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ABSTRACT  

More people live in cities or metropolitan areas than ever before, which 

encompass many types of urbanization. These areas are culturally diverse and 

densely populated heterogeneous landscapes that are shaped by socio-ecological 

patterns. Cities support human and wildlife populations that are influenced indirectly 

and directly by human decisions. This process can result in unequal access to 

environmental services and accessible green spaces. Additionally, biodiversity 

distribution is influenced by human decisions. Although neighborhood income can 

drive biodiversity in metropolitan areas (i.e., the ‘luxury effect’), other socio-cultural 

factors may also influence the presence and abundance of wildlife beyond simple 

measures of wealth. To understand how additional social factors shape distributions 

of wildlife, I ask, are patterns of wildlife distribution associated with neighborhood 

ethnicity, in addition to income and ecological landscape characteristics within 

metropolitan areas? Utilizing data from 38 wildlife cameras deployed in neighborhood 

public parks and non-built spaces in metro Phoenix, AZ (USA), I estimated 

occupancy and activity patterns of coyotes (Canis latrans), desert cottontail rabbits 

(Sylvilagus audubonii), and domestic cats (Felis catus) across gradients of median 

household income and neighborhood ethnicity, estimated by the proportion of Latinx 

residents. Neighborhood ethnicity appeared in the top models for all species, and 

neighborhood % of Latinx residents was inversely associated with presence of native 

Sonoran Desert animals (coyotes and cottontail rabbits). Furthermore, daily activity 

patterns of coyotes differed in neighborhoods with higher vs. lower proportion of 

Latinx residents. My results suggest that socio-cultural variables beyond income are 

associated with wildlife distributions, and that factors associated with neighborhood 

ethnicity may be an informative correlate of city-wide ecological patterns. In this 

research, I unraveled predictive social variables and differentiated wildlife 



   ii 

distribution across neighborhood gradients of income and ethnic composition, 

bringing attention to the potentially unequal distribution of mammals in cities. 
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INTRODUCTION 

More than half of the global human population now lives in metropolitan 

areas, and it is projected that this trend will continue in the coming years (United 

Nations 2018). Urbanization is characterized by rapid and widespread land use and 

land cover change that fragments wildlife habitat into distinct heterogenous 

landscapes, threatening biodiversity conservation and ecosystem service provisioning 

(Alberti & Marzluff 2004; Aronson et al. 2016; Cincotta et al. 2000; Grimm et al. 

2008; Moll et al. 2019; Scalenghe & Marsan 2009). Historical and systemic forces, 

such as racism and classism, have also separated people geographically across 

metropolitan areas, resulting in unequal access to ecosystem services, tree cover 

and green spaces, and weakens resident connections with nature (Locke et al. 2021; 

Turner et al. 2004). Although distributions of wildlife populations are shaped by the 

degree of urbanization (Aronson et al. 2014; Lepczyk et al. 2017; Lerman et al. 

2021; McKinney 2008), it is less clear how wildlife distributions in metro areas are 

influenced by social factors such as income and race. When metropolitan areas 

support biodiversity and positive human connections, they enhance sustainability and 

wellbeing, and thus better ensure a just and biodiverse future (Apfelbeck et al. 2020; 

Carter et al. 2014; McPhearson et al. 2016; Pickett et al. 2016). Despite habitat loss 

within metropolitan areas, residential properties and greenspaces – particularly 

moderately developed suburban areas – can support diverse wildlife communities, 

especially of species that have adapted to utilize residential properties (Lerman & 

Warren 2011; McKinney 2002). 

Residential landscapes are social-ecological systems that include 

neighborhoods of people with diverse lifestyles and values, as well as vegetation, 

wildlife, and other geographic and biophysical elements that shape wildlife habitat 

and resident experiences with nature (Cook et al. 2012; Larson et al. 2010; Roman 
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et al. 2018). Across metropolitan areas, population density and impervious surfaces 

(e.g., roads, buildings) are strongly associated with habitat availability and wildlife 

distribution across levels of urbanization (Shochat et al. 2010). Within residential 

areas with similar levels of urbanization, social factors affect the quality of habitat for 

many wildlife species, which can shape wildlife distributions (Hope et al. 2006; Loss 

et al. 2009; Luck et al. 2013; Magle et al. 2016). For example, the wealth of 

residents is often positively related to tree cover (Clarke et al. 2013) and biodiversity 

across many taxa (Ackley et al. 2015; Chamberlain et al. 2019; Davis et al. 2012; 

Leong et al. 2018; Li et al. 2019), and has been termed “the luxury effect” (Hope et 

al. 2003). The richness of medium to large-bodied mammals across cities also 

increases with wealth to various extents across US cities, while diversity strongly 

decreases with urban intensity (Magle et al. 2021), suggesting that other social 

variables are likely important for predicting mammal distributions. Mechanistic 

explanations are not always apparent for the luxury effect, and this pattern may be 

related to wealthier residents’ ability to control landscaping or move to areas with 

more vegetation, homeowner preferences for vegetation and certain plant traits, and 

cultural legacies of landscape choices (Larsen & Harlan 2006; Larson et al. 2010; 

Locke & Baine 2015; Martin et al. 2004; Mennis 2006). As wealth is an informative 

predictor of tree cover and wildlife distributions, it appears to be more important in 

some ecosystems than others, such as in drylands where biota is dependent on 

water provisioning (Chamberlain et al. 2020). The composition of vegetation and 

thus wildlife habitat influences wildlife species in neighborhoods (Belaire et al. 2014). 

Notably, “luxury” is not a universal term, and having more vegetation and wildlife in 

a neighborhood is not always perceived as positive by residents, and the term does 

not describe the relationship with wealth for all species.  
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Although the luxury effect can help researchers understand wildlife 

distributions across residential landscapes, wealth alone is insufficient to explain the 

social drivers of wildlife distribution where other social forces in addition to income, 

such as culture and segregation, shape neighborhood structure and function (Kuras 

et al. 2020; Schell et al. 2020). While income often positively correlates to metrics of 

biodiversity, such as species richness, other measurements of biodiversity and study 

design highly influence the presence of a relationship (Kuras et al. 2020). Complex 

and systemic human patterns, such as systemic racism and classism result in 

inequities in the heterogeneous landscapes of neighborhoods, leading to ecological 

consequences for humans and wildlife (Schell et al. 2020). Often the inequities of the 

landscape results in environmental injustices for minority residents (Schell et al. 

2020). The relationship between ethnicity and ecological patterns is a timely topic, as 

racial segregation is still prevalent across the United States. Significant levels of 

segregation of white and minority residents (mostly Black, Hispanic/Latinx, Asian) is 

widespread, and white residents tend to live in majority white neighborhoods (Frey 

2021a). Notably, racial segregation of neighborhoods prevails even when similar 

levels of income are present across ethnic groups (Reardon et al. 2015). For 

example, middle-class Latinx and Black residents typically live in poorer 

neighborhoods (census tracts with lower than the median household yearly income) 

than white residents of the same income level (Reardon et al. 2015). And poor white 

residents live in neighborhoods with higher average incomes (Reardon et al. 2015). 

The reasons for this are linked to preferences of residents and remnants of unequal 

housing practices (Reardon et al. 2015), such as the discriminatory practice of 

redlining. This is the historical practice of denying residents of neighborhoods 

housing loans based upon their perceived risk of investment, centered around the 

race of residents (Jesdale et al. 2013). Regarding ecological patterns and ethnicity in 
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cities, people of color often experience unequal access to ecosystem services and 

more frequent disservices. For example, minoritized neighborhoods often have less 

tree cover (Locke et al. 2019; Watkins & Gerrish 2018), are more exposed to air and 

water pollutants (Grineski et al. 2007; Tessum et al. 2019), often have less access to 

safe (risk to hazards and crime) greenspaces (Rigolon 2016; Rigolon & Németh 

2021), and experience more intense urban heat island effects (Hoffman et al. 2020; 

Hsu et al. 2021; Jesdale et al. 2013; Wilson 2020). Notably, cities in the Southwest 

United States show some of the largest heat differences in redlined neighborhoods 

(Hoffman et al. 2020). The quality and type of wildlife habitat is likely impacted by 

these systemic differences in neighborhoods related to the ethnic composition of 

residents. 

Ethnicity in neighborhoods is a social variable that relates to socio-ecological 

relationships regarding wildlife distributions. For example, low income and Latinx 

neighborhoods are associated with fewer native bird and plant species (Kinzig et al. 

2005), while higher income and lower levels of Latinx residents are related to desert 

adapted vegetation and xeric style landscaping types (Warren et al. 2019). 

Residential landscapes function as wildlife habitat, and are maintained by residents 

with preferences that are dependent on social factors such as culture, education, and 

time spent living in a region (Arreola 2012; Larsen & Harlan 2006; Larson et al. 

2009; Martin 2015; Zhou et al. 2009). Although minority and low-income 

neighborhoods often have a negative relationship with bird and plant species, it is 

not known if similar patterns are seen in taxa like mammals. Additionally, ethnicity is 

closely related to income, making the disentanglement of ethnicity difficult. Including 

ethnicity in ecological models in addition to income may provide informative 

predictions of urban mammal ecological patterns. By integrating human social 



   5 

patterns that have not been explored, it may improve predictive models and inform 

management of mammal populations in urban landscapes.  

Similar to many taxa, global mammal populations are in a decline and 

mammal diversity is often negatively associated with increased levels of 

urbanization; however, neighborhoods still support mammal biodiversity (Ceballos & 

Ehrlich 2002; McCleery 2010). Several groups of native and non-native mammals 

have developed strategies to adapt to habitats in neighborhoods throughout the 

United States. Those adaptions vary depending on factors such as the life history, 

behavior, and ecology of the species (Santini et al. 2019). For example, some 

medium-bodied mammals have been able to exploit the resources within 

heterogeneous neighborhoods by adapting their diets and shifting their activities to 

smaller home ranges and different times of day to avoid human conflict (Gallo et al. 

2022; Gehrt et al. 2009). While changes in daily activity of species is dictated by 

environmental and innate forces, typically species exhibit a shift from their natural 

activity patterns (nocturnal, crepuscular, diurnal) to increased nocturnality in human 

disturbed landscapes (Gaynor et al. 2018). Native North American mammal species, 

and taxa like coyote (Canis latrans) and rabbits (Sylvilagus spp.) may occur at 

moderate levels of urbanization, emphasizing the importance of urban greenspaces 

(areas with vegetation; Fidino et al. 2021; Gallo et al. 2017; Parsons et al. 2018) 

and therefore the impacts of social factors that influence the features of the 

greenspaces. Rabbit species tend to rely on vegetation and cover for food and 

avoidance of native and non-native predators in neighborhoods (Chapman & Willner 

1978; Paul & Friend 2020). Coyotes often utilize neighborhoods, but tend to avoid 

spaces with high levels of impervious surfaces and will use corridors, such as washes 

and small patches of green space within their large home ranges (Atwood et al. 

2004; Gehrt et al. 2009; Gese et al. 2012, 2012; Grubbs & Krausman 2009). Along 
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with native mammals, the presence of non-native free-ranging domestic cats is 

driven by humans in residential landscapes. Domestic cats impact wildlife 

communities through direct predation and injury, disease transmission, native 

species extinctions, the death of billions of wild animals, and indirectly create an 

‘ecology of fear’ or fear of predation in other species such as lagomorphs (Elizondo & 

Loss 2016; Loss et al. 2013; Loyd et al. 2017). Mammal species have relationships 

at the regional scale, and decreasing diversity is common across gradients of 

increasing urbanization. While regional patterns are informative, mammal species in 

neighborhoods of similar urbanization levels may be impacted by social patterns 

other than income that influence their spatial distributions and activity patterns. 

In this research, my objective was to investigate the relationship between 

ethnicity and mammal species’ spatial distributions and daily activity within 

neighborhoods, independent of income levels. I investigated the relationship 

between the ethnicity of residents and the occupancy and daily activity patterns of 

mammals within neighborhoods in the semi-arid Phoenix metropolitan area (Arizona, 

USA). I hypothesized that social variables other than income relate to mammal 

ecological patterns, and that ethnicity is an informative predictor of mammal 

occupancy and activity within neighborhoods. To test these hypotheses, I utilized an 

array of motion triggered wildlife cameras in neighborhood parks and greenspaces 

across gradients of median neighborhood household income and the proportion of 

residents who identified as Latinx in the Phoenix metro area. I conducted single-

season-single-species occupancy models and evaluated the effect and importance of 

2 social covariates (neighborhood median household income and % of Latinx 

residents) and 3 landscape covariates (impervious surfaces, normalized difference 

vegetation index or NDVI, and presence of water). Additionally, I investigated 

potential shifts in daily activity patterns between higher and lower income and Latinx 



   7 

levels of neighborhoods. Studying mammals in the Phoenix metro area can offer 

much needed insight to socio-ecological patterns in neighborhoods. 

METHODS 

Study Area 

I tested my hypotheses in community parks and open spaces in, or adjacent 

to, moderate-density residential neighborhoods where most residents live within the 

Phoenix metropolitan area and within the boundaries of the Central-Arizona Phoenix 

Long Term Ecological Research area (CAP LTER). These sites are in Maricopa County 

of Arizona, United States within the lower Colorado River Basin of the Sonoran 

Desert. The landscape of the metro area comprises residential and 

industrial/commercial areas, transportation corridors, crop lands, desert parks, 

hundreds of public community parks, and >1,400 artificial water bodies that sustain 

a desert “oasis” by irrigation from the Colorado, Verde, and Salt rivers (Bradley & 

Colodner 2020; Larson et al. 2009). Neighborhood parks and greenspaces typically 

contain grassy sports fields or playgrounds in addition to grass, trees, and other 

shrubs that support storm runoff (Lara-Valencia & Garcia-Perez 2018). These urban 

greenspaces are used by residents for recreation and are also expected to be used 

by wildlife seeking cover and resources (Haight et al. in preparation 2022, Gallo et 

al. 2017). 

The study area comprises highly populated sprawling cities, and population 

trends have surpassed the growth of any other US city in the past decade (Hing 

2020; Keys et al. 2007). Of this growing population, many residents identify as 

Hispanic or Latinx, and like other US cities, Latinx-majority neighborhoods are 

common (Arreola 2012; Lara 2012). Wealth disparities exist throughout the area as 

well with a median household income of $67,799 (US Census 2021). The metro 

Phoenix was also the first area that the luxury effect was observed (Hope et  al. 



   8 

2003). The racial/ethnic composition of the metro area includes 53.4% white 

residents, 32.0% Hispanic, 6.7% Black or African American, 4.8% Asian, and 3.3% 

two or more races, 2.9% American Indian and Alaska Native, 0.3% Native Hawaiian 

and other Pacific islander (US Census Bureau 2021). The Latinx community within 

metro Phoenix is diverse but dominated by people of Mexican (89%) or Puerto Rican 

(1.9%) heritage (Pew Research Center 2016). Like in other metropolitan areas in the 

US, neighborhoods within metro Phoenix have a history of segregation driven by 

redlining and other discriminatory policies that led to settlement of non-white 

residents (commonly Black and Latinx) into less desirable, more industrial 

landscapes than white residents (Bolin et al. 2005; Mapping Inequality 2022). 

Although understudied in this region, the social-ecological legacies of such actions 

may be long lasting (Grove et al. 2018). Varying from national patterns, access to 

public parks in metro Phoenix neighborhoods is relatively equitable, with similar 

density of parks in Latinx and lower income neighborhoods compared to dominantly 

White and upper income neighborhoods (Lara-Valencia & Garcia-Perez 2018; Wen et 

al. 2013). However, parks in Latinx neighborhoods tend to have less tree-cover and 

natural features, and more features such as grills, sports facilities etc., while non-

Latinx neighborhoods tend to have more natural features (Lara-Valencia & Garcia-

Perez 2018).  

Site Selection 

I estimated the occupancy and activity patterns of wildlife during June-

September 2019 and 2021 in public parks and greenspaces within or adjacent to 

residential neighborhoods that spanned a gradient of income (median household 

income) and ethnic (% Latinx) composition in the Phoenix metro area (Figure 1). To 

focus on wildlife populations that may utilize or pass-through built landscapes within 

neighborhoods, I selected sites from the pool of publicly funded parks (2021 sites). 
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To sample sites with similar urbanization levels (impervious surfaces) I selected sites 

in community parks or other greenspaces that were located > 2-km from a desert 

park preserve. This resulted in sites being located >0.85km to an open desert area 

that is not designated as a preserve. Then, using the 2017 American Community 

Survey and within ArcMap, I evaluated the average median household income and 

average racial/ethnic composition of residents within a 1-km radius of the site 

(defined in this study as a ‘neighborhood’) as well as around camera sites that were 

deployed previously in 2019 (Lewis & Haight 2022). Due to the prevalence of people 

who identify as white or Latinx in the study area, I focused on sites within 

neighborhoods where these ethnic/racial groups dominate. I aimed to sample across 

the gradient of ethnic composition and income levels throughout the metro area. As 

income and ethnicity are often highly correlated across the metro area, I aimed to 

reduce the correlation between the two variables. To reduce correlation between 

income and ethnicity data, I considered inclusion of a site in this study if the 

neighborhood median household income and proportion of Latinx residents were 

within the top or bottom quartile of each category, or if a site’s inclusion reduced the 

correlation between the two variables. To aid in the interpretation of results, I also 

aimed to sample neighborhoods that had similar proportions of non-Latinx 

communities of color by considering sites where the neighborhood proportion of non-

white, non-Latinx residents were within one standard deviation of the metro-wide 

mean value. I used a final set of 38 sites from 2019 (10 camera sites) and 2021 (28 

camera sites). 

Camera Methods 

I aimed to sample medium to large-bodied wildlife species that occupy the 

study area. To do so, I placed a non-baited, motion-activated wildlife camera 

(Cuddeback black flash in 2019 and 2021; Bushnell Core low-glow in 2021) at a 
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location I believed would maximize the potential to capture the presence of wildlife 

(signs of a natural pathway, scat, or tracks; Kays et al. 2020; Lewis et al. 2021). 

Based on similar camera placement methods between survey years and similar 

trigger speeds of cameras, wildlife detection was similar between years (Rovero et 

al. 2013). Each camera was secured to a tree at approximately knee height, and 

perpendicular to the expected wildlife path. Once triggered, cameras were 

programmed to capture three photos with a 30-s quiet period between triggers 

(2019 cameras) or two photos with a 2-min quiet period (2021 cameras). Each photo 

was identified to the species level by two independent observers and an expert third 

observer to resolve any discrepancies.  

Social Covariates 

I utilized the average median household income and percent of Latinx 

resident values within a 1-km radius of each camera site (see site selection section) 

as two continuous social covariates. The values for my sites ranged from 4% to 86% 

of residents who identify as Latinx (median = 21%), and 7% to 88% who identify as 

White (median = 68%). While income ranged from $27,069 to $130,221 (median = 

$69,497). I evaluated collinearity between income and ethnicity using Pearson’s 

correlation and used a threshold of r < 0.7 (Goad et al. 2014; Millar & Fox 2003). 

The correlation between neighborhood median household income and ethnicity of r = 

-0.64 (Appendix, Table A1). 

Landscape Covariates 

For landscape covariates, I estimated normalized difference vegetation index 

(NDVI), the extent of impervious surfaces (% impervious cover), the presence of a 

water feature (artificial or natural body of water, such as a pond, canal, or river), 

and the distance to a water feature. I averaged continuous NDVI and impervious 

surface values across multiple buffer sizes around each site (125 m, 250 m, 500 m, 
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750 m, 1000 m, 1500 m, and 2000-m radii). I estimated mean impervious surface 

cover in ArcMap with the national land cover data percent imperviousness layer 

(Dewitz 2021). I calculated NDVI utilizing the derived values from the CAP LTER 

NDVI layer (Sabu & Frazier 2022) in ArcMap. I measured the closest distance to a 

water feature in Google Earth. Then I determined the categorical presence of a water 

feature within multiple buffer zones around each site using Google Earth (125 m, 

250 m, 500 m, 750 m, 1000 m, 1500 m, and 2000-m radii). Next, I evaluated the 

most supported buffer size for each species in occupancy models by comparing 

univariate models of each buffer and covariate using Akaike information criterion 

value (AICc; Appendix, Table A2, A3; Burnham & Anderson 2004). I took a similar 

approach to determine the most supported measurement type (categorical presence 

vs distance to) for water by comparing univariate occupancy models of the most 

supported buffer size (categorical presence) and the distance to water (Appendix, 

Table A2, A3). This resulted in support for categorical presence of water features 

over distance to water for all species and one buffer size per covariate used per 

species (Appendix, Table A4, A5, A6). I evaluated collinearity between the 

continuous covariates using Pearson’s correlation and retained variables with r < 0.7 

(Appendix, Table A1; Goad et al. 2014; Millar & Fox 2003). I also evaluated the 

individual correlations with ethnicity and income to park size (for sites that were 

within a park) and found no correlation between the variables (Appendix, Figures A1, 

A2). 

Occupancy Modeling Approach 

I conducted single-species-single-season occupancy models on species that 

were commonly detected at my sites. I included native Sonoran Desert species 

coyote (Canis latrans) and desert cottontail rabbit (Sylvilagus audubonii) and non-

native domestic cats (Felis catus) in my analyses. To estimate occupancy probability 
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(psi) and detection probability (p) based on their association with social (average 

neighborhood income and Latinx) and landscape covariates (MacKenzie et al. 2018). 

I evaluated detection (1) and non-detection (0) data for the metro Phoenix summer 

months (June 3rd-September 30th) with ten, 12-day occasions (MacKenzie et al. 

2018; Sollmann 2018). Occupancy analyses were executed in program R version 

4.1.3 (Core Development Team 2013) using the “RMark” package (Laake & Rexstad 

2022). To determine if detection probability was influenced by detection related 

covariates, I evaluated the time varying option in RMark (detection probabilities 

across occasions), effort days (number of sample days per camera), the intercept-

only (dot) model, and all combinations of these covariates using AICc model 

selection. Of these, the dot model was most supported for detection probability of all 

species (Appendix, Table A7), and was thus used in all subsequent model runs for 

occupancy. All continuous covariate values were standardized by subtracting the 

mean value and dividing by the standard deviation (Schielzeth 2010). I ran all 

possible combinations of the social and landscape covariate combinations on psi, 

resulting in 32 models per species. I then used lowest AICc model selection to 

determine the most supported models per species. I considered models to be 

informative if they performed better than the dot model and resulted in a delta AICc 

value < 2 (Burnham and Anderson 2004, Lewis et al. 2021). Additionally, to provide 

further insight on each covariate’s relationship to species occupancy, I calculated the 

variable importance values (VIV) by summing the Akaike weights for each covariate 

across all models (Anderson 2008).  

Daily Activity Patterns Approach 

I evaluated how daily activity patterns of coyotes, desert cottontail rabbits, 

and domestic cats overlapped between categories of income and ethnicity. I divided 

neighborhoods by their 1-km averaged median household income (higher-income vs. 
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lower-income) and % Latinx residents (higher-Latinx vs. lower-Latinx; Appendix, 

Table A8). I used the package “overlap” in R to calculate the coefficient of activity 

overlap (0 = no overlap; 1 = total overlap) and 95% confidence intervals (Ridout & 

Linkie 2009). I optimized the coefficient estimate and confidence intervals by using 

10,000 bootstrap simulations and created overlap density plots using the von Mises 

kernel approach for circular data that corresponds to the time of day (Ridout & Linkie 

2009). I followed small sample recommendations when there were less than 50 

detections in either category (Ridout & Linkie 2009). To ensure independent animal 

detections, I only included photos that were greater than 30 minutes apart 

(Sollmann 2018). Each of the species evaluated had at least 20 detections and at 

least 5 sites in each category, and visual inspection of results indicated sufficient 

sample sizes to estimate activity patterns (Lewis et al. 2021). I concluded that daily 

activity patterns of a species shifted in the higher vs. lower income or Latinx 

neighborhoods if the upper limit of the 95% confidence interval of overlap was < 

0.90 (Lewis et al. 2021).  

RESULTS 

Occupancy of Wildlife and Domestic Animals Across Neighborhoods 

I detected 28 species total across all taxa and 13 mammal species from 

49,360 photos over 122 sample days across my 38 camera sites from June-

September. My dataset for the target species included 208, 2744, and 2549 

detections of coyotes, desert cottontail rabbits, and domestic cats respectively. 

Occupancy and detection probabilities and (95% confidence intervals) of 0.54 (0.35, 

0.67) and 0.34 (0.28, 0.42) for coyotes, 0.21 (0.11, 0.37) and 0.74 (0.62, 0.82) for 

cottontails, and 0.71 (0.55, 0.83) and 0.69 (0.63, 0.74) for cats were also found 

(Table 1.). Along with landscape covariates, both median household income and % 

of Latinx residents in neighborhoods surrounding the sites were significantly 
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associated with the occupancy of coyotes and cottontails. Latinx appeared in both 

species’ top models (Figure 2.) and both appeared in the top model for coyotes 

(lowest AICc; Appendix, Tables A9a-c, A10a-c, Figure 2.). For domestic cats, neither 

of the social covariates appeared in the top model (Appendix, Table A11a-c). 

Combining the weights of all models, neighborhood ethnicity was more important 

(VIV) for occupancy of both native mammals and domestic cats. Coyote’s (VIV) 

values were 0.95 (Latinx) and 0.67 (income), and cottontail rabbit’s (VIV) values 

were 0.99 (Latinx) and 0.24 (income) while domestic cat’s values were 0.47 (Latinx) 

and 0.26 (income; Anderson 2008; Figure 3.). Notably, the highest VIV for domestic 

cats was for impervious surfaces at 0.95 (Anderson 2008; Figure 3.). 

The direction and significance of covariates vary for native and domestic 

mammal occupancy across the range of residential neighborhoods in this study. 

Native coyotes in metro Phoenix had negative (negative beta estimate) and 

significant (95% confidence interval does not overlap zero) relationships with both 

social covariates and landscape variables of impervious surfaces and presence of 

water. But had a positive relationship (positive beta estimate) with NDVI (Appendix, 

Tables A9a-c). Similarly, native desert cottontail rabbits had negative relationships 

(negative betas estimates) with both social covariates of income and ethnicity 

(significant) and landscape variable impervious surfaces. However, cottontails had a 

positive relationship with NDVI and presence of water (Appendix, Tables A10a-c). In 

contrast, invasive domestic cats had a negative relationship with social covariate 

income, but a positive relationship with Latinx and a significant positive relationship 

with all landscape covariates (impervious surfaces, NDVI, and presence of water; 

Appendix, Tables A11a-c, Figure 3.). The top models including covariates for all three 

species were more supported than the dot models (intercept-only model), signifying 

that the models explain the data (Appendix, Tables A9a-c, A10a-c, A11a-c). 
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However, the sign of the beta estimates switched for income and NDVI depending on 

the presence of other covariates, suggesting collinearity may be present for these 

two variables (Appendix, Tables A9a-c, A10a-c, A11a-c). Specifically, income 

switched from negative values in models that include Latinx to positive values in 

some models that did not include Latinx for all three species (Appendix, Tables A9a-

c, A10a-c, A11a-c). NDVI switched from positive to negative for domestic cats in 

three models when associated with multiple other variables (Latinx, water, income; 

Appendix, A11c). 

Daily Activity Patterns in Neighborhood Categories 

None of the species shifted between income levels, and desert cottontail 

rabbits were not included in analyses for lack of sufficient sample size (Appendix, 

Table A8). Daily activity of coyotes shifted between levels of Latinx residents (Figure 

4.). In the higher-Latinx neighborhoods, coyotes started their activity later in the 

evening and remained more active into the early morning than in lower-Latinx 

neighborhoods (overlap estimate of 0.72 and a 95% confidence interval of 0.55- 

0.88; Appendix, Table A12, Figure 4.). In contrast, daily activity patterns of domestic 

cats did not appear to be associated with neighborhood income or ethnicity (overlap 

estimate 0.87 with a 95% confidence interval of 0.81-0.92 and 0.89 with a 95% 

confidence interval of 0.84-0.95, respectively; Appendix, Table A12, Figure 4.). 

DISCUSSION 

By integrating social variables into ecological models, my study provides 

insights into socio-ecological patterns that shape wildlife distributions (Des Roches et 

al. 2021). Specifically, I provide insights into socio-ecological patterns and the 

relationship with mammals that may not be fully captured by evaluating income 

alone. As expected, I found evidence that the percent of Latinx residents in a 

neighborhood was related to occupancy probability of native and non-native 
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mammals. My conclusions are supported by the findings of a consistent pattern of 

Latinx appearing in the top models for all species. Not only did Latinx appear in the 

top models, but it was the most important variable (highest VIV value) for coyotes 

and cottontail rabbits, and even more important than income for all three species 

(higher VIV value than income). Income was informative for coyotes and cottontails 

and appeared in top models but was less supported than Latinx. This study adds to 

the knowledge that social variables are related to mammal spatial patterns and 

introduces ethnicity as a new variable. Other research has found Mesopredator 

mammal species (e.g. coyote) distribution is related to socioeconomic (housing 

density, vacancy rates, per capita income) and habitat availability (Magle et al. 

2016), and a combination of environmental and social factors (building density, 

household income, occupation) relate to coyote distribution to varying extents (Wine 

et al. 2015). My results are similar, as a combination of social and environmental 

variables were supported in my results. Additionally, my study compliments research 

that found that the effects of systemic racism influences wildlife populations, where 

neighborhoods with more minority residents have wildlife populations with less 

genetic diversity (Schmidt & Garroway 2022).  

Consistent with my predictions, occupancy of native mammals (coyotes and 

cottontail rabbits) decreased with an increasing percent of Latinx residents in 

neighborhoods. Although these patterns have not been observed in mammals, these 

results are consistent with patterns seen when evaluating tree cover and urban heat, 

in that minority neighborhoods experience less ecosystem services (Dialesandro et 

al. 2021; Grove et al. 2014; Hsu et al. 2021) and potentially less or lower quality 

wildlife habitat. Also consistent with previous studies, environmental variables of 

impervious cover, NDVI, and water were important for these species, as these are all 

variables associated with the level of urbanization as well as the availability of cover 
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and resources (Mckinney 2002). Further, the level of urbanization is negatively 

associated with many mammal species, but the amount of greenspace and housing 

density of regions can be positively (greenspace) and negatively (housing density) 

associated with species at varying thresholds (Fidino et al. 2021). Coyotes had a 

negative relationship with impervious surfaces and presence of water, and positive 

with NDVI. This is consistent with coyote distribution patterns, as coyotes tend to 

frequent moderately dense neighborhoods even within the urban matrix (Grubbs & 

Krausman 2009), and artificial water features in the area may not be substantial 

water sources for coyotes. Cottontails had a negative association with impervious 

surfaces and then positive with water features and NDVI. This is also consistent with 

cottontail patterns as these species have smaller home ranges that heavily rely on 

vegetation for food and cover to hide from predation (Chapman & Willner 1978). 

Species may be present due to historical ranges or previous land use histories and 

shifting demographics of neighborhoods (Fukasawa & Akasaka 2019; Lowry et al. 

2012; Roman et al. 2018). Redlining and discriminatory housing practices were 

prevalent in the Phoenix metro area in the 1930s, in which racial segregation was 

common in Phoenix’s early development (Bolin et al. 2005). These practices resulted 

in fragmented uses of land and environmental inequity, zones of dis-amenities, and 

fewer ecosystem services that were targeted toward low-income and minority 

neighborhoods, common with national trends (Tessum et al. 2019; Wen et al. 2013; 

York et al. 2014). The combined environmental features of the study area such as 

urbanization levels, fragmented land use history, and the explicit link of ethnic 

minority neighborhoods to environmental inequities may contribute to my findings. 

Wildlife historical ranges and quality of habitat may be related to spatial distributions 

of native species.  
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In addition to historical practices, the neighborhoods I studied were primarily 

Latinx or white dominated, in which residents’ ethnicities are direct drivers of 

decisions at the household level (Grove et al. 2006; Larsen & Harlan 2006) that may 

impact mammal occupancy. Although these are not direct links to mammal patterns, 

presumably, varied access to yards for anthropogenic food sources, or predator-prey 

dynamics between domestic and wild species is impacted by the presence of a 

physical barrier, such as fencing (Hansen et al. 2020; Kays 2014; Mella-Méndez et 

al. 2019; Murray & St. Clair 2017; Van Helden et al. 2020). The presence of 

vegetative cover in yards may influence mammal activity as it can provide habitat 

connectivity and protection for mammal species (Grade et al. 2022). Neighborhood 

scale decisions that impact wildlife habitat are likely impacting the habitat for 

mammal species. Often homeowner associations (HOA) control aspects of the 

landscape and pest control, which may influence the presence of these species 

(Hadidian 2015; Lerman et al. 2012). And neighborhoods with HOAs can have 

greater and more diverse native bird and plant species than non-HOA neighborhoods 

(Lerman et al. 2012). Individual decisions about yard use, landscaping, and domestic 

pet ownership patterns combined with the historical legacies of the landscape may all 

have a relationship to my results, in which Latinx neighborhoods have a negative 

relationship with the occupancy of the native species I evaluated and positive with 

domestic cats.  

Domestic cats were common across the Phoenix metro area, and Latinx was 

positively related to cat occupancy and within top models. I expected Latinx to relate 

to domestic cat occupancy, but my results suggest impervious surfaces is the better 

predictor for cat presence in neighborhoods. Impervious surfaces (highest VIV) were 

more important for domestic cats overall, consistent with patterns of domestic cats 

persisting in small home ranges close to their homes and therefore impervious 
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surfaces (Kays et al. 2020). The ability to confirm free-ranging cat ownership is 

beyond the scope of this study, but it is likely that many of the cats I detected are 

feral. Like global patterns, it is likely that feral cats are abundant in my study area in 

addition to owned free-ranging cats, and humans are facilitating the persistence of 

these populations (Elizondo & Loss 2016; Loss et al. 2013, 2022). These results are 

concerning, since pet and feral cats contribute greatly to the loss of native species 

and prey upon billions of mammals and birds a year (Kays et al. 2020; McGregor et 

al. 2020; Molsher et al. 1999). It is also known that pet cats tend to stay near their 

homes and the urban intensity of their neighborhoods influence their activity 

(Bennett et al. 2021; Horn et al. 2011). The relationship between cats and human 

facilitation in urbanized landscapes is likely why the landscape variables have a 

positive relationship with cat occupancy. Additionally, pet ownership and ownership 

practices can be linked to ethnicity, in which those who identify as white are more 

likely to own a pet, while Latinx residents are less likely to have cats (Risley-Curtiss 

et al. 2006). Similarly, in the CAP LTER study area, residents who participated in the 

Phoenix Area Social Survey who are Latinx reported to be more likely to have a dog 

than a cat, and if they have a pet, they report that their pet spends more time 

outside (Larson & Andrade 2017). The spatial relationship between cats and humans 

combined with pet ownership practices are likely why I see such a strong relationship 

with impervious surfaces, but still have support for ethnicity.  

I found negative relationships with income and occupancy for all species, 

which is contradictory to the positive association of wealth and biodiversity. While 

wealth is associated with increased mammal richness in Phoenix metro (Magle et al. 

2021), it is likely that the differences are due to the use of single-species models in 

this research. Single-species occupancy models differ than species richness, as in 

urbanized metropolitan areas, mammal richness is typically lower than natural 
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habitats (McCleery 2010). This suggest that this research observed similar patterns 

with wealth, in which the luxury effect is observed across taxa and regions, but 

varies considerably based upon study design and measurements of wildlife 

populations (Kuras et al. 2020). This study offers insight to distributions of an 

already filtered species pool within the more urbanized zone of the natural to urban 

gradient (Aronson et al. 2016) and may not capture patterns seen when sampling 

across the full gradient of urbanization. Further, the results for income appear to be 

influenced by the other covariates within the models, particularly when associated 

with Latinx, income will sometimes shift from negative to positive. This suggest that 

while I have support for Latinx (consistently in the top models, direction of betas 

consistent), the results for income are less reliable. Notably, beta estimates within 

models are always dependent on the other variables in the models. Although all the 

variables I evaluated were below the threshold of 0.70, it appears they may be 

correlated and influencing one another. 

Like the significant relationship with Latinx in the occupancy model results, 

activity pattern analyses showed shifts in daily activity only for coyotes between 

Latinx neighborhoods. Counter to my predictions, cats did not shift their activity 

between any categories. Although I only observed shifts for coyotes between Latinx 

levels, I expected shifts because mammals can change their daily activity patterns to 

adapt to human disturbed environments, and often increase nocturnal hours (Gallo 

et al. 2022; Gaynor et al. 2018; Lewis et al. 2015; Łopucki & Kiersztyn 2020). 

Coyotes in particular have been observed to decrease crepuscular activity to avoid 

humans, and coyotes in urbanized areas often have larger home ranges to do so 

(Gese et al. 2012). Changes in activity are likely attributed to the avoidance of 

humans and the conflicts that may arise (Suraci et al. 2019). Coyotes will exploit 

human food sources in neighborhoods (Murray & St. Clair 2017). The time of day 
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these food sources are available within neighborhoods may be a source of change in 

the daily activities of coyotes (Fedriani et al. 2001; Hansen et al. 2020; Kays 2014). 

Although not measured in this study, wild mammals will avoid fenced yards with 

dogs (Kays 2014) and the time-of-day pets are outside may be influencing the 

activity of coyotes in neighborhoods. While coyotes were estimated to occur in 

approximately half of the sites (psi = 0.51), they were detected in only six high-

Latinx sites, and the shift in activity may be biased by sample size. Additionally, I 

selected sites based on income and Latinx levels on a continuous scale rather than 

the broad categories used for the activity analyses, giving less power to interpret the 

results of activity patterns. 

While I found that the ethnicity of residents is a good predictor of mammal 

species occupancy and a better predictor than income in the study area, there are 

limitations of this study. I evaluated three species; however, species such as gray 

fox, racoons, javelinas, several species of squirrels, and ground dwelling bird photos 

were captured. Additionally, species may be interacting in predator-prey dynamics 

that were not measured in this study. Future research could evaluate interactions 

among all three species, as other studies have found that cats and coyotes display 

avoidance in urban areas, and that domestic cats directly prey on lagomorph species 

(Kays et al. 2015; McGregor et al. 2020; Paul & Friend 2020). I placed my cameras 

in locations to avoid human detections; however, I captured photos of humans at all 

locations, and activity of people within the sites could be influencing animal activity 

(Gámez & Harris 2021; Li et al. 2020). Additional environmental variables may also 

influence animal occupancy and activity patterns, such as habitat connecting 

corridors like washes (Beier & Noss 1998). I evaluated a single summer season and 

the evaluation of mammal occupancy and daily activity across multiple seasons may 

reveal shifts in activity and spatial distributions temporally. Lastly, the inclusion of 
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the characteristics of the parks, greenspaces, and private yards of residents can be 

incorporated. Latinx residents often use their yards as cultural landscapes to 

enhance the aesthetics and cultural expression within neighborhoods (Arreola 2012). 

The biophysical features and activity within yards may be influencing wildlife 

patterns, as well as the parks. Parks in Latinx neighborhoods of the Phoenix metro 

have fewer natural features (vegetation), and more facilities for sports and group 

events (sports facilities, grills; Lara-Valencia & Garcia-Perez 2018). The use and 

experiences residents have with the greenspaces of their neighborhoods are related 

to the ethnic composition of their neighborhoods. Further research into the use and 

quality of these greenspaces should be explored to better inform the mechanistic 

processes driving mammal patterns. Additionally, the diverse experiences and 

connections to nature, or the value of nature, residents of varying cultural 

backgrounds may have should be investigated.  

My study provides novel insight to socio-ecological systems within a major 

metropolitan area. My results show a consistent relationship with the ethnicity of 

residents for two native and one non-native species within neighborhoods. I found 

that Latinx neighborhoods experienced negative relationships with two native species 

and positive with one non-native domestic species, complimenting research that 

investigated social variables in wildlife populations (Magle et al. 2016, 2021; Schmidt 

& Garroway 2022; Wine et al. 2015). However, this research differentiates the 

relationship between wealth and ethnicity and provides nuanced insight beyond 

simple measurements of wealth. Further, these findings may be transferable to other 

metropolitan areas. The United States is becoming more ethnically diverse (Frey 

2021b), and more people live in metropolitan areas (United Nations 2018), thus 

social factors will continue to influence the landscape and wildlife patterns. 

Discerning patterns between ethnicity and wildlife distributions will become 
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increasingly important for better understanding and predicting wildlife patterns as 

the globe continues to urbanize, threatening biodiversity and weakening human 

connection to nature and wildlife (Soga & Gaston 2016). Urban ecological research 

should aim to improve sustainability and the well-being of residents in cities. 
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Table 1. Number of detections, occupancy (psi), and detection probabilities (p), of the intercept-only (dot models) for 

three mammal species across the 38 sites in metro Phoenix from June-September 2019 and 2021. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Species 
  Number of    Number of    (psi) Dot model   (p) Dot model 

 detections  sites (n=38)  Estimate 95% CI  Estimate 95% CI 

Coyote  208  19  0.51 (0.35, 0.67)  0.34 (0.28, 0.42) 

Desert cottontail rabbit  2744  9  0.21 (0.11, 0.37)  0.74 (0.62, 0.82) 

Domestic cat   2549   29   0.71 (0.55, 0.83)   0.69 (0.63, 0.74) 
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Figure 1. Map of sites used in this study, located within the Central Arizona-Phoenix 

Long Term Ecological Research area (CAP LTER) in Maricopa County, AZ shown in (A) 

as a black polygon within AZ (yellow state). Colors indicate sociodemographic data 

from census blocks, focusing on the proportion of residents who identify as Latinx 

(B) and median household income (C) (American Community Survey 2017, Brown et 

al. 2021). Plus symbols are camera locations. Red circle indicates (D) Dwight Park, 

an example study site shown in (E), and where a camera was placed within the 

greenspace.  
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Figure 2. Beta estimates and 95% confidence intervals for the top model (lowest 

AICc) for coyotes, desert cottontail rabbits, and domestic cats within the CAP LTER 

boundary in AZ. Asterisks (*) denote that the 95% confidence interval of the 

estimate does not overlap zero. (†) indicates that the at the 90% confidence level 

does not overlap 0.  
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Figure 3. Variable importance values (VIV) for native species (coyote and desert 

cottontail rabbit) and non-native domestic cat within the CAP LTER boundary in AZ. 
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Figure 4. Daily activity patterns of coyotes, desert cottontail rabbits, and domestic 

cats, across categories neighborhood income and neighborhood proportion of Latinx 

residents within the CAP LTER boundary in AZ. Solid lines are activity in higher-

income or higher-Latinx neighborhoods, and dotted lines are activity in lower-income 

or lower-Latinx neighborhoods. Percent values in the lower right corner of panels are 

the overlap estimate (0-100%). Asterisk (*) in the upper right corner of the panel 

denotes that daily activity was shifted in lower vs. higher income/ethnicity categories 

(upper 95% CI < 0.90). 
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RESULTS FOR OCCUPANCY AND DAILY ACTIVITY PATTERN ANALYSES 
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Table A1: Pearson’s correlations (r) between continuous covariates across a range of geographic buffer sizes. I used an r 

value > 0.7 (bolded) as the threshold for collinearity between model predictor variables. 

Pearson's correlation 

    Income   Latinx   Impervious   
Distance 
(water) 

  NDVI 

  1  
(km) 

 1  
(km) 

 2000 
(m) 

1500 
(m) 

1000 
(m) 

750 
(m) 

500 
(m) 

250 
(m) 

125 
(m) 

 (m)  2000 
(m) 

1500 
(m) 

1000 
(m) 

750 
(m) 

500 
(m) 

250 
(m) 

125 
(m) 

Income (1km)  1.00  -0.64  -0.62 -0.64 -0.61 -0.49 -0.35 -0.25 -0.24  -0.19  0.46 0.46 0.42 0.32 0.16 0.10 0.15 

Latinx (1km)    1.00  0.38 0.37 0.31 0.20 0.11 0.06 0.06  0.05  -0.23 -0.23 -0.20 -0.13 -0.01 0.07 0.12 

Impervious (2000m)      1.00 0.97 0.88 0.78 0.70 0.54 0.39  0.24  -0.73 -0.67 -0.57 -0.50 -0.40 -0.20 -0.14 

Impervious 1500(m)       1.00 0.96 0.87 0.79 0.62 0.47  0.24  -0.73 -0.72 -0.64 -0.58 -0.46 -0.21 -0.14 

Impervious 1000(m)        1.00 0.97 0.91 0.73 0.57  0.26  -0.66 -0.70 -0.67 -0.63 -0.51 -0.24 -0.16 

Impervious 750(m)         1.00 0.97 0.80 0.61  0.28  -0.61 -0.65 -0.65 -0.64 -0.54 -0.26 -0.17 

Impervious (500m)          1.00 0.88 0.68  0.25  -0.56 -0.60 -0.62 -0.63 -0.60 -0.36 -0.23 

Impervious (250m)           1.00 0.90  0.15  -0.53 -0.60 -0.65 -0.69 -0.73 -0.63 -0.50 

Impervious (125m)            1.00  0.06  -0.45 -0.55 -0.62 -0.65 -0.67 -0.65 -0.65 

Distance (water) (m)              1.00  -0.20 -0.19 -0.22 -0.24 -0.20 -0.04 -0.06 

NDVI 2000 (m)                1.00 0.95 0.89 0.84 0.75 0.57 0.50 

NDVI 1500 (m)                 1.00 0.97 0.93 0.83 0.61 0.54 

NDVI 1000 (m)                  1.00 0.97 0.89 0.68 0.61 

NDVI 750 (m)                   1.00 0.95 0.69 0.60 

NDVI 500 (m)                    1.00 0.83 0.69 

NDVI 250 (m)                     1.00 0.92 

NDVI 125 (m)                                           1.00 
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Table A2: AICc model selection results using non-correlated geographic buffer sizes and categorial vs. continuous 

estimates of water availability. The lowest AICc ranking variables from this modeling exercise were included to estimate 

occupancy of each species. 

Coyote (Impervious)   Domestic cat (Impervious)   Desert cottontail rabbit (Impervious) 

Model AICc DeltaAICc Weight Deviance  Model AICc DeltaAICc Weight Deviance  Model AICc DeltaAICc Weight Deviance 

psi(250m) p(.) 284.83 0.00 0.28 278.13  psi(750m) p(.) 368.06 0.00 0.23 361.35  psi(125m) p(.) 124.36 0.00 0.32 117.66 

psi(125m) p(.) 285.09 0.26 0.25 278.39  psi(500m) p(.) 368.38 0.32 0.20 361.67  psi(250m) p(.) 124.87 0.50 0.25 118.16 

psi(500m) p(.) 286.44 1.61 0.13 279.73  psi(250m) p(.) 368.50 0.45 0.19 361.80  psi(750m) p(.) 126.55 2.18 0.11 119.84 

psi(1500m) p(.) 286.73 1.89 0.11 280.02  psi(1000m) p(.) 368.76 0.70 0.16 362.05  psi(500m) p(.) 126.94 2.57 0.09 120.23 

psi(1000m) p(.) 287.16 2.33 0.09 280.46  psi(125m) p(.) 369.17 1.11 0.13 362.47  psi(2000m) p(.) 127.00 2.64 0.08 120.30 

psi(2000m) p(.) 287.43 2.60 0.08 280.72  psi(1500m) p(.) 370.96 2.90 0.05 364.25  psi(1000m) p(.) 127.06 2.70 0.08 120.36 

psi(750m) p(.) 287.44 2.61 0.08 280.74  psi(2000m) p(.) 372.33 4.28 0.03 365.63  psi(1500m) p(.) 127.29 2.93 0.07 120.59 

                  

Coyote (NDVI)  Domestic cat (NDVI)  Desert cottontail rabbit (NDVI) 

Model AICc DeltaAICc Weight Deviance  Model AICc DeltaAICc Weight Deviance  Model AICc DeltaAICc Weight Deviance 

psi(1500m) p(.) 284.88 0.00 0.29 278.18  psi(1500m) p(.) 374.59 0.00 0.16 367.89  psi(750m) p(.) 125.48 0.00 0.19 118.77 

psi(750m) p(.) 285.39 0.50 0.23 278.68  psi(1000m) p(.) 374.65 0.06 0.15 367.95  psi(2000m) p(.) 125.54 0.06 0.18 118.83 

psi(1000m) p(.) 285.98 1.10 0.17 279.28  psi(2000m) p(.) 374.78 0.19 0.14 368.08  psi(1500m) p(.) 125.84 0.36 0.16 119.13 

psi(500m) p(.) 286.00 1.12 0.17 279.30  psi(250m) p(.) 374.79 0.20 0.14 368.09  psi(1000m) p(.) 125.94 0.46 0.15 119.24 

psi(2000m) p(.) 287.24 2.36 0.09 280.54  psi(750m) p(.) 374.80 0.21 0.14 368.09  psi(500m) p(.) 126.05 0.57 0.14 119.34 

psi(250m) p(.) 288.95 4.06 0.04 282.24  psi(125m) p(.) 374.83 0.24 0.14 368.13  psi(250m) p(.) 126.41 0.93 0.12 119.71 

psi(125m) p(.) 290.31 5.42 0.02 283.60  psi(500m) p(.) 374.91 0.31 0.13 368.20  psi(125m) p(.) 127.78 2.30 0.06 121.07 
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Coyote (Water categorical)  Domestic cat (Water categorical)  Desert cottontail rabbit (Water categorical) 

Model AICc DeltaAICc Weight Deviance  Model AICc DeltaAICc Weight Deviance  Model AICc DeltaAICc Weight Deviance 

psi(1500m) p(.) 288.86 0.00 0.23 113.07  psi(750m) p(.) 372.90 0.00 0.27 158.39  psi(125m) p(.) 122.70 0.00 0.55 12.12 

psi(125m) p(.) 289.46 0.60 0.17 98.56  psi(1000m) p(.) 373.61 0.71 0.19 163.85  psi(250m) p(.) 124.61 1.91 0.21 12.59 

psi(2000m) p(.) 289.59 0.74 0.16 113.06  psi(500m) p(.) 374.41 1.51 0.13 153.68  psi(500m) p(.) 125.86 3.16 0.11 13.08 

psi(1000m) p(.) 290.15 1.29 0.12 110.03  psi(250m) p(.) 374.74 1.84 0.11 150.45  psi(750m) p(.) 127.92 5.23 0.04 14.69 

psi(250m) p(.) 290.36 1.50 0.11 99.20  psi(1500m) p(.) 374.91 2.01 0.10 165.66  psi(1000m) p(.) 128.76 6.06 0.03 16.56 

psi(750m) p(.) 290.45 1.59 0.10 106.03  psi(2000m) p(.) 374.92 2.02 0.10 165.29  psi(1500m) p(.) 128.83 6.13 0.03 20.11 

psi(500m) p(.) 290.56 1.70 0.10 99.89  psi(125m) p(.) 374.95 2.05 0.10 152.04  psi(2000m) p(.) 128.90 6.20 0.02 20.29 

                 

Coyote (Water categorical vs distance to)  Domestic cat (Water categorical vs distance to)  Desert cottontail rabbit (Water categorical vs distance to) 

Model AICc DeltaAICc Weight Deviance  Model AICc DeltaAICc Weight Deviance  Model AICc DeltaAICc Weight Deviance 

psi(1500m) p(.) 288.86 0.00 0.68 113.07  psi(750m) p(.) 372.90 0.00 0.74 158.39  psi(125m) p(.) 122.70 0.00 0.96 12.12 

psi(distance km) 
p(.) 

290.39 1.53 0.32 283.69   
psi(distance km) 

p(.) 
374.97 2.07 0.26 368.26   

psi(distance km) 
p(.) 

128.86 6.17 0.04 122.16 
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Table A3: Results of AICc model selection to determine the most supported buffer sizes for each covariate per species. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

Species Covariate Buffer size (radius, in m) 

Coyote 

Income 1000 

Latinx 1000 

Impervious 250 

NDVI 1500 

Water (categorical) 1500 

Desert cottontail rabbit 

Income 1000 

Latinx 1000 

Impervious 125 

NDVI 750 

Water (categorical) 125 

Domestic cat 

Income 1000 

Latinx 1000 

Impervious 750 

NDVI 1500 

Water (categorical) 750 
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Table A4: Covariates used in occupancy analyses for coyote and the size of parks for cameras that were sited within a 

park.  

Site Income $ (1km) Latinx % (1km) Impervious % (250m) Water (Yes/No) (1500 m) NDVI (1500 m) Park size (acre)  

Tarrington Ranch 27069.63 0.36 36.03 No 0.06 4.20 

S14 38374.73 0.39 44.18 No 0.02 6.60 

T14 38673.52 0.38 51.74 No 0.00 0.00 

Desert West 42020.58 0.86 28.11 Yes 0.01 100.71 

AB18 43525.02 0.40 71.97 No -0.09 0.00 

Navarrete 43550.82 0.53 46.67 No -0.04 3.94 

AC19 44601.38 0.22 34.41 Yes 0.05 0.00 

Westown 47832.73 0.30 58.98 Yes -0.01 4.12 

Butler 48656.16 0.37 45.67 No 0.02 5.00 

Sahuaro Ranch 48936.76 0.32 33.42 Yes 0.02 73.00 

Dwight 48938.01 0.38 52.61 Yes -0.11 4.00 

Selleh 49573.79 0.18 49.58 Yes -0.06 6.30 

Braewood 51889.71 0.38 46.23 No -0.01 7.09 

AE19 52037.57 0.22 32.29 No -0.02 0.00 

Discovery 65167.75 0.46 35.74 Yes 0.07 9.50 

Folley Memorial 67045.02 0.40 47.69 Yes -0.03 0.00 

R13 67800.57 0.28 59.93 Yes 0.01 0.00 

AA17 67908.85 0.15 32.00 Yes 0.04 0.00 

Desert Rose 69103.39 0.15 45.02 No 0.00 7.00 

Y19 69891.00 0.24 72.86 Yes -0.08 0.00 

Chesnutt 72042.09 0.16 41.88 Yes -0.03 5.00 

Arrowhead Shores 74099.05 0.09 45.71 Yes -0.02 8.91 

Comanche 75159.69 0.10 43.56 Yes 0.00 11.00 

Z20 76003.84 0.21 52.99 No -0.05 0.00 

Foothills 80362.77 0.16 33.95 Yes 0.02 29.00 

AF19 83629.63 0.21 24.76 No 0.04 0.00 

Mescal 84155.21 0.04 33.20 No 0.00 10.00 

Dos Lagos 84725.58 0.11 50.95 Yes 0.05 5.70 
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Greenbriar 88252.36 0.11 58.78 No 0.03 3.00 

Sycamore Grove 89353.04 0.29 43.85 Yes 0.07 4.80 

La Paloma 91203.41 0.13 41.37 Yes 0.04 14.86 

Deer Villlage 92515.00 0.11 41.10 No 0.04 8.67 

Moon Valley 98768.50 0.17 37.90 No 0.04 10.56 

Paseo Verde 102723.92 0.14 39.01 No 0.10 12.00 

Chuckwalla 107804.82 0.15 47.29 Yes 0.04 4.46 

Estrada 117153.30 0.12 57.64 Yes 0.02 8.00 

Hanger 129048.95 0.13 23.87 Yes 0.02 15.00 

Veterans Oasis 130221.44 0.11 16.13 Yes 0.12 113.00 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  

4
9
 

 

Table A5: Covariates used in occupancy analyses for cottontail rabbits. 

Site Income ($) (1km) Latinx (%) (1km) Impervious (%) (125m) Water (Yes/No) (1500 m) NDVI (750 m) 

Tarrington Ranch 27069.63 0.36 33.02 No 0.08 

S14 38374.73 0.39 21.28 No 0.02 

T14 38673.52 0.38 52.48 No -0.01 

Desert West 42020.58 0.86 24.22 No 0.05 

AB18 43525.02 0.40 68.26 No -0.11 

Navarette 43550.82 0.53 33.71 No -0.06 

AC19 44601.38 0.22 32.19 No 0.08 

Westown 47832.73 0.30 49.91 No 0.01 

Butler 48656.16 0.37 30.00 No 0.02 

Sahuaro Ranch 48936.76 0.32 31.02 No 0.06 

Dwight 48938.01 0.38 41.63 No -0.08 

Selleh 49573.79 0.18 40.66 Yes -0.05 

Braewood 51889.71 0.38 34.73 No -0.02 

AE19 52037.57 0.22 28.91 No -0.01 

Discovery 65167.75 0.46 21.55 No 0.07 

Folley Memorial 67045.02 0.40 41.69 No -0.03 

R13 67800.57 0.28 59.00 No -0.01 

AA17 67908.85 0.15 26.65 Yes 0.03 

Desert Rose 69103.39 0.15 36.42 No 0.00 

Y19 69891.00 0.24 75.07 No -0.10 

Chesnutt 72042.09 0.16 28.44 No -0.01 

Arrowhead Shores 74099.05 0.09 38.90 No 0.00 

Comanche 75159.69 0.10 30.74 No 0.00 

Z20 76003.84 0.21 49.70 No -0.06 

Foothills 80362.77 0.16 22.13 No 0.04 

AF19 83629.63 0.21 21.17 No 0.04 

Mescal 84155.21 0.04 30.73 No -0.01 

Dos Lagos 84725.58 0.11 37.13 Yes 0.06 
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Greenbriar 88252.36 0.11 44.89 No -0.01 

Sycamore Grove 89353.04 0.29 41.57 No 0.09 

La Paloma 91203.41 0.13 39.89 No 0.00 

Deer Village 92515.00 0.11 23.86 No 0.05 

Moon Valley 98768.50 0.17 27.76 No 0.05 

Paseo Verde 102723.92 0.14 31.30 No 0.10 

Chuckwalla 107804.82 0.15 38.62 No 0.00 

Estrada 117153.30 0.12 47.15 No 0.01 

Hanger 129048.95 0.13 11.60 No 0.04 

Veterans Oasis 130221.44 0.11 17.00 Yes 0.10 
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Table A6: Covariates used in occupancy analyses for domestic cats. 

Site Income ($) (1km) Latinx (%) (1km) Impervious (%) (250m) Water (Yes/No) (1500 m) NDVI (1500 m) 

Tarrington Ranch 27069.63 0.36 53.67 No 0.06 

S14 38374.73 0.39 60.00 No 0.02 

T14 38673.52 0.38 64.14 No 0.00 

Desert West 42020.58 0.86 48.25 Yes 0.01 

AB18 43525.02 0.40 73.01 No -0.09 

Navarette 43550.82 0.53 58.76 No -0.04 

AC19 44601.38 0.22 36.16 Yes 0.05 

Westown 47832.73 0.30 64.46 No -0.01 

Butler 48656.16 0.37 62.11 No 0.02 

Sahuaro Ranch 48936.76 0.32 51.47 Yes 0.02 

Dwight 48938.01 0.38 61.42 Yes -0.11 

Selleh 49573.79 0.18 64.36 Yes -0.06 

Braewood 51889.71 0.38 61.18 No -0.01 

AE19 52037.57 0.22 35.26 No -0.02 

Discovery 65167.75 0.46 39.33 No 0.07 

Folley Memorial 67045.02 0.40 54.52 No -0.03 

R13 67800.57 0.28 59.28 No 0.01 

AA17 67908.85 0.15 36.38 Yes 0.04 

Desert Rose 69103.39 0.15 58.87 No 0.00 

Y19 69891.00 0.24 64.40 Yes -0.08 

Chesnutt 72042.09 0.16 57.07 No -0.03 

Arrowhead Shores 74099.05 0.09 55.65 No -0.02 

Comanche 75159.69 0.10 60.11 No 0.00 

Z20 76003.84 0.21 56.99 No -0.05 

Foothills 80362.77 0.16 48.79 No 0.02 

AF19 83629.63 0.21 28.80 No 0.04 

Mescal 84155.21 0.04 45.41 No 0.00 

Dos Lagos 84725.58 0.11 61.09 Yes 0.05 

Greenbriar 88252.36 0.11 61.95 No 0.03 
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Sycamore Grove 89353.04 0.29 36.81 No 0.07 

La Paloma 91203.41 0.13 50.30 No 0.04 

Deer Village 92515.00 0.11 51.11 No 0.04 

Moon Valley 98768.50 0.17 53.58 No 0.04 

Paseo Verde 102723.92 0.14 44.62 No 0.10 

Chuckwalla 107804.82 0.15 48.24 No 0.04 

Estrada 117153.30 0.12 46.98 No 0.02 

Hanger 129048.95 0.13 39.20 No 0.02 

Veterans Oasis 130221.44 0.11 16.35 Yes 0.12 
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Figure A1: Plot of the park size surrounding cameras sites, and the proportion of Latinx residents in the 1-km buffer 

surrounding the sites r = 0.31. 
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Figure A2: Plot of the park size surrounding cameras sites, and the median household income of residents in the 1-km 

buffer surrounding the sites r = 0.10.  
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Table A7: Model selection results for detection probability (p) for coyote, desert cottontail rabbit, and domestic cat. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Model AICc Delta AICc Weight Deviance 

Coyote 

psi(.) p(.) 288.25 0.00 0.65 81.35 

psi(.) p(Effort) 289.51 1.25 0.35 282.80 

psi(.) p(Time varying) 309.65 21.40 0.00 74.94 

psi(.) p(Time varying + Effort) 312.51 24.25 0.00 276.03 

Desert cottontail rabbit 

psi(.) p(.) 126.56 0.00 0.75 1.08 

psi(.) p(Effort) 128.74 2.18 0.25 122.03 

psi(.) p(Time varying) 145.66 19.10 0.00 -7.63 

psi(.) p(Time varying + Effort) 149.86 23.30 0.00 113.38 

Domestic cat 

psi(.) p(.) 373.43 0.00 0.54 131.41 

psi(.) p(Effort) 373.78 0.35 0.46 367.07 

psi(.) p(Time varying) 389.41 15.98 0.00 119.58 

psi(.) p(Time varying + Effort) 392.04 18.61 0.00 355.56 
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Table A8: Independent detections (>30 min apart) of coyote, desert cottontail rabbits, and domestic cats within four 

categories of neighborhood income and proportion of Latinx residents, split at the median of each category (19 

neighborhoods per category). The percent of sites are the number of sites within the category divided by the total 

number of sites (38). Also shown are mean and standard deviations of the number of detections of each species across 

sites within each category. (H) and (L) represent the higher and lower categories of each variable. 

    Coyote Desert cottontail rabbit   Domestic cat 

Statistic 

 Income   Latinx  Income   Latinx  Income   Latinx 

 H   L  H  L  H   L  H   L  H   L  H   L 

Total detections 

(#) 
 77  66  20  123  948  112  0  1060  150  1197  1180  167 

Number of sites  12  7  6  13  7  1  0  8  12  17  16  13 

Percent of sites  32  18  16  34  18  3  0  21  32  45  42  34 

Mean detections  6.42  9.43  3.33  9.46  135.43  -  -  132.50  12.50  74.81  78.67  12.85 

Standard 

deviation 
  5.32   16.42   3.39   12.10   200.43   -   -   185.74   11.45   109.79   112.33   13.08 
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Table A9a: Single season occupancy model results for coyote.  All combinations (32) on occupancy probability (psi) were 

modeled and detection probability was held constant as the intercept-only (dot) model, p(.) and I = income, L = Latinx, 

Im = Impervious, N = NDVI, and W = Water. 

Coyote model selection 

Model AICc Delta AICc Weight Deviance 

psi(I + L + N) p(.) 278.49 0.00 0.19 266.62 

psi(I + L + W + N) p(.) 279.34 0.85 0.13 264.63 

psi(I + N+ Im + L) p(.) 279.77 1.28 0.10 265.06 

psi(I + L + Im) p(.) 280.12 1.63 0.08 268.25 

psi(L + W + Im) p(.) 280.31 1.81 0.08 268.43 

psi(L + Im) p(.) 280.45 1.96 0.07 271.24 

psi(I + L + W + Im) p(.) 280.54 2.04 0.07 265.83 

psi(I + L + W + Im + N) p(.) 280.99 2.49 0.06 263.25 

psi(L + W + N) p(.) 282.09 3.59 0.03 270.21 

psi(L + N) p(.) 282.64 4.14 0.02 273.42 

psi(L + Im + N) p(.) 282.70 4.21 0.02 270.83 

psi(L + W + Im + N) p(.) 282.72 4.23 0.02 268.01 

psi(L + W) p(.) 282.75 4.26 0.02 273.54 

psi(I + L + W) p(.) 283.53 5.03 0.02 271.65 

psi(L) p(.) 283.53 5.04 0.02 276.82 

psi(I + L) p(.) 283.66 5.16 0.01 274.44 

psi(Im) p(.) 284.83 6.34 0.01 278.13 

psi(N)p(.) 284.88 6.39 0.01 278.18 

psi(W + N) p.() 285.26 6.76 0.01 276.04 

psi(W + Im) p(.) 285.36 6.87 0.01 276.15 
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psi(Im + N) p(.) 285.72 7.23 0.01 276.51 

psi(W + Im + N) p(.) 286.29 7.80 0.00 274.42 

psi(I + Im) p(.) 287.07 8.58 0.00 277.86 

psi(I + N) p(.) 287.29 8.79 0.00 278.08 

psi(I + W + Im) p(.) 287.46 8.96 0.00 275.58 

psi(I + W + N) p (.) 287.92 9.42 0.00 276.04 

psi(.) p(.) 288.20 9.71 0.00 81.29 

psi(I + N + Im) p(.) 288.36 9.87 0.00 276.49 

psi(W) p (.) 288.86 10.36 0.00 113.07 

psi(I + W + Im + N) p (.) 289.11 10.62 0.00 274.40 

psi(I) p(.) 289.91 11.42 0.00 283.21 

psi(I + W) p(.) 290.17 11.67 0.00 280.96 
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Table A9b: Single season occupancy model results for coyote.  All combinations (32) on occupancy probability (psi) were 

modeled and detection probability was held constant as the intercept-only (dot) model, p(.). Confidence intervals that do 

not overlap zero are considered significant and are bolded. The most strongly supported covariate buffer size follows the 

covariate name. I = income, L = Latinx, Im = Impervious, N = NDVI, and W = Water. 

Coyote beta estimates (psi) social covariates 

Model 
I (1km)  L (1km) 

Estimate SE 95% 90%  Estimate SE 95% CI 90 % 

psi(I + L + N) p(.) -1.80 0.83 (-3.42, -0.19) (-3.16, -0.44)  -2.52 0.98 (-4.45, -0.60) (-4.13, -0.91) 

psi(I + L + W + N) p(.) -1.67 0.83 (-3.30, -0.04) (-3.03, -0.31)  -2.65 1.04 (-4.70, -0.61) (-4.36, -0.94) 

psi(I + N + Im + L) p(.) -1.76 0.82 (-3.36, -0.16) (-3.10, -0.42)  -2.37 0.95 (-4.24, -0.51 (-3.93, -0.81) 

psi(I + L + Im) p(.) -1.13 0.66 (-2.42, 0.17) (-2.21, -0.05)  -1.96 0.85 (-3.63, -0.28) (-3.35, -0.57) 

psi(L + W + Im) p(.)      -1.26 0.58 (-2.40, -0.12) (-2.21, -0.31) 

psi(L + Im) p(.)      -1.08 0.49 (-2.04, -0.11) (-1.88, -0.28) 

psi(I + L + W + Im) p(.) -1.08 0.68 (-2.41, 0.25) (-2.20, 0.04)  -2.16 0.93 (-4.00, -0.33) (-3.69, -0.63) 

psi(I + L + W + Im + N) p(.) -1.62 0.82 (-3.23, -0.01) (-2.96, -0.28)  -2.48 1.00 (-4.44, -0.52) (-4.12, -0.84) 

psi(L + W + N) p(.)      -1.21 0.60 (-2.38, -0.04) (-2.19, -0.23) 

psi(L + N) p(.)      -0.96 0.51 (-1.97, 0.04) (-1.80, -0.12) 

psi(L + Im + N) p(.)      -1.02 0.50 (-2.00, -0.03) (-1.84, -0.20) 

psi(L + W + Im + N) p(.)      -1.20 0.59 (-2.35, -0.05) (-2.17, -0.23) 

psi(L + W) p(.)      -1.43 0.60 (-2.60, -0.25) (-2.41, -0.45) 

psi(I + L + W) p(.) -0.76 0.58 (-1.89, 0.37) (-1.71, 0.19)  -2.22 0.93 (-4.06, -0.39) (-3.75, -0.69) 

psi(L) p(.)      -1.13 0.50 (-2.12, -0.14) (-1.95, -0.31) 

psi(I + L) p(.) -0.84 0.56 (-1.94, 0.27) (-1.76, 0.08)  -1.97 0.84 (-3.62, -0.31) (-3.35, -0.84) 

psi(Im) p(.)          

psi(N)p(.)          
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psi(W + N) p.()          

psi(W + Im) p(.)          

psi(Im + N) p(.)          

psi(W + Im + N) p(.)          

psi(I + Im) p(.) 0.23 0.45 (-0.66, 1.12) (-0.97, 0.51)      

psi(I + N) p(.) -0.14 0.42 (-0.96, 0.69) (-0.83, 0.55)      

psi(I + W + Im) p(.) 0.35 0.48 (-0.60, 1.29) (-0.44, 1.14)      

psi(I + W + N) p (.) -0.02 0.44 (-0.87, 0.84) (-0.74, 0.70)      

psi(.) p(.)          

psi(I + N + Im) p(.) -0.07 0.47 (-1.00, 0.86) (-0.84, 0.70)      

psi(W) p (.)          

psi(I + W + Im + N) p (.) 0.06 0.49 (-0.89, 1.02) (-0.74, 0.86)      

psi(I) p(.) 0.29 0.36 (-0.43, 1.00) (-0.30, 0.88)      

psi(I + W) p(.) 0.40 0.38 (-0.34, 1.13) (-0.22, 1.02)           
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Table A9c: Single season occupancy model results for coyote.  All combinations (32) on occupancy probability (psi) were 

modeled and detection probability was held constant as the intercept-only (dot) model, p(.). Confidence intervals that do 

not overlap zero are considered significant and are bolded. The most strongly supported covariate buffer size follows the 

covariate name. I = income, L = Latinx, Im = Impervious, N = NDVI, and W = Water. 

Coyote beta estimates (psi) environmental covariates 

Model 

Im (250m)  N (1500m)  W (1500m) 

Estimate SE 95% 90%  Estimate SE  95% 90%  Estimate SE  95% 90% 

psi(I + L + N) p(.)      1.58 0.73 (0.15, 3.00) (0.38, 2.78)       

psi(I + L + W + N) p(.)      1.55 0.73 (0.13, 2.98) (0.35, 2.75)  -1.32 0.99 (-3.27, 0.62) (-2.94, 0.30) 

psi(I + N + Im + L) p(.) -0.71 0.59 (-1.87, 0.44) (-1.68, 0.26)  1.22 0.77 (-0.29, 2.73) (-0.04, 2.48)      

psi(I + L + Im) p(.) -1.11 0.52 (-2.12, -0.10) (-1.96, -0.26)           

psi(L + W + Im) p(.) -1.20 0.67 (-2.51, 0.12) (-2.30, -0.10)       -1.50 0.96 (-3.38, 0.38) (-3.07, 0.07) 

psi(L + Im) p(.) -1.17 0.61 (-2.36, 0.01) (-2.17, -0.17)           

psi(I + L + W + Im) p(.) -1.16 0.56 (-2.25, -0.06) (-2.08, -0.24)       -1.45 1.00 (-3.40, 0.50) (-3.09, 0.19) 

psi(I + L + W + Im + N) p(.) -0.74 0.65 (-2.01, 0.53) (-1.81, 0.33)  1.15 0.78 (-0.38, 2.67) (-0.13, 2.43)  -1.29 1.01 (-3.27, 0.69) (-2.95, 0.37) 

psi(L + W + N) p(.)      0.83 0.50 (-0.15, 1.82) (0.01, 1.65)  -1.54 0.92 (-3.35, 0.27) (-3.05, -0.03) 

psi(L + N) p(.)      0.77 0.46 (-0.12, 1.67) (0.02, 1.52)      

psi(L + Im + N) p(.) -0.97 0.67 (-2.28, 0.34) (-2.07, 0.13)  0.35 0.55 (-0.72, 1.42) (-0.55, 1.25)      

psi(L + W + Im + N) p(.) -0.96 0.74 (-2.41, 0.48) (-2.17, 0.25)  0.39 0.61 (-0.80, 1.58) (-0.61, 1.39)  -1.50 0.95 (-3.36, 0.37) (-3.06, 0.06) 

psi(L + W) p(.)           -1.52 0.92 (-3.32, 0.28) (-3.03, -0.01) 

psi(I + L + W) p(.)           -1.46 0.95 (-3.33, 0.41) (-3.02, 0.10) 

psi(L) p(.)               

psi(I + L) p(.)               

psi(Im) p(.) -0.95 0.47 (-1.86, -0.03) (-1.72, -0.18)           

psi(N)p(.)      0.90 0.43 (0.06, 1.75) (0.19, 1.61)      
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psi(W + N) p.()      0.98 0.46 (0.08, 1.87) (0.23, 1.73)  -1.09 0.77 (-2.60, 0.41) (-2.35, 0.17) 

psi(W + Im) p(.) -0.96 0.46 (-1.86, -0.07) (-1.71, -0.21)       -1.05 0.76 (-2.55, 0.45) (-2.30, 0.20) 

psi(Im + N) p(.) -0.63 0.52 (-1.65, 0.38) (-1.48, 0.22)  0.61 0.50 (-0.37, 1.58) (-0.21, 1.43)      

psi(W + Im + N) p(.) -0.63 0.51 (-1.63, 0.38) (-1.47, 0.21)  0.66 0.53 (-0.37, 1.70) (-0.21, 1.53)  -1.11 0.78 (-2.65, 0.43) (-2.39, 0.17) 

psi(I + Im) p(.) -0.97 0.50 (-1.94, 0.01) (-1.79, -0.15)           

psi(I + N) p(.)      0.96 0.48 (0.03, 1.90) (0.17, 1.75)      

psi(I + W + Im) p(.) -0.99 0.51 (-1.99, 0.02) (-1.83, -0.15)       -1.17 0.80 (-2.73, 0.40) (-2.48, 0.14) 

psi(I + W + N) p (.)      0.98 0.50 (0.01, 1.95) (0.16, 1.80)  -1.09 0.78 (-2.62, 0.45) (-2.37, 0.19) 

psi(.) p(.)               

psi(I + N + Im) p(.) -0.62 0.52 (-1.64, 0.41) (-1.47, 0.23)  0.64 0.56 (-0.45, 1.74) (-0.28, 1.56)      

psi(W) p (.)           -0.90 0.70 (-2.26, 0.47) (-2.05, 0.25) 

psi(I + W + Im + N) p (.) -0.64 0.53 (-1.69, 0.41) (-1.51, 0.23)  0.63 0.59 (-0.52, 1.78) (-0.34, 1.60)  -1.13 0.80 (-2.70, 0.44) (-2.44, 0.18) 

psi(I) p(.)               

psi(I + W) p(.)                     -1.07 0.73 (-2.51, 0.37) (-2.27, 0.13) 
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Table A10a: Single season occupancy model results for desert cottontail rabbits.  All combinations (32) on occupancy 

probability (psi) were modeled and detection probability was held constant as the intercept-only (dot) model, p(.) and I 

= income, L = Latinx, Im = Impervious, N = NDVI, and W = Water. 

Desert cottontail rabbit model selection 

Model AICc Delta AICc Weight Deviance 

psi(L + W + N) p(.) 112.46 0.00 0.12 100.58 

psi(L + W + Im) p(.) 112.47 0.01 0.12 100.59 

psi(L + N) p(.) 112.68 0.22 0.11 103.47 

psi(L + W) p(.) 112.96 0.50 0.10 103.75 

psi(L + Im) p(.) 113.01 0.56 0.09 103.80 

psi(L) p(.) 113.80 1.34 0.06 107.10 

psi(I + L + N) p(.) 113.96 1.51 0.06 102.90 

psi(L + W + Im + N) p(.) 114.21 1.75 0.05 99.50 

psi(L + Im + N) p(.) 114.27 1.81 0.05 102.39 

psi(I + L + W + N) p(.) 114.65 2.19 0.04 99.94 

psi(I + L + Im) p(.) 114.67 2.21 0.04 102.79 

psi(I + L + W + Im) p(.) 114.85 2.40 0.04 100.14 

psi(I + N + Im + L) p(.) 114.99 2.53 0.03 100.28 

psi(I + L + W) p(.) 115.62 3.16 0.03 103.74 

psi(I + L + W + Im + N) p(.) 116.00 3.54 0.02 98.27 

psi(I + L) p(.) 116.26 3.80 0.02 107.05 

psi(I + W) p(.) 121.10 8.64 0.00 111.88 

psi(W + Im) p(.) 121.40 8.94 0.00 112.19 

psi(I + W+ Im) p(.) 121.58 9.12 0.00 109.71 

psi(W) p(.) 122.70 10.24 0.00 12.12 
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psi(W + N) p(.) 122.77 10.31 0.00 113.55 

psi(I + W + N) p(.) 122.84 10.38 0.00 110.96 

psi(W + Im + N) p(.) 123.63 11.17 0.00 111.75 

psi(I + Im) p(.) 123.98 11.52 0.00 114.77 

psi(I) p(.) 124.02 11.56 0.00 117.32 

psi(I + W + Im + N) p(.) 124.33 11.87 0.00 109.62 

psi(Im) p(.) 124.36 11.90 0.00 117.66 

psi(I + N) p(.) 125.10 12.64 0.00 115.89 

psi(N) p(.) 125.48 13.02 0.00 118.77 

psi(Im + N) p(.) 126.12 13.70 0.00 116.95 

psi(I + N + Im) p(.) 126.33 13.98 0.00 114.57 

psi(.) p(.) 126.56 14.10 0.00 108.00 

 

 

 

 

 

 

 

 

 

 



 

  

6
5
 

 

Table A10b: Single season occupancy model results for desert cottontail rabbits.  All combinations (32) on occupancy 

probability (psi) were modeled and detection probability was held constant as the intercept-only (dot) model, p(.). 

Confidence intervals that do not overlap zero are considered significant and are bolded. The most strongly supported 

covariate buffer size follows the covariate name. I = income, L = Latinx, Im = Impervious, N = NDVI, and W = Water. 

Desert cottontail rabbit beta estimates (psi) social covariates 

Model 
I (1km)   L (1km) 

Estimate SE 95% 90%   Estimate SE 95% CI 90 % 

psi(L + W + N) p(.) 
     -5.16 2.51 (-10.08, -0.24) (-9.28, -1.04) 

psi(L + W + Im) p(.) 
     -5.16 2.71 (-10.46, 0.14) (-9.60, -0.72) 

psi(L + N) p(.) 
     -5.08 2.30 (-9.59, -0.56) (-8.85, -1.31) 

psi(L + W) p(.) 
     -4.86 2.44 (-9.65, -0.07) (-8.86, -0.86) 

psi(L + Im) p(.) 
     -5.03 2.55 (-10.03, -0.02) (-9.21, -0.85) 

psi(L) p(.) 
     -4.47 2.09 (-8.57, -0.37) (-7.90, -1.04) 

psi(I + L + N) p(.) -0.76 0.74 (-2.22, 0.69) (-1.97, 0.45)  -5.16 2.25 (-9.57, -0.75) (-8.85, -1.47) 

psi(L + W + Im + N) p(.) 
     -5.16 2.62 (-10.30, -0.02) (-9.46, -0.86) 

psi(L + Im + N) p(.) 
     -5.16 2.48 (-10.01, -0.30) (-9.23, -1.09) 

psi(I + L + W + N) p(.) -0.62 0.84 (-2.26, 1.02) (-2.00, 0.76)  -5.16 2.40 (-9.87, -0.45) (-9.10, -1.22) 

psi(I + L + Im) p(.) -0.72 0.83 (-2.35, 0.91) (-2.08, 0.64)  -5.16 2.62 (-10.29, -0.03) (-9.46, -0.86) 

psi(I + L + W + Im) p(.) -0.59 0.96 (-2.47, 1.30) (-2.16, 0.98)  -5.16 2.70 (-10.45, 0.13) (-9.59, -0.73) 

psi(I + N + Im + L) p(.) -1.06 0.91 (-2.84, 0.73) (-2.55, 0.43)  -5.16 2.43 (-9.92, -0.40) (-9.15, -1.17) 

psi(I + L + W) p(.) 0.06 0.70 (-1.32, 1.44) (-1.09, 1.21)  -4.81 2.50 (-9.71, 0.08) (-8.91, -0.71) 

psi(I + L + W + Im + N) p(.) -0.96 1.02 (-2.96, 1.04) (-2.63, 0.71)  -5.16 2.54 (-10.14, -0.18) (-9.33, -0.99) 

psi(I + L) p(.) -0.14 0.62 (-1.35, 1.08) (-1.16, 0.88)  -4.63 2.23 (-9.00, -0.27) (-8.29, -0.97) 

psi(I + W) p(.) 0.97 0.52 (-0.06, 1.99) (0.12, 1.82)      

psi(W + Im) p(.) 
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psi(I + W+ Im) p(.) 0.82 0.56 (-0.28, 1.92) (-0.10, 1.74)      

psi(W) p(.) 
         

psi(W + N) p(.) 
         

psi(I + W + N) p(.) 0.79 0.53 (-0.25, 1.83) (-0.08, 1.66)      

psi(W + Im + N) p(.) 
         

psi(I + Im) p(.) 0.75 0.47 (-0.17, 1.68) (-0.02, 1.52)      

psi(I) p(.) 0.91 0.44 (0.04, 1.78) (0.19, 1.63)      

psi(I + W + Im + N) p(.) 0.77 0.57 (-0.35, 1.89) (-0.16, 1.70)      

psi(Im) p(.) 
         

psi(I + N) p(.) 0.72 0.45 (-0.17, 1.60) (-0.02, 1.46)      

psi(N) p(.) 
         

psi(Im + N) p(.) 
         

psi(I + N + Im) p(.) 0.69 0.48 (-0.25, 1.63) (-0.10, 1.48)      

psi(.) p(.) 
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Table A10c: Single season occupancy model results for desert cottontail rabbits.  All combinations (32) on occupancy 

probability (psi) were modeled and detection probability was held constant as the intercept-only (dot) model, p(.). 

Confidence intervals that do not overlap zero are considered significant and are bolded. The most strongly supported 

covariate buffer size follows the covariate name. I = income, L = Latinx, Im = Impervious, N = NDVI, and W = Water. 

Desert cottontail beta estimates (psi) environmental covariates 

Model 

Im (250m)  N (1500m)  W (1500m) 

Estimate SE 95% 90%  Estimate SE  95% 90%  Estimate SE  95% 90% 

psi(L + W + N) p(.) 

     1.47 0.96 (-0.43, 3.36) (-0.10, 3.04)  3.01 2.10 (-1.10, 7.12) (-0.43, 6.45) 

psi(L + W + Im) p(.) 
-1.45 0.93 (-3.28, 0.38) (-2.98, 0.08)       2.64 1.66 (-0.61, 5.90) (0.08, 5.36) 

psi(L + N) p(.) 

     1.53 0.96 (-0.36, 3.41) (-0.04, 3.10)      

psi(L + W) p(.) 

          2.38 1.42 (-0.41, 5.17) (0.05, 4.71) 

psi(L + Im) p(.) 
-1.36 0.86 (-3.04, 0.32) (-2.28, 0.05)           

psi(L) p(.) 

              

psi(I + L + N) p(.) 

     1.74 0.94 (-0.09, 3.57) (-0.20, 3.28)      

psi(L + W + Im + N) p(.) 
-0.99 1.00 (-2.94, 0.96) (-2.63, 0.65)  1.00 1.00 (-0.97, 2.96) (-0.64, 2.64)  2.98 2.10 (-1.13, 7.09) (-0.46, 6.42) 

psi(L + Im + N) p(.) 
-0.91 0.93 (-2.73, 0.91) (-2.43, 0.62)  1.10 1.00 (-0.86, 3.06) (-0.54, 2.74)      

psi(I + L + W + N) p(.) 

     1.64 0.97 (-0.26, 3.53) (0.05, 3.23)  2.48 1.94 (-1.32, 6.27) (-0.70, 5.66) 

psi(I + L + Im) p(.) 
-1.67 1.00 (-3.64, 0.29) (-9.46, -0.86)           

psi(I + L + W + Im) p(.) 
-1.73 1.13 (-3.94, 0.48) (-3.58, 0.12)       2.29 1.57 (-0.80, 5.37) (-0.28, 4.86) 

psi(I + N + Im + L) p(.) 
-1.29 1.09 (-3.44, 0.85) (-3.08, 0.50)  1.34 0.93 (-0.49, 3.16) (-0.19, 2.87)      

psi(I + L + W) p(.) 

          2.42 1.51 (-0.54, 5.38) (-0.06, 4.90) 

psi(I + L + W + Im + N) p(.) 
-1.38 1.21 (-3.76, 1.00) (-3.36, 0.60)  1.23 0.96 (-0.65, 3.12) (-0.34, 2.80)  2.38 1.92 (-1.39, 6.15) (-0.77, 5.53) 

psi(I + L) p(.) 

              

psi(I + W) p(.) 

          2.95 1.38 (0.25, 5.66) (0.69, 5.21) 

psi(W + Im) p(.) 
-1.18 0.71 (-2.57, 0.21) (-2.34, -0.02)       2.87 1.34 (0.23, 5.51) (0.67, 5.07) 
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psi(I + W+ Im) p(.) 
-0.95 0.73 (-2.38, 0.47) (-2.15, 0.25)       3.00 1.45 (0.15, 5.84) (0.62, 5.38) 

psi(W) p(.) 

          2.86 1.25 (0.40, 5.31) (0.81, 4.91) 

psi(W + N) p(.) 

     0.78 0.53 (-0.27, 1.82) (-0.09, 1.65)  2.80 1.34 (0.17, 5.43) (0.60, 5.00) 

psi(I + W + N) p(.) 

     0.57 0.60 (-0.62, 1.75) (-0.41, 1.55)  3.00 1.48 (0.09, 5.90) (0.57, 5.43) 

psi(W + Im + N) p(.) 
-0.97 0.77 (-2.49, 0.55) (-2.23, 0.29)  0.42 0.64 (-0.83, 1.68) (-0.63, 1.47)  2.89 1.40 (0.15, 5.63) (0.59, 5.19) 

psi(I + Im) p(.) 
-0.89 0.63 (-2.13, 0.34) (-1.92, 0.14)           

psi(I) p(.) 

              

psi(I + W + Im + N) p(.) 
-0.85 0.79 (-2.40, 0.70) (-2.15, 0.45)  0.22 0.72 (-1.19, 1.63) (-0.96, 1.40)  3.02 1.49 (0.11, 5.93) (0.58, 5.46) 

psi(Im) p(.) 
-1.11 0.61 (-2.30, 0.08) (-2.11, -0.11)           

psi(I + N) p(.) 

     0.63 0.55 (-0.45, 1.71) (-0.27, 1.53)      

psi(N) p(.) 

     0.84 0.50 (-0.13, 1.81) (0.02, 1.66)      

psi(Im + N) p(.) 
-0.85 0.67 (-2.17, 0.46) (-1.95, 0.25)  0.49 0.59 (-0.66, 1.64) (-0.48, 1.46)      

psi(I + N + Im) p(.) 
-0.75 0.69 (-2.12, 0.61) (-1.88, 0.38)  0.29 0.66 (-0.99, 1.58) (-0.79, 1.37)      

psi(.) p(.) 
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Table A11a: Single season occupancy model results for domestic cats.  All combinations (32) on occupancy probability 

(psi) were modeled and detection probability was held constant as the intercept-only (dot) model, p(.) and I = income, L 

= Latinx, Im = Impervious, N = NDVI, and W = Water. 

Domestic cat model selection 

Model AICc Delta AICc Weight Deviance 

psi(W + Im + N) p(.) 363.51 0.00 0.22 351.64 

psi(L + W + Im + N) p(.) 363.53 0.02 0.22 348.82 

psi(W + Im) p(.) 365.32 1.80 0.09 356.10 

psi(L + W + Im) p(.) 365.50 1.99 0.08 353.63 

psi(I + W + Im + N) p(.) 365.96 2.45 0.06 351.25 

psi(I + L + W + Im + N) p(.) 366.00 2.49 0.06 348.27 

psi(L + Im + N) p (.) 366.99 3.48 0.04 355.12 

psi(I + L + W + Im) p(.) 367.25 3.74 0.03 352.54 

psi(L + Im) p(.) 367.42 3.91 0.03 358.21 

psi(I + W + Im) p(.) 367.89 4.38 0.02 356.02 

psi(Im) p(.) 368.06 4.55 0.02 361.35 

psi(Im + N) p(.) 368.22 4.71 0.02 359.01 

psi(I + N + Im) p(.) 368.39 4.88 0.02 356.52 

psi(I + Im) p(.) 369.40 5.89 0.01 360.19 

psi(I + N + Im + L) p(.) 369.55 6.04 0.01 354.84 

psi(L) p(.) 369.90 6.39 0.01 363.20 

psi(I + L + Im) p(.) 370.08 6.57 0.01 358.21 

psi(L + W_ p(.) 370.39 6.88 0.01 361.18 

psi(I) p(.) 370.49 6.98 0.01 363.79 

psi(I + W) p(.) 371.35 7.84 0.00 362.14 
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psi(I + L) p(.) 371.74 8.23 0.00 362.53 

psi(L + N) p(.) 372.41 8.90 0.00 363.20 

psi(.) p(.) 372.62 9.11 0.00 131.00 

psi(I + L + W) p(.) 372.63 9.12 0.00 360.76 

psi(I + N) p(.) 372.70 9.19 0.00 363.49 

psi(W) p(.) 372.90 9.39 0.00 158.39 

psi(L + W + N) p(.) 373.05 9.54 0.00 361.17 

psi(I + W + N) p(.) 373.78 10.27 0.00 361.90 

psi(I + L + N) p(.) 374.22 10.70 0.00 362.34 

psi(N) p(.) 374.59 11.08 0.00 367.89 

psi(W + N) p (.) 375.03 11.52 0.00 365.82 

psi(I + L + W + N) p (.) 375.39 11.87 0.00 360.68 
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Table A11b: Single season occupancy model results for domestic cats.  All combinations (32) on occupancy probability 

(psi) were modeled and detection probability was held constant as the intercept-only (dot) model, p(.). Confidence 

intervals that do not overlap zero are considered significant and are bolded. The most strongly supported covariate 

buffer size follows the covariate name. I = income, L = Latinx, Im = Impervious, N = NDVI, and W = Water. 

Domestic cat beta estimates (psi) social covariates 

Model 
I (1km)   L (1km) 

Estimate SE 95% 90%  Estimate SE 95% 90% 

psi(W + Im + N) p(.)            

psi(L + W + Im + N) p(.)      1.06 0.72 (-0.34, 2.46) (-0.12, 2.24) 

psi(W + Im) p(.)          

psi(L + W + Im) p(.)      0.95 0.66 (-0.35, 2.25) (-0.13, 2.03) 

psi(I + W + Im + N) p(.) -0.40 0.66 (-1.70, 0.90) (-1.48, 0.68)      

psi(I + L + W + Im + N) p(.) 0.73 1.01 (-1.24, 2.70) (-0.93, 2.39)  1.55 1.04 (-0.48, 3.58) (-0.16, 3.26) 

psi(L + Im + N) p (.)      1.14 0.73 (-0.29, 2.56) (-0.06, 2.34) 

psi(I + L + W + Im) p(.) 0.76 0.76 (-0.74, 2.25) (-0.49, 2.01)  1.60 0.99 (-0.33, 3.54) (-0.02, 3.22) 

psi(L + Im) p(.)      0.94 0.63 (-0.30, 2.18) (-0.09, 1.97) 

psi(I + W + Im) p(.) -0.14 0.49 (-1.11, 0.82) (-0.94, 0.66)      

psi(Im) p(.)          

psi(Im + N) p(.)          

psi(I + N + Im) p(.) -0.81 0.56 (-1.91, 0.29) (-1.73, 0.11)      

psi(I + Im) p(.) -0.46 0.44 (-1.33, 0.40) (-1.18, 0.26)      

psi(I + N + Im + L) p(.) -0.34 0.66 (-1.63, 0.95) (-1.43, 0.74)  0.93 0.82 (-0.67, 2.53) (-0.41, 2.27) 

psi(L) p(.)      1.13 0.60 (-0.04, 2.29) (0.15, 2.11) 

psi(I + L + Im) p(.) 0.02 0.56 (-1.08, 1.13) (-0.90, 0.94)  0.96 0.78 (-0.57, 2.48) (-0.32, 2.24) 

psi(L + W) p(.)      1.16 0.60 (-0.01, 2.33) (0.18, 2.14) 
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psi(I) p(.) -0.79 0.40 (-1.57, -0.01) (-1.45, -0.13)      

psi(I + W) p(.) -0.77 0.40 (-1.57, 0.02) (-1.43, -0.11)      

psi(I + L) p(.) -0.42 0.51 (-1.42, 0.59) (-1.26, 0.42)  0.75 0.73 (-0.68, 2.18) (-0.45, 1.95) 

psi(L + N) p(.)      1.13 0.62 (-0.09, 2.34) (0.11, 2.15) 

psi(.) p(.)          

psi(I + L + W) p(.) -0.35 0.54 (-1.41, 0.71) (-1.24, 0.54)  0.84 0.76 (-0.65, 2.33) (-0.41, 2.09) 

psi(I + N) p(.) -0.93 0.50 (-1.91, 0.04) (-1.75, -0.11)      

psi(W) p(.)          

psi(L + W + N) p(.)      1.15 0.61 (-0.05, 2.34) (0.15, 2.15) 

psi(I + W + N) p(.) -0.91 0.52 (-1.92, 0.10) (-1.76, -0.06)      

psi(I + L + N) p(.) -0.54 0.60 (-1.73, 0.64) (-1.52, 0.44)  0.73 0.73 (-0.71, 2.16) (-0.47, 1.93) 

psi(N) p(.)          

psi(W + N) p (.)          

psi(I + L + W + N) p (.) -0.45 0.65 (-1.72, 0.82) (-1.52, 0.62)   0.80 0.77 (-0.70, 2.30) (-0.46, 2.06) 
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Table A11c: Single season occupancy model results for domestic cats.  All combinations (32) on occupancy probability 

(psi) were modeled and detection probability was held constant as the intercept-only (dot) model, p(.). Confidence 

intervals that do not overlap zero are considered significant and are bolded. The most strongly supported covariate 

buffer size follows the covariate name. I = income, L = Latinx, Im = Impervious, N = NDVI, and W = Water. 

Domestic cat beta estimates (psi) environmental covariates 

Model 

Im (250m)  N (1500m)  W (1500m) 

Estimate SE 95% 90%  Estimate SE  95% 90%  Estimate SE  95% 90% 

psi(W + Im + N) p(.) 2.69 1.00 (0.73, 4.64) (1.05, 4.33)  1.57 0.84 (-0.07, 3.21) (0.19, 2.95)  3.68 1.75 (0.25, 7.11) (0.81, 6.55) 

psi(L + W + Im + N) p(.) 2.69 1.11 (0.52, 4.85) (0.87, 4.51)  1.77 0.94 (-0.07, 3.61) (0.23, 3.31)  3.75 1.95 (-0.07, 7.58) (0.55, 6.95) 

psi(W + Im) p(.) 1.44 0.54 (0.37, 2.50) (0.55, 2.33)       3.10 1.72 (-0.28, 6.47) (0.28, 5.92) 

psi(L + W + Im) p(.) 1.33 0.57 (0.22, 2.44) (0.40, 2.26)       3.12 1.83 (-0.48, 6.71) (0.12, 6.12) 

psi(I + W + Im + N) p(.) 2.43 1.04 (0.40, 4.46) (0.72, 4.14)  1.62 0.84 (-0.02, 3.26) (0.24, 3.00)  3.35 1.81 (-0.20, 6.90) (0.38, 6. 32) 

psi(I + L + W + Im + N) p(.) 3.27 1.52 (0.28, 6.26) (0.78, 5.76)  1.80 0.99 (-0.14, 3.74) (0.18, 3.42)  4.76 2.66 (-0.46, 9.98) (0.40, 9.12) 

psi(L + Im + N) p (.) 1.57 0.65 (0.29, 2.85) (0.50, 2.64)  1.04 0.62 (-0.18, 2.26) (0.02, 2.06)      

psi(I + L + W + Im) p(.) 1.82 0.86 (0.14, 3.50) (0.41, 3.23)       3.98 2.14 (-0.22, 8.19) (0.47, 7.49) 

psi(L + Im) p(.) 0.93 0.46 (0.03, 1.83) (0.18, 1.68)           

psi(I + W + Im) p(.) 1.34 0.63 (0.11, 2.57) (0.31, 2.37)       2.97 1.78 (-0.52, 6.46) (0.05, 5.89) 

psi(Im) p(.) 1.01 0.43 (0.16, 1.86) (0.30, 1.72)           

psi(Im + N) p(.) 1.59 0.63 (0.36, 2.82) (0.56, 2.62)  0.85 0.58 (-0.28, 1.98) (-0.10, 1.80)      

psi(I + N + Im) p(.) 1.51 0.66 (0.23, 2.80) (0.43, 2.59)  1.13 0.62 (-0.09, 2.36) (0.11, 2.15)      

psi(I + Im) p(.) 0.85 0.47 (-0.07, 1.77) (0.08, 1.62)           

psi(I + N + Im + L) p(.) 1.55 0.66 (0.26, 2.84) (0.47, 2.63)  1.14 0.65 (-0.14, 2.41) (0.07, 2.21)      

psi(L) p(.)               

psi(I + L + Im) p(.) 0.94 0.48 (-0.00, 1.87) (0.15, 1.73)           

psi(L + W) p(.)           1.49 1.17 (-0.81, 3.78) (-0.43, 3.41) 
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psi(I) p(.)               

psi(I + W) p(.)           1.39 1.21 (-0.97, 3.76) (-0.59, 3.37) 

psi(I + L) p(.)               

psi(L + N) p(.)      0.00 0.41 (-0.81, 0.80) (-0.67, 0.67)      

psi(.) p(.)               

psi(I + L + W) p(.)           1.43 1.19 (-0.90, 3.77) (-0.52, 3.38) 

psi(I + N) p(.)      0.25 0.46 (-0.65, 1.15) (-0.50, 1.00)      

psi(W) p(.)           1.44 1.13 (-0.78, 3.65) (-0.41, 3.29) 

psi(L + W + N) p(.)      -0.04 0.46 (-0.95, 0.87) (-0.79, 0.71)  1.49 1.18 (-0.81, 3.80) (-0.45, 3.43) 

psi(I + W + N) p(.)      0.14 0.50 (-0.74, 1.22) (-0.68, 0.96)  1.35 1.19 (-0.98, 3.68) (-0.60, 3.30) 

psi(I + L + N) p(.)      0.21 0.47 (-0.72, 1.14) (-0.56, 0.98)      

psi(N) p(.)      -0.23 0.37 (-0.95, 0.50) (-0.84, 0.38)      

psi(W + N) p (.)      -0.25 0.42 (-1.07, 0.56) (-0.94, 0.44)  1.45 1.14 (-0.79, 3.68) (-0.42, 3.32) 

psi(I + L + W + N) p (.)           0.15 0.53 (-0.89, 1.19) (-0.72, 1.02)   1.39 1.19 (-0.94, 3.72) (-0.56, 3.34) 
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Table A12: Overlap estimates and 95% confidence intervals of each species within each covariate category (income or 

Latinx). Values range from 0 to 1. An asterisk (*) denotes that daily activity was shifted (upper 95% CI < 0.9). 

        

Species Category Overlap estimate 95 % CI lower 95% CI upper 

Coyote Income 0.85 0.78 0.95 

Coyote Latinx 0.72* 0.55 0.88 

Cottontail Income Not available Not available Not available 

Cottontail Latinx Not available Not available Not available 

Cat Income 0.87 0.81 0.92 

Cat Latinx 0.89 0.84 0.95 

     




