%2B11cHU%2BQUnKc%2BRzgpG
https://paperpile.com/c/QfSXEN/h83wI%2BjNuBX%2B94PsG
https://paperpile.com/c/QfSXEN/h83wI%2BjNuBX%2B94PsG
https://paperpile.com/c/QfSXEN/h83wI%2BjNuBX%2B94PsG
https://paperpile.com/c/QfSXEN/h83wI%2BjNuBX%2B94PsG
https://paperpile.com/c/QfSXEN/8h6BJ
https://paperpile.com/c/QfSXEN/8h6BJ
https://paperpile.com/c/QfSXEN/toIc7
https://paperpile.com/c/QfSXEN/6g6Sr
https://paperpile.com/c/QfSXEN/pP9TJ
https://paperpile.com/c/QfSXEN/pP9TJ
https://paperpile.com/c/QfSXEN/R1iwz
https://paperpile.com/c/QfSXEN/R1iwz
https://paperpile.com/c/QfSXEN/Ns5Zi
https://paperpile.com/c/QfSXEN/Ns5Zi
https://paperpile.com/c/QfSXEN/XBVJ6%2B86KHE
https://paperpile.com/c/QfSXEN/XBVJ6%2B86KHE
https://paperpile.com/c/QfSXEN/XBVJ6%2B86KHE
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Lung TRPC channel disruption signals 
stemcell-like differentiation 
status(Hassan et al., 2009; Jiang et 
al., 2013; Lim et al., 2017) 

Differentiation status is an 
independent predictor of prognosis 
in non-small cell lung cancer(Z. 
Sun et al., 2006; B.-Y. Wang et al., 
2013) 

Thyroid Suppression of Notch signaling 
mediated differentiation (Ferretti et 
al., 2008; Somnay et al., 2017; Yu et 
al., 2013) 

Diversity of thyroid carcinoma 
subtype founded largely on 
morphological 
differentiation(Akslen, 1993; 
Akslen & LiVolsi, 2000; Shaha et 
al., 1996) 

Bladder Renewal of Hedgehog signaling 
pathway can illicit differentiation 
factors that improve prognosis (Shin 
et al., 2014; Warrick et al., 2019) 

Tumor cells reveal morphological 
indications of dysegulated 
differentiation before chromosomal 
aberrations(Pauwels et al., 1988; 
Wasco et al., 2007) 

Stomach Amplification of Notch1 intracellular 
domain maintains population of 
undifferentiated or poorly 
differentiated cells in carcinoma of 
the stomach(Choe et al., 1997; S. 
Hu et al., 2018; Katz et al., 2005) 

Even well differentiated gastric 
carcinoma show histological 
evidence of disruption(Adachi et 
al., 2000) 

Cervical Expression of FOXC2 in cervical 
tissue correlates with increases in 
number of poorly differentiated 
cells(J. Wang & Yue, 2017),(X. Wu 

et al., 2019) 

Disruption of healthy differentiation 
can be detected with light 
microscope and/or positron 
emission tomography(Kidd et al., 
2009) 

Non-hodgkin 
Lymphoma 

Expression profiles show T-cell 
differentiation in B-NHL is skewed 
towards early stages (Anichini et al., 
2006) 

Phenotypic classification of tumor 
cells by degree of differentiation 
informs prognosis(Habeshaw et 
al., 1979; Seegmiller et al., 2007) 

https://paperpile.com/c/QfSXEN/2OJ3K%2BcZ40v%2BP8wpB
https://paperpile.com/c/QfSXEN/2OJ3K%2BcZ40v%2BP8wpB
https://paperpile.com/c/QfSXEN/2OJ3K%2BcZ40v%2BP8wpB
https://paperpile.com/c/QfSXEN/2OJ3K%2BcZ40v%2BP8wpB
https://paperpile.com/c/QfSXEN/TUKip%2BP77SY
https://paperpile.com/c/QfSXEN/TUKip%2BP77SY
https://paperpile.com/c/QfSXEN/TUKip%2BP77SY
https://paperpile.com/c/QfSXEN/TUKip%2BP77SY
https://paperpile.com/c/QfSXEN/3X4OZ%2ByGnua%2BJm68x
https://paperpile.com/c/QfSXEN/3X4OZ%2ByGnua%2BJm68x
https://paperpile.com/c/QfSXEN/3X4OZ%2ByGnua%2BJm68x
https://paperpile.com/c/QfSXEN/3X4OZ%2ByGnua%2BJm68x
https://paperpile.com/c/QfSXEN/JhbOR%2BZ5FYw%2BKcjsD
https://paperpile.com/c/QfSXEN/JhbOR%2BZ5FYw%2BKcjsD
https://paperpile.com/c/QfSXEN/JhbOR%2BZ5FYw%2BKcjsD
https://paperpile.com/c/QfSXEN/JhbOR%2BZ5FYw%2BKcjsD
https://paperpile.com/c/QfSXEN/tmmgU%2BWQ3BQ
https://paperpile.com/c/QfSXEN/tmmgU%2BWQ3BQ
https://paperpile.com/c/QfSXEN/tmmgU%2BWQ3BQ
https://paperpile.com/c/QfSXEN/20rmz%2BJRptf
https://paperpile.com/c/QfSXEN/20rmz%2BJRptf
https://paperpile.com/c/QfSXEN/20rmz%2BJRptf
https://paperpile.com/c/QfSXEN/CljDN%2BCaAmZ%2BmryeD
https://paperpile.com/c/QfSXEN/CljDN%2BCaAmZ%2BmryeD
https://paperpile.com/c/QfSXEN/CljDN%2BCaAmZ%2BmryeD
https://paperpile.com/c/QfSXEN/T5tZN
https://paperpile.com/c/QfSXEN/T5tZN
https://paperpile.com/c/QfSXEN/561gZ
https://paperpile.com/c/QfSXEN/561gZ
https://paperpile.com/c/QfSXEN/7kRdN
https://paperpile.com/c/QfSXEN/7kRdN
https://paperpile.com/c/QfSXEN/z4Hp5
https://paperpile.com/c/QfSXEN/z4Hp5
https://paperpile.com/c/QfSXEN/Dgar2
https://paperpile.com/c/QfSXEN/Dgar2
https://paperpile.com/c/QfSXEN/iRK5g%2BgexUh
https://paperpile.com/c/QfSXEN/iRK5g%2BgexUh
https://paperpile.com/c/QfSXEN/iRK5g%2BgexUh
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Endometrial Karyotypic aberration patterns 
correlate with histological 
differentiation(Micci et al., 2004) 

Tissue specific differentiation and 
hormone receptor positivity are 
key 
prognostic factors(Creasman, 
1993; Mo et al., 2016; Tafe et al., 
2010) 

Leukemia Pax5 loss and t(15;17) 
translocations both cause 
differentiation blocks in 
leukemias(G. J. Liu et al., 2014) 

A review of differentiation 
therapy for leukemia(E. J. Lee et 

al., 1987; Nowak et al., 

2009) 

Undifferentiated leukemia by light 

microscopy with myeloid 

features(E. J. Lee et al., 1987; 

B. U. Mueller et al., 2006; Nowak 
et al., 2009) 

Kidney Positive correlation between low 
PTEN expression and poorer 
differentiation(Que et al., 2018) 

Differentiation level by subtype 
predicts patient outcome(Leibovich 
et al., 2010; Prasad et al., 2006) 

Melanoma of the 
skin 

Melanoma differentiation associated 
gene‐7 (MDA7) expression is 
downregulated in 
advanced melanoma and virtually 
undetectable in metastatic 
disease(Ekmekcioglu et al., 2001) 

Differentiation status and like- ness 
with other skin markings provides 
a baseline understanding of 
disease state 

Lip, oral cavity Absence of epithelial keratins 
defines a de-differentiated state in 
oral carcinomas(Leung et al., 2009; 
Ogden et al., 1993) 

Morphological differentiation 
status, although particularly 
subjective in the oral cavity, still 
associated with patient 
outcome(Strieder et al., 2017; 
Warnakulasuriya, 2001) 

Brain and Central 
Nervous System 

Reactivation of Wnt signaling induce 
neural differentiation and cancer cell 
death (Boso et al., 2019; Guichet et 
al., 2013; Rampazzo et al., 2013; Q. 
B. Zhang et al., 2006) 

Glioblastoma stem-like cells can 
hijack differentiation pathways to 
recruit vascularization(Ricci-Vitiani 
et al., 2008, 2010) 

https://paperpile.com/c/QfSXEN/0d02R
https://paperpile.com/c/QfSXEN/0d02R
https://paperpile.com/c/QfSXEN/LdNTI%2BqWK0M%2BAJ0jM
https://paperpile.com/c/QfSXEN/LdNTI%2BqWK0M%2BAJ0jM
https://paperpile.com/c/QfSXEN/LdNTI%2BqWK0M%2BAJ0jM
https://paperpile.com/c/QfSXEN/LdNTI%2BqWK0M%2BAJ0jM
https://paperpile.com/c/QfSXEN/ciHnC
https://paperpile.com/c/QfSXEN/ciHnC
https://paperpile.com/c/QfSXEN/C8Oxi%2BKTOA2
https://paperpile.com/c/QfSXEN/C8Oxi%2BKTOA2
https://paperpile.com/c/QfSXEN/C8Oxi%2BKTOA2
https://paperpile.com/c/QfSXEN/C8Oxi%2BKTOA2
https://paperpile.com/c/QfSXEN/C8Oxi%2BKTOA2%2B8Wq9P
https://paperpile.com/c/QfSXEN/C8Oxi%2BKTOA2%2B8Wq9P
https://paperpile.com/c/QfSXEN/C8Oxi%2BKTOA2%2B8Wq9P
https://paperpile.com/c/QfSXEN/C8Oxi%2BKTOA2%2B8Wq9P
https://paperpile.com/c/QfSXEN/MJ900
https://paperpile.com/c/QfSXEN/MJ900
https://paperpile.com/c/QfSXEN/Xq0zv%2BzDUgc
https://paperpile.com/c/QfSXEN/Xq0zv%2BzDUgc
https://paperpile.com/c/QfSXEN/Xq0zv%2BzDUgc
https://paperpile.com/c/QfSXEN/FcZBX
https://paperpile.com/c/QfSXEN/FcZBX
https://paperpile.com/c/QfSXEN/7xzjI%2BLfzrx
https://paperpile.com/c/QfSXEN/7xzjI%2BLfzrx
https://paperpile.com/c/QfSXEN/7xzjI%2BLfzrx
https://paperpile.com/c/QfSXEN/7Wpsy%2BdFQJb
https://paperpile.com/c/QfSXEN/7Wpsy%2BdFQJb
https://paperpile.com/c/QfSXEN/Jicjt%2BlSVvy%2BqJjG4%2B28MBD
https://paperpile.com/c/QfSXEN/Jicjt%2BlSVvy%2BqJjG4%2B28MBD
https://paperpile.com/c/QfSXEN/Jicjt%2BlSVvy%2BqJjG4%2B28MBD
https://paperpile.com/c/QfSXEN/Jicjt%2BlSVvy%2BqJjG4%2B28MBD
https://paperpile.com/c/QfSXEN/Jicjt%2BlSVvy%2BqJjG4%2B28MBD
https://paperpile.com/c/QfSXEN/Jicjt%2BlSVvy%2BqJjG4%2B28MBD
https://paperpile.com/c/QfSXEN/XUgPM%2Bk7pF9
https://paperpile.com/c/QfSXEN/XUgPM%2Bk7pF9
https://paperpile.com/c/QfSXEN/XUgPM%2Bk7pF9
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Ovary Notch1 overexpression increases 
with decreasing extent of fully 
differentiated cells(McAuliffe et al., 
2012; Rose, 2009; Rose et al., 2010; 
M. Wang et al., 2010) 

Extent of morphologically poorly 
differentiated cells within ovarian 
tumor predicts prognosis(Malpica, 
2008; Silverberg, 2000; Tafe et al., 
2010) 

Liver MYC inactivation in an animal model 
of HCC induced differentiation and 
sustained regression of the 

tumor(Shachaf et al., 2004), 

Increased LEF1 expression in 
hepatocellular cancer is associated 
with poor cellular differentiation and 
worse prognosis, and regulates 
tumor differentiation through 
activation of NOTCH signaling 
pathways(Fang et al., 2019) 

Well differentiated hepatocellular 
carcinoma presents atypically and 
yet retains histological evidence of 
differentiation 
abrogations(Calderaro et al., 2019; 
Jang et al., 2007) 

Esophagus 22% of esophageal squamous cell 
carcinomas have mutations in genes 
that regulate esophageal squamous 
cell differentiation (NOTCH1, 
NOTCH2 or NOTCH3) (Gao et al., 
2014) 
In squamous cell carcinoma, Notch3 
is repressed by TGFB, which blocks 
terminal differentiation and leads to 
Notch1 mediated EMT (Natsuizaka 
et al., 2017) 

Majority of esophageal carcinoma 
shows moderate to completely 
undifferentiated cell 
morphology(Trivers et al., 2008) 

Larynx Cyclin E overexpression in a 
majority of laryngeal carcinomas is a 
key driver of poorly differentiated 
tumors(Nadal & Cardesa, 2003). 

Lymphoepithelioma is an 
undifferentiated carcinoma of the 
nasopharyngeal type with 
propensity for metastasis (Passler 
et al., 1999; Sarioglu et al., 2016; 
Stanley et al., 1985) 

https://paperpile.com/c/QfSXEN/Bfsei%2BMStdH%2BKEr7v%2BNKqVM
https://paperpile.com/c/QfSXEN/Bfsei%2BMStdH%2BKEr7v%2BNKqVM
https://paperpile.com/c/QfSXEN/Bfsei%2BMStdH%2BKEr7v%2BNKqVM
https://paperpile.com/c/QfSXEN/Bfsei%2BMStdH%2BKEr7v%2BNKqVM
https://paperpile.com/c/QfSXEN/LdNTI%2BNptNm%2BkPzKE
https://paperpile.com/c/QfSXEN/LdNTI%2BNptNm%2BkPzKE
https://paperpile.com/c/QfSXEN/LdNTI%2BNptNm%2BkPzKE
https://paperpile.com/c/QfSXEN/LdNTI%2BNptNm%2BkPzKE
https://paperpile.com/c/QfSXEN/ZuT3O
https://paperpile.com/c/QfSXEN/4C4bO
https://paperpile.com/c/QfSXEN/ZnqxR%2B6AQuf
https://paperpile.com/c/QfSXEN/ZnqxR%2B6AQuf
https://paperpile.com/c/QfSXEN/ZnqxR%2B6AQuf
https://paperpile.com/c/QfSXEN/dUEjf
https://paperpile.com/c/QfSXEN/dUEjf
https://paperpile.com/c/QfSXEN/dUEjf
https://paperpile.com/c/QfSXEN/V3urD
https://paperpile.com/c/QfSXEN/V3urD
https://paperpile.com/c/QfSXEN/VrepV
https://paperpile.com/c/QfSXEN/VrepV
https://paperpile.com/c/QfSXEN/kAuor
https://paperpile.com/c/QfSXEN/kAuor
https://paperpile.com/c/QfSXEN/5AKoY%2Bdod8R%2BrzQYf
https://paperpile.com/c/QfSXEN/5AKoY%2Bdod8R%2BrzQYf
https://paperpile.com/c/QfSXEN/5AKoY%2Bdod8R%2BrzQYf
https://paperpile.com/c/QfSXEN/5AKoY%2Bdod8R%2BrzQYf
https://paperpile.com/c/QfSXEN/5AKoY%2Bdod8R%2BrzQYf
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Multiple myeloma Maintained B cell expression of 
CD38 perpetuates a sub- 
differentiated population of cells 
clonally related to the multiple 
myeloma plasma cells(Billadeau et 
al., 1993; Matsui et al., 2008) 

Morphological indications of 
plasma cell differentiation level 
significantly predict clinical 
outcome(Bartl et al., 1987; 
Subramanian et al., 2009) 

 

Table 2. Evidence for disruption of differentiation, both genetic and 

histopathological, in the 20 most prevalent types of cancers worldwide(Cancer 

Today, n.d.). 

 
  

https://paperpile.com/c/QfSXEN/AOFfy%2BOPXn3
https://paperpile.com/c/QfSXEN/AOFfy%2BOPXn3
https://paperpile.com/c/QfSXEN/AOFfy%2BOPXn3
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Convergent somatic evolution 
 

Cells that stop devoting resources to the tasks inherent to that of their 

normal differentiated state, and instead devote those resources to proliferation 

and survival, will have a fitness advantage over cells that continue to devote 

resources to the specific tasks of their tissue type. Dysregulation of differentiation 

evolves independently in each cancer because it provides a selective advantage 

to those cells. 

Differentiation is beneficial for organisms because it not only allows for the 

division of cellular labor, but also because it can lower cancer risk through 

reducing ongoing cell proliferation(X. Zhang et al., 2013). This appears to be one 

of the mechanisms that organisms have evolved to prevent somatic mutations 

and the expansion of clones that acquire selective advantages from those 

mutations(J. Cairns, 1975). In fact, there are many features of differentiated 

tissue architecture that function to constrain would-be clonal expansions. In 

intestinal crypts, which have a high rate of cell turnover, this function is 

performed by basal apical polarity axis maintained through a basement 

membrane attachment requirement, apical tight junctions between adjacent cells, 

and basal hemidesmosomal attachment complexeses (Chandramouly et al., 

2007; Clevers, 2013; Gehart & Clevers, 2019; Snippert et al., 2010; van der 

Heijden & Vermeulen, 2019). Consequently, neoplastic cells gain a cell-level 

fitness advantage by evading those constraints(Fortunato et al., 2017). The 

suspension of proliferative abilities in fully differentiated cells is one of the major 

mechanisms of somatic-level evolutionary suppression, in other words it is a 

https://paperpile.com/c/QfSXEN/dJmIu
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cancer resistance mechanism. However, this also means that there is strong 

selective pressure on neoplastic cells to evolve the ability to evade full 

differentiation. 

Cairns first pointed out in 1975 that if mutations are gained in transit 

amplifying cells, which are only partially differentiated, these cells will quickly be 

flushed from the body with little chance to accumulate additional mutations 

necessary to cause cancer(J. Cairns, 1975) (Figure 2). In this way, differentiation 

in tissues with high cell turnover acts as a tumor suppressor. Follow-up 

mathematical and computational models have shown that alterations in 

differentiation are likely some of the most universal early lesions in neoplastic 

progression(Haeno et al., 2009; Sprouffske et al., 2011).  

Both stem cells and transit amplifying cells gain fitness advantages from 

disrupting differentiation(Sprouffske et al., 2013). However, there are generally 

many more transit amplifying cells than stem cells and so some mathematical 

models predict that most cancers derive from transit amplifying cells, even if that 

requires additional mutations to disrupt differentiation(Haeno et al., 2009). In 

order to become cancerous, transit amplifying cells must avoid the fate of being 

sloughed from the off of a proliferating tissue (Figure 2b). Any stem cell that 

disrupts differentiation and divides symmetrically, producing two daughter stem 

cells, will have a fitness advantage over other stem cells that divide 

asymmetrically and use some of their resources to produce non-stem cells 

(Figure 2a). In summary, there are good evolutionary reasons to expect that 

virtually all cancer cells can gain a fitness benefit from disrupting differentiation, 

https://paperpile.com/c/QfSXEN/PhOqd
https://paperpile.com/c/QfSXEN/dPJ6X%2BrsVbN
https://paperpile.com/c/QfSXEN/T4QPI
https://paperpile.com/c/QfSXEN/rsVbN
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which explains why dysregulation of differentiation consistently evolves and is a 

universal feature of cancers. 
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Figure 2. In order for a neoplasm to grow, cells must somehow evade the 
inexorable conveyor belt of differentiation that transforms stem cells into 
progressive stages of transit amplifying cells, eventually becoming fully 
differentiated cells, and finally exiting the tissue by apoptosis. There are two 
ways a neoplasm may form: a.) A clone of stem cells may stop producing transit 
amplifying cells, only dividing symmetrically to produce daughter stem cells. That 
clone will have a competitive advantage over any stem cell clones that continue 
to use some of their resources to produce transit amplifying cells. This may be 
due to an abrogation in the clone’s differentiation pathways or through the 
gaining of independence from stem cell niche signals that would otherwise be 
required to maintain the stem cell state. b.) Alternatively, transit amplifying cells 
may stop differentiation and so effectively step off of the conveyor belt of 
differentiation. This gives the non-differentiating (and thus self-renewing) transit 
amplifying cells a competitive advantage over transit amplifying cells that 
continue to differentiate. 
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Mechanisms of dysregulation 
 

In their original hallmarks paper, Hanahan and Weinberg discuss the 

apparent strategy of tumor cells to promote growth by avoiding terminal 

differentiation. The authors specifically cite the Mad-Max complex, the 

inactivation of APC/B-catenin pathway in colon carcinogenesis, and the erbA 

oncogene in avian erythroblastosis(Hanahan & Weinberg, 2000). At the time, the 

dysregulation of differentiation was not included in the hallmarks of cancer 

because the mechanisms of differentiation could not be distinguished from an 

insensitivity to antigrowth signals and limitless replicative potential. It was not 

clear whether loss of differentiation was simply a loss of growth inhibition or an 

independent factor in carcinogenesis. 

In general, differentiation and growth inhibition are tightly, and 

mechanistically coordinated. However, there are instructive cases of fully 

differentiated cells that are still proliferative, including beta cells in the pancreas, 

hepatocytes in the liver, T-cells, and fibroblasts in numerous tissue 

types(Grotendorst et al., 2004; W.-H. Liu et al., 2010; Luckheeram et al., 2012; 

Manohar & Lagasse, 2014; Min, 2018; Visco et al., 2009; Zhong & Jiang, 2019). 

These exceptions show that there is a fundamental distinction between loss of 

proliferative ability and differentiation, though they co-occur often. 

There has been ample documentation of interruptions in key differentiation 

pathways, separate from growth inhibition pathways, that are conserved across 

cancer types, ultimately preventing true terminal differentiation. Notch signaling 

plays a complex, and not fully understood, role in distinct differentiation signaling 

https://paperpile.com/c/QfSXEN/Jjuo2
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https://paperpile.com/c/QfSXEN/73Zsg%2BlAret%2B2TJmt%2B2PQI6%2Be7dOP%2B4ARcm%2B2ZUMn
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pathways(Sriuranpong et al., 2001). In T-cell acute lymphoblastic leukemia (T- 

ALL) chromosomal translocations result in constitutive Notch1 signaling that 

precludes terminal differentiation(Cullion et al., 2009; Ferrando, 2009; O’Neil et 

al., 2006; Sjölund et al., 2005; Sulis et al., 2008; Vilimas et al., 2007; Weng et al., 

2004). Rangarajan and colleagues demonstrated that Notch1 deletion in 

keratinocytes resulted in hyperplasia and generalized dysregulation of known 

differentiation markers(Rangarajan et al., 2001). In addition, constitutive 

expression of the MYC oncogene is common in human cancers and has a well- 

established role in prevention of differentiation and sustaining proliferative 

signals(Cole, 1986; Coppola & Cole, 1986; Dmitrovsky et al., 1986; Freytag, 

1988; Pelengaris & Khan, 2003; Prochownik & Kukowska, 1986; C. Sun et al., 

2008; Wilson et al., 2004). For instance, in a murine model of liver cancer 

inactivation of MYC was sufficient to differentiate the tumor into normal 

hepatocytes(Shachaf et al., 2004). Interestingly, c-myc expression drives the 

differentiation of keratinocytes where Notch1 appears to play the role of a tumor 

suppressor(Gandarillas & Watt, 1997; Klinakis et al., 2011; Panelos & Massi, 

2009; Watt et al., 2008). 

The identification of differentiation specific pathway alterations holds the 

potential to serve as an indicator for therapeutic response. In the crypt structures 

of the intestinal epithelium, progenitor stem cells are characterized by high 

expression of Leucine-rich repeat-containing G-protein coupled receptor 

(LGR5)(He et al., 2014). Similarly high levels of expression are seen in colorectal 

cancers, where it is indicative of catastrophic Wnt/β-catenin signaling 
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deregulation and worse patient outcomes(He et al., 2014; Herbst et al., 2014; X.- 

S. Wu et al., 2012). 

 

Well-differentiated tumors 

 
Well-differentiated cancers sometimes can be difficult to distinguish from 

reactive changes in tissue, such as hyperplasia, or benign tumors by light 

microscopy. However, even if indiscernible by visual inspection, molecular 

evidence shows the presence of dysregulated differentiation in well-differentiated 

tumors. Well-differentiated tumors exhibit a less differentiated molecular profile 

with elevated expression of precursor genes and lower expression of tissue 

specific genes compared to healthy tissue(Enane et al., 2017). Gene expression 

studies in histologically differentiated thyroid cancers have found a disruption in 

differentiation on a molecular level as compared to benign thyroid tissue. Using 

primary thyroid cancers, Yu et al demonstrated that Notch-1 expression was 

downregulated in differentiated thyroid cancer tissues compared to benign 

thyroid tissues and that decreased Notch-1 expression was associated with more 

aggressive tumors with extrathyroidal invasion(Yu et al., 2016). Restoration of 

Notch-1 expression in a metastatic, differentiated thyroid carcinoma cell line led 

to a reduction in cell growth and tumor cell migration(Yu et al., 2016). The 

Cancer Genome Atlas Research Network investigated the relationship between 

driver mutations BRAFV600E and RAS and differentiation in papillary thyroid 

cancer, a typically well-differentiated cancer by histology(Cancer Genome Atlas 

Research Network, 2014). Differentiation of over 350 PTCs was quantified and 

https://paperpile.com/c/QfSXEN/9I4Bb%2BN3SWT%2BBhrOM
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scored by measuring mRNA expression of 16 thyroid function genes, with a 

lower score indicating decreased differentiation(Cancer Genome Atlas Research 

Network, 2014). Interestingly, increased differentiation scores were correlated 

with the PTC driver mutation BRAFV600E, while decreased differentiation scores 

were correlated with the driver mutation RAS(Cancer Genome Atlas Research 

Network, 2014). Further, upon pathological examination, tumors with lower 

differentiation scores by mRNA expression were found to have subtle 

architectural changes that generated more poorly formed and complex papillary 

structure with fewer follicles(Cancer Genome Atlas Research Network, 2014). 

These findings suggested that certain driver mutations may contribute to 

decreased differentiation in thyroid cancer(Cancer Genome Atlas Research 

Network, 2014). As the new molecular tools under development are advanced for 

clinical application, the feasibility of identifying lack of terminal differentiation 

even in the most well-differentiated cancers increases. 

Prognostic importance 
 

Poorly differentiated cancer cells are known to be much more aggressive 

than their well differentiated counterparts, a fact which plays a critical role in 

predicting patient outcome(Adachi et al., 2000; Bostwick, 1994; Busto Catañón et 

al., 2001; Nishida et al., 1999). Well-trained pathologists have long been able to 

accurately assign patient prognosis through tumor grade although the process is 

heavily burdened with the inherent subjectivity in assessing differentiation 

optically and the morphological variation that is inherent in most tumors. 

Advances in cancer genomics have validated genetic attributes that resemble 
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stem cells(Schwede et al., 2013; Smith et al., 2015; Toraih et al., 2016) as 

prognostic indicators. Similar to histopathological grading systems, differentiation 

gene-expression profiles can predict patient outcomes(Schwede et al., 2013; 

Smith et al., 2015; Toraih et al., 2016). A 2017 study examined the global gene 

expression profile of cancer cells and stratified them based on their distance in 

expression from that of stem cells to fully differentiated cells, using several 

different histologies including carcinomas, sarcomas, and hematologic 

malignancies(Riester et al., 2017). This methodology allowed for the derivation of 

a novel cancer gene expression signature found in all undifferentiated forms of 

the diverse cancers studied. For all subtypes analyzed, tumors most similar in 

expression to stem cells were both histologically less differentiated and clinically 

more aggressive. Furthermore, they also demonstrated that where a cancer fell 

on this spectrum predicted the patient’s survival. Work by Riester et al.(Riester et 

al., 2017)and others has shown that there are objective measures of cellular 

differentiation, utilizing descriptive genetic profiles that detail where on a 

spectrum from “stemness” to full differentiation a given cancer cell lies. Grading 

with molecular assays that measure the hallmarks of cancer enriches our ability 

to make clinical predictions while introducing novel quantification of differentiation 

status through genetic analysis. 

Promising clinical opportunities 

Differentiation should be considered a hallmark of cancer not only due to 

its universality and distinct cellular mechanisms that drive cancer, but also 

because the biological mechanisms can be targeted by available therapies that 

https://paperpile.com/c/QfSXEN/HFkmZ%2BVunXb%2BsJrPA
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have already shown promise in the clinic. Rather than killing both healthy and 

tumor cells as do typical chemotherapeutics, differentiation therapies capitalize 

on the ability of cytokines to promote terminal differentiation of tumor cells and 

halt their capacity to self-renew (Dow et al., 2015; Mueller et al., 1998; Pham et 

al., 2011; Sarraf et al., 1998).  This option is especially promising for patients 

suffering from comorbidities who are unable to receive high-dose chemotherapy 

due to its significant toxicity.  

The first successful clinical application of differentiation therapy was the 

use of All-trans Retinoic Acid (ATRA) for acute promyelocytic leukemia (APL). 

ATRA induces APL blasts to terminally differentiate(Nowak et al., 2009). The 

current standard of care for treatment of APL involves the combination of ATRA 

and arsenic, making APL now a highly curable disease with 5-year disease-free 

survival rates that exceed 90%(Z.-Y. Wang & Chen, 2008). 

Outside of APL, differentiation therapy has been gaining traction in the 

treatment of acute myeloid leukemia (AML)(Christian et al., 2019; Ferrara et al., 

2001; Johnson & Redner, 2015; Nowak et al., 2009; Petrie et al., 2009). A recent 

preclinical study has identified a novel, highly potent and selective inhibitor that 

induces differentiation in vitro and in vivo by inhibiting dihydroorotate 

dehydrogenase across multiple AML subtypes(Christian et al., 2019). A 

promising phase-1 trial of this inhibitor, BAY 2402234, is currently ongoing for 

myeloid malignancies (NCT 03404726).  

Whether differentiation therapy shows similar effects in cancers apart from 
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the hematological malignancies is worth investigating. Cancer stem cells (CSCs), 

also known as tumor-initiating cells, represent one such target for differentiation 

therapy(Frank et al., 2010; Y. Hu & Fu, 2012; Massard et al., 2006; Sell, 2004, 

2006; Takebe et al., 2011; Takebe & Ivy, 2010). First identified in AML in 1997, 

they have since been identified in brain cancer, colon cancer, pancreatic cancer, 

prostate cancer, melanoma, and more(Lapidot et al., 1994; Visvader & 

Lindeman, 2008). They are highly resistant to traditional chemotherapy and 

radiotherapy, which may be due in part to their relative slow growth and high 

expression of anti-apoptotic proteins(Todaro et al., 2007). Differentiation therapy 

is a promising tactic that may induce these CSCs into non-stem cancer cells with 

limited self-renewal potential. These non-stem cells could possibly be better 

targeted by conventional therapies(Lombardo et al., 2011; Yan et al., 2016). 

Another logical application of differentiation therapy would be in tumors 

that are collectively known as “blastomas” or small round blue cell tumors, 

named after their histological appearance, which is monotonous and 

characterized by lack of differentiation features. These relatively undifferentiated 

tumors originate from stem cell progenitors and occur almost exclusively in 

pediatric patients. Neuroblastoma is one of the small round blue cells tumors. It is 

famous for frequent spontaneous regression or differentiation into a benign 

ganglioneuroma(Brodeur, 2018). Recent evidence shows that neuroblastomas 

are composed of cells from two super-enhancer associated differentiation states: 

undifferentiated mesenchymal cells and committed adrenergic cells(van 

Groningen et al., 2017). Nevertheless, cells from either state can interconvert, 
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highlighting a potential mechanism of tumor relapse as mesenchymal cells are 

known to be relatively resistant to chemotherapy(van Groningen et al., 2017). 

Furthermore, these preserved differentiation pathways have been successfully 

targeted in vitro with retinoids(Reynolds, 2000; Reynolds et al., 2003), a 

response categorized with cell proliferation arrest and a markedly lower MYCN 

expression(Reynolds et al., 2003). 

Differentiation therapy can only work if some differentiation pathways 

remain intact in a cancer and can be stimulated by an intervention. Due to natural 

selection at the somatic level for the dysregulation of differentiation, it may not 

always be possible to induce differentiation. 

 

Conclusions 

Dysregulation of differentiation is a universal phenotype, found in virtually all 

cancers (Table 2). The degree of differentiation has long been used in oncology 

for diagnosis as well as prognosis, and advances in genomic analyses have 

shown promise for improving prognosis. Dysregulation of differentiation is 

molecularly distinct from the other hallmarks, including evading growth 

suppressors, and it has been successfully targeted for therapy in acute 

promyelocytic leukemia and neuroblastoma. Further, it is clear that dysregulated 

differentiation is a breakdown of multicellular cooperation, and the only aspect of 

this breakdown of multicellular cooperation that is not already represented in the 

hallmarks of cancer(Aktipis C. Athena et al., 2015). Together, this suggests that 

dysregulated differentiation is a missing hallmark that should be added to the 

https://paperpile.com/c/QfSXEN/cihpJ
https://paperpile.com/c/QfSXEN/HGkuF%2BOwE1X
https://paperpile.com/c/QfSXEN/HGkuF
https://paperpile.com/c/QfSXEN/moiRy


32 

commonly accepted list of shared phenotypes of cancer. 
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CHAPTER 3 
 

CANCER ACROSS VERTEBRATES 
 
Chapter Introduction: The Forest and the Trees 
 

Glancing at Figure 1 in the Cancer Across Vertebrates manuscript the 

reader may catch that I introduce a paradox of my own. If some fundamental 

vulnerability to cancer is at the very core of metazoan life how could so many 

species be highlighted with zero observed neoplasms? Although I am fully 

confident in the validity of the zoological data collected and curated for these 

projects, I do not believe them to be above a reasonable standard measurement 

error. I have no doubt that all the species used in these studies, and those like it, 

are vulnerable to cancer. It matters very little if the zero observed neoplasms for 

any given species is truly zero. When comparing the Rodrigues fruit bat 

(Pteropus rodricensis) and the ferret (Mustela putorius) I am much more 

confident in the distance between their respective cancer prevalence than the 

actual values of said prevalence. In another way, regardless of if the fruit bat has 

truly 0% cancer prevalence and the ferret has 70% or the fruit bat has 10% and 

the ferret has 80%. I have been burdened firsthand with the arguments over zoo 

vs. wildlife data and what methodologies are most appropriate for identifying 

tumor specimens. There is a substantial, perhaps unconquerable, gap between 

perfect quality cross-species cancer data and data of sufficient quality where the 

patterns between data points reflect reality. It has not been the point of this study, 

nor should it be for anyone’s, to prove the precise cancer prevalence for any 

specific species. My aim is to account for and make sense of the evolution that 
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explains the gaps between any two species’ cancer risk. 

Collecting and curating such a database as the one these comparative 

oncology studies are predicated on may have been the biggest triumph. I have 

gone to considerable length in the Cancer Across Vertebrates paper to address 

the many rational objections to working with zoo data. More importantly, I have 

also several analyses that point to many of the more common objections being 

unfounded. The artificial extension of lifespan afforded to species under human 

care due to the removal of predation and the access to veterinarian healthcare is 

often pointed to as a likely cause of inflated cancer prevalence. Figure 5 in the 

main text of the article highlights the proportion of tumors (both neoplasms and 

malignancies) that occurred within the natural lifespan of the species. It 

overwhelmingly demonstrates that extension of lifespan does not explain most 

tumors in our database. The objection is logically deduced from the fact that age 

is the single biggest risk factor for developing cancer. Even though we know 

quantifiably this does not translate to an inflation in cancer risk in our database 

there is another, theoretical, defense that I am equally satisfied with. Let us 

suppose something absurd, that all the tumors found in our database are the 

result of an artificially protracted lifespan in zoo animals. We would still be able to 

identify patterns of differences in cancer risk across species and come to similar 

conclusions. For me, the age-specific analysis only further validates our 

database and allows us to rely much less on future studies to validate what we 

have found in wild species. A final note on the issue with life extension for 

animals under human care. This assumed extension of life, although certainly 
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true in some species, is not shared equally across all species commonly held in 

zoos. There are many species that seem much less successful in zoos than in 

the wild and therefore we can only say with confidence that those species that 

are largely prey animals in the wild uniformly enjoy such an extension of life. We 

can transition here to make another clarification that I was previously unaware 

that I had to make. Unbeknownst to me there is some contention on how tumor 

prevalence should be calculated. A common complaint is that only one or a few 

individuals within a species that have some individual or environmentally specific 

increase in cancer prevalence may inflate the measured cancer prevalence for 

the entire species surveyed. Several methodologies have suggested for 

calculated species-level cancer prevalence but for these analyses here one 

individual may only be counted once. Should any individual animal within a 

species have one tumor or a dozen, they only add one data point to their species’ 

cancer prevalence. 

Comparative Phylogenetics in Comparative Oncology 

 

Another response to the point on the accuracy of zoo cancer data was 

made with a modification to R package “phytools” developer Liam Revell’s 

pgls.SEy (Phylogenetic Generalized Least Square Standard Error of Y) function. 

I was a student of Liam Revells and I owe him a great deal for inspiring me to 

apply such a broad swath of phylogenetic comparative methods to cross-species 

cancer data. So, given that we can assume some standard error of measurement 

in our species’ level cancer data, it seemed fitting to use his pgls function that 

accounts for a measurement of such error. The difficulty I encountered with his 
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pgls.SEy was that while it worked in the way intended, I could not retrieve a 

maximum likelihood lambda parameter from it. Pagel’s lambda, which is the 

proportion of the variance in the trait value that is explained by phylogenetic 

distance (i.e. evolutionary relatedness), has been of significant interest to me 

throughout this work. When analyzing a trait through these methods for the first 

time I felt it inappropriate to assume the lambda parameter. To be satisfied with 

my analyses for this paper I wanted to both account for a standard error of 

measurement (here we simply used 1/√Total Individuals) and measure the 

lambda parameter. Further, I did not use the normal standard error of a binomial 

proportion due to the additional weight the lower values would add to the 

regression. The function written for this paper, and included in the 

supplementary, pglsSEy.Pagel, simply builds upon his pgls.SEy function but 

adds the optimization to measure lambda. 

 

Phylogenetic comparative methods are overwhelmed with counter 

arguments on what defines best practices, which parameters on trait evolution 

are the best to measure, and which parameters serve as the red herrings. 

Perhaps no parameter is more contested than Pagel’s lambda. But as we begin 

to see the era of these methods applied to traits relevant broadly to evolutionary 

medicine, I will offer a small defense for the coefficient in comparative 

phylogenetics I find most interesting, and how it led me to pursue analyses in 

comparative oncology that I otherwise would not have. 

Equally excited and hesitant, we report in Cancer Across Vertebrates that 

a non-neutral model of trait evolution, Ornstein-Uhlenbeck, was the best fitting 
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model to explain the diversity of cancer susceptibility within each of the three 

clades we analyzed. Most models of continuous trait evolution involve the 

addition of parameters scaffolded to the earliest model of trait evolution, 

brownian motion. A brownian motion model of trait evolution reflects stochastic 

changes in the ancestral trait value where the variance in trait values, across 

species, increases linearly with time. Brownian motion evolution on a phylogeny 

is an example of a random walk process, since change in the trait value between 

any two species is random in both direction and distance. It is defined by two 

parameters, the mean trait value and the rate of evolution (σ2). The product of 

these parameters, σ2 × time (t), is equal to the variance in the resulting trait 

values. 

Three principle factors can drive the change in trait values from generation 

to generation; mutational burden, genetic drift, and the selection for a trait 

towards some optimum (adaptation). A central pursuit of comparative 

phylogenetics has been to determine which of these processes is most 

explanatory for a given trait and a given phylogenetic space. Ornstein-Uhlenbeck 

adds an additional parameter to the Brownian motion model, alpha (𝛼), which is a 

measurement of the tendency for the trait value to return a set optima. The 

higher the 𝛼 parameter, the greater the strength of stabilization around a mean 

trait value. Although often interpreted as a model of stabilizing selection, the 

stabilizing force portrayed in the model has some important distinctions with the 

population genetics usage of stabilizing selection. The stabilization of the trait 

value in Ornstein-Uhlenbeck is describing the constraint of trait evolution based 
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on the optimal value rather than describing the mean trait value’s position on a 

fitness landscape. Simply, based on the variation in the trait value across the 

phylogeny there is an implicit assumption about its optimality, and that 

assumption is based outside the context of an explicit fitness landscape. 

In the context of cancer evolution, the significance of the Ornstein- 

Uhlenbeck model fits well within the life history framework of cancer risk. Given 

the background ecology for a given species, an overinvestment in cancer 

suppression when it is inappropriate (fast life history species) is just as costly as 

an underinvestment when it is needed (slow life history species). Deviations in 

investment in somatic maintenance that occur spontaneously due to genetic drift 

and mutation should be sharply curtailed in the population by natural selection. 

Abstract 
 

Cancer is pervasive across multicellular species. Are there any patterns 

that can explain differences in cancer prevalence across species? Using 17,536 

necropsy records for 327 species spanning three clades (amphibians, sauropsids 

and mammals) we found that neoplasia and malignancy prevalence increases 

with adult weight and decreases with gestation time, contrary to Peto’s Paradox. 

Evolution of cancer susceptibility appears to have undergone sudden shifts 

followed by stabilizing selection. Outliers for neoplasia prevalence include the 

common porpoise (<1.3%), the Rodrigues fruit bat (<1.6%) the black-footed 

penguin (<0.4%), ferrets (63%) and opossums (35%). Discovering why some 

species have particularly high or low levels of cancer may lead to a better 

understanding of cancer syndromes and novel strategies for the management 
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and prevention of cancer 

Introduction 
Cancer is a ubiquitous problem for multicellular species (Aktipis C. Athena 

et al., 2015) and a leading cause of death in humans (Ahmad & Anderson, 2021). 

Every multicellular body is a cooperative cellular system, with cells suppressing 

replication (Pepper et al., 2007), dividing labor (Kirk, 2005), sharing resources 

(Nedelcu, 2020), regulating cell death (G. Evan & Littlewood, 1998) and taking 

care of the extracellular environment (Aktipis C. Athena et al., 2015). However, 

cooperative systems are susceptible to cheaters, which emerge as cancers in 

multicellular organisms (A. Aktipis, 2020). Because cancer cells can outcompete 

normal cells with respect to replication, survival, resource use and other cellular 

behaviors, natural selection within the body can favor cancer cells via somatic 

evolution. 

Cancer has been a strong selective pressure on multicellular organisms 

and mechanisms for cancer suppression likely co-evolved along with the 

evolution of multicellularity (DeGregori, 2011; Domazet-Loso & Tautz, 2010). 

Despite this persistent selective pressure of cancer, species vary in their 

investment in cancer defenses across the tree of life. Sir Richard Peto predicted 

in 1977 that the risk of cancer should scale with the number of cells in an 

organism and the length of its lifespan (Peto, 1977). This prediction is based on 

the fact that tumors evolve from single cells, partially due to the accumulation of 

somatic mutations over time (Peto, 1977). His observation that cancer risk does 

not appear to increase with increases in body mass and longevity across species 

https://paperpile.com/c/QfSXEN/moiRy
https://paperpile.com/c/QfSXEN/moiRy
https://paperpile.com/c/QfSXEN/cdtdl
https://paperpile.com/c/QfSXEN/U45mC
https://paperpile.com/c/QfSXEN/wZ7TF
https://paperpile.com/c/QfSXEN/Neht8
https://paperpile.com/c/QfSXEN/EH1vg
https://paperpile.com/c/QfSXEN/moiRy
https://paperpile.com/c/QfSXEN/FcWcr
https://paperpile.com/c/QfSXEN/OZaqu%2BpWPcS
https://paperpile.com/c/QfSXEN/G5cYF
https://paperpile.com/c/QfSXEN/G5cYF
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(Peto, 1977), a phenomenon known as ‘Peto’s paradox’, launched the field of 

comparative oncology (Nunney et al., 2015). 

Early work in comparative oncology found that birds, and to a lesser 

extent reptiles, develop fewer neoplasms than mammals (Duke et al., 2022; 

Effron et al., 1977b; Kitsoulis et al., 2020). While single case studies have been 
 

reported (Madsen et al., 2017a), it has been difficult to estimate true neoplasia 
 

prevalence in these taxa. In 2015, we published neoplasia prevalence estimates 

in 37 mammals and reported support for Peto’s Paradox, that is, bigger, longer- 

lived species do not get more cancer (Abegglen et al., 2015). Follow up studies 

have supported Peto’s Paradox and demonstrated the ubiquity of cancer across 

mammals (Boddy et al., 2020b; Vincze et al., 2022). The extensive variation in 

cancer risk across vertebrates provides a unique opportunity to identify species 

with exceptional cancer resistance that can lead to new discoveries of cancer 

resistance mechanisms outside the traditional human and murine studies. 

Additionally, the discovery of cancer vulnerable species could lead to new 

insights into cancer syndromes as well as provide spontaneous ’natural’ animal 

models of disease that can help us gain a better understanding of various types 

of cancer and their treatments. Here we present a large, curated database of 

tetrapod veterinary necropsy records, including 17,536 individual animals across 

327 species of animals, encompassing reptiles, birds, amphibians, and 

mammals. Because necropsies typically are diagnosed with “neoplasia” which 

includes both benign and malignant tumors, we developed a terminology 

dictionary to distinguish benign from malignant neoplasms in the necropsy 

https://paperpile.com/c/QfSXEN/G5cYF
https://paperpile.com/c/QfSXEN/Lokrp
https://paperpile.com/c/QfSXEN/pRNaQ%2BnR5HB%2B0X0RD
https://paperpile.com/c/QfSXEN/pRNaQ%2BnR5HB%2B0X0RD
https://paperpile.com/c/QfSXEN/uBzKc
https://paperpile.com/c/QfSXEN/WNHxf
https://paperpile.com/c/QfSXEN/yqO23%2BZZp1u
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reports. We calculate and analyze both neoplasia prevalence as well as 

malignancy (cancer) prevalence. Only a subset of benign neoplasms evolve into 

cancers over a lifetime, so neoplasia prevalence is always greater than or equal 

to malignancy prevalence. We also tested for age bias in the animals that died 

with neoplasms or cancers. 
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Results 
 
 

 

 

Figure 1. Neoplasia and malignancy prevalence across mammals (A), 

sauropsids (B), and amphibians (C). Silhouetted species indicated that zero 

neoplasms were reported. 
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Variation in Cancer Risk Across Clades 
 

We found evidence of neoplastic disease in necropsies across all 

analyzed taxonomic clades (Fig.1). Mean prevalence of neoplasia (mean = 

9.07%, range = 0% - 62.86%) and malignancy (mean=5.91%, range=0%– 

40.95%) at death was highest in mammals (mean: Neoplasia= 15.28%, 

Malignancy = 9.82%; range: Neoplasia = 0% - 62.85%, Malignancy = 0% - 

40.95%), followed by sauropsids (mean: Neoplasia=6.40% Malignancy=4.33%; 

range: Neoplasia= 0% - 39.13%, Malignancy: 0% - 34.78%) and amphibians 

(mean: Neoplasia = 4.16%; range: Neoplasia = 0% - 45.83%, Malignancy = 0% - 

33.33%; Fig. 2), which confirms previous studies (Effron et al., 1977b; Kitsoulis et 

al., 2020). Because reptiles are not a monophyletic clade, we have grouped them 
 

with birds in the sauropsida clade for the purposes of analysis. Despite a lower 

mean prevalence for both benign and malignant tumors, sauropsids and 

amphibians show a wide range of neoplastic disease burden across species. 

There is a small but highly statistically significant correlation between the 

prevalence of benign neoplasms and the prevalence of malignant neoplasms 

across species (r=0.2, p<0.0001, Fig. S64). Supplementary Tables 1 and 2 list 

the species with the highest and lowest neoplasia and malignancy prevalences, 

as well as the proportion of neoplasms that are malignant. Among the 

vertebrates with the highest prevalence of neoplasia (Suppl. Table 8), 63% of 

ferrets died with a neoplasm (45% of which was lymphoma), 56% of opposums 

died with a neoplasm (46% of which was in the lung), and 45% of hedgehogs 

died with a neoplasm (42% of which was in the alimentry tract). 

https://paperpile.com/c/QfSXEN/pRNaQ%2B0X0RD
https://paperpile.com/c/QfSXEN/pRNaQ%2B0X0RD
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Figure 2. Distributions of of A. neoplasia (Kruskal-Wallace test: p = 2.906 x 10-12) 

and B. malignancy (Kruskal-Wallace test: p = 6.519 x 10-11) prevalences are 

different across three clades, Amphibia, Mammalia, and Sauropsida (Reptilia and 

Aves). Dots show the estimated species neoplasia prevalence and bars show the 

median for the clade. Neoplasia and malignancy prevalence for species were 

calculated by the proportion of the reported lesions among the total number of 

necropsies for that species. 

 
Life History Analyses of Neoplasia Prevalence 
 

Evolutionary life history theory provides a framework for understanding the 

tradeoffs governing species’ survival and reproduction (Bielby et al., 2007; Lika & 

Kooijman, 2003). Life history theory can be used to explain how species level 
 

traits shape organismal cancer risk based on trade-offs between investment in 

somatic maintenance (e.g., cancer suppression) and reproduction or growth. 

Several smaller studies have shown that specific life history traits can serve as 

prognostic indicators of neoplasia prevalence in animals managed under human 

care (Boddy et al., 2020b; Kokko & Hochberg, 2015). We tested for relationships 

between life history factors and neoplasia or malignancy prevalence, controlling 

https://paperpile.com/c/QfSXEN/h7Hbp%2Bafudq
https://paperpile.com/c/QfSXEN/h7Hbp%2Bafudq
https://paperpile.com/c/QfSXEN/yqO23%2B73krD
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for phylogenetic relatedness, and weighting species data points by the number of 

necropsies in our dataset. In contrast to previous studies (Abegglen et al., 2015; 

Boddy et al., 2020b; Vincze et al., 2022), we found an increase in neoplasia 

prevalence with increases in body mass (2.1% neoplasia per Log10g, p = 0.007; 

0.65% malignancy per Log10g, p = 0.287) and maximum longevity (0.01% 

neoplasia per Log10g, p = 0.02; 0.0047% malignancy per Log10g, p = 0.276), not 

supporting Peto’s Paradox (Fig. 3). Animals with longer gestation times also get 

fewer malignancies (-5.56% malignancies with Log10 months, p = 0.02; Fig. 3C). 

A multivariate model containing all significant predictors of neoplasia or 

malignancy (adult weight, maximum longevity, and gestation time) shows that 

both adult body weight (2.9% neoplasia per Log10g, p = 0.01) and gestation time (-

18.6% neoplasia per month, p = 0.0001) provide independent information for 

estimating neoplasia prevalence. Because gestation time and adult weight are 

correlated (r = 0.50, p = 2.2 x 10-16), but have the opposite relationship to 

neoplasia and malignancy prevalence, we tested the two-variable model and 

found that when controlling for adult weight (3.8% neoplasia per Log10g, p = 

0.0005), gestation time is also a significant predictor of neoplasia prevalence (- 

15.8% neoplasia per Log10 months, p = 0.001; R2 = 0.27), and vice versa. When 

controlling for gestation time, adult weight predicts malignancy prevalence, and 

when controlling for adult weight, gestation time also predicts malignancy 

prevalence (0.68% malignancies per Log10g, p = 0.0008; -6.61% malignancies per 

month of gestation, p = 0.0417; R2 = 0.198). Adult weight and gestation time were 

still statistically significant (adjusted p<0.05) predictors of neoplasia and 

https://paperpile.com/c/QfSXEN/ZZp1u%2ByqO23%2BWNHxf
https://paperpile.com/c/QfSXEN/ZZp1u%2ByqO23%2BWNHxf
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malignancy prevalence after a 10% false discovery rate correction for multiple 

testing. 

We found no evidence of a relationship between litter or clutch size and 

neoplasia prevalence (Figs. S21, S22). However, when we restrict the analysis to 

mammals, litter size is positively associated with both neoplasia and malignancy 

prevalence (neoplasia: p = 0.02, R2=0.55; malignancy: p = 0.03, R2 = 0.2; Suppl. 

Figs. 26 & 27), supporting our earlier analysis of 37 mammals from the San 

Diego Zoo (Boddy et al., 2020b). We also found that time to sexual maturity, 

growth rate and basal metabolic rates (which were only available for mammals) 

were not significant predictors of neoplasia or malignancy prevalence (Figs. S11, 

S12, S13, S14, S17, and S18). In addition to calculating the prevalence of 

neoplasms and malignancies, we also calculated the proportion of neoplasms 

that were malignant, which is a measure of the likelihood that a benign neoplasm 

transforms into a malignant one. We found no statistically significant relationships 

between any of those life history factors and the proportion of neoplasms that 

were malignant (Figs. S11, S13, and S17). 

https://paperpile.com/c/QfSXEN/yqO23
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Figure 3. Significant life history factors associated with neoplasia and 

malignancy prevalence. A. Larger organisms have a higher neoplasia prevalence 

than smaller organisms (2.1% neoplasia per Log10g adult body mass, p = 0.007, 

R2 = 0.18, λ = 0.46). B. Longer lived organisms also have more neoplasia (0.01% 

neoplasia per Log10 month lifespan, p = 0.02, R2 = 0.16, λ = 0.34). C. Organisms 

with longer gestation times have a lower malignancy prevalence (-5.65% 
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malignancies per Log10 months, p = 0.02, R2 = 0.01, λ = 0.41). When controlling for 

adult body mass, organisms with longer gestation times also have fewer 

neoplasms at death (-5.30% neoplasia per Log10 months, p = 0.1). 

 

 
In vitro DNA damage response 
 

We tested primary fibroblasts from 15 species for their response to DNA 

damage (Fig. 4; Suppl. Figs. 45-60). Mammalian cells have two primary 

mechanisms to address DNA damage: cell cycle arrest to allow for DNA repair 

and apoptosis (Abegglen et al., 2015; Tian et al., 2015). In a previous study, we 

documented that low prevalence of death from cancer in elephants was 

correlated with enhanced DNA damage response (Abegglen et al., 2015). 

Therefore, we hypothesized that DNA damage response would predict 

malignancy. Figure 4 shows the predicted trend for both neoplasia and 

malignancy prevalence, though they are not statistically significant. We also 

analyzed responses to lower doses of ionizing radiation and increasing doses of 

a chemotherapeutic drug (doxorubicin). No association with response and 

neoplasia or malignancy was observed (S45 - S60) 

https://paperpile.com/c/QfSXEN/WNHxf%2BTaoOH
https://paperpile.com/c/QfSXEN/WNHxf
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Figure 4. A. % Cell Growth Over Time [AUC] Relative to Untreated at 10 Gy of 

Radiation (plotted and analyzed on a Log10 scale) as a predictor of neoplasia 

prevalence in species’ fibroblast cell lines. (30.89% neoplasia per Log10 Cell Count 

Area Change, p = 0.22, R2 = 0.011, λ = 6.6 x 10-5) B. Log10 Mean Mutation Rate as 

a predictor of neoplasia prevalence (47.26% Single Base Substitution per 

Genome per Year, p = 0.0059, R2 = 0.96, λ = 1.00). 

 
 
Age as a Cancer Risk Factor in Animals 
 

Age is the single biggest risk factor for the development of cancer in 

humans (White et al., 2014). Most mechanisms of somatic maintenance, 

including immune cell surveillance, DNA damage response, and telomere  

shortening, decrease in efficacy as we age (Campisi, 2005a, 2005b; Garinis et 

https://paperpile.com/c/QfSXEN/AM2DN
https://paperpile.com/c/QfSXEN/mqmIg%2Bo2QTA%2BZ5PQa%2BscEt9%2B3OUV5
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al., 2008; Hasty et al., 2003; Kirkwood & Austad, 2000). To test if observed 

neoplasms in animals under human care may be due to the animals living 

beyond their natural lifespans, we plotted the age of the animals with neoplasia 

at death, compared to the animals that died without neoplasias, scaled by their 

average lifespan (Fig. 5). The vast majority of animal deaths with neoplasia 

diagnoses occur before the average lifespan in most animals. Only amphibians 

seem to be developing more neoplasias as they live past their normal lifespan 

under human care(Fig. 5C). The distribution of tumor diagnoses across lifespan 

in these three clades also demonstrates that cancer is not limited to a disease 

solely of extended lifespan, and in sauropsids, neoplasia is not particularly a 

disease of old age (Fig. 5B). 

  

https://paperpile.com/c/QfSXEN/mqmIg%2Bo2QTA%2BZ5PQa%2BscEt9%2B3OUV5


51 

 
 

 

Figure 5. The density distribution and corresponding locally weighted regression 

(LOESS) of ages at death in animals with neoplasia versus non-neoplasia, 

adjusted for each species’ lifespan as specified in PanTHERIA. While the 

distributions of ages at death are different between necropsies showing 

neoplasia versus those that don’t (Two Sample Kolmogorov-Smirnov Test: 

Mammals: D=0.11, p =1.81 x 10-6; Sauropsids: D= 0.18, p = 4.48 x 10-8; 

Amphibians: D=0.5, p = 0.011), we found few neoplasias that could be explained 

by an organism living an extraordinarily long time in captivity, except in 

amphibians. 
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Phenotypic Models of Cancer Risk 
 

 

Figure 6. Cladogram depiction of cancer incidence within A. Mammals, B. 

Sauropsids, and C. Amphibians. Cladograms with the species labels at each tip 
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can be found in Suppl. Fig. 63. Heat map coloration indicates relative prevalence 

of cancer within each branch, illustrating the diversity of neoplastic disease 

amongst closely related species. The scale is the same for each panel so that 

the differences between the clades are apparent. 

 
Evolution of cancer suppression and susceptibility 
 

Comparative phylogenetics provides a wealth of computational tools to 

model species’ trait evolution across a phylogeny (Felsenstein, 1985b). To 

explore how cancer susceptibility evolved across the tree of life (Fig. 6), we fit 

three of the most common phenotype evolution models (Ornstein-Uhlenbeck, 

Brownian Motion, and Early Burst) to neoplasia prevalence as a continuous trait. 

We found that a model of stabilizing selection on neoplasia prevalence (Ornstein- 

Uhlenbeck) fits the distribution of neoplasia prevalence the best (Supp. Tab. 7). 

Malignancy prevalence evolution is also best explained by the Ornstein- 

Uhlenbeck model of sudden shifts followed by stasis in the phenotype. 

Methods 
 

Analysis of Veterinary Necropsy Records 
 

We collected necropsy records with permission from 99 zoological 

institutions, aquariums, and other facilities that house animals under managed 

care. Necropsies had all been conducted by board certified veterinary 

pathologists who specialize in nondomestic species, and identified if a neoplasia 

was discovered during a post-mortem examination. We used a terminology 

dictionary (Supplemental table 3) to distinguish benign from malignant 

neoplasms based on the diagnoses in the necropsy reports. We excluded 

neonatal records to reduce bias from high levels of neonate and infant mortality 

https://paperpile.com/c/QfSXEN/jRau6
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that is common in many species. Because only common names were recorded 

for most records, we developed a tool, kestrel, to translate common names into 

scientific names which is available at https://pkg.go.dev/github.com/icwells/kestrel. 

 

All of the institutions that provided prior approval for the use of their data in 

these analyses are Association of Zoos and Aquariums (AZA) accredited. AZA 

accreditation encourages the institution to perform a necropsy on all animals that 

die under their care to determine cause of death and to monitor morbidity and 

mortality of each species. Furthermore, each institution had IACUC approval with 

the Exotic Species Cancer Research Alliance (ESCRA) and the Arizona Cancer 

and Evolution Center (ACE) for the use of their deceased animal’s records of 

animals with neoplasia for use in this study. Previous analyses included both 

necropsies for animals diagnosed with neoplasia and animals that were still alive 

(Vincze et al., 2022). In this study, we restricted our analyses to only necropsies -

for both cancer and non-cancer diagnosed animals, because alive animals may 

harbor undetected cancer or might be eventually diagnosed with cancer, thus 

skewing estimates in cancer prevalence. The data for our analyses are available 

in supplemental file 1. 

 

Comparative Phylogenetic Methods in Comparative Oncology 
 

Interspecies comparisons must account for the shared ancestry and the 

constraint of natural selection on species’ traits before a determinant of any 

correlations can be made. For the life history models of neoplasia and 

malignancy prevalence, the R programming (Development Core Team, 2011) 

packages “phytools” (Revell, 2012a), “ape” (Paradis et al., 2004), and “caper” 

https://pkg.go.dev/github.com/icwells/kestrel
https://paperpile.com/c/QfSXEN/ZZp1u
https://paperpile.com/c/QfSXEN/CcvpR
https://paperpile.com/c/QfSXEN/pFX6J
https://paperpile.com/c/QfSXEN/pvfVg
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(Orme, Freckleton, Thomas, Petzoldt, Fritz, Isaac, & Others, 2013) were all used 

for phylogenetic comparisons and the handling of phylogenetic data. To 

accomplish this we wrote the function pglsSEyPagel which is built upon phytool’s 

pglsSEy (phylogenetic generalized least squares for uncertainty in Y). 

pglsSEyPagel expands upon the pglsSEy function by adding the estimate of 

Pagel’s lambda (Pagel, 1999) to the regression, rather than assuming it is fixed 

at 1 (i.e., Brownian motion). . 

 

Testing for relationships with life history factors 
 

We extracted data for maximum lifespan, adult body weight, basal 

metabolic rate, gestation length, litter size, time to sexual maturity, and growth 

rate from PanTHERIA (Jones et al., 2009). We used a weighted phylogenetic 

regression to control for non-independence of phenotypes (e.g. neoplasia 

prevalence) in closely related species. We report the phylogenetic signal, 

lambda, for each analysis, along with the p-value and R2. A single phylogenetic 

tree encompassing the three clades was collected from timetree.org. We pruned 

the tree to the 327 species in our data set using the setdiff and keep.tip/drop.tip 

functions in the APE R package. Estimates for neoplasia and malignancy 

prevalence are more accurate in species with more necropsies. To address the 

differences in number of necropsies, and to limit the noise from prevalence 

estimates based on few individuals, we weighted the species data points by the 

square-root of the number of necropsies records we have. Our R code for all 

analyses and figures included in this manuscript is freely available at 

https://github.com/zacharycompton/cancerAcrossVertebrates.git . In addition, we 

https://paperpile.com/c/QfSXEN/E9qe9
https://paperpile.com/c/QfSXEN/awY3i
https://paperpile.com/c/QfSXEN/qxG8e
https://github.com/zacharycompton/cancerAcrossVertebrates.git
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only analyzed species for which we had at least 20 necropsy results (previous 

studies had used 10 (Abegglen et al., 2015) or 20 (Boddy et al., 2020b; Vincze et 

al., 2022) for the lower bound number of individuals). The main pglsSEyPagel 

analyses were done with all species together, including mammals, sauropsids 

and amphibians. In the analyses of litter size and gestation time, we also tested 

for a relationship with neoplasia prevalence in mammals alone. We carried out a 

total of 28 pglsSEyPagel analyses. To control for multiple testing, we used a 

false discovery rate (FDR) of 10%. 

DNA Damage Sensitivity Assays 
 

Established, primary cells from mammals were obtained from San Diego 

Zoo Wildlife Alliance (Capybara, Linne’s Two Toed Sloth, Red Necked Wallaby, 

Rock Hyrax, Rodrigues Fruit Bat, Six Banded Armadillo, Southern White Rhino, 

and Virginia Opossum) or generated at Huntsman Cancer institute from tissues 

collected from African Pygmy Hedgehog, Domestic Rabbit, Leopard, Asian 

Elephant, and Cape hunting dog, Brown rat (Cell Applications) and Normal 

Human Dermal Fibroblasts (Lonza) were commercially available. Lonza (Normal 

Human Adult Dermal Fibroblasts). Detailed information on culture conditions, 

primary donor demographics, and passage numbers can be found in the 

supplementary information. Cells were seeded in 96-well plates at 2,000 cells per 

well in cell growth media and allowed to adhere overnight. The following day, 

doxorubicin was added at one of four concentrations (0μM [DMSO vehicle 

control], 0.11μM, 0.33μM, and 1μM). Each condition was tested in triplicate in 

three separate experiments. Cell proliferation and apoptosis were measured by 

https://paperpile.com/c/QfSXEN/WNHxf
https://paperpile.com/c/QfSXEN/yqO23%2BZZp1u
https://paperpile.com/c/QfSXEN/yqO23%2BZZp1u
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real-time fluorescence microscopy (IncyCyte, Sartorius) at two-hour intervals for 

three days. Apoptosis was measured using a fluorescent cell death marker, 

Annexin V Dye (Sartorius). Images were processed and analyzed using IncuCyte 

software. The number of dead or dying cells were identified by counting Annexin 

V positive cells. In addition, cell count overtime was calculated using IncuCyte 

cell-by-cell software. To measure response to radiation-induced DNA damage, 

cells were irradiated with one of four doses: 0Gy, 0.4Gy, 2Gy, and 10 Gy. 

Radiation dose was delivered using an RS-2000 X-Ray Irradiator (Radsource). 

Cells were then seeded in 96-well plates in cell growth media containing Annexin 

V Dye (Sartorius). Cells were imaged by real-time fluorescence microscopy 

(IncuCyte, Sartorius) at two-hour intervals for five days. We observed little to no 

apoptosis of irradiated fibroblasts, as has been previously reported for this cell 

type (reference). We estimated cell cycle arrest by normalizing the cell count of 

irradiated cells to untreated cells by dividing the area under the curve (AUC) of 

cell count over-time for treated cells by the AUC of cell count over time for the 

untreated (UT) cells. We converted that number into a percentage that 

represents the percent of cell proliferation relative to untreated cells. We then 

tested if this normalized amount of cell growth was predictive of neoplasia 

prevalence using the phylogenetically controlled pglsSEyPagel regression (Fig. 

4). 

Discussion 
 

We estimated cancer prevalence across a wide range of tetrapod species 

that includes mammals, amphibians, reptiles and birds. Importantly, and contrary 
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to previous studies, our analyses highlight limitations to Peto's paradox, by 

showing that large animals do tend to get somewhat more neoplasms, and 

malignancies when controlling for gestation time, compared with smaller animals. 

This is particularly apparent when we control for the fact that animals with longer 

gestation times tend to get both fewer neoplasias and fewer cancers. However, 

large animals only get slightly more cancer than small animals. Whether or not 

they get as much cancer as one would expect from their body size and longevity 

depends on the model one uses to predict cancer prevalence as a function of 

body size (Calabrese & Shibata, 2010; Caulin et al., 2015). We hypothesize that 

animals with a longer gestation time than would be expected for their body size, 

may be investing more resources to control cell proliferation, and thereby 

reducing their vulnerability to cancer, compared to animals with shorter than 

expected gestation times. 

Cancer prevalence across species varies greatly. Here we have used the 

largest collection of species to date, and expanded our analyses beyond 

mammals (Abegglen et al., 2015; Boddy et al., 2020b; Vincze et al., 2022), to test 

for patterns in cancer prevalence. We only include species with at least 20 

necropsies (median 35), compared with 10 individuals per species in our original 

study (Abegglen et al., 2015), and weighted species more in our regression 

analyses if their cancer prevalence estimate is more accurate because it is based 

on more necropsies. This revealed adult weight and gestation time as significant 

predictors of neoplasia and malignancy prevalence. The fact that neoplasia 

prevalence seems to evolve by sudden shifts followed by stabilizing selection 

https://paperpile.com/c/QfSXEN/ES98m%2B6Ho3R
https://paperpile.com/c/QfSXEN/ZZp1u%2ByqO23%2BWNHxf
https://paperpile.com/c/QfSXEN/WNHxf
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(the Ornstein-Uhlenbeck model of phenotypic evolution) is consistent with life 

history theory predictions that investment in somatic maintenance should be 

under selection in specific ecological conditions, rather than drifting neutrally 

consistent with random Brownian motion. Some of the variation in cancer 

prevalence is still noise, due to estimating cancer prevalence from tens of 

individuals. However, much of that variation comes from the vast diversity of 

species across amphibians, reptiles, birds and mammals. We have explained 

only a small portion (~20%) of the variation in species vulnerability and 

suppression of cancer. There is clearly more to be discovered. 

Peto’s Paradox is based on the expectation that large, long-lived animals 

should get more cancer because they have more cells that exist for a longer 

amount of time, increasing the likelihood that cancer will arise. Although adult 

body weight is positively correlated with both neoplasia and malignancy 

prevalence, partially resolving Peto’s paradox, the effect size is much larger for 

neoplasia (3.8% neoplasia per Log10g) than for malignancies (0.68% 

malignancies per Log10g). There may be several explanations for this. The 

simplest being that malignancies are less common than neoplasias, which 

include both benign and malignant neoplasms. This reduces the statistical power 

and the expected size of the effects. However, the blunted relationship between 

body size and malignancy prevalence may also be due to natural selection acting 

to evolve mechanisms to suppress malignant transformation. Cancer 

suppression mechanisms are likely to have been under stronger selection among 

these larger and longer-lived organisms because it was more critical to suppress 
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cancer for longer in order for these organisms to successfully reproduce. Thus, 

we might expect a relatively constant cancer rate across species with more 

cancer suppression mechanisms in large, long-lived organisms (Abegglen et al., 

2015; A. Aktipis, 2020; Glaberman et al., 2021; Sulak et al., 2016; Tollis et al., 

2019; Vazquez et al., 2018; Vazquez & Lynch, 2021), and fewer in small, short-

lived organisms. 

Further, there are at least four transitions in neoplastic progression that 

natural selection might alter to increase the survivability of cancer in a species: 1) 

initiation of a neoplasm, 2) transformation of that neoplasm into malignancy (i.e., 

invasion through the basement membrane), 3) metastasis, and 4) death caused 

by the cancer. Our data bear on the first two transitions. Specifically, we quantify 

the prevalence of neoplasms in a species, the prevalence of malignant 

neoplasms, and the proportion of neoplasms detected that are malignant. 

However, the selective pressure of cancer is ultimately due to its effects on 

mortality, and so quantifying the prevalence of cancer as a cause of death would 

be more relevant for evolutionary studies of comparative oncology (Vincze et 

al.,2022). The inclusion of cross-species functional assays highlighted in Fig. 4 

demonstrates above all that there is tremendous variation in the cellular 

responses to radiation induced DNA damage. This is the first time functional 

assays to measure DNA damage response have been paired with species’ 

cancer prevalence. While response to DNA damage was not a significant 

predictor of neoplasia or malignancy prevalence at 4 or 10 grays, the trend 

follows our hypothesis that sensitivity to DNA damage may be one mechanism of 

https://paperpile.com/c/QfSXEN/WNHxf%2B9nl4l%2BKaYmD%2BLWlmW%2BV7oNQ%2BLhtQx%2BFcWcr
https://paperpile.com/c/QfSXEN/WNHxf%2B9nl4l%2BKaYmD%2BLWlmW%2BV7oNQ%2BLhtQx%2BFcWcr
https://paperpile.com/c/QfSXEN/WNHxf%2B9nl4l%2BKaYmD%2BLWlmW%2BV7oNQ%2BLhtQx%2BFcWcr
https://paperpile.com/c/QfSXEN/ZZp1u
https://paperpile.com/c/QfSXEN/ZZp1u
https://paperpile.com/c/QfSXEN/ZZp1u
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cancer suppression (Abegglen et al., 2015). The variation observed in our DNA 

damage response assays suggests that many species may use other 

mechanisms of cancer suppression (such as immune surveillance or other forms 

of DNA damage and somatic mutation), thereby obscuring a simple relationship 

between our measurements and neoplasia or malignancy prevalence. 

Insights from comparative oncology for human cancers 
 

Species with a high prevalence of particular cancers may help to generate 

targeted studies to elucidate the biological basis of those cancers, help draw 

informative parallels to particular cancer syndromes in humans, and serve as 

more realistic models for studying those cancers. For instance 46% of the 

malignant tumors diagnosed in the opossum were lung adenocarcinomas (Suppl. 

Tab. 8), which is a leading cause of human cancer mortality in the United States 

(Islami et al., 2021). Hedgehogs may hold insights for colorectal cancer, the third 

leading cause of cancer mortality in the US, and ferrets may help us understand 

lymphoma. These spontaneous cancers may be more similar to human cancers 

than genetically manipulated mice, though that remains to be tested. There is an 

exciting opportunity to discover the mechanisms for suppressing cancers in 

species with few to no observed neoplasms, or those that seem to prevent 

neoplasms from progressing to malignancy (Fig. 1). For example, the paucity of 

neoplasms in dolphins and porpoises may be due to a legacy of once having had 

large, long-lived cetacean ancestors that were under strong selection to suppress 

cancer (Tollis et al., 2019). Our earlier analysis of cancer gene evolution in 

cetaceans found evidence of positive selection in a large number of tumor 

https://paperpile.com/c/QfSXEN/WNHxf
https://paperpile.com/c/QfSXEN/IyO9i
https://paperpile.com/c/QfSXEN/9nl4l
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suppressor genes and proto-oncogenes (Tollis et al., 2019). 

We previously found that animals that live longer than would be expected 

for their body size, like bats, tend to have more copies of tumor suppressor 

genes (Tollis et al., 2020). In support of these observations, we find 9 bats, with 

an average lifespan of 16 years, have low neoplasia prevalence. We had hoped 

to discover species that are able to prevent malignant transformation by finding 

species that get a fair number of benign neoplasms, but few to no malignant 

neoplasms. The common paradigm in understanding the evolution of cancer 

suppression emphasizes the importance of protecting against tumor initiation. 

However, mechanisms that suppress malignant transformation could be similarly 

important in maintaining an organism’s fitness. Unfortunately, only a few species 

in our dataset fit that description. The species with the lowest proportion of 

malignant to benign neoplasms was the common squirrel, with only 12% of their 

tumors being malignant. 

Challenges for Comparative Oncology 

There are a number of potential sources of bias in comparative oncology 

data. The protection against predation that zoological institutions offer fast life 

history animals may be extending their lifespan, and thereby unmasking a 

vulnerability to cancer at an age that they would never attain in the wild. 

However, Fig. 5 shows that the neoplasms were diagnosed prior to average 

lifespan in most cases, suggesting the extended lifespan due to managed care is 

not a large factor in these data. In fact, one surprise was that neoplasms appear 

in birds and reptiles at relatively young ages, although birds are known to be 

https://paperpile.com/c/QfSXEN/9nl4l
https://paperpile.com/c/QfSXEN/pWWNu
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prone to virally induced cancers (Beard, 1963). 
 

Our data results from the combination of the intrinsic cancer susceptibility 

of a species with the effect of the artificial conditions of managed populations, 

which is sometimes called an evolutionary mismatch (Schulte-Hostedde & 

Mastromonaco, 2015). These animals were generally protected from predators, 

provided with veterinary care, had different diets and exercise from their wild 

counterparts, many lived in an urban environment, and interacted with different 

species and microbes than a free-ranging animal. It is striking to us that four of 

the species with the lowest prevalence of neoplasias in our dataset, the gray 

squirrel, the common dormouse, the striped grass mouse, and the common field 

vole are all from wild, urban populations. These necropsies come from the 

London Zoo which has a policy of performing a necropsy on any animal they 

recover that dies on its grounds, not just the animals under its care. This is a hint 

that cancer may well be less common in the wild. 

If the “gross” cause of death was obvious for an animal, an institution may 

not have submitted the animal’s samples for histopathology, and would not be 

included in our data collection. Similarly, if a particular type of neoplasia is 

difficult to detect in a necropsy (including some leukemias and intracerebral 

tumors), or was only present at a microscopic level, it may have been 

undercounted. The functional assays were limited to fibroblast cell lines for the 

species for which we could obtain samples. Limited sample availability precluded 

the ability to control for biological factors such as age, which we expect to 

influence DNA damage sensitivity. 

https://paperpile.com/c/QfSXEN/Z98vu
https://paperpile.com/c/QfSXEN/cvKTz
https://paperpile.com/c/QfSXEN/cvKTz
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The Future of Comparative Oncology 
 

In the future, it will be important to collect additional data to validate our 

discoveries of species with particularly low and high cancer prevalence, such as 

those highlighted in Fig. 1. Several life history traits, such as basal metabolic 

rate, may explain cancer risk but with BMR measured in only a few species, we 

lacked statistical power to detect a relationship with neoplasia or malignancy 

prevalence. Here we have dramatically expanded the amount of data on cancer 

prevalence in non-human animals, but this must continue to be built upon if we 

are to match the robustness seen in human cancer epidemiology. In particular, 

much could be learned from analyzing the age-incidence curves of cancer 

(Vincze et al., 2022; Watson, 1977), but that would require significantly more 

individuals for each species. 

One of the most important holes in comparative oncology is cancer data 

on wild animals. Gathering data from free-ranging populations is challenging, as 

it is difficult to detect cancer due to the animals decaying or being eaten before 

they can be necropsied. Additionally, accurate age estimates are much more 

difficult to obtain in wild populations compared to those managed by humans. 

However, wild animal populations would greatly enhance the field of comparative 

oncology by validating species that have low cancer prevalence and testing for 

evolutionary mismatches for animals in captivity. 

 

 

 

 

https://paperpile.com/c/QfSXEN/FNoqq%2BZZp1u
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Conclusion 
 

Cancer is a problem of multicellularity (Aktipis C. Athena et al., 2015). 

While we found a relationship between both body mass and gestation time with 

cancer prevalence, we are just beginning to discover patterns of cancer 

susceptibility and cancer defenses across species. It is likely that evolution has 

developed a variety of mechanisms for preventing cancer. The discovery of 

particular species with extremely low neoplasia prevalence provides 

opportunities for elucidating cancer suppression mechanisms that are compatible 

with life and reproductive success. Investigation of species with extreme 

vulnerability to a particular cancer may also help us understand those cancers as 

well as human syndromes that predispose to those cancers. We hope to learn 

from nature how to better prevent cancer in both humans and non-human 

animals. 
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CHAPTER 4 
 

NEOPLASMS IN PRIMATES: AN EVOLUTIONARY PERSPECTIVE ON 

CANCER PREVALENCE IN NON-HUMAN PRIMATES 

In Defense of Close Cousins 

 
You may be surprised how tense a subject primate evolution still is. Well, 

at least a specific region of that primate phylogeny. A particularly nauseating 

framework has been discretely nurtured when it comes to the introduction of 

evolutionary theory to students. I was perfectly content with the original 

concession that evolutionists granted to theology, allowing us to explain the deep 

history connecting the origin of life and humans, leaving the very origin of life 

largely in their domain. But it seems we have given the mouse a cookie in this 

respect. At the same time that many universities are providing entire degree 

programs in human evolution many have quite graciously offered a new 

concession. Two types of evolution; evolution that describes humankind's 

divergence from our primate ancestors and then all the apparently more 

palatable evolution. That being the case I felt this a special preface for my 

comparative oncology piece on primate cancers. I agree, there is a reason we 

should be particularly interested in comparative anatomy, physiology, and 

disease in these species. I just wish to ensure we mutually agree on why that is. 

The awkwardness in primate evolution is born from a hesitancy Charles Darwin 

himself nurtured in On the Origins of Species with his intentionally opaque “light 

will be thrown on the origin of man and his history”(Darwin, 1872). We don’t 

know for sure which of Charles Darwin’s transcontinental observations were the 

https://paperpile.com/c/QfSXEN/2I9n5
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most crucial to his revelations of natural selection and common ancestry. History 

seems to have made that decision for him. The phenotypic variations in the 

beaks of the finch populations scattered across the Galapagos archipelago are 

universally affixed to undergraduate lectures on evolution. It is even likely that 

there was no single observation that solidified the view of life revealed to 

him. Given the language and structure of On the Origins it certainly seems the 

portrait was only completely understandable when viewed as a whole. Whatever 

may have sparked his personal revelation on the veracity of evolution, we all 

have the privileged opportunity to have the same when we gaze on the faces of 

our closest phylogenetic cousins. 

Studies of physiology and behavior in primates have solidified a great deal of 

understanding of our own mechanics. Despite the incredible degree of homology 

between ourselves and primates, even those more distantly related than the 

chimpanzee, infrequent attention has been given to the type and prevalence of 

their cancerous tumors. Primates have long held high value in scientific studies 

for the use of drug development and efficacy. This value is derived from our 

close evolutionary relationship with them but rarely has the value in 

understanding primates’ burden of disease and our evolutionary relationship with 

them been so explicitly described as it is in what follows. 

Abstract 
 

Studying cancer from an evolutionary perspective can lead to important 

theoretical and applied insights, however little is known about the prevalence of 

cancer among non-human primates. Primates are the closest living relatives to 
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humans, however the Primate lineage is phenotypically diverse, with wide 

variations in evolutionary and life history characteristics. By leveraging 

comparative phenotypic data with incidence records of neoplastic disease, we 

have constructed a dataset of 2,095 individuals across 35 species, and explore 

cross-species cancer risk within Primates. We suggest a life history theory 

framework to help elucidate the variations in observed cancer prevalence across 

non-human primates, wherein long-lived, large-bodied animals invest more 

energy in somatic maintenance (i.e. cancer defenses) to maintain their cellular 

body. Additionally, functional studies performed in vitro using isolated and 

cultured primary fibroblast cell lines from representative species show that 

resistance to cellular death is correlated with certain life history characteristics. 

Combining large-scale cancer incidence records and functional assays can 

provide useful insights into the ecological and cellular dynamics of cancer in our 

closest living relatives and ourselves. 

Introduction 
 

Cancer is a problem for all multicellular organisms, not just humans 

(Aktipis C. Athena et al., 2015). Little is known about cancer in non-human 

organisms, including our nearest relatives - primates. Without large-scale data on 

neoplasia prevalence and malignancies in primates, it is difficult to determine 

what aspects of cancer are peculiar to human biology and lifestyle factors, and 

what aspects are a legacy of our shared ancestry with other primates. 

The evolution of complex multicellularity requires a delicate balance 

between cellular-level fitness and organismal fitness, and cancer can be viewed 

https://paperpile.com/c/QfSXEN/moiRy
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through the lens of a breakdown of this cooperative agreement(Aktipis C. Athena 

et al., 2015). The forces of evolution act upon multiple levels of selection, and as 
 

organisms gain more and more complexity, cancer suppression mechanisms 

must concurrently evolve to maintain organismal fitness(Nedelcu & Caulin, 

2016). Sir Richard Peto postulated in 1977 that the risk of cancer should scale 
 

with body size (i.e., larger number of cells within an organism) and length of 

lifespan (i.e., number of cellular divisions that increase the chances of acquiring a 

neoplastic mutation), however there must be an evolutionary pressure to evolve 

mechanisms to prevent neoplastic growth, a phenomenon known as ‘Peto’s 

paradox’(Peto, 2016). Recent comparative studies have verified this observation 

and have found that typically, large-bodied and longer-lived organisms 

experience less cancer than their smaller counterparts(Tollis, Schiffman, et al., 

2017; Vincze et al., 2022). 
 

Primate species vary widely in a number of phenotypic characteristics 

thought to impact lifetime cancer prevalence including body size, lifespan, and 

growth rate. Previous work has suggested that cancer risk should increase with 

the number of cells in a body and the number of years that they must be 

maintained. This seems to be true within species, and well documented in 

humans(Nunney, 2018), but initial observations across mammals suggest that 

there is no relationship between cancer prevalence and either body size or 

lifespan(Abegglen et al., 2015). Others have emphasized the relevance of 

evolutionary tradeoffs between reproduction and cancer suppression(Boddy et 

al., 2015). 

Non-human primates have long been invaluable in comparative biology to 

https://paperpile.com/c/QfSXEN/moiRy
https://paperpile.com/c/QfSXEN/moiRy
https://paperpile.com/c/QfSXEN/2INUG
https://paperpile.com/c/QfSXEN/2INUG
https://paperpile.com/c/QfSXEN/2AsYN
https://paperpile.com/c/QfSXEN/ZZp1u%2Bcc3UZ
https://paperpile.com/c/QfSXEN/ZZp1u%2Bcc3UZ
https://paperpile.com/c/QfSXEN/JWC8I
https://paperpile.com/c/QfSXEN/WNHxf
https://paperpile.com/c/QfSXEN/q8SXJ
https://paperpile.com/c/QfSXEN/q8SXJ
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study behavior, senescence and even infectious disease(Chang et al., 2009; 

Flynn et al., 2015; Herbig et al., 2006; Sapolsky, 2005, 2006; Wolfe et al., 1998). 

Based on the diversity of life-history characteristics and the phylogenetic 

similarity with humans, the Primate lineage is an ideal system to explore 

incidences of cancer and the relationships between life-history characteristics 

that may have influenced the evolution of tumor suppression mechanisms. The 

majority of previously conducted studies have been constrained by investigations 

into specific tumor types, limited by particular species or locations, and typically 

are constituted by a low sample number of individuals. All of these introduce 

significant limitations to our ability to identify patterns and generalize 

observations. 

In this work, we present data from over 2,095 individuals belonging to 9 

unique primate families, across 25 years of collected histopathology and 

necropsy reports from multiple zoological institutions, wildlife sanctuaries and 

veterinary facilities. This represents the largest dataset on primate cancers that 

has been collected to date. 

 

Methods 

Neoplastic prevalence was established by using previously collected 

pathology records from multiple zoological, veterinary, and animal sanctuary 

databases. 23 years of necropsy data collected by the Northwest Zoopath, Duke 

Lemur Center, Drury, Michigan State University was compiled and tumor 

prevalence was calculated for 35 primate species. Pathology records compiled 

from these institutions represent veterinarian medical records from both routine 

https://paperpile.com/c/QfSXEN/yiH87%2B9FWUZ%2BTNMWG%2BU1pdC%2B9k6sg%2B4HVOP
https://paperpile.com/c/QfSXEN/yiH87%2B9FWUZ%2BTNMWG%2BU1pdC%2B9k6sg%2B4HVOP
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health care and postmortem necropsy surveys, and were conducted by 

professional veterinary pathologists. Pathology records were then paired with 

known life history variables, collected in the databases panTHERIA (Jones et al., 

2009). All data for our analysis is provided within the supplementary information, 

as well as the aggregated life-history variables that were explored. 

 
Statistical Analysis 

Neoplasia and malignancy prevalence were calculated and compared with 

multiple life history traits, including adult body mass, lifespan, basal metabolic 

rate, growth rate and gestation length. For all plots, the R packages caper, ape, 

and phytools were used to construct Phylogenetic Least Squares (PGLS) models 

to account for phylogenetic interdependence(Orme, Freckleton, Thomas, 

Petzoldt, Fritz, Isaac, & Others, 2013; Paradis et al., 2004; Revell, 2012a). All of 

the reported statistical values are representative of a linear fit post-PGLS 

analysis. Fisher's exact tests and Wilcoxon signed rank tests were both used for 

the determination of a sex bias in neoplasia and malignancy prevalence. 

 
Functional Studies 

Primate cells were obtained as established cell lines from San Diego Zoo 

(chimpanzee, gorilla, orangutan, ring-tailed lemur, baboon, and spider monkey), 

Duke Primate Institute (mouse lemur), Kansas City Zoo (Cotton-top tamarin) and 

Lonza (normal human adult dermal fibroblasts, NHDF). Detailed information on 

culture conditions, primary donor demographics, and passage numbers can be 

found within the supplementary information. 

Cells were seeded in 96-well dishes at a concentration of 1,000 cells per 

https://paperpile.com/c/QfSXEN/qxG8e
https://paperpile.com/c/QfSXEN/qxG8e
https://paperpile.com/c/QfSXEN/pvfVg%2BE9qe9%2BpFX6J
https://paperpile.com/c/QfSXEN/pvfVg%2BE9qe9%2BpFX6J
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well in 100ul cell-specific media and allowed to adhere overnight. The following 

day, doxorubicin was added in four treatment concentrations: 1uM, 0.33uM, 

0.11uM and 0uM. All treatment conditions were tested in triplicate. Response to 

DNA damage was measured using two distinct fluorescent cell death markers. 

The first, Annexin V Green Reagent, binds to phosphatidylserine phospholipids 

that become exposed early in the cell death process as the cell membrane loses 

stability. The second, Caspase 3/7 Green Reagent, is triggered by activated 

caspases and is indicative of caspase mediated apoptosis. Cells were imaged 

using an IncuCyte at two hour intervals for four days. IncuCyte images were 

analyzed to determine the number of living and dead cells over time. 

  



75 

Results 

 

 

Figure 1: The variation in neoplasia and malignancy prevalence across 35 

primate species. Green bars represent neoplasia prevalence and purple bars 

represent malignancy prevalence. The two species highlighted with green 

squares, the Dusky leaf monkey and the Blacked-capped squirrel monkey, have 

zero reported neoplasms. 
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Figure 2: A) Log10 Gestation length (months) as predictor of neoplasia 

prevalence (p=0.47, λ =0.99), B) Log10 Adult weight (grams) as predictor of 

neoplasia prevalence (p=0.93 , λ = 0.99), C) Log10 Maximum longevity (months) 

as a predictor of neoplasia prevalence (p= 0.86 , λ =0.99). 
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Figure 3: Log10 Interbirth interval (months) as a predictor of A) neoplasia 

prevalence (p=0.13, λ =0) and B) malignancy prevalence (p=0.01, λ =0). 

 
 

Cancer rates across all species of non-human primate within our dataset 

show that the phenomenon of Peto’s paradox remains within the primate lineage. 

Larger, longer-lived primate species, such as great apes do not suffer the same 

burden of neoplastic disease as smaller, shorter-lived primates. The lambda 

values in our phylogenetic least squares analyses indicate the significant 

strength of the phylogenetic signal in these life history models. The penetrance of 
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phylogenetic signal is indicative of the phylogenetic determinants of these life 

history traits and these species’ cancer prevalence (Figure 2). Within primates, 

despite the two species where zero neoplasms were observed, there is less 

variation in cancer risk than when all mammals are compared(Boddy et al., 

2020b; Vincze et al., 2022). Which is to be expected given the relatively young 
 

most recent common ancestor (MRCA) of all living primates existing only 66-69 

million years ago. 

The significance of interbirth interval as a predictor of malignancy 

prevalence, and a similar yet insignificant pattern shown for neoplasia prevalence 

suggest that more robust measurements of parental investment may point to 

clues on trade offs with somatic maintenance (Figure 3). Parental investment is a 

commonly studied trait in primates but is so far too conserved to specific primate 

species as to be applicable to the cancer data presented here(Bercovitch, 2002; 

Maestripieri, 2002). 

 
  

https://paperpile.com/c/QfSXEN/ZZp1u%2ByqO23
https://paperpile.com/c/QfSXEN/ZZp1u%2ByqO23
https://paperpile.com/c/QfSXEN/ks3jH%2BWJYRc
https://paperpile.com/c/QfSXEN/ks3jH%2BWJYRc
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Sex Bias in Primate Cancer Risk 
 

 

Figure 4: Violin plots of the sex specific prevalence of neoplasms and 

malignancies. 
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Discussion 
 

In this paper, we report the largest known database of confirmed primate 

neoplastic prevalence, and explore potential trade-offs to cancer susceptibility 

and different life-history strategies. The database contains age and sex 

segmented data, as well as classifications of tumor type, location and 

malignancy. We have found that tumor prevalence has no relationship to body 

mass and lifespan, confirming Peto’s paradox exists within the primate lineage. 

We examine multiple life history variables and their relationship to neoplastic 

prevalence. We also examine organismal age and how it relates to neoplastic 

prevalence, using both average wild lifespan and captive lifespan data. Our 

results show that neoplastic prevalence is not necessarily an artifact of extended 

lifespan as a result of captivity, but rather is most strongly correlated with 

phylogeny. 

The significant female bias in both neoplasia and malignancy prevalence 

as shown in Figure 4 is the opposite of the pattern we observe in humans, with 

men burdening the higher risk. There are several intriguing differences between 

us and the rest of the primate taxon that may explain this. Differences in 

energetic investment in offspring offered by males and females provides a 

striking evolutionary hypothesis, especially given the discrepancy in investment 

that occurs pre-birth. A more proximate hypothesis could be the mismatch in 

reproductive cycles that many mammals face under human management. 

Primates are our closest living relatives, with the chimpanzee genome 

sharing over 96.5% sequence similarity to humans. Despite these similarities, the 
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entire primate lineage has a wide variation within their evolutionary history and 

life history characteristics. This wide phenotypic variation paired with the 

phylogenetic similarity of our closest living relatives provides a unique opportunity 

to study human diseases from a comparative perspective. The hominin lineage 

split from the other primates approximately 6-7 million years ago, with humans 

diverging from the rest of the hominin lineage roughly 200-300 thousand years 

ago (Schwartz & Tattersall, 2010; Wood & Richmond, 2000). Humans and their 

hominin relatives share an evolutionary history, and in fact experience disease in 

a similar way. Among these similarities are their response to mutagens and 

resulting DNA damage. We show that adult body mass and lifespan are not 

correlated with cancer prevalence within the primate lineage, showing that 

despite the difference in total number of cells and cellular divisions, primates with 

larger bodies do not experience more cancer than smaller bodied primates. We 

suggest a life history theory framework to understand the differences in cancer 

incidence, with slow life history (K-selected) species having more capacity for 

responding to DNA damage and thereby cancer suppression mechanisms 

versus fast life history (r- selected) species. 

 

Conclusion 

By harnessing the information collected longitudinally from zoological 

institutions, primate sanctuaries, and research institutes, we are able to 

understand the breadth of differences in cancer incidence across species. 

Through examining these datasets and applying an evolutionary life history-

based framework we are able to better understand the dynamics of cancer and 

https://paperpile.com/c/QfSXEN/dsmxw%2B5w832
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gain important insights into human biology. Further exploration into the field of 

comparative oncology is a worthwhile endeavor, and the myriad of cancer 

suppression mechanisms may be as diverse as the natural world that surrounds 

us. 
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CHAPTER 5 
 

LIFE HISTORY AND CANCER IN BIRDS: CLUTCH SIZE PREDICTS CANCER 
 
The Ghost of Giants 
 

I cannot preface this manuscript any better than can be found in Arvid 

Agren’s preface to his own book The Gene’s Eye View of Evolution where he 

states “One of my biggest embarrassments in life is that I am such a poor 

naturalist. My botanical skills are distinctly average and my ornithological 

knowledge is downright appalling.” (Arvid Ågren, 2021). The only addition to his 

bravery I can offer is that I cannot honestly attest to any personal interest in ever 

expanding my ornithological knowledge. I am too often within earshot of some 

graduate student who seems to know every variation of campus bird anyway. But 

like so many other topics in biology, my interest can be piqued when I am 

reminded of the all too envious, and all too epic, evolutionary history they boast. 

My thinking on the evolution of cancer suppression mechanisms and the 

general regulators of somatic maintenance stems from viewing much of evolution 

as addressing a scaling problem. This framework predates me and is the basis of 

Peto’s Paradox and the primary interest within comparative oncology to focus on 

species that underwent processes of gigantism sometime in their evolutionary 

history. Even with these species we consider our modern giants, many of them 

have a considerably smaller mass than their recent ancestors. However, while 

studies of gigantism have dominated much of comparative oncology we see that 

a study in miniaturization leads to many fascinating results. 

Although birds have a great evolutionary distance from their theropod 

https://paperpile.com/c/QfSXEN/tmeKa
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dinosaur ancestors, they still provided a fantastic inverse to the classic 

comparative oncology question. While we have focused on how timely and how 

effectively natural selection may shape robustness in somatic maintenance while 

species increase in size, we now have the opportunity see how much time is 

required for natural selection to *realize* those mechanisms, while maybe 

necessary in distant ancestors, are no longer needed. Yagmur Erten and Hannah 

Kokko directly addressed this question with their 2021 preprint in which their 

model demonstrated that sufficient lags in evolution may explain why small 

bodied birds retain such an intense ability to suppress cancer. 

The results highlighted in the following paper, especially now when laid in 

the context of Cancer Across Vertebrates, demonstrates that birds are one of the 

few taxonomic classes of animals that seem to preserve Peto’s Paradox within 

both neoplasms and malignancies. The genomic analyses that are sure to come 

will provide exciting insights not only into the genes that govern the cancer 

suppression mechanisms in these species but how these genes compare to what 

we know about the vitality of known cancer suppression genes in mammals. 

Abstract 
 

Cancer is a disease that affects nearly all multicellular life, including birds. 
 

However, little is known about what factors explain the variance in cancer 

prevalence among species. Litter size is positively correlated with cancer 

prevalence in managed species of mammals, and larger body size, but not 

incubation or nestling period, is linked to tumor prevalence in wild birds. Also, 

birds that produce more elaborate sexual traits are expected to have fewer 
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resources for cancer defenses and thus higher cancer prevalence. In this study, 

we examine whether cancer prevalence is associated with a wide variety of life 

history traits (clutch size, incubation length, body mass, lifespan, and the extent 

of sexual dimorphism) across 108 species of managed birds in 25 different 

zoological facilities, sanctuaries, and veterinary clinics. We found that clutch size 

was positively correlated with cancer and neoplasia (both benign and malignant) 

prevalence, even after controlling for body mass. Cancer prevalence was not 

associated with incubation length, body mass, lifespan, or sexual dimorphism. 

The positive correlations of clutch size with cancer prevalence and neoplasia 

prevalence suggest that there may be life-history trade-offs between reproductive 

investment and somatic maintenance (in the form of cancer prevention 

mechanisms) in managed birds. 

Introduction 
 

Nearly all multicellular organisms are susceptible to neoplastic 

disease(Aktipis C. Athena et al., 2015; Effron et al., 1977a). Neoplasia is a 

disease consisting of uncontrolled cell division and growth, resulting ultimately in 

the formation of a tumor, as well as invasion or metastasis in case of malignant 

neoplasia (aka cancer)(C. A. Aktipis & Nesse, 2013; López-Lázaro, 2016). Over 

the past few decades, cancer research has focused on identifying different 

molecular pathways, hallmarks, and control mechanisms of cancer – all with the 

ultimate aim of improving cancer treatment(Bernards et al., 2020; Varmus, 

2006).Evolutionary biology has also been an important component of cancer 

research over the last 50 years(C. A. Aktipis & Nesse, 2013; Dujon et al., 2020). 

https://paperpile.com/c/QfSXEN/moiRy%2BCXPZT
https://paperpile.com/c/QfSXEN/8tqyC%2BvRTYx
https://paperpile.com/c/QfSXEN/JIYyn%2BUdpHl
https://paperpile.com/c/QfSXEN/JIYyn%2BUdpHl
https://paperpile.com/c/QfSXEN/PUCC8%2B8tqyC
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The ecological conditions under which organisms evolved have shaped their 

responses to various diseases, including cancer(Grunspan et al., 2018; 

Kapsetaki et al., 2022). Understanding why organisms differ in their ability to 

suppress cancer, as well as how they respond to neoplastic expansion, is a 

central question in comparative cancer research. 

In general, life history trade-offs govern how organisms allocate time and 

resources to fitness components such as growth, self (or somatic)-maintenance, 

and reproduction(Charnov, 2003; Ghalambor & Martin, 2001). Somatic 

maintenance can include tumor suppression mechanisms such as cell cycle 

control and DNA damage repair. These trade-offs may help explain the variation 

in cancer prevalence across species. For example, long-lived species that invest 

in somatic maintenance over reproduction likely evolved enhanced mechanisms 

to suppress or evade cancer during their relatively long lifespans compared to 

short-lived species that invest heavily in reproductive effort rather than somatic 

maintenance(Harris et al., 2017). Peto’s paradox predicts that bigger-longer lived 

animals would not be more vulnerable to cancer(Caulin & Maley, 2011; Roche et 

al., 2013; Tollis, Boddy, et al., 2017). Utilizing this life history tradeoff approach can 

both give us insight into the basic biology and origins of cancer and also provide 

opportunities to discover either universal or novel mechanisms of cancer 

suppression that could have clinical applications to humans. 

Birds (class Aves) represent a diverse vertebrate clade with considerable 

variation in life-history characteristics. This makes birds a suitable system for 

investigating the correlation between cancer risk and certain phenotypic traits, 

https://paperpile.com/c/QfSXEN/dzSkM%2B9qaH0
https://paperpile.com/c/QfSXEN/dzSkM%2B9qaH0
https://paperpile.com/c/QfSXEN/jg6eD%2BVuewq
https://paperpile.com/c/QfSXEN/8a7Go
https://paperpile.com/c/QfSXEN/I1cRz%2BlHZX8%2BDlyTd
https://paperpile.com/c/QfSXEN/I1cRz%2BlHZX8%2BDlyTd
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such as body mass and lifespan. Double-barred finches weigh on average just 

9.5 grams, whereas greater rheas weigh on average 23 kilograms. Gouldian 

finches live on average up to six months, whereas salmon-crested cockatoos live 

on average up to 65 years (supplementary data). Birds also have a ZW genetic 

sex determination system, with females as the heterogametic sex, and therefore 

can also shed light on possible sex biases in health outcomes. For instance, 

female birds may be more susceptible to deleterious mutations promoting cancer 

development, whereas male birds may be protected by non-mutant versions of 

those alleles on their extra Z chromosome. This is known in humans as the two-X 

chromosome theory of cancer protection(Dorak & Karpuzoglu, 2012). If this two-

chromosome theory is correct, we would expect female birds to have higher 

cancer prevalence than male birds. 

Cancer prevalence in birds has been an area of ongoing study. Previous 

work reports that birds are amongst the vertebrates with the lowest cancer 

prevalence(Effron et al., 1977a; Madsen et al., 2017b; Pesavento et al., 2018). 

Within birds, there is much variation in cancer prevalence which may be 

explained by some phenotypic traits. For instance, Møller et al. surveyed free- 

living Eurasian birds post-mortem and found that, when analyzing at least 20 

individuals per species, larger body size was correlated with tumor 

prevalence(Møller et al., 2017), while neither incubation nor nestling time were 

correlated with tumor prevalence(Møller et al., 2017). Separate studies have 

reported neoplasms (benign and malignant tumors combined) in bird species, 

either free-living or in human care(Effron et al., 1977a; Langohr et al., 2012; 

https://paperpile.com/c/QfSXEN/cuekT
https://paperpile.com/c/QfSXEN/CXPZT%2BJxf24%2B2B1MQ
https://paperpile.com/c/QfSXEN/yHJ4U
https://paperpile.com/c/QfSXEN/yHJ4U
https://paperpile.com/c/QfSXEN/7IzWK%2BeNVCi%2BaWkJM%2BspKJC%2BCXPZT%2BHFvbU%2Bkd7vA
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Malka et al., 2005; Reece, 1992; Snyder & Ratcliffe, 1966; Speer, 2015; Stewart, 

1966), but the prevalence of malignancy itself has not been measured before 

across bird species. 

Clutch size could also be an important factor influencing the amount of 

energy devoted to somatic maintenance, including immune function, given the 

energetic trade-off between maintenance of a particular species’ own body 

versus its offspring(Daan et al., 1996; Hanssen et al., 2005). There may also be a 

trade-off between reproductive investments and somatic maintenance(Boddy et 

al., 2015) such that sexually dimorphic or dichromatic species experience 

increased cancer prevalence(Fernandez & Morris, 2008) due to the somatic 

maintenance costs incurred by growing and maintaining these exaggerated 

morphological traits(Cherel et al., 1994; Klaassen, 1995; Moreno et al., 2001; 

Vézina et al., 2009). However, there has not been a study investigating the 

relationship between reproductive or sexually selected traits and cancer 

prevalence in birds. 

To investigate the relationship between life history and cancer risk in birds, 

we combined trait-rich life-history databases with cancer prevalence data from 

veterinary records of 108 bird species under managed care. We hypothesized 

that the incredible diversity of life-history strategies observed across the class 

Aves can explain taxonomic differences in cancer risk in birds, due to the 

evolutionary trade-offs between growth, reproduction, and somatic maintenance. 

We test Peto’s paradox (under the expectation that body mass does not explain 

variation in cancer prevalence) in birds, and investigate whether malignancy 

https://paperpile.com/c/QfSXEN/7IzWK%2BeNVCi%2BaWkJM%2BspKJC%2BCXPZT%2BHFvbU%2Bkd7vA
https://paperpile.com/c/QfSXEN/7IzWK%2BeNVCi%2BaWkJM%2BspKJC%2BCXPZT%2BHFvbU%2Bkd7vA
https://paperpile.com/c/QfSXEN/CAwNL%2BFTsns
https://paperpile.com/c/QfSXEN/q8SXJ
https://paperpile.com/c/QfSXEN/q8SXJ
https://paperpile.com/c/QfSXEN/ZXcWD
https://paperpile.com/c/QfSXEN/Y950O%2B0edca%2BBmFtk%2BNe1fj
https://paperpile.com/c/QfSXEN/Y950O%2B0edca%2BBmFtk%2BNe1fj
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prevalence or neoplasia prevalence is correlated with other avian traits such as 

incubation length, clutch size, and degree of sexual dimorphism and 

dichromatism. We also test for sex differences in cancer prevalence in birds, e.g. 

whether female birds (ZW sex chromosomes) have higher cancer prevalence 

than male birds (ZZ sex chromosomes). This study is the first to examine a wide 

range of life history traits in birds in order to predict cancer prevalence. 

 

 
 

 
 
 
 

Figure 1. Sexual dimorphism in birds. Birds display a wide range of sexual 

dimorphism in size and plumage color. 

 
 
 
Methods 
 

Cancer data from managed populations of birds 

To collect avian cancer records, we collaborated with numerous zoological 

facilities, sanctuaries, and veterinary clinics. The data represent over 25 years of 

pathology records from 25 different institutions using 5,499 individual necropsies, 
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including descriptions of age at death of 1287 individuals from 51 species, and 

malignancies and benign tumors across 108 bird species across 24 different 

avian orders managed under human care(World Association of Zoos and 

Aquariums, 2011). We measured malignancy prevalence and neoplasia  

prevalence (benign and malignant tumor) for each species by dividing the total 

number of necropsies reporting malignancies (or neoplasms) by the total number 

of necropsies available for that species (supplementary data); a measurement 

also used in previous studies(Boddy et al., 2020a; Kapsetaki et al., 2022). 

 

Life history data 

We assembled life-history variables from multiple published resources, including 

AnAge(de Magalhães & Costa, 2009) and the Amniote Life History 

Database(Myhrvold et al., 2015). The collected life-history variables included 

species averages of adult body mass (g), lifespan (months), incubation length 

(months), clutch size (number of offspring)(de Magalhães & Costa, 2009; 

Myhrvold et al., 2015), presence and degree of sexual plumage dichromatism 

(plumage brightness and plumage hue)(Dunn et al., 2015), and sexual size 

dimorphism (mass and tail size)(Lislevand et al., 2007). 

 

Data filtering 
We only included bird species for which we had at least 20 necropsies in 

our analysis. For analyses comparing female and male malignancy prevalence or 

neoplasia prevalence, as well as sex bias regressions, we used species with at 

least 10 necropsy records per sex. We present the neoplasia and malignancy 

https://paperpile.com/c/QfSXEN/h1TXg
https://paperpile.com/c/QfSXEN/h1TXg
https://paperpile.com/c/QfSXEN/9qaH0%2B5hAhH
https://paperpile.com/c/QfSXEN/qWkqR
https://paperpile.com/c/QfSXEN/4mWHz
https://paperpile.com/c/QfSXEN/4mWHz%2BqWkqR
https://paperpile.com/c/QfSXEN/4mWHz%2BqWkqR
https://paperpile.com/c/QfSXEN/tXIDH
https://paperpile.com/c/QfSXEN/Oh4Bz
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prevalence of 108 bird species (supplementary data). We were not able to find 

data on every life-history variable for every species, so in the life-history 

analyses, the number of species is less than 108 (body mass correlations: 100 

species; lifespan correlations: 59 species; body mass x lifespan correlations: 57 

species; incubation length correlations: 34 species; clutch size correlations 

including domesticated/semi-domesticated species: 51 species; clutch size 

correlations excluding domesticated/semi-domesticated species: 45 species; 

dimorphism in brightness correlations: 18 species; dimorphism in hue 

correlations: 24 species; dimorphism in mass correlations: 47 species; 

dimorphism in tail size correlations: 34 species; sex differences in neoplasia 

prevalence: 31 species). We removed all necropsies from birds in the wild. We 

excluded chickens (Gallus gallus) because as a largely domesticated agricultural 

species they have been selected for egg laying and frequently develop ovarian 

cancer(Pal et al., 2021). We excluded all infant data from our dataset because: 

(1) the low prevalence of age-related diseases, such as cancer, in infants would 

likely bias the neoplasia prevalence data towards lower values and (2) cancers in 

infants are medically different than adult cancers(Kattner et al., 2019). We 

defined infancy as a record's age that is smaller or equal to that species’ age of 

infancy (or the average of male and female maturity). In cases of no records of 

infancy age, the record was considered an infant if it contained any of the 

following words: infant, juvenile, immature, adolescent, hatchling, subadult, 

neonate, newborn, offspring, fledgling. We performed correlations between clutch 

size and neoplasia or cancer prevalence with and without removing domesticated 

https://paperpile.com/c/QfSXEN/CBS4j
https://paperpile.com/c/QfSXEN/kkPiK
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and semi- domesticated species(Forshaw, 2001; Gillings et al., 2019; Leli, 1992; 

Orlik, 2018; Padilla-Jacobo et al., 2018; Ramírez Ayala, 2007; Q.-K. Shen et al., 

2021; Svanberg, 2008; Williams, 2005; Zann & Runciman, 2003)(Supplementary 

data). When comparing female and male malignancy prevalence and neoplasia 

prevalence, we removed all cases of reproductive cancer in order to minimize 

any effects of controlled reproduction in managed environments on our results.  

Statistical analysis  

We performed all statistical analyses in R version 4.0.5(R Core 

Team.,2015). We prepared figures using the data visualization software 

ggplot2(Wickham, 2016) and performed analyses in dplyr(Wickham et al., 2018). 

We performed all phylogenetic analyses using the R packages ape, phytools, 

geiger, tidyverse, powerAnalysis (https://github.com/cran/powerAnalysis), and 

caper(Orme, Freckleton, Thomas, Petzoldt, Fritz, Isaac, & Pearse, 2013; Paradis 

& Schliep, 2019; Pennell et al., 2014; Revell, 2012b; Wickham et al., 2019) using 

phylogenetic generalized least squares (PGLS) regressions to take into account 

the phylogenetic non-independence among species(Felsenstein, 1985a) and 

weighting analyses by 1/(square root of the number of necropsies per species) 

following Revell(Revell, 2012b). We obtained avian phylogenetic trees from NCBI 

creator (https://www.ncbi.nlm.nih.gov/Taxonomy/CommonTree/wwwcmt.cgi). We 

performed Shapiro's test(Shapiro & Wilk, 1965) to check for normality of the life 

history data and Grubbs’ & Rosner’s tests to identify and remove significant 

outliers. Based on the “transformTukey” function (“rcompanion” R package), 

which suggests a power transformation that makes values as normally distributed 

https://paperpile.com/c/QfSXEN/MQHXY%2BHYE8P%2BdCTng%2B6k4nf%2BXmg5I%2BQB8RE%2BdCWYI%2BrJ70g%2BRvTca%2Bue2kR
https://paperpile.com/c/QfSXEN/MQHXY%2BHYE8P%2BdCTng%2B6k4nf%2BXmg5I%2BQB8RE%2BdCWYI%2BrJ70g%2BRvTca%2Bue2kR
https://paperpile.com/c/QfSXEN/MQHXY%2BHYE8P%2BdCTng%2B6k4nf%2BXmg5I%2BQB8RE%2BdCWYI%2BrJ70g%2BRvTca%2Bue2kR
https://paperpile.com/c/QfSXEN/MQHXY%2BHYE8P%2BdCTng%2B6k4nf%2BXmg5I%2BQB8RE%2BdCWYI%2BrJ70g%2BRvTca%2Bue2kR
https://paperpile.com/c/QfSXEN/MQHXY%2BHYE8P%2BdCTng%2B6k4nf%2BXmg5I%2BQB8RE%2BdCWYI%2BrJ70g%2BRvTca%2Bue2kR
https://paperpile.com/c/QfSXEN/BNL6N
https://paperpile.com/c/QfSXEN/BNL6N
https://paperpile.com/c/QfSXEN/BNL6N
https://paperpile.com/c/QfSXEN/1s0Z5
https://paperpile.com/c/QfSXEN/MAAD2
https://github.com/cran/powerAnalysis
https://paperpile.com/c/QfSXEN/KTyGS%2Bg3hfN%2BOlapa%2BsjiyS%2B3lYi3
https://paperpile.com/c/QfSXEN/KTyGS%2Bg3hfN%2BOlapa%2BsjiyS%2B3lYi3
https://paperpile.com/c/QfSXEN/t5E9W
https://paperpile.com/c/QfSXEN/Olapa
https://www.ncbi.nlm.nih.gov/Taxonomy/CommonTree/wwwcmt.cgi
https://paperpile.com/c/QfSXEN/EN8va
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as possible, we log10-transformed the adult body mass data, log10-transformed the 

adult mass · longevity data, transformed the longevity data to the power of 0.425, 

and transformed clutch size ( –1 clutch size–0.125). 

We measured sexual differences in all seven biometric variables [plumage 

brightness, plumage hue, mass (g), and tail size (g)] as the natural log of the 

male biometric variable divided by the natural log of the female biometric 

variable. We also compared male malignancy prevalence or neoplasia 

prevalence versus female malignancy prevalence or neoplasia prevalence. The 

denominators in the case of the male malignancy prevalence or neoplasia 

prevalence are the total number of necropsied males, whereas the denominators 

in the case of the female malignancy prevalence or neoplasia prevalence are the 

total number of necropsied females. The distribution of the sex differences in 

cancer (i.e.“female malignancy prevalence minus male malignancy prevalence”, 

“female neoplasia prevalence minus male neoplasia prevalence”) did not follow a 

normal distribution and had significant outliers. Therefore, we compared 

malignancy prevalence and neoplasia prevalence between males and females 

using the non-parametric paired-samples sign test. We tested whether the P- 

values passed the False Discovery Rate (FDR) correction in each of these 26 

analyses (Table 2). 

Results 

The range of neoplasia prevalence among the examined 108 bird species 

varied from 0% to 29%, with a mean of 4.4%, whereas malignancy prevalence 

among these species varied from 0% to 17.4%, with a mean of 2.3% (Table 1; 

supplementary data). Among the four avian taxonomic orders with at least 10 
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species per order in our dataset (Psittaciformes, Passeriformes, Columbiformes, 

and Anseriformes), the Anseriformes had on average the highest malignancy 

prevalence (mean ± SD: 2.84% ± 2.81%), whereas the Columbiformes had on 

average the lowest malignancy prevalence (mean ± SD: 1.12% ± 1.84%) 

(Supplementary data). We found no significant correlation between neoplasia or 

malignancy prevalence: and (1) adult body mass across 100 bird species and 

5042 necropsies (Fig. 2A; Fig. 2B; Table 2); nor (2) adult mass times lifespan 

across 57 bird species and 3464 necropsies (Supp. Fig. 1A; Supp. Fig. 1B: Table 

2). Neoplasia and malignancy prevalence were not higher in longer-lived birds 

(Fig. 3A; Fig. 3B: Table 2; 59 species and 3593 necropsies), and deaths with a 

necropsy diagnosis of cancer were not skewed towards old age across 1287 

individuals from 51 species (Supp. Fig. 3). 

We found that length of incubation was not significantly correlated with 

neoplasia or malignancy prevalence (Fig. 4A; Fig. 4B; Table 2; 34 species and 

1806 necropsies). However, species with larger clutch sizes had significantly 

higher neoplasia and malignancy prevalence even after applying FDR 

corrections for multiple testing (P-value = 0.005, R² = 0.99; and P-value = 0.0019, 

R² = 0.99, respectively; Fig. 5; 51 species and 2119 necropsies), and after 

controlling for species body mass (P-value = 0.005, R² = 0.17; and P-value 

=0.0014, R² = 0.17, respectively; Table 2). The positive correlation between 

clutch size and malignancy prevalence, but not neoplasia prevalence, remained 

significant after removing domesticated and semi-domesticated species (P-value 

= 0.004, R² = 0.99; Supp. Fig. 4B; 45 species and 1839 necropsies) and 
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controlling for body mass (P-value = 0.004, R² = 0.1; Table 2; 45 species). We 

found no significant associations between neoplasia or malignancy prevalence 

and several sexually dimorphic and dichromatic traits (Fig. 6; Table 2). Also, 

neoplasia and malignancy prevalence were not significantly different between 

males and females across 31 species (Fig. 7; Supp. Fig. 2; Table 2). 
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Figure 2. Larger body mass is not correlated with neoplasia prevalence (A) or 

malignancy prevalence (B) across 100 bird species. Dot size indicates the 

number of necropsies per species. Colors show the taxonomic order of each 

species, and black lines show the phylogenetically-controlled linear regression of 

the logarithm of adult mass versus malignancy prevalence or neoplasia 

prevalence. 
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Figure 3. Longer lifespan is not correlated with neoplasia prevalence (A) or 

malignancy prevalence (B) across 59 bird species. Dot size indicates the number 

of necropsies per species. Colors show the taxonomic order of each species. 

Black lines show the phylogenetically-controlled linear regression of the 

normalized values of species lifespan versus malignancy prevalence or neoplasia 

prevalence. 
 

 
 
 
 

 

Figure 4. Incubation length is not correlated with neoplasia prevalence (A) or 
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malignancy prevalence (B) when controlling for body mass across 34 bird 

species. Different colors indicate the order in which each species belongs and 

the size of the dot indicates the number of necropsies per species. Black lines 

show the phylogenetically-controlled linear regression of incubation length versus 

malignancy prevalence or neoplasia prevalence. 
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Figure 5. Larger clutch size is correlated with neoplasia prevalence (A) and 

malignancy prevalence (B) across 51 bird species. The -1 * (Clutch size)-0.125 

function was suggested by the Tukey transform to make the clutch size data into 

a normal distribution. After controlling for species body mass, the positive 

correlation between clutch size and neoplasia prevalence (P-value = 0.005; 

Table 2) and malignancy prevalence (P-value = 0.0014; Table 2) remains 

significant. Dot size indicates the number of necropsies per species. Colors show 

the taxonomic order of each species. Black lines show the phylogenetically 

controlled linear regression of the normalized values of clutch size versus 

malignancy prevalence or neoplasia prevalence. 
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Figure 6. Sexual dimorphic traits are not correlated with neoplasia or malignancy 

prevalence in birds. The degree of dimorphism in brightness is not correlated 

with neoplasia prevalence (A) or malignancy prevalence (B) across 18 species of 

birds. The degree of dimorphism in hue is not correlated with neoplasia 

prevalence (C) or malignancy prevalence (D) across 24 species of birds. The 

degree of dimorphism in mass is not correlated with neoplasia prevalence (E) or 

malignancy prevalence (F) across 47 species of birds. The degree of dimorphism 

in tail size is not correlated with neoplasia prevalence (G) or malignancy 

prevalence (H) across 34 species of birds. A positive score on the x-axis 

indicates that the species has a relatively higher score in that trait in males than 

females, whereas a negative score on the x-axis shows that the species has a 

relatively higher score in that trait in females than males. Black lines show the 

phylogenetically-controlled linear regression of the degree of dimorphism in the 

trait versus neoplasia prevalence or malignancy prevalence. Different colors 

indicate the order in which each species belongs and the size of the dot indicates 

the total number of necropsies per species. 
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Figure 7. Neoplasia (A) and malignancy prevalence (B) are not significantly 

different between females and males across 31 bird species. Horizontal bars 

show the median neoplasia (A) or malignancy prevalence (B). We added minimal 
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jitter for better visualization of individual data points. 

 
Tables 

 
Table 1. Species (A, B) with the highest and lowest malignancy prevalence 

and neoplasia prevalence. 

A. Species with the highest neoplasia prevalence and lowest 

malignancy prevalence. This table includes 10 species with the highest neoplasia 

prevalence and lowest malignancy prevalence in our dataset (supplementary 

data). Another 54 species in our dataset have 0% malignancy prevalence 

(Supplementary data). 
 

 

Species (common 
name) 

↑ Neoplasia 
prevalence 
(necropsies) 

Species (common 
name) 

↓ Malignancy 
prevalence 
(necropsies) 

 29.03% (31) Spheniscus 
demersus (African 
penguin) 

0% (210) 

Platalea ajaja 

(roseate spoonbill) 
  

Ardeola speciosa 
(javan pond heron) 

21.4% (42) Lophura edwardsi 
(Edwards's 
pheasant) 

0% (110) 

Anas platyrhynchos 
(mallard duck) 

21.2% (33) Agapornis nigrigenis 
(black-cheeked 
lovebird) 

0% (108) 

Melopsittacus 
undulatus 
(budgerigar) 

20.7% (477)  0% (105) 

 Eudocimus ruber 
(scarlet ibis) 

 

Athene cunicularia 
(burrowing owl) 

20.8% (24) Pitta sordida 
(hooded pitta) 

0% (89) 

Numida meleagris 
(lebanonfowl) 

16.6% (54) Rollulus rouloul 
(crested partridge) 

0% (80) 

 
Aix sponsa (wood 
duck) 

15.1% (33) Trichoglossus 
moluccanus 
(rainbow lorikeet) 

0% (80) 
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Netta rufina (red 
crested pochard) 

15% (20) Theristicus 
melanopis (black- 
faced ibis) 

0% (72) 

Rhea americana 

(greater rhea) 
14.2% (21) Eos bornea (red lory) 0% (60) 

Agapornis fischeri 
(Fischer's lovebird) 

14.2% (28) Copsychus 
malabaricus (white- 
rumped shama) 

0% (59) 

 

B.  Species with the highest malignancy prevalence and lowest 

neoplasia prevalence. This table includes 10 species with the highest malignancy 

prevalence and lowest neoplasia prevalence in our dataset (supplementary 

data). Another 34 species in our dataset have 0% neoplasia prevalence 

(Supplementary data). 
 

Species (common 
name) 

↑ Malignancy 
prevalence 
(necropsies) 

Species (common 
name) 

↓ Neoplasia 
prevalence 
(necropsies) 

Melopsittacus 
undulatus 
(budgerigar) 

17.4% (477) Spheniscus 
demersus (African 
penguin) 

0% (210) 

 16.6% (24) Lophura edwardsi 
(Edwards's 
pheasant) 

0% (110) 

Athene cunicularia 
(burrowing owl) 

  

Anas platyrhynchos 
(mallard duck) 

12.1% (33)  0% (89) 

 Pitta sordida 

(hooded pitta) 
 

Meleagris 
gallopavo (wild 
turkey) 

11.2% (71)  0% (80) 

 Rollulus rouloul 
(crested partridge) 

 

 11.1% (54) Trichoglossus 
moluccanus 
(rainbow lorikeet) 

0% (80) 

Numida meleagris 
(lebanonfowl) 

  

Acryllium vulturinum 
(vulturine 
guineafowl) 

10.2% (39)  
Theristicus 
melanopis (black- 
faced ibis) 

0% (72) 



107 

Nymphicus 
hollandicus 
(cockatiel) 

10% (70) Copsychus 
malabaricus (white- 
rumped shama) 

0% (59) 

Colinus virginianus 
(northern bobwhite) 

10% (30) Chalcophaps indica 
(common emerald 
dove) 

 

 
0% (48) 

Leucopsar 
rothschildi (Bali 
myna) 

9.6% (52)  
Ptilinopus superbus 
(superb fruit dove) 

 

 
0% (48) 

Rhea americana 
(greater rhea) 

9.5% (21) Crex crex 
(corncrake) 

 
0% (47) 

 

Table 2. Summary statistics. We present the summary statistics of phylogenetic 

regressions (PGLS) between neoplasia and malignancy prevalence and life 

history variables, except for the comparison of neoplasia and malignancy 

prevalence in females and males for which we present the summary statistics of 

paired-samples sign tests. The number of species analyzed is different in the 

majority of analyses. This is due to the fact that not all life history variables are 

available for every species in the literature. In the 1st P-value column we report 

the P-value of the first variable (i.e., variable A in the multivariate analysis), and 

in the 2nd P-value column we report the P-value of variable B. We highlight the 

P-values that passed the False Discovery Rate (FDR) correction with an asterisk 

(*). In the F-statistics column we report the F-statistics of variable A, and in the 

“Type of Association” column we report the positive (+) or negative (–) correlation 

between the variable A and the prevalence of neoplasia or malignancy. High 

lambda values show that the associations are mainly explained by common 

ancestry. † indicates that the R² value was not available. 
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Independent variable(s) Figure Dependent variable R² F-statistic and degrees of freedom 
(DF) 

Lambda Type of association P-value of variable A P-value of variable 
B 

log10 adult mass 2A Neoplasia prevalence 0.91 3.19 on 1 and 98 DF 0.00006 + 0.07 NA† 

 
2B Malignancy 

prevalence 
0.91 1.09 on 1 and 98 DF 0.22 + 0.29 NA† 

lifespan0.425 3A Neoplasia prevalence 0.95 0.04 on 1 and 57 DF 0.00006 – 0.82 NA† 

  
 
3B 

 
 
Malignancy 
prevalence 

 
 

0.95 

 
 
0.15 on 1 and 57 DF 

 
 
0.00006 

 
 
– 

 
 
0.69 

 
 

NA† 

incubation length 4A Neoplasia prevalence 0.93 0.47 on 1 and 32 DF 0.00006 + 0.49 NA† 

  
 
4B 

 
 
Malignancy 
prevalence 

 
 

0.93 

 
 
2.73 on 1 and 32 DF 

 
 
0.00006 

 
 
+ 

 
 
0.10 

 
 

NA† 

–1 · clutch size–0.125 5A Neoplasia prevalence 0.99 8.31 on 1 and 49 DF 0.00006 + 0.005* NA† 

  
 
5B 

 
 
Malignancy 
prevalence 

 
 

0.99 

 
 
10.80 on 1 and 49 DF 

 
 
0.01 

 
 
+ 

 
 
0.0019* 

 
 

NA† 

–1 · clutch size–0.125 + log10 
adult mass 

 
Neoplasia prevalence 0.17 8.38 on 1 and 48 DF 0.00006 + 0.005* 0.19 

   
 
Malignancy 
prevalence 

 
 

0.17 

 
 
11.48 on 1 and 48 DF 

 
 
0.00006 

 
 
+ 

 
 
0.0014* 

 
 
0.05 

–1 · clutch size–0.125 (having 
excluded domesticated and 
semi-domesticated species) 

Supp. Fig. 4A Neoplasia prevalence 0.99 3.68 on 1 and 43 DF 0.009 + 0.06 NA† 

 
Supp. Fig. 4B Malignancy 

prevalence 
0.99 8.78 on 1 and 43 DF 0.00006 + 0.004* NA† 
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–1 · clutch size–0.125 + log10 
adult mass (having excluded 
domesticated and semi-
domesticated species) 

 
Neoplasia prevalence 0.08 3.91 on 1 and 42 DF 0.00006 + 0.05 0.35 

  Malignancy prevalence 0.1 8.9 on 1 and 42 DF 0.00006 + 0.004* 0.21 

degree of dimorphism in 
brightness 

6A Neoplasia prevalence 0.75 1.00 on 1 and 16 DF 0.11 + 0.33 NA† 

  
 
6B 

 
 
Malignancy prevalence 

 
 
0.73 

 
 
0.09 on 1 and 16 DF 

 
 
0.33 

 
 
+ 

 
 
0.76 

 
 

NA† 

degree of dimorphism in hue 6C Neoplasia prevalence 0.44 0.09 on 1 and 22 DF 0.10 – 0.76 NA† 

  
 
6D 

 
 
Malignancy prevalence 

 
 
0.41 

 
 
0.15 on 1 and 22 DF 

 
 
0.35 

 
 
– 

 
 
0.69 

 
 

NA† 

degree of dimorphism in mass 6E Neoplasia prevalence 1 1.14 on 1 and 45 DF 0.24 – 0.28 NA† 

  
 
6F 

 
 
Malignancy prevalence 

 
 
1 

 
 
0.10 on 1 and 45 DF 

 
 
0.32 

 
 
– 

 
 
0.74 

 
 

NA† 

degree of dimorphism in tail 
size 

6G Neoplasia prevalence 1 0.03 on 1 and 32 DF 0.40 – 0.84 NA† 

  
 
6H 

 
 
Malignancy prevalence 

 
 
1 

 
 
0.11 on 1 and 32 DF 

 
 
0.60 

 
 
+ 

 
 
0.73 

 
 

NA† 

sex 7A Neoplasia prevalence 97.1% CI = -0.05 - 0% 
  

0.16 NA† 
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7B Malignancy 

prevalence 
97.1% CI = 0 - 0.01% 

  
0.66 NA† 

log10 (adult mass · lifespan) Supp. Fig. 1A Neoplasia prevalence 0.97 0.06 on 1 and 55 DF 0.00006 + 0.79 NA† 

  
 
Supp. Fig. 1B 

 
 
Malignancy 
prevalence 

 
 

0.97 

 
 
0.001 on 1 and 55 DF 

 
 

0.00006 

 
 
– 

 
 

0.97 

 
 

NA† 

 
 
 

Discussion  

 

We hypothesized that differences in life-history traits, including clutch size, 

may explain some of the variation in cancer prevalence across managed bird 

species. Species varied in their clutch sizes from scarlet-chested sunbirds laying 

on average 1.85 eggs, to greater rheas laying >10 times as many (23 eggs on 

average). We found that clutch size explained a statistically significant portion 

(17%) of the variation in cancer prevalence when controlling for log10 adult mass. 

Species with larger clutch size had higher malignancy and neoplasia prevalence, 

even after FDR corrections and controlling for body mass. The positive 

correlation between clutch size and malignancy prevalence remained significant 

even after removing domesticated and semi-domesticated species from the 

analysis. However, no other life-history trait that we measured, such as adult 

body mass, lifespan, incubation length, sexual size dimorphism or sexual 

dichromatism, explained the variance in avian cancer prevalence, nor was there 

a significant difference in cancer or neoplasia prevalence between male and 

female birds. 
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Body mass and lifespan are not associated with cancer in birds under 

human care 

Our observations in populations of birds managed under human care 

show no significant correlation between neoplasia or malignancy prevalence and 

adult body mass, lifespan, or adult mass times lifespan in birds, supporting 

Peto’s paradox(Peto et al., 1975); however, these results are in contrast to the 

observation of cancer in free-living birds(Møller et al., 2017). While there is a 

trend in our data for larger birds to have more cancer, this was not statistically 

significant (P-value = 0.29). If there is a real discrepancy between our study and 

that of Møller et al.(Møller et al., 2017), it may be due to the different number of 

individuals sampled per species ( ≥3 records per species in Møller et al.(Møller et 

al., 2017) versus ≥20 necropsies per species in our study), the different species of 

birds analyzed (238 free-living bird species in Denmark(Møller et al., 2017) 

versus 108 managed bird species from multiple institutions), or body mass 

mostly measured with a precision balance(Møller et al., 2017) versus collected 

from the literature. In addition, birds collected by Mølller et al. were mostly killed 

by hunters (both human and non-human), whereas those in our study were 

protected from predation and thus allowed to live long enough to succumb to 

various diseases of old age, including cancer. Unfortunately, only six species of 

birds are included in both Møller et al.(Møller et al., 2017) and this study, limiting 

our ability to compare cancer prevalence in wild versus managed birds. In 

general, patterns of tumor incidence or neoplasia prevalence were consistent 

between these free-living birds and populations managed under human care 

https://paperpile.com/c/QfSXEN/pxsV0
https://paperpile.com/c/QfSXEN/yHJ4U
https://paperpile.com/c/QfSXEN/yHJ4U
https://paperpile.com/c/QfSXEN/yHJ4U
https://paperpile.com/c/QfSXEN/yHJ4U
https://paperpile.com/c/QfSXEN/yHJ4U
https://paperpile.com/c/QfSXEN/yHJ4U
https://paperpile.com/c/QfSXEN/yHJ4U
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(Supplementary Table 1). Therefore, while there are many potential sources of 

error in the enumeration of the life-history traits and neoplasia prevalence in 

either wild or managed birds, it is promising that there is consistency in shared 

data trends across studies. 

Interestingly, the roseate spoonbill, ranked 18th in the order of longest to 

shortest living species among the 59 bird species with lifespan data in our 

dataset, has the highest neoplasia prevalence (29.03%), but no reported 

malignancy (0% malignancy prevalence). We found that birds that live longer do 

not have significantly higher cancer prevalence than shorter-lived species, and 

there is not a skew in terms of more cancer deaths towards old age. This may be 

explained by the observation that long-lived birds have coevolved pathways that 

increase longevity in part through decreasing cancer rates(Roche et al., 2012; 

Wirthlin et al., 2018). Specifically, in long-lived birds, there is an increased 

selective pressure for genes related to controlling cell division and tumor 

suppression(Wirthlin et al., 2018). Long-lived mammals, such as bats, have extra 

copies of FBXO31 and mutations in the insulin-like growth factor 1 

receptor/growth-hormone receptor related to blocking the cell cycle and 

responding to DNA damage(Santra et al., 2009; Seim et al., 2013; Seluanov et 

al., 2018). The fact that erythrocyte telomeres of long-lived birds shorten at a 

slower pace than erythrocyte telomeres of shorter-lived birds(Haussmann et al., 

2003) may provide an additional mechanistic explanation for the lower than 

expected cancer prevalence in long-lived birds. 

Neoplasia and cancer prevalences are higher in species with larger clutch 

https://paperpile.com/c/QfSXEN/KkUN7%2BibJ4V
https://paperpile.com/c/QfSXEN/KkUN7%2BibJ4V
https://paperpile.com/c/QfSXEN/KkUN7
https://paperpile.com/c/QfSXEN/SIQZy%2BmaGVS%2BRP7o7
https://paperpile.com/c/QfSXEN/SIQZy%2BmaGVS%2BRP7o7
https://paperpile.com/c/QfSXEN/0tnE4
https://paperpile.com/c/QfSXEN/0tnE4
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sizes 

Our results are consistent with previous findings that larger litter size is 

associated with cancer prevalence in mammals(Abegglen et al., 2015; Boddy et 

al., 2020a). Many of the life-history traits described in this article, such as body 

mass, number of offspring produced, incubation time, and longevity, are tightly 

linked with each other(Charnov, 1993; Clutton-Brock, 1991; Kihlström, 1972; 

Stearns, 1992; West et al., 2000) (Supp. Fig. 5). No significant correlations were 

found between cancer prevalence and lifespan, adult mass, or 

incubation/gestation length in birds or mammals(Boddy et al., 2020a). Larger 

clutch size is correlated with malignancy prevalence and neoplasia prevalence, 

even after corrections for multiple testing and controlling for species body mass. 

This discrepancy between clutch size predicting neoplasia prevalence but not the 

other (correlated) life-history variables may be due to the fact that we only have 

clutch size data on a subset of the species (51 bird species) for which we have 

other life-history data (e.g. 100 bird species with adult mass data). It could also 

be that distinct molecular pathways associated with clutch size have coevolved 

with increased neoplasia and malignancy prevalence.  

We found that when including domesticated species in the analyses, both 

malignancy and neoplasia prevalence are positively correlated with clutch size, 

however, when excluding domesticated species, only malignancy prevalence 

remains positively correlated with clutch size; indicating that differential selection 

pressures may be acting on neoplasia versus malignancy. While most 

aviariesuse natural light, we speculate that the exposure to artificial light could be 

one explanation for the association between neoplasia prevalence and clutch 

https://paperpile.com/c/QfSXEN/WNHxf%2B5hAhH
https://paperpile.com/c/QfSXEN/WNHxf%2B5hAhH
https://paperpile.com/c/QfSXEN/u8GA7%2BvSN9C%2BTDKuy%2B3DOtv%2BpxjLa
https://paperpile.com/c/QfSXEN/u8GA7%2BvSN9C%2BTDKuy%2B3DOtv%2BpxjLa
https://paperpile.com/c/QfSXEN/5hAhH
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size when domesticated species are included in the analysis. Artificial light is 

used in poultry industries, as well as parakeet breeding, to lengthen the hours of 

egg laying(Schlumberger, 1954; Staffe, 1951), and such prolonged exposure to 

light of high intensity has been suggested to cause hyperplasia and neoplasia in 

the pituitary(Schlumberger, 1954). 

  

https://paperpile.com/c/QfSXEN/Jiveo%2BnMzpV
https://paperpile.com/c/QfSXEN/nMzpV
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Is sexual dimorphism or dichromatism correlated with cancer prevalence in 

birds? 

The strength of sexual selection could impose energetic constraints 

resulting in tradeoffs between investment in mate competition and somatic (anti- 

cancer) maintenance(Boddy et al., 2015). Sexually dimorphic or dichromatic 

species with extreme phenotypes, such as large and colorful ornaments or 

weapons, may have an increased risk of cancer(Boddy et al., 2015). This may be 

because selection for rapid cell growth in these tissues leads to the potential 

increased tumor growth as a byproduct. It may also be that there is selection for 

increased allocation of resources towards these costly sexual traits(Doutrelant et 

al., 2012; Kemp et al., 2011) at the expense of DNA repair and immune 

defenses(Boddy et al., 2015). However, even though testosterone in male red-

legged partridges can increase the concentration of carotenoids, responsible for 

colorful traits, and testosterone suppresses the immune system, carotenoids also 

have immunoenhancing effects(Blas et al., 2006). We found no significant 

difference in cancer prevalence in relation to sexual dimorphism and 

dichromatism. When factoring in both hue (the dominant wavelength of color) 

and brightness (the intensity of color), the degree of sexual dichromatism showed 

no significant correlation with neoplasia or malignancy prevalence. While most 

males tend to be larger than the females, that is not always the case, especially 

within birds of prey(Amadon, 1975). When examining the degree of sexual size 

dimorphism, we found no significant difference in cancer prevalence and differing 

sizes between sexes. This means that sexually dimorphic birds who spend time 

and energy in creating colorful plumage or larger body parts do not seem to pay 

https://paperpile.com/c/QfSXEN/q8SXJ
https://paperpile.com/c/QfSXEN/q8SXJ
https://paperpile.com/c/QfSXEN/XyHSm%2B1Nei5
https://paperpile.com/c/QfSXEN/XyHSm%2B1Nei5
https://paperpile.com/c/QfSXEN/q8SXJ
https://paperpile.com/c/QfSXEN/NUEbd
https://paperpile.com/c/QfSXEN/FpYtO
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a cost in terms of cancer susceptibility. It is possible that the birds in our study 

did not experience such tradeoffs because in captivity they may have high 

energy budgets that allow them to invest both in sexually selected traits as well 

as in somatic maintenance in the form of cancer suppression. The same might 

not be the case for wild birds who are under greater energetic constraints and 

might therefore be more likely to experience tradeoffs. 

Do female birds have higher cancer prevalence than male birds? 

 
Cancer rates in most other species, including humans, are biased toward 

males(Dorak & Karpuzoglu, 2012). Current theory states that the double X 

chromosome found in females may offer some cancer protection(Dorak & 
 

Karpuzoglu, 2012). For example, if the X chromosome carries a cancer-inducing 
 

mutation, the extra X chromosome present in females may carry a non- 

deleterious variant of the allele, whereas males (XY) without the extra X 

chromosome would not have this protective variant. In alignment with the two-X 

chromosome theory of cancer protection, previous work has shown that female 

birds (ZW) have more neoplasms than male birds (ZZ), but this was not validated 

statistically with sex-specific neoplasia prevalence(Effron et al., 1977a). We 

found that females do not have significantly different neoplasia prevalence or 

malignant prevalence than male birds. This analysis was done excluding 

reproductive cancers because living in managed environments with controlled 

reproduction could be affecting the animals’ susceptibility to cancers of the 

reproductive system. 

 
  

https://paperpile.com/c/QfSXEN/cuekT
https://paperpile.com/c/QfSXEN/cuekT
https://paperpile.com/c/QfSXEN/cuekT
https://paperpile.com/c/QfSXEN/CXPZT
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Future directions 
 

We constructed a large and high-quality dataset including not only a 

significantly larger number of life history variables for birds than previous studies, 

but also detailed necropsy information for a large number of individuals per 

species, allowing greater error reduction, the inclusion of potential covariant 

traits, as well as the ability to distinguish benign and malignant tumors. Still, our 

study does not have information about the exact tissue where neoplasms were 

found in every individual, and future studies would benefit from knowledge of the 

relationships between distinct cancer types and life history in birds. There may 

also be evolutionary mismatches between animals in zoological institutions and 

in the wild. For example, 84% of the mammalian species analyzed by Tidière et 

al.(Tidière et al., 2016) lived longer in zoos than in the wild. Future studies using 

a larger dataset with tracked life history and cancer records for every individual 

and tissue from birds in zoological institutions and in the wild would be helpful to 

better understand the role of life-history traits in cancer susceptibility. 

Recent studies have focused on the evolutionary history of specific 

oncogenes in birds(Opazo et al., 2021). Specifically, the expansion of an 

oncoprotein, Golgi phosphoprotein 3, may contribute to birds’ relatively lower 

cancer susceptibility(Opazo et al., 2021) compared to mammals(Effron et 

al.,1977a; Madsen et al., 2017b; Pesavento et al., 2018). Although Golgi 

phosphoprotein 3 has many functions, such as modulating the dynamics of 

adhesion(Arriagada et al., 2019) and regulating the function of 

mitochondria(Nakashima-Kamimura et al., 2005), its exact molecular association 

https://paperpile.com/c/QfSXEN/pWcjy
https://paperpile.com/c/QfSXEN/KsHZ4
https://paperpile.com/c/QfSXEN/KsHZ4
https://paperpile.com/c/QfSXEN/CXPZT%2B2B1MQ%2BJxf24
https://paperpile.com/c/QfSXEN/CXPZT%2B2B1MQ%2BJxf24
https://paperpile.com/c/QfSXEN/CXPZT%2B2B1MQ%2BJxf24
https://paperpile.com/c/QfSXEN/k1h1J
https://paperpile.com/c/QfSXEN/L1V6U
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with cancer suppression is not entirely clear(Opazo et al., 2021). Future work 

could examine the possible variation in the number of oncogenes and tumor- 

suppressors across bird species to identify how they are linked with cancer 

susceptibility and large clutch/litter size, and whether this correlation occurs in 

wild animals or is an artifact of domestication and artificial selection. 

Several ecological factors may be driving many of the cancers in birds in 

our dataset. Previous work in chickens has shown that spontaneous and 

experimental infection with toxoplasma leads to the development of glioma-like 

tumors(Erichsen & Harboe, 1953; Schuman et al., 1967). Tumors were also 

detected in 25 out of 1669 free-living birds in the area of Chernobyl and were 

positively correlated with exposure to radiation(Møller et al., 2013). To assess 

whether infections, radiation, or even nutritional factors, such as carcinogenic 

fungal aflatoxins(Imazeki et al., 1995; Uchida et al., 1988) and carnivorous 

diets(Kapsetaki et al., 2021), are associated with the malignancies and 

neoplasms of birds in our dataset, a systematic analysis of the carcinogens that 

these birds may be exposed to in managed settings would be necessary. This 

would also inform us about potential mechanisms that protect birds from 

radiation-induced DNA damage(Galván et al., 2014), as well as associations 

between unpredictable environments and fast life history strategies (e.g. 

production of more offspring)(Ellis et al., 2009) that explain cancer susceptibility 

across species. 

 
 
 
 
 

https://paperpile.com/c/QfSXEN/KsHZ4
https://paperpile.com/c/QfSXEN/Qqcqf%2BCO0r3
https://paperpile.com/c/QfSXEN/Z8d7o
https://paperpile.com/c/QfSXEN/88ka2%2B74IxM
https://paperpile.com/c/QfSXEN/Z1IXe
https://paperpile.com/c/QfSXEN/re1uQ
https://paperpile.com/c/QfSXEN/XCW2H
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Conclusions 
 

We explored cancer prevalence across 108 managed species of birds. We 

found that among the examined life history factors, only clutch size was 

correlated (positively) with malignancy prevalence and neoplasia prevalence. Our 

findings are consistent with previous work which looked across 37 species of 

mammals in managed environments, finding that species with larger litter sizes 

were more vulnerable to cancer(Boddy et al., 2020a). Further work is necessary, 

however,to examine whether these patterns hold up in wild and free-ranging 

populations. 
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CHAPTER 6 
 

NO PETO! BODY SIZE PREDICTS CANCER MORTALITY AMONG PUREBRED 

DOGS 

Introduction: More Than Best Friends 

 
Throughout my dissertation work the only consistent point of disagreement 

between Dr. Maley and myself was what was to be considered an appropriate 

title for a forthcoming manuscript. That said, I hope the reader can appreciate the 

irony that the title of this paper, although suggested by Marc Tollis, came with no 

objections. Canis lupus familiaris is a fascinating case for understanding the 

tension between natural and unnatural, or artificial, selection. Even when 

compared to plant species, dogs hold the record for the species with the longest 

history of domestication. Domestication of our soon to be best friends extends 

tens of thousands of years to the paleolithic period and has resulted in an 

extreme diversity of phenotypic outcomes(Galibert et al., 2011). Our close 

accompaniment with dogs, typically for the duration of their life, and our ever 

increasing vested interest in their healthcare have dramatically increased the 

study of their commonly occurring ailments. 

Another striking commonality that dogs share with humans is their high 

prevalence of both benign and malignant tumors(Schiffman & Breen, 2015). This 

circumstance allows for a second recognition to be bestowed, dogs are often cited 

as the landmark species for comparative oncology studies. Lifetime healthcare 

surveillance, high propensity for spontaneous tumor generation, and cancer 

genomic profiles that are highly similar to human malignancies all make dogs the 

ideal species for comparison. However, to me, is their “natural” evolutionary history 

https://paperpile.com/c/QfSXEN/0wdbi
https://paperpile.com/c/QfSXEN/ONCi5


122 

and their subsequent and often divergent domestication pressures that shapes the 

most compelling story. The major finding in the paper can nearly be entirely 

extracted from its title, body size is an excellent predictor of the differences in 

cancer mortality across dog breeds. Yet it is the subfinding within this analysis that 

more perfectly constructs the evolutionary story I want to tell. 

Genomic surveys have proven that all extant dog breeds share a common 

ancestor dating back some 15,000 years ago(Parker, 2012). It takes no 

imaginative stretch to say this common ancestor was phenotypically recognizable 

as what we know today are wolves. Similarly non-imaginative, the first selective 

steps in their domestication would not have been for the largest phenotypes 

among this population of now captive wolves. Now, we know for sure that the 

largest of modern dog breeds, the great dane, was only first bred at most 400 

years ago. Within an eyeblink of evolutionary time there have been incredibly 

consequential human-directed modifications to average body size across dog 

breeds. Among these consequences the most compelling highlighted by the 

following manuscript is the dramatic spike in sarcoma mortality in larger dog 

breeds. 

There is some variation in time to sexual maturity (also considered the 

time the animal reaches its adult body mass) across dog breeds but given that all 

dogs are the same species the differences are marginal. A Chihuahua will reach 

sexual maturity in 6-9 months while a Great Dane will reach it within 18-24 

months. Even if we are only considering the connective tissue involved in these 

two radically different body architectures, the difference in sheer volume that 

needs to be developed is considerable. I would hypothesize that the body 

https://paperpile.com/c/QfSXEN/opmOP
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development of the Great Dane would require some lessening of the controls of 

cell proliferation within the connective tissues during its developmental period, a 

lessening that very well could foster a system of cellular apoptotic escape. 

Many of our cross-species comparative oncology studies have included 

some functional cell studies to measure apoptotic sensitivity to induced DNA 

damage sensitivity. An adjacent experiment that may be useful in validating my 

above hypothesis would be to culture some osteogenic cells from two dog breeds 

with significantly different adult body sizes and compare 1) total cell turnover, 2) 

mutational burden after time period, 3) apoptotic response. Much of osteogenic 

cell culture requires some 2 and 3 dimensional scaffolding which may make a 

system like organoids a viable candidate(Akiva et al., 2021; S. Chen et al., 2022). 

 
 

Abstract 
 

Domestic dogs have been bred for many traits. In some cases, artificial selection 

for desirable traits has resulted in an increased frequency of diseases such as 

cancer. The large variation in phenotypic traits across breeds, and the relatively 

high levels of inbreeding within breeds, provides a natural experiment for 

exploring drivers of cancer risk within a species. We conducted a meta-analysis 

of four studies to examine factors associated with cancer mortality across 201 

dog breeds, and 181,413 individual dogs, from the UK, Denmark and the US. We 

found that breed body size explains more variation in cancer mortality than either 

lifespan or inbreeding. Thus, there is no Peto’s Paradox for purebred dogs. 

Relatively high mortality due to sarcomas in large breeds supports an 

https://paperpile.com/c/QfSXEN/yPX1y%2BM5Bpk


124 

evolutionary mismatch hypothesis, in which selective breeding for rapid growth 

and large body size may have left many modern dog breeds without proper 

cancer suppression mechanisms such as efficient DNA repair or apoptotic 

responses. 

 
 
Introduction 
 

Dogs are humankind’s most widespread animal companions and were the 

first animals to be domesticated before the advent of agriculture (Frantz et al., 

2016). Over the course of this mutual history, humans have bred and utilized 

dogs for working, hunting, and companionship. Selective breeding for highly 

desirable physical and behavioral traits has resulted in hundreds of modern dog 

breeds, with 202 breeds recognized by the American Kennel Club and over 300 

recognized by the Kennel Club of the United Kingdom. One trait common to 

many dog breeds is a lifetime risk of cancer that is similar to humans (Schiffman 

& Breen, 2015), making neoplasia a leading cause of mortality in dogs (Fleming 

et al., 2011). Certain types of cancers are so prevalent in specific breeds that 

veterinarians often diagnose the cancer without invasive scanning (Schiffman & 

Breen, 2015). For instance, brachycephalic breeds such as Boston Terriers, 

French Bulldogs, and Boxers are particularly susceptible to glial neoplasms and 

are frequently diagnosed with brain tumors (Song et al., 2013). As the onset and 

progression of many canine cancers resemble those of human cancers, dogs 

have been recognized as potentially better models for understanding cancer 

development (Schiffman & Breen, 2015) than other more widely studied species 

https://paperpile.com/c/QfSXEN/NX4gt
https://paperpile.com/c/QfSXEN/NX4gt
https://paperpile.com/c/QfSXEN/ONCi5
https://paperpile.com/c/QfSXEN/ONCi5
https://paperpile.com/c/QfSXEN/vvXsy
https://paperpile.com/c/QfSXEN/vvXsy
https://paperpile.com/c/QfSXEN/ONCi5
https://paperpile.com/c/QfSXEN/ONCi5
https://paperpile.com/c/QfSXEN/Ty5XD
https://paperpile.com/c/QfSXEN/ONCi5
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such as rodents. 

The wide variety of recognized dog breeds vary extensively in their body 

sizes, which may have important ramifications for their relative cancer risk, and 

understanding the relationship between breed size and cancer risk may improve 

preventative and therapeutic measures for cancer in dogs. Theoretically, the 

greater number of cells in larger and longer-lived multicellular animals should 

carry a greater lifetime risk of oncogenic mutation (Peto et al., 1975). However, 

cancer prevalence does not scale with body size across species (an observation 

dubbed “Peto’s Paradox”) (Abegglen et al., 2015; Boddy et al., 2020b). At the 

same time, lifetime risk is associated with body size for nonsmoking related 

cancers (Albanes, 1998) as well as melanoma (Lahmann et al., 2016)in humans. 

Therefore, while body size does not predict cancer risk across species, it 

appears to predict cancer risk within species. This opposition of a statistical trend 

when analyzed within or between groups (or species) is known as “Simpson’s 

Paradox” (Simpson, 1951). Because dogs are among the most widespread and 

beloved animal companions for humans, we set out to determine if breed body 

size is associated with differences in cancer risk. Inbreeding may also play a role 

in cancer risk across dog breeds, increasing the prevalence of cancer-prone 

(deleterious) alleles among dogs. High levels of linkage disequilibrium in the dog 

genome, stemming from the establishment of small breeding populations, has 

decreased genetic diversity(Sutter et al., 2004), and an excess of deleterious 

mutations in the dog genome compared to the wolf genome, are likely due to 

selection for traits other than reproductive fitness in breeding efforts (Cruz et al., 

https://paperpile.com/c/QfSXEN/pxsV0
https://paperpile.com/c/QfSXEN/WNHxf%2ByqO23
https://paperpile.com/c/QfSXEN/1dFkP
https://paperpile.com/c/QfSXEN/1A6B7
https://paperpile.com/c/QfSXEN/IMMVy
https://paperpile.com/c/QfSXEN/n5QtP
https://paperpile.com/c/QfSXEN/bj2aP
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2008). Several studies have demonstrated the accumulation of deleterious 

mutations by identifying specific genes that are linked to diseases across 

breeds(Karlsson & Lindblad-Toh, 2008). To date, there have been few studies on 

the effect of inbreeding on dog health. 

 
Methods 

To determine the dynamics of cancer mortality risk in pure bred dogs, we 

collected cancer mortality and life history trait data of 201 dog breeds from the 

literature. The UK Kennel Club conducted two health studies based on 

questionnaires: one in 2004 sent to breeding clubs(UK KC 2004 Survey, n.d.), 

and another in 2014 sent to registered UK Kennel Club owners(2014 Pedigree 

Breed Health Survey, n.d.). We recorded the total number of dogs (living or 

dead), the total number of mortalities, the number of cancer incidences in living 

dogs, and the number of cancer-related mortalities from each individual breed 

survey summary. We also collected published data from the Danish Kennel Club 

(Proschowsky et al., 2003), including the total number of breed mortalities and 

the percent of cancer mortalities. The number of dogs in each breed that died 

from cancer was calculated by multiplying the cancer mortality rate for the breed 

by the total number of dogs observed for the breed. A fourth study from the U.S. 

used information from the Veterinary Medical Database (VMBD), which collected 

data from 27 Veterinary Medicine Teaching Hospitals in North America during 

1984 to 2004 (Fleming et al., 2011). The data was presented as the total number 

of mortalities per breed and the relative frequency of neoplastic mortality. The 

number of cancer mortalities was extracted from this data. After collecting the 

https://paperpile.com/c/QfSXEN/bj2aP
https://paperpile.com/c/QfSXEN/7Yg7x
https://paperpile.com/c/QfSXEN/zvpte
https://paperpile.com/c/QfSXEN/OuFZw
https://paperpile.com/c/QfSXEN/OuFZw
https://paperpile.com/c/QfSXEN/cPQ9x
https://paperpile.com/c/QfSXEN/vvXsy
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data from the individual studies, the data was combined by adding each of the 

observed counts of total mortalities together and the counts of cancer mortalities 

together. Because some studies categorized breeds differently, some breeds 

were combined into one entry. For example, one study only presented 

information for all types of dachshunds (Purebred Breed Health Survey, 2004), 

while others split dachshunds into several groups including wire- or smooth- 

haired (Pedigree Breed Health Survey, 2014). These groups were combined into 

one entry for dachshunds. We calculated the percentage of the total cancer 

incidence (including living and deceased dogs) and of cancer mortality from the 

combined values of all four studies. 

Heterozygosity data for 150 breeds was extracted from 

mydogdna.com(MyDogDNA® — Know Your Dog Better, n.d.). The percentage of 

heterozygosity for each breed was recorded when applicable. We also collected 

inbreeding coefficients from(Calboli et al., 2008), a study analyzing the inbreeding of 10 

breeds based on the pedigree of registered UK Kennel Club dogs. As the sources 

represent different methods of estimated genetic variation, the heterozygosity and 

inbreeding coefficients were compared based on the ten overlapping breeds through a 

linear regression. We took information on breed specific body size (lbs), weight class 

(small, medium, or large), average lifespan, and breed group (sporting, toy, etc.) from the 

American Kennel Club (AKC) and UK Kennel Club websites 

(https://www.akc.org/https://www.thekennelclub.org.uk) . If a range of values was given, 

we used the average value. The different types of cancers for 156 different dog breeds 

were also collected from the VMBD database. We recorded each type of cancer for each 

breed, then grouped the types of cancer into three categories: sarcoma, carcinoma, and 

https://paperpile.com/c/QfSXEN/50dkD
https://paperpile.com/c/QfSXEN/yXJQE
https://www.akc.org/
https://www.thekennelclub.org.uk/
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hematologic. The percentage of each type out of the total number of malignant tumors 

was calculated along with each breed separated into body mass ranges, consisting of 0 

to 20, 21 to 40, 41 to 60, 61 to 80, and 81 to 180 lbs. This data was used to compare the 

body mass ranges according to which cancers they were most susceptible to. 

We tested for the relationship between cancer mortality and life history variables 

(body mass, lifespan, and heterozygosity) using simple and multiple linear regressions 

and phylogenetic general least squares (PGLS) regressions. All analyses were 

conducted in the R environment(Development Core Team, 2011), and we only included 

data from breeds for which there were ≥100 total mortalities. Phylogenetic regressions 

account for the non-independence of model residuals due to common ancestry; we used 

a recent phylogeny for modern dog breeds (Parker et al., 2017)in the R package caper 

(Orme, n.d.)and obtained the maximum likelihood estimate for lambda which ranges 

between 0 (no phylogenetic signal in the data) or 1 (variance completely dependent on 

phylogeny). We selected the best performing model by comparing each model’s Akaike 

information criterion (AIC). 

 

Results 
The numbers of individual dogs, total mortalities, and number of breeds 

collected from each study are provided in Table 1. The breeds with the highest 

cancer mortality rates included Irish water spaniel (58.3%), flat-coated retriever 

(53.8%), Bernese mountain dog (47.9%), and golden retriever (45.6%) (Table 2). 

The breeds with the lowest cancer mortality rates included miniature pinscher 

(3.4%), chihuahua (7.5%), Pekingese (7.8%), and Pomeranian (8.4%) (Table 3). 

 

 

https://paperpile.com/c/QfSXEN/CcvpR
https://paperpile.com/c/QfSXEN/PbsuX
https://paperpile.com/c/QfSXEN/eqQzy
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Study # of Dogs # of Mortalities # of Breeds 

Pedigree Breed Health Survey (2014) 48,685 5,680 190 

Purebred Breed Health Survey (2004) 47,429 14,563 142 

Fleming et al. (2011) 80,306 72,376 82 

Proschowsky et al. (2003) 4,993 2,928 36* 

Total: 362,826 181,413 95,547 201** 

Table 1: A Summary of the Total Number of Dogs Observed Across Studies. 

*Some of the breeds in Proschowsky et. al. (2003) are grouped (ex: 

Sighthounds). **Total number of unique breeds across all four studies. 
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Breed % 

Cancer 
Mortalit y 

# of 
Mortalitie s 

# of Cancer 
Mortalitie s 

Heterozygosi ty 
(%) 

Weigh t 
(lbs) 

Lifespa n 
(years) 

Group 

Irish Water 
Spaniel 

58.3 103 60 31 56.5 12.5 Sportin g 

Flat-coated 
retriever 

53.8 873 470 29.5 65 9 Sportin g 

Bernese 
mountain dog 

47.9 629 301 29.4 94.5 7 Workin g 

Golden 
Retriever 

45.6 5515 2514 32 65 11 Sportin g 

Scottish 
Terrier 

45.2 564 255 23 20 12 Terrier 

Boxer 42.3 1464 620 26 65 11 Workin g 

Bullmastiff 42.1 273 115 29.9 115 9 Workin g 

Bouvier Des 
Flandres 

41.8 225 94 33.5 90 11 Herdin g 

Staffordshir e 
bull terrier 

41.0 188 77 33.4 31 13 Terrier 

Airedale 
terrier 

40.4 490 198 24.3 60 12.5 Terrier 

Table 2: The Ten Breeds with the Highest Cancer Rates. Each breed shown had 

data for more than 100 individuals. 
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Figure 1: Log10 body mass (lbs) as a predictor of cancer mortality rate. Dashed 

line shows phylogenetic generalized least square (PGLS) line, solid line is 

uncorrected regression line. 
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Breed % 

Cancer 
Mortalit y 

# of 
Mortalitie s 

# Cancer 
Mortalitie s 

Heterozygosit y 
(%) 

Weigh t 
(lbs) 

Lifespa n 
(years) 

Grou p 

Miniature 
Pinscher 

3.4 118 4 34.5 9 14 Toy 

Chihuahua 7.5 576 43 39.8 4.5 16 Toy 

Pekingese 7.8 552 43 29.5 14 13 Toy 

Pomerania n 8.4 617 52 37.3 5 14 Toy 

Dachshun d 9.4 2574 242 34.7 24 14 Houn d 

Pug 9.6 187 18 24.6 16 14 Toy 

Cavalier King 
Charles 
Spaniel 

10.3 905 93 25.4 15.5 13.5 Toy 

Maltese 10.5 457 48 35.1 7 13.5 Toy 

Yorkshire 
Terrier 

11.0 1042 115 36.4 7 13 Toy 

Whippet 11.8 541 64 31.3 32.5 13.5 Houn d 

Table 3: The Ten Breeds with the Lowest Cancer Rates. Each breed shown had 

data for more than 100 individuals. 

 

Predictors of cancer mortality in dog breeds 
Breed body size predicts cancer mortality in dogs, (Figure 1, R2 = 0.29, 

p=<0.001), as does lifespan (R2=0.132, p=<0.001); however there is a strong 

correlation between body size and lifespan in dogs (R2=0.3055). Therefore, when 

we included both in a multivariate phylogenetic regression, only body size was a 

significant predictor of cancer mortality (multivariate adjusted R2=0.2839, 

p=<0.001 for body size, p=0.2363 for longevity). Heterozygosity is also 

associated with cancer mortality (Table 4, R2=0.05, p=0.02). A multivariate 

phylogenetic regression of body size, lifespan and heterozygosity reaffirms that, 

when combined, only body size remains a significant predictor of cancer mortality 

(R2=, p=<0.001 for body size, p=0.9669 for longevity, p=0.2514 for 
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heterozygosity. 

 

 Predictor Overall 

 

Independent Variable 
 

Predictor 
 

p-predictor value 
 

Coefficients 
 

p-value 
 

R2 
 

lambda 

 
 

 
Lifespan 

Heterozygosity <0.01 0.106313  
 

 
<0.001 

 
 

 
0.3246 

 
 

 
0.77 Body Mass <0.001 -3.1465 

Lifespan Heterozygosity <0.01 0.11 <0.01 0.06 0.94 

Lifespan Body Mass <0.001 -3.15 <0.001 0.31 0.81 

Heterozygosity Body Mass 0.02 -2.78 0.02 0.05 0 

 
 
 
 
 
 

Cancer Mortality 

Lifespan <0.001 -0.60969  
 
 
 
 
 

<0.001 

 
 
 
 
 
 

0.2866 

 
 
 
 
 
 

0 

Body Mass <0.001 15.85583 

Heterozygosity 0.02177 -2.02539 

 
 

 
Cancer Mortality 

Lifespan 0.24 -0.17  
 

 
<0.001 

 
 

 
0.28 

 
 

 
0 Body Mass <0.001 15.25 

Cancer Mortality Heterozygosity 0.02 -0.61 0.02 0.05 0.46 

Cancer Mortality Body Mass <0.001 15.86 <0.001 0.29 0 

Cancer Mortality Lifespan <0.001 -2.03 <0.001 0.13 0 

 
 

 
Sarcoma Mortality 

Body Mass 0.6297 0.00045  
 

 
<0.001 

 
 

 
0.2913 

 
 

 
0 Lifespan <0.01 -0.05276 

 

Table 4: Summary statistics for predictors of cancer mortality. 

 

 
Types of cancer 

The increase in cancers in large dogs is not spread evenly across the 
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types of cancer (Figure 2). Larger dogs suffer far more sarcomas, the cancers 

originating in the skeletal and connective tissues. The relationship between 

increases in body mass and increased sarcoma mortalities in purebred dogs is 

one of the most striking examples of a single trait explaining much of the variation 

in risk for a specific cancer type (Pearson’s correlation r=0.38, p=5.03e-06). 

 

 

Figure 2: The Log10 product of body mass (lbs) and lifespan (yrs) as a predictor of 

sarcoma cancer mortality. Dashed line shows phylogenetic generalized least 

square (PGLS) line, solid line is uncorrected regression line. 
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Figure 3: Specific cancer type incidence average weight (lbs) range. “Other” 

category includes nondescript cancers and glioblastomas. 

 

Discussion 
The study of cancer across species is a relatively new field(Aktipis C. 

Athena et al., 2015), and lineage-specific variation in life history traits may confer 

different degrees of cancer risk across the tree of life(Boddy et al., 2015). One 

trait often associated with elevated cancer risk is body size. For instance, height 

is a risk factor for cancer mortality in humans(Batty et al., 2006; Kabat et al., 

2013), with one study showing increased risk of 12% for colorectal cancer, 7% 

for prostate cancer, and 6% for lung cancer with every 10 cm increase in 

height(Green et al.,2011). The fact that larger individuals get more cancer may be 

https://paperpile.com/c/QfSXEN/moiRy
https://paperpile.com/c/QfSXEN/moiRy
https://paperpile.com/c/QfSXEN/moiRy
https://paperpile.com/c/QfSXEN/q8SXJ
https://paperpile.com/c/QfSXEN/sJPBT%2BtK5se
https://paperpile.com/c/QfSXEN/sJPBT%2BtK5se
https://paperpile.com/c/QfSXEN/WX5uf
https://paperpile.com/c/QfSXEN/WX5uf
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due to increased lifetime caloric intake or the expression of more growth factors. 

Another explanation is that the risk of developing cancer should be a function of 

the number of cell divisions over an organism’s lifetime, and larger individuals are 

comprised of more cells. However, large and long-lived wild animals do not seem 

to suffer high mortality rates due to cancer, an observation known as Peto’s 

Paradox. This suggests that these lineages have evolved to somehow suppress 

cancer and has spawned a new field of comparative oncology(Abegglen et 

al.,2015; Schiffman & Breen, 2015). However, it appears that there has not yet 

been enough natural selection on dog breeds to compensate for the higher risk of 

cancer associated with having a larger body size. Or, in other words, there is an 

evolutionary mismatch between the large phenotypes we have selected, and 

canine survival, at least with respect to cancer mortality. 

Even the cancer mortality of small dogs (3.4-45.2%) is relatively high for 

mammals in captivity (ave. 9% from the San Diego zoo)(Boddy et al., 2020b). 

So,it is not the case that small dogs are protected from cancer, but rather that 

large dogs are extremely prone to cancer. Studying those large breeds of dogs 

holds the promise of discovering mechanisms of cancer susceptibility(Khanna et 

al.,2006), and perhaps even approaches to cancer prevention. 

The increase in sarcomas associated with large dogs is reminiscent of the 

relatively high incidence of sarcomas in human adolescence when the bones are 

growing the quickest. Large dogs (61-180lbs) reach adult body size at 

approximately the same age (12-18 months) as small dogs (4.5-20 lbs in 12-15 

months). Thus, the bones of large dogs have to grow rapidly. This may require a 

https://paperpile.com/c/QfSXEN/WNHxf%2BONCi5
https://paperpile.com/c/QfSXEN/WNHxf%2BONCi5
https://paperpile.com/c/QfSXEN/WNHxf%2BONCi5
https://paperpile.com/c/QfSXEN/yqO23
https://paperpile.com/c/QfSXEN/vgDNs
https://paperpile.com/c/QfSXEN/vgDNs
https://paperpile.com/c/QfSXEN/vgDNs
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relaxation on growth constraints, and perhaps even DNA error checking, that 

results in an increased risk of bone cancers. 

To our knowledge, this study is the first to test an association between 

inbreeding and cancer mortality. The outlier species in our initial study of cancer 

rates across species (Tasmanian devils and cheetahs) are famous for having 

gone through an extreme genetic bottleneck, resulting in very low levels of 

heterozygosity. This led us to hypothesize that inbreeding might generally lead to 

an elevated cancer risk. This indeed appears to hold true in dogs, though 

heterozygosity only explained 0.05177% of the variation in cancer mortality in our 

meta-analysis. Whether there is an association of heterozygosity and cancer 

mortality across species remains an open question. The artificial selection that 

humans have imposed on dogs has resulted in many human desired traits, but 

has come with the burden of increased cancer incidence, particularly in large 

dogs. The mechanisms behind this cancer susceptibility remain open questions. 

Peto’s Paradox appears to hold across species(Abegglen et al., 2015), in 

captivity. So far, in the two cases in which it has been studied, humans and dogs, 

Peto’s Paradox does not hold within species. This may be because, due to gene 

mixing within a species, larger members of the species do not generally evolve 

distinct cancer suppression mechanisms from smaller members of the same 

species. Future studies will have to determine if this is a general pattern within 

species and whether Peto’s Paradox holds for cancer incidence across species 

in the wild. 

  

https://paperpile.com/c/QfSXEN/WNHxf
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