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ABSTRACT

This research seeks to answer the question if there is a singular relationship between

stishovite nucleation and the atomistic structure of the preshocked amorphous SiO2.

To do this a stishovite manufacturing method is developed in which 1,152 samples

were produced. The majority of these samples did crystallize. The method was

produced through two rounds of experiments and fine-tuning with the pressure damp,

temperature damp, shock pressure using an NPHug fix, and sample origin. A new

random atomic insertion method was used to generate a new and different SiO2

amorphous structure not before seen within the research literature. The optimal

values for shock were found to be 60 GPa for randomly atom insertion samples and

55 GPa for quartz origin samples. Temperature damp appeared to have a slight effect

optimizing at 0.05 ps and the pressure damp had no visible effect, testing was done

with temperature damp from 0.05 to 0.5 ps and pressure damp from 0.1 to 10.0 ps.

There appeared to be significant randomness in crystallization behavior.

The preshocked and postnucleated samples were transformed into Gaussian fields

of crystal, mass, and charge. These fields were divided and classified using a cut-off

method taking the number of crystals produced in portions of each simulation and

classifying each potion as nucleated or non-nucleated. Data in which some nucleation

but not a critical amount was present was removed constituting 2.6% to 20.3% of data

in all tests. A max method was also used which takes only the maximum portions of

each simulation to classify as nucleating. There are three other variables tested within

this work, a sample size of 18,000 or 72,728 atoms, Gaussian variance of 1 or 4 Å, and

Convolutional neural network (CNN) architecture of a garden verity or all convolution

along with the portioning classification method, sample origination, and Gaussian

field type. In total 64 tests were performed to try every combination of variable.
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No significant classifications were made by the CNNs to nucleation or non-

nucleation portions. The results clearly confirmed that the data was not abstracting

to atomistic structure and was random by all classifications of the CNNs. The all

convolution CNN testing did show smoother outcomes in training with less fluctuations.

59% of all validation accuracy was held at 0.5 for a random state and 84% was within

±0.02 of 0.5. It is conclusive that prenucleation structure is not the sole predictor

of nucleation behavior. It is not conclusive if prenucleation structure is a partial or

non-factor within nucleation of stishovite from amorphous SiO2.
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Chapter 1

INTRODUCTION

This research is exploring the nucleation of stishovite, a crystalline octahedral form

of SiO2 from amorphous glasses when subjected to rapid pressurization or high pressure.

The goal is to discover whether a relationship exists between the prenucleation atomic

structure of the glass and nucleation behavior of the glass.

1.1 Application

1.1.1 Glass Under Hypervelocity Ballistic Impacts

Figure 1 is an example of glass that has experienced hypervelocity (impacts above

3350 ft/s Roshdy G.S. Barsoum 20) impacts from projectiles in laboratory settings

using spherical projectiles 500 µm in size, at velocities of 5 to 6 km/s. Pressures from

impacts of these kinds range in the magnitude of one and ten of gigapascal. The

cracking behavior of the glass is shown in figure 2, cone shaped cracking occurs from

the pressure wave that occurs upon impact. As the projectile impacts the glass a

pressure wave proceeds from the impact site conically also known as Hertzian cracking.

The pressure wave compresses the glass shattering it as it moves to the end of the

sample, and can produce a powered silica oxide on the nanoscale. If impact conditions

are favorable non reversible densification will occur within the sample resulting from

a phase change of fused silica into crystallized stishovite. The glass often seeks to
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Figure 1. Broken glass samples. (a) t=15 mm, v=6.8 km/s, stainless-steel projectile,
(b) t=5 mm, v=6.9 km/s, stainless-steel projectile, (c) t=10 mm, v=6.8 km/s, platinum
projectile, t is glass thickness and v is velocity of projectile Kawai et al. 2013.

expand from the shattering process and cannot relieve stress due to the incoming

projectile Kawai et al. 2013.

As the projectile passes through the glass it is squeezed in by the glass, this motion

forces contact of the shattered glass around the projectile. Chemical reactions and

friction take place across the projectile surface as it passes through the glass on the

projectile surface eroding it. Some of the silica oxide may be in a plasma state from the

energies of friction and impact. During the process internal fractures are propagating

through the glass and lateral cracks propagate outwards from impact. The entire

process often takes 10 to 40 ns and is difficult to study empirically, often this is done

through xray imaging and high speed photography Roshdy G.S. Barsoum 20; Kawai

et al. 2013.

The stishovite is produced within pure silica glass in the 40 to 63 GPa region of

shock pressure and serves additional benefits to projectile stopping. It is has a hard

crystalline structure with melting temperature that exceeds fused silica. This forms

in small crystals that nucleate within the fused silica and often do so incompletely

Yuan Shen and Reed 2016. Stishovite can form in common soda-lime glass, this is

often tested for empirically Grujicic, Bell, Pandurangan, et al. 2011.
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Figure 2. Crack propagation of glass from hypervelocity impact Kawai et al. 2013.

1.1.2 Defence

Modern warfighting is wrought with weapons of ever increasing levels of energy and

velocity. Weapon systems have reached the point of ballistics with impact velocities

in the hypervelocity region; Velocities above 3350, 3500, and 5000 ft
s for artillery, tank

launched projectiles, and small arms respectively. Shape charges operate at speeds up

to 16,000 ft
s for their copper conical payload. Silica oxide based glass is commonly

used in defense application for its high strength, transparency, and energy dissipation

mechanisms when subjected to extreme loading such as hypervelocity impact. It has

been tested within a shield capacity since World War II. Often the glass is paired with

traditional defence systems as a first layer to absorb much of a projectile’s kinetic

energy Roshdy G.S. Barsoum 20.

1.1.3 Space

With an estimated 500,000, 1 to 10 cm sized pieces of spaced debris and 100 million

pieces of debris under 1 cm in diameter impacts are a very common occurrence in earth
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orbit. In space these are often hypervelocity impacts due to the relative velocities

between objects in space. Impacts have been thoroughly studied on a spaceship’s

metal haul but have been underrepresented in studies of glass used in thermal, optical,

and electronic components of a spacecraft. The science in space impacts is similar to

that of warfighting and has great cross application to that field Kawai et al. 2013.

1.1.4 High Power Laser Lenses

High powered lasers undergo stishovite crystallization due to the high temperatures

glass impurities experience. Impurities within a glass lens has a higher electromagnetic

radiation absorptivity, this increased absorptivity leads to higher temperatures during

laser firing. This massive thermal shift within the glass at small time scales leads

to a pressure wave accompanying the thermal shift. In the same way a pressure

wave propagates from a hypervelocity impact a thermally generated pressure wave

propagates spherically, resulting in small locally generated crystals. Pressures for

stishovite nucleation from lasers in fused silica are 10 to 20 GPa.

Figure 3a displays a small lens with advanced stishovite formation from high energy

laser pulses. This is can happen for commercial or military applications, including

wafer manufacturing technology and laser weapon systems. Figure 3b shows the

stishovite on the nanometer scale, at this resolution individual stishovite crystals are

visible. The application is to improve manufacturing methods that minimises the

prenucleation structures of stishovite within the glass Salleo et al. 2003.
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(a) Lens with stishovite formation seen
as large cloud in center of lens. This is
caused by high powered lasers.

(b) Lens with stishovite formation at
nanometer scale.

Figure 3. Figures showing stishovite formation Salleo et al. 2003.

1.1.5 Use Case

By understanding how nucleation occurs within glass it maybe possible to develop

glasses in which stishovite formation occurs in a controlled form. This may mean

more stishovite growth for impact scenarios and as minimal as possible for laser lenses.

Understanding if a nucleation inducing structure exists can be a key step in the

manufacture of glasses to this end.
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1.2 Types of SiO2 Structure

1.2.1 Fused Silica Glass

Silica oxide glass is one of the most common materials to daily life; It is uses in

nearly all buildings, cookware, electronic devices, measuring devices, and automobiles.

Fused silica glass is mixed with other compounds in commercial applications of soda

lime glass: Na2O, Al2O3, CaO, and trace elements Alexander et al. 2008. Other forms

of glass found commonly in the modern world include lead crystal with a PbO additive

to increase the reflectively of the glass. Commonly found in dishware from the last

century, uranium glass known for its beautiful jade green color and is composed of an

U3O8 additive Tepfenhart 2021. For the purposes of this thesis only pure silica glass

will be studied.

Amorphous SiO2 or pure fused silica glass has the lowest melting temperature of

all silica oxide structures. It consist of a disordered tetrahedral structure with short

range periodicity but no long range periodicity. This short range order is a function

of bonding behaviors of Si and O. The O can be bridging or non-bridging, this is a

unique feature of amorphous silica glass. The structure itself is a thermodynamically

metastable state between a liquid and crystalline structure Biswas et al. 2018.

1.2.2 Quartz

Quartz is common to the earth’s crust and is used in tools, surface finishing, glass

production, and artwork. It consists of a tetrahedral or four-fold coordinated structure,

with bond an average bond angle of 151± 12◦. The structure in two dimensions is
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Figure 4. Various glass structures in 2D. (A) quartz (B) fused silica (C) fused silica
with sodium and calcium (D) fused silica with boron Alexander et al. 2008

shown in figure 5 image (A). The average Si-O bond length of quartz is 1.8 Å with

a density of 2.32 g
cm3 at standard pressure standard temperature Tucker et al. 2005;

Alexander et al. 2008.

1.2.3 Stishovite

Stishovite is a rare earth form of silica oxide that is found in meteorite creators,

thermonuclear blasts, and earth’s mantel. The structure of stishovite is six-fold

coordinated silica oxide, the structure is displayed as an octahedral and is known by

its eight faces and six edges show in figure 5 Wakai 201. The average bond angle
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Figure 5. (E) tetrahedral crystalline quartz structure, four-fold (F) five-fold pyramidal
crystalline structure (G) six-fold crystalline stishovite, Wakai 201

of stishovite is 90◦ and the average density at atmospheric pressure atmospheric

temperature is 4.29 g
cm3 . The density is nearly twice that of amorphous glass at

atmospheric pressures and temperatures Alexander et al. 2008.

The common creation of stishovite on earth’s surface is at meteorite impacts

or thermonuclear blasts. The extreme pressures and temperatures associate with

these subsecond events result in the transformation of quartz or amorphous glass into

stishovite El Goresy et al. 2004; Wakai 201; Lyzenga, Ahrens, and Mitchell 1983. A

laboratory method that approximates this is to use a high power laser to generate

the high pressures and temperatures to form stishovite. The laser generates the high

pressure from the thermal shock as quartz or amorphous silica absorbs the intense

electromagnetic radiation Salleo et al. 2003. Other methods of production include

using a gas gun to fire small projectiles with glass tips or glass impact cites to generate

the pressures needed to form stishovite Alexander et al. 2008. The earth’s mantel is

stishovite plentiful due to the extreme pressures and temperatures present which force

SiO2 into a stishovite form Millot et al. 2015.
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1.3 Molecular Dynamics

1.3.1 Potential

Various potentials have been used to model SiO2 using classical MD. Many of

theses have been ever compounding on previous work to account for the unusual

effects high pressure shocks in the tens of gigapascals Shen and Reed 2016; Cormack.

and Segre 2006; Müser and Binder 2001; Beest van B. W. H. and R. A. 1990.

1.3.1.1 BKS Potential

The first known attempt for research into a potential for stishovite formation is

done by Beest van B. W. H. and R. A. 1990 in consisting of coulombic term and

covalent term in Buckingham form,

Φij =
qiqj

rij
+ Aije−bijrij − Cij

r6ij

Where Aij is a short range parameter to model electrical potential amplitude

between various kinds of atoms in eV, bij is a decay term given in Å−1 to fit electrical

potential decay, e is Coulomb’s constant, Cij is the coulombic repulsion term given in

eV Å6, qi and qj are the fitted atomic charges, and rij which represents the distance

between atoms in Å. The potential itself is fitted to model empirical crystallographic

behavior. It closely aligns with force field predictions for empirical bulk parameters of

SiO2 for most regions of study with some miss alignment toward the extreme valves

of the parameters. Similar to most of the following potentials this potential modeled

bonding behavior between tetrahedral network oxides including Al-O and P-O.

One of the notable features of SiO2 potentials started with this publication in 1990,
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the use of non physical electron bonding charges of 1.2 and -2.4 for silica and oxygen

respectively. The use of non physical charges is to fit the potential to model empirical

behavior Beest van B. W. H. and R. A. 1990. Other potentials include early work by

Tjabane and Lowther 1999, forming stishovite from quartz at various temperatures

and pressures, Ahrens 2002 with work on terrestrial mantel behavior at pressures up

to 200 GPa, Pedone et al. 2006 with work into quantum simulation of silica and other

oxides, and Shen and Reed 2016 with large scale work into polymorphic behavior of

shocked amorphous and quartz structured silica.

1.3.2 Stishovite Formation

Shocking various kinds of silica glass samples has been done empirically and

computationally. Often these tests are done physically upon pure or impure silica

glass, most notably soda lime glass using lasers or ballistic impacts. The large scale

ballistic impacts render the work unable to accurately identify atomic behavior during

shock events. In the last century much of this behavior was inferred through x

ray imaging, high speed photography, and post shock analyses. Empirical research

included: crystallographic, phase transformation, impact, thermal properties, and

mechanical behavior studies Roshdy G.S. Barsoum 20; Salleo et al. 2003; El Goresy et

al. 2004; Osako and Kobayashi 1979; Gibbons and Ahrens 1971; Alexander et al. 2008;

Tracy, Turneaure, and Duffy 2018.

MD simulations of silica glass shock behavior allows for more in depth analysis

of transition behavior. Do to the extremely small timescales, empirical simulations

struggle to show transition behavior on an atomic level. Much of this work includes

stishovite formation studies, nucleation conditions, crystallographic behavior, and
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Figure 6. Graph showing the most exhaustive glass to stishovite pressure vs tem-
perature graph in the literature. Diagonal bands of pressure and temperature that
crystallization and non crystallization occurs within are shown by the blue and green
lines respectively Yuan Shen and Reed 2016.

transition behavior. Properties studied include: mechanical moduli, elasticity, thermal

expansion coefficient, and ultimate stresses. Some of this work includes amorphization

of stishovite under extreme tension. There is a great deal of overlap between empirical

and MD studies, MD work uses empirical studies as a source of parameter tuning

and to validate results Beest van B. W. H. and R. A. 1990; Cormack. and Segre

2006; Osako and Kobayashi 1979; Gibbons and Ahrens 1971; El Goresy et al. 2004;

Templeton. and Bishnoi 2011; Wakai 201.

A unique behavior occurs during the formation of stishovite that has been well

recorded in the research, that the phase transformation is a function of pressure.

Temperature change is function of the shock pressure and stishovite formation. No

analytical equation has been derived to model this function but there appears to be a
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strong correlation to this effect across multiple studies mentioned above. After quartz

or glass are shocked it tends to fall within one of the bands whether crystallized or

non crystallized.

Figure 6 shows this relationship in great detail. Crystallized simulations generally

experience high temperatures and have an effective range up to 63 GPa, at which

point the fused silica fails to form stishovite and falls within a disordered state. Fused

silica which does not melt continues in a disordered state to higher shock pressure

Yuan Shen and Reed 2016.

1.4 CNNs in MD

1.4.1 Gaussian Fields

Gaussian functions are commonly used to prepare MD samples for a CNN. The

atomic position data is not transferable directly into a CNN as it is positional data,

whereas a CNN uses image data. Gaussian fields transform positional data into image

data by approximating the point data as an exponential function across a grid space.

This is shown in figure 7 which is taken out of work by Ryczko et al. 2018, the images

shows a single point defect of a missing atom with a dashed circle were the atom

should be using a Gaussian field.

Most of the literature uses Gaussian functions to transform positional data into

image data. Other methods did included creating binary grid fields that were set to

one if an atom was in the grid space and zero with no atoms in the space. Atom class

was done through the use of multiple grid fields, layering them like RGB grids. This
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method was done in two and three dimensions one of which used gradient values for

atoms instead of binary values Singh et al. 2018; Fukuya and Shibuta 2020.

1.4.2 CNN

Most applications of CNNs are based upon the matching the input to a known

output. Often the problem in hard sciences, such as MD is to increase the speed at

which a model based on physical principals can achive a value by supplementing it for

an ML model and training this machine learning (ML) model to be a replacement

or aid to the physical model. Often simulations that are small in size are done using

density functional theory (DFT), the small simulations were directly used for training

and validation sets after reviving a Gaussian field treatment. The quantity of small

simulations was in the order of 103 to 104 Chmiela et al. 2017; Singh et al. 2018.

Figure 7. Example of Gaussian field of atomic structure from Ryczko et al. 2018. Single
point defect of missing nitrogen atom in graphenehexal born nitrite heterostructure.
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Ryczko et al. 2018 used CNNs to study atomic energies in graphene, hexagonal

boron nitride (hBN), and graphene-hBN heterostructures with and without imperfec-

tions, to test a CNNs ability to predict energy values of each simulation. Imperfections

were introduced into the system, single point defect with removed atom and Stone-

Wales defect. The results showed 0.198 meV mean absolute error (MAE) for validation

values with energy values ranging from -9 to -8 eV. A deep CNN was used with 20

layers in operation to achieve the final result, 18 layers were convolution and max

pooling, one dense layer and one final classification error was present. This was a

perfect application for a CNN with large data sets generated.

Different methods have developed to work within large simulations. Chew et

al. 2020 studied rates of liquid-phase Brønsted acid-catalyzed reaction rates for

biomass compounds. A larger simulation was produced in which the simulation was

divided into portions. This study used a CNN to predict the acid-catalysed reaction

rates within a solution, and was tested on different solvent systems with prediction

rates an order of magnitude faster than previous methods of doing so. The final root

mean squared error ranged from 0.11 to 0.81 within the best prediction model being

the VoxNet CNN. 84 combinations of variables were tested within the study and the

data sets appeared to be undersized. A simple convolution system was used containing

ten layers total, six convolutional and pooling layers, three fully connected layers, and

a single output neuron.

A more advanced way of managing large simulations is to set the input grid for

the CNN around a particular point. Fukuya and Shibuta 2020 portioned a cube out of

each simulation around each atom to identify the phase of each atom as solid or liquid

in a biphasic system. This system used a clear dividing line at the boundary and was

maintained at melting temperature. Pure Fe, W, Ni, and Si simulations were were all
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classified with accuracies in the range of 93% to 96% except for Fe which achieved

≈ 90% accuracy. This far exceed previous methods of atomic phase identification; The

best of which, polyhedral template matching was in the range 85% to 90% accuracy

for the same testing. A ten layer CNN consisting of six pooling and convolution layers,

three dense layers, and two final output neurons was used.

1.4.3 Regional CNN

Defining the search size and shape for the neural network to process is done within

regional CNNs (rCNN). Many vision systems use an rCNN to scan a given image and

classify sections of the image. Thus, a man, woman, dog, and car can be classified

from the same image with the same rCNN. An example of the architecture is given

in figure 8. In which there is a CNN with a cropping program that classifies the

large and important sections of the image before feeding it into a standard CNN. The

cropping program is computationally intensive and uses classical vision systems in

most circumstances Girshick et al. 2014.

The major drawback to this methodology applied to MD research is two fold:

it requires previous knowledge of the object to be selected, and it requires heavy

computation. First, the system requires a predetermined classification of what an

image is which is not known in this research. Without this knowledge it is not

possible to set the borders of the image cropping system, this can be highly variant

based on the MD application. Secondly, classical vision systems are computationally

intensive. Many classical vision systems operate serially whereas the CNN section

of an rCNN can be heavily paralyzed, increasing training time and dark silica time

Girshick et al. 2014.
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Figure 8. Example of rCNN architecture.

16



Chapter 2

METHODOLOGY

The methodology is broken into two main components. The first is the generation

of the samples, this includes the creation, diffusion, quenching, and shock processes

for all silica samples. These samples need be numerous for the CNNs to property

train Chew et al. 2020; Ryczko et al. 2018. The second component is to generate

Gaussian fields from the given LAMMPS dump files for mass and charge and train

the simulations using the CNNs generated. Figure 9 is a process diagram of the

methodology used showing all main steps. Six binary variables will be tested within

the research listed in table 15.

Index Variable Option 1 Option 2
1 simulation seed (type) α quartz random
2 simulation size (atoms) 18,000 73,728
3 Gaussian σ (Å) 1 4
4 Gaussian Field (type) mass charge
5 CNN (type) standard all convolution
6 Nucleation Detector (type) cutoff max

Table 1. A description of what variables are being tested.
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Figure 9. Process diagram for research methodology.
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2.1 Potential

The potential used for this work is critical to the formation of stishovite within the

samples. Related work to this thesis has been performed under the FURI and MORE

grants at ASU by the same author. This work has greatly colored the understanding

of stishovite formation and behavior.

2.1.0.1 Pedone et al Potential

One of the first potentials used was discovered by Pedone et al. 2006 to correctly

model the behavior of ionic and semi-ionic oxides. This predominately included

melting and quench simulations of silica glasses with various impurities arising from

DFT studies. This is the most complete potential found to date with 29 different

elemental interactions. The potential was used for the MORE grant research to

model the behavior of SiO2 with Na2O concentrations of 0%, 5%, 10%, 20%, and 30%

concentrations. This coincides with later work studying the mechanical properties of

alkaline glasses with impurities Cormack. and Segre 2006. The focus of the research

was to identify a point at which crystallization will not occur due to the concentration

of impurities within a system.

U(r) =
qiqj
rij

e2 +Dij[{1− e−aij(r−ro)}2 − 1] +
Cij

r12

The Podone et al work is based on empirical behavior and did include nonphysical

charges for Si, Na, and O of 2.4, 0.6, and -1.2 respectively. During implementation the

entire term was maintained as a continuous function and set with an atomic cut off
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qi, qj (C) Dij (eV) aij (Å−2) ro (Å) Cij (eV Å12)
Na0.6-O−1.2 0.023363 1.763867 3.006315 5.0
Si2.4-O−1.2 0.340554 2.006700 2.100000 1.0
O−1.2-O−1.2 0.042395 1.379316 3.618701 22.0
Si2.4-Si2.4 1.0

Na0.6-Na0.6 5.0
Na0.6-Si2.4 5.0

Table 2. Pedone et al Potential

at 5 Å. From 5 Å to 5.5 Å a small quadratic curve fit was made to take the residual

energy and guide it to zero, making for a smooth transition.

Another common feature of alkaline glass potentials in literature is removal of

all but the Coulombic forces when dealing with atoms of positive charge. The Si-Si,

Na-Na, and Si-Na terms only include the Coulomb charges and Coulomb repulsion is

modeled as Cij

r12
. These charges are critical and promote long range atomistic structure

which can be seen in a pair distribution function Wakai 201; Pedone et al. 2006.

None of the simulations for the potential including the pure silica oxide simulations

proved to be effective in the formation of stishovite while using simulation sizes of

18,000 atoms derived from pure quartz. In order to form stishovite, larger simulation

sizes and a longer potential cutoff of 10 Å was used and resulted in some stishovite

formation varying by sample. It has remained in this methodology as an option for

others or future work within the area if it is desired to add ionic impurities within

the glass. Understanding the effect of ions within the nucleation behavior of silica or

alkaline glasses would be a natural outgrowth of this research and would be expected

to have applications across materials of other alkaline glasses which form six-fold

coordination structure.
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2.1.0.2 Modified BKS Potential

Shen and Reed 2016 picked up the BKS potential and modified it to support

the formation of stishovite under high pressure shocks. High pressure shocks are a

difficult problem as the potential must be accurate from atmospheric pressure to

>100 GPa under rapid loading. Rapid loading is the most difficult demonstration of a

potential’s accuracy. The previous BKS potential exhibits a risk of failure under rapid

pressure loading. Most of the early work into stishovite formation was based upon

static loading conditions and modeled the behavior of the silica oxide from quartz to

stishovite. If the BKS potential, or any of the other early potentials are used, atoms

at the shock wave exhibit very strange interactions form the extremely close resulting

atomic proximity Beest van B. W. H. and R. A. 1990; Brazhkin, Voloshin, and

Popova 1991.

To model the shock behavior Shen and Reed 2016 computed only silica-silica,

silica-oxygen, and oxygen-oxygen interactions are fitted to DFT simulation results.

The core of the Buckingham potential is kept within the modified BKS potential:

Coulombic interaction, Moorse function, and Coulombic repulsion.

ϕij(rij) =


k(rij − rmij )

2 + wij rij < rmij

qiqj
rij

e2 + Aije
−rij
ρij − Cij

r6ij
−
(
Aije

−rc
ρij − Cij

r6c

)
rmij < rij < rc

qiqj
rij

e2 rc < rij

The first term, with a radius less than rmij models close atomic interactions and

corrects for shock wave behavior by the choice of coefficient wij . The second term, from
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qi, qj (C) Aij (eV) aij(ρ
−2) Cij (eV 6) rmij (Å) wij (eV)

Si2.4-O−1.2 18003.7572 0.20521 133.5381 1.1936 −27.3050
O−1.2-O−1.2 1388.773 0.36232 175 1.439 20.782
Si2.4-Si2.4

Table 3. Modified BKS Potential

rmij to rc which includes a longer cut off region to that of the original BKS potential

makes a continuous transition across the rc boundary. Failure to generate a smooth

transition zone is responsible for peculiar interactions in MD simulations at which

atoms favor one or the other side of the cutoff region. Lastly, an extended region in

which the coulombic interactions dominate before the LAMMPS force field takes over.

The extended Coulombic interaction was mentioned in the paper as a critical part of

the potential, allowing crystallization information to propagate to non crystallized

regions more effectively. In the case of modeling amorphous glass rc = 6 Å is the

cutoff distance for the Buckingham term. In the case of a quartz crystal rc = 10 Å.

The maximum cutoff distance for the potential is rij = 10 Å. The terms not given

in table 3 are k=100 (eV*Å) an estimated constant and e = 8.9876e9 N*m2/C2 the

Coulmbic constant. Computational costs prohibits cutoff region extension and the

inverse squared radial energy behavior yields greatly diminished returns for doing so.

Only amorphous structured silica oxide was shocked. Subsequently, the potential for

amorphous silica oxide was used exclusively with an rc = 6 Å cut off distance for all

samples.

The potential was programmed into a Python file which outputs a table with four

columns; index column starting at one. the shortest vector between atoms, energy of

the atoms, and force of the atoms. This table has three sections one for each interaction:

oxygen-oxygen, oxygen-silica, and silica-silica using standard LAMMPS convention.

The computational cost of calculating energy and force for every atomic placement
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is high and the experiments are many. It is better utilization of computational time

to output a single discrete table and proceed to approximate each atom as being at

a given distance within the table than to calculate the energies and forces for every

atomic interaction during simulation. For this study a radial resolution of 0.001 Å was

used.

2.2 Sample Genesis 1

2.2.1 α-Quartz Seeded Experiments

The simulation consisted of using a data file consisting of 144 atoms in a perfect

α-quartz lattice propagated to 18,000 simulations. After melting a diffusion step was

preformed to allow divergence of each simulation before a quench. The fix NPHug

or Hugoniostat command was used to perform the shock testing ranging from 50-

70 GPa, temperature damping of 0.05-0.5 ps, and pressure damping of 0.1-10.0 ps. It

is hypothesized that stishovite formation is a function of pressure, source atomistic

structure, pressure damp, and temperature damp. The results did yield stishovite in

accordance with the hypothesis.

Throughout the simulations a timestep of 0.5 fm is used in accordance with previous

work done under the MORE grant. This small timestep is needed during the shock

phase to generate stishovite, to large a timestep will yield no stishovite nucleation.

Symmetric boundary conditions were used throughout the simulation process.
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2.2.1.1 Simulation Creation

The α-quartz seeded experiments were created using the generic file consisting of a

perfect quartz lattice of 144 atoms. The structure is copied 5 times in all 3 Cartesian

directions to make a larger crystal consisting of 125 the original file. The resulting

simulation consists of 18,000 atoms with a size of 49.160 Å x 85.147 Å x 54.054 Å.

The subsequent atomic velocities were randomized using the randint attribute of the

random library in the Python language. This is the first and most critical divergent

property of each simulation that results in particular solutions of differing atomistic

structure. The velocities where subsequently scaled to 300 K with the LAMMPS

velocity create command.

The file for the α-quartz is a generic file containing a quartz structure for use in

simulation, it can be easily copied to create larger simulations. The size of this data

file is 9.832 Å x 1.703 Å x 1.081 Å and contains 144 atoms or 48 silica atoms and 96

oxygen atoms.

2.2.1.2 Melt

The melt is performed using LAMMPS’ fix NVT from 300 Kto 6000 Kfor 500 ps

or 113 K/ps. Due to the high temperature of 6000 Kthe system was maintained at

constant volume. The melting temperature of quartz is known to be about 1873 K at

atmospheric pressure Brown and Bursten 2000, far below the chosen temperature to

melt in the MD simulation. During phase transformation quartz would generally have

magnitudes of time longer to melt. Melting glass at 6000 K causes it to behave much

like heterogeneous butter when heated some segments break bonds and melt quickly
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while others linger in an elevated temperature environment. The melting temperature

of quartz in the picosecond to nanosecond range is not known, 6000 K was chosen

and is known to be within a Goldilock’s zone, if the simulation is ran at 10,000 K

LAMMPS will lose atoms in the simulation from the extreme energies created from

the constant volume fix and much lower will not yield melting quickly enough. This

was derived though experimentation.

2.2.1.3 Diffusion

The next step was to hold the temperature at 6000 K for 200 ps using an NVT

fix, before concluding with an NPT fix of 6000 K at constant pressure of 100 bar for

1 ns. The temperature damp is 100 fs and pressure damp is 2 ps. This step offered

additional time for melting as well as diffusion. It is important to allow for diffusion of

the molten silica oxide to create differing atomistic structures. The choice for diffusion

time is based upon previous work under the FURI grant. Later in the thesis a test was

done showing that 1 ns of quench at 2700 Kyielded ample diffusion of ≈ 11.2 Å for Si

atoms. The high pressure during diffusion is to prevent the simulation from vaporizing.

The exact value of pressure was decided for under earlier work to prevent vaporization.

2.2.1.4 Quench

The quench process is broken into two steps: quenching and depressurization. The

first step of quenching takes the temperature from 6000 K to 300 K in 0.95 ns or at a

rate of 0.6 K/ps. This was done using an NPT command with temperature damp

of 1 ps and pressure damp of 1 ps, the pressure was held at 1000 bar. The quench
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rate of 0.6 K/ps matches the work of Yuan Shen and Reed 2016. The pressure set to

1,000 bar, to prevent vaporization of the molten glass which occurs at lower pressure

values.

Step two is depressurization, in which the glass is taken from 1,000 bar to 1 atm in

100 ps using an NPT fix. The pressure damp is 0.1 ps and temperature damp is 50 fs.

The depressurization step allows the glass to homogenize to the new environment and

stress relive before shock.

2.2.1.5 Shock

The shock is the most critical part of the MD simulations and the most tempera-

mental and the goal of shock is to yield consistent crystallization with results matching

literature values. The hypothesis is that stishovite formation is a function of shock

pressure, atomistic structure, pressure damp, and temperature damp.

Ravelo et al. 2004 did significant work into Hugoniostat curves with three methods

of shocking cartographic structures: NVHug, NPHug, and, NEMD. The chosen and

most common method for classical MD is the NPHug command which has been used

in the prior work of this author. Yuan Shen and Reed 2016 used the MSST shock

command which uses shock velocity and converts it into a pressure wave, in general

the MSST command is more temperamental than the NPHug command. The NPHug

command shocks entire domain in a given plane using an energy conservation equation

to maintain physical behavior,

Tt − T =
1
2
(P + P0)(V0 − V) + (E0 − E)

NdofkB

T is the temperature in Kelvin, P is axial pressure in Pa, E is the energy in

26



electronvolt, V is the volume in Å3, Ndof is the number of degrees of freedom and, kB

is the Boltzmann constant. The 0’s represent the initial state and the current state is

given without a subscript. In the case of this research only the ZZ axis was shocked

resulting in a piston like behavior of the simulation.

Pressure and temperature damp control the response of the system. Classical

MD simulations undergo standard controls behavior in which the pressure damp or

temperature damp can be unstable, under damped, critically damped, or over damped.

The effect of these terms are shown in figure 10 below as a refresher to systems theory;

In which the βp=0 term shows a system with no artificial dampening, this system is

under damped resulting in oscillatory behavior. βp=5 system receives a dampening

factor of 5 ps, this system has mild overshoot before going to its final stress value

and is known as critically damped, or ideally damped. Critically damped refers to a

system at optimal dampening, in which the minimal time is needed to reach a final

valve with a range, usually the range is ±2% of the final valve.

A poor value for the temperature damp or pressure damp will result in a system

with ever increasing temperature or pressure before simulation failure, or a system

that will not crystallize. Both of these extremes were experienced in previous work.

To test the given hypothesis that the pressure damp and temperature damp effect the

formation of stishovite these values will be tested within a range of their recommended

value from LAMMPS documentation Sandia 2021:

pressure damp = 1000 ∗ timestep

temperature damp = 100 ∗ timestep

Lastly, the shock pressure controls crystallization; this is the most obvious empirical

factor in crystallization. It is clear from the literature that crystallization for amorphous

silica systems is most likely to form in the range of 50 to 70 GPa. If the shock pressure
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Figure 10. Example of Hugoniot curve from Revelo et al work in which βp is the
pressure dampening in ps Ravelo et al. 2004.

is too high the glass will be disordered and fail to nucleated. If the energy is to low

no crystallization will occur from to little energy in the system. The energy level

can change the folding structure of amorphous or α-quartz structure silica oxide into

stishovite at different values of shock pressure Ahrens 2002; Dong, Zhu, and Chen

2015; Yuan Shen and Reed 2016; Tracy, Turneaure, and Duffy 2018.

2.2.1.6 Experiment

Tests were done ranging pressure damp, temperature damp and shock pressure on

a single quench data file to test for quartz crystallization. No special selection was
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made for the input file and the file was the same for all shock tests. For the sake of

time only one file was used and no averages were acquired. The pressure ranged from

50 to 70 GPa as 50 GPa, 55 GPa, 60 GPa, 65 GPa, and 70 GPa. The temperature

damp ranged from 50 to 500 fm as 50 fs, 100 fs, and 500 fs. These values were chosen

around 100 times the timestep of 0.5 fs according to LAMMPS documentation. The

pressure damp was ranged from 100 fs to 10 ps as approximate 1000 times the 0.5 fs

timestep according to LAMMPS documentation. Pressure damp values were tested

as 100 fs, 1 ps, and 10 ps. Dump file was added to record all atom positions every

10,000 timesteps or 5 ps. All test results are seen in table 4 with categorical averaging

Sandia 2021.

Density values showed no significant change from literature. Visual Molecular

Dynamics (VMD) is a software tool to visualize molecular files, it did display clear

crystallization of some samples. Density has no to a very minor change from pre and

post glass crystallization based upon this data. Density was assumed to be the key

factor in crystallization of glass, often the literature refers to the process as permanent

densification Grujicic, Bell, Pandurangan, et al. 2011.

Shock pressure in the range of 55 to 60 GPa yielded the most reliable formation of

stishovite for nearly all tested systems. It is important to note that for three of four

systems outside this pressure range, crystallization occurred at temperature damp

50 fs. There appears to be some favoring of lower temperature damp values during

crystallization, the reason for this is unknown and no indication of this is given within

the literature. Some very minor densification appears to have happened. In the

55 GPa shock region the lowest density is the only simulation that did not crystallize.

One of two crystallized simulations in each, the 50 GPa and 65 GPa ranges had the

highest density. All of these findings are very minor with less than 1% difference to
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other within the same shock pressure. No significant density information appears

from the averaging of any particular category of temperature damp or pressure damp

within the systems.

Pshock Pshock Tdamp Stishovite ρ Pshock Pshock Tshock Stishovite ρ

(GPa) (ps) (ps) (Positive)
( g

cm3

)
(GPa) (ps) (ps) (Positive)

( g
cm3

)
50 0.1 0.05 4.394 60 10.0 0.50 Positive 4.528

50 0.1 0.10 4.395 60 all all 4.531

50 0.1 0.50 4.396 60 0.1 all 4.535

50 1.0 0.05 4.398 60 1.0 all 4.525

50 1.0 0.10 4.395 60 10.0 all 4.534

50 1.0 0.50 4.398 60 all 0.05 4.516

50 10.0 0.05 Positive 4.399 60 all 0.10 4.545

50 10.0 0.10 Positive 4.428 60 all 0.50 4.532

50 10.0 0.50 4.396 65 0.1 0.05 Positive 4.541

50 all all 4.400 65 0.1 0.10 4.539

50 0.1 all 4.395 65 0.1 0.50 4.541

50 1.0 all 4.397 65 1.0 0.05 Positive 4.554

50 10.0 all 4.408 65 1.0 0.10 4.542

50 all 0.05 4.397 65 1.0 0.50 4.540

50 all 0.10 4.406 65 10.0 0.05 4.541

50 all 0.50 4.397 65 10.0 0.10 4.543

55 0.1 0.05 Positive 4.506 65 10.0 0.50 4.540

55 0.1 0.10 Positive 4.483 65 all all 4.542

55 0.1 0.50 Positive 4.502 65 0.1 all 4.540

55 1.0 0.05 Positive 4.469 65 1.0 all 4.545

55 1.0 0.10 Positive 4.505 65 10.0 all 4.541

55 1.0 0.50 Positive 4.489 65 all 0.05 4.545

55 10.0 0.05 Positive 4.532 65 all 0.10 4.541

55 10.0 0.10 Positive 4.494 65 all 0.50 4.540

Continued on next page

30



Table 4 – continued from previous page

Pshock Pshock Tdamp Stishovite ρ Pshock Pshock Tshock Stishovite ρ

(GPa) (ps) (ps) (Positive)
( g

cm3

)
(GPa) (ps) (ps) (Positive)

( g
cm3

)
55 10.0 0.50 Positive 4.515 70 0.1 0.05 4.589

55 all all 4.499 70 0.1 0.10 4.591

55 0.1 all 4.497 70 0.1 0.50 4.590

55 1.0 all 4.488 70 1.0 0.05 4.588

55 10.0 all 4.514 70 1.0 0.10 4.588

55 all 0.05 4.502 70 1.0 0.50 4.591

55 all 0.10 4.494 70 10.0 0.05 4.589

55 all 0.50 4.502 70 10.0 0.10 4.387

60 0.1 0.05 Positive 4.520 70 10.0 0.50 4.588

60 0.1 0.10 Positive 4.536 70 all all 4.567

60 0.1 0.50 Positive 4.548 70 0.1 all 4.590

60 1.0 0.05 4.492 70 1.0 all 4.589

60 1.0 0.10 Positive 4.563 70 10.0 all 4.521

60 1.0 0.50 Positive 4.521 70 all 0.05 4.589

60 10.0 0.05 Positive 4.536 70 all 0.10 4.522

60 10.0 0.10 Positive 4.537 70 all 0.50 4.590

Table 4. α-quartz seeded SiO2 crystallization tests Sample Genesis 1. All variables not

listed in the table were homogeneous throughout testing and all tests were performed

upon the same quench data file. Only the shock pressure, pressure damp, and

temperature damp are changed within the simulations. The shock lasted 1.5 ns. The

density listed for each shock value is the average of the final 20 log file outputs, or an

average of the final 10 ps of the simulation. Stishovite was tested positive with the

occurrence of six-fold crystallographic structure.
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2.2.2 Randomly Seeded Silica Experiments

The following steps of simulation generation, atomic insertion, diffusion, and quench

all occurred under the same file to simplify, whereas the initialization/melting/diffusion

and quench occurred separately within the quartz simulations. All quench file pressure

is kept to standard sea level atmospheric pressure of 101.325 kPa with a 1.0 fs

timestep, the timestep for shock is kept at 0.5 fs. Symmetric boundary conditions

were maintained throughout.

2.2.2.1 Simulation Creation

The sample is produced using two simulation boxes of the same size for different

elements. The simulation size is dictated by the number of the Si atoms,

L = 3.5 Si1/3 Å

Which gives a volumetrics increase of 3.5 Å3 for each additional SiO2 pair, this is

equivocal to standard temperature standard pressure amorphous silica glass with

density of 2.33 g/cm3. Two boxes were then created using the dimensions of (L,L,L)

The first box is to insert the Si atoms and the second box is to insert the O atoms.

The Si and O atoms are inserted using the random function from LAMMPS to create

atoms with all pair combinations. This method of generating two simulation boxes

with Si and O simulation respectively has been done in a previous MORE grant with

success. This is a novel form of SiO2 network generation not heretofore seen within

the research literature. The purpose is to generate additional atomistic configuration

variance to test its nucleation behavior.
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2.2.2.2 Energy Minimization

Subsequent computation dangers occur from the random atomic insertion that can

lead to simulation failure. Overlapping atoms defined as atoms well within proximity

that will not be seen in any physical system did occur. The highly nonphysical

atomistic arrangements are common from the create atoms random function. In early

versions of the simulation no steps were taken to minimize energy which resulted in

failed simulations, energy interactions between atoms became so high they exited the

simulation box effectively crashing LAMMPS. To rectify this an NVE fix was set with

a maximum energy of 1 eV . This was done for 1 ps with the temperature held at

2700 K. Following this fix no further simulation failures occurred.

2.2.2.3 Diffusion

The second concern with the create atoms random insertion command is the

non physical atomistic arrangement that occurs. To compensate a diffusion step was

performed to allow for atomic mixing to occur, the thermo style included an Si mobility

measure which measures the average distance of all Si atoms from the initial starting

coordinates. The O atoms did not require this measure as it is redundant, the lighter

O atom are subject to higher atomic mobility and will subsequently diffuse faster

than the significantly heavier Si atoms. Some preliminary simulations did include O

diffusion which was over two times that of Si.

The diffusion step was held during a molten state at 2700 K for 1 ns. The final

solution was optimized for Si diffusion of ≈11.5 Å, going beyond this value is difficult

as diffusion distance obeys a power law. The 25 simulations showed diffusion of
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11.189 ± 0.2475 Å with a minimum and maximum of 10.974 Å and 12.347 Å, showing

very low variation amongst simulations. A temperature damp of 0.1 ps and pressure

damp of 2.0 ps was used.

2.2.2.4 Quench

Quenching was very similar to that done in the quartz seeded experiments, the

process used a quench rate of 0.6 k/ps resulting in a quench from 2,700 K to 300 K in

4 ns. Temperature damp and pressure damp of 0.1 ps and 1.0 ps were used for the

process. No simulations underwent vaporization as in the quartz seeded experiments,

it appears that the usage of 2700 K is below the vaporization threshold at atmospheric

pressure. This value was tuned as a 3000 K and 2900 K value for diffusion and quench

did lead to vaporization of simulation in the quench section.

2.2.2.5 Shock

Two shock experiments ensued within this section, the first one was the first

experiment in the thesis work chronologically. This was before a system of stishovite

measurement was implemented resulting in only data file output, therefore no dump

files existed for testing purposes. All shocks were maintained fro 1.5 ns.

2.2.2.5.1 Shock Test 1

The first shock experiment was performed using an NPHug fix for 51, 55, and

59 GPa. In keeping with the general hypothesis of classical MD stishovite formation
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a three dimensional sweep consisting of the temperature damp for points 0.1, 1.0,

and 10.0 ps and pressure damp seep of points 4, 6, 8, 10, 12, 15, 20, 25, and 30 ps

was done. The results are given as the final density, the input simulation density is

2.34 g
cm3 . All simulations used the same input file to remove variation. No significant

correlation occurred within the density across simulations, the changes in density for

nearly all simulations are <0.5% and the remainders are less than <1%. Changes

in densification where expected to be significant and obvious. It was concluded at

the time that no crystallization occurred. There was likely significant crystallization

based upon later results. Discovered post testing is that the densification is often

measured after pressure unloading, a very obvious fact in imperial study that is not

so in MD. If the shock pressure was subsequently unloaded the large and irreversible

densification should have been present Grujicic, Bell, Glomski, et al. 2011.

2.2.2.5.2 Shock Test 2

The second shock test was done to match the work done within the quartz seeded

shock experiment, with shock pressures of 50, 55, 60, 65, 70 GPa, temperature damp

ranges of 0.05, 0.1, and 0.5 ps, and pressure damp ranges of 0.1, 1.0, and 10.0 ps. As

this experiment was carried out the simulations were stopped after a small number of

iterations. Table 6 shows the results, all simulations except system 128 at 50 GPa

failed. The temperature became wildly unstable and the simulation ended in an

error prematurely. From log file reviews it appears the maximal limit of double point

precision was exceeded forcing AGAVE to crash. It is believed that the system became

unstable and failed in osculation similar to a unstable system as referenced in the

work of Ravelo et al. 2004. In the Sample Generation Stage 2 it may be more clear as

35



System Pdamp Tdamp 51 GPa 55 GPa 59 GPa
Number (ps) (ps) (kg/m3) (kg/m3) (kg/m3)

122 4.0 0.1 4.468 4.499 4.510
123 4.0 1.0 4.419 4.504 4.502
124 4.0 10.0 4.459 4.496 4.507
125 6.0 0.1 4.460 4.496 4.536
126 6.0 1.0 4.465 4.498 4.528
127 6.0 10.0 4.465 4.498 4.522
101 8.0 0.1 4.462 4.504 4.546
102 8.0 1.0 4.463 4.491 4.523
103 8.0 10.0 4.463 4.501 4.518
104 10.0 0.1 4.458 4.502 4.516
105 10.0 1.0 4.458 4.499 4.533
106 10.0 10.0 4.465 4.496 4.535
107 12.0 0.1 4.460 4.500 4.528
108 12.0 1.0 4.463 4.501 4.523
109 12.0 10.0 4.461 4.496 4.514
110 15.0 0.1 4.460 4.512 4.518
111 15.0 1.0 4.447 4.503 4.530
112 15.0 10.0 4.466 4.512 4.516
113 20.0 0.1 4.458 4.495 4.525
114 20.0 1.0 4.459 4.506 4.520
115 20.0 10.0 4.459 4.493 4.510
116 25.0 0.1 4.458 4.500 4.518
117 25.0 1.0 4.470 4.498 4.542
118 25.0 10.0 4.463 4.508 4.509
119 30.0 0.1 4.460 4.500 4.532
120 30.0 1.0 4.464 4.502 4.512
121 30.0 10.0 4.445 4.511 4.480

Table 5. Randomly seeded silica amorphization trials without dump files, test zero.
The numbers below each shock pressure indicate the final density taken as the last
ten log file output values or 5 ps; these outputs were given every 0.5 ps. No dump
files were created to verify crystallization.
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System Pdamp Tdamp 50 GPa 55 GPa 60 GPa 65 GPa 70 GPa
Number (ps) (ps) (kg/m3) (kg/m3) (kg/m3) (kg/m3) (kg/m3)

128 10.0 0.05 4.375 4.333 4.454 4.531 4.563
129 10.0 0.10 4.337 4.330 4.452 4.395 4.501
130 10.0 0.50 3.462 3.746 3.966 3.269 4.442
131 1.0 0.05 2.963 3.618 3.531 3.683 4.088
132 1.0 0.10 4.134 4.044 4.276 3.122 3.573

Table 6. Second randomly seeded crystallization test. All tests were done with the
same input file and all variables not listed in the table were homogeneous throughout
trials. The numbers listed for each shock value is the final density of the shock
simulation taken as the average of the last ten log file outputs or 5 ps; Log file outputs
are created every 0.5 ps. All but experiment 128 at 50 GPa failed.

some systems do appear to fail based on the quench file. A small number of future

simulations later underwent the same experience, crashing repeatedly after rerunning

the shock simulations only to discover the problem was solved by rerunning the quench

simulation.

2.2.3 Summary

Crystallization is only confirmed in the seeded quartz experiments. It is likely

that crystallization occurred within the zero test of randomly seeded trials and this

cannot be substantiated as not dump files were generated. The pressure was the

strongest predictor of shock formation with shocks almost exclusively occurring in the

55 to 60 GPa range. Temperature damp had a mild effect on shock formation with a

maximization of 0.05 ps and pressure damp did not appear to have any effect.

Some other important issues within the systems were the vaporization of quartz

seeded simulations and failed randomly seeded simulations. All but one of the second

randomly seeded experiments underwent a crash from uncontrolled temperature values

within the system, with unknown origin.
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2.3 Sample Genesis Stage 2

The previous stage of sample generation contained a list of unsolved problems that

are fixed within this sample generation. The final result is the ability to manufacture

large quantities of stishovite crystal. Chiefly amongst the changes was standardization

of code and implementation of previous research. The code comes from the randomly

seeded simulations and was subsequently modified to have identical flow amongst the

new quartz seeded and randomly seeded simulations.

The new sample manufacturing flow is as follows:

Simulation Generation → Diffusion → Quench → Shock

This was done with two sets of files. One in which contains the shock while the other

contains the simulation generation, diffusion, and quench. The first section of up to

the shock utilized a timestep of 1 fs, a slightly less conservative value that conserved

computational time. This 1 fs timestep was used in the work of Cormack. and Segre

2006; Yuan Shen and Reed 2016. The shock simulation maintained a 0.5 fs time

step to ensure crystallization behavior. Boundary conditions across all steps were

symmetric.

2.3.1 Simulation Generation

The process for seeding the quartz simulation was similar to that of Sample Genesis

1. The α-quartz file is propagated five or eight times in each direction resulting in

125 or 512 copies, 18,000 and 72,728 atoms respectively. Quartz simulation sizes

were 49.160 Å x 85.147 Å x 54.054 Å for 18,000 atoms or 78.656 Å x 136.236 Å x

86.486 Å for 72,728 Å atoms.
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The process for seeding the randomly inserted simulations did not change. Two

simulation boxes were generated based upon the number of Si atoms used to size the

simulation as a cube with a global density of 2.33 g/cm3. Si atoms were inserted

using the random function in LAMMPS into simulation box one and the O atoms

were inserted as twice the number of Si atoms into simulation box two. A change was

made to remove the melt, this was considered an unneeded step. The velocity is be

set to the desired diffusion temperature.

2.3.2 Diffusion

Each file received the same random vector by using the randnt in python and

setting the velocity to match 2700 K. It was found though experimentation that

3000 K vaporized the simulation like in the original α-quartz files, and 2900 K has

some vaporized simulations. 2700 K was decided upon as it seemed to produce the

highest diffusion before vaporization within 200 K. Both simulations underwent 1 ns

of diffusion which showed in previous research to yield 11.189 ± 0.2475 Å of travel

distance for each Si atom, while the O experienced ≈ 2.5 as much. The pressure damp

used is 2.0 ps and temperature damp is 0.1 ps. The pressure is maintained at 1 atm

throughout.

The randomly inserted simulations underwent an initial energy minimization step

using an NVE with a limit of 1 eV to prevent overlapping atoms causing LAMMPS to

fail. This NVE limit was carried out for 1 ps to stabilize the system.
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2.3.3 Quench

The quench was performed at a rate of 0.6 K/s using an NPT fix. The total time

to quench from 2700 K to 300 K was 4 ns, with a pressure of 1 atm. The pressure

damp used was 1 ps and temperature damp used was 0.1 ps. With the much lower

temperature the simulation only took 6 hours to run for a 18,000 atom simulation

and 12 hours for a 72,728 atom simulation using a Nvidia V100.

2.3.4 Shock

The shock testing was done using the NPHug command with varying parameters

of shock pressure, temperature damp, and pressure damp. This resulted in another

three dimensional parameter study similar to that in Sample Genesis 1. The shock

process in Sample Genesis 1 had shown some progress even though it had failed

overall to produce stishovite for the randomly seeded simulations. It was believed

that the process itself is ideal despite the poor results, and that the simplification and

consistency of the new codes to handle both the quartz seeded and randomly seeded

simulations will result in an outcome of stishovite. The simulation will be executed

for 1 ns as opposed to the 1.5 ns used previously. Research focus is on nucleation of

stishovite not full maturation, this choice saves 33% memory space for unneeded data

and increases the rate at which samples are produced. The dump files containing all

needed atomic positions are updated every 0.5 ps for the entirety of the simulation,

resulting in 201 separate dump steps for each sample.

A set of tests is performed with the same hypothesis of Sample Genesis 1 that

the shock pressure, initial structure, pressure damp, and temperature damp are
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Figure 11. Quartz seeded, 50 GPa shock pressure, temperature damp 50 fs, and
pressure damp 0.1 ps. Example of simulation that did not crystallize. The larger red
atoms represent the Si atoms and smaller green atoms represent the O atoms. Notice
the atoms are fairly randomly distributed and have no long range coordination.
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Figure 12. Quartz seeded, 55 GPa shock pressure, temperature damp 0.5 ps, and
pressure damp 0.1 ps. Example of simulation that did crystallize. The larger red
atoms represent the Si atoms and smaller green atoms represent the O atoms. Notice
the atoms are strictly organized in certain regions, these regions are the grains of the
crystal.
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primary variables controlling crystallization. The studies performed are done so in a

similar fashion to Sample Genesis 1: shock pressures of 50, 55, 60, 65, and 70 GPa,

temperature damp of 0.05, 0.1, and 0.5 ps, and pressure damp of 0.1, 1, and 10 ps.

The study was done on the quartz seeded and randomly seeded simulations by using

the same input file from each for all shocks.

Tables for this round of tests include the densities and temperatures at the start,

end, and difference of the two for each simulation. This was done by taking averages

of data across the simulation; for the simulation start the average is taken from 50 ps

to 100 ps. The start is taken at 50 ps to allow the system to stabilize from its initial

state at standard temperature standard pressure. The final results are taken as the

last 50 ps average of each simulation or the 950 ps to 1000 ps region.

Pshock Stishovite P-damp T-damp ρstart ρend ∆ρ Tstart Tend ∆T

(GPa) (Positive) (ps) (ps) ( g
cm3 ) ( g

cm3 ) ( g
cm3 ) (K) (K) (K)

STD 0.004 0.0037 0.0054 49.6 142.7 76

50 0.1 0.05 4.397 4.407 0.0098 2620 2694 74

50 0.1 0.10 4.395 4.402 0.0068 2634 2701 67

50 0.1 0.50 4.395 4.406 0.0117 2631 2706 74

50 1.0 0.05 4.393 4.403 0.0101 2634 2708 75

50 1.0 0.10 4.397 4.407 0.0108 2621 2699 78

50 1.0 0.50 4.396 4.406 0.0101 2635 2705 70

50 10.0 0.05 4.395 4.405 0.0103 2631 2701 70

50 10.0 0.10 4.393 4.400 0.0070 2629 2704 75

50 10.0 0.50 4.397 4.403 0.0060 2621 2695 73

55 Positive 0.1 0.05 4.453 4.466 0.0125 2938 3064 125

55 0.1 0.10 4.454 4.456 0.0026 2928 2989 61

55 0.1 0.50 4.455 4.457 0.0025 2923 2989 65

55 1.0 0.05 4.449 4.458 0.0094 2929 2980 52

Continued on next page
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Table 7 – continued from previous page

Pshock Stishovite P-damp T-damp ρstart ρend ∆ρ Tstart Tend ∆T

(GPa) (Positive) (ps) (ps) ( g
cm3 ) ( g

cm3 ) ( g
cm3 ) (K) (K) (K)

55 1.0 0.10 4.449 4.455 0.0064 2939 3004 65

55 1.0 0.50 4.450 4.458 0.0087 2940 2984 44

55 10.0 0.05 4.455 4.459 0.0042 2938 3006 68

55 Positive 10.0 0.10 4.454 4.465 0.0114 2932 3092 160

55 10.0 0.50 4.452 4.459 0.0064 2934 3009 75

60 Positive 0.1 0.05 4.501 4.539 0.0377 3213 4185 972

60 0.1 0.10 4.504 4.505 0.0012 3204 3208 5

60 Positive 0.1 0.50 4.503 4.558 0.0552 3200 4178 978

60 1.0 0.05 4.503 4.503 -0.0004 3194 3220 26

60 Positive 1.0 0.10 4.501 4.524 0.0230 3199 4543 1345

60 Positive 1.0 0.50 4.503 4.526 0.0232 3199 4567 1368

60 Positive 10.0 0.05 4.503 4.562 0.0597 3199 4397 1198

60 Positive 10.0 0.10 4.503 4.547 0.0437 3208 4626 1418

60 Positive 10.0 0.50 4.501 4.529 0.0281 3201 4284 1083

65 Positive 0.1 0.05 4.551 4.571 0.0202 3452 4752 1300

65 0.1 0.10 4.550 4.550 0.0001 3450 3451 1

65 Positive 0.1 0.50 4.550 4.591 0.0410 3451 4821 1369

65 1.0 0.05 4.549 4.550 0.0008 3448 3450 2

65 Positive 1.0 0.10 4.548 4.574 0.0266 3449 4855 1405

65 Positive 1.0 0.50 4.550 4.595 0.0445 3454 4685 1231

65 Positive 10.0 0.05 4.550 4.570 0.0203 3444 4944 1500

65 Positive 10.0 0.10 4.551 4.565 0.0145 3449 4636 1187

65 Positive 10.0 0.50 4.549 4.588 0.0386 3443 4330 888

70 0.1 0.05 4.597 4.596 -0.0009 3702 3703 2

70 0.1 0.10 4.597 4.596 -0.0008 3702 3707 5

70 0.1 0.50 4.597 4.596 -0.0008 3697 3707 10

Continued on next page
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Table 7 – continued from previous page

Pshock Stishovite P-damp T-damp ρstart ρend ∆ρ Tstart Tend ∆T

(GPa) (Positive) (ps) (ps) ( g
cm3 ) ( g

cm3 ) ( g
cm3 ) (K) (K) (K)

70 1.0 0.05 4.597 4.596 -0.0009 3698 3705 6

70 1.0 0.10 4.597 4.597 0.0006 3703 3708 6

70 1.0 0.50 4.597 4.596 -0.0004 3705 3703 -2

70 10.0 0.05 4.597 4.597 0.0009 3700 3703 3

70 10.0 0.10 4.596 4.597 0.0008 3695 3699 4

70 10.0 0.50 4.597 4.596 -0.0007 3700 3703 3

Table 7. Quartz seeded silica amorphization trials generation 2. This was a test use

the same quench file as an input to all tests. The simulation was executed for 1 ns.

The start values are given as an average of 50-100 ps and the end valves are taken as

an average of the last 50 ps.

Pshock Stishovite P-damp T-damp ρstart ρend ∆ρ Tstart Tend ∆T

(GPa) (Positive) (ps) (ps) ( g
cm3 ) ( g

cm3 ) ( g
cm3 ) (K) (K) (K)

STD 0.004 0.0037 0.0054 49.6 142.7 76

50 0.1 0.05 4.380 4.386 0.0060 2896 2948 52

50 Positive 0.1 0.10 4.382 4.391 0.0088 2898 2956 58

50 0.1 0.50 4.383 4.392 0.0089 2901 2966 65

50 1.0 0.05 4.386 4.387 0.0010 2894 2933 39

50 1.0 0.10 4.382 4.391 0.0083 2891 2945 54

50 Positive 1.0 0.50 4.381 4.400 0.0188 2890 3092 202

50 10.0 0.05 4.384 4.391 0.0080 2890 2982 92

50 10.0 0.10 4.383 4.386 0.0034 2897 2944 47

50 10.0 0.50 4.386 4.391 0.0051 2898 2941 43

55 Positive 0.1 0.05 4.433 4.521 0.0881 3183 4330 1147

55 Positive 0.1 0.10 4.433 4.454 0.0206 3181 4497 1316

Continued on next page
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Table 8 – continued from previous page

Pshock Stishovite P-damp T-damp ρstart ρend ∆ρ Tstart endT T∆

(GPa) (Positive) (ps) (ps) ( g
cm3 ) ( g

cm3 ) ( g
cm3 ) (K) (K) (K)

55 Positive 0.1 0.50 4.433 4.489 0.0560 3183 4195 1012

55 Positive 1.0 0.05 4.433 4.487 0.0542 3181 4256 1075

55 Positive 1.0 0.10 4.434 4.517 0.0831 3177 4212 1035

55 Positive 1.0 0.50 4.432 4.472 0.0399 3183 4132 948

55 Positive 10.0 0.05 4.434 4.498 0.0639 3185 4334 1150

55 Positive 10.0 0.10 4.435 4.505 0.0710 3184 4177 993

55 Positive 10.0 0.50 4.433 4.487 0.0540 3180 4295 1115

60 0.1 0.05 4.481 4.480 -0.0007 3454 3452 -2

60 0.1 0.10 4.480 4.481 0.0008 3445 3451 5

60 0.1 0.50 4.483 4.480 -0.0022 3446 3448 2

60 1.0 0.05 4.480 4.482 0.0013 3446 3452 7

60 Positive 1.0 0.10 4.481 4.485 0.0039 3439 3530 91

60 1.0 0.50 4.482 4.481 -0.0011 3448 3451 3

60 Positive 10.0 0.05 4.482 4.497 0.0142 3444 4783 1339

60 10.0 0.10 4.481 4.481 0.0006 3438 3450 13

60 Positive 10.0 0.50 4.483 4.518 0.0354 3441 4907 1467

65 0.1 0.05 4.528 4.528 0.0000 3721 3719 -1

65 0.1 0.10 4.527 4.528 0.0008 3720 3723 3

65 0.1 0.50 4.529 4.528 -0.0006 3723 3719 -4

65 1.0 0.05 4.529 4.529 -0.0002 3719 3723 5

65 1.0 0.10 4.528 4.529 0.0010 3729 3723 -6

65 1.0 0.50 4.528 4.529 0.0006 3728 3718 -11

65 10.0 0.05 4.529 4.528 -0.0003 3726 3720 -7

65 10.0 0.10 4.529 4.529 0.0001 3719 3724 5

65 10.0 0.50 4.529 4.528 -0.0011 3725 3721 -4

70 0.1 0.05 4.575 4.575 0.0000 3995 3993 -2

Continued on next page
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Table 8 – continued from previous page

Pshock Stishovite P-damp T-damp ρstart ρend ∆ρ Tstart endT T∆

(GPa) (Positive) (ps) (ps) ( g
cm3 ) ( g

cm3 ) ( g
cm3 ) (K) (K) (K)

70 0.1 0.10 4.575 4.575 -0.0001 3995 4005 11

70 0.1 0.50 4.575 4.575 -0.0006 4007 4006 -2

70 1.0 0.05 4.575 4.574 -0.0008 4004 3996 -8

70 1.0 0.10 4.575 4.575 -0.0004 4010 4012 2

70 1.0 0.50 4.575 4.576 0.0011 4011 4012 2

70 10.0 0.05 4.575 4.576 0.0008 4000 4001 0

70 10.0 0.10 4.575 4.575 -0.0004 4011 4004 -7

70 10.0 0.50 4.575 4.575 0.0000 4002 4006 4

Table 8. Randomly seeded silica amorphization trials generation 2. This was a test

use the same quench file as an input to all tests. The simulation was executed for

1 ns. The start values are given as an average of 50-100 ps and the end valves are

taken as an average of the last 50 ps.

2.3.5 Shock Test Results

The quartz seeded simulations experienced very predictable behavior for crys-

tallization, the 60 to 65 GPa range is the region in which shocks occurred. There

were two crystals formed at 55 GPa. There appears to be no effect of temperature

damp or pressure damp on crystallization. The randomly seeded simulations have

crystallization at the 50 GPa to 60 GPa region and all systems crystallized at 55 GPa,

showing that shock pressure is the primary factor within crystallization. In this case

there was an apparent effect of temperature damp, of the five cases crystallized outside

of the 55 GPa four of them had a temperature damp of 0.05 ps which is significant
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and aligned with results from Sample Genesis 1. The pressure damp does not appear

to affect crystallization within the systems.

The systems underwent a temperature transformation during shock similar to that

seen in figure 6. Looking at the 55 GPa randomly seeded simulations the starting

temperature is 3182±2 K and ending temperature is 4270±104 K recorded in the

literature 2600 K and 4300 K respectively. The 60 GPa quartz seeded simulations

starting temperature is 3234±83 K and ending temperature is 4442±200 K; reported

in figure 6 is ≈ 3300 K and ≈ 4900 K respectively. The final solution closely aligns

with literature values for ending temperatures and may duffer at start temperatures

due to the time taken as 10 ps in Shen and Reed 2016 t0 50 to 100 ps in this work.

Further differences likely occurred due to the different shock methods used, MSST

and NPHug.

Simulations at higher shock pressures such as 65 GPa and 70 GPa went into a

disordered state, shown by the very low δT valve coupled with high T value at the

beginning and end. The 70 GPa simulations are ≈ 4000 K and have skipped the

nucleation phase within the shock and went directly to 4000 K within the first 100 ps

of the simulation. There was no stop and hold in the disordered samples as in the

stishovite forming samples.

There is distinct densification that has occurred within the simulations, howbeit it

is much lower than previously expected. Each system that crystallized increased in

density on the order of 10−2 g/cm3 and the none crystallized systems increased in

density on the order of 10−3 to 10−4 g/cm3. These are based on average values with

minor exceptions present. the only major exception is that of the randomly seeded

simulations at 55 GPa in which the average densification is 5.90e-3 g/cm3, results

shown in figure 9.
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Quartz Crystallized Non- Randomly Crystallized Non-
Seeded Crystallized Seeded Crystallized
(GPa) ( g

cm3 ) ( g
cm3 ) (GPa) ( g

cm3 ) ( g
cm3 )

55 1.20e-2 5.73e-3 50 1.38e-2 5.79e-3
60 3.86e-2 3.85e-4 55 5.90e-3 No Data
65 2.94e-2 4.40e-4 60 1.78e-2 5.90e-3

Table 9. Densification of systems taken as an average of each category. There is no
data for the randomly seeded simulations at 55 GPa are all crystallized systems.

There appears to be a crystallization distribution working in the random and quartz

seeded simulations. Some pressures can experience strong instances of crystallization

and others low instances of crystallization. Based upon the results in Sample Genesis

1 and 2 there is a density function for crystallization strongly correlated to pressure

and loosely correlated to temperature damp within the values of temperature damp

0.05 to 0.50 ps and pressure damp 0.1 to 10.0 ps.

2.3.6 summary of Tests

From the previous tests it is possible to conclude that crystallization is a strong

function of shock pressure and initial state, a possible and weak function of temperature

damp, and does not appear to be a function of pressure damp. The occurrence of shock

appeared to be a density function. The structure of the glass pre shock changed the

shock pressure ranges for crystallization. In the case of the quartz seeded simulations

the optimal value for shock was 60 GPa, while it was 55 GPa in the randomly seeded

tests. This was a very strong correlation. The temperature damp is a minor effect of

the system with enhanced crystallization at 0.05 ps. More research should be done in

this area, this is enough data to manufacture large numbers of simulations for this

research.

49



2.3.7 Mass Simulations

With the previous data from each experiments all processes up to the shock are

held constant. The chosen pressure damp and temperature damp for the shocks are

10 ps and 50 fs respectively. Pressure damp of 10 ps was chosen as it is a more

theoretically stable choice even though it does not appear to effect the simulation.

Temperature damp of 50 fs was chosen as it appears to promote crystallization. The

shock pressure is constant: 55 GPa for the randomly seeded experiments and 60 GPa

for the quartz seeded experiments. The shock pressure was chosen to achieve the

highest possible number of crystals.

In an effort to add some variability within the simulations different simulation

sizes were chosen. These different sizes are known to produce different grain size

and different crystallographic formation Yuan Shen and Reed 2016. The sizing is

done for the quartz seeded simulation with 5x5x5 and 8x8x8 copies of the α-quartz

file. The randomly seeded quartz received the appropriate atom insertion to match

the quartz seeded work of 18,000 and 73,728 atoms respectively. The goal was to

produce as many simulations as possible, ideally this was 500 5x5x5 simulations and

100 8x8x8 simulations of both seed kinds based on temporal studies and available

computational resources. AGAVE hard drives became overloaded during the course

of this research, university wide. In turn two weeks of operational time were lost and

the 8x8x8 simulations were not able to reach 100, table 10 shows the final counts.

≈ 1
10

to 1
15

of all samples crashed during shock. These simulations were performed

again without success by redoing the shock file, after redoing the quench and shock the

simulations were successful. There appears to be some atomic configuration in quench

output which leads to large oscillatory behavior and failure of shock simulations.
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Atoms Quartz Seeded Randomly Seeded
( atom

simulation) (simulation number) (simulation number)
18,000 500 500
73,728 80 72

Table 10. Densification of systems taken as an average of each category. There is no
data for the randomly seeded simulations at 55 GPa as all systems crystallized.

Non-crystallized simulations were not removed or performed again to increase data

integrity and allow future research to be done on the data set.

2.4 Gaussian Field

2.4.1 Function

The use of Gaussian field is common in the case of MD applications within CNNs

and is the most widely used way of achieving a grid formation for CNNs Ryczko

et al. 2018; Springenberg et al. 2014. It approximates any data point as a smooth

particle acting upon the entire feature plain. Whereas, the exact data point previously

contained all relevant information the entire plane contains this information within

it after applying the Gaussian. This takes the previous data points acting as a

delta functions and forms it into a continuously smooth function which contains the

characteristic information of all points.

The Gaussian in this application is a one dimensional function applied across the

entire simulation. To compress the three dimensional data into one dimensional form

the geometric summation is taken,

d =

√
i2 + j2 + k2
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Gaussian function is given as,

f(d) =
v

σ3
√
8π3

exp
(
−1

2

d− µ

σ2

)
Were σ is the standard deviation of the distribution in this case σ(1) = 1 Å giving

it a direct physical meaning. This parameter was later tuned to achieve optimal

performance. µ is the mean of all input data within the simulation.

It is important to note that the the simulation has symmetric boundary conditions.

To address the symmetric boundary conditions some basic logic is used,

d(i, j, k) =


i, j, k, if i, j, k ≤ δi, δj, δk

2

δi, δj, δk − i, j, k, if i, j, k > δi, δj, δk
2

Where only one i, k, or k index is used at one time and all are used. This takes the

shortest distance to the atom in any dimension regardless of boundary.

2.4.2 Field

To calculate the Gaussian field the Gaussian function is applied to all atoms within

the simulation with the distance taken from a single grid point. In essence moving

the origin to each grid point and calculating the function for all data,

Grid Point(d) =
All Atom∑
Atom=1

f(i, j, k)

2.4.3 Normalization

The system is normalized to maintain equality across the system. Neural Networks

work best with normalized inputs. This is because different data input and different
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variable values can distort the outcome of the neural network. Inserting an extreme

value of data or variable can become over represented or under represented within

the network, thus bias the system to become dominated by or ignoring an extreme

valve of data or variable. To counteract this the variable is normalized in which it is

limited in scope to a certain size. In most cases this is to force all values of all data

and variables to be limited to 0 ≤ Value ≤ 1.

In this case the value is normalized to the variable but is not contained between 0

and 1. This is not of a concern as only one input and one output variable will be used

at a time. The normalization function used is,

d =
d

σ3
√
8π3

Where d is some data point value. This function is based upon the one dimension

normalizing value cubed to account for system three dimensional.

2.4.4 Computational Optimization

Applying the Gaussian function across all atoms within each sample is computa-

tionally intensive and is a O(N3) problem with respect to single dimention simulation

size. To manage this explosive computation only atoms within a region surrounding

the grid point are applied to the that grid points Gaussian functions significantly

lowering computational time. For this application the region given is,

i, j, kcutoff =
5σ

δi, δj, δk

Where i, j, k are the Cartesian distances and δi, δj, δk are the lengths of the simulation

box respectively. This simple method is highly scalable and very effective for this

application.
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2.4.5 Size

In this use case all simulations are calculated with the same sized grid of 64 by 128

by 128. The relative sizing was chosen because of the effect of the NPHug compression

causing the simulation to flatten like a pancake during shock. This caused the resulting

simulations to be within ≈ 15% of the relative grid sizing used. Making the sizing

exact may cause the generation of unusual numbers with poor numerical factorization.

It was deemed more critical to maintain maximal CNN usability than to maintain

exact sizing to the simulations.

The exact sizing was chosen for its complete factorization into 2 and that it was

large enough to capture accuracy of atomic position with a safety factor. Later plots

will show high quality atomic visibility. Ideally the system would have been as refined

as possible. This is limited to the computational intensiveness of the system. Every

doubling of dimensional resolution yields a n3 increase in data or 8 times the previous

system size.

2.4.6 Gaussian Mass Field

The mass is one of the simplest and most likely causes of crystal formation. The

atomic structure caries an inherent mass density field that is unique to each simulation.

It is also one of the easiest fields to calculate and can be done readily with the lamps

dump files. All mass fields are calculated at the 0 time step of the shock file in which

the temperature is 300 K and pressure is 1 atm. A minor modification is made to each

Gaussian function in which the leading coefficient is multiplied by the atomic mass of

the Si and O atoms respectively. In this case Si=28.855 amu and O=15.999 amu.
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Figure 13. Mass Gaussian field from array 8 simulation 1. Displayed is Z direction at
0 Å.

To make the result physically meaningful a minor modification is done,

mass Gaussian grid
g

cm3
= mass Gaussian grid

g

molÅ3 ∗ 1 mol
6.023e23

∗ 1e24Å3

cm3

This will likely have no effect upon the training on the CNN as it applies a lin-

ear operator upon the entire system thus, maintaining characteristic behavior and

normalization. It is a wise thing to do if the data is used for any other purpose.

55



Figure 14. Charge Gaussian field from array 8 simulation 1. Displayed is Z direction
at 0 Å.

2.4.7 Gaussian Charge Field

The charge grid is also directly translatable to a Gaussian field without any

additional step and is done within the same fashion as is the mass Gaussian field. This

may or may not have an effect upon the resulting nucleation of the system. All charge

fields are calculated at the 0 time step of the shock file in which the temperature is

300 K and pressure is 1 atm. The Si and O atoms are given a leading coefficient of

2.4 eV and -1.2 eV respectively, as is done in the MD potential. The resulting units of

the system are eV/Å3.
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2.4.8 Gaussian Crystal Density Field

The Crystal density field follows the same behavior as is seen within the mass and

charge Gaussian fields. An extra step is taken to calculate which atoms are crystal-like

using the spherical harmonic function of the next section. Only Si atoms are calculated

as to there crystallinity and non crystal-like atoms receive a zero leading coefficient in

the Gaussian function. The crystal-like atoms have their original leading coefficient

leaving it to be an effective coefficient of 1 when acting upon the Gaussian field. This

leaves most of the simulation to receive a null valve and gives a starry sky appearance

to the simulation at low values of σ as seen in Appendix B.

2.5 Spherical Harmonics

Spherical harmonics are often used to describe varies oscillating states and positions

of atoms and molecules. There are four criteria to determine in an SiO2 atom is

crystal-like.

First, structural changes to compute diffraction patterns are given by Debye’s

equation. This equation gives diffraction patterns for amorphous silica,

I = I0
∑
i,j

fifj
sin qdij

qdij

I is the diffraction intensity at angle 2θ, I θ is the incident intensity, fi are structural

factors Doyle and Turner 1968 for Si and O atoms, q is the diffracted wave vector

4π sin θ/λ, and dij are distances between all atomic pairs. In the application of Debye’s

equation it is necessary to omit periodic boundary conditions. This equation supplies

the needed diffraction intensity to determine crystal-like bonds in the following criteria.
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Figure 15. Crystal Gaussian field from array 8 simulation 1. Displayed is Z direction
at 0 Å.

The Steinhardt parameter is used to visualize shock results and for crystal identifi-

cation Steinhardt, Nelson, and Ronchetti 1983.

qs1s2
lm =

1

| Ns2
s1 |

∑
k∈Ns2

s1

Y∗
lm(θk, σk)

Y∗
lm is the spherical harmonic functions, s1 represents the central atom type and s2

represents the surrounding atom type Ns2
s1 surrounding atoms. θk, σk are the polar

angles of atom k in set Ns2
s1. To identify crystallised atoms it is necessary that local

atoms must be entirely s2 type and must not be s1 type, neighboring s1 type atoms

must be of similar configuration as type s1 Rein ten Wolde, Ruiz-Montero, and Frenkel

1996. For this application the diffraction intensity needs to be l=6 on a silicon
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network where type s1 and s2 are Si. Because l=6 and s1 is the same as s2 all further

notation will be in q6m, dropping the redundant s terms and substituting l for 6.

When calculating the crystal-like bonds, only bonds within 3.64 Å are applicable

Qi. and Reed 2015. Distances above this are not nearest like neighbor atoms. The

cutoff function is given as the geometric sum of the data dimensionality in this case

r =
√

x2 + y2 + z2 for a real space Cartesian system.

The Steinhardt parameter is used for calculating the dot product of the charge

between neighbors as given below,

q6(i) ∗ q6(j) =
∑6

m=-6 q6m(i) ∗ q6m(j)
|| q6m(i) || ∗ || q6m(j) ||

A dot product of qs1s2
lm ≥ 0.812 indicates crystal-like bonds. This is of course using

the silicon network with l=6 criteria from the Steinhardt parameter. If using an O,

l=4 will display all instances of crystal-like O atoms for the oxygen network.

Lastly, it is assumed that,

1

2
≥ count ql(i) ∗ q6(j) ≥ 0.812

count of all s1 = s2 ∈ r ≤ 0.812

Or that the number of crystal-like atoms given by the dot product of like atoms is

greater than half of the total number of like atoms within the cutoff region of 3.64 Å Qi.

and Reed 2015. This filters out disordered pairs and boundary atoms.

A short summary of spherical harmonic methods to discover crystal-like boundary

conditions follows. First the Debye’s equation is used to calculate diffraction patterns

within the silica oxide that can be used to identify stishovite. Secondly, the atomic

charge can be calculated using the Stienhardt principal, which can in tern be used to

calculate the dot product of the charge of two like atoms. If the dot product of two

like atoms is greater than 0.814 Å the atomic pair is crystal-like. This can be done

for a silicon network and oxygen network, in this case the crystal-like atom indicator
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is only done for Si atoms. Thirdly, all atoms must be within 3.64 Å. Fourthly, all

crystal-like atoms must have more than 50% crystal like bonds.

2.6 Selecting Gaussian σ

By varying density field resolution Gaussian behavior changes and density resolution

becomes a new variable. A large σ value and the Gaussian fields will appear as early

pictures of electromagnetic background radiation gathered by the Hubble telescope, a

homogeneous mush with no distinguishing features. A small σ value will compress

the Gaussian function into a delta-like function. The Gaussian peaks will be to small

to be captured by the grid of 64x128x128 and some values will be over and under

represented.

Various σ values where tested and plotted, the appendix contains experimental

results to each plot, each tested value is shown in table 11. The simulations are divided

in 3x3 plots varying equally in the third dimension, moving from ZZ= 0 Å or grid

layer= 0 in the z direction four grid values or pixels at a time. Each experiment ended

in slightly different sizes due to the MD processes and pixels are counted instead of

Å units. The second set of plots, ∆V plots show the first ∆V in the system or divide

the system into 1
64

of the entire system as this will be the data that the CNNs receive

for classification. Blue values within the plots represent minima and warm colors

maxima, for crystal plots the blue= 0. This test was only done with the mass and

crystal field, the charge was not included.

The 1 Å and 4 Å cases were selected as the final values to be used. 4 Å yields a

diffusive system with strong atomistic meta structure visible, it is designed to study

the meta structure for possible linkage to nucleation; The 1 Å case is designed to
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Tested Value In Å
1 4
4 2
8

√
2

16 1
32 1√

2

64 1
2

Table 11. Values tested for σ. The tested value is the raw number into the code while
the second value is the value converted to angstrom.

identify nucleation linkage to individual atoms. The 1 Å case clearly displays atoms

with low resolution to avoid misrepresentation from small Gaussian curves.

2.7 Classification Design

Neural networks are generally robust in terms of their architectural design but are

highly susceptible to poor training data. Since neural networks are trained within an

isolated system in which no other inputs than what are provided by the programmer,

they fail to recognize concepts not within their immediate scope. In this application

the output is known and the input is not clearly defined. The goal of this section

is to design an optimal system to classify the output or the nucleation site to the

prenucleation structure. This is complicated by not knowing if a relationship exists

and what the shape of a nucleation structure is if it exists is.
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2.7.1 Cutoff Method

2.7.1.1 Concept

Ryczko et al. 2018 used the simplest method to manage large simulations, splicing

them and predicting upon the spliced section. In the case of that literature the spliced

section is centered around the object of interest for each spice. The technique is

optimal for this research and cannot be executed in the same way. It is prohibited by

not having an effective way to center each splice directly around a nucleation zone,

doing so would take an extensive system to define a nucleation cluster and then draw

a boundary around it. Most samples contain multiple nucleation sites that maybe

overlapping which will need to be accounted for in the design of any system. A similar

method is used in which the simulation is evenly divided into subsections called ∆V.

The concept is shown in figure 16 were a large cube is divided into many small cubes.

Once the samples are divided they can be classed as nucleation and non-nucleation

∆Vs. Each respective ∆V with class of nucleating or non-nucleating can be fed into

the CNN and and trained against this class. The charge and mass field is trained as

nucleating or non-calculating, after this section the crystal field in no longer used and

is not used in the CNN section.

2.7.1.2 Crystal-like Atom Count

The shock samples contain dump file readouts of atomic position every 0.5 fs.

This output can be used to track crystal-like atoms across time using the spherical

harmonic equations seen in the previous section. This is the method to generate the
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Figure 16. Display of dividing simulations into smaller equal topographical and
characteristic shape parts Swiss Harmony.

crystal Gaussian field. The crystal growth follows a nucleation, explosive growth,

and coalescence phase found within Shen and Reed 2016. The nucleation phase is

dominated by no crystal-like atoms present until an initial nucleation occurs which

grows slowly until reaching a critical mass of crystal like atoms. After reaching this

value a change in crystal growth is seen and the sample grown into a crystal quickly.

Not indicated in the literature and discovered within this research is the fluctuation

within crystal-like atom count across the temporal dimension. During the nucleation

phase the crystal-like atom count varies increasing and decreasing with each dump

file step. Every shocked experiment contains 0 to 5 initial crystal-like atoms which

is noise within the system. Therefore, no uniform timestep is appropriate for each
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simulation. A “critical crystal” range was used to identify the optimal number of

crystal-like atoms in a sample to to use that dump file timestep to generate the crystal

Gaussian field. When a sample reaches 9 to 17 crystal-like atoms for any given dump

file timestep, that dump file timestep is translated into a crystal Gaussian field. Again,

the mass and charge Gaussian fields are created at the zeroth timestep before shock

is applied, and the crystal Gaussian field is created at the occurrence of nucleation.

Some simulations did not nucleate and were not used in the final analysis; Some

simulations skipped 9 to 17 crystal-like atoms jumping from a low to high number of

crystal-like atoms between timesteps, these samples were not included within the final

analysis.

2.7.1.3 ∆V Implementation

Creation of each ∆V is done is by splicing the sample into small regions which can

be given binary classification as nucleation or non-nucleation zones. Figure 16 show

the basic concept behind this methodology in which the rectangular prism sample is

broken into multiple sub rectangular prisms of the same dimensional relationships.

Samples are divided into four sections per dimension. Resulting in 4x4x4 or 64 new

sub simulation systems referred to as ∆V for ∆ volume. The four parts per dimension

is chosen because the simulation sizes are factors of two. The reduction in image size

goes from 64x128x128 pixels per sample to 16x32x32 pixels per ∆V.

The size of a prenucleation zone is unknown, the ∆Vs may not be larger enough

to properly isolate the prenucleation structure. The same algorithm is applied to the

18,000 and 73,728 sized samples, resulting in relative sizes of ∆V shown in table 12.
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Dimensions 18,000 atom 73,728 atom
1 1 1.6
2 1 2.56
3 1 4.096

Table 12. Relative size chart of ∆V 18,000 to 73,720 atom simulations.

In this way the nucleation size is accounted for as a variable by sample size. The large

samples have ∆Vs four fold the volume of the small samples.

2.7.1.4 Classification

Classification of each ∆V is done in a binary format with nucleation and non-

nucleation class. Taking the summation of crystallization of each ∆V,

C =
16∑
i=1

32∑
j=1

32∑
k=1

c

Where C is the crystal value of a ∆V and c is the crystal value at one grid point, given

that 16, 32 and, 32 are the final positions in the x, y, and z grid values of each ∆V.

The next step is to define the cutoff region in which a ∆V simulation is nucleated

or non-nucleated.

Class =


Nucleation, if CCC ≤ C

Non-Nucleation, if CCC ≥ 0.85C

Removed, if 0.85CCC < C < CCC

CCC represents the critical crystal cutoff, a tuned value for classification of ∆V.

If the summation of a ∆V crystal value is greater than or equal to the CCC that

∆V is classified as nucleating for all Gaussian fields: mass, charge, and crystal. For

simulations less than 85% of the CCC value the ∆V is classified as non-nucleating,

applying to its mass, charge, and crystal fields.
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If the data is less than the CCC and greater than or equal to 85% of the CCC the

data is removed, the crystal, mass, and charge fields of that ∆V will not be used. Data

close to the CCC is likely to contain some crystal-like atoms or be on the boundary of

a nucleation site, this data is removed from usage. Removing this data simplifies the

modeling process and removes opportunity for misclassification. The boundaries for

each ∆V are drawn arbitrarily to the nucleation of stishovite and some nucleation

sites are split or the nucleation site is very close to the boundary of ∆V; For the

purposes of identifying a relationship between nucleation and atomistic structure this

data is removed from the data sets used by the CCNs to avoid misclassification.

The crystal fields are no longer used in the proceeding sections, their sole purpose

was for classification. The charge and mass fields for each ∆V will be used in the

appropriate category of nucleating and non-nucleating to feed into the CNNs.

2.8 Convolutional Neural Network

2.8.1 Model

The goal of this research is to establish if a relationship exists between prenucleation

structure and nucleation behavior, high model accuracy is not need to establish if this

relationship exists. Therefore, only simple CNNs were tested under the presupposition

later models can be refined to increase system accuracy. This research two similar

architectures were tested. Many of the model components were kept equal, the

convolution and pooling layers altered for each model. This change was to exploit

opportunity for failure via poor pooling and convolution design. It is unlikely that
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this will occur significantly enough to prompt failure to distinguish a relationship

between prenucleation structure and nucleation if it exists.

Both of these models originated from a model designed to classify computed

tomography (CT) scans of chests to detect tuberculosis. This model was done with a

binary classification, ether the patient had tuberculosis or did not and used a 3D CNN.

The research was successful to achieve a 67.5% classification accuracy at predicting

tuberculosis. This was higher than all 2D CNNs listed and ranks fifth of all models

at time of publishing Hasib Zunair Aimon Rahman 2020. The high success rate and

utilization of a binary classification is why this model was chosen to be the starting

point for the CNN of this research.

The number of dense output layers was increased to two layers instead of one from

the original CT scan CNN. Adding additional layers allows for the discovery of more

advanced structures and features within the data. This is known as feature recognition

and is performed serially within a neural network, meaning that more complex features

follow those of simpler complexity. Adding a layer allows for two levels of feature to

be recognized instead of one. This maybe useful or it maybe redundant within the

system and will result in an increase training time. There is a small risk of increased

over fitting within the system due to this design. The additional hidden layer should

permit abstracting to unfavorable imaging were part of the nucleation structure is

missing or cut off.

The CNNs used in this research are very small compared to many systems of

today and many systems used within MD. Many systems start with much larger input

images and use many more steps within the network. CNN’s used by tech giants

such as google have formed systems a dozen times the size of the CNN used in this

research, with advanced feedback loops. GoogleLeNet is one of the smaller systems in
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Figure 17. Log loss/binary entropy function for correct prediction of object Godoy
2018.

the tech industry and is 52 Layers thick compared to the seven and eight used within

this research and is 80% to 50% the size of a standard CNN used with MD Alake

2020; Singh et al. 2018; Ryczko et al. 2018; Springenberg et al. 2014.

Understanding the scales used is important to understanding the application. The

small CNNs used here should provide excellent indication to weather or not the method

itself is applicable. The larger systems in industry and in the other research referenced

are often not used to test a new hypothesis but increase the accuracy of a system to a

known fact Hasib Zunair Aimon Rahman 2020. The simpler system has few failure

modes to that of a large system. It has also been shown that CNN structure is often

not a principal component of accuracy Springenberg et al. 2014. Both networks use a

single output neuron with a sigmoid function. Classification number is n+1 output

neurons, forcing the operation into a nucleation or non-nucleation state.

The optimizer used within the training is Adam and the loss is calculated using

binary entropy or log loss. The log loss fiction is shown in 17,

loss = − log(p(x))

were p(x) is the probability of prediction for the true case. The random prediction
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receives a value of one. Incorrect predictions are more heavily penalized than correct

predictions are incentivized Godoy 2018. The dropout rate was held at 0.1 for each

hidden dense layer within both CNNs, as was done in the work of Hasib Zunair Aimon

Rahman 2020. The dropout rate serves to increased the abstraction and robustness

of the two systems. With 10% deactivation for each epoch redundant neurons and

networks within the dense layers should develop. This in turn will translate to better

validation accuracy.

80% of data in each array is randomly selected for the training set and 20% is

kept for the test set and is constant across all experiments. In each system an early

stopping criteria was implemented at which the system stops training if the validation

accuracy has not changed within the past 15 epochs. This is on the lengthy side and

gives the model ample room to adjust before stopping at which point the model is very

likely to be over fitted. The over fitting will be stopped by an exit within the code if

the validation loss increases significantly. The validation loss is the best numerical

approximation of over fitting within the system.

The learning rate of each CNN also shares the same learning behavior as in the

Hasib Zunair Aimon Rahman 2020 work. An initial learning rate of Lr0=0.0001 is

used and follows a decaying exponential function. The exponential appears as,

Lri = Lr0 ∗ D
epochi
decay

the decay is given as 100,000 for the models used and i represents the current epoch

count. The current epoch number will decrease the learning rate until it goes to 1e-6

exponentially. The exponential decay of learning rate slows the rate at which gradient

decent occurs and promotes convergence. Oscillations can occur at local minima that

will cause the weight to bounce around the minima. Slowing the rate of decent over
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Figure 18. Example of single dimension gradient decent Raschka 2020.

epochs will allow the system to reach the local minima at an ever slowing rate, similar

to figure 18.

To construct the systems Tensorflow was the ML distribution used and the most

popular of all ML libraries Boone 2021. The new Tensorflow 2 library features

direct integration of Karas library and full linear algebra ability similar to that of

Numpy within it. It is the most user friendly library available and runs on nearly

all hardware manufactures and models. Using this system greatly streamlined the

research and eliminated much of the low level work behind the building the CNN’s.

This allowed the library to run on any high performance computing node within the

ASU AGAVE cluster, it automatically selects the GPU or CPU and manages the

necessary integration. The major drawback is that the library is large and takes ≈3

to 4 minutes to load onto any given node and perform initial hardware integration on

that node.
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2.8.2 Standard Convolutional Neural Network

Figure 19. Standard CNN model, the third dimension of the system is not shown.

The standard model is nearly identical to that used in the Hasib Zunair Aimon

Rahman 2020 literature code for these CNNs. The original three dimensional CNN

was designed for images 128x128x128 in size, the size of a ∆V is 16x32x32; Due to

the size reduction one convolution and one max-pool layer were removed from the

network. Each convolution and max-pool cycle were doubled the number of filter used,

the initial system started at 64 filters. Each activation layer uses stock relu activation

layer for the convolution with 3x3x3 kernel size at stride of one. The pooling layers

used 2x2x2 filters with stride of two. The system contained a total of 248,321 trainable

parameters with 384 non trainable parameters, the parameters are listed in table 13,

the graphical model is shown in figure 19.

2.8.3 All Convolution Convolutional Neural Network

The all convolution CNN was inspired by computer science literature of using

simpler way of structuring a CNN, Springenberg et al. 2014. The research showed

that simpler convolutional systems can outperform more complex systems of standard
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Layer Kernel Activation DxLxW Filters Parameters
Input 16, 32, 32 0

Convolution 3x3x3x1 relu 14, 30, 30 64 1792
Max Pooling 2x2x2x2 7, 15, 15 64 0

Batch Normalization 7, 15, 15 64 256
Convolution 3x3x3x1 relu 5, 13, 13 128 221312
Max Pooling 2x2x2x2 2, 6, 6 128 0

Batch Normalization 2, 6, 6 128 512
Global Pooling Average 128 0

Dense relu 128 16512
Dropout 0.1 128 0
Dense relu 64 8256

Dropout 0.1 64 0
Dense 1 65

Total Parameters 248,705
Trainable Parameters 248,321

Non-Trainable Parameters 384
Initial Learning Rate 0.0001

Decay Steps 100,000
Decay Rate 0.96

Epochs 100
Early Stopping 15 Epochs

Table 13. Parameters and design of the stock CNN. The kernel dimensions are given
as length, width, depth, and stride.

architecture. Using the CIFAR-10 data set the classification error was reduced to

7.25%, the lowest seen of all networks to date with the second placing CNN at 7.97%;

Data augmentation was implemented for this set. On the CIFAR-100 classification the

system scored third place with 33.71% accuracy compared to 26.39% at top place. It

does show a tendency toward higher accuracy at a smaller classification sizes making

it an excellent choice to test within the bounds of this research.

An all convolution neural network was made out of the stock CNN architecture. The

previous features of starting with 64 filters and doubling the number was maintained,

to a final third layer consisting of 256 filters. The max pooling layers were removed

and an additional convolution layer was added. The convolution layers used the same
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Figure 20. All convolution CNN model, the third dimension of the system is not
shown.

kernel size of 3x3x3 with an increased stride of two instead of one to reduce image

size. The total number of trainable parameters is five fold that of the standard CNN

architecture with 1,150,209 trainable parameters and 896 non-trainable parameters.

The new network is displayed in figure 20 and the parameters are listed in table 14.

73



Layer Kernel Activation DxLxW Filters Parameters
Input 16, 32, 32 0

Convolution 3x3x3x2 relu 7, 15, 15 64 1792
Batch Normalization 7, 15, 15 64 256

Convolution 3x3x3x2 relu 3, 7, 7 128 221312
Batch Normalization 3, 7, 7 128 512

Convolution 3x3x3x1 relu 1, 5, 5 256 884992
Batch Normalization 1, 5, 5 256 1024

Global Pooling Average 128 0
Dense relu 128 32896

Dropout 0.1 128 0
Dense relu 64 8256

Dropout 0.1 64 0
Dense 1 65

Total Parameters 1,151,105
Trainable Parameters 1,150,209

Non-Trainable Parameters 896
Initial Learning Rate 0.0001

Decay Steps 100,000
Decay Rate 0.96

Epochs 100
Early Stopping 15 Epochs

Table 14. Parameters and architecture of the all convolution CNN. The kernel
dimensions are given as length, width, depth, and stride.
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Chapter 3

RESULTS

3.1 Hypothesis

Up to this point there has been an underlying assumption that the prenucleation

structure of amorphous SiO2 relates to the nucleation of that SiO2. There is a belief in

a “eureka” structure underlying the sample in which nucleation occurs. The hypothesis

is that this prenucleation structure has a sole relationship with the nucleation of

amorphous SiO2 into stishovite as a function of high pressure shock, notably those

from hypervelocity impacts.

To support nucleation behavior being apart structure a different argument is to

be had. One in which variation within the lattice of quartz or atomistic structure of

SiO2 indicates nucleation inducing behavior. This is not clear from literature, current

work into stishovite formation inclines the believer to this end. A reoccurring event

when shocking SiO2 is that if a sample nucleates it often nucleates quickly, within

100-200 ps based upon this research. If nucleation has not occurred by this point

holding the pressure longer will not generate nucleation Yuan Shen and Reed 2016.

The use of a CNN to indicate the if this structure exists was done specifically

for back propagation. If the hypothesis is proven correct on a CNN then it can be

propagated to show the underlying Gaussian field that generated the structure and

thus the atomistic structure. Therefore, permitting that structure to be modeled. This

means doing the work of solving two problems in one thesis; Proving the relationship

and solving for the underlying structure at the same time if the hypothesis is true.
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3.2 Variables Tested

This work tests six variables with binary options totaling 64 experiments or 26.

The last variable will be explained within the second CNN structural relationship

indication method (CNNSRIM) which serves as a validation of the first result. The

first five variables will be tested within each CNNSRIM, totaling 32 or 25.

Index Variable Option 1 Option 2
1 sample seed (type) quartz random
2 sample size (atoms) 18,000 73,728
3 Gaussian σ (Å) 1 4
4 Gaussian Field (type) mass charge
5 CNN (type) standard all convolution
6 Nucleation Detector (type) cutoff max

Table 15. A description of what variables are being tested within this research.

The first variable is the seed type of each experiment for the manufacture of the

SiO2. The random atom insertion is done by randomly inserting atoms into the

LAMMPS sample at a size that yields amorphous SiO2 standard pressure standard

temperature. The quartz was generated by copying a generic α quartz file and

repeating this structure in three dimensions.

The second variable was done by controlling for sample size, to which the atom

number is related to the number of α quartz files used in a linear direction. In this

case a 5x5x5 and 8x8x8 sized was used, propagating 18,000 and 73,728 atoms per

sample respectfully.

The third variable is the variance or σ of the Gaussian function which translates

to Å in real length. The 1 Å Gaussian fields gave detail showing the atomic position

of all atom. The 4 Å Gaussian fields showed a great deal of meta structural behavior

in which individual atoms were not identifiable.
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The forth variable is the Gaussian field type. From the LAMMPS dump file the

charge and mass fields were produced to be compared with crystallized experiments.

The fields were produced by applying the mass or charge as the leading coefficient of

the Gaussian function to each atom.

The fifth variable to be accounted for is the CNN architecture. The standard

architecture is almost identical to the work done by Hasib Zunair Aimon Rahman 2020

for identification og tuberculosis using CT scans. The second architecture is based an

all convolutional image reduction system inspired by Springenberg et al. 2014.

3.3 Input

3.3.1 Making Arrays

To control for the first four variables data arrays were produced to be used as

inputs into the CNNs. The arrays contain three Gaussian fields each the crystal, mass,

and charge. The first three variables seed, size, and σ are listed in table 16. The

fourth variable is given by the data within the array: crystal, mass, and charge.

It is important to note that all samples are not included in the arrays. The

spherical harmonic method used to identify crystal like atoms has wide variation in

output. Many of the samples were not included as the dump file timesteps jumped

atoms too quickly to allow for proper nucleation between 9 to 17 atoms, or the sample

did not nucleate. The crystal-like atom range was necessary for the cutoff method.

The cutoff method is designed to handle atoms of approximately the same crystal

number. The next object of interest in this regard is the difference between output

variable size of the same input. Arrays 1 and 2, 3 and 4, 5 and 6, and 7 and 8 are
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all receiving the same input dump file and are not all sending out the same number

of samples. This is likely due to the nature of the program produced, running on

largely paralleled C++ scripts which interacts with the OS without delay. During the

time of the data was processed the AGAVE cluster was being worked on and was in a

sudo-functional state. With a large data set that spans multiple cores it could vary

well be the script is not being performed correctly due to hard drive access problems

and some files are being skipped by mistake. No error prompts did occur.

Array Made Used Critical Nuc Non Nuc Non Zero Seed Size σ

(sim) (sim) (∆V) (∆V) (∆V) (∆V) (sim) (type) (atom) (Å)

1 500 275 60 1008 16094 498 55 Random 18000 1

2 500 332 60 1330 19328 590 60 Random 18000 4

3 72 44 37.5 214 2409 193 9 Random 73728 1

4 72 71 37.5 462 3670 412 10 Random 73728 4

5 500 367 55 1752 20990 746 62 Quartz 18000 1

6 500 221 55 1400 12215 529 24 Quartz 18000 4

7 80 48 35 114 3670 412 4 Quartz 18000 1

8 80 29 45 224 1090 334 7 Quartz 73728 4
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Table 16. Results of the cutoff method to produce arrays in which to feed the CNN.

Arrays 1 to 4 are randomly seeded, arrays 5 to 8 are quartz seeded, arrays 1, 2, 5, 6

are 18,000 atom, arrays 3, 4, 7, 8 are 73,728 atom, arrays 1, 3, 5, 7 use a σ = 1 Å, and

arrays 2, 4, 6, 8 use a σ = 4 Å. Categories made and used show how many of the MD

generated dump files were made and used respectfully. Critical criteria, nucleation,

non-nucleation, non-used, and zero are the short results of the cutoff method. Critical

criteria is the critical crystal count for the ∆V samples, a non-physical number to

decided if a ∆V is crystallized. Nucleation (Nuc), non-nucleation (Non Nuc), and

unused (Non) show the results of cutoff method with regards to ∆V. The zero category

is how many samples received no nucleated ∆Vs.

3.3.2 Cutoff Method

Table 16 shows the summarized results of the cutoff method in which the vast

majority of all data across each array is non-nucleated, 88.61%. 7.25% of data is

nucleated and 4.14% of data is unused, all the values are taken as array averages. In

most arrays the unused data is smaller than the nucleated or non-nucleated categories,

an exception is made for arrays 7 and 8. Arrays are 1, 2, 5, and 6 have nucleation

counts that are ≈ 2 times the size of the unused data. The categories are abbreviated

as nucleation (Nuc), non-nucleation (Non Nuc), and unused (Non).

A surprising feature is the extremes of the method. After meticulously checking

the code these results appear to be valid from the methodology presented. The zero

category shows how many samples were not awarded a ∆V within the nucleation

category. At first appearance this maybe alarming to the reader. ∆V boundaries
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are constant and the samples are believed to nucleate randomly. Under the correct

circumstances a nucleation site can intersect the boundaries of four or eight ∆V sites,

these sited will be categorized as unused in the final analysis and placed into the

unused (Non) category removing them from the data set. Removing the ∆Vs are set

to optimize the discovery of a prenucleation structure responsible for nucleation.

Multiple nucleation sites per sample was seen within the crystal Gaussian fields.

A few outliers received large numbers of nucleation ∆V within a sample, sometimes

greater than ten. The vast majority of all data was 0-5 nucleation sites per sample. Full

histograms of the number of nucleation classifications per sample can be found within

appendix B. Each array contains an associated cutoff method histogram showing

nucleations per sample.

The critical crystal number was tuned for each sample separately based upon

the resulting histogram. Each histogram was tuned to minimize the number of large

nucleation counts per sample. The average size of nucleation to non-nucleation is

9.76% or ≈ 1
10

any miss labeled data which is not removed by the unused classification

has <9.76% chance of seeing into the non-nucleation category if miss labeled as

nucleation. This is due to training the CNNs on an equal number of nucleation and

non-nucleation data.

3.4 CNN Structural Relationship Indication Method 1

3.4.1 First Test

The first test of the CNNSRIM1 system yielded amazing 96-98% for every experi-

ment. No mater what the array, architecture, or field used. This accuracy was high
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from the initial epoch around 76% to 92% and rose to > 95% within 5 epochs. This

accuracy persisted into the validation set and the loss functions were also low.

After plotting a histogram of classification confidence for each validation sample

it became clear exactly what was happening. The CNNs are extremely confident

that all ∆Vs were non-nucleating. The CNNs did not receive an even number of

data from each category during this training. Thus, 96% to 98% of each array was

non-nucleating. A perfect example of poor training data selection, it did serve as a

validation of CNN functionality for both architectures. The networks did correctly

find the minimal loss function value and optimal selecting criteria to achieve the

highest possible accuracy in validation. All proceeding tests received an even number

of nucleation and non-nucleation structures. The non-nucleating ∆Vs used were

randomly selected to prevent taking all data from a few samples.

3.4.2 Results

The results from each category, meta data, summarized experiments, and individual

experiments will be analyzed in this order. Each section’s initial analysis will be

performed within isolation to allow for a clear and robust conclusion to be drawn.

3.4.2.1 Meta Results

The average validation accuracy is 0.495 ± 0.0271 across all 32 tests within

CNNSRIM1. The value includes the 0.5 accuracy or the random case in which

the CNNs are equivocal to a coin toss. The variance among samples for validation

accuracy is very low indicating that most of the tests are close to a random result.
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This in no wise indicates if one class either nucleation or non-nucleation is classified

well and the other is not, if both are equally poor, or if the tests contain experiments

mixed between the two. The validation loss is high with a value of 1.304 ± 1.0228

and is varying widely across the sample space. In the log loss function a value at

one indicates the sample is unsure what the category is. The models are poorly

abstracting to the validation set and are divergent from the results seen with the

training loss and training accuracy. The training accuracy and loss have values of

0.575 and 0.642 respectively. This does indicate the models are training to the training

sets correctly. The models are very over fitted and have not appeared to abstract to

atomistic structure.

3.4.2.2 Summarized Experiments

In table 18 the key feature is again the validation accuracy and validation loss

values. The validation accuracy appears to be hovering at 0.5 for all samples. The

value 0.5 appears 59% of the time or 19 of the 32 samples. This is shows no correlation

in the experiments to any relationship between prenucleation structure or nucleation

sites. The other 13 experiments are in a similar case and are hovering at ≈ 0.5 in

both directions the only validation accuracy seen outside of 0.5± 0.05 is sample 25

which is 8% worse at classifying the data than random chance. Array 7 is the array

used in sample 25 contains 228 ∆Vs giving it 46 ∆Vs in which to validate the tests, a

small number explaining how the accuracy can be so low statistically. The perfect 0.5

validation accuracies indicate random chance and no corollary value, this is expected

as the validation tests sets are in the hundreds of units for arrays 1, 2, 5, and 6 where

most of these values occur.
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The training sets show training across almost all sets. The training sets in most

cases did correctly train to the training data. In experiments 4, 21, and 32 the training

sets have very slight correlations within the negative direction. Experiment 15 is given

to random chance with a training accuracy of 0.5. Some samples, 10 and 26 trained

to a high degree of accuracy in the 0.8 range. This shows no failure within the models

in terms of their process and the three negative corollary values maybe due to a poor

local location minima within the cost function on the data set.

Comparing the loss values of the training and validation sets show highly divergent

behavior. The loss values between almost all experiments are much higher for the

validation set which routinely exceeds one 11 times while training validation never

does so. Nor in a single case is the validation loss below the training loss. The

combinations of reasonable training set values, high validation loss, and near random

validation accuracy point to a non-correlation event within the data. Even over fitting

should not yield such a random an outcome within the validation accuracy.

3.4.2.3 Experimental Level

Next is to analyse the results based upon individual experiments comparing the loss

per epoch graph, accuracy per epoch graph, and class predication value histograms.

All of these are available to the reader in appendix C. It should be known that every

histogram plot contains 10 divisions, some plots do look a bit more like lines due to

nearness of data. It should also be noted that no sample reached 100 epochs. Its set

numerical limit, all CNNSRIM1 graphs were stopped by early stopping criteria, either

the limits of no fluctuation in validation accuracy for 15 epochs was reached or the

validation loss is poor.
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Training behavior is dominated by slowly decreasing loss graphs and increasing

training accuracy, at times the decrease in training loss is very mild to nonexistent.

Experiments fall into two major classes; First, the validation accuracy remains at

or very near to 0.5, second, validation accuracy bounces across the graph rapidly

centering at ≈ 0.5. The validation loss often fluctuates about the domain space with

epochs working its way in an upward direction. The best looking graph is experiment

9 which clearly shows some positive training of the validation set at the expense of

the loss function which moves in the increasing direction. A notable experiment is 32

in which the training loss remains constant while the training accuracy decreases.

Histograms are key to understanding the experiments. Nearly all histograms have

a very narrow width centering around 0.5. The worst cases are experiments 4, 10,

12, 16, 20, 24, 25, 28, 29, and 32 which all have near zero width in their respective

histograms and have trained to random chance at 0.5. These samples often received

reasonable training values in table 18. The remaining histograms contained narrow

widths and hovered around 0.5. An exception to this rule are experiments 7, 11, 26,

27, and 31 did have some divergence from the 0.5 line and appeared to behave in a

more traditional way. It should also be clearly stated that no significant difference was

seen between either the nucleation or non-nucleation categories within the histograms.

The CNNs were not bad at classifying the data in one category but were universally

equivalent to random chance. This rules out a relationship in one data category.

3.4.2.4 Results Indexing

Testing was done with an even number of nucleating and non-nucleating ∆V.

This yielded the summarized results seen within table 18 and the full results seen
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Category Average Standard Deviation
Loss Train 0.642 ±0.0820

Loss Validation 1.304 ±1.0228
Accuracy Train 0.575 ±0.0948

Accuracy Validation 0.495 ±0.0271

Table 17. Averages and standard deviation for all indexes in CNNSRIM1.

in appendix C. 32 experiments were performed each one contains an epoch to loss

and epoch to accuracy graph within appendix C. The final epoch value was given

for each line: training loss, valuation loss, training accuracy, and validation accuracy.

The second chart provided with each sample is a histogram of the confidence intervals

for the categorization of all validation data. In the case of this chart crystal refers

to the nucleation or non-nucleating behavior of the ∆V. Positive refers to a correct

classification and negative refers to an incorrect classification. Table 18 shows the

short version of all the testing done for CNNSRIM1. The first five variables are listed

for each test or index on the left side. On the right side the loss function values and

accuracy values for the last epoch is shown. The data array used to feed the CNN

is also shown. Table 17 contains the average and standard deviation of the loss and

accuracy values.

Index Array Seed Size σ CNN Gauss Loss Loss Acc Acc

(type) (atom) (Å) (type) (type) (train) (val) (train) (val)

1 1 Random 18000 1 Conv Mass 0.605 3.045 0.610 0.506

2 1 Random 18000 1 Conv Charge 0.609 1.365 0.590 0.498

3 1 Random 18000 1 Stand Mass 0.692 0.749 0.520 0.500

4 1 Random 18000 1 Stand Charge 0.694 0.695 0.490 0.500

5 2 Random 18000 4 Conv Mass 0.650 2.542 0.538 0.491

6 2 Random 18000 4 Conv Charge 0.647 1.103 0.547 0.493

7 2 Random 18000 4 Stand Mass 0.695 0.782 0.507 0.507

Continued on next page
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Table 18 – continued from previous page

Index Array Seed Size σ CNN Gauss Loss Loss Acc Acc

(type) (atom) (Å) (type) (type) (train) (val) (train) (val)

8 2 Random 18000 4 Stand Charge 0.693 0.693 0.505 0.500

9 3 Random 73728 1 Conv Mass 0.510 1.058 0.748 0.542

10 3 Random 73728 1 Conv Charge 0.395 1.920 0.808 0.542

11 3 Random 73728 1 Stand Mass 0.686 0.727 0.587 0.514

12 3 Random 73728 1 Stand Charge 0.689 1.252 0.552 0.500

13 4 Random 73728 4 Conv Mass 0.628 3.685 0.649 0.500

14 4 Random 73728 4 Conv Charge 0.658 0.876 0.625 0.464

15 4 Random 73728 4 Stand Mass 0.694 0.729 0.500 0.507

16 4 Random 73728 4 Stand Charge 0.693 0.694 0.482 0.500

17 5 Quartz 18000 1 Conv Mass 0.593 0.694 0.578 0.500

18 5 Quartz 18000 1 Conv Charge 0.587 0.700 0.592 0.500

19 5 Quartz 18000 1 Stand Mass 0.691 0.718 0.533 0.454

20 5 Quartz 18000 1 Stand Charge 0.688 0.695 0.519 0.500

21 6 Quartz 18000 4 Conv Mass 0.695 0.843 0.488 0.500

22 6 Quartz 18000 4 Conv Charge 0.694 0.704 0.509 0.500

23 6 Quartz 18000 4 Stand Mass 0.694 0.708 0.512 0.489

24 6 Quartz 18000 4 Stand Charge 0.693 0.694 0.495 0.500

25 7 Quartz 18000 1 Conv Mass 0.612 0.959 0.668 0.421

26 7 Quartz 18000 1 Conv Charge 0.371 2.783 0.860 0.500

27 7 Quartz 73728 1 Stand Mass 0.690 0.759 0.508 0.400

28 7 Quartz 73728 1 Stand Charge 0.695 0.721 0.532 0.500

29 8 Quartz 73728 4 Conv Mass 0.625 2.893 0.661 0.500

30 8 Quartz 73728 4 Conv Charge 0.606 4.508 0.664 0.500

31 8 Quartz 73728 4 Stand Mass 0.694 0.745 0.543 0.500

32 8 Quartz 73728 4 Stand Charge 0.693 0.698 0.484 0.500

Continued on next page
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Table 18 – continued from previous page

Index Array Seed Size σ CNN Gauss Loss Loss Acc Acc

(type) (atom) (Å) (type) (type) (train) (val) (train) (val)

Table 18. summary results of CNNSRIM1 experiments. The five variables being tested

are listed on the middle columns along with the array used to feed the CNNs for each

experiment on the left. The right side contains the final epoch’s loss and accuracy for

training and validation data for each experiment.

3.4.3 Summary

It appears that there is no relationship within the experiments regarding the prenu-

cleation structure and nucleation behavior. Three levels of analysis were performed:

meta analysis, experiment summary, and individual experiment. In each case the

solution was marked with near or at random validation accuracy, and high validation

loss. Variation did occur with regards to training values, some experiments trained

to the training set very well. The results of the training data show that no apparent

error occurred within the training process of the models. The data was thoroughly

randomized across multiple steps and the input ∆V experiments were vetted to allow

no biasing of the data.

The key to understanding the experiments is the extreme narrow width of the

validation histograms in which the predicted value of each class is at 0.5 or close to

it. This indicates that the experiments are trained for at random as no significant

distinctions exist between training and validation sets. Only extremely minor adjust-

ments in weights were seen in the histogram, showing heavy over fitting to the training
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set. No difference was seen cross-category in regards to the histograms, showing no

relationship to nucleation and prenucleation structure.

3.5 CNN Structural Relationship Indication Method 2

3.5.1 Introduction

Previously, only five variables were tested. There maybe question in regards to the

validity of the cutoff method to classify the ∆V data. The cutoff method is not the

optimal solution but is expected to yield results with few miss classifications. It was

deemed the weakest point in the research, and another method of classification was

developed to validate the results. This new method of ∆V classification utilizes the

previous five variables and the variable max classification method. This new system

of study is referred to as CNNSRIM2. The concept behind the max classification

method is to take the ∆V with the maximum crystal summation of all ∆Vs within the

sample. This of means that any nucleation site on a boundary will be only partially

included or miss classified, samples with multiple nucleation sites will have only the

best ∆V classified for nucleation.

Within the non-nucleation class of ∆V some nucleated and partially nucleated

miss classification will occur. There are 64 ∆Vs per sample and 63 non-nucleation

∆Vs using this method. If every sample contained one misclassified ∆V it would

make up 1.6% of the data, after removing all redundant data within the data sets

only ≈ 1.6% of the non-nucleated data would be misclassified. This is due to the

intensive randomization steps taken to ensure no bias in within the data sets and

final selection of equal numbers of nucleating and non-nucleating ∆Vs to be used as
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examples. At this stage the CNNs do not need a high degree of accuracy; Only a level

of accuracy that is significantly more than random chance and some indication that

abstract training on the ∆V samples is occurring. It would take an average of 6.25

misclassified ∆Vs within each sample to reach 10% non-nucleation misclassification,

the cutoff method found of 0 to 5 nucleation sites per sample for the majority of data

far below 6.25.

It should be clearly noted that this reduces the size of the data sets by over a

factor of 4 in most cases when compared to the cutoff method. The data sets are

now the size of the sample inputs times two, to see this size refer to table 16 and

look at the used column. Only one ∆V is nucleating and the set is always to remain

balanced, therefore it is twice the sample number. Experiments using arrays 3, 4, 7,

and 8 should be looked at with more scrutiny due to there small data sizes.

3.5.2 Result

After rerunning all the experiments with the new max classification method an

identical table set to CNNSRIM1 was produced for CNNSRIM2. Note that the

indexing method across tables is the same for that of CNNSRIM1. The proceeding

analysis of the results will follow the same format as was done in previous CNNSRIM1

review: meta analysis, summarized experiments, and individual experiments.

3.5.2.1 Meta Analysis

Table 19 shows the averages of all experiments within CNNSRIM2, there are two

numbers almost identical to those within table 17; The training loss with 3% difference
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and the validation accuracy with 0.2% difference. The standard deviations are slightly

larger in CNNSRIM2 than CNNSRIM1 and are still narrow with differences lower

than 18.8% for all categories ignoring validation loss. Valadation accuracy is near

random with 0.5 being within the 95% confidence interval indicating that no training

is occurring on features within the atomistic structure; Rather training is correlated

to something within the training set that is not present within the validation set;

Training accuracy is 0.61 with 0.494 validation accuracy. The validation loss is high

at a value of 1.043, 68% greater training losses showing sever over fitting within

experiments and near random prediction chance. The CNNs did train to the given

training data, shown as low training loss and training accuracy of 0.619 and 0.610

respectively. Collectively this is the same as the case seen CNNSRIM1 and shows over

fitting of the model and no ability to abstract to the atomistic structure present.

3.5.2.2 Summarized Experiments

19 of the 32 or 59.4% of the experiments have random validation accuracy values

of exactly 0.5, four more have values within ±0.02 of 0.5. 71.9% of experiments have

validation accuracies within ±0.02 of random. Many of these values often received

good training accuracies and were training on the given training sets, with 12 of the

32 experiments receiving >0.6 training accuracy. The validation losses are high across

the different experiments with 9 of the 32 or 28.1% of the values receiving a loss higher

than one. The highest validation loss is 3.630 in experiment 5 with a training loss of

0.618 or 1
6

that of the validation loss. In every case except experiments 28 and 32 the

validation loss was higher than within the training set, these exceptions were within

1% difference. In some experiments, notably 3, 8, 20, and 32 achieved lower training
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accuracy than validation accuracy. Experiment 32 was an exceptional experiment

with accuracies of 0.413 and 0.417 for train and validation respectively.

There are a few notable experiments in CNNSRIM2; Experiment 32 which showed

an ability in training and validation to correlate negatively to the data. This is likely

not of consequence, 58 ∆Vs used in the experiment leaving a validation set size of 12,

leaving the final solution subject to more variation. Experiments 9, 13, and 14 showed

validation accuracies above 0.53 at 0.611, 0.536, and 0.607 respectively. Experiment 9

is likely a chance outcome, the validation loss is 5.4 times that of the training loss;

Experiments 13 and 14 also have validation losses that are higher than all experiment

training losses. All of these experiments came from smaller sized arrays and may show

some relationship in isolation between atomistic structure and nucleation of stishovite.

Experiments 13 and 14 share the same experiment seeding, experiment size, Gaussian

distribution σ, and CNN architecture.

3.5.2.3 Experimental Level

Epoch graphs found within appendix D, show superior training in the all convulsion

CNN architecture than the stock CNN architecture, best seen in experiments 1 to 4.

The training losses go down relatively smooth while the validation losses increases with

time for all convolutional CNN architecture. The training accuracy quickly increases

in a sudo linear fashion and the validation accuracy remains around 0.5. The stock

CNN architecture shows a retardation to the training set in which it trains but does

so in an erratic manner. Experiment 7 is a perfect example of this the epoch graph

resembles a seismograph undergoing an earthquake. At times there appears to be
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Category Average Standard Deviation
Loss Train 0.619 ±0.1010

Loss Validation 1.043 ±0.6004
Accuracy Train 0.610 ±0.1141

Accuracy Validation 0.494 ±0.0480

Table 19. Averages and standard deviation for all indexes in CNNSRIM2.

little to no training taking place. This is the same case for validation accuracy which

fluctuates heavily across the epoch graph.

23 of 32 or 71.9% of prediction histograms have 0.1 or less prediction value width

centered at 0.5. They appear more like lines drawn at the 0.5 place. This displays an

inability to train and to predict, only very minute changes within the ∆V data sets

are being trained for and the model is very unsure of the classifications. All but two

experiments 9 and 14 do not have prediction validations centred directly at 0.5. Some

experiments do have a better overall spread reaching prediction widths of 0.4 in other

experiments.

Experiment 13’s histogram is a line at 0.5 indicating that it is training to minute

changes within the data and is unsure of experimental outcome. The favorable

validation accuracy displayed by experiment 13 was seen within it’s epoch. The overall

trend of this experiment is over fitting and increasing validation loss, it reached a

0.851 over training value.

Experiment 9 had a well disperse series of predictions across the histograms. It

seemed to have a strong prediction of non-nucleation sites with a poor and week

prediction of nucleation sites. Some nucleation sites were heavily misclassified as

non-nucleation sites. It did seem to predict validation reasonably well and even

reduced validation loss during some epochs. It does not seem to strongly indicate

a clear relationship between training and validation epochs, rather the validation
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accuracy fluctuates heavily across epochs. The validation loss is very high during

most epochs, if it is correctly abstracting to the validation set it is doing so in an

unorthodox way.

Experiment 14 showed varying results when its prediction values were plotted to a

histogram. It more correctly predicted non-nucleation sites and randomly predicted

nucleation sites. If a nucleation site was predicted correctly the model was often

reasonably sure of the value, if it wrongly misclassifed a nucleation site it was often

very sure. The epoch graph did not appear promising to a relationship. The model

trained on the training set very well. It showed increasing validation losses over epochs

and ended on a value close to the starting point with wide fluctuations across epochs.

The validation accuracy was fluctuating around 0.5 for most of the training, the last

12 epochs were spent within the greater than 0.5 region. Due to the small size of

the validation set, 28 ∆Vs, the high validation loss, and the extreme fluctuations

in validation accuracy the result is likely a statistical artifact and the model is not

abstracting onto the atomistic structure.

Index Array Seed Size σ CNN Gauss Loss Loss Acc Acc

(type) (atom) (Å) (type) (type) (train) (val) (train) (val)

1 1 Random 18000 1 Conv Mass 0.611 1.575 0.591 0.473

2 1 Random 18000 1 Conv Charge 0.607 1.040 0.602 0.482

3 1 Random 18000 1 Stand Mass 0.700 0.707 0.468 0.500

4 1 Random 18000 1 Stand Charge 0.691 0.702 0.520 0.509

5 2 Random 18000 4 Conv Mass 0.618 3.630 0.605 0.492

6 2 Random 18000 4 Conv Charge 0.637 1.001 0.539 0.500

7 2 Random 18000 4 Stand Mass 0.689 0.791 0.549 0.485

8 2 Random 18000 4 Stand Charge 0.697 0.707 0.461 0.500

9 3 Random 73728 1 Conv Mass 0.309 1.670 0.843 0.611

Continued on next page
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Table 20 – continued from previous page

Index Array Seed Size σ CNN Gauss Loss Loss Acc Acc

(type) (atom) (Å) (type) (type) (train) (val) (train) (val)

10 3 Random 73728 1 Conv Charge 0.544 0.826 0.700 0.500

11 3 Random 73728 1 Stand Mass 0.652 1.787 0.643 0.500

12 3 Random 73728 1 Stand Charge 0.691 0.747 0.529 0.500

13 4 Random 73728 4 Conv Mass 0.441 0.944 0.851 0.536

14 4 Random 73728 4 Conv Charge 0.409 0.743 0.825 0.607

15 4 Random 73728 4 Stand Mass 0.688 0.897 0.579 0.500

16 4 Random 73728 4 Stand Charge 0.693 0.900 0.553 0.500

17 5 Quartz 18000 1 Conv Mass 0.603 0.891 0.599 0.500

18 5 Quartz 18000 1 Conv Charge 0.608 0.693 0.592 0.500

19 5 Quartz 18000 1 Stand Mass 0.686 0.698 0.539 0.500

20 5 Quartz 18000 1 Stand Charge 0.698 0.694 0.502 0.500

21 6 Quartz 18000 4 Conv Mass 0.673 0.791 0.599 0.466

22 6 Quartz 18000 4 Conv Charge 0.667 0.770 0.599 0.511

23 6 Quartz 18000 4 Stand Mass 0.688 1.318 0.514 0.500

24 6 Quartz 18000 4 Stand Charge 0.691 1.445 0.534 0.500

25 7 Quartz 18000 1 Conv Mass 0.548 0.748 0.737 0.500

26 7 Quartz 18000 1 Conv Charge 0.410 2.112 0.789 0.500

27 7 Quartz 73728 1 Stand Mass 0.675 1.044 0.553 0.500

28 7 Quartz 73728 1 Stand Charge 0.697 0.695 0.526 0.500

29 8 Quartz 73728 4 Conv Mass 0.546 0.693 0.696 0.500

30 8 Quartz 73728 4 Conv Charge 0.556 0.691 0.717 0.500

31 8 Quartz 73728 4 Stand Mass 0.610 0.745 0.739 0.333

32 8 Quartz 73728 4 Stand Charge 0.693 0.693 0.413 0.417

Continued on next page
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Table 20 – continued from previous page

Index Array Seed Size σ CNN Gauss Loss Loss Acc Acc

(type) (atom) (Å) (type) (type) (train) (val) (train) (val)

Table 20. summary results of CNNSRIM2 experiments. The five testing variables are

listed on the left side along with the data array used to feed the CNNs. The right

side contains the final epoch’s loss and accuracy for training and validation data.

3.5.3 Summary

Overall most models were of little more effectiveness than a coin toss, the CNNs

showed no signs of abstracting to the atomistic structures fed into the systems. The

systems correctly trained upon the given models which is shown on all three levels of

analysis by decreasing training losses and increasing training accuracies to above 0.8.

The validation loss often reached incredibly high values with nine of the experiments

reaching above one and some multiple folds higher than their respective training losses.

Experiments 9, 13, and 14 did show a potential indication of training to atomistic

structure based upon validation accuracy. All of which was addressed in detail within

the previous sections. Experiment 13 was invalidated by its validation prediction

accuracy histogram which was set to 0.5 for all cases with very minor deviations from

this value. Experiments 9 and 14 may show abstraction to atomistic structure but do

so in a very lose way with indications of being a statistical occurrence by their small

validation set sizes, validation loss behavior, and overall validation set fluctuations

across epochs.
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3.6 Summary

3.6.1 Stishovite Formation

3.6.1.1 Review

The research into stishovite formation within quartz and randomly seeded amor-

phous SiO2 samples was not a part of the research hypothesis. This work has taken

many months to perform and the methodology was perfected in a way that led to

the production of 1,152 samples, most of which produced stishovite. This aspect of

the research should be mentioned as part of the results even though it is within the

methodology chapter. Experimental results for this work is highly similar to the work

done by Shen and Reed 2016 and was performed using different methods of shocking

the experiment. Due to time and requirement constraints another hypothesis and

research project was not made out of sample crystallization behavior, perhaps it can

be so in the future. A full statistical analysis was not performed due to the lack of

repeated preshock structures in testing.

3.6.1.2 Results

Two rounds of testing was done on quartz and randomly seeded SiO2 in an

amorphous state after melting and quenching of the sample. The first round of testing

was to find the repeatedly spoken of irreversible deification seen within MD and

empirical studies. This notable densification was mot found within the work.

The second round of the experiments aligned with work done by Yuan Shen and
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Reed 2016. It is clear from the increase in initial shock temperature to final shock

temperature whether or not the sample had formed stishovite or remained in an

unaltered state. Disordered samples raise initial temperature within the first 50 ps

and remain at that temperature until end of sample. Any densification experienced is

done within the first 50 ps of process or falls within 10−3 to 10−4 g/cm3. Stishovite

forming samples experience a rise in temperature between the 100 ps and 1 ns position.

As the stishovite crystal(s) grow in size the temperature of the sample increases to a

value in or close to that predicted by Yuan Shen and Reed 2016. Temperature of a

sample is a direct function of shock pressure Ahrens 2002. It was discovered that the

crystallized samples do experience a densification on the order of 1 to 2 magnitudes

greater than non crystallized samples from 50 ps to the 1 ns after shock application.

Densification is on the order of 10−2 to 10−3 g/cm3 under pressure loading.

As discovered during testing the shock pressure is the biggest driver of stishovite

formation within a sample. There is a band of 10 GPa or greater in which a sample

will nucleate. Nucleation is not constant and appears to be a function of probability

within they system. Certain values towards the middle of the distribution almost

always nucleate while values farther away tend to not nucleated as often. Pressure

damp timescales do not appear to effect the formation of stishovite within a range of

0.1 ps to 10 ps. Within the temperature damp range of 0.05 ps to 0.1 ps the samples

will form stishovite, 0.05 ps seems to form crystal slightly more often within the quartz

seeded samples. The quartz seeded samples generated optimal stishovite at a shock

pressure of 55 GPa with an average densification of 5.90e− 3 g
cm3 , the random seeded

samples did so at 60 GPa with an average deification of 1.78e− 2 g
cm3 .
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3.6.1.3 Random Atom Insertion

Another feature of the work is the use a new method to form an SiO2 matrix using

random atom insertion. This successfully formed stishovite and did so better than the

quartz seeded samples. There has been no previously mentioned work into a method

of this kind to generate SiO2 and expose the shock to high pressure. It is clear from

the experiments that the atomistic structure differs between the quartz seeded and

randomly seeded samples. This is shown by the different stishovite formation behavior

under various shock pressures.

3.6.2 Atomistic Structure and Nucleation

The results of both the CNNSRIM1 and CNNSRIM2 show the same general

behavior within experiments. Experiments are often dominated by near random

validation accuracy and high validation loss values. The CNNs were tested before

being implemented and showed correct abstraction behavior. They did train effectively

on the training set and showed valid and expected behavior across various epochs.

The histograms of validation prediction values within both the CNNSRIM1 and

CNNSRIM2 were often centered at 0.5 with a very small width. More than half of

the data had a prediction width less than 0.1 in these histograms. This extreme

narrowness was more in CNNSRIM2 than in CNNSRIM1.

In CNNSRIM2 there were three instances that the CNN might be abstracting to

the atomic structure of the samples, experiment 9, 13, and 14. After careful analysis

experiment 13 was shown to be invalid. Experiments 9 and 14 maybe undergoing

some abstraction, this is unlikely. The validation accuracies were highly variant across
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epochs and validation loses high. No other samples showed reasonable training to the

data presented. This is likely a statistical artifact as some samples with no relationship

will show some semblance of validity if enough experiments are performed. In context

of the experimental factors and other experiments this is likely a statistical artifact.

3.7 Discussion

It may seem strange to support results which show atomistic structure is not

responsible for stishovite nucleation within amorphous SiO2. Most of the research

focus was placed heavily upon ensuring valid methodology after the samples were

produced and clean data management. Some underlying effects of molecular behavior

maybe responsible for the outcome. The following section will seek to address what

may have happened and why no relationship was discovered.

3.7.1 How else can nucleation occur

3.7.1.1 Atomistic Rearrangement

No work is done and no literature found into the atomistic behavior of amorphous

SiO2 during shock. The process is a violent event with massive interatomic energies,

so much so that various atomic potentials were developed to model this behavior do to

the close atom proximity Pedone et al. 2006; Yuan Shen and Reed 2016. The figures

22 and 23 show an example of a sample generated in this research before the shock

and after 2 ps. The sample has flattened like a pancake and has been reduced by a

factor of 2 in the direction of the piston and effectively doubles in density. The work
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Figure 21. HPHug shock wave in progress taken from Ravelo et al. 2004.

done by Ravelo et al. 2004 shows a crystal under shock in figure 11 of that paper

shows a top view of atoms under going an NPHug shock. During a NUHug shock

the atoms are shown moving intensely as the wave hits them causing them to greatly

condense, shown in figure 21.

It maybe that the intense shock not only moves the atoms during shock but causes

a rearrangement of these atoms. The pre and post shocked sample may not only have

changed relative shape but changed atomistic structure. Therefore the structure that

the CNNs received may not be the structure in which nucleation occurred. If this

happened it still leaves the hypothesis to be valid, the structure tested for did not have
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Figure 22. Example of random atom insertion 18,000 atom sample before 60 GPa
shock.

a direct relationship with the final structure. This is amplified by the amorphous state

of the samples used within this research. Amorphous SiO2 is in a liquid arrangement

and is the lowest density structure of the SiO2 available within solidifed form. It

would be the most likely material to support atomic rearrangement as no long range

structure is present.
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Figure 23. Example of random atom insertion 18,000 atom sample after 2 ps at
60 GPa shock.

3.7.1.2 No Atomistic Relationship

Based upon this research atomistic configuration is not the primary driver of

nucleation. It maybe that the high resolution atomic interactions of various kinds

move atoms into a position which triggers a nucleation event. This would be a valid

hypothesis based upon this research results. This means that the underlying structure

is of no consequence to the nucleation event.
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3.7.1.3 Nucleation Sites Everywhere

Another likely event is that atomistic structure is a precursor to nucleation but

atomic interactions are the driving force. The nucleation inducing structures would

be triggered after a molecular event took place. This would mean that prenucleation

structure maybe present throughout the sample leaving the CNNs unable to classify a

differing structures. There could be large numbers of nucleation precursors within

each sample making the CNNs unable to indicate a difference between nucleation and

non-nucleation structure.

3.7.2 Improvements

An improvement that could have been made is with the prenucleation structure.

The structure was acquired from one dump file in which the atoms are not in their

average state. If multiple dump files were used an average atomic position could be

generated. Making Gaussian charge and mass fields of each dump file into an averaged

charge or averaged mass Gaussian field. This would be a more rigorous way to perform

the research. Due to the small fluctuations in atomic position it is unlikely this would

be a driver for the null hypothesis receiving validation in this research.

The methodology of nucleation classification was not optimal. Ideally, the nu-

cleation site would always have been centered in each ∆V sample, similar to how

each atom was isolated for phase in the work of Fukuya and Shibuta 2020. This

can account for multiple nucleation sites within each sample. This would have been

implemented by taking the sum of crystallization across the sample and then isolating

nucleation sites. Isolation would have been done by taking the centroid inertia of
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each crystallization region by giving each atom a crystal inertia mass value. Using

this method more samples could have been used by removing the upper bound of

crystal counts for the Gaussian field creation; The upper bound of crystal counts

needed to be similar across samples and would not be needed in a system that can

handle relative crystal counts. This would allow for better CNN classification as

neural networks prefer images with the object to be classified at center. This can be

somewhat “cheated for” by the use of two classes in which multiple structures can be

classified as nucleating or non-nucleating.

The reason that this method was not used is due to the engineering behind it. It

would be its own vision systems project that would require far more time than the

research allotted to complete and increases the number of failure modes in the system

by increasing complexity. Creating ∆Vs across boundary conditions would have been

needed as well as the ability to account for overlapping ∆V conditions. The thesis

time frame did not allow for another major engineering project to be undertaken.
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Chapter 4

CONCLUSION

4.1 Preamble

The resulting work contains a multifaceted effort to generate simulations and

effectively test whether prenucleation structure is the sole driver of stishovite nucleation.

Within the the composite of this work a detailed research and development project was

done across two rounds of experiments to generate stishovite in a reliable method from

random atom insertion and quartz starting structure. This resulted in the manufacture

of 1,154 separate samples.

A sophisticated Gaussian field generation program was designed to translate the

simulations from LAMMPS dump files in atomic position to pixelated data which can

be used by two CNNs. This included a small study into the variance of the Gaussian

function to optimize the input data into the CNNs.

Two methodologies for regionalizing and classifying the data as a nucleation or

non nucleation zone. These methods varied drastically in there design. The second

methodology served to verify the results of the first.

A total of six variables were tested for within the system, 64 experiments in total

were performed. The process was thoroughly reviewed and error was checked for

within each step of the pipeline.
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4.2 Statement

After the intensive and exhaustive study done upon this topic it is time to draw

to a close. The hypothesis is: The prenucleation structure of stishovite is the sole

determinate of stishovite nucleation, therefore a direct and clear relationship exists

between the prenuclation structure that is different from other structures within an

SiO2 network.

The designed experiments clearly tested this beyond a reasonable degree of rigour.

Using a CNN should have discovered any relationships with the system and has been

done so in previous MD applications Chmiela et al. 2017; Ryczko et al. 2018; Singh

et al. 2018; Fukuya and Shibuta 2020. The experiments were designed to establish that

the hypothesis is true which gave ample favor to its outcome. This was an unfavorable

bias toward the hypothesis that further verifies the null hypothesis outcome. For the

experiment to be successful a few experiments would need to be trainable upon the

any data set and abstract to the validation set, leaving room for false positive results.

In a surprising outcome 62 of the 64 experiments strongly showed no correlation

within the samples and were effectively very sophisticated coin tossing machines

when applied to the validation set. They were not able to abstract in consistent

atomistic structure. Two of the experiments may have shown some relationship; These

experiments were very lose in their ability to classify the validation set and showed

numerous signs of being a statistical artifact. In conclusion none of the 64 experiments

provided abstraction to atomistic structure. This is after correctly classifying a test

set to justify their validity. The CNN networks were based upon previously published

work into a binary classification system that scored fifth within its given category

Hasib Zunair Aimon Rahman 2020. Gaussian functions are not a new technique to
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be used with CNNs on MD data and have achieved high rates of previous success

Ryczko et al. 2018. The methodology of dividing the sample is reasonable and may

incur minor difficulties in classification. A binary class system should allow for the

abstraction of partially present features to be identified within the system and classify

correctly, even if this would not occur in a large number of classes.

For the before mentioned reasons it does not appear that atomistic structure is the

sole driver of nucleation within amorphous SiO2. Due to the multitude of variables

tested there appears to be no reasonable option for complete failure of all systems to

detect an underlying repeating structure. The weakest point of the research is the

methodology for classifying the simulations, for this reason CNNSRIM2 was developed

which used a different classification system to classify each ∆V. Even with somewhat

noisy classification data a weak classification should have appeared which showed a

relationship is present. If doing the work again it would be ideal to have a greater

depth of knowledge into imaging technologies.

4.3 Future Research

4.3.1 Atomic Interactions

Structure may still be an important factor within the nucleation of stishovite within

an amorphous SiO2 sample. It seems likely that the prenuclation structure from this

research is not the sole factor in nucleation. To test if atomistic structure is partial

factor to nucleation of an SiO2 network repeated shock testing can be performed; In

which each SiO2 sample is repeatedly shocked from the same starting structure and a

nucleation heat map is created. This can be done by summing all crystal-like atoms
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across each simulation with a given weight, such that if the same atom is crystal-like

repeatedly it shows up more intensely with a higher value. If there is strong regional

favoritism atomistic structure is likely a factor of nucleation. This research was not

designed to test for a partial factor as all non-nucleated SiO2 was assumed to be of a

different non-nucleating structure.

4.3.2 Post Shock Structure

The research does not rule out if the post shock structure is a sole factor within the

nucleation process. It is needful to see if the shock process transforms the atomistic

structure of the preshock sample. Relative atomic positions will change as the sample

undergoes compression. The question is if the absolute atomistic structure changes.

This could be tested by creating a relationship matrix of atomic bonding before and

after shock. If the atomic bonding is equivocal before and after shock no characteristic

atomistic structural changes have occurred. The percentage of atomistic structural

change can be given by percent if it occurs. If significant changes have occurred it

would be recommended to run the data through the same experiments seen within

this research on post shocked pre nucleated structure. CNNSRIM 1 and 2 are fully

plumbed only the input files would change.
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(a) Mass (b) Crystal

Figure 24. Gaussian field, simulation 300, quartz seeded, 18,000 atoms, 4 Å = σ.

(a) Mass (b) Crystal

Figure 25. Gaussian field, simulation 300, quartz seeded, 18,000 atoms, 4 Å = σ. These are
the ∆V subsections, section 1 of 64
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(a) Mass (b) Crystal

Figure 26. Gaussian field, simulation 300, quartz seeded, 18,000 atoms, 2 Å = σ.

(a) Mass (b) Crystal

Figure 27. Gaussian field, simulation 300, quartz seeded, 18,000 atoms, 2 Å = σ. These are
the ∆V subsections, section 1 of 64
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(a) Mass (b) Crystal

Figure 28. Gaussian field, simulation 300, quartz seeded, 18,000 atoms,
√
2 Å = σ.

(a) Mass (b) Crystal

Figure 29. Gaussian field, simulation 300, quartz seeded, 18,000 atoms,
√
2 Å = σ. These

are the ∆V subsections, section 1 of 64
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(a) Mass (b) Crystal

Figure 30. Gaussian field, simulation 300, quartz seeded, 18,000 atoms, 1 Å = σ.

(a) Mass (b) Crystal

Figure 31. Gaussian field, simulation 300, quartz seeded, 18,000 atoms, 1 Å = σ. These are
the ∆V subsections, section 1 of 64
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(a) Mass (b) Crystal

Figure 32. Gaussian field, simulation 300, quartz seeded, 18,000 atoms, 1/
√
2 Å = σ.

(a) Mass (b) Crystal

Figure 33. Gaussian field, simulation 300, quartz seeded, 18,000 atoms, 1/
√
2 Å = σ. These

are the ∆V subsections, section 1 of 64
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(a) Mass (b) Crystal

Figure 34. Gaussian field, simulation 300, quartz seeded, 18,000 atoms, 1/2 Å = σ.

(a) Mass (b) Crystal

Figure 35. Gaussian field, simulation 300, quartz seeded, 18,000 atoms, 1/2 Å = σ. These
are the ∆V subsections, section 1 of 64
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Figure 36. Array 1, histogram of calculated nucleation sites using a critical crystal value =
60.

Figure 37. Array 2, histogram of calculated nucleation sites using a critical crystal value =
60.
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Figure 38. Array 3, histogram of calculated nucleation sites using a critical crystal value =
37.5.

Figure 39. Array 4, histogram of calculated nucleation sites using a critical crystal value =
37.5.
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Figure 40. Array 5, histogram of calculated nucleation sites using a critical crystal value =
50.

Figure 41. Array 6, histogram of calculated nucleation sites using a critical crystal value =
50.
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Figure 42. Array 7, histogram of calculated nucleation sites using a critical crystal value =
34.

Figure 43. Array 8, histogram of calculated nucleation sites using a critical crystal value =
45.
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CNNSRIM1 RESULTS
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Figure 44. Histograms of validation set results for index 1 using CNNSRIM1.

Figure 45. Chart of CNN training for index 1 using CNNSRIM1.
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Figure 46. Histograms of validation set results for index 2 using CNNSRIM1.

Figure 47. Chart of CNN training for index 2 using CNNSRIM1.
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Figure 48. Histograms of validation set results for index 3 using CNNSRIM1.

Figure 49. Chart of CNN training for index 3 using CNNSRIM1.
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Figure 50. Histograms of validation set results for index 4 using CNNSRIM1.

Figure 51. Chart of CNN training for index 4 using CNNSRIM1.
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Figure 52. Histograms of validation set results for index 5 using CNNSRIM1.

Figure 53. Chart of CNN training for index 5 using CNNSRIM1.
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Figure 54. Histograms of validation set results for index 6 using CNNSRIM1.

Figure 55. Chart of CNN training for index 6 using CNNSRIM1.
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Figure 56. Histograms of validation set results for index 7 using CNNSRIM1.

Figure 57. Chart of CNN training for index 7 using CNNSRIM1.
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Figure 58. Histograms of validation set results for index 8 using CNNSRIM1.

Figure 59. Chart of CNN training for index 8 using CNNSRIM1.
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Figure 60. Histograms of validation set results for index 9 using CNNSRIM1.

Figure 61. Chart of CNN training for index 9 using CNNSRIM1.
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Figure 62. Histograms of validation set results for index 10 using CNNSRIM1.

Figure 63. Chart of CNN training for index 10 using CNNSRIM1.
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Figure 64. Histograms of validation set results for index 11 using CNNSRIM1.

Figure 65. Chart of CNN training for index 11 using CNNSRIM1.
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Figure 66. Histograms of validation set results for index 12 using CNNSRIM1.

Figure 67. Chart of CNN training for index 12 using CNNSRIM1.
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Figure 68. Histograms of validation set results for index 13 using CNNSRIM1.

Figure 69. Chart of CNN training for index 13 using CNNSRIM1.
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Figure 70. Histograms of validation set results for index 14 using CNNSRIM1.

Figure 71. Chart of CNN training for index 14 using CNNSRIM1.

140



Figure 72. Histograms of validation set results for index 15 using CNNSRIM1.

Figure 73. Chart of CNN training for index 15 using CNNSRIM1.
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Figure 74. Histograms of validation set results for index 16 using CNNSRIM1.

Figure 75. Chart of CNN training for index 16 using CNNSRIM1.
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Figure 76. Histograms of validation set results for index 17 using CNNSRIM1.

Figure 77. Chart of CNN training for index 17 using CNNSRIM1.
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Figure 78. Histograms of validation set results for index 18 using CNNSRIM1.

Figure 79. Chart of CNN training for index 18 using CNNSRIM1.
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Figure 80. Histograms of validation set results for index 19 using CNNSRIM1.

Figure 81. Chart of CNN training for index 19 using CNNSRIM1.
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Figure 82. Histograms of validation set results for index 20 using CNNSRIM1.

Figure 83. Chart of CNN training for index 20 using CNNSRIM1.
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Figure 84. Histograms of validation set results for index 21 using CNNSRIM1.

Figure 85. Chart of CNN training for index 21 using CNNSRIM1.
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Figure 86. Histograms of validation set results for index 22 using CNNSRIM1.

Figure 87. Chart of CNN training for index 22 using CNNSRIM1.
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Figure 88. Histograms of validation set results for index 23 using CNNSRIM1.

Figure 89. Chart of CNN training for index 23 using CNNSRIM1.
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Figure 90. Histograms of validation set results for index 24 using CNNSRIM1.

Figure 91. Chart of CNN training for index 24 using CNNSRIM1.
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Figure 92. Histograms of validation set results for index 25 using CNNSRIM1.

Figure 93. Chart of CNN training for index 25 using CNNSRIM1.
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Figure 94. Histograms of validation set results for index 26 using CNNSRIM1.

Figure 95. Chart of CNN training for index 26 using CNNSRIM1.
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Figure 96. Histograms of validation set results for index 27 using CNNSRIM1.

Figure 97. Chart of CNN training for index 27 using CNNSRIM1.
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Figure 98. Histograms of validation set results for index 28 using CNNSRIM1.

Figure 99. Chart of CNN training for index 28 using CNNSRIM1.
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Figure 100. Histograms of validation set results for index 29 using CNNSRIM1.

Figure 101. Chart of CNN training for index 29 using CNNSRIM1.
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Figure 102. Histograms of validation set results for index 30 using CNNSRIM1.

Figure 103. Chart of CNN training for index 30 using CNNSRIM1.
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Figure 104. Histograms of validation set results for index 31 using CNNSRIM1.

Figure 105. Chart of CNN training for index 31 using CNNSRIM1.
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Figure 106. Histograms of validation set results for index 32 using CNNSRIM1.

Figure 107. Chart of CNN training for index 32 using CNNSRIM1.
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Figure 108. Histograms of validation set results for index 1 using CNNSRIM2.

Figure 109. Chart of CNN training for index 1 using CNNSRIM2.
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Figure 110. Histograms of validation set results for index 2 using CNNSRIM2.

Figure 111. Chart of CNN training for index 2 using CNNSRIM2.
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Figure 112. Histograms of validation set results for index 3 using CNNSRIM2.

Figure 113. Chart of CNN training for index 3 using CNNSRIM2.
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Figure 114. Histograms of validation set results for index 4 using CNNSRIM2.

Figure 115. Chart of CNN training for index 4 using CNNSRIM2.
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Figure 116. Histograms of validation set results for index 5 using CNNSRIM2.

Figure 117. Chart of CNN training for index 5 using CNNSRIM2.
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Figure 118. Histograms of validation set results for index 6 using CNNSRIM2.

Figure 119. Chart of CNN training for index 6 using CNNSRIM2.
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Figure 120. Histograms of validation set results for index 7 using CNNSRIM2.

Figure 121. Chart of CNN training for index 7 using CNNSRIM2.
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Figure 122. Histograms of validation set results for index 8 using CNNSRIM2.

Figure 123. Chart of CNN training for index 8 using CNNSRIM2.
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Figure 124. Histograms of validation set results for index 9 using CNNSRIM2.

Figure 125. Chart of CNN training for index 9 using CNNSRIM2.
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Figure 126. Histograms of validation set results for index 10 using CNNSRIM2.

Figure 127. Chart of CNN training for index 10 using CNNSRIM2.
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Figure 128. Histograms of validation set results for index 11 using CNNSRIM2.

Figure 129. Chart of CNN training for index 11 using CNNSRIM2.
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Figure 130. Histograms of validation set results for index 12 using CNNSRIM2.

Figure 131. Chart of CNN training for index 12 using CNNSRIM2.
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Figure 132. Histograms of validation set results for index 13 using CNNSRIM2.

Figure 133. Chart of CNN training for index 13 using CNNSRIM2.
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Figure 134. Histograms of validation set results for index 14 using CNNSRIM2.

Figure 135. Chart of CNN training for index 14 using CNNSRIM2.
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Figure 136. Histograms of validation set results for index 15 using CNNSRIM2.

Figure 137. Chart of CNN training for index 15 using CNNSRIM2.
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Figure 138. Histograms of validation set results for index 16 using CNNSRIM2.

Figure 139. Chart of CNN training for index 16 using CNNSRIM2.
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Figure 140. Histograms of validation set results for index 17 using CNNSRIM2.

Figure 141. Chart of CNN training for index 17 using CNNSRIM2.
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Figure 142. Histograms of validation set results for index 18 using CNNSRIM2.

Figure 143. Chart of CNN training for index 18 using CNNSRIM2.
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Figure 144. Histograms of validation set results for index 19 using CNNSRIM2.

Figure 145. Chart of CNN training for index 19 using CNNSRIM2.
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Figure 146. Histograms of validation set results for index 20 using CNNSRIM2.

Figure 147. Chart of CNN training for index 20 using CNNSRIM2.
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Figure 148. Histograms of validation set results for index 21 using CNNSRIM2.

Figure 149. Chart of CNN training for index 21 using CNNSRIM2.
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Figure 150. Histograms of validation set results for index 22 using CNNSRIM2.

Figure 151. Chart of CNN training for index 22 using CNNSRIM2.
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Figure 152. Histograms of validation set results for index 23 using CNNSRIM2.

Figure 153. Chart of CNN training for index 23 using CNNSRIM2.
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Figure 154. Histograms of validation set results for index 24 using CNNSRIM2.

Figure 155. Chart of CNN training for index 24 using CNNSRIM2.
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Figure 156. Histograms of validation set results for index 25 using CNNSRIM2.

Figure 157. Chart of CNN training for index 25 using CNNSRIM2.
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Figure 158. Histograms of validation set results for index 26 using CNNSRIM2.

Figure 159. Chart of CNN training for index 26 using CNNSRIM2.
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Figure 160. Histograms of validation set results for index 27 using CNNSRIM2.

Figure 161. Chart of CNN training for index 27 using CNNSRIM2.

186



Figure 162. Histograms of validation set results for index 28 using CNNSRIM2.

Figure 163. Chart of CNN training for index 28 using CNNSRIM2.
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Figure 164. Histograms of validation set results for index 29 using CNNSRIM2.

Figure 165. Chart of CNN training for index 29 using CNNSRIM2.
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Figure 166. Histograms of validation set results for index 30 using CNNSRIM2.

Figure 167. Chart of CNN training for index 30 using CNNSRIM2.
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Figure 168. Histograms of validation set results for index 31 using CNNSRIM2.

Figure 169. Chart of CNN training for index 31 using CNNSRIM2.
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Figure 170. Histograms of validation set results for index 32 using CNNSRIM2.

Figure 171. Chart of CNN training for index 32 using CNNSRIM2.
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