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ABSTRACT  

   

Persistent self-assessment is the key to proficiency in computer programming. 

The process involves distributed practice of code tracing and writing skills which 

encompasses a large amount of training that is tailored for the student's learning 

condition. It requires the instructor to efficiently manage the learning resource and 

diligently generate related programming questions for the student. However, 

programming question generation (PQG) is not an easy job. The instructor has to 

organize heterogeneous types of resources, i.e., conceptual programming concepts and 

procedural programming rules. S/he also has to carefully align the learning goals with the 

design of questions in regard to the topic relevance and complexity. Although numerous 

educational technologies like learning management systems (LMS) have been adopted 

across levels of programming learning, PQG is still largely based on the demanding 

creation task performed by the instructor without advanced technological support. To fill 

this gap, I propose a knowledge-based PQG model that aims to help the instructor 

generate new programming questions and expand existing assessment items. The PQG 

model is designed to transform conceptual and procedural programming knowledge from 

textbooks into a semantic network model by the Local Knowledge Graph (LKG) and the 

Abstract Syntax Tree (AST). For a given question, the model can generate a set of new 

questions by the associated LKG/AST semantic structures. I used the model to compare 

instructor-made questions from 9 undergraduate programming courses and textbook 

questions, which showed that the instructor-made questions had much simpler 

complexity than the textbook ones. The analysis also revealed the difference in topic 

distributions between the two question sets. A classification analysis further showed that 
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the complexity of questions was correlated with student performance.  To evaluate the 

performance of PQG, a group of experienced instructors from introductory programming 

courses was recruited. The result showed that the machine-generated questions were 

semantically similar to the instructor-generated questions. The questions also received 

significantly positive feedback regarding the topic relevance and extensibility. Overall, 

this work demonstrates a feasible PQG model that sheds light on AI-assisted PQG for the 

future development of intelligent authoring tools for programming learning. 
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CHAPTER 1 

INTRODUCTION 

Learning computer programming requires rigorous practices of programming code 

tracing and writing (Chung et al., 2020; Chung & Hsiao, 2020; Czerkawski & Lyman, 

2015). One of the most critical challenges in mastering programming is to integrate and 

apply conceptual knowledge (know-what) and procedural knowledge (know-how). The 

complex nature of computer programming is similar to the adjacent fields, such as Math 

and Engineering, where the complexity results in a larger number of resources to manage 

than in the other fields that are only embodied in homogeneous types of knowledge.  

 

Fortunately, in the modern days of programming education, educational technologies 

have widely reshaped how instructors organize learning resources. For instance, learning 

management systems (LMS) and adaptive textbooks (Chau et al., 2020) can provide a 

digitalized hub of resources that allows the instructor to efficiently query and browse the 

content. An LMS can also help the instructor promptly deliver learning resources such as 

reading materials, worked code examples, and code-tracing/code-writing assessments to 

the student. By continuously supplying self-assessments over time (Chung & Hsiao, 

2020), the instructor can manage the student's learning condition and then adapt the 

instructions accordingly, thereby achieving the benefits of personalized learning. 

Numerous studies have shown how such a technology shapes the student's learning 

experience in programming learning (Weintrop et al., 2016). 
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Nevertheless, comprehensive resource management of programming learning should 

include not only the content organization but also the content generation. In my work, I 

found that a successful self-assessment learning environment requires a sufficient supply 

of questions that are tailored for different learning conditions. Therefore, I focus on 

researching methods to facilitate programming question generation (PQG). This PQG 

process is never as simple as transforming a descriptive sentence into an interrogative 

form. The craft of programming questions requires both the mastery of programming 

knowledge and an efficient question generation routine, i.e., deciding the learning goals, 

gathering related code examples, adapting the complexity to the level of the students, and 

transforming questions into appropriate formats. The process can quickly become a 

tedious and time-consuming task when a large number of questions are needed.  

 

Researchers have developed different tools to support the PQG process. For example, the 

parameterized question generation (Brusilovsky & Sosnovsky, 2005; Hsiao et al., 2009) 

provides a straightforward solution that efficiently reduces the cost of authoring code 

examples. The process "parameterizes" code examples by substituting the variables or 

values inside, which effectively transforms the examples into templates of questions. In 

practice, the instructor only needs to prepare a small number of variable cases to create a 

large collection of questions. Research in related fields of study also sheds light on how 

to support the PQG process. For example, (L. Zhang & VanLehn, 2016) propose a 

knowledge-based question generation model that automatically generates questions for 

introductory biology classes. The model uses an existing, established biology ontology 
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and templates to generate questions, and the evaluation showed that the machine-

generated questions worked well in helping students to learn.  

  

However, these methods are limited in terms of the question types they can address. 

Although the parameterized question generation can help generate many code examples 

from a small number of templates, it is unable to generate concept questions that go 

beyond the predefined templates. The knowledge-based question generation requires an 

established, ready-to-use ontology as the source of information. Most of such ontologies 

capture high-level categories of programming concepts but not the procedural knowledge 

that is necessary for code tracing/writing questions. In addition, since the input ontology 

is usually static, it is relatively difficult to adapt the knowledge-based generation for 

different contexts (i.e., the scope of learning content). To facilitate the PQG process that 

fully involves the integration of conceptual and procedural programming knowledge, I 

believe that an intelligent PQG model based on a modern AI approach and a flexible 

knowledge base is needed.  

 

This work proposes and examines a PQG model that captures conceptual and procedural 

knowledge by a Local Knowledge Graph (LKG) and Abstract Syntax Trees (AST). The 

knowledge is transformed into a semantic network, by which the model can query related 

code examples and the embedded concepts in the form of semantic triples. The triples are 

then used to generate programming questions by matching the semantic structures against 

predefined question templates. Overall, this work is guided by the following research 

questions: 
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1 How does a PQG model capture the conceptual and implementation 

programming knowledge? 

2 Given an input programming question, how does the PQG model query the 

most relevant programming examples? What similarity index can help rank the 

outcome? 

3 How does the model generate a set of programming questions from the most 

relevant programming examples? 

4 What are programming instructors' opinions about the utility of the PQG 

model? Are the generated questions aligned with the instructors' needs in 

teaching introductory programming courses? 

 

I first used the model to analyze instructor-made questions, which were collected from 9 

undergraduate programming courses, and textbook questions from selected programming 

textbooks and question banks. The analysis showed that the two sets of questions had 

much different topic distributions. The instructor-made questions revealed a more 

concentrated and simpler semantic network than the textbook questions. A classification 

analysis further revealed a correlation between the complexity of question content and 

student performance. Following these results, a group of experienced instructors was 

recruited to evaluate the quality of machine-generated questions. The result showed that 

my model was able to generate questions that were semantically similar to instructor-

made questions. Furthermore, the questions received significantly positive ratings from 

the instructors in terms of the topic relevance and extensibility.  
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This dissertation is organized as follows: Chapter 2 reviews research works about 

automatic question generation and the essence of PQG; the methodology, including the 

design of the proposed PQG model and the evaluation task, is described in Chapter 3; an 

analysis of the relationship between LKG complexity and student performance is 

reported in Chapter 4, which is followed by the result of the model evaluation in Chapter 

5; the answers to the research questions are collectively discussed in Chapter 6; finally, 

this work, limitations, and potential future work are concluded in Chapter 7. 
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1.1 Terminology 

 

Following the proposed research question, I accordingly define the following terms: 

conceptual and procedural knowledge, topic, and difficulty. In this work, I hypothesize 

that conceptual and procedural knowledge of questions is certain learning content that is 

(or can be) explicitly described by question texts. I say that a concept is a set of words or 

phrases that represent certain knowledge related to the learning content. Conceptual 

knowledge focuses on the remembering of programming concepts, and procedural 

knowledge focuses on the implementation of programming concepts in program code. 

For example, the variable declaration by itself is conceptual knowledge, and the 

declaration statement like "int x = 10;" is procedural knowledge. Concepts may be 

grouped into the same categories according to their relationship in terms of the order of 

learning content in textbooks. Such a category is called a "topic" and is defined as an 

instructor-made label associated with questions on an online self-assessment platform. 

For example, topics may include "array", "variable", "data types", etc. One question is 

only associated with one topic label. Also, I define the difficulty of questions as the 

statistical difficulty measured by the average error rate of first attempts on the platform. 
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CHAPTER 2 

RELATED WORK 

2.1 Automatic Question Generation and Key Information Identification 

 

Question generation (QG) refers to the process where a computer model automatically 

extracts key information from a given context and then produces interrogative sentences 

that address the information (Kurdi et al., 2020). Research of QG has long evolved as one 

of the natural language processing (NLP) applications in the field of computational 

linguistics. The major goal of QG is to answer the two fundamental questions about the 

context: "what to ask" and "how to ask", where the former is concerned with the 

identification of key information and the latter is the transformation of question forms. 

 

The identification of key information can be viewed as a conventional NLP labeling (or 

tagging) task (Vedula et al., 2020), where the major goal is to help the machine 

accurately process the meaning (explicit or implicit) of a given text (context). The 

labeling task usually focuses on one aspect of the text, therefore having many different 

implementations. For example, part-of-speech (PoS) is one labeling task that focuses on 

the syntactic meaning of words. The PoS focuses on word classes and tags each word in 

the text into a lexical category of the grammar, e.g., "NN" for nominal nouns, and "V" for 

verbs. For another example, named entity recognition (NER) is a labeling task that 

focuses on the semantic meaning of words. The NER uses the regularity of information to 

predict the information carried by the text. Such information is typically predictable 

across different texts and usually addresses key information from the text. For instance, 
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the Stanford NER (Finkel et al., 2005) can accurately identify three categories of words, 

including organization, person, and location. These taggers provide an imperative way for 

the machine to automatically extract the key information out of the text and transform it 

into corresponding questions. 

 

The identification of key information can also be treated as a machine learning, 

classification task. With enough training data, a computer model can automatically learn 

the relationship between the input context and output key information. For instance, 

(Chau et al., 2020) demonstrates a supervised, feature-based method for concept 

extraction from digital textbooks. The researchers first recruited a group of experts to 

manually annotate key concepts in a selected textbook. Afterward, they examined a list of 

linguistic and statistical features and external resources that might be related to the key 

concepts. Finally, they built a classification model to automatically extract key concepts 

from the textbook. The result showed that their model reached state-of-the-art 

performance in a benchmark with similar models.  

 

For another example, (Willis et al., 2019) proposes an end-to-end system that generates 

both questions and their answers from a given context paragraph (which effectively 

combines the identification of key information and the transformation of question forms). 

The system was based on an encoder-decoder architecture and trained by a public 

question-answering dataset. The researchers showed that the system was able to perform 

better than traditional key phrase predictors, even though it was only trained on part of 

the dataset. Moreover, they also recruited a group of educational experts to assess the 
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quality of the generated outcome. The result showed that the system was able to generate 

educationally meaningful question and answer pairs.  

 

Although machine-learning-based methods may provide better performance than simple 

rule-based methods in key information extraction, it should be noted that a model trained 

by one dataset may not generalize for all kinds of learning goals, especially when the 

learning goal involves certain knowledge that is not explicitly expressed in the text or is 

expressed in multiple modalities. For example, programming knowledge consists of two 

modalities: conceptual knowledge and procedural knowledge. Conceptual knowledge is 

usually expressed in declarative sentences written in a natural language.  

But the procedural knowledge may be expressed in both the natural language and a 

programming language. This characteristic makes the identification of key information in 

programming knowledge becomes much more challenging, therefore inspiring the 

development of my work. 

 

2.2 Semantic Modeling for Knowledge Extraction 

 

In addition to the labeling approach, another way to identify key information is using an 

existing knowledge base (KB) or ontology (Y. Zhang et al., 2006). A knowledge base 

provides a structured knowledge representation that consists of key concepts and their 

dependency on them. A KB can be constructed manually or automatically. Automatic KB 

construction is similar to semantic networks where nodes and edges represent concepts 

and their relationships, respectively (Gillam et al., 2005). For example, (Veremyev et al., 
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2019) demonstrates two approaches to constructing semantic networks, one based on 

large text corpora and the other based on existing lexical databases. The researchers 

further analyzed the characteristics of the two networks and revealed that the machine-

built networks can provide richer information on the usage and meanings of words. A 

similar approach from (Fan et al., 2019) builds knowledge graphs by focusing on verb-

argument structures in the text. The researchers showed that the network can help 

compress information and reduce redundancy for indexing multiple documents.  

 

Researchers have tried to use knowledge bases in analyzing programming documents and 

functionalities (Ancona et al., 2012; Y. Zhang et al., 2006). The relationship between 

concepts and the concepts themselves may already provide the key information of 

learning content. For example, in object-oriented programming, the relationship between 

objects in a class can be described as "The objects are instances of the class". This simple 

relationship can be used to develop questions like "What is the class of the objects?" or 

"How many objects are in the class?". 

 

The KB-based approach has been used in many QG applications due to the easy-to-

process semantic structure. The structure can be seen as an alternative format of labels 

that provides an extra layer of information for QG. For example, (L. Zhang & VanLehn, 

2016) developed a QG method for introductory biology classes. They obtained an 

existing knowledge base of biology and defined a set of question schema for different 

semantic triples (i.e., data entities in the format of subject-predicate-object expressions). 

Compared to the labeling method, the semantic-based, KB-based method may extract key 
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information that is more relevant to the domain knowledge when the input knowledge 

base is accurate. To enhance the accuracy, researchers have tried to encode question 

answers into the construction process by text spans, context position, or separate encoders 

(Pan et al., 2019). 

 

2.3 The Transformation from the Key Information into Question Forms 

 

Once the key information is identified from the input context, the next step of QG is to 

convert it into a question form. The transformation of question forms is a generation task 

that extends a piece of key information into a full interrogative sentence. There are two 

common transformation approaches, template-/rule-based methods and statistical 

methods (Kurdi et al., 2020). A template-/rule-based method fills in key information into 

predefined question structures by rules or templates. This method is useful especially 

when the key information is clearly defined or identified. For example, in programming 

learning, a code-tracing question that asks the student to trace the code logic and find out 

the output can be converted into a question template by substituting the variables or their 

values (Guerra et al., 2014). Similarly, a formula in math can be used as a template where 

the instructor only needs to substitute its content with prepared cases.  

 

Instead of predefined templates or rules, a statistical method automatically learns the 

transformation schema from some training data. The process can be viewed as the 

sequence-to-sequence (seq2seq) machine translation that translates a given text into the 

target language of the question (Bahdanau et al., 2014). A statistical method can even 
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integrate the identification of key information and the transformation of question forms 

into one process. For example, (Du et al., 2017) demonstrated a seq2seq model based on 

the recurrent neural network (RNN) encoder-decoder architecture. They investigated how 

to encode sentence-level and paragraph-level key information to generate questions. In a 

related study, (Jia et al., 2020) developed a model to also encode the dependency of 

questions on the answer in the input context. Their RNN-based model was able to 

generate exam-style questions including cloze and general questions.  

 

2.4 Automatic Question Generation for Educational Technologies 

 

The delivery of educational content has been revolutionized by remote learning tools. 

There has been much research that investigates the benefit of remote learning tools in the 

literature of learning science. For example, previous research has shown that distributed 

practice is an effective learning method that can benefit learners of different ages and 

abilities (Dunlosky et al., 2013). Similar to the well-known spacing effect and the testing 

effect in learning science, the distributed practice effect suggests that retention of 

information increases when the learner practices retrieving the information in multiple 

spaced-out practice sessions (Delaney et al., 2010; Dunlosky et al., 2013). Empirical 

studies have also shown that the time interval between practice sessions is an important 

factor in the learning outcome (Chung & Hsiao, 2021b; Qiu et al., 2011).   

 

Based on the distributed practice effect, there have been numerous educational tools that 

support distributed practice. For example, QuizIT is an online practice platform that 
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focuses on distributed practice and self-assessment in the field of computing education 

(Alzaid et al., 2017). The platform periodically releases practice questions that help 

students keep track of their learning progress. Several quantitative studies of the usage of 

the platform have shown that high-performance students tended to use the platform 

actively, persistently, and regularly (Chung et al., 2020; Chung & Hsiao, 2020). On the 

other hand, low-performance students might change their practice patterns over time, and 

this kind of behavior might be correlated with lower learning outcomes. I believe that 

when such remote learning tools become part of both online and in-person instructions, 

the supply of practice content becomes a critical issue for instructors to consider in the 

instructional design due to several concerns. For example, the question generation has to 

cover different concepts in the learning content to ensure that students have an adequate 

amount of practice. The format of questions has to be diverse enough to engage students 

in the learning content. In addition, questions have to be adaptively supplied to a student 

according to his/her performance. These concerns have been widely investigated in the 

literature of ITS that specializes in the recommendation of existing content; nevertheless, 

I believe there is also a need to research them from the perspective of content generation, 

by which tools for computer-aided QG can be devised to support the instructional design 

process.  

 

2.5 Programming Question Generation 

 

QG for educational purposes has been explored in different fields of study, including 

mathematics, physics, biology, and linguistics. A recent survey in the literature has 
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shown that automatic QG is especially popular in the field of language learning (Kurdi et 

al., 2020). The learning content has a close relationship to the grammar, syntax, and 

semantics of natural languages, which makes the field an obvious subject of QG. In 

addition, the need for standardized exams also engages more research to focus on the 

field (Kurdi et al., 2020). In addition to formal learning, much research on QG has also 

focused on the development of general QA systems for training and instructions, e.g., 

(Ruan et al., 2019). 

 

Programming learning nowadays has been reshaped by the use of educational technology 

that emphasizes personalized learning (Czerkawski & Lyman, 2015). For example, (Lu & 

Hsiao, 2017) uses adaptive learning techniques to personalize the search result for 

programming learners. Another example, (Alzaid & Hsiao, 2019) focuses on bite-size 

practices that distribute student practice over time to achieve the distributed learning 

effect. These educational technologies are all based on the abundant supply of high-

quality materials that can not only fulfill the quantity in need but also the quality of 

personalized learning which requires a sufficient coverage of concepts.  

 

However, despite the need for more questions and the popularity of programming 

learning, little research has been focused on QG for computer programming learning. An 

early work from (Brusilovsky & Sosnovsky, 2005) focuses on individualized, 

parameterized exercises for the C programming language. Similar to mathematical 

formulas, coding questions in programming learning can be transformed into fixed 

templates with part of them replaced by variables. The variables can then be replaced by 
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predefined cases (i.e., values in worked examples) to generate a large number of new 

questions. Another research from (Zhong et al., 2017) focuses on the SQL programming 

language which has a structure similar to natural languages. They propose a deep neural 

network for translating the natural-language content to corresponding SQL queries for 

questions. It is also worth noting the work from (Denny et al., 2008) where the 

researchers approached the same issue of question insufficiency by crowdsourcing. They 

developed a system to require students to participate in the construction of programming 

questions. Their analysis of the system usage showed that it not only helped the supply of 

programming questions but also encouraged the development of students' cognitive skills. 

Overall, I believe there is still a need for further research in the QG for programming 

learning.  
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CHAPTER 3 

METHODOLOGY 

3.1 Modeling Conceptual Programming Knowledge 

 

A programming question usually includes one or multiple sentences that address the 

concept to learn, and the concept is usually sourced from some descriptions in a textbook. 

I hypothesize that, for any question, the conceptual programming knowledge to learn, and 

the action required to approach it, are explicitly addressed by the words in the question 

content. For example, a common type of programming question is the input/output 

question like "what is the output of this program?" where the concept of the question can 

be fully understood as "the output is what". This sentence can be decomposed into the 

relationship between the two objects, "the output" and "what", and the verb "is". By 

focusing on verbs and objects that are related to computer programming, I believe this 

decomposition can help me model conceptual programming knowledge in descriptions in 

textbooks. 

 

The decomposition is a version of the semantic role labeling (SRL) that identifies the 

predicate (verbs and their arguments) in a sentence. The SRL has been widely used in 

natural language processing (NLP) to build a model that can interpret the syntactic 

structure of natural languages. It also helps index textual information by compact formats 

like "(subject)-verb-object" triples. For example, the example above can be rewritten into 

a triple like ("the output"/ARG, "is"/VERB, "what"/ARG). There have been many 

automatic SRL systems that can automatically identify semantic labels of words or 
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phrases by rule-based algorithms (e.g., part-of-speech tags, PoS) or supervised learning 

models that are trained by large-scale NLP corpora like the PropBank corpus (Palmer et 

al., 2005). 

 

Labeling words by grammar may not be sufficient for the machine to understand natural 

language. For example, a complex sentence may have an overlapping structure and 

include more than one predicate. The sentence can be decomposed into multiple semantic 

triples, each of which reveals different aspects of the meaning. Extending the concept of 

SRL, researchers have proposed Open Information Extraction (OIE) that considers both 

SRL and propositions asserted by sentences (Yates et al., 2007). An OIE model can 

decompose, for example, "computers connected to the Internet can communicate with 

each other" into two predicates, "(computers connected to the Internet; can; communicate 

with each other)" and "(computers; connected; to the Internet)". These predicates 

represent two aspects of the input. The first one focuses on the communication between 

devices, and the second one focuses on the state of the connection. Compared to the 

conventional SRL, the OIE can extract more information about the intent of a given 

sentence. This characteristic may help the machine to better process the meaning of a 

complex sentence, therefore helping me model different programming concepts described 

in a textbook. This work uses the OIE model from (Stanovsky et al., 2018) to extract 

semantic triples from the descriptions around code examples in a textbook, Think Java 

(Downey & Mayfield, 2019). To aid the query of related programming concepts, this 

work also builds a semantic network of the triples by following the Local Knowledge 

Graph (LKG) approach (Fan et al., 2019). The original LKG builds a semantic network 
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by treating subjects as nodes and their actions (verbs) as edges. In the context of PQG, I 

believe that verbs are also important messages because they hint at how knowledge is 

addressed or approached. Therefore, this work builds an LKG by treating both subjects 

and verbs as nodes and adding an edge if any two nodes are mentioned in one sentence. 

 

3.2 Modeling Procedural Programming Knowledge 

 

Programming languages are defined according to well-structured grammar and formal 

languages. This characteristic ensures that program code can be efficiently parsed into 

binary machine code by a compiler according to the syntactic structure. The Abstract 

syntax tree (AST) is an alternative representation of program code that specifically 

focuses on the syntactic structure. In an AST, nodes represent executable statements or 

declarations. For example, in an AST of Java code, the node 

"ClassOrInterfaceDeclaration" represents an entry point of Java class definition, and the 

node "VariableDeclarator" represents a statement that declares a new variable and its 

initializer. Although AST does not necessarily link to the runtime nature of computer 

programs (i.e., references to external libraries or actual flow of data), it provides a 

convenient way for programmers to parse and represent the semantics of computer 

programs. 

 

Programming questions are usually accompanied by snippets of program code that can be 

represented by AST. One benefit of AST is its readability and explainability. AST nodes 

concisely represent functions of computer programs and are associated with their 
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arguments. They also provide a way to edit and modify the program. These properties 

make AST suitable for PQG. First, a PQG model can capture the meaning of program 

code by AST that to some extent represents the target programming knowledge in a 

question. Second, AST can help the model edit an existing programming question to 

produce new versions of the question. In this work, I choose to use an AST parser to 

extract program code in question texts and map them to certain programming concepts 

that are related to programming learning. For example, the node "VariableDeclarator" can 

be an entry point that links to the concept of data types, arrays, or loop statements. 

Overall, AST provides an interface for my PQG model to search or extend the meaning 

of an input question, which makes the model able to generate questions that transcend the 

limit of translation-based QG models. 

 

3.3 Automatic Question Generation Process 

 

This work follows a template-based QG method to transform the key information into 

different questions. There are two main reasons for this decision. First, the template-

based method does not require an extensive amount of training data for a model to learn 

the pattern of questions. This is an advantage to this work due to the lack of publicly 

available datasets of programming questions that can be considered the gold standard of 

PQG. Second, the template-based method provides the flexibility to involve the 

instructor's knowledge in the design of the model. This makes it easier for the model to 

capture common types of questions that are used in the instructions.  
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For a given input question, the PQG algorithm starts with keyword and code extraction 

by regular expressions. If the code is available, this step transforms them into AST nodes; 

otherwise, this step matches the question text against a list of textbook keywords. This 

mechanism ensures that the algorithm can capture as much information as possible from 

the question text to generate questions. Next, if the AST nodes are available, the PQG 

algorithm makes a query by the nodes and extracts related code examples from the model 

by the similarity between the input and the examples. If the nodes are not available, the 

keywords are used instead. This step produces a set of potentially related code examples 

that come along with their LKG triples. To find out which examples are the most relevant 

to the input, the algorithm uses the Tversky index (which is a general version of the 

Jaccard index) to rank the examples. Afterward, the algorithm selects the top K examples 

and transforms them into questions according to the templates.  

 

I defined several templates for AST nodes to generate coding questions. For example, a 

"what is" question is made for nodes about variables, data types, outputs, or "print" 

statements (e.g., "what is the value and the data type of X?", "what is the output of this 

program?", "how do you convert the data type from X to Y?"). The templates about the 

runtime logic of the nodes focus on the use of methods/classes and flow control, e.g., 

"what is the purpose of the method X?", "how many times the loop will run?", etc. 

Overall, the templates mainly cover questions about the input/output and the syntax. I 

also defined a set of templates for LKG triples to address the concepts from the input. 

These templates rely on the SRL (e.g., "ARG0", "VERB", "ARG1", etc.) from the triples 

themselves. The labels generally indicate where the triple items should be in a sentence, 
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and my algorithm plugs in those items in the templates according to the grammar. For 

example, a triple ("display", "a variable") can be used to make a question "how do you 

display a variable?" Compared to coding questions, such concept questions theoretically 

address a broader range of knowledge because the LKG triples are built on top of 

descriptions/explanations of the code example which may include the implicit semantics 

beyond the explicit structure of code. To summarize the mechanism of my PQG model, 

Figure 1 provides a high-level overview of actual input and output. 

 

 

Figure 1. A High-level Overview of the PQG Model with Input/Output Examples. 
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CHAPTER 4 

ANALYZING THE CORRELATION BETWEEN QUESTION KNOWLEDGE 

GRAPHS AND STUDENT PERFORMANCE 

This part of my work consists of two experiments: (1) comparing the difference between 

textbook questions and instructor-made ones, and (2) finding out the relationship between 

student performance and characteristics of LKG. The first experiment is aimed to show 

how instructor-made questions are different from existing questions in textbooks in terms 

of the complexity of LKG. The second experiment is aimed to provide evidence for the 

relationship between student performance and the complexity of questions.  

 

I collected three datasets of questions, one of which represent instructor-made questions 

and the other textbook questions. The first dataset, QuizIT, was instructor-made multiple-

choice questions (MCQ) collected from QuizIT (Alzaid et al., 2017) that was used in 9 

undergraduate courses about entry-level Java programming over 3 years. The instructor 

might make questions from scratch or select/modify the existing questions in a question 

bank. Because an MCQ from QuizIT might have the major content of questions in the 

options (e.g., "Which of the following is correct?"), I chose to concatenate all question 

texts with their answer options to ensure that sufficient details were included in the 

dataset. The number of unique questions was 779 (355 when counting unique question 

text only). The second dataset of practice questions, Textbook, was collected from a free 

online textbook, "Introduction to Programming Using Java, Eighth Edition"1. I collected 

 

 
1
 https://math.hws.edu/javanotes/  

https://math.hws.edu/javanotes/
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7 chapters of content that overlapped with the 9 undergraduate courses on QuizIT. In 

total, there were 163 practice questions, most of which were free-text questions. The third 

dataset, QBank, was collected from a question bank accompanied by the textbook used in 

the entry-level Java programming course. After processing, I collected 225 practice 

questions that were also in the format of MCQ.  

 

The student performance was represented by the statistical first-attempt error rate on 

QuizIT. This dataset consisted of records from 570 students who contributed 14,534 first 

attempts. More details about this performance data are described in the analysis below. 

 

4.1 Extraction of Semantic Triples and Construction of LKG 

 

This work adopts a supervised OIE model developed by (Stanovsky et al., 2018) to 

automatically extract propositions from questions. The model is based on an RNN 

architecture trained to iteratively extract propositions from a given sequence of words. 

The output of OIE is a set of triples that represent the propositions in a given question. 

Each triple always consists of one verb (VERB) and the associated arguments (ARG) 

with index numbers that suggest their semantic roles. The labeling schema follows the 

PropBank corpus (Palmer et al., 2005) where ARG0 denotes the agent (subject) of the 

verb, ARG1 denotes the patient (direct object) of the verb, and ARG2 denotes the 

instrument (or the entity given to ARG1). Higher orders of arguments (e.g., ARG3, 

ARG4, etc.) and modifiers (ARGM) were omitted in the analysis due to their rarity in the 

dataset.  
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After triples were extracted by the OIE model, I similarly constructed an LKG to the 

work from (Fan et al., 2019) where the researchers used subjects/objects as nodes and 

verbs as edges. The only difference was that instead of using verbs as edges, I made verbs 

also nodes of the network and built edges by the subject-verb-object relationship. One 

hypothetical benefit of this construction is that individual propositions of questions stay 

strongly connected and can be identified by the existence of closed triplets (triangles) as 

shown in Figure 2. Although this construction can potentially separate propositions from 

the same question into multiple components of networks, it makes it easier to analyze 

closely related propositions by network characteristics like clustering coefficients. All the 

three question datasets were processed in the same way and transformed into three 

separate LKG as shown in Figure 3. The processing was implemented mainly by the 

networkx library and the Gephi visualization tool. 

 

 

Figure 2. Examples of LKG Composition. The network was constructed using two 

questions: "Which of the following is true regarding the mod operator, %?" and 

"Assume that x, y, and z are all int equal to 50, 20, and 6 respectively. What is the 

result of x/y/z in the following program?". One proposition was extracted from the 

former question, and two were from the latter question. The propositions that shared 

the same verb were linked together in one component. 
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4.2 Comparing Instructor-made Questions with Textbook Questions 

 

Instructor-made Questions Are Less Complex. As shown in Figure 3, the three LKGs 

had a similar structure (one large component and many small components) but different 

textures. First, I noticed that the number of questions was not correlated with the size of 

the networks. The largest network was from QBank, which had 1025 nodes and 1492 

edges. The Textbook network was the second largest and had 883 nodes and 1349 edges. 

The smallest network was from QuizIT, which had only 401 nodes and 573 edges. The 

average degree for QuizIT was 2.91, 3.06 for Textbook, and 2.91 for QBank. Considering 

the input data of these networks, the result suggests that the number of questions was not 

positively correlated with the size of LKG. There are several possible reasons behind this. 

First, instructor-made questions on QuizIT might be less complex in terms of the content. 

The instructor might lean toward short and easy questions and use simple languages or 

words to describe the question because the target audience was mainly novice students in 

computer programming. However, the questions from Textbook and QBank appeared to 

be more complex and used more diverse vocabulary because the targeted audience was 

general readers for all levels of learners (even though the content was generally for 

beginners of Java programming).  

 



  26 

 

Figure 3. Comparing LKG from the Three Datasets (left: QuizIT; middle: Textbook; 

right: QBank). 

 

Practice Questions from Different Sources Share Similar Question Structures: what-is 

and how-would-you-do. Further analysis of network characteristics (Table 1) showed 

several common and different features of the networks. First, the questions from all three 

datasets seemed to have similar question compositions. The largest degree nodes were all 

is/V, you/ARG0, what/ARG1, and what/ARG2. This suggests that many questions were 

mostly "what-is" questions that asked for definitions or "how-would-you-do" questions 

that asked about how to implement some functions in computer programming. Despite 

this resemblance, it is worth noting that the questions from Textbook and QBank had 

higher variability than QuizIT. The degree of is/V was 162 for Textbook and 146 for 

QBank, but it was only 89 for QuizIT. These values again showed that the instructor-

made questions in QuizIT might consist of a more selected vocabulary or address limited 

usage of words.  
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Table 1. Basic Characteristics of the LKG Extracted from the Question Datasets. 

 QuizIT Textbook QBank 

Number of 

Questions 

779 163 255 

Number of Nodes 462 883 2436 

Number of Edges 672 1349 1492 

Average Degree 2.91 3.06 2.91 

Largest-degree V, 

ARG0, ARG1, 

ARG2 

(is/V, 89) 

(you/ARG0, 26) 

(what/ARG1, 27) 

(what/ARG2, 15) 

(is/V, 162), 

(you/ARG0, 40) 

(what/ARG1, 55) 

(what/ARG2, 54) 

(is/V, 146) 

(you/ARG0, 64) 

(what/ARG1, 14) 

(what/ARG2, 10) 

The average 

degree of V, 

ARG0, ARG1, 

ARG2 

4.83/2.92/2.33/2.26 5.55/3.28/2.24/2.45 5.09/3.17/2.21/2.16 

Number of 

Connected 

Components 

53 74 113 

Size of the 

Largest 5 

Connected 

Components 

240, 12, 12, 12, 11 626, 11, 9, 9, 8 601, 27, 15, 10, 10 

Global Clustering 

Coefficient 

(Transitivity) 

0.10 0.05 0.07 

Local Clustering 

Coefficient 

(Average over 

Nodes) 

0.73 0.72 0.64 

 

Textbook Questions Have a Higher Diversity and Complexity Than Instructor-made 

Questions. All the networks had many connected components on the circumference that 

was separate from the major component in the center (as shown in Table 2). In my 
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construction of the LKG, propositions using the same verbs or arguments would reside in 

the same connected component. A component that was separate from the others 

suggested that the underlying propositions used a different set of verbs/arguments. 

Following this interpretation, the number of connected components became an indication 

of the diversity of concepts because different concepts might be addressed by different 

verbs/arguments, therefore resulting in different formats of questions. The largest number 

of connected components was QBank with 113 components. The Textbook had 74, and 

QuizIT had 53. This result suggests that questions of QBank might have a higher 

diversity of concepts than the others. In contrast to this, QuizIT, even though it had the 

greatest number of questions, resulted in the lowest diversity of concepts. This could be 

due to the smaller vocabulary used by the instructors when they addressed concepts or 

that the instructors tended to make questions in similar and simple formats.  

 

Finally, I investigated the clustering coefficient of networks. The clustering coefficient is 

the ratio of close triplets to open ones. The value of clustering coefficients suggests how 

closely connected the nodes in a network are. There are two common clustering 

coefficients: the global clustering coefficient measures the whole network as one (i.e., the 

total number of closed triplets over the total number of open triplets); the local clustering 

coefficient measures individual nodes (i.e., for each node N, the number of closed triplets 

including N over the number of open triplets including N). The clustering coefficient can 

help me understand how commonly a set of verbs/arguments is reused in the question set. 

The higher the value is, the more likely the input questions reiterate the same set of 

verbs/arguments. 
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For all three networks, I computed the global clustering coefficient and the average of the 

local clustering coefficient. The result showed that QuizIT had the highest global 

clustering coefficient and local clustering coefficient. Adhering to the findings from the 

preceding analysis, this result also suggests that questions in QuizIT were probably 

simpler than in the other two datasets. The questions might reiterate the same or similar 

sets of question structures in terms of the verbs/arguments. It should be noted that the 

finding does not suggest the quality of instructor-made questions in QuizIT or that they 

could not achieve their intended educational purposes. It only suggests that the questions 

probably had lower complexity in terms of the forms of questions or the coverage of 

concepts than the Textbook and QBank questions.   

 

4.3 The Relationship Between Performance and Network Characteristics 

 

Observed Relationship Between the Question Complexity and Student Performance. To 

understand the relationship between student performance and the characteristics of LKG, 

I collected the usage data on QuizIT in the courses and computed the first-attempt error 

rate of the questions. 570 students contributed 14,534 first attempts. The average number 

of first attempts was 17.27 (SD=19.59), which suggests that some questions were 

practiced much more than the others. The average error rate of questions was 0.45 

(SD=0.31), which suggests that the student performance was moderate and did not lean 

toward extremely good or poor performance. I grouped questions into "high-error" and 
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"low-error" based on the average error rate, considering the goal was to find out the 

difference between difficult and easy questions.  

 

Since the question contents were decomposed into semantic triples and mapped on an 

LKG, the scope of a mapped area on the network might suggest the concepts that were 

addressed by the question. To capture the scope of the mapped area, I first summarized a 

list of unique connected components in the LKG. Then, for each question, I computed all 

unique connected components it involved (which was a set that I called a "combination of 

unique connected components", CUCC). Afterward, I summarized how many high-error 

questions and low-error ones were in each CUCC as shown in Figure 4.  
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Figure 4. The Number of High-error Questions and Low-error Questions in CUCC. 

The numbers in a CUCC are unique ID numbers for connected components in the 

network. 

 

The result showed that there was a clear correlation between the CUCC and the error rate. 

There was a set of CUCC that had more low-error questions than high-error ones and 

vice versa. In addition, there was one CUCC that included only component 1 (C1) which 

had the highest number of questions. This result suggests two aspects of the questions in 

QuizIT. First, many questions in QuizIT involved only verbs/arguments from C1, which 

was confirmed as the largest component in the network. This finding adhered to the 

network characteristics analysis: the instructor-made questions from QuizIT had low 
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complexity. Second, the CUCC were correlated with the error rate, and some of them 

only appeared in high- or low-error questions. This finding illustrated that the questions 

with certain CUCCs were quite extreme, either more difficult or way easier to answer. 

 

I further grouped questions into three categories by the CUCC: cucc_high, cucc_low, and 

cucc_gen. cucc_high includes the CUCC that had more high-error questions than the 

low-error ones and vice versa for cucc_low (Figure 5). The category cucc_gen contains 

C1 only because it had significantly more questions than the other CUCC. A chi-square 

test showed that both cucc_high (x^2=28.12, p=0.00) and cucc_low (x^2=43.45, p=0.00) 

had significant differences in the number of high- and low-error questions. No difference 

was found in cucc_gen. This result confirms that the CUCC was somehow correlated 

with student performance. In other words, this characteristic of LKG can be potentially 

used to index/categorize the difficulty of questions.  

 

 

Figure 5. Comparing the Number of High- and Low-error Questions in Different 

Component Groups. A chi-square test showed that there was a significant difference in 

cucc_high (x^2=28.12, p=0.00) and cucc_low (x^2=43.45, p=0.00). 
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Question Complexity as Significant Predictors of Student Performance. Finally, I 

conducted a classification analysis to evaluate the classification performance of the 

CUCC and other network characteristics. The Random Forest classifier with 10-fold 

cross-validation was used to benchmark different configurations of features. The result 

showed that a model using one-hot vectors of the CUCC alone was able to retrieve most 

high-error questions (f1=0.67, precision=0.54, recall=0.90, accuracy=0.58); however, its 

precision was mediocre. After several iterations of experiments, I found two network 

characteristics that helped reach the best performance: the out-degree of verbs (ODV) and 

the betweenness of argument (BTA). The classification reached f1=0.72, precision=0.75, 

recall=0.70, and accuracy=0.73 (Table 2). Although the recall was lower than the 

classification with the CUCC only, these features seemed to find a reasonable balance. 

This result suggests that the ODV and the BTA might be indirect indicators of the CUCC. 

Hypothetically, a small component had low ODV and high BTA; a large component had 

high ODV and low BTA. Although the current state of analysis was not able to examine 

this hypothesis, the result from the classification analysis can help develop a measure to 

evaluate the complexity of questions. 
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Table 2. Classification Performance of High- and Low-error Labels 

Features Precision  Recall F1-score Accuracy 

One-hot Vectors of 

Components 

0.54 0.90 0.67 0.58 

Out-degree of Verbs + 

Betweenness of Arguments 

0.75 0.70 0.72 0.73 

Combined  0.73 0.70 0.71 0.72 

 

 

4.4 Summary of the Correlation Between Question Knowledge Graphs and Student 

Performance 

 

This chapter is aimed to investigate the characteristics of instructor-made question 

content by an explainable model from two aspects: its difference from textbook questions 

and the correlation with student performance. I adopted a semantic network model, local 

knowledge graph (LKG), which is built by interwoven verb-arguments semantic triples. 

Comparing one dataset of instructor-made questions from introductory programming 

courses with two datasets of textbook questions, the analysis showed that instructor-made 

questions had less diversity of concepts and simpler formats than the textbook questions. 

I also found a correlation between the coverage of concepts and the average error rate of 

questions. The direction of this correlation remains unclear and still requires further 

analysis by manual labeling of text meanings; nevertheless, this work contributes to the 

understanding of instructors' question generation process by an explainable data model 

and paves a road to the future development of computer-aided question generation tools. 
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CHAPTER 5 

EVALUATING THE UTILITY OF MACHINE-GENERATED PROGRAMMING 

QUESTIONS 

5.1 User Study Design 

 

To evaluate the performance of the PQG model, I designed a user study that aimed to 

collect feedback from instructors who have experience in teaching introductory 

programming courses. The user study consists of two parts: a survey of teaching 

experience and a task of question evaluation. A participant is expected to spend around 1 

hour to finish the whole study.  

 

The survey asks for the participant's teaching experience including the number of years of 

teaching experience, challenges that s/he encounters in question generation, the type of 

programming questions that s/he values the most when teaching the course, what kind of 

support or information s/he expects to obtain from a PQG tool, and how likely s/he would 

use a PQG tool in production.   

 

In the evaluation task, the participant is given 12 sets of input questions and generated 

questions. The input questions were selected from a pool of difficult questions according 

to their statistical difficulty (i.e., the error rate) on a self-assessment platform (Alzaid et 

al., 2017). I reviewed and selected questions by the following criteria: 

 

● The question must not have any typos. 
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● The question must address a unique concept but not a duplicate question among 

the set. 

● The answer must be correct and not ambiguous (some high error rates were due to 

typos or ambiguous answers).  

● The question must have an error rate above 0.4, which is considered a high error 

rate according to the literature (Alsubait et al., 2013; Lowman, 1995). 

 

Considering the cost of the user study, especially the recruitment of experienced 

instructors, I limited the number of input sets to 12. This decision effectively made one 

session of the user study only take around an hour and potentially improved the subject's 

willingness to participate.  

 

For each input question, the participant is asked to generate at least one new 

programming question. The instructor-generated question demonstrates the 

characteristics of programming questions that are expected by the instructor for the input 

question. It serves as a baseline reference, or the "gold standard" in terms of natural 

language understanding, for my PQG model.  

 

Afterward, the participant is asked to evaluate the quality of the generated questions 

according to (1) the relevance to the topic of the input ("Topic-Rel"), (2) the extensibility 

in terms of topics ("Ext-Topics"), (3) the extensibility in terms of complexity ("Ext-

Complex"), and (4) the extensibility in terms of the participant's need of question 

generation ("Ext-Need"). Specifically, the Topic-Rel asks whether "the generated content 
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covers important programming topics in the input"; the Ext-Topics asks "It is easy for me 

to modify the content of the generated questions and generate new ones for students to 

practice topics in the input"; the Ext-Complex asks "I can modify/improve the generated 

content to generate questions that are complex enough to distinguish students' abilities"; 

and the Ext-Need asks "The generated content has sufficient information for me to 

generate new questions for my students in introductory programming courses." All the 

evaluation questions are 5-item Likert scales with scores from -2 to +2.  

 

As far as I know, there is no existing and publicly available model or benchmark datasets 

of PQG.  To compare the performance of the model with a reference, I devised a 

reference model by masking part of the proposed PQG model. The reference model, 

called the "code-aware" model, uses only the AST structures to generate programming 

questions. The reference model is compared to the other model called the "context-

aware" model which uses the LKG structure to generate programming questions. For 

reference, example templates of the code-aware mode and the context-aware model are 

shown in Figure 6 and Figure 7, respectively.  
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Figure 6. An Example Template of the Code-aware Model. The highlighted part is 

replaced by arguments of AST nodes according to their functionality. An AST node, 

(Variable Declaration, int) can be used to generate questions that are related to the 

implementation of variable declarations. Similarly, an AST node, (Loop Declaration, 

initializer, condition, update) can be used to generate questions about loop execution. 

 

 

Figure 7. An Example Template of the Context-aware Model. The highlighted part is 

replaced by arguments of LKG triples according to the grammar.   

 

Theoretically, questions generated by the context-aware model cover a broader range of 

knowledge than the code-aware model because the PQG process involves information 

from program description that is not specifically limited to the syntax of code. To some 

extent, the result of this comparison can indicate the performance of the LKG mechanism 

in this work. 
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5.2 Data Collection 

 

We recruited 7 participants who had teaching experience in introductory programming 

courses via communication in professional networks that involved instructors at 

universities. The study was reviewed and approved by the IRB at Arizona State 

University (reference ID: STUDY00015306). According to the responses, around 58% of 

the participants had more than 5 years of teaching experience in introductory 

programming courses; the other 42% had 2-5 years of teaching experience. For each 

variable, I collected 84 data points for statistical analysis.  

 

Although the sample size was relatively small from the perspective of statistics, I believe 

the sample is representative of the population of programming instructors because 

introductory programming courses in universities usually have similar designs (including 

variables, operators, control flows, loops, arrays, object-oriented programming). 

Considering the cost of recruiting experienced instructors in the field, this work may still 

contribute valuable insights into the experts' opinions about PQG models. Moreover, due 

to the lack of existing public benchmarks, the performance report of this work can also 

serve as a baseline reference for related work in the future. 

 

5.3 The Participants' Teaching Experience 

 

The survey focused on three aspects of the participants' teaching experience: the 

challenges faced during PQG, the type of questions that are valued the most, the expected 
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support from PQG tools, and the likelihood of using a PQG tool in practice if such a tool 

is available.  

 

The survey question about the challenges provided four options that included the amount 

of time to spend on PQG, the difficulty of questions, the lack of reference, and the type of 

questions. The participant was asked to select all that apply. The result showed that about 

58% of the participants indicated that PQG takes them too much time; about 58% 

indicated that they are not sure about the appropriate difficulty of questions for their 

students; about 25% indicated that they lack useful reference materials when generating 

questions; none of the participants indicated that the type of questions is challenging to 

PQG. This result adheres to the literature on general QG which suggests that the QG 

process is not only time-consuming but also intelligence-demanding (Kurdi et al., 2020). 

To make high-quality questions, the instructors are required to have a good understanding 

of the learning content, the student performance, and an appropriate match of these two. 

The outcome implies the need for PQG tools that can support instructors to make 

programming questions. 

 

The question about "the type of questions that you value the most" provided four options 

including "code-tracing", "code-writing", "remembering", and "debugging". The 

participants were asked to select one option among themselves. The result showed that 

about 70% of the participants valued code-writing questions the most, and the other 30% 

valued code-tracing questions the most. None of the participants voted for remembering 

and debugging questions. This result is somewhat expected because one learning goal of 
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introductory programming courses is to train the student to understand the basic syntax of 

programming languages. To achieve this, the code-writing skill is usually valued the most 

as it requires an adequate level of code comprehension, which to some extent includes 

both code tracing and code writing. Interestingly, the survey outcome showed that none 

of the participants voted for debugging questions, even though the debugging skill is 

usually considered fundamental to computer programming (Fitzgerald et al., 2008). I 

believe this could be due to the scarceness of (or the lack of) training of debugging skills 

in the curriculum of introductory programming courses. Some instructors may also 

assume that the debugging skill is accompanied by the mastery of both the code-tracing 

and code-writing skills. Overall, the result of this question provides a direction for the 

future development of PQG research and tools. 

 

Regarding the expectation of PQG tools, the survey provided three options for the 

participants to select all that apply. The options included "code examples", "questions", 

and "the descriptions of concepts to learn". There were about 70% of the participants 

expected to obtain related code examples; about 70% expected to obtain related 

questions; and about 28% expected to obtain the descriptions of concepts to learn. This 

result provides a guideline for the development of PQG tools: both code examples and 

questions are needed by instructors in introductory programming courses. Although this 

result seems obvious, it implicitly confirms that the search (or generation) of code 

examples and questions is a demanding process for instructors. A PQG tool that can 

provide such information is potentially helpful for instructors in practice. Moreover, the 

result of this survey question can also serve as a factor in the evaluation of my PQG 
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model because the instructors' responses to the question may be correlated with their 

ratings on the machine-generated examples and questions. This multi-level analysis is 

further explained below. 

 

Finally, the survey question about "how likely the participants would use a PQG tool in 

practice" provided a scale from 1 to 5 that represents the likelihood of adopting a PQG 

tool. The outcome showed that about 58% and 25% of the participants gave scores of 3 

and 4 respectively to the question. The rest of the participants gave a score of 2. This 

result shows the need for PQG tools and that most of the participants are willing to try or 

adopt a PQG tool in practice. 

 

5.4 High Similarity between the Instructor-generated Questions and Machine-

generated Questions 

 

To find out the semantic similarity between the collected instructor-generated questions 

and the corresponding machine-generated questions, I trained a Word2Vec embedding 

out of public programming textbooks. The embedding model was then used to transform 

the input questions (IN), the instructor-generated questions (USER), and machine-

generated questions (CA for code-aware; CT for context-aware) into vectors by which I 

was able to compute the cosine similarity (SIM) between them as shown in Figure 8. 
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Figure 8. Embedding Similarity between the Input (IN), Machine-generated 

(CA=code-aware, CT=context-aware), and Instructor-generated (USER) Questions.  

 

The result showed that the SIM(CA, USER) (M=0.84, SD=0.14) and the SIM(CT, 

USER) (M=0.82, SD=0.19) were similar and significantly higher than the SIM(IN, 

USER) (M=0.63, SD=0.25) (t(166)=6.72, p=0.00; t(166)=5.43, p=0.00). The relatively 

low SIM(IN, USER) to some extent suggests that the instructor-generated questions 

addressed concepts that were more extensive than the input questions, which is expected 

because the instructors were asked to generate new questions that can help their students 

to practice the concept from the input question. The significantly high and similar 
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SIM(CA, USER) and SIM(CT, USER) suggest that the machine-generated questions 

addressed concepts similar to the instructor-generated questions. Also, there was no 

significant difference between the code-aware and the context-aware models.  These 

outcomes plausibly indicate that the knowledge extraction of my PQG model was aligned 

with the instructors' opinions. In other words, the model was able to generate questions 

that were similar to those generated by the instructor.  

 

5.5 Significantly Positive Ratings on the Question Utility 

 

In Figure 9 and Table 3, I summarized the instructors' subjective opinions on the 

machine-generated questions regarding the topic relevance and extensibility in terms of 

topics, complexity, and instructional needs. First, I found that both experiment models 

received a significantly positive (with respect to zero) rating, especially on the 

extensibility of complexity. There was no significant difference found between the two 

models. This result suggests that the experienced instructors were generally satisfied with 

the utility of the machine-generated questions. They found the machine-generated 

questions relevant to the input questions. The machine-generated questions also provided 

sufficient details for them to generate new questions that address similar topics and are 

complex enough to distinguish between high-performing and low-performing students. 

Overall, my PQG model was able to supply sufficient information for them to generate 

new questions for students.  
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Interestingly, the code-aware model did not perform worse than the context-aware model, 

which rejects my hypothesis about their performance (the code-aware model covers a 

narrower range of knowledge than the context-aware model, therefore being an inferior 

option). Plausibly, this result suggests that my PQG model was helpful for the instructors 

to generate new questions no matter if it was only code-aware or only context-aware, 

even though the effect of the full model remains unclear and requires further analysis. 

Due to the similar performance of the two masked models, the following analyses report 

the ratings with the two combined for readability. 

 

 

Figure 9. The Distribution of Ratings to the Four Utility Variables, Topic Relevance 

(Topic-Rel), Extensibility of Topics (Ext-Topics), Complexity (Ext-Complex), and the 

Instructor's Need (Ext-Need). The instructors consistently gave significantly positive 

ratings to all the variables. 
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Table 3. The Statistics of One-sample T-tests for the Four Rating Variables (Reported 

in the Format "M, SD, test(DoF)=V (pval)" 

 Code-aware Context-aware 

Topic-Rel 0.64, 1.34, t(83)=4.39 (0.00) 0.64, 1.34, t(83)=3.59 (0.00) 

Ext-Topics 0.80, 1.27, t(83)=5.76 (0.00) 0.80, 1.27, t(83)=3.37 (0.00) 

Ext-Complex 1.26, 0.81, t(83)=14.31 (0.00) 1.26, 0.81, t(83)=12.67 (0.00) 

Ext-Needs 0.57, 1.24, t(83)=4.21 (0.00) 0.57, 1.24, t(83)=3.62 (0.00) 

 

5.6 The PQG Model Helps Generate General Code-writing Questions and Complex 

Code-tracing Questions 

 

Instructors likely need different kinds of support when generating new programming 

questions. To find out whether my PQG model can address certain needs of the 

instructors, I conducted a multilevel analysis by factoring in the preferred question types 

as shown in Figure 10 and Table 4. The analysis showed that the instructors who valued 

code-writing questions were the major source of positive ratings in the evaluation. They 

unanimously expressed significantly positive ratings on all four variables. However, the 

instructors who valued code-tracing questions the most had mixed ratings: Only the 

extensibility of complexity received a significantly positive rating from this group.  
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Figure 10. Multilevel Analysis of Ratings and Preferred Question Types. The 

instructors who prefer code-writing questions gave consistently positive ratings to all 

variables; however, those who prefer code-tracing questions gave mixed ratings except 

for the extensibility of complexity. 

 

Table 4. The One-sample Statistics of the Multilevel Analysis (Preferred Question 

Types and Ratings). 

Preferred Question 

Type 

Variable Statistics 

Code-tracing Topic-Rel -0.56, 1.57, t(47)=-2.46, 0.02 

 Ext-Topics -0.50, 1.49, t(47)=-2.31, 0.03 

 Ext-Complex 1.10, 1.07, t(47)=7.11, 0.00 

 Ext-Needs -0.27, 1.54, t(47)=-1.21, 0.23 

Code-writing Topic-Rel 1.05, 0.90, t(119)=12.69, 0.00 

 Ext-Topics 1.12, 0.92, t(119)=13.19, 0.00 

 Ext-Complex 1.27, 0.70, t(119)=19.63, 0.00 

 Ext-Needs 0.85, 0.91, t(119)=10.19, 0.00 

 

This result is interesting as it points out that my PQG model may only address the needs 

of a certain population. For code-writing questions, the PQG model was able to provide 

topic-relevant and highly extensible questions for the instructors to use after edits in 

practice. However, for code-tracing questions, the model was limited and only able to 

provide questions that were complex enough but not topic-relevant nor extensible in 
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terms of topics and instructional needs. One plausible explanation is that the instructors 

might expect code-tracing questions to be more aligned with the content they use in class, 

e.g., small code snippets or worked examples in the instructions. Nevertheless, the design 

of my PQG model is based on the content of public textbooks that may not include such 

an example. Considering the target audience of the instructors is students from 

introductory programming courses, my PQG model likely generated questions that were 

too complex for the students to learn, which is partially confirmed by the high rating for 

the variable Ext-Complex. 

 

5.7 Either Generated Questions or Generated Code Examples are Helpful for the 

Instructors 

 

The instructor's expectation of PQG tools may implicitly influence her/his ratings on the 

utility of my PQG model since s/he may put more weight on the thing s/he is looking for. 

I believe there is a correlation between the expectation and the rating for the machine-

generated questions. To better understand whether my PQG model fulfills the instructor's 

need for PQG, I further analyzed the ratings for my PQG model by the instructor's 

expectations of PQG tools as shown in Figure 11 and Table 5. The ratings were grouped 

into four categories of instructors as follows: (1) expecting both questions and code 

examples (qs=True, ex=True), (2) expecting only questions (qs=True, ex=False), (3) 

expecting only code examples (qs=False, ex=True), and (4) expecting neither questions 

nor code examples (qs=False, ex=False). I discuss each of these categories in the 

following sections. 



  49 

 

 

Figure 11. Multilevel Analysis of Ratings and PQG Expectations. The instructors who 

looked for questions or code examples consistently gave positive ratings to all 

variables; those who looked for neither questions nor code examples gave positive 

ratings only to the extensibility of complexity. 

 

Expecting Only Questions: Significantly Positive Ratings on All Variables. The 

instructors who expect to obtain only questions gave significantly positive ratings for all 

the variables. This result suggests that the quality of the machine-generated questions was 
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aligned with those instructors' expectations of PQG tools. The questions were potentially 

helpful for the instructors to make new programming questions for their students in 

introductory programming courses.  

 

Expecting Only Code Examples: Significantly Positive Ratings on All Variables. 

Similar to the instructors who expect to obtain only questions, those who expect to obtain 

only code examples also gave significantly positive ratings for all the variables. Although 

my PQG model does not specifically focus on generating code examples, the examples 

are part of the generated questions according to the algorithm design where the model 

first retrieves related code examples and then generates a set of related questions. The 

result suggests that the code examples from my PQG model were aligned with the 

instructors' expectations of PQG tools.  

 

Expecting Both Questions and Code Examples: A Significantly Positive Rating Mainly 

on the Ext-Complex. The instructors who expect to obtain both programming questions 

and code examples gave significantly positive ratings mainly on the Ext-Complex. This 

result is similar to the rating given by those who value code-tracing questions the most. It 

suggests that the machine-generated questions and code examples were not completely 

aligned with the instructors' expectations. There are many possible explanations for this. 

For example, the affinity between the machine-generated questions and the code 

examples might not match the instructors' expectations. They might be looking for other 

programming questions (or code examples) that better match the difficulty of 

introductory programming courses. It is also likely that the generated questions did not 
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address necessary concepts for their students to learn. Due to the limitation of the 

evaluation tasks, future studies are required to find out exact explanations.  

 

Expecting Neither Questions nor Code Examples: Mixed Ratings on All Variables. The 

instructors who expect neither questions nor code examples gave mixed ratings for all 

variables in the evaluation task. Due to the limitation of the task design, it remains 

unclear what kinds of support are expected by those instructors. The mixed ratings only 

suggest that the output of my PQG model (questions and the accompanying code 

examples) is not aligned with the information sought by such instructors. Further studies 

are required to clearly define the needs and requirements of PQG. 

 

Table 5. The One-sample Statistics of the Multilevel Analysis (Expected PQG Support 

and Ratings). 

Expected PQG Support Variable Statistics 

Only Questions Topic-Rel 0.96, 0.35, t(23)=13.09, p=0.00  
Ext-Topics 0.62, 0.70, t(23)=4.31, p=0.00  
Ext-Complex 0.96, 0.20, t(23)=23.00, p=0.00  
Ext-Needs 0.75, 0.43, t(23)=8.31, p=0.00 

Only Code Examples Topic-Rel 1.83, 0.37, t(23)=23.59, p=0.00  
Ext-Topics 1.92, 0.28, t(23)=33.26, p=0.00  
Ext-Complex 1.75, 0.43, t(23)=19.38, p=0.00  
Ext-Needs 0.67, 0.85, t(23)=3.76, p=0.00 

Both Code Examples and 

Questions 

Topic-Rel 0.35, 1.45, t(95)=2.38, p=0.02 

 
Ext-Topics 0.50, 1.48, t(95)=3.30, p=0.00  
Ext-Complex 1.35, 0.79, t(95)=16.70, p=0.00  
Ext-Needs 0.62, 1.40, t(95)=4.35, p=0.00 

Neither Code Examples nor 

Questions 

Topic-Rel -0.08, 1.29, t(23)=-0.31, p=0.76 

 
Ext-Topics 0.04, 1.02, t(23)=0.20, p=0.85  
Ext-Complex 0.42, 1.00, t(23)=2.01, p=0.06  
Ext-Needs -0.21, 1.12, t(23)=-0.89, p=0.38 
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CHAPTER 6 

DISCUSSION 

6.1 The Design Focusing on Extensibility of Methodology and Inclusion of Topics 

 

The RQ1 asks about how to capture the conceptual and implementation programming 

knowledge. The model is designed to use the LKG to extract the conceptual knowledge 

and the AST to capture the implementation knowledge. This semantic-network-based 

approach provides an intuitive model, i.e., verb-argument semantic triples, for the model 

to process abstract programming knowledge and generate new questions by fitting 

templates. Such a semantic network is also a widely used approach in the literature on 

natural language processing, which allows my PQG model to be easily extended for its 

future development.  

 

The RQ2 asks about how the PQG model queries related code examples from the 

semantic network. First, for a given question, the model will parse and extract the code 

(in the form of AST nodes) and the content (in the form of semantic triples). These nodes 

and triples are used to match against the built semantic network to retrieve related code 

examples. To rank the query candidates, I chose to use a generalized version of the 

Jaccard index, the Tversky index, to rank the examples according to the inclusion of 

topics (i.e., the overlap of AST nodes and semantic triples). One benefit of this index is 

the ability to control the ratio between the topics of input and the topics of query 

candidates. In the current work, I chose to maximize the inclusion of topics, which means 
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the queried result contains not only the input topics but also other potentially related 

topics. Nevertheless, the effect of this ratio still requires future investigation.  

 

The RQ3 asks about how the PQG model generates a set of new programming questions. 

This work uses a template-based generation approach that includes a set of templates for 

semantic triples and AST nodes. Although the template-based method is relatively 

limited when compared with a statistical method, the template-based method allows the 

instructor to easily engineer his/her expert knowledge into the PQG model. I believe this 

characteristic is favored when the instructor needs to have control over what kinds of 

questions to generate.  

 

6.2 Significantly Positive Ratings from the Experienced Instructors 

 

The RQ4 focuses on the evaluation of the PQG model in terms of instructors' opinions. 

To answer this research question, I recruited a group of experienced instructors from 

introductory programming courses. A survey of teaching experience was used to 

understand the challenges and needs of PQG from the instructors' perspectives. The result 

showed that, unsurprisingly, the demand of time and the balance of student performance 

and question difficulty are the top challenges faced by the instructors. The survey also 

showed that most of the instructors expect a PQG tool to provide related programming 

questions and code examples for the PQG process. Although these outcomes are aligned 

with my expectations, considering the lack of empirical studies about PQG in the 
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literature, the outcomes still provide imperative and first-hand evidence about the nature 

of PQG from experienced instructors in practice. 

 

Moreover, the RQ4 was further answered by the ratings given by the instructors across 

the four variables (topic-relevance, extensibility-topic, extensibility-complexity, 

extensibility-need). The comparison showed that the instructor-generated questions were 

highly similar to the machine-generated questions. Moreover, the rating responses 

showed that all the variables received significantly positive ratings, which means the 

instructors found the machine-generated questions were topic-relevant and extensible in 

terms of question complexity, topics, and their instructional needs. Although the current 

study is limited due to the small-scope evaluation task, the result suggested that my PQG 

model captured important programming knowledge in the input. The generated questions 

and code examples were aligned with the instructors' opinions. Overall, these outcomes 

verify the utility of my PQG model. 

 

Finally, considering that the instructors had different needs in PQG, I also explored the 

correlation between the instructors' ratings and their expectations of PQG tools. Multi-

level analysis was conducted by factoring in the ratings, the preferred question types, and 

the expected support. The result revealed that the instructors who value code-writing 

questions the most were the major source of significantly positive ratings. Also, those 

who prefer code-tracing questions gave significantly positive ratings to only the 

extensibility-complexity. Furthermore, the result also showed that my PQG model was 

able to generate questions and code examples aligned with the instructors' opinions, 
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especially from those who seek either the questions or the code examples alone. The 

implication of these outcomes is twofold. First, they demonstrate that my PQG model 

was able to provide content that met the instructors' needs in PQG. Second, the outcomes 

also point out a potential limitation of my PQG model in generating code tracing 

questions, which probably requires more information on the in-class student performance 

and focuses on specific class content. To sum up, these results provide valuable insights 

into future improvements and studies for my PQG model. 
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CHAPTER 7 

CONCLUSIONS 

This work focuses on a programming question generation (PQG) model that aims to help 

instructors make new questions for their students in introductory programming courses. 

The model uses the Local Knowledge Graph to extract the conceptual programming 

knowledge and uses the Abstract Syntax Tree to extract the procedural knowledge from 

textbooks. For a given question, the model can generate a set of related code examples 

and questions by which the instructor can easily expand the existing question set for 

different purposes. A group of experienced programming instructors was recruited to help 

evaluate the utility of the machine-generated questions. The result showed that the 

instructions had significantly positive feedback on the topic relevance and the 

extensibility of the generated questions. Furthermore, the machine-generated questions 

addressed topics that were like the instructor-generated questions. Moreover, a multi-

level analysis suggested that my PQG model was able to generate questions and code 

examples that met the instructors’ needs in the PQG process. In conclusion, this work 

provides empirical evidence for a feasible design of PQG models which have not been 

explored much in the literature on automatic question generation and programming 

learning technologies. 

 

7.1 Limitations and Future Work 

 

There are limitations to this work. First, the evaluation task covered a small scope and a 

limited number of topics in programming learning. Programming topics may range from 
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basic syntax to advanced knowledge. The evaluation also included a small set of 

machine-generated questions. Further research is still required to validate the model's 

capability in different topics. Second, the influence on the rating from part of the 

machine-generated content remains unclear. The current PQG model generates both code 

examples and questions about the examples. However, the evaluation task did not ask the 

instructor to evaluate them individually or separately. The instructors might give more 

weight to either the examples or the questions in their ratings. Third, the sample size in 

this work was small due to the cost of recruiting experienced instructors. Although the 

feedback from such a population is valuable, it still requires a larger sample to generalize 

the findings of this work. Finally, due to the lack of widely available datasets for the 

performance analysis of PQG models, this work used two masked models and compared 

their performance to each other and a set of instructor-generated questions. This made the 

analysis subjective with respect to the recruited instructors' preferences.  

 

Overall, future studies may consider using the result of this work as one baseline 

reference or developing a more rigorous design for PQG performance analysis. Several 

design decisions can be further investigated from this work. For example, the current 

query mechanism of code examples is based on the Tversky index with the maximum 

topic inclusion. A future study can investigate the quality of questions that are generated 

by different degrees of topic inclusions. Moreover, the query mechanism can also be 

improved by alternative models, e.g., code execution paths, AST tree structures, and the 

alignment between program code and its context.  
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In addition to the model design, a future study may also focus on the construction of 

LKG. The current model only relies on one textbook as the source of knowledge, which 

has only a limited number of code examples. This may be improved by augmenting the 

knowledge from multiple textbooks, or by artificially generating code examples out of 

existing ones. Furthermore, a future study can also allow the user (students or instructors) 

to provide user-generated content in a crowdsourcing way.  

 

Finally, a future study may focus on the augmentation of the code-aware and context-

aware models. Although my results show that the instructors had positive feedback on the 

two models, the performance of the full model remains unclear. In addition to a 

comparison between a full model and a masked model, a future study may consider a 

more intelligent way to pool questions from the two models and devise a query function 

to retrieve/group the questions according to, for example, their high-level concepts, 

topics, target skills, or other variables of instructional designs. 

 

7.2 Contributions from My Dissertation 

 

This dissertation encompasses my research of self-assessment for programming learning 

over three fields of study, learning analytics, educational data mining, and intelligent 

authoring tools. First of all, I explored the key behavior to the success of learning on a 

self-assessment platform. I found that practice persistence and regularity were highly 

correlated with student performance (Chung & Hsiao, 2019, 2020). I also explored the 

self-explanation effect in programming self-assessment (Chung & Hsiao, 2021a). On top 
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of the finding of practice persistence and regularity, I further explored various 

computational models for analyzing self-assessment behavior, including a signal model 

for the spacing effect (Chung & Hsiao, 2021b) and a knowledge-graph-based approach 

for question complexity (Chapter 4). To support the supply of self-assessment questions, 

I also developed an innovative intelligent tool that can automatically generate 

programming questions for instructors to improve the quality and quantity of existing 

question sets (Chapter 5). Overall, my dissertation contributes to not only the 

understanding of effective self-assessment behavior but also various learning analytics 

and tools that can help implement the instructional design efficiently in classrooms.  
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