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ABSTRACT  
   

Studies of discourse are prevalent in mathematics education, as are investigations 

on facilitating change in instructional practices that impact student attitudes toward 

mathematics. However, the literature has not sufficiently addressed the operationalization 

of the commognitive framework in the context of Calculus I, nor considered the 

inevitable impact on students’ attitudes of persistence, confidence, and enjoyment of 

mathematics. This study presents an innovation, founded, designed, and implemented, 

utilizing four frameworks. The overarching theory pivots to commognition, a theory that 

asserts communication is tantamount to thinking.  

Students experienced a Calculus I class grounded on four frames: a  theoretical, a 

conceptual, a design pattern, and an analytical framework, which combined, engaged 

students in discursive practices. Multiple activities invited specific student actions: 

uncover, play, apply, connect, question, and realize, prompting calculus discourse. The 

study exploited a mixed-methods action research design that aimed to explore how 

discursive activities impact students’ understanding of the derivative and how and to 

what extent instructional practices, which prompt mathematical discourse, impact 

students’ persistence, confidence, and enjoyment of calculus.  

This study offers a potential solution to a problem of practice that has long 

challenged practitioners and researchers—the persistence of Calculus I as a gatekeeper 

for Science, Technology, Engineering, and Mathematics (STEM). In this investigation it 

is suggested that Good and Ambitious Teaching practices, including asking students to 

explain their thinking and assigning group projects, positively impact students’ 

persistence, confidence, and enjoyment. Common calculus discourse among the 
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experimental students, particularly discursive activities engaging word use and visual 

representations of the derivative, warrants further research for the pragmatic utility of the 

fine grain of a commognitive framework. For researchers the work provide a lens through 

which they can examine data resulting from the operationalization of multiple 

frameworks working in tandem. For practitioners, mathematical objects as discursive 

objects, allow for classrooms with readily observable outcomes.  

Keywords: commognitive, commognition, discourse, communication, thinking, attitude, 

persistence, confidence, enjoyment, good teaching, ambitious teaching, discursive, 

discursive cognition, calculus, STEM 
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CHAPTER 1 

LEADERSHIP CONTEXT AND PURPOSE OF THE ACTION 

Silence is the language of God, all else is poor translation.  

—Rumi, (Kononenko & Kononenko, 2010, p. 134) 

Personal Background 

Prior to establishing the context for my work and the innovation that were central 

to the study, I have provided background that was crucial to setting that context. I grew 

up in south Texas, spoiled by the tropical oasis of Padre Island and cooled on hot summer 

nights by the Gulf Coast winds. In the wealth of support in my development in science, 

technology, engineering, and mathematics (STEM), I had not realized until eighth grade 

that I attended schools that were marginalized, reflecting in their dilapidated 

infrastructure, the impoverished neighborhoods in which we, its children of color, lived. 

What I remembered fondly were people in my school life, like Mrs. Thompson, who 

extended a warm welcome when I arrived in her classroom from the Philippines. She 

embraced me and raved about my mathematical abilities. Mrs. Neighbor, our sixth-grade 

teacher, who all my peers swore was wicked to everyone but me, goaded on and 

championed my mathematical and writing skills equally. In retrospect, this was 

serendipity—the right time and place combined with sincere teachers dedicated to their 

craft, who understood my desire to think, to understand, to communicate, and to learn 

unremittingly about the world around me. The only rule I thought was oddly practiced by 

my elementary school teachers was “silence is golden.”  

STEM Roots with Endearing Support 

In eighth grade, I completed my own bussing forms to attend a prestigious “south 
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side” school. Even at 13, I knew the school offered a better education, but I quickly 

realized I did not belong at this school. I returned to school in my community where 

dedicated teachers and a circle of friends embraced and nurtured our collective growth in 

STEM. I accepted education would be my only ticket out of a marginalized but happy 

life—a life that also engendered my STEM lifeline.  

I had vivid images of our biology, chemistry, precalculus, and physics teachers. 

Nostalgia easily took me back to Mr. Gillespie’s voice in our mathematics classes, “What 

does that have to do with the price of eggs in China?!” he chided us daily. I had no clue 

what he meant. I laughed to reciprocate his amusement. Mr. Gillespie was the kind of 

teacher who taught us to feed our curiosity. He taught courses that did not exist at our 

northeast-side high school —until I inquired. When I wanted to know what analytic 

geometry was, Mr. Gillespie told me the only way I would ever know was to “do” 

analytic geometry and “experience” analytic geometry. I was the only student in his 

analytic geometry class. Through the lens of educational research, I have come to know 

my STEM high school teachers engaged in the persistent practice of “good teaching” 

(Chickering & Gamson, 1999). “Good teaching” had a lasting positive effect on my 

attitudes—my persistence, confidence, and enjoyment, toward STEM disciplines, 

particularly mathematics, as studies indicated they would (Chickering & Gamson, 1999; 

Bressoud et al., 2015; Rasmussen et al., 2019). In contrast to my elementary teachers, my 

high school STEM teachers constantly prompted us for questions and answers. Our talk 

was a translation of our thoughts, they seemed to believe.  

I had a counselor who acted as my guardrail, making sure I remained on course 

with my STEM aspirations. She ensured I did not fall off the precarious cliffs that were 



3 

part of our community’s landscape, figuratively not literally. In retrospect, I was certain 

her connections afforded many of us with opportunities unimaginable to others in the 

same socioeconomic status. For example, following 11th grade, I spent a summer in 

Phillips Academy Andover in a co-educational university-preparatory school, where I 

was exposed to a rich, diverse ecosystem that changed my perspective. I realized the 

social rift and the socioeconomic gaps between the “haves” and “have nots.” However, 

this perception made me keenly aware of opportunities, rather than resentful. 

Andover, unlike the south-side middle school in my hometown, gave me the 

opportunity to belong. Phillips Academy teachers invited us to engage our curiosity and 

to be essential in our Academy as well as the surrounding communities. The teachers, in 

addition to practicing “good teaching,” welcomed us into their homes. At 16, this 

experience was significant to my life’s trajectory, especially having grown up in a trailer 

park on the wrong side of town which was mostly ignored by many in our surrounding 

communities and leaders. Like my high school STEM teachers, to my Andover teachers, 

our verbal, written words, in my English class, and visual mediators, in my trigonometry 

class, were translations of our thoughts. Poor translations were as welcomed as silence.   

A Supportive Academic Engineering Environment 

I was a first-generation college student. Unfortunately, neither of my parents 

graduated from high school. As an engineering student at a university, as an engineering 

intern in industry, and a part-time employee in an engineering office when I was an 

undergraduate student, serendipity was again my fate. Like in grade school and high 

school, I was guided by mentors and kept on track by guardrails. My academic interest 

was shaped by the prowess of my professors who also practiced the characteristics of 
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“good teaching.” They communicated high expectations, encouraged direct contact with 

them, and provided prompt feedback with supportive advice. I recall my design professor 

making an analogy between problem solving and playing pool. He was steadfast in his 

advice that we had to understand the problem first, that we paused and thought in order to 

strategize, and that we set up the next shot. From my advocates, I learned to value the 

opportunity to communicate my thoughts and to understand poor translation was the root 

of human learning. 

Challenges to Aspirations for Thinking and Understanding 

At the center of my continuous development and growth was my keen interest in 

the processes of thinking, communicating, and understanding. For my first and second 

positions as a full-time engineer, at my interviews I was asked about the “A” that was 

struck from my undergraduate transcript. I explained that, against the counsel of my 

academic advisor and advice of my friends, I retook the class to better understand and 

have a better command of thinking about and communicating the course material. Not 

expecting such a question, I was convinced I missed the opportunities for these full-time 

positions, but to my surprise, I was hired. 

I left my engineering career because as a mother I wanted to focus on my 

daughters’ education and their development and growth in thinking, communicating, and 

understanding toward learning. My eldest daughter’s first rebellion, at the age of five, 

raged as she asked me a question. She then added with cogency, “And don’t ask me what 

I think, just tell me the answer, Momma!” Twenty years later, at a community college in 

the Southwest, I have continued to embrace and appreciate the opportunity to think about, 

communicate, and understand how people learn, particularly in calculus, with an 
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increasingly diverse population of students, who have likely told me under their breath, 

“Don’t ask me what I think, just tell me the answer.” 

Larger Context in STEM 

Although in 2012 the United States produced approximately 300,000 college 

graduates with bachelor and associate degrees in STEM fields, fewer than 4 out of 10 

students who go to college intending to major in a STEM field complete a STEM degree. 

With the industry demand far higher than the supply for specialized skills in STEM, in 

2015, President Obama called for a national focus to accelerate production of one million 

additional college graduates in STEM (Olson & Riordan, 2012). The lack of inclusivity 

and the disproportionate participation in STEM fields, based on gender, race, and 

socioeconomic backgrounds, have been and have continued to be serious problems in our 

nation’s efforts to navigate a 21st century economy that is increasingly dependent on 

STEM literacy.  

A Vision for STEM Education in America 

In June 2018, the White House Office of Science and Technology Policy (OSTP) 

joined the National Science Foundation (NSF) and sixteen other Federal agencies to 

inform the development of the federal government’s five-year strategic plan for STEM 

education. Proponents envisioned “a future where all Americans will have lifelong access 

to high-quality STEM education and the United States will be the global leader in STEM 

literacy, innovation, and employment,” which was required by the COMPETES Act of 

2010 (National Science & Technology, 2018, p. v).  

Proponents of the Federal report, Charting a Course for Success: America’s 

Strategy for STEM Education (National Science & Technology, 2018) envisioned three 
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aspirational goals: (a) build strong foundations for STEM literacy; (b) increase diversity, 

equity, and inclusion in STEM; and (c) prepare the STEM workforce for the future. One 

interesting observation and takeaway was the spotlight on mathematics. “Make 

mathematics a magnet” was one of three objectives under the pathway “Engage students 

where disciplines converge” (p. 15). No other STEM discipline was called out explicitly 

in the list of objectives in the Federal report. 

Broadening Participation in STEM Through NSF Outreach 

Broadening participation (BP) has been a long-standing NSF programmatic effort 

as well as a key component of NSF’s strategic plan. NSF engaged in extensive outreach 

from 2014-2016 with Dear Colleagues Letters (DCL) to recruit at two-year Hispanic-

serving institutions (HSI) or at community colleges as well as universities to encourage 

the development of communities of practice to conduct high-impact innovative work to 

address student success in the first two years of mathematics courses (James & Singer, 

2016). NSF projects like this, conducted to carry out the research on strategies for BP, 

were necessary to fully advance the NSF BP agenda, continuing to build on the 

knowledge base of effective strategies for high-quality STEM learning environments.  

The Role of Calculus in STEM Learning at a National Level 

In 2009-2014, the Mathematical Association of America (MAA) conducted an 

investigation of Calculus I at U.S. colleges and universities. The two-phase 

Characteristics of Successful Programs in College Calculus (CSPCC) Project culminated 

into the seminal report, Insights and Recommendations from the MAA National Study of 

College Calculus (Bressoud et al., 2015). CSPCC was the first nationwide project to 

integrate large-scale survey data with in-depth case study analysis. The innovation for 
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this study drew from two pedagogically-related outcomes from the CSPCC project 

results. In measuring the impact of characteristics of calculus classes that influence 

student success, Sonnert and Sadler (2015), as part of the CSPCC team of researchers, 

identified two pedagogical factors, Good Teaching and Ambitious Teaching, from their 

analysis of the national survey data. In addition, Bressoud et al. recommended seven best 

practices based on their CSPCC project key findings.  

Best Practices at Work in Community Colleges 

In the context of teaching calculus at a community college, six of the seven 

recommended best practices were directly applicable to calculus courses at the 

community college level (Bressoud et al., 2015):  

• construction of challenging and engaging courses; 

• active learning strategies, e.g., whole classroom dialogues, peer-to-peer 

discussions, and in-class problem solving;  

• regular use of local data to serve as curricular guidance and for structural 

modifications;  

• use of proactive student support services, including the fostering of student 

academic and social integration;  

• adaptive placement systems to place students in the highest course in which they 

could succeed; and  

• coordination of instruction, including building of communities of practice.  

The seventh practice, related to training of graduate teaching assistants, was not 

applicable to the community college setting.  
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In particular, the characteristics related to construction of challenging and 

engaging courses and active learning strategies, in conjunction with lectures, have been 

central to my instructional approach for more than two decades. Both characteristics 

make up two constructs identified by Sonnert and Sadler (2015) as Good Teaching and 

Ambitious Teaching. Both constructs were investigated further by Mesa et al. (2015) and 

Larsen et al. (2015) in Phase II of the CSPCC project, comprising an in-depth case study 

analysis at several universities.  

In my precalculus and calculus classes, practicing Good Teaching was realized 

through intentional instructional actions (Chickering & Gamson, 1999): I encouraged 

direct contact with me, collaboration among students, and active learning. I emphasized 

time on task. I communicated high expectations. I respected diverse talents and ways of 

learning. As I increased the quality of Good Teaching characteristics, I have persistently 

incorporated Ambitious Teaching factors into my classes. My efforts were guided by 

more than my ambitions to teach effectively. However, I anticipated the needs: (a) to 

provide a theoretical foundation for my practice; (b) to address my course-content 

structure; (c) to address what it means for students to understand mathematical concepts; 

and lastly, (d) to assess my goals as they align to my instructional demand on my 

students. Multiple frameworks were essential for sustainable systemic improvement that 

efficiently and, more importantly, effectively, assisted students to succeed in calculus or 

any class I taught.   
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Local Research Context: The Need for Improvement 

The District Level 

My community college system is one of the largest community college systems in 

the nation with ten regionally accredited colleges serving the greater metropolitan area. 

Our community college district enrolled approximately 93,511 students in 2021-2022. In 

fall 2021, our female-male student proportions were 58-41%, with 1% undeclared. There 

were 29% full-time and 71% part-time students with an average age of 24 enrolled, an 

average of 8.3 credit hours, and an average class size of 15.4 students. About 90% are in-

county residents. Our demographics by specific ethnic groups was the following: White 

43%, Hispanic 37%, Black 6%, Two or More 5%, Asian 4%, Not Specified 3%, and 

American Indian 2%. Student intent ranged from 35% transfer to university, 24% high 

school students, 22% enter/advance in job market, 11% personal interest, 4% university 

students, and 3% undeclared. First generation college students comprise 49% of our 

district’s student population.  

In a period from February to April 2017, an ad hoc Transformation Task Force, 

created by our Chancellor, at the time, produced 42 recommendations categorized under 

student access and success, workforce responsiveness, resources, efficiency and 

collaboration, and leadership at the district and college level. The district transformation 

proposal was developed as a response to declining student enrollment and revenue. The 

overarching topics were leadership, guided pathways, student services to support success, 

marketing and outreach, accountability and performance, and reducing competition 

between sister district colleges. Three areas of focus emerged: Guided Pathways, Industry 

Partnership, and Enterprise Performance. Guided Pathways helped students to identify a 
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clear and coherent educational pathway and to determine their career and educational 

goals toward timely completion. Industry Partnership provided students with valuable 

hands-on workplace experience. Finally, Enterprise Performance was a comprehensive 

talent management system with the goal to enhance our district’s competitiveness. 

The College Level 

The specific setting of this study was conducted at one of the largest colleges in 

the community college district located in the Southwest. The mathematics department at 

our college found itself at a crossroad. Mathematics faculty members could have 

reinvented the teaching and learning opportunities the department offered to students or 

they could have continued on the same course with no change in student completion rates 

in our gateway courses. Concurrently, our mathematics department faculty members were 

required to consider the implications the district transformation proposal had at our 

college, in our department, and particularly on our students.  

 As a mathematics faculty member, my strategy was to engage in the Guided 

Pathway to Success (GPS) efforts. I was a member of multiple GPS Pathway Mapping 

teams for three years. My problem of practice targeted the GPS goal: close the  

achievement equity gap in student success. The directly relevant GPS goal and outcomes 

were: (a) improvement in equity and (b) an increase in completion of gateway   

mathematics and English courses in the first year.  

Leadership with Intimate Contextual Knowledge 

For 25 years, I have owned my responsibility as a teacher to our community   

college students and as an engaged and accountable member of our educational 

community—as did the individuals and communities that intentionally assisted me in 
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transforming my narrative from a student to an engineer, to a mother, and finally to a 

teacher—from my arrival in the U.S. to decades that followed. My desire was to make a 

positive difference.  

My intimate contextual mathematical proficiency was developed through my 

practice as an engineer, collaborating with colleagues to apply mathematics with  

observable implications and impact. My intimate contextual understanding of educational 

research began with a fellowship program at the district level that served as an institute    

for faculty learning. The experience ignited my continuing dedication to the scholarship    

of teaching and learning (SoTL). As a faculty developer for my college for three years, I 

had the opportunity to collaborate with other faculty, staff, and our Administration to    

pave directions for multiple initiatives for our Center for Teaching and Learning.  

My collaboration with colleagues, students, artists, engineers, masons,     

contractors, and our college's facilities employees, to design, create, produce, and install 

four Islamic art murals and a free-standing ceramic mural, within a span of 10 years, 

empowered teams to realize creativity that transcended disciplines and rank. My  

experience as a member of NSF Review Panels for STEP, S-STEM, TUES, and CCIC 

offered me a glance at the incredible national research efforts in which our colleagues 

engaged to captivate our students’ imaginations and engage them in scholarship, learning, 

leadership, and innovation. Through such experiences, I recognized to have a significant 

impact, I needed not only to understand my subject matter well, but I needed to intimately  

understand students and to possess a resolve perhaps beyond my ken, and often beyond   

my energy, but never beyond my effort. 



12 

A Change Effort Worth Pursuing 

At the time I applied for the Leadership & Innovation program in fall 2018, I was  

an ad hoc member of our college mathematics developmental education transformation 

team. The team was charged with a directive to find ways to meet two district-level 

developmental education project goals. Those goals were: (a) all students should have the 

opportunity to complete college-level mathematics and English courses in their first year   

at our district; and (b) 80% of students should be placed into college-level mathematics   

and English with the appropriate support they needed to succeed within their first   

semester. For years, our college’s success rates and completion rates in mathematics have 

been dismal, with a large percentage of our students placed in developmental courses,   

often at the arithmetic review level. I realized our students at our college were likely not 

different from students cited in the MAA studies (Bressoud et al., 2015; Rasmussen et al., 

2019) who intended to be STEM majors but left the STEM discipline after their first 

calculus course. At the time I applied to this program, I stated I would look for direction 

and guidance to frame our mathematics department program to assist students in 

completing gateway mathematics courses within their first year in gateway courses such    

as Calculus I. It was a specific problem of practice statement and change effort worth 

pursuing because our students at our college and district, and truly all students, deserve 

nothing less.  

Purpose Statement and Research Questions 

With the innovation in my Calculus I class, my intention was to influence and 

affect student attitudes toward mathematics and their calculus knowledge, particularly 

their thinking about, and understanding of, the derivative concept through a systemic 
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holistic approach to motivating discursive activity in a Calculus I class. I imagined my 

Calculus I students mathematizing and proud to call themselves mathematists—those 

who engage and revel in mathematical discourse.  

The first purpose of my investigation was to engage students in mathematical 

discourse to motivate student thinking and understanding of calculus, particularly, the 

derivative concept. The second purpose was to assess the impact of the combination of 

two factors, Good Teaching and Ambitious Teaching, on a composite mathematics 

attitude comprising the dependent variables persistence, confidence, and enjoyment in 

mathematics, particularly calculus. Lastly, the third purpose was to determine if there was 

a significant and observable difference in performance of students in an experimental 

calculus class designed to motivate active engagement in mathematical discourse in 

contrast to students in a traditional calculus class. Given the purpose of the study, four 

research questions guided its conduct. 

RQ1: How does the transformation of classroom communication, specifically  

          mathematical discourse, affect the understanding of the derivative concept in a 

          Calculus I course? 

RQ2: To what extent does participation in classroom discourse in Calculus I, as   

          compared to traditional pedagogy, affect the understanding of the derivative  

          concept in a Calculus I course? 

RQ3: How does Good Teaching and Ambitious Teaching impact students’ attitudes  

          toward mathematics, particularly persistence, confidence, and enjoyment in  

          mathematics? 
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RQ4: To what extent does Good Teaching and Ambitious Teaching impact students’  

          attitudes toward mathematics, particularly persistence, confidence, and enjoyment  

          in Calculus I? 

Organization of Dissertation 

 My action research was organized into five chapters. In this chapter, I presented a 

case for my investigation by situating my problem of practice in varied contexts spanning 

the spectrum from personal to national. In chapter 2, I provided a description of how my 

problem of practice has been conceptualized in the literature. Next, in chapter 3, the 

setting and participants, my role as practitioner and researcher, my innovation and 

frameworks that undergird the innovation, and the collection and analysis of data are 

provided. Following this, the analysis and results are presented in chapter 4. Finally, 

chapter 5 offers a discussion of the significance and relevance of this study and its results 

to practice and research. 
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CHAPTER 2 

THEORETICAL PERSPECTIVES AND RESEARCH GUIDING THE PROJECT 

It is the theory which decides what can be observed. 

—Albert Einstein 

The Calculus Reform: A Gateway 

Calculus for a New Century: A Pump not a Filter (Steen, 1988) emerged from the 

growing discontent in the 1980s, revealing the immense complexity of a calculus reform 

and the diverse opinions about reshaping calculus for the new century. Well into the 21st 

century, calculus persisted as a gatekeeper course in STEM education as evident in 

Charting a Course for Success: America’s Strategy for STEM Education (National   

Science & Technology, 2018). Calculus has persisted as a gatekeeper, not a gateway  

course, for STEM students (Bressoud, 2019; Bressoud et al., 2015; Rasmussen et al.,   

2019; Zorn, 2015). STEM-intending students consistently listed Calculus I as a factor for 

navigating away from STEM (Bressoud et al., 2015; Ellis et al., 2014; Olson & Riordan, 

2012; Rasmussen et al., 2019; Seymour & Hewitt, 1997). Thirty years after the initial 

outcry for reform, Bressoud (2019) exhorted that the critical elements leading to a better 

understanding of undergraduate instruction continued to benefit from the amassed data  

from the Calculus Reform of the 1980s and 1990s. 

Calculus Reform: What is different this time?  

Bressoud (2019) asserted three reasons why the current reform agenda was not an 

iteration of the 1980s Calculus Reform effort: (a) the current agenda accelerated 

undergraduate mathematics research and improved undergraduate instruction based on 

accumulated data that support best practices; (b) the combined pressure of high failure  
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rates and the workforce demanded for the 21st century weighed heavily on educational 

leaders; and (c) the focus was on developing the new generation of educators    

accompanied by an emphasis from what was taught, and more importantly, to how it was 

taught.  

A collective effort and narration by both practitioners and researchers had the 

potential to recast Calculus I from its apparent gatekeeping ignominy to a primed pump,  

not a filter, for STEM students. The bridging of theory and research with classroom, 

assessment, and course design practices promoted effective teaching and learning that  

could provide equitable access to mathematics for all students and were forces for social 

change. In their Mathematical Association of America (MAA) Instructional Guide, Abell 

(2018) upheld these values and asserted our society deserved nothing less. 

Grounding Practice in Research and Theory 

Three foundational practices supported effective teaching: classroom practice, 

assessment practice, and course design practice. The MAA Instructional Guide ushered 

mathematics instruction and provided evidence-based teaching strategies along with these 

three foundational practices. A significant body of research and theory on effective  

teaching and learning grounded the three foundational practices proffered by Abell    

(2018). A brief on theories was offered and highlighted in the instructional guide, 

specifically in  the discussion of instructional course design. The effort to recast Calculus    

I as a gateway, packaged with the curriculum and instruction in the first two years of 

college, was clearly a joint endeavor among researchers, practitioners, and policy makers  

as they cite each other’s work as impetus for this charge they had embraced. Guiding this 

effort were literature such as the Characteristics of Successful Programs in College 
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Calculus  (Bressoud et al., 2015); MAA Instructional Practices Guide (Abell, 2018); 2015 

CUPM Guide to Majors in the Mathematical Sciences (Zorn, 2015); and A Common   

Vision for Undergraduate Mathematical Sciences Programs in 2025 (Saxe & Braddy, 

2015). A palpable synergy gave momentum to a collective effort to synthesize   

instructional practices with research and theory.  

What is Theory and Why Do We Need It?   

Sfard (2018) lamented the harbingers of indifference toward theory-less research 

evident by articles such as “Against Theory” (Knapp & Michaels, 1982) and “Big Data   

and the Death of the Theorist” (Steadman, 2013). Claiming theories emerged from  

research, Sfard offered a description of research as telling stories about aspects of reality 

(Sfard, 2018). Mathematics education researchers, for example, shared their stories about 

the realities of learning and teaching mathematics. However, by employing specially 

designed discursive tools, a researcher’s unique discourse reached beyond the norm in a 

methodical, unequivocal, and precise way. Within a given discourse, for example 

mathematics education research, the set of exact and useful stories endorsed by a 

community of researchers was what Sfard called—a theory.  

Four dimensions delineated research discourses like mathematics education  

research from other type of discourses: (a) keywords and their use, (b) visual mediators 

used by storytellers to make their stories vividly clear, (c) the research participants’   

routine actions, and finally (d) a smaller subset of narratives that determined the base 

properties of discourse’s focal objects—that was, the theoretical assumptions (Sfard,    

2008, 2018). Central to a theory was the key property of internal consistency, ensuring 

mutual endorsability with any pair of narratives. Furthermore, mathematics was defined    
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by Sfard (2001, 2008) as a type of discourse. Albeit object-rules are fixed, Sfard asserted 

discourse is an autopoietic system that blooms 

by annexing its own metadiscourses, and this means, among others, that what  

counts as a metarule in one mathematical discourse will give rise to an object-   

level rule as soon as the present metadiscourse turns into a full-fledged part of the 

mathematics itself. (Sfard, 2008, pp. 201-202) 

The autopoietic property and the ability for discourse to absorb endorsed    

narratives into a collective, I hypothesized, offered complex challenges for my action 

research. The Commognitive Framework (Sfard, 2008) was a theory of mathematics 

learning premised on the assumption thinking was tantamount to communication. Sfard 

(2008, 2020) blended communication and cognition and coined the term commognition. 

The pragmatic lean of the commognitive methodology, the methods, and the innovation, 

informed by published scholarship, fueled the trajectory of my investigation and    

supported the prospects of the success of my action to address my problem of practice     

and research questions from diverse perspectives of researchers and practitioners.  

Achieving the STEM Imperative: A Collective Narrative 

The STEM imperative, the need for more and better prepared STEM graduates to 

fill the anticipated gap between the estimated millions more STEM jobs than qualified 

workers available, continued to be a challenge (Adkins, 2012; Lazio & Ford, 2019; 

Rothwell, 2012; Smithsonian Science Education Center, n.d.). Trends showed the number 

of STEM majors decreased over the past decades (Lazio & Ford, 2019; Olson & Riordan, 

2012; Rothwell, 2012). Inconsistent with common beliefs, students who switched away 

from STEM majors did not lack persistence nor academic preparation. Students cited     
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poor instructional experiences in gateway first-year courses (Bressoud et al., 2015; Olson  

& Riordan, 2012; Rasmussen et al., 2019) as a primary reason for their departure from the 

STEM fields. Calculus I, supposedly a first-year gateway course, was a requisite for most 

STEM degrees. The scale of the problem was global (Rasmussen et al., 2019) and the 

correlated narratives were a collective continuing to fuel persistent extant quandaries in 

mathematics education. The Common Vision project (Saxe & Braddy, 2015) recently 

connected leaders of the five professional associations that represented undergraduate 

mathematical science programs, with partner STEM disciplines and other vested 

organizations and industry, to identify common research themes, forming—a collective 

narrative.  

Galvanized and Guided by a Common Vision 

The Common Vision project (Saxe & Braddy, 2015) reported on four categories to 

improve undergraduate learning, particularly in the first two years. My investigation was 

galvanized by the Common Vision project guide that addressed two of the four categories, 

curricula and course structure. In the category of curricula and course structure, they 

promoted: (1) a contemporary curriculum, (2) evidence-based teaching methods, and (3) 

interdisciplinary collaboration. Instructors were charged to motivate and illustrate key  

ideas and concepts via multiple perspectives using a wide range of subject matters in 

modern applications. The backdrop for the instructional practices guide were provided by 

MAA documents, the 2015 CUPM Curriculum Guide to Majors in the Mathematical 

Sciences (Zorn et al., 2015) and IMPACT—Improving Mathematical Prowess and     

College Teaching (MAA, 2018), offering course recommendations for the mathematical 

sciences and sample syllabi. Literature from professional associations in mathematics and 
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public scholarship provided knowledge to drive specific change efforts with a critical lens 

to shaping my overall action research.  

Research Questions Inspired and Guided by MAA and ICME 

My research questions were as follows:  

RQ1: How does the transformation of classroom communication, specifically  

          mathematical discourse, affect the understanding of the derivative concept in a 

          Calculus I course? 

RQ2: To what extent does participation in classroom discourse in Calculus I, as   

          compared to traditional pedagogy, affect the understanding of the derivative  

          concept in a Calculus I course? 

RQ3: How does Good Teaching and Ambitious Teaching impact students’ attitudes  

          toward mathematics, particularly persistence, confidence, and enjoyment in  

          mathematics? 

RQ4: To what extent does Good Teaching and Ambitious Teaching impact students’  

          attitudes toward mathematics, particularly persistence, confidence, and enjoyment  

          in Calculus I? 

These were questions inspired by calls to action and recommendations of 

opportunities for growth and improvement in continuing research in two MAA and one 

International Congress on Mathematical Education (ICME) publications. In Insights and 

Recommendations from the MAA National Study of College Calculus, Sonnet and Sadler 

(2015) identified two pedagogical factors of highly correlated attributes that influenced 

students’ attitudes toward calculus at the classroom level—Good Teaching and Ambitious 

Teaching; this gave rise to my third and fourth research questions. The interest in my first 
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two research questions was piqued by “The Calculus Sequence” (Zorn et al., 2015) which 

highlighted the contemporary trend and importance of covariation and accumulation with 

respect to the derivative topic. This current shift in thinking about the concept of the 

derivative, juxtaposed with the overview of the theoretical frameworks used and     

evolution of trends in the field of calculus education from the 1980s to the present, 

particularly regarding the concept of the derivative (Bressoud et al., 2016), supported the 

prospect of my first and second research questions. Bressoud et al. (2016) provided a  

global vision of learning and teaching calculus, including a discussion on the 

epistemological aspects of calculus concepts and an appraisal of well-defined theoretical 

frameworks in mathematics education. Their work motivated my interest in Sfard’s 

Commognitive Framework, a  theory based on the idea of thinking-as-communicating 

(Sfard, 2001, 2008).  

Commognition: Thinking-as-Communicating 

Communication: The Principal Outcome 

In their study of the characteristics of successful calculus programs, Bressoud et    

al. (2015) asserted improving calculus can be accomplished by developing a common 

vision  of specific skills and knowledge, or learning outcomes, and assessing at the end of 

the course to determine whether the learning outcomes were attained. Communication    

was clearly a primacy in A Common Vision (Saxe & Braddy, 2015). In the executive 

summary, one of the common themes from seven national curricular guides underscored 

“Students should learn to communicate complex ideas in ways understandable to 

collaborators, clients, employers, and other audiences” (p. 1). 

Advancing assertions that communication was a primacy as a learning outcome, 
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Sfard (2015), in “Why All This Talk About Talking Classrooms? Theorizing the Relation 

Between Talking and Learning,” argued communication was indispensable to learning. 

That is, the process of learning was tantamount to changing and shaping ways of 

communicating by the commognitive approach—the approach of thinking-as-

communicating.  

We look at the object of changes resulting from innovations in discursive practices 

of the classroom; we end up focusing on the activity of communication. 

Communication, rather than playing a secondary role as the means for learning, is  

in fact the centerpiece of the story— the very object of learning. [W]hen we   

change rules of interpersonal communication, it is not surprising thinking—the 

individualized form of communication— changes as well. If mathematics is a 

particular discourse with its own special ways of storytelling, there is no other     

way to learn mathematics than by adjusting the rules of classroom communication. 

(Sfard, 2015, pp. 239-240) 

Evident to Sfard (2015) was the dichotomy of communication and thinking was 

strong and pervasive in the research community and thus likely in our students. She  

asserted this belief was based on a false dichotomy. The overall goal of my investigation 

was to determine which observable characteristics of and change in mathematical  

discourse, at the classroom level, lent itself to students understanding essential calculus 

concepts, particularly the derivative concept, through Sfard’s (2001, 2008) approach of 

thinking-as-communicating.  

A Pragmatic Communicational Approach 

In his review of Sfard’s commognitive perspective, Wing (2011) underscored the 
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pragmatism of an approach that deems communication as tantamount to thinking. 

Mathematical objects as discursive objects allowed practitioners to teach in the    

classrooms with readily observable outcomes and other learning phenomena. Sfard     

(2008) defined mathematical objects as abstract discursive objects with distinctly 

mathematical signifiers. In Figure 1 below, the signifier was the statement “Given    

!′(#) = #2,    determine !′(2).” The signifier served as a root for the branches that stem 

from the nodes  of the realization tree. All the nodes that follow comprised the realization 

tree for this signifier. Each node was simultaneously a realization for the signifier node 

before it and a signifier for the node that followed it. This exemplified the iterative, 

autopoietic nature of   a mathematical discourse. The combination of the initial signifier  

and its corresponding realization tree was defined as a discursive object that, in this case, 

was produced from a hypothetical discursive activity of three students. 

The pragmatism of Sfard’s Commognitive Framework guided my investigation at 

multiple levels. At the curriculum level, developing understanding of the derivative  

concept was imagined using the four characteristics of mathematical discourse: word use, 

visual mediators, routines, and endorsed narratives (Bressoud et al, 2016; Nardi et al.,  

2014; Park, 2011; Ryve, 2011; Tabach & Nachlieli, 2016). At the classroom level, the 

commognitive approach necessitated the instructor’s facilitation of discursive shifts 

(Bressoud et al., 2016; Sfard, 2001, 2008), and necessarily involved discursive shifts for 

learners, or mathematists, (Sfard, 2008). Lastly, at the institutional level, the contribution  

of mathematical discourse to our community college students was the potential realization 

of the learning outcomes of critical thinking and communication. To act on this demand 

required a realization of multiple frameworks to guide the course structure design, to   
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frame the derivative concept, and to frame the cognitive demand and the characteristics     

of the coursework in Calculus I.  

 

Figure 1 

A Realization Tree for a Derivative-Concept Signifier

 

The rest of this chapter is organized into three areas of research and theoretical 

perspectives that shape my overall action research followed by implications for my  

practice. First, to inform and further effective teaching and support deep student learning,    

I discuss two constructs or composite factors, Good Teaching and Ambitious Teaching. 
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Second, I outline commognition as the central theoretical framework I employed for my 

investigation, giving particular attention to fundamental tenets of Sfard’s Commognitive 

Framework. To finalize the theoretical perspectives, I provide an overview of research in 

learning and understanding the concept of derivative and frameworks for describing the 

structure of the concept of derivative. Finally, I close the chapter with implications of my 

investigation for student success in calculus as related to my action research inquiry.  

Good and Ambitious Teaching in Calculus I 

 In their seminal study, Chickering and Gamson (1999) offered seven principles 

based on their research on Good Teaching: student-faculty contact, cooperation among 

students, active learning, prompt feedback, time on task, high expectations, and respect 

for diverse talents and ways of learning. The utility of these principles paved the way for 

additional research on the use of active learning resulting in transformative and affective 

cognitive changes that increased students’ confidence in their abilities to learn (Kuh, 

2008; Kuh, et al., 2007). Prompt, individualized, supportive, and corrective feedback 

were shown to affect students’ learning positively (Angelo & Cross, 1993). Other 

research work, consistent with these outcomes, were conducted on Good Teaching that 

promoted quality learning (Darling-Hammond & Baratz-Snowden, 2007; Dinham, 2006; 

Harris & Sass, 2009).   

The Impact of Instructor Factors on Student Attitudes 

In the Characteristics of Successful Programs in College Calculus (CSPCC) 

project (Bressoud et al., 2015), the first nationwide study of college-level calculus, 

student success in Calculus I was correlated to passing rates, persistence onto Calculus II, 

and changes in confidence, interest, and enjoyment of mathematics. Applying factor 
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analysis to the project survey data, Sonnert and Sadler (2015) identified a dependent 

variable composite called Mathematics Attitude based on the students’ mathematics 

persistence, confidence, and enjoyment. Sonnert and Sadler similarly identified three 

composites of pedagogical characteristics, independent variables or factors, in their study. 

The first factor had 22 survey components, including items such as “My calculus 

instructor acted as if I was capable of understanding key ideas in calculus” and 

“Assignments completed outside of class were challenging but doable.” These items were 

traditionally regarded as good teaching practices; Sonnert and Sadler appropriately called 

this factor Good Teaching. Another factor had 14 survey items including, “Assignments 

completed outside of class time were submitted as a group project” and “How frequently 

did your instructor require you to explain your thinking on your homework?” The kind of 

pedagogical practices that spark such survey questions tended to lean toward reform and 

progressive approaches; Sonnert and Sadler suitably called the factor Ambitious 

Teaching. The third factor, not directly examined in this study, was related to technology; 

thus, labeled by Sonnert and Sadler, the Technology Factor.  

Good Teaching Has a Positive Effect  

Sonnert and Sadler’s (2015) statistical analysis on CSPCC survey data asserted 

changes for Mathematics Attitude were all negative. Three effects of the variables were 

strong and pervasive: the students’ initial attitude and the students’ strong prior 

mathematical experience and preparation. Good Teaching had a positive effect and 

Ambitious Teaching had a small negative effect. Technology use had no influence on 

students’ attitudes toward mathematics. With respect to institutional characteristics, 

Sonnert and Sadler analyzed the four composite factors including Student Centeredness, 
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TA Quality factor, Tutoring Center provisions, and Technology Use. These eight 

composite factors for both instructional pedagogy and institutional characteristics made 

up the variables of interest. Sonnert and Sadler (2015) concluded tutoring centers had a 

bigger payoff than any of the other composite factors in their study of all the survey data 

from the CSPCC project, the first nationwide investigation correlating student success to 

characteristics of learning and teaching Calculus I. 

Understanding Components of Good and Ambitious Teaching 

Mesa et al. (2015) discussed the importance of Good and Ambitious Teaching, 

especially for women and minorities and posited inquiry-based learning of mathematics 

had a positive effect on affective gains for women and minority students (Laursen et al., 

2014; Rasmussen & Kwon, 2007; Stephan & Rasmussen, 2002). This research informed 

the survey and interviews for the CSPCC study and resulted in the following three 

components being incorporated into the study: acknowledging students in classroom 

interaction, encouraging and available instructors, and providing fair assessments. Mesa 

et al. (2015) proposed mathematics departments support the practice of Good Teaching 

by maintaining a positive classroom environment with a positive attitude, pacing lectures 

appropriately, setting high standards, being available for students’ questions, and 

responding to student needs.  

Ambitious Teaching (Larsen et al., 2015) was defined as a composite of 

pedagogical characteristics including requirements for students to explain their answers, 

group projects, and the inclusion of unfamiliar problems both in homework and on 

exams. Further, Ambitious Teaching tended to decrease reliance on lectures. These 
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characteristics were correlated and were independent of another composite pedagogical 

factor, Good Teaching. 

In their effort to capture what children needed to learn mathematics successfully, 

Kilpatrick et al. (2009), posited five strands or components of mathematical proficiency 

to capture all aspects of competence, knowledge, and facility in mathematical learning. 

The five strands include:  

● conceptual understanding—comprehension of mathematical concepts, operations, 

and relations; 

● procedural fluency—skill in carrying out procedures flexibly, accurately, 

efficiently, and appropriately;  

● strategic competence—ability to formulate, represent, and solve mathematical 

problems 

● adaptive reasoning—capacity for logical thought, reflection, explanation, and 

justification; and finally 

● productive disposition—habitual inclination to see mathematics as sensible, 

useful, and worthwhile, coupled with a belief in diligence and one’s own efficacy. 

(Kilpatrick, et al., 2009, p. 116)  

In their work on mathematics instructions, Lampert et al. (2010) defined Ambitious 

Teaching as teaching that incorporated these five components of mathematical 

proficiency.  

In their study using MAA’s study of CSPCC, Larsen et al. (2015) examined the 

relationships between Ambitious Teaching and retention and changes in attitudes and 

beliefs. Results indicated there was some promise of improving student persistence to 
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continue to Calculus II with a combination of Ambitious and Good Teaching (Larsen et 

al., 2015). Larsen et al. asserted there were significant methodological challenges for 

research attempting to relate Ambitious Teaching to changes in student attitudes and 

beliefs. Additionally, they advised case studies indicated Ambitious Teaching practices 

required substantial institutional support and advanced knowledge, skills, and beliefs on 

the part of instructors.  

Sonnert and Sadler (2015) determined the Ambitious Teaching composite factor 

had a small negative effect on student attitudes and beliefs. In terms of relative effect 

size, however, the positive effect was nearly three times as large for Good Teaching as 

for Ambitious Teaching. In the Progress through Calculus (PtC) project (Rasmussen et 

al., 2019), a follow-up study grounded on insight gained from CSPCC (Bressoud, 2015), 

it was found successful institutions encouraged the use of active learning strategies as a 

primary instructional approach and promoted challenging courses that required students 

to engage in conceptually-oriented content—both characteristics of Ambitious Teaching. 

Although the benefits of Ambitious Teaching were evident, instructors and institutions 

needed to be aware of the challenges of implementation. In their efforts to improve 

courses and course instruction through Good and Ambitious Teaching, Zazkis and Nuñez 

(2015) proposed faculty members hold a common vision of specific knowledge and skills 

goals which would include learning outcomes students should have attained from a 

course. In the case of the community college that served as the setting for this research, 

these student learning outcomes include communication and critical thinking.  
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The Commognitive Framework 

Defining Commognition 

Sfard (2020) offered an explanation or definition of commognition as follows: 

“Commognition, the portmanteau of communication and cognition, is the focal notion of 

the approach to learning grounded in the assumption that thinking can be usefully 

conceptualized as one’s communication with oneself.” Sfard (1998, 2001, 2007, 2008, 

2009) critically reviewed the usefulness of the behaviorist, cognitivist, and acquisitionist 

traditions in the study of learning processes. Inspired by Wittgenstein (1953) and 

Vygotsky (1978), Sfard favored the participationist approach and its metaphorical 

nuances for her Commognitive Framework. Sfard claimed (2008, 2009) individual 

thinking and interpersonal communication were inextricable in describing the same 

phenomena.  

I begin this section with a focus on learning informed by Sfard’s (1998, 2001, 

2008, 2009) bird’s-eye view on the current conceptualization of learning which, although 

rich and diverse, can be divided into two broad but distinct categories, learning-as-

acquisition and learning-as-participation. I follow by expounding on Sfard’s claim that 

different types of communication are called discourses and her further assertion that 

mathematics is a discourse. Subsequently, I present the four characteristics that 

distinguish mathematical discourse, and finish the section by offering a discussion of 

critiques of the Sfard’s Commognitive Framework. 

Metaphors Underlying Theories of Learning 

Sfard (1998, 2009) asserted a researcher’s perspective and a teacher’s practice 

depend on how they talk about teaching and learning in terms of the most fundamental 
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level of thinking, implicit assumptions, values, and beliefs—the underlying metaphor for 

their way of viewing learning. Sfard discussed at length the primacy of metaphors citing 

Michael Reddy’s seminal work, “The Conduit Metaphor,” and posited that a metaphor 

was a conceptual transplant crossing disciplinary boundaries without notice and a conduit 

that grows new knowledge from old knowledge. She identified two metaphors for 

learning that conducted and gave guidance to learners, teachers, and researchers: the 

acquisition metaphor and the participation metaphor. With discourse, as an intervention 

for learning, having gained substantial basis among cognitive scientists and educational 

researchers, investigations were dominated by the participation metaphor, while the 

acquisition metaphor maintained its stance for the traditional choice.  

Sfard (1998, 2009) proposed the two approaches to learning, learning-as-

acquisition and learning-as-participation, could coexist and that the language of a 

participationist and that of an acquisitionist were not incompatible but were instead 

incommensurable. The participation and acquisition approaches were different in their 

unit of analysis, in their resolution, and in the roles attributed to direct contact with the 

nature or human agency through interactions with others. Learning in either metaphor 

translated to change; however, the quandary and the difference was rooted in the 

question, in the process of learning, what was it exactly that changed?  

Based on the prominent work of Jean Piaget (1954), during a learning activity, 

mental entities known as schemes were constructed. In the acquisition metaphor, 

concepts were the basic unit of knowledge considered as private property, accumulated to 

form richer cognitive structures. The common image of the human mind was that of an 

empty vessel filled with cognitive structures such as schema. With the use of terms like 



32 

“knowledge acquisition” and “concept development,” the learner took the role of the 

owner of their constructed entities or commodities within frameworks including moderate 

to radical constructivism, interactionism, or sociocultural theories. Research topics 

grounded on the acquisition metaphor have transformed from studies that focused on 

passive reception, active construction, and transfer of concept from a social to an 

individual plane; to studies that focused on internalization by the learner; and more 

recently, studies that focused ongoing process of self-regulation and interaction with 

peers, teachers, and texts (Sfard, 1998, 2009).  

Against the backdrop of the prevalent tradition of learning-as-acquisition, a new 

metaphor emerged that signaled a change with use of terms such as participation, 

communication, collective reflection, reflective discourse, and dialogue by authors like 

Lave & Wenger (1991) and Rogoff (1990) who recognized peripheral participation and 

apprenticeship in thinking (Sfard, 1998). The existence of permanent entities gave way to 

the harbinger of action in terms like knowing and the image of permanence, indicated by 

the acquisitionist terms like having, was replaced by the force in constant flux of doing. 

Table 1 provides a schematic comparison of the acquisition and participation metaphors. 

The focus turned to learning activities considered and not separated from their context, 

culture, situation, and social mediation. The basic unit of analysis used in research 

grounded on the participation metaphor was—discourse.  
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Table 1  
 
The Metaphorical Mappings 
Acquisition metaphor  Participation metaphor 

Individual Enrichment Goal of learning Community building 

Acquisition of something Learning Becoming a participant 

Recipient (consumer),   

(re-)constructor 

Student 

 

Peripheral participant, 

apprentice 

 

Provider, facilitator, mediator Teacher Expert participant, 

preserver of  

practice/discourse 

Property, possession, 

commodity (individual, public) 

Knowledge,  

concept 

Aspects of 

practice/discourse/activity 

 

Having, possessing Knowing Belonging, participating, 

communicating 

Note. Reprinted from “On Two Metaphors for Learning and the Dangers of Choosing 
Just One,” by A. Sfard, 1998, Educational Researcher, 27(2), p. 7. Copyright 1998 by 
JSTOR. 
 
Discourse as a Type of Communication 

 Inspired by Vygotsky (1978), Sfard’s (2008) definition of thinking as a form of 

communication was derived from the participationist assertion that individual human 

development presupposed patterned collective activity. This basic commognitive tenet 

gave rise to an operational definition of communication as non-objectified, observable 

activities and behavior. There were many types of communication that vary with context 

differentiated by the objects they refer to, mediators used, and metarules employed by the 
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community, participants, or actors. Central to the commognitive approach to learning was 

that discourses were dynamic and were time-dependent processes that were in constant 

flux with cyclic mechanisms of discursive change. Sfard (2008) described the recursive 

growth in complexity as a chain of expansion and compression. Although the term 

development under the traditional psychological lens referred to an inner change in the 

actor, the term development, under a commognitive lens, referred to a change in 

discourse, a modification of activity which can be public, such as communicating with 

others, or private, such as thinking (Sfard, 2012).  

Mathematics as a Distinct Discourse  

Different types of communication were referred to as discourses. Discursive 

action and communicational were terms used interchangeably by Sfard. Because of the 

specificity of this type of communication, a discourse can bring some actors together and 

exclude others. Objects, mediators, and metarules distinguished discourses from each 

other. Given the commognitive vision and the definition of discourse, as a well-defined 

form of communication, Sfard (2001, 2008, 2012, 2015) posited that mathematics is a 

form of discourse. Sfard offered four characteristics that distinguish mathematics as a 

discourse: word use, visual mediator, routine, and endorsed narrative (Ben-Yuhada et al., 

2005; Sfard, 2008).  

What Makes Mathematical Discourse Distinct? 

Word use considered how participants used mathematical words. In mathematics, 

these were mainly, although not always, shapes and quantities (Sfard, 2008). This was 

inclusive of mathematical terminology like negative number or derivative or colloquial 

terms with specific meaning in mathematics, such as open, continuous, and group. Word 
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use signified what the user uttered and saw in the world. However, what a speaker 

intended may not be equivalent to what the listener accepted. In the case of the word use 

of the term derivative, what the instructor intended to portray as the derivative may not be 

what the student accepted to be the derivative (Park, 2011). The four-stage model of the 

development of word use included passive, routine-driven, phrase-driven and object-

driven word use.  

Visual mediators were visual objects used as metadiscursive tools to identify the 

object of talk and to coordinate communication. Mathematical objects rendered by 

various symbolic, iconic, and visual representations mediated mathematical discourses 

(Sfard, 2008). Derivatives, for example, were visually represented as a dynamic object 

with icons of a vehicle or moving gears. The graph of a tangent to a graph of a nonlinear 

function, a graphical form, or the limit process of a different quotient, a symbolic form, 

were common visual mediators representing the derivative.  

The nature of and the inner structure of mathematical routines were thought of as 

the “anatomy of mathematizing” (Sfard, 2008, p.220). Sfard used the term mathematizing 

to designate engagement in mathematical discourse. The actors in this discourse were 

referred to as mathematists. Object-level rules delineated regularities in the behavior of 

communicational objects. In contrast, the ordered, regular nature of the mathematists’ 

actions were reflected by metarules. The recursive patterns in the mathematists’ course of 

action were described by a set of metadiscursive rules called routines.  

The three subsets that defined routines were: (a) the applicability conditions, (b) 

the course of action (procedure), and (c) the closing conditions. Routines were 

categorized into two kinds of metarules, when- and how-routines. The how-routine 
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determined the course of action and the when-routine determined situations when action 

began (applicability condition) and when action came to closure (the closing conditions.) 

Depending on the task accomplished (the closing conditions or closure,) three types of 

discursive routines emerged: exploration, deeds, and rituals. Deeds were methods to 

change objects; explorations added to theory; and rituals were socially oriented. The 

how-routine was often individualized before the when-routine (Sfard, 2008). 

Finally, the fourth characteristic of a mathematical discourse was endorsed 

narrative. These included texts describing processes and objects, and the relationships 

between them, subject to community endorsement (or rejection.) “In the case of scholarly 

mathematical discourse, consensually endorsed narratives are known as mathematical 

theories, and this includes such discursive constructs as definitions, proofs, and 

theorems” (Sfard, 2008, p. 134). However, in a class, students endorsed their narratives, 

and that of their peers, which were not necessarily endorsed by the mathematical 

community. Table 2 offers a brief description of the four characteristics with examples in 

the context of a discursive activity about the derivative concept.  
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Table 2  

The Four Characteristics of Mathematical Discourse  
Characteristic Example in a Derivative Context 

Word use includes the use of 
mathematical terms. 

“the derivative is a limit;” “rate of 
change;” “secant and tangent lines;” 
“velocity”  

Visual mediators include graphs, 
diagrams, or any visual representation of 
a mathematical object. 

 ; 
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Routines include well-defined practices 
or repetitive patterns in the discourse. 

As she has done previously with similar 
problems, a student finds a derivative 
function by first graphing the basic 
function; then determining the 
derivative; and finally graphing the 
derivative.  

Endorsed narratives include written or 
spoken text describing processes and 
objects and relationships, subject to 
approval or rejection (e.g., theorems and 
definitions in formal mathematics.) 

“the derivative of a function is also a 
function,” “the slope of a tangent line is 
the derivative function value at a point,” 
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Critiques of Sfard's Commognitive Framework 

Critiques of Sfard’s Commognitive Framework tended to fall under two 

categories including critiques that had direct implications in the classroom for the 

learner and practicing teacher and critiques with reference to topics peripheral to 

mathematics education. Critiques of commognition related directly to student 

learning and the practice of teaching were immediately relevant to this 

investigation—thus the focus in the discussion that follows. The critiques spanned 

three points of view: (a) from the perspective of researchers who compared and 
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contrasted their research to Sfard’s central empirical analysis supporting the 

commognition perspective in her book (2008); (b) from the perspective of an 

educator who questioned the nonduality aspect and rote learning implication of 

commognition; and (c) from the perspective of a researcher who aimed to further 

analyze Sfard’s Commognitive Framework in the context of Computer-Supported 

Collaborative Learning (CSCL) as well as sociocultural theory.  

Necessity Principle vs. Commognitive Conflict 

In their critique, Rabin et al. (2013) discussed the similarities and 

differences between Sfard’s (2008) analysis, and their study, of the episode of a 

teacher introducing negative numbers to students. Sfard’s commognition 

perspective, particularly commognitive conflict, was based on her in-depth work 

with young children’s foundational concepts of mathematical cognition when the 

children were first introduced to negative numbers. Rabin et al. argued the use of 

commognitive analysis implicitly labeled learning difficulties as epistemological 

rather than didactic obstacles.  

The participants in Rabin et al.’s study, in contrast to the episodes for 

Sfard’s analysis, were 15-year-old students in an algebra class with their teacher, 

focused on the topic of negative integer powers in exponential functions. Rabin et 

al. established their argument on the Duality–Necessity–Repeated Reasoning 

(DNR) theoretical framework and disagreed with Sfard’s assessment of children’s 

discourses about negative numbers as an example of an “incommensurable 

discourse” (Sfard, 2007, p. 597). Based on what Sfard’s termed as commognitive 

conflict, Sfard posited students adopted a new and foreign discourse and deferred 
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understanding. To the contrary, Rabin et al. argued such instances provided 

students opportunities to address the epistemological challenges while minimizing 

didactic obstacles. They further argued toward pedagogical improvements as 

credible and productive interventions. Framing their argument within the 

Necessity Principle of DNR, Rabin et al. propounded teachers, being expert 

guides and translators, possessed knowledge of what necessitated a particular 

mathematical discourse historically and what necessitated the discourse 

pedagogically (Rabin et al., 2013). 

Dualist–Unobservable vs. Nondualist-Observable 

Sfard’s nondualism position on cognition and communication and the 

value placed on rote learning, vis-à-vis commognitive conflict, were the focus of 

Wing’s (2011) critique. Wing posited that in contrast to Sfard’s nondualist 

realization tree and observable objects-processes, the dualist notion of concept 

image was useful as a reminder of the affective aspect of the developing 

individuality of a child’s thinking—often not observable. However, Wing 

recognized Sfard’s acknowledgment that subjectifying discourses was an 

exploration that remained unaddressed within the Commognitive Framework. 

Furthermore, the idea that students adopted a new and foreign discourse and 

deferred understanding, argued Wing, was contrary to his long-held position that 

rote learning had no value and was inimical to understanding. Nevertheless, Wing 

upheld Sfard’s work on the inner mechanisms of discourse development as 

authentic and significant. He added that, from Sfard’s commognition perspective, 
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he realized situated learning was necessarily coupled with situated understanding, 

or lack of understanding, a necessary interim phase in learning. 

Group vs. Dyadic Interaction 

 Stahl (2008), in his critique, situated Sfard’s empirical analyses within the 

discourse of Computer-Supported Collaborative Learning (CSCL). This was of 

particular interest to my investigation due to the collaborative nature of the 

computer-supported discursive methods used in Stahl’s work. Stahl argued that 

Sfard’s commognition perspective, based on her book Thinking as 

Communicating: Human Development, the Growth of Discourses and 

Mathematizing (Sfard, 2008), did not account for the value of small group 

mechanism in shared discourse nor did the Commognitive Framework account for 

computer-mediated interactions in online environments. Contrary to Sfard’s 

definition of the unit analysis as the discourse, Stahl asserted that current 

technologies allowed for scaling up to group interactional dynamics along a 

longitudinal timeline, while maintaining high quality data of multi-modal 

observations, in contrast to Sfard’s dyadic interactions, and at times individual 

utterances as discourse, in a single session.  

Another commentary Stahl (2008) offered related to Sfard’s discussion of 

the perspective of a researcher guided by the Commognitive Framework. While 

Stahl agreed research necessitated a removed analytic perspective, he maintained 

the importance of differentiating this from the behaviorist or cognitivist 

perspective, which acknowledged only objects physically observable and 

hypothetical mental schemes. Further, Stahl posited that, by incorporating 
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collaborative learning and computer-supported discourse, CSCL learning 

problematized mathematical discourse with explicit complexity and mediation. In 

order to explore discourse from an outsider’s metadiscourse, an analyst, Stahl 

asserted, must possess both human understanding and familiarity with the “form 

of life” of students (p. 6) as well as competence in the specific discourse.   

Topics Peripheral to Mathematics Education 

Finally, in critiques related to topics peripheral to mathematics education, 

Sfard’s Commognitive Framework was situated within the discourse of socio-

cultural theory. Stahl (2008) contended that commognition did not account for 

phenomenon in the broader spectrum. In addition to scaling up to include 

complex group cognitive processes in mediated environments, Stahl proposed 

Sfard’s unit analysis encompass “what activity theory calls the activity structure 

or actor-network theory identifies as the web of agency,” (p. 367) including 

resources from culture, social institutions, collective rememberings, and power 

relationships. Felton and Nathan (2009) and Walker-Johnson (2009) argued the 

commognitive paradigm, with its broader utility, can lend insight about power 

relations and status. Sfard’s reliance on classroom episodes involving children 

provided a limited window to mathematical discourse settings, Felton and Nathan 

contended, and ignored the argument that social markers such as race, class, and 

gender influence engagement in discourse. Walker-Johnson (2009) echoed Felton 

and Nathan’s sentiment and further questioned Sfard’s use of the terms alienation, 

objectification, and subsumption in the context of the historiographies of 

mathematics in terms of Marx’s political economy. Stahl also questioned the use 
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of the terms alienation and reification, borrowed he asserted, as Walker-Johnson 

also did, from social theory, specifically fetishism of commodities. Related to 

mathematics, Walker-Johnson questioned to what extent such pedagogy impacted 

mathematical curriculum and communications, particularly that of students. Next, 

I introduce a complex component of the Calculus I curriculum on which my study 

focuses—the derivative.  

Framing Students’ Thinking About the Derivative Concept 

 Bressoud et al. (2016) offered a survey of research dealing with cognitive 

development from the 1980s to the present focused on students’ thinking about calculus 

concepts based on two frameworks: the Concept Image and Concept Definition (CID) 

and the Three Worlds of Mathematics (TWM). CID (EMS-Committee of Education, 

2014; Tall & Vinner, 1981; Vinner & Hershkowitz, 1980) framed the student’s individual 

cognitive representation related to the concept in contrast to the formal mathematical 

definition of the concept. All mental attributes linked to the concept were integral in the 

concept image. When conflicting elements of the concept were evoked at the same time, 

a cognitive conflict ensued. In comparison, TWM (Tall, 2004) was a useful 

categorization of three mathematical contexts: the conceptual-embodied, the proceptual-

symbolic, and the formal-axiomatic. In the world of conceptual-embodied, students used 

their senses to construct mental conceptions using physical perceptions; in the 

proceptual-symbolic world, actions on mathematical symbols operated as process and 

concept (procepts); and in the third world, the use of verbal reason transformed to a 

formal language of mathematics for advanced mathematical thinking. In this section, I 

offer a brief survey of research (Bressoud et al., 2016) and discuss students’ difficulty 
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with and misconceptions about the derivative concept. Furthermore, I discuss what it 

means to understand the derivative and research on students’ and an instructor’s 

discourse on the derivative. 

Students’ Difficulty with Understanding the Derivative Concept 

 Orton’s (1983) investigation was one of the early seminal qualitative studies to 

analyze and describe students’ difficulty with derivatives. Orton outlined the errors and 

misconceptions associated with the students’ understanding of derivatives and algebra in 

detail. The types of errors made by students almost 40 years ago, which Orton classified 

as arbitrary, executive, and structural, were the same or similar errors made and 

misconceptions held by our students in today’s calculus classrooms. Furthermore, 

Orton’s conclusions and implications for the curriculum and teaching methods resulting 

from his investigation, were consistent with those offered in recent mathematics 

education research on calculus.  

 Listed below are students’ areas of difficulties in understanding derivatives 

evidenced by Orton almost 40 years ago. Orton’s findings regarding student difficulties 

with derivatives are aligned with research included in Bressoud et al.'s survey. 

Contemporary researchers have studied and advanced similar or the same topics. Orton 

asserted the following difficulties that students had with derivatives:  

● Students had difficulties with the fundamental idea of ratio and proportions, 

which is the basis for their difficulties with rate of change (Byerley et al. 2012; 

Confrey & Smith, 1994). Although Confrey and Smith argue that rate is different 

from ratio.  
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● Students had difficulty connecting the graph of a function with the graph of its 

derivative (Asiala et al., 2001; Aspinwall et al., 1997; Baker et al., 2000; Borgen 

& Manu, 2002, Ferrini-Mundy & Graham, 1994; Nemirovsky & Rubin, 1992). 

●  Students had difficulty transitioning from understanding the derivative at a point 

to the derivative as a function (Zandieh, 1997; Zandieh & Knapp, 2006; Habre & 

Abboud, 2006; Park, 2013).  

● Students had difficulty applying computed derivatives to the determination of the 

equation of a tangent line (Bingolbali et al., 2007).   

● Students had difficulty with making sense of symbolic representations (Park, 

2011). Park (2013) is an extension of his dissertation (Park, 2011) which is not 

part of Bressoud’s research survey. 

There were trending topics implied but not emphasized directly by Orton. In “The 

Calculus Sequence” in the Curriculum Guide to Majors in the Mathematical Science 

(Zorn et al., 2015), the importance of covariation (Confrey & Smith, 1994; Thompson & 

Carlson, 2017; White & Mitchelmore, 1996) and the idea of accumulation being more 

readily cognitively accessible by students than differentiation (Apostol, 1967; Thompson 

et al. 2013) were addressed. The latter implied a non-traditional sequencing of topics 

taught in calculus with integration coming before differentiation. This change in sequence 

would have had substantive implication to my investigation, particularly because the 

commognitive approach was at the study’s center.  

Misconceptions Transcend Space and Time 

The evident alignment of current research with Orton’s (1983) research 

discoveries suggested the difficulties and lack of understanding students have persisted 
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through time. Sfard’s (2008) posited five quandaries: the quandaries of number, 

abstraction, misconceptions, learning disability, and understanding. Sfard asserted that 

misconceptions were among the most thought-provoking phenomena. Misconceptions 

were evident when a student used a concept, for example the derivative function concept, 

that was contrary to the way an expert would use the same concept. This action was 

interpreted by researchers as a tendency for students to create their own meanings that 

were not context appropriate.  

What was intriguing was the same misconception, for example that high school 

students believe that functions, including derivative functions, are algorithmic, were held 

by students who live in different countries, speak different languages, and were taught by 

different teachers using different curricula and textbooks. Without understanding the 

function concept, students recited the universal definition of a mathematical function. 

Sfard queries, “How is it that misconceiving [students] agree among themselves about 

how to disagree with the definition?” (Sfard, 2008, p. 17). Misconception appeared to 

have transcended both space, time, and individuals.  

What Does it Mean to Understand the Concept of Derivative?  

 Zandieh (1997) utilized multiple cognitive development frameworks, including 

Concept Image and Concept Definition (CID) and Sfard’s (1992) process or operational 

to static structural conception, to posit what understanding the concept of derivative 

meant. Sfard (1992) framed three transition stages from operational to structural: 

interiorization, condensation, and reification. Interiorization was described as a 

familiarization process through which a student was able to step through key procedures. 

Condensation was described as a generalization process in which students imagined the 
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procedures holistically, not relying on a step-by-step process. Reification was described 

as the transformation of the process as an object—objects students were able to again act 

upon.  

Like the discussion regarding research discourse in this chapter, “What is Theory 

and Why Do We Need It?” the operational to structural conception was autopoietic. Both 

ideas originated from Sfard (1992, 2018). Each process was reified into an object acted 

upon by other processes to form a chain of process-object transitions. In Zandieh’s 

framework, the derivative concept has three process-object layers, ratio, limit, and 

function, described in four representations, symbolic, numeric, graphic, and verbal. 

Zandieh also includes physical contexts such as velocity and acceleration.  

Zandieh (1997) designed a concise visual coding process to document her 

research participants’ utterances relevant to their understanding of derivative. Her desire 

gave form to a diagrammatic way to summarize the three-layers process-object structure 

of the derivative. Zandieh used concentric circles to visualize the three layers of the 

derivative concept. The meaning for each of the three layers of the circle diagram, circle-

diagram examples, and an example of Zandieh’s use of circle diagrams to code her 

interview transcript data have been provided in Appendices G, H, I, and J, respectively. 

An Instructor’s and Student’s Discourse on the Derivative 

Park (2011, 2013) adapted Zandieh’s (1997, 2000) matrix-form framework and adopted 

Sfard’s Commognitive Framework to investigate a persistent student difficulty with the 

derivative concept: students have difficulty transitioning from understanding the 

derivative at a point to the derivative as a function. The results indicated that use of exact 

mathematical terms by the instructors, and purposeful discussions on areas of difficulty 
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with regards to the derivative, opened opportunities for students to learn and understand 

the derivative concept. Zandieh’s (1997) framework on the derivative concept and Park’s 

(2011) conclusions, undergirded by Sfard’s (2008) Commognitive Frameworks, 

highlighted theoretical perspectives and research guiding my project. Lastly, I discuss the 

realization of student success that these theoretical perspectives may have rendered 

possible as well as implications for my action research inquiry. 

Implications for Student Success and my Action Research Inquiry 

Buller (2015) offered, “Trust the people you work with, empower them, and 

recognize their efforts to be creative. [M]eaningful change is all about the culture and the 

culture is—all about the people” (Buller, p. 238). As I chose theories, concepts, and 

frameworks, I was mindful of the culture of the actors who shared ownership of the 

endeavor and those affected foremost. Students engaged in their roles as the 

mathematists, participants, and interlocutors. I realized my role as a practitioner, 

interlocutor, researcher, and participant, and observed from the inside and outside, my 

own action research. I strived to be effective in my role as a practitioner and researcher. I 

integrated and operationalized Good Teaching and Ambitious Teaching practices in my 

Calculus I class and shared my experiences and ideas with both students and colleagues. 

Show Me the Learning 

The commognitive or communicational approach, tempered with pragmatism, renders 

mathematical objects observable as discursive objects (Wing, 2011). Understanding of 

concepts—observable? That is an irresistible notion. Recall my statement-question 

combination posed earlier in this chapter: 
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Learning in either the acquisitionist or participationist metaphor translated to 

change; however, the quandary and the difference was rooted in the question, in 

the process of learning, what was it exactly that changed?  

This study embraced and adapted Sfard’s Commognitive Framework (2001, 

2008) with its promise of defining thinking in a way that is accessible not only 

practitioners and researchers but more importantly, to students. True to the 

participationist roots of commognition, Sfard defined thinking as a connection through 

learning or becoming a participant, acting on knowledge through practice of discourse, 

and demonstrating knowing by communicating (Wood, 2008). When Sfard defined 

thinking as communicating, she asserted that learning, as a result, can be defined as a 

change in discourse. For example, Nasrynn, a Calculus I student who experienced an 

intervention, founded on the development of calculus discourse realized a gradual change 

in her understanding of the derivative concept. Accordingly, Nasrynn’s understanding 

and learning related to the derivative unit was observable to her peers and to me, her 

instructor, through a gradual change in her discourse related to the derivative. 

Several studies have reported the significance of word use in children’s thinking 

(Cobb et al., 1993; Sfard & Lavie, 2005; Sfard, 2008). However, there were relatively 

fewer studies investigating the role of word use, visual mediators, routines, and endorsed 

narratives in students' thinking about advanced mathematical concepts like the derivative 

(Park, 2011). There were even fewer studies in which the researcher–practitioner offered 

an innovation that aimed to motivate students to mathematize, through a commognitive 

approach, buttressed by design frameworks to ground the concept development, course 

content structure, and cognitive load for students. In the spirit of action research, this 
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study offered a solution to a specific problem of practice in a particular context: increase 

completion of gateway mathematics, particularly Calculus I, and improve equity. This 

study also offered a potentially generalizable solution to the larger, more complex, 

problem of success in calculus or other gateway courses for STEM disciplines.  

Show Equity: See and Listen to Their Stories 

If our learning community in the classroom realized the autopoietic system of 

mathematical metadiscourses, I imagined the student narratives bloomed and blossomed 

giving rise to a symphony of endorsable narratives. If the autopoietic nature of a 

discursive mathematical classroom was indeed realizable, the most inviting implications 

were not the students’ realizations of the three process-object layers, ratio, limit, and 

function toward understanding the derivative. Nor were the general applicability of 

frameworks that buttress the understanding of the derivative concept the most alluring 

aspect of this investigation. The most inviting and irrefutable implication was the 

transformation of the classroom from a sage monologue to a multivocal learning space—

rooted in equity and mutual respect through discursive actions enlightened by 

commognition. This investigation offered an insight of how we—students, transformed 

into mathematists, and instructors alike—mathematize. That is, how we became 

participants in the discourse of mathematics. More importantly, this study provided a lens 

to observe how individualization of communication broadened, reinforced, and 

diversified one’s bond with others (Sfard, 2008). As humans, if we were indeed 

“storytelling animals” (Fisher, 1984, p. 1), “mathematizing was just one special type of 

storytelling activity” (Sfard, 2008, p. 222). Next, in chapter 3, the setting and participants, 
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my role as practitioner and researcher, my innovation and frameworks that undergird the 

innovation, and the collection and analysis of data are presented.  
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CHAPTER 3 

METHOD 

No research without action, no action without research. 

—Kurt Lewin 

What does the transformation of a student’s understanding of the derivative 

concept look like? Nasrynn enrolled in a calculus class designed to immerse her in 

mathematical discourse. In contrast, Yasmynn enrolled in a traditional calculus class 

where her activities consisted primarily of traditional calculus assignments. The key 

difference was in the experienced activities that engaged Nasrynn and Yasmynn in 

mathematical discourse both verbal and nonverbal, individual and social. As a result of 

the difference in activities, were Nasrynn’s and Yasmynn’s performance in and attitude 

about calculus changed? Were Nasrynn’s and Yasmynn’s learning significantly different? 

Did the transformation of their understanding of the derivative concept look significantly 

different? The intervention for my experimental calculus class was grounded on and 

designed using multiple frameworks to immerse the experimental group in mathematical 

discourse—the core theoretical framework asserted that communication is tantamount to 

thinking.  

Mixed Methods Design: Purpose and Research Questions 

The purpose of this experimental mixed method study was threefold: (a) to 

determine the role of classroom communication, specifically mathematical discourse in a 

student’s understanding of the derivative concept; (b) to investigate how Good and 

Ambitious Teaching impacted students’ attitude in calculus; and (c) to determine if there 

was a significant and observable difference in performance and in attitude of students in 
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an experimental calculus class designed to motivate active engagement in mathematical 

discourse in contrast to students in a traditional calculus class. Given the purpose of the 

study, four research questions guided its conduct. 

RQ1: How does the transformation of classroom communication, specifically  

          mathematical discourse, affect the understanding of the derivative concept in a 

          Calculus I course? 

RQ2: To what extent does participation in classroom discourse in Calculus I, as   

          compared to traditional pedagogy, affect the understanding of the derivative  

          concept in a Calculus I course? 

RQ3: How does Good Teaching and Ambitious Teaching impact students’ attitudes  

          toward mathematics, particularly persistence, confidence, and enjoyment in  

          mathematics? 

RQ4: To what extent does Good Teaching and Ambitious Teaching impact students’  

          attitudes toward mathematics, particularly persistence, confidence, and enjoyment  

          in Calculus I? 

If the purpose of action research was to learn through action, the following 

sections reflected on the acts of developing, planning, implementing, analyzing, and 

imagining what my experimental class looked and felt like to my calculus students in 

contrast to the control class. In this chapter, I introduced the setting, participants, 

innovation, the data collection and the instruments, and the data analysis. An overview 

for the research design has been presented along with a timeline for implementation. 

Next, I offer a view of the environment for this study. 
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Setting 

This study was conducted in fall 2021 in three Calculus I classes at a community 

college located in the Southwest. Due to the unprecedented effects of the COVID-19 

pandemic, all three classes were offered in a synchronous online environment.  

The study was set against the background of features of our mathematics 

department operating in the largest of the sister colleges in our community college 

system. In fall 2021, the enrollment at our community college was 16,494 students, with 

3,400 enrolled in classes offered through our mathematics department. The enrollment in 

Calculus I was 272 students and 26 of the 49 students initially enrolled in my three 

classes participated in this study. The Calculus I classes held during the prime daytime 

hours were taught by full-time residential faculty while the evening courses were often 

taught by adjunct faculty. Our college’s calculus series included Calculus I, Calculus II, 

Calculus III, and Differential Equations. Mathematics departmental characteristics and 

practices dictated how classes were offered to our students.  

Classroom 

At our college, Calculus I was a five-credit course requiring five classroom hours 

per week. My first of three synchronous online calculus classes met Monday through 

Friday at 8:00-8:50 a.m.; the second class met on Monday, Wednesday, and Thursday at 

5:35-7:00 p.m.; and the third class met on Tuesday and Thursday at 12:00-2:35 p.m. The 

8:00-8:50 a.m. class served as the study control group. The 12:00-2:35 p.m. and 5:35-

7:00 p.m. classes, combined, served as the experimental group. Next, I present course 

competencies and common course content, integral to the calculus environment.  
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Calculus Competencies and Course Content 

 Listed below were the Calculus I course competencies and content, common to all 

our district’s community colleges, which directly related to the derivative concept.  

● Analyze the behavior and continuity of functions using limits.  

● State the definition and explain the significance of the derivative.  

● Compute the derivative using the definition and associated formulas for 

differentiation.  

● Solve application problems using differentiation.  

 The common content for all calculus courses is described in Table 3. As I have 

discussed in chapter 2 and in the Innovation section, in this study the concept of 

derivative was defined as a three-layer process-objects structure adapted from Zandieh's 

conceptual framework (1997) using multiple representations. The differentiation rules by-

passed the three-layer structure. In addition, the application topics used the derivative as a 

tool in application problems; derivatives used as a tool is another instance where the 

three-layered structure was not used. In Table 3, therefore, section titles related to 

differentiation rules and applications were not separately provided. I presented only the 

four sections central to Zandieh’s three-layer process-objects structure for the derivative 

concept definition.  
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Table 3  

Content of the Derivative Unit in Calculus (Stewart, 2012) 
Chapter  Section Title 

Limits and Derivatives The Tangent and Velocity Problems 

 The Limit of a Function 

 Derivatives and Rates of Change 

 The Derivative as a Function 

Differentiation Rules All topics linked to differentiation rules 
including Derivatives of Polynomials and 
Exponential Functions, The Product and 
Quotient Rules, Derivatives of Trigonometric 
Functions, The Chain Rule, Implicit 
Differentiation, Derivatives of Logarithmic 
Functions, and Hyperbolic Functions 

Differentiation Rules All topics linked to differentiation rules that lean 
toward applications including Rates of Change 
in the Natural and Social Sciences, Exponential 
Growth and Decay, Related Rates, and Linear 
Approximations and Differentials 

Applications of Differentiation All topics linked to applications of 
differentiation including Maximum and 
Minimum Values, The Mean Value Theorem, 
How Derivatives Affect the Shape of a Graph, 
Indeterminate Forms and L'Hospital's rule, 
Summary of Curve Sketching, Graphing with 
Calculus and Technology, Optimization 
Problems, Newton’s Method, and 
Antiderivatives 

 
Students were the key participants and their actions, related to this study, provided 

the primary source of research data. Participants are introduced in the section that 

follows.  
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Participants 

 An objective of this action research was to synthesize practice, research, and 

theory. To meet this objective, the primary actors were calculus students enrolled in 

classes I taught.  

Calculus Students’ Roles as Mathematists 

The key participants in both the experimental and control group were my Calculus 

I students who were likely in their freshman or sophomore year, often aspiring to major 

in science, technology, engineering, or mathematics (STEM) disciplines. For a very few, 

this class was a terminal mathematics course. For most students, Calculus I was their first 

gateway mathematics course in the series of three calculus courses required for most 

STEM programs. Student participation provided both quantitative and qualitative data for 

this mixed-method study. Students in the experimental classes were expected to act as 

mathematists engaged consistently in mathematics discourse or in mathematizing (Sfard, 

2008).  

All students in the experimental and control groups were given the opportunity to 

participate in the quantitative data collection conducted through two instruments, the 

Derivative Concept Assessment, given as a pretest and posttest, as well as a pre- and 

post-Attitude Survey. All participants took the pre- and post-Derivative Concept 

Assessment in week 5 and at the end of the derivative unit, in week 7, respectively. All 

participants also took the pre- and post-Attitude Survey in week 3 or 4 and week 12, 

respectively. After the students completed the pre- and post-Derivative Concept 

Assessment, I recruited a sample size of 12 students, 4 control students and 8 

experimental students, for the one-to-one interviews to collect qualitative data. 
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Recruitment details have been provided in the Instruments section of this chapter. The 

interviews were conducted in weeks 12, 13, and 15 of fall semester 2021.  

Innovation 

 The innovation was premised on objectives that aimed at characterizing the 

change in the students’ mathematical discourse that led to students understanding 

essential calculus concepts, particularly the derivative concept. Sfard’s (2001, 2008) 

commognitive approach was central to the innovation. To achieve this goal, realizing 

what the calculus class looked and felt like to experimental students, in contrast to the 

control class, was my priority for the innovation.  

In this section, I offer my innovation design process in an inverted fashion. First, I 

introduce the outcome of my design efforts, which started with the calculus experience I 

designed for the experimental group juxtaposed to the experience for the control group. 

Then, I follow with a brief overview of the four essential frameworks that undergird the 

design of my innovation. I present how I used the frameworks in the derivative unit of 

calculus. The frameworks and the process of designing this innovation for the derivative 

unit were generalizable to other units in calculus or in any academic course.  

The Experimental vs. Control Group Experience 

I implemented a time-proven and improved intervention in fall 2021 and collected 

and analyzed quantitative and qualitative data for the experimental and control groups. 

Tables 4 and 5 provide a summary of what the experimental and control group 

experienced in our calculus classes in fall 2021, respectively. The summaries depicted in 

the two tables include: (a) the experience label, explained later in the Design Pattern 

section; (b) a description of the activity; and (c) the expected deliverables from students 
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as an observable outcome of the activity. In addition, the percentage weight of the 

student’s final grade for each activity category was provided along with the percentage 

weight of each activity category of the student’s final grade accounting for the derivative 

unit only.  
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Table 4 

The Experimental Group Experience  
Experience Activity Deliverable % Class 

Grade  
| derivative 
unit only  

Uncover be informed: read and watch 
videos 

timed asynchronous 
quiz 

5 | 1.3a 
 

Play do play or basic procedural 
problems with reflections 

Play packet   15 | 3.9a 

Apply do apply problems or applied 
problems with reflections 

Apply packet 15 | 3.9a 

Connect meet team for play/apply 
discussions per specifications  
and specific play and apply 
problems to be discussed  
and specified prompts to 
be addressed  

team discussion video 
YouTube URL  

15 | 3.9a 
 

Question 
 

ask play/apply-related questions 
motivated by connect team 
discussion; questions will 
motivate whole-class Canvas 
discussion  

1 play-related Q and 
1 apply-related Q 

5 | 1.3a 

Realize take team exams 
timed and asynchronous 
 

parts 1 & 2 written 
play-focus and apply-
focus, respectively; 
part 3 team oral 
validation for parts 1 
and 2 written items 
YouTube URL; For 
final individual 
validation video  

45 | 11.7a 
 

Note. a This number indicates % of class grade based on point values of activities in the 
derivative unit only. 
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Table 5 

The Control Group Experience 

Experience Activity Deliverable % Class 
Grade  

| derivative 
unit only 

Uncover be informed: read and watch  
videos 

timed 
asynchronous quiz 

10 | 2.6a 

Play do play or basic procedural 
problems 

Play packet   17.5 | 4.55a 

Apply do apply problems or applied 
problems 

Apply packet 17.5 | 4.55a 

Question 
 

ask play/apply-related questions 
motivated by connect team 
discussion; questions will  
motivate whole-class Canvas 
discussion  

1 play-related Q 
and 
1 apply-related Q 

5 | 1.3a 

Realize take exams individually timed  
and asynchronous 

parts 1 & 2 written 
play-focus and 
apply-focus, 
respectively 

50 | 13a 

Note. a Number indicates % of class grade based on point values of activities in the 
derivative unit only. 
 
What is the Same and Different?  

For both groups, there were five activities, uncover, play, apply, question, and 

realize which were either the same or had common elements for both control and 

experimental groups. The connect activity that engaged the experimental group in 

discourse development with a team of peers was experienced by the experimental group 

only. There were also discourse-specific tasks integrated in the common activities for the 

experimental group but were not required for the control group. The experimental group 

consistently participated in activities that motivated mathematizing, that is, in 



61 

mathematical discourse, either individually or in teams, whereas the control group 

consistently engaged in traditional activities. However, the class discussions and lectures 

were consistent in all three classes for the control and experimental groups.  Next, I 

discuss each activity experienced by the experimental and control groups. 

Uncover 

The uncover experience was the same for both experimental and control groups. 

The activity involved “uncovering” the course content by either reading our textbook, 

watching instructor videos, and/or leveraging other resources. Both experimental and 

control groups took a weekly untimed quiz given asynchronously online to demonstrate 

learning with respect to the most current topics of discussion. The pre- and post-

Derivative Concept Assessments served as extra credit quizzes that were given in the 

same format as the weekly uncover quiz. 

Play and Apply 

Both groups solved exercises from our textbook (Stewart, 2012). Both 

experimental and control groups were required to solve and write out their solutions to 

the exercises. The exercises comprised both basic procedural play exercises and apply 

exercises. I provided a guideline that outlined what the students were expected to address 

when doing play and apply exercises. Both play and apply-type exercises were utilized by 

Reinholz (2014) in his intervention to promote explanations of basic to very challenging 

calculus ideas using the terms opening problems (OP) and peer-assisted-reflection (PAR) 

problems.  

Both groups had to (1) write the problem statement; (2) declare variables and 

parameters with units; (3) show all relevant work; and (4) graph data appropriately. The 
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experimental group was required to write a reflection for one play and one apply exercise 

per section covered. The control group did not have to engage in this reflective discourse 

activity. Our classes uncovered an average of three sections per week.  

Connect and Question 

 The experimental students were placed in teams of four for the duration of the 

semester. The teams engaged in the connect and question activities. The control group 

did not engage in the connect activity but engaged in the question activity individually. 

The experimental group met their teams every other week for seven weeks throughout the 

semester outside of our synchronous online class meetings.  

Two discussion meetings occurred during the derivative unit. There were 

guidelines provided for the connect activity. The guidelines described their deliverables 

and the actions they had to take as a team and as team members during their discussions. 

The teams were expected to deliver a discussion video and two questions related to one 

play and one apply exercise as an outcome of their team meeting. In addition, members 

shared links to their play and apply exercise sets with team members in a Canvas 

Discussion before their meetings. Criteria for eligibility to take team exams focused on 

the connect activities and team members sharing written work-in-progress on exercises 

with team members. While their team connect discussion was prompted by their 

individual effort on the play and apply exercise sets, the question activity was motivated 

by their team discussions. 

 The teams submitted their questions on a Canvas Discussion forum to be viewed 

by the entire class. The control group was also required to ask questions; however, they 

were not placed in teams. The control group students posted two questions, one for a play 
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and one for an apply exercise, on a Canvas Discussion forum individually, while the 

experimental students were required to post two questions for the entire group. I created 

and posted a video in which I answered all questions posed by all my Calculus I classes. 

The questions served as signifiers, or prompts, for a whole-class Canvas Discussion when 

students opted to have a class discussion regarding students’ questions and my responses.  

Realize   

The realize activity involved students taking midterm and final exams. The 

written parts, for the experimental and control group, were the same and were used to 

assess both control and experimental groups on their mathematical proficiency with basic 

procedural and applied problems. These assessments reflected the play and apply 

exercises given to both groups. The exams were given asynchronously. Individuals, as 

well as teams, had 60-hours to submit the exam after the exam was posted on Canvas. 

Both control and experimental groups took 2-part written exams that were consistent in 

difficulty to their assigned play and apply exercise sets.  

In addition, for the experimental group, there was a mandatory part 3 exam-

related activity that mirrored their connect experience. The experimental group 

participants were required to submit a video of their team discussion regarding selected 

items on their 2-part written exam. The list of validation items was provided after the 

deadline for submission of the written exam lapsed. The teams had 36 hours, after 

receiving the list of validation items, to submit a team oral validation video with similar 

specifications as their connect team discussion video. For their final exam, in addition to 

the team validation video, individual team members of the experimental group were 

required to produce an individual validation video. 
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A timeline for the derivative unit implementation, related to the module topics, and the 

actions of the experimental and control group, are provided in Table 6.  
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Table 6 

Timeline for Derivative Unit Implementation 

Module (M) Title and Sections Timeframe 
fall 2021 

Participants | 
Action/Experience 

             E: experimental 
group 
             C: control group 

PR: practitioner/researcher 

M1: Welcome/orientation,  
and Precalculus review 

week 1 
Aug 23-Aug 29 

 
 

E and PR | team check-ins, 
and review 
C | view orientation video, 
review 

M2: Limits and Derivatives 
2.1 The Tangent Line Problem 
2.2 The Limit of a Function 
 

week 2 
Aug 30-Sep 5 

E | uncover, play, apply, 
connect, and question 
C | uncover, play, apply, and 
question 
PR | instruct and observe 

M3: Limits and Derivatives  
2.3 Calculating Limits Using 
the Limit Laws 
2.4 The Precise Definition of 
Limits 
pre–Attitude Survey Sep 10 

week 3 
Sep 6-Sep 12 

E | uncover, play, apply, and 
take attitude survey 
C | uncover, play, and apply 
PR | instruct and observe, and 
collect qualitative data  
 

M4: Limits and Derivatives  
2.5 Continuity 
2.6 Limits at Infinity 
 

week 4 
Sep 13-Sep 19 

E | uncover, play, apply, 
connect, and question 
C | uncover, practice, and 
formative assessment, and 
take attitude survey 
practitioner-research | 
instruct, observe, and collect 
quantitative data  

M5: Limits and Derivative  
2.7 Derivatives and Rates of 
Change  
2.8 The Derivative as a 
Function 
pre–Derivative Assessment on 
Sep 21 

week 5 
Sep 20-Sep 26 

E | uncover, play, apply, and 
take pretest 
C | uncover, practice, and 
take pretest 
PR | instruct, observe, and 
collect quantitative data  
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Rebirths of an Innovation: Cycles 1, 2, and 2.5 

Through my cycles 1 and 2 study, which were iterative cycles of action research 

integral to our EdD program, I initiated and continued the design of this innovation. In 

spring 2021 during cycle 2.5 study, I piloted components of the innovation in all my 

calculus and precalculus classes. The design was informed by results from cycles 1 and 2. 

My realization of the need to ground my research, in a theory and methodology in which 

discourse was central, literally fell in my lap as a centennial happenstance. In spring 

2020, because of the COVID-19 pandemic, students and instructors rapidly adjusted to 

the new normal of synchronous online classes.  

Because of this unfortunate pandemic, I shifted my research actions to carry on 

with my cycle 1 plan and timeline by appropriating rapid changes. For example, spring 

2020 was the first time I gave students asynchronous exams with oral exam validations. 

Leveraging students’ ease with video conferencing, I conducted check-ins, exam 

validations, and the interviews for my cycle 1 study—all online. My intervention for fall 

2021 reflected the pilot intervention I implemented in spring 2021; however, in spring 

2021, I developed a foundation of multiple frameworks consisting of tools and guiding 

processes to sustain the continuous improvement, utility, and generalizability of my 

intervention. Next, I introduce the four critical frameworks that gave form and shape to 

my innovation.  

Framing an Innovation 

Realizing what the experimental class looked and felt like to my calculus 

students, in contrast to the control class, was a priority for me as a practitioner-researcher. 

Realization required intimate contextual knowledge that prompted me to reframe my 
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Calculus I class iteratively through cycles 1, 2, and 2.5 with an eye toward effective and 

pragmatic frameworks that provided quality structure for the content and activities, 

necessary to incentivize learning content of a Calculus I class.  

To design and undergird the structure of my Calculus I class for the study, I 

operationalized four frameworks simultaneously. The mainframe was Sfard’s (2008) 

commognitive approach. The units for teaching the derivative were grounded in an 

object-process framework used to define what it means to understand the derivative 

(Zandieh, 1997). The online class was structurally framed by an architectural design 

approach (Hathaway & Norton, 2013) to organize and structure course content. Finally, 

an analytical frame was used to support students’ opportunity to learn through given 

exercises and other tasks (White & Mesa, 2014). 

Because Sfard’s (2008) Commognitive Framework was the nucleus of this study, 

the details about the theory accompanied by the central tenets of commognition, formed a 

large part of chapter 2. A discussion of Zandieh’s (1997, 2006) framework for the 

concept of derivative was also presented in chapter 2. The Commognitive Framework 

provided theoretical and methodological basis for this study, while Zandieh’s three-layer 

process-objects: ratio, limit, and function, rendered the framework for the derivative 

concept. In the next sections I offer two frameworks that were not introduced in chapter 

2. One framework was the design pattern approach to organize and structure course 

content. The other was an analytical framework to characterize the range of tasks that I 

chose for both my experimental and control classes.  
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Design Pattern and its Four Essential Elements 

Indispensable in motivating participants to engage in mathematical discourse was 

content. Well organized and structured course content was a requisite to capture and 

sustain students’ attention. In this study a design pattern approach (Hathaway & Norton, 

2013), which focused on goals, objectives, and expectations for the learner, was adapted 

for the Calculus I course content structures, particularly the derivative unit. As a 

practitioner-researcher, my goal in using a design pattern was to conceptualize a 

generalized, reusable solution for other units uncovered in Calculus I, for example the 

integration unit. A generalized, reusable solution was also useful for consideration in my 

other classes, including Calculus II and III.  

A design pattern was manifested through four key elements: the pattern name, the 

description of the problem, the core of the solution, and the pattern’s sequence (Gamma 

et al., 1995). The Pattern Name alluded to the design problem, its solution, and 

consequences. The Description of Problem offered the context of the problem and 

explained the problem itself, often with a list of criteria satisfied before the pattern was 

applied. The Core of the Solution was articulated in the form of a solution, identifying the 

elements that made up the design and the relationships and collaboration between the 

elements of the design. Lastly, the fourth element, the Pattern’s Consequence, was an 

account of applying the pattern in its use context. That is, this element enabled a designer 

to link design patterns to other patterns and other contextual ideas. Table 7 provides a 

summary of my design decisions and directly related the design pattern in the context of 

Sfard’s Commognitive Framework and Zandieh’s derivative concept framework for the 

innovation for this study.  
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Table 7  

The Design Pattern Approach for Course Content Structure in Calculus I 
Design Pattern Calculus I Course Design 

Pattern Name Process-Objects Nested Under the 
Derivative Concept 

Description of Problem In the context of Calculus I, what was an 
appropriate content structure to motivate 
students to engage in mathematical discourse 
around Zandieh’s (1997) derivative concept 
framework?  

Core of the Solution  To enable learners to benefit from Zandieh’s 
derivative concept framework, I chose 
Bloom’s Revised Taxonomy, an established 
method of classifying thinking behaviors 
that also aligns with the commognitive 
approach. I used the experience labels 
Uncover, Play, Apply, Connect, Question, 
and Realize to align with Bloom’s Revised 
Taxonomy and Connect to align with the 
interpersonal and intrapersonal 
communication core of Sfard’s (2008) 
Commognitive Framework.  

Pattern’s Consequence  I had to consider the dimensions of online 
learning interactions. Hathaway and Norton 
(2013) considered learner-instructor 
interaction, learner-learner interaction, 
learner-interface interaction, facilitation, and 
presence. This component was more evident 
after the innovation was implemented.  

 

The six intervention experiences designed for the experimental group: uncover, 

play, apply, connect, question, and realize, resulted from the use of the design pattern 

approach. These intervention activities offered a wide range of tasks for students in the 

experimental group as well as the control group. The five labels Uncover, Play, Apply, 

Connect, and Question were borrowed from activity labels used in our TEL 713 
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Advanced Qualitative class taught by Dr. Leigh Wolf and Dr. Lisa Yanez-Fox in fall 

2020. Dr. Wolf generously offered and shared a group chat in which she and her 

colleagues discussed the development of these labels. The effectiveness of activities with 

these labels, coupled with factors influencing learning, was determined in the study.  

To discern the differences in outcomes for the experimental and control groups, 

specifically during my analysis of the collected data, it was critical that I was aware of 

what potentially gave rise to these factors of influence. This was especially true for the 

calculus exercises, particularly those in the derivative unit, for this study. Therefore, a 

valid and reliable analytical framework, to determine the level of cognitive demand and 

to characterize the types of coursework in both experimental and control classes, was 

warranted.     

Cognitive Demand and Characteristics of Coursework 

White and Mesa (2014) posited that tasks given to students must be designed and 

presented with the characteristics and cognitive demand that align to instructional goals 

and expectations. The goal of my investigation was to determine what observable 

characteristics of and change in mathematical discourse lent itself to students 

understanding essential calculus concepts through Sfard’s (2001, 2008) approach of 

thinking-as-communicating. Therefore, cognitive demand inherent in the calculus 

exercises was designed to be consistent. Characterizing the cognitive demand of the 

activities and tasks ensured a consistency in my instructional learning objectives built 

into the calculus exercises given to both the experimental and control groups. A table 

outlining the categories of task orientation, definitions, and examples, adopted from 
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White and Mesa (2014, p. 680) has been included in Appendix A, outlining the 

orientation with the definition guided my instructional expectations.  

Additionally, the types of coursework were characterized for both the 

experimental and control groups. The coursework represented both the instructor’s 

intentions and the students’ opportunities to learn. These were potential factors of 

influence for learning that I kept in mind as I analyzed the difference in outcomes 

between the experimental and control groups. Two characteristics that White and Mesa 

used were grade weight, that is, percentage of the class grade, and the resources available 

or those that students were allowed to use while engaged in tasks. White and Mesa 

asserted that tasks provide students: (a) the opportunity to learn the content, and (2) the 

opportunity to demonstrate that they have learned the content. Matrices like Tables 4 and 

5 were the outcomes and deliverables for my effort to outline the characteristics of all 

tasks for the experimental and control groups. Both have been provided in Appendix B 

and Appendix C, respectively. 

Next, I offer descriptions of the instruments and the procedure followed by the 

quantitative data analysis, trustworthiness and credibility, and finish this section and 

chapter 3 with the timeline for the implementation.   

Data Collection and Instruments 

 For this experimental mixed method design, first I collected quantitative data and 

followed by collecting qualitative data. I used two instruments, the Attitude Surveys and 

the Derivative Concept Assessment, to collect quantitative data. The qualitative data was 

collected using interviews.  
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Attitude Survey  

Survey instruments, referred to as the Attitude Surveys, were adopted from the 

Mathematical Association of America (MAA) national survey (Bressoud, 2015) and 

served as an affective-scale measure for this study. The pre–Attitude Survey contained 56 

questions. The aim of the survey was to identify students’ attitudes and beliefs as they 

entered our Calculus I class. The students were surveyed about their beliefs relevant to 

their calculus prerequisite skills, previous preparation for calculus, and about the use of 

technology in mathematics classes. They were asked to identify their field of study and 

asked several questions about their anticipated time management for the semester. For 

example, the students were asked, “Approximately how many hours did you work at a 

job this semester?” 

There were 19 survey questions that were crossover questions, appearing both on 

the pre- and post-Attitude Surveys. Three questions that explicitly asked about 

persistence to Calculus II, confidence, and enjoyment were intended to address research 

question three, “How does Good Teaching and Ambitious Teaching impact students’ 

attitudes toward mathematics, particularly persistence, confidence, and enjoyment in 

mathematics?” The other 16 questions were intended to measure the students' beliefs 

before and after our Calculus I class and provided additional data to inform research 

question three.  

The post-Attitude Survey, containing 97 questions, addressed research question 

four, “To what extent does Good Teaching and Ambitious Teaching impact students’ 

attitudes toward mathematics, particularly persistence, confidence, and enjoyment in 

Calculus I?” Of the 97 questions administered through the survey, 22 related to the Good 
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Teaching Factor. The remaining 14 questions were related to the Ambitious Teaching 

Factor. The Attitude Survey questions have been provided in Appendix D.  

The surveys were administered to all participants in both experimental and control 

groups. Participants took the pre-Attitude Survey at the start of the derivative unit, in 

weeks 3 and 4 of the semester and the post-Attitude Survey in week 12 of the semester. 

Two Likert-scale ratings from 0 (Strongly Disagree or Not at all) to 5 (Strongly Agree or 

Very Often) were used. The validity and reliability of this survey has been reported and/or 

relied on to directly advance research in Calculus I by multiple researchers through the 

Characteristics of Successful Programs in College Calculus (CSPCC) project report 

(Bressoud et al.) and the Progress through Calculus (PtC) project reports (Rasmussen et 

al., 2019). 

Quantitative Data Collection: Derivative Concept Assessment  

A pretest and posttest, which were the same test, referred to as the Derivative 

Concept Assessment, served as a performance-measure to assess the participants’ ability 

to understand basic differential calculus. This measurement addressed research question 

one, “How does the transformation of classroom communication, specifically 

mathematical discourse, affect the understanding of the derivative concept in a Calculus I 

course?” The test consisted of nine questions which were adopted from what Park (2011) 

refers to as his “survey.” This study, like Park’s study, assessed the same dependent 

variable; that is, the understanding of the derivative concept grounded on Zandieh’s 

(1997) three-layer process-objects conceptual framework. Five of the nine questions were 

excerpts from Epstein's (2007, 2013) Calculus Concept Inventory (CCI). The nine-item 
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Derivative Concept Assessment has been presented in Appendix E. The reliability and 

validity of the CCI has been reported by Epstein (2013).  

Qualitative Data Collection 

 I recruited and interviewed twelve participants following an interview protocol 

available in Appendix F. I interviewed twelve participants, eight from the experimental 

group and four from the control group, to collect qualitative data for this study. The data 

collected from interview transcripts served to inform the second and fourth research 

questions:    

RQ2: To what extent does participation in classroom discourse in Calculus I, as   

          compared to traditional pedagogy, affect the understanding of the derivative  

          concept in a Calculus I course? 

RQ4: To what extent does Good Teaching and Ambitious Teaching impact students’  

          attitudes toward mathematics, particularly persistence, confidence, and enjoyment  

          in Calculus I? 

 Due to the unprecedented and unpredictable circumstances presented by the 

COVID-19 pandemic, all participants were enrolled in my Calculus I class that met 

synchronously online in fall 2021. The positive effect of our new social norm of having 

all academic activities online was the relative ease that we, both students and instructors, 

adjusted to audiovisual technology. All interviews were conducted as synchronous online 

one-on-one interviews using video conferencing applications. The transcripts were 

conveniently downloaded from an online platform. Interview data comprised 

unstructured verbal or written data from the interviewee responding to open-ended 

questions in conversations.   
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 Although there were distinct differences between the quantitative and qualitative 

data analysis I used, the general processes looked very similar for my study. I organized 

my data before analysis, focused on the questions I hoped to answer, and finally thought 

about the presentation of the results in the dissertation, focusing on the interpretation of 

the results (Creswell & Guetterman, 2019). In addition to quantitative and qualitative data 

analysis, in this section I have also included a discussion of trustworthiness and 

credibility, triangulation, and development and complementarity purposes in my mixed 

method study.  

Procedure 

This experimental mixed method design had two groups, the experimental and 

control groups, which were not randomly assigned but were formed from three sections 

of fall 2021 Calculus I classes. One class served as the control group and two classes 

combined served as the experimental group. The experimental group began the treatment 

at the start of the semester. For quantitative data, all participants took a pretest and an 

affective measure pre-survey at the start of the intervention. After the intervention, the 

participants took a posttest and post survey. During the intervention, audiovisual 

materials and activity documents were collected for qualitative data in case the data was 

needed. After the post survey was completed, 12 participants, who completed both pre- 

and post-measures for the derivative assessment and surveys, were recruited and 

interviewed.  

Data from the pre- and posttest and pre- and post-surveys provided quantitative 

data that was analyzed using descriptive and inferential statistics. For the qualitative data, 

I observed “The Bottom-Up Approach to the Process of Qualitative Analysis” (Plano 
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Clark and Creswell, 2015).  I applied two coding approaches. I completed first cycle, 

after first cycle, second cycle, and after second cycle coding (Saldaña, 2021) for both 

approaches.  Next, I present the quantitative and qualitative data analysis.  

Quantitative Data Analysis 

Quantitative data analysis served to answer my first and third research questions:  

RQ1: How does the transformation of classroom communication, specifically  

          mathematical discourse, affect the understanding of the derivative concept in a 

          Calculus I course? 

RQ3: How does Good Teaching and Ambitious Teaching impact students’ attitudes  

          toward mathematics, particularly persistence, confidence, and enjoyment in  

          mathematics? 

For both quantitative instruments in this study, I analyzed and interpreted the data 

using similar methods used in the original studies from which I have adopted or adapted 

the instruments. In general, for the pre- and post-Attitude Surveys and the Derivative 

Concept Assessment, I conducted descriptive analysis to report the data trends. The two 

categories of descriptive statistics, applied to the experimental and control group data, 

were measures of central tendency and measures of dispersion. 

Because this study used a quasi-experiment, in which groups are not randomly 

assigned as experimental or control, to compare group performance or attitude, I used a 

group comparison design and inferential statistics methods for my quantitative data 

analysis. The null hypothesis was there was no difference in the performance measures 

with respect to understanding the derivative concept when comparing the means within or 

between the control and experimental groups.  
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The data was tested for normality to determine if I used a parametric or 

nonparametric test. For comparing means within groups, for a normal distribution, I 

applied a paired samples t-test and for data that was not normally distributed, I applied a 

Wilcoxon signed-rank test. For comparing means between groups, for a normal 

distribution, I applied an independent samples t-test and for data that was not normally 

distributed, I applied a nonparametric Mann-Whitney U test.  

Qualitative Data Analysis 

 Plano Clark and Creswell (2015) asserted the process of qualitative data analysis 

must be systematic, rigorous, and thoughtful. I interpreted their bottom-up or inductive 

process and adapted the process to suit the commognitive methodology (Sfard, 2008). In 

addition, I embedded Zandieh’s (1997) three-layer process-objects (ratio, limit, function) 

coupled with the three layers of the circle diagram for coding into the “The Bottom-Up 

Approach to the Process of Qualitative Analysis” (Plano Clark and Creswell, 2015, p. 

356) in Figure 2 below.  

Immediately after I collected data, I prepared the transcripts from the interviews. 

After reviewing the transcripts, I abandoned the use of a priori goals. I did not code by 

using the four characteristics of mathematical discourse outlined by Sfard (2008) or 

Zandieh’s (1997) three-layer process-objects circle diagrams. I decided to use the purest 

bottom-up approach and compare the outcome of the analysis in my chapter 5 discussion. 

To analyze the interview transcripts, I applied two coding approaches. I completed first 

cycle, after first cycle, second cycle, and after second cycle coding (Saldaña, 2021) for 

both approaches. I initially organized the data using a spreadsheet, then I used a 
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computer-assisted qualitative data analysis software (CAQDAS), and finally, I used a 

mind mapping tool. Details of the analysis have been provided in chapter 4.  

Figure 2 

Bottom-Up: Qualitative Data Analysis of Discourse with Calculus I Students 

      

Trustworthiness and Credibility 

 I took several steps to validate findings to ensure accuracy and credibility and 

trustworthiness and dependability. Plano Clark and Creswell (2015) focus on two forms: 

bracketing and member checking. 

 

The Researcher Validates the 
Findings 

(e.g., checks the accuracy of the 

The Researcher Refines the Codes  
(e.g., combines codes to form a theme that 
captures a major category of information) 

The Researcher Codes the Data 
(e.g., using multiple approaches of first and 

second cycle coding methods from The 
Coding Manual for Qualitative Researchers 

(Saldaña, 2021)) 

The Researcher Explores the Data 
(e.g., obtains a general sense of the material 

and records impressions) 

The Researcher Prepares the Data for Analysis 
(e.g., obtains transcripts from YouTube videos, 

organize digital documents) 

The Researcher Collects Data  
(e.g., audiovisuals, interviews, or activity 

documents) 

 

Simultaneous Iterative 
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 Bracketing was a process of self-reflection for the researcher. I, for example, 

acknowledged my biases, wrote them down, and placed my biases aside or “bracketed” 

the biases during the analysis phase. Triangulation was the process of convergence, 

collaboration, or correspondence. I, for example, examined multiple information sources 

and verified that there was evidence that supported the theme I had surfaced. Member 

checking was requesting one of the participants to validate the accuracy of my findings. 

This was done casually by discussing and confirming findings during office hour visits. 

Only three of the interviewees, however, visited my office hours consistently after the 

interviews.   

Development and Complementarity Purposes of Mixed Methods 

The mixed method design approach served to develop and enhance the data. The 

results from the Derivative Concept Assessment informed and developed my sampling, 

measuring, and implementation decisions for the qualitative method in this study. 

Reciprocally, the use of the qualitative data from the interviews complemented the 

quantitative findings from the Attitude Survey and the Derivative Concept Assessment. 

Having discussed the innovation and the research design for the study, I conclude this 

chapter by presenting the timeline for implementation of the innovation and the research 

design.  

Timeline for Implementation 

The timeline for the implementation  of this proposal is provided in Table 8. The research 

activity, the corresponding time frame for the activity, and the participants and their 

actions were summarized in the matrix. The activities dated from July 19 to December 

13, 2021, for a total of 23 weeks. Details regarding the scheduling of the elements of the 
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research design were presented in the implementation timeline. Following the timeline 

for implementation, the analysis and results are presented in chapter 4. 
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      Table 8 
 
      Timeline for Implementation of Innovation and Research Design 

Research Activity 
 

Timeframe 
Summer & Fall 2021 

Participants | Action 
E: experimental | C: control | PR: 
practitioner/researcher 

Final Innovation design July 19 PR | finalize innovation design 

Produce orientation videos 
Course overview for experimental 
and control groups 

July 26 C | video for course overview; E | video for orientation 
videos for course activities | 
Uncover, Play, Apply, Connect, Question, Realize 
PR | produce videos 

Finalize Canvas courses 
C: traditional course 
E: course with innovation elements 

Aug 9-15 PR | upload Canvas courses for C; upload Canvas 
course with all innovation elements for E; finalize 
Canvas course 

Publish Canvas courses for C and E Aug 16 PR | publish Canvas courses for C and E 

Implement Innovation 
Details in Table 6 
weeks 1-4 

Aug 23-Sep 26 C students | homework and quizzes; E students | play, 
apply, connect, question; PR | instruct/collect 
quantitative data 

Implement Innovation 
weeks 1-16 

Aug 26 
 

C and E | Engage in activities 
PR | Implement Innovation 

Collect data: qualitative; team discussion video 
qualitative data Connect and Question 

Aug 30-Dec 6 C students | quizzes; E students | team discussion 
PR | collect quantitative data 

Analyze data: qualitative; team discussion  
video weeks 2-16 alternating weeks after  
team discussions 

Aug 30-Dec 6, PR | qualitative analysis coding 
 

Collect data: qualitative; pre–Attitude Survey 
week 3 and 4 

Sep 10-14 C and E students | take pre–Attitude Survey 
PR | collect qualitative data (survey) 
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Research Activity 
 

Timeframe  
Summer & Fall 2021 

Participants | Action 
E: experimental | C: control | PR: practitioner/researcher 

Collect data: qualitative; pre–Derivative 
Assessment week 5  

Sep 20, 21 C and E students | take pre–Derivative Assessment 
PR | collect quantitative data (assessment) 

Collect data: quantitative; post Derivative 
Assessment week 7 

Oct 7 C and E students | take post Derivative Assessment 
PR | collect quantitative data (assessment) 

Analyze data: quantitative and qualitative  
scoring assessments and survey; weeks 7-11 

Oct 8-Nov 5 PR | quantitative and qualitative data analysis 
scoring assessment and survey 

Collect data: qualitative; post Attitude; Survey; 
week 12; 12 potential interviewees,  
4 control students; 8 experimental students 

Nov 9-Nov 13  
 

C and E students | take post Attitude Survey 
PR | collect qualitative data (survey) 
total: 12 interviewees, 4 control students; 8 
experimental students 

Collect data: qualitative  
Interviews; weeks 12 and 13 

Nov 13, 14 C and E students | Interviews 
PR | collect qualitative data (interviews) 

Collect data: qualitative  
Interview; week 15 

Dec 2 C and E students | Interview 
PR | collect qualitative data (interview) 

Finish class; weeks 16-17; Final Exam Dec 6-Dec 10 
 

C and E students | final exam 
PR | finish class 

End data collection and semester; week 17 Dec 13 PR | qualitative and quantitative analysis and report out 
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CHAPTER 4 

DATA ANALYSIS AND RESULTS 

Above all else show the data. 

—Edward R. Tufte 

The goal of my investigation was to engage students in mathematical discourse to 

motivate student thinking and understanding of calculus, particularly, the derivative 

concept. My goal was to assess the impact of the combination of two factors, Good 

Teaching and Ambitious Teaching, on a composite mathematics attitude comprising the 

dependent variables, persistence, confidence, and enjoyment in mathematics, particularly 

calculus. In addition, I aimed to determine if there was a significant and observable 

difference in performance of students in an experimental calculus class designed to 

motivate active engagement in mathematical discourse in contrast to students in a 

traditional calculus class. Four research questions guided the conduct of my study: 

RQ1: How does the transformation of classroom communication, specifically  

          mathematical discourse, affect the understanding of the derivative concept in a 

          Calculus I course? 

RQ2: To what extent does participation in classroom discourse in Calculus I, as   

          compared to traditional pedagogy, affect the understanding of the derivative  

          concept in a Calculus I course? 

RQ3: How does Good Teaching and Ambitious Teaching impact students’ attitudes  

          toward mathematics, particularly persistence, confidence, and enjoyment in  

          mathematics? 

RQ4: To what extent does Good Teaching and Ambitious Teaching impact students’  
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          attitudes toward mathematics, particularly persistence, confidence, and enjoyment  

          in Calculus I? 

Results from data collection and analysis are provided in this chapter. In the section 

that follows, I report the data characterizing the participants as they entered the research 

setting, including  

● their prerequisite grades, 

● their attitudes toward and beliefs about mathematics and how they learn 

mathematics, 

● their precalculus and calculus experience, 

● their field of study, and  

● their anticipated activities requiring time management.  

The Entering Calculus Students  

This study sought to understand the characteristics of the entering calculus 

student. Like all mathematics topics, each topic in calculus builds on previous topics. For 

students entering calculus, mastery of the prerequisite topics of algebra, trigonometry, 

and geometry was critical. At our community college system, the prerequisites for 

Calculus I were precalculus, which is a combination of college algebra and trigonometry, 

or college algebra and trigonometry, or placement into Calculus I using Accuplacer or 

EdReady scores combined with ACT or SAT scores or combined with grades of B or 

better in high school college algebra and trigonometry or precalculus. The prerequisite 

profiles of the students entering calculus in this study are given in Table 9.  
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Table 9  

Number of Entering Calculus Students Who Met Given Prerequisite 

 Control  
(n = 12)  

Experimental  
(n = 16)  

Experimental  
(n = 21) 

MAT187 (A)    
MAT187 (B) 3 1 2 

MAT187 (C) 1 1 2 
MAT15X (A) 3 2 1 

MAT15X (B) 2 1 6 
MAT15X (C) 1 9  
MAT15X (P)   1 
MAT182 (A) 2 3 1 

MAT182 (B) 4 7 3 
MAT182 (C)  3 3 

Placement 2  5 
None on record  1 1 

Other   4 
Repeating 

Calculus I  

3 8 3 

Note. MAT187 is Precalculus. MAT15X is College Algebra with “X” representing the 

number of credit hours. MAT182 is Trigonometry. Placement exams included 
Accuplacer and EdReady.  

 

Using the Attitude Survey, this study sought to identify the students’ academic 

background and confidence in their mathematics ability. At the start of the study, students 

were asked to self-assess on four skills they would need for calculus: factoring, solving 

equations, solving inequalities, and solving word problems. They were also asked if they 

understood the mathematics they studied before calculus and if they were ready for 

calculus. The results are reported in Table 10. A mid to high level of self-reported 

confidence in their prerequisite skills and confidence in prerequisite understanding of 

mathematics and thus, readiness for calculus, was evident from student responses 

depicted in Table 10. Although the experimental group reported higher self-confidence in 

three of the four skills, the control group reported higher self-confidence in understanding 

their prerequisite skills overall and in their readiness for calculus.  
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Table 10 

Percentage of Students’ Self-Assessment of High School Preparation  

  Control 

(n = 7) 

Experimental  

(n = 18) 

Can factor expressions Somewhatc 

Yesd 
29 

43 

6 

78 

Can solve equations Somewhatc 

Yesd 
0 
86 

0 
94 

Can solve inequalities Somewhatc 

Yesd 
43 
43  

39 
56 

Can solve word problems Somewhatc 

Yesd 

29 

57 

22 

50 

Understand what I have studieda Somewhatc 

Yesd  
57 
43 

28 
67 

Ready for calculusb 
 

Somewhatc 

Yesd  
14 
86 

11 
78 

Note.  For the first three questions, the prompts began “My mathematics courses in high 
school have prepared me to …,” followed by “factor expressions,” “solve equations,” 

“solve inequalities,” and “solve word problems.” 
                 a “I understand the mathematics that I have studied.”  
                 b “I believe I have the knowledge and abilities to succeed in this course.”  
                 c Combines Slightly Disagree and Slightly Agree.  
                 d Combines Agree and Strongly Agree. 

In Table 11, the percentage of students who completed precalculus at college or 

university and the percentage of students repeating calculus are reported. Approximately 

half of the students in both groups took precalculus in college. About one third were 

retaking calculus at the college level.  
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Table 11 

Percentage of Students who Completed Precalculus and Calculus at College Level  

 Control  

(n = 7) 

Experimental  

(n = 18) 

Took precalculus in college 43 50 

Previously took calculus in college 29 28 

 

The participants were also queried about their field of study (Table 12) and their 

anticipated time management during the study (Table 13). Both the control and 

experimental groups declared engineering and medical professions to be their primary 

choice fields of study. When the fields were combined, 72% of the control group and 

72% of the experimental group chose engineering and medical fields.  

Related to time management, the students were asked to report on the number of 

hours per week they worked at a job, participated in extracurricular activities, studied for 

all their classes, and studied exclusively for calculus. Observations regarding the 

participant time management included the following: when compared to the experimental 

group, the control group reported working less and, additionally, reported working fewer 

hours per week. The hours per week reported spent on extracurricular activities were 

comparable in the two groups. Finally, when compared to the experimental group, the 

control group anticipated spending more hours per week studying for all their classes as 

well as for calculus.  

  



 
 

88 

Table 12 

Percentage of Students in Each Field 

 Control  

(n = 7) 

Experimental  

(n = 18) 

Computer Scientist 0 6 

Engineer 29 44 

Life scientist 14 6 

Medical professional 43 28 

Physical scientist 14 11 

Undecided 0 5 
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Table 13 

Percentage of Time at Work, Extra Curricular, Prep for all Classes, Prep for Calculus 

 Hours per Week 

Spent  

Control  

(n = 7) 

Experimental  

(n = 18) 

Work 0 

1-5 
6-10 

11-15 
16-20 

21-30 
>30 

14 

29 
14 

0 
14 

0 
29 

28 

0 
0 

0 
33 

11 
28 

Extracurricular 0 

1-5 
6-10 

11-15 
16-20 

21-30 
>30 

57 

14 
14 

0 
14 

0 
0 

50 

17 
22 

0 
11 

0 
0 

Prep for all class 
(including calculus) 

0 
1-5 

6-10 
11-15 

16-20 
21-30 

>30 

0 
0 

14 
0 

29 
57 

0 

0 
0 

33 
0 

45 
11 

11 

Prep for calculus 0 
1-5 

6-10 
11-15 

16-20 
21-30 

>30 

0 
29 

29 
0 

29 
14 

0 

0 
33 

44 
0 

17 
0 

6 

 

Effects of Discourse on Attitudes: Entering vs. Exiting Students (RQ3) 

Results from the Attitude Surveys were used to address research question three: 

How does Good Teaching and Ambitious Teaching impact students’ attitudes toward 

mathematics, particularly persistence, confidence, and enjoyment in mathematics? The 
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Attitude Surveys were administered prior to the intervention and several weeks after the 

implementation of part of the intervention focused on the understanding of the derivative 

concept.  

The Attitude Survey 

The pre-Attitude and post-Attitude Surveys were administered in the control and 

experimental classes in week three or four and week twelve of the semester with the aim 

of identifying students’ attitudes and beliefs, particularly persistence, confidence, and 

enjoyment. Observable in Table 10 was that both the control and experimental groups 

entered the study with consistently high levels of self-confidence in their calculus 

prerequisite skills and previous preparation for calculus.  

A comparison of students’ sense of readiness for Calculus I at the start and end of 

the study is provided in Table 14. The entire control group reported they were somewhat 

or definitely ready for calculus, whereas 11% of the experimental group reported they 

were not prepared by previous courses. At the end of the study, in comparison to the 

mixed attitude of the control group, all students in the experimental group reported they 

were either somewhat prepared or definitely prepared for Calculus I. The experimental 

students who felt definitely prepared responded with Strongly Agree or Agree to the 

prompt, “My previous courses prepared me to succeed in this course.” In contrast, at the 

end of the intervention, one of four of the control students disagreed with the statement, 

“I believe I have the knowledge and abilities to succeed in this course.”  
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Table 14  

Percentage of Students’ Self-Assessment of High School Preparation, Start and End 

   Control  

(n = 7) 

Experimental  

(n = 18) 

Confident about 

knowledge/abilities 
for calculus successa 

 

Start Somewhatc 

Yesd  

14 

86 

11 

78 

   Control  

(n = 4) 

Experimental  

(n = 13) 

Confident about 
preparation for 

calculus successb 
 

End Somewhatc 

Yesd  

50 

25 

31 

69 

Note.   a “I believe I have the knowledge and abilities to succeed in this course.”  
                  b “My previous courses prepared me to succeed in this course.” 
 c Combines Slightly Disagree and Slightly Agree.  
 d Combines Agree and Strongly Agree. 

 

In particular, the pre-Attitude and post-Attitude surveys sought to identify student 

attitudes, defined as a composite of three dependent variables corresponding to 

confidence in mathematical ability, enjoyment of mathematics, and intention to persist to 

Calculus II. An overall decrease in persistence, confidence, and enjoyment was observed 

in comparing the aggregate results from pre- to post-Attitude survey data. However, an 

analysis focused only on data from students who completed both pre-Attitude and post-

Attitude surveys produced different results. The results for students completing both 

surveys are reported in Table 15.  

Overall, no changes in confidence were evident for either the control or 

experimental group. Although the affirmative responses (Strongly Agree and Agree—

equivalent to a “Yes”) from the control group decreased for enjoyment, it was evident by 
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the data that overall, the control group continued to enjoy doing mathematics. In 

comparison, the affirmative responses for enjoyment or enjoying doing mathematics 

increased for the experimental group (Table 15).  

Table 15 

Percentage of Students Reporting Persistence, Confidence, and Enjoyment per Surveys 

 Control 

(n = 4) 

Experimental 

(n = 13) 

 Pre  Post  Pre  Post  

I am confident in my 

mathematics abilities.  
SWa  100 

Yesb 0 

SWa  100 

    Yesb 0 

SWa  39 

Yesb 54 

SWa  39 

  Yesb 54 

I enjoy doing 
mathematics.  

SWa  50 

Yesb 50 

SWa  75 

Yesb 25 

SWa  62 

Yesb 23 

SWa  46 

Yesb 39 

Do you intend to take 
Calculus II? 

NS 25 

      Yes 50 

NS 50 

Yes 25 

NS 31 

Yes 54 

NS 31 

Yes 46 

Note.   Acronyms include the following: “Not sure” (NS); and “Somewhat” (SW). 
    a Combines Slightly Disagree and Slightly Agree.  
    b Combines Agree and Strongly Agree. 

 

For the persistence to Calculus II variable, the pre- and post-responses for each 

student were compared (Tables 15). There were no changes in responses for three sets of 

pre- and post-responses for the control group (n = 4). When asked if they intended to take 

Calculus II, pre-survey responses from the control group of “Yes, No, I don’t know yet” 

were paired with “Yes, No, I’m not sure” on the post survey. One student’s pre- to post-

response changed from “Yes” to “I’m not sure.” It was evident from additional survey 

responses that the student was not sure if Calculus II was required for their intended 
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major. The student did not intend to take Calculus II because, as the student stated, “I 

have too many other courses I need to complete.”  

Similar findings resulted from further analysis of the pre- and post-responses to 

Calculus II persistence for the experimental group. The pre- to post-responses from two 

students changed from “I don’t know yet” and “Yes” to “No” and “I’m not sure,” 

respectively. Their survey responses regarding why they did not intend to take Calculus II 

were “I changed my major” and “My grade in Calculus I was not high enough.”  

Based on results from only experimental students who completed both pre-

Attitude and post-Attitude surveys (n = 13), there was no change in the composite 

measure of attitude toward mathematics in the area of persistence, confidence, and 

enjoyment.  However, there was an increase in enjoyment for the experimental group. 

Two of the 13 students indicated a positive change in their enjoyment.  

At the end of the study, students were additionally asked to self-assess on two 

skills introduced in calculus, limits and derivatives, which were the focus of the calculus 

units for this study. They were also asked if they were able to use ideas of calculus in 

word problems and if the course increased their interest in taking more mathematics 

courses. The results are reported in Table 16.  

All responses from the control group were equivalent to “Somewhat” or “Yes.”  

However, compared to the control group, the experimental group had higher levels of 

confidence in their abilities. For example, 46% of the experimental group responded 

either with Strongly Agree or Agree to the question, “I am able to use ideas of calculus 

(e.g., limits, differentiation) to solve word problems that I have not seen before.” In 

comparison, no student in the control group reported this level of certainty.  
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The level of interest or persistence in mathematics were approximately the same 

for the control and experimental groups. However, 3 of the 13 experimental students 

responded with either Strongly Disagree or Disagree to the prompt, “This course has 

increased my interest in taking more mathematics.” In contrast, all the control group’s 

responses were equivalent to “Somewhat” or “Yes.”  

Table 16 

Percentage of Students’ Self-Assessment of Abilities and Interests, End of Study 

  Control  

(n = 4) 

Experimental  

(n = 13) 

Can compute limits and derivativesa Somewhatd 

Yese 

75 

25 

69 

31 

Can solve word problemsb Somewhatd 

Yese  

100 

0 

46 

46 

Course has increased interest in 
mathc 

Somewhatd 

Yese  

75 

25 

54 

23 

Note.    a “I am good at computing limits and derivatives.”  
b “I am able to use ideas of calculus (e.g., limits, differentiation) to solve word 

problems that I have not seen before.” 
c “This course has increased my interest in taking more mathematics.” 
d Combines Slightly Disagree and Slightly Agree.  
e Combines Agree and Strongly Agree. 

Measuring Good Teaching Practice with the Post-Attitude Survey  

 Students were asked to assess 36 questions relevant to instructor characteristics in 

the post-Attitude Survey given at the end of the study. These survey questions comprised 

22 variables that identified traditionally accepted Good Teaching characteristics. For 15 
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of the 22 variables, a 6-point scale from Strongly Disagree to Strongly Agree was used. 

The other 7 of the 22 variables used a 6-point scale response from Very Often to Not at 

all. These results are provided in Table 17. 

The control students reported they experienced Good Teaching practices (Table 

17). Their responses were equivalent to “Somewhat” or “Yes” for 13 of the 15 variables. 

The two other variables, for which the students’ responses were also equivalent to “No,” 

were variables that loaded negatively on Good Teaching. That is, “Discouraged 

continuing calculus” and “Made students feel nervous in class” countered Good 

Teaching. The students' responses were also related to the frequency of practice of Good 

Teaching characteristics. The results were all equivalent to “Sometimes” or “Frequently” 

for Good Teaching characteristics. Similar results were evident for the experimental 

group. However, for “Encouraged students to enroll in Calculus II,” “Presented more 

than one method for solving problems,” and “Exams good assessment of what students 

learned,” it was evident that one experimental student’s response was equivalent to “No,” 

as evidenced in Table 17. Similarly, one experimental student’s response was equivalent 

to “Infrequently” to these prompts: “Provided explanations that were understandable,” 

“Frequently asked students questions,” “Frequently prepared extra material to help 

students understand,” and “Assignments challenging but doable.” 
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Table 17 

Students’ Assessment of Good Teaching Practices for Instructor (Percentages) 

  Control  

(n = 4) 

Experimental  

(n = 13) 

Asked questions to determine 

students’ understanding a 

Somewhatw 

Yesx  

0 

100 

15 

85 

Listened to students questionsb Somewhatw 

Yesx   
0 

100 
8 
92 

Discussed applied problemsc Somewhatw 

Yesx    
0 

100 
8 
92 

Helped students become better 

problem solversd 

Somewhatw 

Yesx     

0 

100 

15 

85 

Discouraged continuing calculuse Somewhatw 

Yesx     
25 
0 

31 
8 

Made students feel nervous in classf Somewhatw 

Yesx    
25 
25 

31 
15 

Encouraged students to enroll in 

Calculus IIg 

Somewhatw 

Yesx  

25 

75 

23 

69 

Acted as if I was capable of 
understanding key ideash 

Somewhatw 

Yesx    
0 

100 
39 
61 

Made me feel comfortable asking 
questionsi 

Somewhatw 

Yesx   
50 
50 

23 
77 

Encouraged students to seek help 

during office hoursj 

Somewhatw 

Yesx   

0 

100 

0 

100 

Presented more than one method for 
solving problemsk 

Somewhatw 

Yesx   
50 
50 

23 
69 

Made class interestingl Somewhatw 

Yesx  
50 
50 

15 
85 

Exams were good assessment of 

what students learnedm 

Somewhatw 

Yesx   

25 

75 

31 

62 

Exams were graded fairlyn Somewhatw 

Yesx  
0 

100 
15 
85 
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  Control 
(n = 4) 

Experimental  
(n = 13) 

Homework was graded fairlyo Somewhatw 

Yesx 
0 

100 
8 
92 

Allowed students time to understand 

difficult ideasp 

Sometimesy 

Frequentlyz   

50 

50 

23 

77 

Provided explanations that were 

understandableq 

Sometimesy 

Frequentlyz    

0 

100 

23 

69 

Was available for appointments 
outside office hoursr 

Sometimesy 

Frequentlyz  
25 
75 

23 
77 

Frequently showed students how to 

work on specific problemss 

Sometimesy 

Frequentlyz 

0 

100 

0 

100 

Frequently asked students questionst Sometimesy 

Frequentlyz  

0 

100 

23 

69 

Frequently prepared extra material 
to help students understandu 

Sometimesy 

Frequentlyz  
50 
50 

39 
53 

Assignments were challenging but 

doablev 
Sometimesy 

Frequentlyz  

25 

75 

31 

61 

Note. Two Likert-scale rated from 0 (Strongly Disagree or Not at all) to 5 (Strongly 

Agree or Very Often).  
                a-v Refer to Appendix K for all 22 Good Teaching survey questions.  

w Combines Slightly Disagree and Slightly Agree.  
x Combines Agree and Strongly Agree. 
y Combines Occasionally and Seldom. 
z Combines Very Often and Often.  

 

Measuring Ambitious Teaching Practice with the Post-Attitude Survey  

 In addition to the 22 variables related to Good Teaching (Table 17), the post-

Attitude Survey comprised 14 variables that identified traditionally accepted Ambitious 

Teaching characteristics. All 14 variables used a 6-point scale response from Very often 

to Not at all. The results are given in Table 18. 

It was evident that the instructor’s practice of Ambitious Teaching was not as 

consistent as their practice of Good Teaching (Table 18). For many of the Ambitious 
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Teaching variables, the results were all equivalent to “Sometimes” or “Frequently” for 

both the control and experimental groups. These included the following variables: 

“Frequently asked students to explain thinking during class,” “Frequently required 

students to explain thinking on homework,” “Gave assignments outside of class that 

included word problems,” and “Gave exams requiring students to solve word problems.” 

The other queries were met with mixed responses, including what was equivalent to 

“Infrequently.” Neither the control group nor the experimental group were required to 

give presentations during class. Nor were there assigned readings given. This was 

consistent with the survey responses (Table 18). 
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Table 18 

Students’ Assessment of Ambitious Teaching Practices for Instructor (Percentages) 

  Control 

(n = 4) 

Experimental  

(n = 13) 

Had students work together during 

classa 

Sometimeso 

Frequentlyp     

0 

0 

62 

8 

Held whole-class discussions during 
classb 

Sometimeso 

Frequentlyp    
0 

100 
15 
31 

Had students give presentations 
during classc 

Sometimeso 

Frequentlyp   
25 
0 

15 
8 

Frequently lecturedd Sometimeso 

Frequentlyp   

25 

75 

15 

69 

Frequently asked students to explain 
thinking during classe 

Sometimeso 

Frequentlyp   
25 
75 

54 
46 

Frequently required students to 
explain thinking on homeworkf 

Sometimeso 

Frequentlyp   
50 
50 

23 
77 

Frequently required students to 

explain thinking on examsg 
Sometimeso 

Frequentlyp  

25 

50 

8 

92 

Assigned reading in textbook for 
reading before coming to classh 

Sometimeso 

Frequentlyp  
0 
25 

46 
8 

Returned assignments with helpful 
feedback/commentsi 

Sometimeso 

Frequentlyp    
25 
75 

15 
77 

Gave assignments outside of class 

that were group projects j 

Sometimeso 

Frequentlyp    

0 

0 

54 

39 

Gave assignments outside of class 
that included word problemsk 

Sometimeso 

Frequentlyp    
0 

100 
8 
92 

Gave word problems unlike those in 
textbookl 

Sometimeso 

Frequentlyp  
25 
50 

69 
23 

Gave exams requiring students to 

solve word problemsm 

Sometimeso 

Frequentlyp  

0 

100 

8 

92 
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  Control 

(n = 4) 

Experimental  

(n = 13) 

Gave exams requiring students to 

solve word problems unlike those in 
textbookn 

Sometimeso 

Frequentlyp   

25 

50 

54 

15 

Note.  One Likert-scale rated from 0 (Not at all) to 5 (Strongly Agree or Very Often).  
                   a-n Refer to Appendix K for all 14 Ambitious Teaching survey questions.  

   o Combines Occasionally and Seldom. 
                   p Combines Very Often and Often. 

 

Summary: The Entering and Exiting Calculus Student 

 All but two entering students met the official prerequisites for Calculus I. Both 

were given permission to take the course. About one fifth of the entering students were 

repeating Calculus I. In one of the two experimental classes that comprised the aggregate 

experimental group, half of the students were repeating Calculus I. Of the students who 

took the pre–Attitude Survey, about one third reported taking calculus again. No student 

taking Precalculus as a prerequisite made an A in the class. Entering calculus, the control 

and experimental students reported they understood the mathematics that they had 

studied and believed they had the knowledge and abilities to succeed in Calculus I. At the 

start of the study, the control students reported being more confident in their readiness for 

calculus versus the experimental students. At the end of the study, the control students 

had mixed feelings about their readiness for calculus, whereas the experimental students 

reconfirmed their readiness.   

The students’ career aspirations leaned predominantly toward the engineering and 

medical fields. Approximately 30% of the students worked more than 30 hours per week 

while approximately 30% anticipated working 6-10 hours per week and 30% anticipated 

working 1-5 hours per week to prepare for calculus. 
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Summary of RQ3 Results  

How does Good Teaching and Ambitious Teaching impact students’ attitudes 

toward mathematics, particularly persistence, confidence, and enjoyment in mathematics? 

On the post-Attitude Survey both control and experimental groups reported experiencing 

Good Teaching in and out of the classroom setting. For the most part, this was also the 

case for Ambitious Teaching. Part of the aim of the Attitude survey was to confirm if the 

students reported experiencing accepted characteristics of Good Teaching and Ambitious 

Teaching practices.  

An observation of the percentages reporting persistence in taking Calculus II, 

confidence, and enjoyment indicated that there was no change in the variable composites, 

persistence, confidence, and enjoyment, of students’ attitude towards Calculus I. These 

participants entered Calculus I with a mid to high self-reported confidence in their 

prerequisite skills and readiness for calculus. The effects of mathematical discourse on 

the understanding of the derivative concept in a Calculus I course are addressed in the 

following section.  

 Effects of Discourse on Understanding of Derivative Concept (RQ1) 

Results from the Derivative Concept pre- and post-Assessments were used to 

address research question one: How does the transformation of classroom 

communication, specifically mathematical discourse, affect the understanding of the 

derivative concept in a Calculus I course? The Derivative Concept Assessment was 

administered prior to and after the implementation of the intervention. The intervention 

was implemented in course modules focused on the limit-based definition of the 

derivative concept.  
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Comparing Means within Groups 

The pretest and posttest were administered in both control and experimental 

classes in weeks five and seven of the semester, respectively. Participants completed and 

submitted both pretest and posttest on Canvas during their synchronous online class 

meeting. The scores of students who completed both pre- and posttests were considered 

in the statistical analyses that follow. 

Normality of the pretest and posttest scores for each group were checked visually 

by inspecting the frequency histograms and the Q-Q Plots. The null hypothesis for the 

Shapiro-Wilk test was that the data were normally distributed. Results of Shapiro-Wilk 

tests for the for the control group, pretest (n = 8, p = 0.506) and posttest (n = 8,                

p = 0.083), and for the experimental group, pretest (n = 18, p = 0.656) and posttest         

(n = 18, p = 0.185), indicated that the pretest and posttest data for both groups were 

normally distributed.  

Essentially, the difference in the control and experimental groups was the added 

teamwork for the experimental group. Both groups engaged in the same or similar in-

class discussions to develop calculus discourse. Thus, inferential statistics was conducted 

on the aggregate to determine if there was a difference between the pretest and posttest 

within the aggregate group. For the aggregate, results of Shapiro-Wilk tests indicated the 

pretest scores were normally distributed (n = 26, p = 0.626), while the posttest scores 

were not normally distributed (n = 26, p = 0.048).  For consistency, the nonparametric 

test, specifically the Wilcoxon signed-rank test, was applied to compare the means of 

both the pretest and posttest within the control group, experimental group, both of which 

had normally distributed data, and the aggregate group with the non-normal data. 
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The results are provided in Table 19. The null hypothesis was the difference in group 

means was zero. There were no significant statistical differences between the pretest and 

posttest within either the control (p = 0.141) or the experimental group (p = 0.162). There 

was a significant statistical difference between the pretest and posttest within the 

aggregate group (p = 0.043). 

Table 19  

Wilcoxon Test Results, Derivative Concept Assessment 

 Control (n = 8)  
Wilcoxon Test 

Experimental (n = 18) 
Wilcoxon Test  

Combined (n = 26) 
Wilcoxon Test 

Pretest    
Mean 5.031 4.611 4.7404 

SD 2.512 2.292 2.319 
Posttest    

Mean 6.875 5.125 5.664 
SD 3.404 2.462 2.836 

p 0.141 0.162 0.043 

Note. The total-point value for the Derivative Assessment was 11.5 points.   

Comparing Growth between Groups 

For the aggregate (a combination of all students in the control and the 

experimental group), results of Shapiro-Wilk tests indicated the pretest scores were 

normally distributed (n =26, p = 0.625), while the posttest scores were not (n =26,           

p = 0.048). A nonparametric Mann-Whitney U Test was applied to assess if there were 

any significant differences in growth, from pre- to post-assessment, between the 

experimental and control groups. The Mann-Whitney U Test results are provided in 

Table 20. The null hypothesis was the difference in group means was zero. There were no 

significant statistical differences between the control and experimental group when 

comparing the pretest (p = 0.807), posttest (p = 0.160), and the growth (p = 0.311). 
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Table 20  

Mann-Whitney U Test Results, Derivative Concept Assessment  

 Pretest (n = 26)  
 

Posttest (n = 26) 
 

Difference (n = 26) 
(post – pre) 

Mean 4.740 5.664 0.923 
SD 2.319 2.836 2.172 

p 0.807 0.160 0.311 

 

Summary of RQ1 Results 

 The aim in administering the Derivative Assessment instrument was to determine 

how the development of mathematical discourse affected the understanding of the 

derivative concept (RQ1). For consistency, a Wilcoxon signed-rank test was applied to 

determine if there was a statistically significant difference between the pretest and 

posttest within the experimental, control group, and the aggregate. Within the control 

group and within the experimental group, the difference was not statistically significant. 

Within the aggregate, however, there was a statistically significant difference between the 

pretest and posttest when considering all students in the study. 

 To compare the growth between the control and experimental group, the 

differences between the posttest and pretest results were examined using the Mann-

Whitney U Test. The results indicated no statistically significant difference between the 

performance of the control group and the experimental group when comparing their 

pretests and when comparing their posttests. Results also indicate no significant growth 

when comparing the differences between the posttest and pretest between the groups.  

Effects of Discourse on Understanding the Derivative Concept (RQ2) 

The interviews of twelve students, four control students and eight experimental 

students, provided data for further exploration of students’ understanding of the 
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derivative concept. In particular, the analysis and synthesis of the interview data 

addressed research question two: To what extent does participation in classroom 

discourse in Calculus I, as compared to traditional pedagogy, affect the understanding of 

the derivative concept in a Calculus I course?  

The interviews were conducted individually using video conferencing. The 

individual interviews, which were task-based and semi-structured, lasted a period of 26 to 

74 minutes, depending on the student. The interview protocol is provided in Appendix F. 

The first set of ten interview questions were relevant to the derivative concept and thus 

addressed RQ2.  

Interviews were administered in weeks twelve and thirteen of the semester with a 

sample of students from both the control group and experimental group. The IRB for the 

study was revised to obtain approval for a minor to participate in the study. Following the 

IRB approval, the twelfth interview was administered in week fifteen. Table 21 provides 

demographic and academic information about the interviewees. 
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Table 21  

The Twelve Interviewees: Demographics and Academics  

Name Group a Gender Major b Year c 

 
 

Prereq 

Repeating 

Calculus 

Pre and 

Posttest 
Score  

out of 15 

Lambda 1 F Bio So MAT151 

MAT182 

N 3 | 2.5 

Mu 1 F Bio Fr MAT152 
MAT182 

N 1 | 2.5 

Iota 0 M Sci So MAT187 N 3.25 | 2.25 

Rho 0 F Sci So MAT151 
MAT182 

Y 4.5 | 7.75 

Alpha 1 F Bio Fr Placement N 4.25 | 3 

Sigma 0 F Sci So MAT151 

MAT182 

N 2 | 4 

Beta 1 M Sci So MAT151 

MAT182 

Y 4.5 | 4 

Epsilon 1 M Engr Fr Placement N 6 | 7.5 

Pi 1 M CS So MAT151 
MAT182 

Y 7 | 4 

Delta 1 F Engr So MAT187 N 4.5 | 7.75 

Zeta 1 M Bio Fr Placement N 2.5 | 5 

Kappa 0 M Und Fr MAT187 N 5.75 | 10.5 

Note. MAT187 is Precalculus. MAT151 and MAT152 are College Algebra. MAT182 is 

Trigonometry. Placement exams included Accuplacer and EdReady. Majors and year in 
college were obtained from MCCCD Student Information System (SIS). 

          a 0: Control Group and 1: Experimental Group 
          b Majors: Bio: Biology, Sci: Science, Engr: Engineering, CS: Computer        

            Science, and Und: Undeclared.  
          c Academic Years:  Fr: Freshman, and So: Sophomore.  
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Discourse Analysis 

To analyze the interview transcripts, I applied two coding approaches. I 

completed first cycle, after first cycle, second cycle, and after second cycle coding 

(Saldaña, 2021) for both approaches. I initially organized the data using a spreadsheet, 

then I used a computer-assisted qualitative data analysis software (CAQDAS), and 

finally, I used a mind mapping tool. Table 22 depicts the coding methods I used for all 

cycles in Approaches #1 and #2.  

Table 22  

Discourse Analysis Applied to Transcript Data (Saldaña, 2021) 

 

 

First Cycle 

Coding 
Using  

Spreadsheet 

After First 

Cycle  
Using  

CAQDAS 

Second 

Cycle 
Using  

CAQDAS 

After First and 

Second Cycle 
Using Mind 

Mapping Tool 

Approach #1 In Vivo and 

Initial Coding 

Process  

Coding 

Pattern 

Coding 

Categories of 

Categories  

Approach #2 Structural 
Coding 

Code 
Landscaping  

Focus Coding Categories of 
Categories 

 

Using the discourse analysis depicted in Table 22 for two interview transcripts 

resulted in seven categories. For the other ten transcripts, I completed the first cycle 

coding using In Vivo and Initial Coding. Then I used the seven categories to code the 

students’ responses manually and created additional categories when necessary. Three 

additional categories emerged in the analysis of the other ten interviewee transcripts.  

The ten categories condensed into four categories after applying an after first and 

second cycle coding, categories of categories, using a mind mapping tool. The four 

condensed categories were application, rate of change, symbolic representation, and 
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visual representation. Evaluating, interpreting, limiting, mathematical rule, mathematical 

modeling, processing, and relating became subcategories of symbolic representation. 

Application subsumed unit analysis and modeling as subcategories. The context provided 

by the students in their responses determined whether modeling was a subcategory of 

application or symbolic representation. The ten categories, example related codes, that is, 

students’ utterances, and the four condensed categories are presented in Figure 3.  
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Figure 3 

Participants’ Derivative Discourse: Initial and Condensed Categories 

        Initial Categories Condensed Categories 

1. Evaluating: direct substitution, 

evaluate, plug in, put in, value at  

2. Interpreting: mathematical notation, 

this means, almost like 

3. Limiting: limiting value, like the limit, 

take the limit 

4. Relating: how variables relate to each 

other, related to each other, this is a 

function of  

5. Processing: steps, over and over again, 
for every x value, keep finding the 

derivative at each point, how much 

more is it compared to the previous, 

plug in for x 

6. Modeling or Mathematical Rule: 

original function, whole derivative 

function, function behaving 

7. Applying: position, velocity, 

acceleration, car moving, cost per mile 

8. Unit Analysis: dollar per miles, miles, 

miles per dollar, miles per hour 

9. Rate of Change: average of change, 

change, rate, ratio, rate of change 

10. Visualizing: slope, shape, derivative at 

a point, slope of tangent line 

 

 

 

 

     

       Symbolic  

representation 

      

       

Note. Modeling or 
Mathematical Rule, 

depending on context, 
may be subsumed by 

Symbolic representation 
or the Application 

category 

         Application 

    

 

         Rate of change 

 

        Visual        

representation 
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Students’ Descriptions of the Derivative  

The first five interview questions were to elicit the students’ description or 

definition of a function, derivative, the derivative function, and the derivative at a point. 

The students’ understanding of the relationship between these terms and of the use of the 

derivative function were also prompted within the first five interview questions. These 

interview questions (IQ1-IQ5) were as follows: What is the derivative? What is the 

derivative function? What is the derivative at a point? Is there any relationship between 

these two terms, derivative function and derivative at a point? How about the term 

function? Is the term function related to the derivative function and the derivative at a 

point? How?  

Interview questions six to ten (IQ6-IQ10) were taken directly from the Derivative 

Assessment administered in weeks five and seven of the semester. One instrument was 

used for the pre- and post-assessment. The students were provided the original problem 

statement along with their original answers to their pretest and posttest. Two questions 

involved interpreting a function and derivative function in an application context. Two 

questions required students to state the unit of the input value for a function and its 

derivative function. The last question required students to evaluate a derivative function 

to elicit students’ understanding of a derivative function as another function. The 

questions are in Appendix F. Students who cited three of four correct answers and were 

able to explain their answers, for IQ6-IQ10, were determined to understand the 

application of derivatives as depicted in Table 23. 

The ten interview questions, IQ1-IQ10, taken comprehensively, addressed 

research question two: To what extent does participation in classroom discourse in 
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Calculus I, as compared to traditional pedagogy, affect the understanding of the 

derivative concept in a Calculus I course? Table 23 shows the condensed response from 

each student to the first ten interview questions. Although responses have been 

condensed, the students’ actual word use during the interviews are reflected in the 

responses in Table 23. When students expressed derivative-concept terms such as 

instantaneous rate of change or average rate of change, I followed up with prompts for 

clarifications to determine their understanding of these terms. 

Table 23 depicts my evaluation of the students’ understanding of the derivative 

concept using the four condensed categories, application (APP), rate of change (ROC), 

symbolic representation (SYM), and visual representation (VIZ). The Ys in Table 23 

indicates “yes” the student was able to articulate the representation of the derivative 

concept either as an application, rate of change, symbolic representation, or a visual 

representation. Ns indicates “no” the student was not able to articulate the representation. 
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       Table 23 

       Summary of Students’ Understanding of the Derivative Concept 

                  Condensed Response for IQ1–IQ5 Ca or Eb APPc ROC SYM VIZ 

Lambda   derivative is the inverse function of the original function  
the derivative at a point is one less point of the original function we're using 
the same equation to find the derivative and the points  

E N N Y N 

Mu derivative is the slope of a line that involves the tangent to the curve  
derivative function is the rate of change that involves respecting a variable  
at a point is the instantaneous rate of change 

E N Y N Y 

Iota the rate of change would be the derivative   
derivative function is just a math problem 

C N N N N 

Rhod derivative representation of slope and shape models change in slope of 
original function derivative at a point shows you how the function is behaving 
at that point  
the slope of the tangent line the derivative is a function  

C Y Y Y Y 

Alpha the graph of all the slopes like changing slope of the original function  
I picture what the slope is doing and which direction it’s going  
you plug something in like 2 and then you get the derivative at that specific 
point  
it has a method to do that and has a certain order and steps you have to follow 

E N N Y Y 

Sigma taking a derivative it's a change in something so a change in x or a change in y  
would have to do with limits? I have a feeling it has to do with limits  
because a slope is a change the tangent line a slope is an adjustment from one 
point to another  
then the derivative point is the slope 

C N N N Y 

Beta rate of change or like the slope of the tangent line  
like a function if you have your input and then you have your output  
limit at a point of what the secant line or the slope line  
your function is your input and output  
the derivative at a point is whatever the slope is at that point 

E N Y Y Y 
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                  Condensed Response for IQ1–IQ5 Ca or 
Eb 

APPc ROC SYM VIZ 

Epsilon derivative is the rate of change with respect to a variable y equals x  
and the derivative is like the function in respect to other function  
limit at that point like the secant line at a certain point  
along the regular function you plug in x.  

E N Y Y Y 

Pi find the slope of an equation at a point or on a graph the function that allows 
you to find the slope at any point slope of the graph or equation at that point 
by plugging in any number into the equation you're looking for a point the 
derivative function is the equation and then you use that equation to find the 
derivative at a point 

E N N Y Y 

Delta derivative is the reduced form of the equation or the function look for the 
slope for the rise over the run the derivative function would have tangents 
everywhere in any graph there's a lot of points in that graph you will have 
slope or tangents in the graph the derivative at a point just pick a point 
wherever the in the graph and just plug it in and look for the slope or the 
tangent 

E N N Y Y 

Zetad a derivative is the rate of change of a function at a given x value  
at a given x value you can find the slope of the line at that point  
the derivative at a point is byproduct of the derivative function  
we use the derivative function to find the derivative at a point  
slopes at those points and the relationship between the different points 

E Y Y Y Y 

Kappad derivative of a function means the slope of a function  
the rate of change of a function –either at a specific point or of a function in 
general take the derivative of a function and then find a specific point on that 
derivative function and then it would be the instantaneous rate of change  
at that point graphically it would look like a slope  
like if you started with a position function you'd have a velocity function 

C Y Y Y Y 

       Note.  a C: control group   
                          b E: experimental group  
                          c Students who cited three of four correct answers and were able to explain their answers, for IQ6-IQ10, were determined to understand  
                   the application of derivatives.  
                          d Student correctly answered and explained all IQ6-10 on Derivative Concept Assessment.
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Understanding the Derivative: The Control Group 

The students interviewed from the control group were Iota, Kappa, Rho, and 

Sigma. Results reported in Table 23 indicate the understanding of the derivative concept 

ranged from near nil to early and advanced stages of development. Iota was unable to 

utter any words that indicated he possessed clear understanding in terms of any of the 

four representations: application, rate of change, symbolic, and visualization of the 

derivative concept. He expressed the term rate of change, but when prompted to 

elaborate, Iota was unable to explain or give examples of the term rate of change.  

Sigma was in early development of her visualization capabilities in understanding 

the derivative concept. Interestingly, Sigma was one of three of all interviewees that 

uttered the term limit during the interviews.  

Rho’s and Kappa’s understanding of the derivative concept encompassed all four 

representations. Their understandings were very detailed. Rho’s strength was in her 

ability to explain and apply different aspects of the term rate of change and her ability to 

engage mathematical processing in applied problems. Kappa's understanding of the 

derivative concept was extensive. His agility to clarify and provide examples for any of 

the four representations, with or without prompting, indicated his development, that is, 

Kappa’s ability to think about and act on the concept of derivative, were very advanced in 

comparison to his peers in either his group, the control group, or the experimental group. 

From the analysis of interview data, there was no evident commonality in the control 

group’s calculus discourse relevant to understanding the derivative concept.  
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Understanding the Derivative: The Experimental Group 

 Eight of the interviewees, Alpha, Beta, Delta, Epsilon, Lambda, Mu, Pi, and Zeta, 

were from the experimental group. Results reported in Table 23 indicate that the 

understanding of the derivative concept ranged from early to advanced stages of 

development for the group. One of the eight, Lambda, demonstrated early stages of 

development. She was able to explain the derivative concept using symbolic 

representation only. Seven experimental students were able to demonstrate their 

understanding of derivative concept with at least two representations. Two of the 

students, Beta and Epsilon, used three representations and one, Zeta, was able to use all 

four representations to demonstrate his understanding of the derivative when prompted or 

not prompted. Beta and Epsilon were the only students that uttered the term limit from the 

experimental group.   

All eight experimental students explained their understanding of the derivative 

concept using either a symbolic or visual representation. Six of eight demonstrated both 

symbolic and visual understanding of derivative. Evidently common to the discourse of 

the experimental group was use of terms such as slope, shape, derivative at a point, slope 

of a tangent line, evaluate, and plug in. Evidently common to the experimental group was 

their ability to demonstrate their understanding of the manipulation and visualization of 

the term function, both the original and the derivative functions.  

Summary of RQ2 Results 

 The purpose of the interviews was to determine to what extent participation in 

classroom discourse in Calculus I, as compared to traditional pedagogy, affected the 
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understanding of the derivative concept in a Calculus I course. Eleven of the twelve 

students interviewed were able to demonstrate early to advanced development of the 

derivative concept in at least one of the four condensed categories of representations of 

the derivative concept. The following is the number of students who demonstrated their 

understanding of the derivative in the given representation: 3 in application, 6 in rate of 

change, 9 in symbolic representation, and 10 in visual representation.  

 When comparing the control to the experimental group, it is evident from analysis 

of the raw data that the experimental group understood the concept of the derivative at 

worst, marginally, and at best, holistically. Six of the eight understood the concept using 

two representations, symbolic and visual. Two of four control students, however, in 

contrast to only one of eight of the experimental students, understood the derivative 

concept exceptionally in all four representations.  

 Rising from the raw qualitative data was a commonality in the experimental group 

that was not evident in the control group. Common to the discourse of the experimental 

group was use of terms related to a symbolic and visual understanding of the derivative 

concept. Also common to the experimental group was their capacity as an aggregate to 

algebraically manipulate and visualize functions—the original or the derivative function. 

The Extent of Effects of Instructor Practice on Attitude (RQ4) 

The interviews provided data to further examine how pedagogical strategies influenced 

students’ attitudes toward Calculus I. This study specifically explored attitudes related to 

two constructs, Good Teaching and Ambitious Teaching. Discourse analysis and 

synthesis of the interview data addressed research question four: To what extent does 
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Good Teaching and Ambitious Teaching impact students’ attitudes toward mathematics, 

particularly persistence, confidence, and enjoyment in Calculus I? 

The interview was divided into three parts and was guided by research questions 

two and four. The first part of the interview focused on addressing to what extent 

mathematical discourse affected the development of knowledge and skills relevant to the 

derivative concept. The first part was discussed in the previous section of this chapter. 

While the first part of the interview followed up on the Derivative Concept Assessment, 

the second and third parts of the interview followed up on the post-Attitude Survey 

questions relevant specifically to Good Teaching and Ambitious Teaching, respectively. 

The 22 variables related to Good Teaching and the 14 variables related to Ambitious 

Teaching characteristics were provided in Tables 17 and 18, respectively.  

I assumed the students may not have been able to recall the clusters of 36 Attitude 

Survey questions related to Good Teaching (22 questions) and Ambitious Teaching (14 

questions) practices. Therefore, I provided the Attitude Survey questions to serve as 

references. I divided the survey questions into five sets, 3 sets for Good Teaching and 2 

sets for Ambitious Teaching. I also provided the list of interview questions. 

At the beginning of the interview, the students were asked eight questions aimed 

at determining to what extent Good Teaching impacted their attitudes toward Calculus I. 

Then, for the third part of the interview, I followed by asking the same eight questions 

but referred them to the survey questions related to Ambitious Teaching. Specifically, 

students were asked how and to what extent, if at all, did any of the cluster of 36 Attitude 

Survey questions affect their attitudes with respect to persistence, confidence, and 
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enjoyment. They were also asked which one of the instructor practices, if any, had the 

most impact on their overall attitude toward Calculus I. The last question prompted 

students to think of any other instructor practices, in any classes they have taken, that 

affected or could have affected their attitudes with respect to persistence, confidence, and 

enjoyment. The interview protocol is provided in Appendix F.  

Effects of Good Teaching Practices on Attitude (RQ4) 

Table 24 offers a summary of the results, presenting the five most frequently cited 

Good Teaching practices out of the cluster of 22 Good Teaching practices. During the 

interview, the students were given the option, but were not required, to choose from the 

22 provided Attitude Survey questions related to Good Teaching. However, most 

students opted to choose from the cluster of 22 Good Teaching practices that impacted 

their attitude because they felt they had experienced the instructor practice(s) in our class.  

There were several instances when students stated multiple Good Teaching 

practices that impacted their persistence, confidence, or enjoyment in our class. There 

were 6 of 12, 4 of 12, and 5 of 12 students that cited multiple Good Teaching practices 

that impacted their persistence, confidence, or enjoyment, respectively. Each student’s 

recollection of an instructor practice was tallied for the total for that instructor practice. 

That is, if Delta stated that all five Good Teaching practices affected her persistence, all 

five would be credited once for impacting persistence in Table 24. There were also 

instances when students did not choose from the 22 Good Teaching practices, but instead 

offered their own thoughts about Good Teaching practices. All students chose from the 

given cluster of 22 Good Teaching practices when asked what practices impacted their 
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persistence. There were 3 of 12 students that offered other practices that impacted their 

confidence and 1 of 12 offered other practices that impacted their enjoyment. These 

numbers are not observable in Table 24. Finally, when students reported the practice(s) 

that most impacted their composite attitude, if they cited more than one instructor 

practice, only the first one they stated was reported in Table 24.  
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Table 24 

Most Cited Good Teaching Practices Students Reported Impacted Their Attitude and the 
Number of Students Reporting the Practicea (n = 12) 
Good 
Teaching 
(GT) 
practice 
chosen of 22 
GT practices 

Asked 
questions to 
determine 
students’ 

understandinga 

Encouraged 
attendance 
of office 
hoursa 

Provided 
understandable 
explanationsa 

Showed 
specific 
worka  

Made class 
interestinga 

Persistence 2 4 1 4 0 

Confidence 4 1 2 1 0 

Enjoyment 5 1 2 0 4 

Composite 
Attitudeb  

11 6 5 5 4 

Most 
Impactful 

2 1 2 0 4 

Note.   a Refer to Table 17 Students’ Assessment of Good Teaching Practices for  
             Instructor for all 22 Good Teaching variables.  

  b Composite Attitude total is a sum of persistence, confidence, and enjoyment. 
 

The following observations were evident in Table 24:  

● The persistence of one-third of the students was impacted by the instructor 

encouraging students to seek help during office hours and frequently showing 

students how to work specific problems during class. 

● The confidence of one-third of the students was impacted by the instructor asking 

questions to determine if students understood what was being discussed. 

● The enjoyment of about one-third of the students was impacted by the instructor 

asking questions to determine if students understood what was being discussed 

and making class interesting. 
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● The combination or composite attitude was impacted by the instructor asking 

questions to determine if students understood what was being discussed. 

● The instructor making class interesting is the most influential Good Teaching 

practice and has the most impact on the overall composite attitude of students. 

 To offer context to observations from Table 24, examples of student responses are 

provided in Table 25. The qualitative analysis discussed in a previous section on 

discourse analysis was applied to the students’ interview transcripts. The analysis 

provided data detailing students’ expressions of the features of the five most cited Good 

Teaching practices students experienced in and out of our classroom. The five initial 

Good Teaching practices were condensed into two categories after applying an after first 

and second cycle coding, categories of categories, using a mind mapping tool. The two 

condensed categories were interactions validating students and available and 

encouraging instructor.  

● The condensed category interactions validating students included the instructor 

asking questions to determine if students understood what was being discussed 

and providing explanations that were understandable. The category was cited 

most to impact confidence or enjoyment, as well as the composite attitude. 

● The condensed category available and encouraging instructor included the 

instructor: (a) encouraging students to seek help during office hours; (b) showing 

students how to work specific problems; and (c) making class interesting. The 

category was cited most to impact persistence. 
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          Table 25 
 
          Student Responses for Good Teaching Practices that Impact Attitude—Most Cited per Table 24 

Good 

Teaching 

Practice 

 

 

Asked questions to 

determine students’ 

understandinga 

Encouraged attendance 

of office hoursa 

Provided 

understandable 

explanationsa 

Showed specific worka  Made class 

interestinga 

Persistence Lambda (E) 

you ask questions and 

waiting for an answer not 

giving it to us allowing time 

to get a hold of what's being 

asked 

Kappa (C) 

office hours were 

really helpful i liked 

that was an option and 

i feel like it help my 

persistence to know if i 

need help there's a 

source i can go to 

because i don't know 

very many other 

people who actually 

know calculus very 

well gave me more 

motivation 

Pi (E) 

i think they all do 

because it helps 

alleviate a lot of the 

mental burden  

number 29 My 

calculus instructor 

provide 

explanations that 

were 

understandable 

Rho (C) 

you did show us how 

to work specific 

problems they weren't 

the most advanced 

problems wasn't like 

you were just trying to 

throw out a freebie for 

the test you weren't 

teaching to the test 

[not cited for 

impact on 

persistence] 

Confidence Zeta (E) 

even when you're asking 

questions you're doing 

examples and we get them 

right that's definitely a 

confidence builder it shows 

us that we know what's going 

on and we're not totally lost 

Kappa (C)  

[cont. from above] 

when i'm feeling really 

good about things i 

feel motivated then 

that helps me to be 

more persistent 

because i have more of 

a desire and more 

confidence that i can 

do it if i keep trying 

Pi (E)  

[cont. from above]  

i'm still kind of the 

same when it 

comes to my 

enjoyment if i get it 

right then i'm 

having a good time 

it helps alleviate a 

lot of the mental 

burden 

Zeta (E)  

especially with when 

we're able to ask 

questions in class and 

you go over the 

problems and like 

provide specific work 

[not cited for 

impact on 

confidence] 
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Good 

Teaching 

Practice 

 

 

Asked questions to 

determine students’ 

understandinga 

Encouraged attendance of 

office hoursa 

Provided 

understandable 

explanationsa 

Showed 

specific 

worka  

Made class 

interestinga 

Enjoyment Alpha (E) 

you like saying those 

funny so i enjoy that 

and i also enjoy you're 

like guys come on you 

gotta answer the 

question come on guys i 

know you guys know 

this 

Epsilon (E) 

where you're encouraging 

us to get help if we need it 

or question we're 

comfortable like asking 

questions and getting help 

on like problems we were 

confused with during class 

Delta (E) 

it really is satisfying to 

have a problem 

answered and be able to 

understand it so after 

that problem is 

answered i will i just go 

on to the next second 

hard question 

[not cited for 

impact on 

enjoyment] 

Beta (E) 

how you relate 

problems like to real 

world i said arch i 

mean that was cool 

because you put it on 

the graph and then i 

googled what the 

gateway arch 

looked like and that's 

pretty cool and gave 

that enjoyment 
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Good 

Teaching 

Practice 

 

 

Asked questions to 

determine students’ 

understandinga 

Encouraged attendance 

of office hoursa 

Provided 

understandable 

explanationsa 

Showed 

specific 

worka  

Made class interestinga 

Most 

Impactful 

[not cited for most 

impactful] 

 

 

 

Sigma (C)  

i didn't go to your office 

hours as much as i 

wanted to because i work 

nights but i feel like 

office hours are because 

you're different in office 

hours than you are even 

you're teaching you're 

teaching me in a huge 

class and you're having 

to spread your 

knowledge through all of 

them 

Zeta (E) 

providing explanations 

that are understandable 

because it's easy for a 

teacher to give an 

answer that is quick 

but when you really go 

into depth and like 

make sure we 

understand what's 

going on and like have 

a real understanding of 

like how to repeat the 

process beyond this 

one problem 

[not cited 

for most 

impactful] 

Lambda (E) 

you're motivational you're 

okay with accepting wrong 

answers and people to keep 

on trying you just engage 

with everybody even if it's 

not about calculus that's 

what impacts my 

enjoyment to want to stay 

in this class and proceed 

forward with taking 

another one of your classes 

        Note. a Refer to Table 17 Students’ Assessment of Good Teaching Practices for Instructor for all 22 Good Teaching variables. 
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Effects of Ambitious Teaching Practices on Attitude (RQ4) 

Table 26 offers a summary of the results, presenting the two most frequently cited 

Ambitious Teaching practices out of the cluster of 14 Ambitious Teaching practices. 

During the interview, the students were given the option, but were not required, to choose 

from the 14 provided Attitude Survey questions related to Ambitious Teaching. However, 

most students opted to choose from the cluster of 14 Ambitious Teaching practices that 

impacted their attitude because they felt they had experienced the instructor practice(s) in 

our class.  

There were several instances when students stated multiple Ambitious Teaching 

practices impacted their persistence, confidence, or enjoyment in our class. There were 1 

of 12, 7 of 12, and 5 of 12 students that cited multiple Good Teaching practices that 

impacted their persistence, confidence, or enjoyment, respectively. Each student’s 

recollection of an instructor practice was tallied for the total for that instructor practice. 

That is, if Delta stated that both Ambitious Teaching practices affected her persistence, 

both would be credited once for impacting persistence in Table 26. There were also 

instances when students did not choose from the 14 Ambitious Teaching practices, but 

instead offered their own thoughts about Ambitious Teaching practices. There were 1 of 

12, 4 of 12, and 2 of 12 students that offered other practices that impacted their 

persistence, confidence, and enjoyment, respectively. These numbers are not observable 

in Table 26. Finally, when students reported the practice(s) that most impacted their 

composite attitude, if they cited more than one instructor practice, only the first one they 

stated was reported in Table 26.  
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Table 26 

Most Cited Ambitious Teaching Practices Students Reported Impacted Their Attitude  
and the Number of Students Reporting the Practicea (n = 12) 

Ambitious Teaching (AT) 
practice chosen of 14 AT 
practices 

Asked 
students to 

explain their 
thinkinga 

Assigned group projectsa 

Persistence 3 5 

Confidence 6 3 

Enjoyment 5 3 

Composite Attitudeb  14 11 

Most Impactful 4 5 
Note.   a Refer to Table 18 Students’ Assessment of Ambitious Teaching Practices for    

     Instructor for all 14 Ambitious Teaching variables. 
    b Composite Attitude total is a sum of persistence, confidence, and enjoyment. 

 
 The following observations were evident in Table 26:  

● The persistence of about two-fifths of the students was impacted by engagement 

in group projects outside of class. 

● The confidence of one-half of the students was impacted by the instructor asking 

students to explain their thinking. 

● The enjoyment of about two-fifths of the students was impacted by the instructor 

asking students to explain their thinking. 

● Asking students to explain their thinking was the most influential Ambitious 

Teaching practice and had the most impact on the overall composite attitude of 

students. 

 Examples of student interview responses are provided in Table 27 to offer context 

for the observations from Table 26. The qualitative analysis discussed in a previous 
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section on discourse analysis was applied to the students’ interview transcripts. The 

analysis provided data detailing students’ expressions of the features of the two most 

cited Ambitious Teaching practices students experienced in and out of our classroom. 

Although the control group did not experience the connect activity that involved 

teamwork, all four control students commented on group work. The question from the 

Attitude Survey, “Assignments completed outside of class time were submitted as a 

group project,” provided during the interview, prompted the students to comment on what 

they felt about group work. Iota, Kappa, and Sigma expressed their desire to experience 

group work in class. Iota, because he was a student in my precalculus class, lamented not 

taking the other Calculus I section that experienced teamwork. Rho, who experienced 

group work in her previous Calculus I class, expressed that her experience left her with a 

negative impression of the effectiveness and efficiency of teamwork.  

 The discourse analysis revealed three additional recurring cited instructor 

practices that impacted persistence, confidence, or enjoyment: (a) frequently requiring 

students to explain their thinking on homework; (b) frequently holding whole-class 

discussions; and (c) frequently requiring students to explain their thinking on exams. 

Each of these practices was also cited as an Ambitious Teaching practice that most 

impacted their overall attitude. The recurrent citing resulted in a total tally for the 

composite attitude of 8 of 12 students for practice (a) and 5 of 12 students for practices 

(b) and (c) each. 
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          Table 27 
 
          Student Responses for Ambitious Teaching Practices That Impact Attitude —Most Cited per Table 26 

Ambitious 
Teaching  
Practice 

Asked students to explain their thinkinga Assigned group projectsa 

Persistence Zeta (E) 
our class is like a constant live discussion where 
everyone can have their input whether it's with 
chat or saying something on live i think that 
especially is a positive impact on everyone's 
persistence because we always know that we can 
give our own input and see if like especially with 
problems that you do in class if we're on the right 
track with how we're going to it's how like we're 
going to solve it going through our own head 

Alpha (E) 
i think for all three of these i'm going to answer my math group 
because i like them and they've helped me persevere through 
things because like if we're confused we work through it 
together or like we refer back to an information sheet or 
something and it helps us like build that knowledge that we 
didn't have before which is really nice 

Confidence Delta (E) 
honestly being able to explain what i'm thinking 
and being able to explain how i did this problem 
how i what was i thinking and yeah you know that 
also helped me in some other ways not only in the 
math class 

Epsilon (E) 
especially like the group work it helps you like you get 
different opinions on like your work and like how things like 
how things uh are like could be solved different perspectives of 
like how you could solve like specific problems in different 
ways and like seeing how someone else solved it and how it 
might have been like a little bit better than how you solved it 

Enjoyment Rho (C) 
because you ask us so often to explain our thinking 
and you know where is this answer coming from 
not just oh i memorized it from the sheet it's a lot 
more enjoyable to tell you what i'm thinking and to 
look back at it and go yeah that kind of makes 
sense than it is to just say well it was in the book 
because then you just feel like a robot and are you 
really learning? 

Lambda (E) 
the enjoyment of almost all of it is like the group projects that 
we have because if a team member is struggling with the 
question and it happens to be something that i'm good at they 
could come to me and ask me and i kind of love teaching 
regardless if it's anything in general if i know it i'll share it so i 
think it that gives me like a boost of confidence and it keeps me 
in the class because i get to use other people's brain on top of 
mine to solve something 

 

12 8 
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Ambitious 
Teaching 
Practice 
 

My calculus instructor asked questions to determine 
if I understood what was being discusseda 

My calculus instructor encouraged students to seek help during 
office hoursa 

Most 
Impactful 

Epsilon (E) 
asking students to explain their thinking because it 
helps us get a better knowledge or and better 
understanding of what we know and what we're 
struggling with it also helps the teacher like realize 
what the students struggling with and it helps them 
make it easier for them to help the student learn it 
because they know like what they're actually 
struggling with 

Pi (E) 
probably question 66 yeah because you have that accountability 
but you also have like people to always hang out with 

         Note. a Refer to Table 18 Students’ Assessment of Ambitious Teaching Practices for Instructor for all 22 Ambitious Teaching variables
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Summary of RQ4 Results 

To what extent does Good Teaching and Ambitious Teaching impact students’ 

attitudes toward mathematics, particularly persistence, confidence, and enjoyment in 

mathematics? Discourse analysis of twelve student interviews revealed 5 of 22 Good 

Teaching and 2 of 14 Ambitious Teaching practices were considered by students as 

practices that effectively impact their attitudes in our Calculus I class.   

Two condensed categories of Good Teaching practices, interactions validating 

students and available and encouraging instructor, were cited most to impact students' 

attitude in Calculus I. Interactions validating students was cited most to impact 

confidence or enjoyment, as well as the composite attitude, comprising persistence, 

confidence, and enjoyment. Available and encouraging instructor was cited most to 

impact persistence. Ambitious Teaching practices such as assigning students group 

projects outside of class also impacted persistence. 

Most students conveyed that Good or Ambitious Teaching practices, in which 

instructors asked questions to determine what students understood or asked students to 

explain their thinking, impacted their confidence or enjoyment of Calculus I. The same 

practices were revealed to be the most effective in impacting students’ composite attitude 

comprising persistence, confidence, and enjoyment. Assigning students group projects 

outside of class was cited 11 times, second highest, for the most impactful Ambitious 

Teaching practice.  

Finally, although making class interesting was cited to impact only enjoyment, the 

Good Teaching practice was cited 4 times as the most influential and impactful of all 
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instructor practices. That is, students conveyed, if instructors only had time to act on one 

practice to impact student attitude, instructors should—make class interesting.  

Conclusion 

 Learning in either the acquisitionist or participationist metaphor translated to 

change; however, the quandary and the difference is rooted in the question, in the process 

of learning, what was it exactly that changed? What was conveyed by the data analysis 

and results?  

 With respect to RQ1, did the transformation of classroom communication change 

their understanding of the derivative concept? When comparing the pretest to posttest 

means within the control and experimental groups, there was no significant statistical 

difference. The results for the aggregate, however, showed that there was a significant 

statistical difference between the pretest and posttest for the aggregate. When comparing 

the growth between the control and experimental group, results indicated no statistically 

significant difference in pretest, posttest, and difference between the pretest and posttest.  

 With respect to RQ3, were the students’ attitudes impacted by Good Teaching and 

Ambitious Teaching, in particular persistence, confidence, and enjoyment? An 

observation of the percentages reporting persistence, confidence, and enjoyment in taking 

Calculus II indicated that there were no changes in students’ attitudes.  

 With respect to RQ2, to what extent did participation in classroom discourse 

affect the understanding of the derivative concept for the experimental group compared to 

the control group? Common to the discourse of the experimental group was use of terms 

related to a symbolic and visual understanding of the derivative concept and a capacity, 
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as an aggregate, to algebraically manipulate and visualize derivative functions. This was 

not observable in the control group. 

 Lastly, with respect to RQ4, to what extent did Good Teaching and Ambitious 

Teaching impact students’ attitudes toward mathematics, particularly persistence, 

confidence, and enjoyment in mathematics? Rising from the raw qualitative data emerged 

seven instructor practices, five Good Teaching and two Ambitious Teaching, that students 

reported impacted their attitude in our Calculus I class.  

The data analysis and results may have been black or white. However, the reality 

was our students, our classrooms, and the connections that occurred in the process of 

playing with and applying instructional strategies to develop mathematical discourse in 

Calculus I, were not monochrome. The process of learning and teaching was as vibrant, 

robust, and as captivating as the northern lights. In the next chapter, the discussion pivots 

back to the question I posed at the start of my dissertation journey: 

Learning in either the acquisitionist or participationist metaphor translates to 

change; however, the quandary and the difference is rooted in the question, in the 

process of learning, what was it exactly that changed? 

 Next, I conclude my dissertation, in the fifth chapter, with a discussion of the 

significance and relevance of outcomes from this study to practitioners and researchers.  
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CHAPTER 5 

DISCUSSION 

To think is to forget differences.  

—Jorge Luis Borges 

In fall 2018, colleges in our district were charged with the directive to achieve 

two outcomes: improve equity and increase completion of gateway English and 

mathematics courses. Calculus for a New Century: A Pump not a Filter (Steen, 1988) 

emerged from the growing discontent in the 1980s, revealing the immense complexity of 

a calculus reform. It is now 2022 and calculus persists as a gatekeeper, not a gateway 

course, for STEM students (Bressoud et al., 2015, 2019; National Science & Technology, 

2018; Olson & Riordan, 2012; Seymour & Hewitt, 1997; Zorn, 2015). The scale of the 

problem is global (Rasmussen et al., 2019). The lack of inclusivity and the 

disproportionate participation in STEM fields, based on gender, race, and socioeconomic 

backgrounds, have been and have continued to be serious problems in our nation’s efforts 

to navigate a 21st century economy that is increasingly dependent on STEM literacy 

(Olson & Riordan, 2012). I have taught calculus for 25 years. This problem of practice 

was and likely remains a pervasive problem of practice, a problem that has permeated all 

levels: our classrooms, our colleges and universities, our nation—our world.  

In the section that follows, I offer a final argument for Sfard’s commognitive 

solution for my problem of practice—the gatekeeping ignominy of Calculus I. The 

purpose and research questions are reintroduced. Next, the interpretations, accompanied 

by the examination of the complementarity between quantitative and qualitative data are 

presented. I then frame the first purpose of the study and follow by providing the 
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implications for practice and recommendations for research. Finally, I share the 

limitations and offer a conclusion and closing thoughts. Woven into my final discussion 

is a contextualization of findings threaded with previous research and theory supporting 

my intention to address the following question one final time in this study. 

Learning in either the acquisitionist or participationist metaphor translates to 

change; however, the quandary and the difference is rooted in the question, in the 

process of learning, what was it exactly that changed? 

Communication: The Pass for the Gatekeeper  

In their study of the characteristics of successful calculus programs, Bressoud et    

al. (2015) asserted a common vision of knowledge and skills, or learning outcomes, could 

improve calculus. As a learning outcome, communication was clearly a priority in A 

Common Vision (Saxe & Braddy, 2015). In the executive summary, one of the common 

themes from seven national curriculum guides underscored “Students should learn to 

communicate complex ideas in ways understandable to … audiences” (Saxe & Braddy, 

2015, p. 1). Sfard (2015) argued the process of learning was tantamount to changing and 

shaping ways of communicating by the commognitive approach—the approach of  

thinking-as-communicating.  

We look at the object of changes resulting from innovations in discursive      

practices of the classroom; we end up focusing on the activity of communication. 

Communication, rather than playing a secondary role as the means for learning,      

is in fact the centerpiece of the story—the very object of learning. [W]hen we   

change rules of interpersonal communication, it is not surprising that thinking—   

the individualized form of communication— changes as well. If mathematics is       
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a particular discourse with its own special ways of storytelling, there is no other     

way to learn mathematics than by adjusting the rules of classroom communication.  

(Sfard, 2015, pp. 239-240) 

This was my inspiration to take another jab at this pervasive yet elusive problem    

of practice. Communication was the centerpiece of my calculus students’ story—the very 

object of learning. We, my students and I, changed the rules of classroom discourse, 

changed the rule of interpersonal communication, and in the process likely changed our 

thinking and attitudes toward success in Calculus I.  

Purpose and Research Questions 

 The first purpose of my investigation was to engage students in mathematical 

discourse to motivate student thinking and understanding of calculus, particularly, the 

derivative concept. The second purpose was to assess the impact of the combination of   

two factors, Good Teaching and Ambitious Teaching, on persistence, confidence, and 

enjoyment in mathematics, particularly calculus. Lastly, the third purpose was to   

determine if there was a significant and observable difference in performance of students   

in an experimental calculus class designed to motivate active engagement in     

mathematical discourse in contrast to students in a traditional calculus class. Given the 

purpose of the study, four research questions guided its conduct. 

RQ1: How does the transformation of classroom communication, specifically  

          mathematical discourse, affect the understanding of the derivative concept in a 

          Calculus I course? 

RQ2: To what extent does participation in classroom discourse in Calculus I, as   

          compared to traditional pedagogy, affect the understanding of the derivative  
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          concept in a Calculus I course? 

RQ3: How does Good Teaching and Ambitious Teaching impact students’ attitudes  

          toward mathematics, particularly persistence, confidence, and enjoyment in  

          mathematics? 

RQ4: To what extent does Good Teaching and Ambitious Teaching impact students’  

          attitudes toward mathematics, particularly persistence, confidence, and enjoyment  

          in Calculus I? 

Effects of Discourse on Understanding the Derivative (RQ1 and RQ2) 

What does it mean to understand the concept of derivative? I addressed this 

question extensively in chapter 2. The Derivative Concept Assessment, the instrument 

used to collect data to inform RQ1 and RQ2, measured how the development of 

mathematical discourse affected the understanding of the derivative concept. The 

Derivative Concept Assessment was brief in length but extensive in its reach for 

evaluating students’ understanding of the derivative concept; therefore, it proved to be a 

challenging assessment for students. The statistical analysis results from the Derivative 

Concept Assessment, when observed from only a quantitative lens, however, did not 

provide the full scope of the students’ developing understanding of the derivative. 

Interpretations of Results for RQ1, RQ2, and the Third Purpose 

The third purpose of this study was to determine if there was a significant and 

observable difference in performance of students in an experimental class in contrast to 

students in the control class. This purpose was guided by research questions one and two: 

How and to what extent does participation in classroom discourse in Calculus I, as 



 
 

137 

compared to traditional pedagogy, affect the understanding of the derivative concept in a 

Calculus I course? 

Inferential statistics were applied to analyze the pretest and posttest data within 

and between the control and experimental group. There were no significant statistical 

differences within each group; nor were there significant statistical differences between 

the groups. Two factors kept my dismay at bay when considering these statistical results. 

First, the Derivative Concept Assessment proved to be a challenging assessment for 

students. Although the reliability of the instrument has been reported, for future use, the 

reliability and validity of the instrument should be confirmed for community colleges. In 

addition, the 2-week period afforded the students to experience the growth, was likely too 

short. These two non-sampling errors, questioning problems and/or fatigue and time 

period bias may have skewed the results.  

Regardless of the possible non-sampling errors introduced, based on the statistical 

results, there was no significant and observable difference in performance of students in 

an experimental versus control class. A valid concern was the sample size, which was18 

for the experimental and 8 for the control group. Of the 49 total number of students 

enrolled in all three classes participating in this study, 53% (26 students) participated in 

the study. This situation was not under the control of the researcher. At times the 

situation of non-participation in the study was due to COVID-19. Either the student or a 

family member was infected. The attrition rate was also a legitimate concern in one of the 

experimental classes in which half of the students were repeating Calculus I students.  

In his review of Sfard’s commognitive perspective, Wing (2011) underscored the 

pragmatism of an approach that deems communication as tantamount to thinking. 
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Mathematical objects as discursive objects would allow practitioners to teach in the 

classrooms with readily observable outcomes and other learning phenomena. In the 

argument that follows, I present an interpretation of the qualitative data as observable 

outcomes. 

Complementarity and Integration of Results for RQ1 and RQ2 

Complementarity between quantitative and qualitative data was posited by Greene 

et al. (1989) as a reason for mixing methods. Complementarity seeks clarification, 

illustration, and elaboration of results from the other method (Greene et al., 1989). The 

examination of complementarity between quantitative and qualitative data was optimized 

in this mixed method study. Although the within and between group statistical analyses 

resulted in no significant statistical growth; the growth of the aggregate, that is, the 

difference between the pretest to posttest within the aggregate group, was determined to 

be statistically significant. The results from the quantitative analysis of the aggregate 

group were juxtaposed with the qualitative analysis of the transcripts from the student 

interviews that focused on the students' understanding of the derivative concept. 

However, as I discovered, the students’ story regarding their developing understanding of 

the derivative concept was left untold by the statistical analysis results from the 

Derivative Concept Assessment outcomes.  

The purpose of the interviews was to determine to what extent participation in 

classroom discourse in Calculus I affected the understanding of the derivative concept in 

a Calculus I course. Eleven of the twelve students interviewed were able to demonstrate 

early to advanced development of the derivative concept in at least one of the four 

condensed categories of representations of the derivative concept. When comparing the 
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control to the experimental group, it was evident the experimental group had developed 

impressive calculus discourse about the idea of the derivative. Six of the eight 

experimental students understood the derivative concept using two representations, 

symbolic and visual. Two of four control students understood the derivative concept 

exceptionally in all four condensed categories or representations of the derivative, in 

comparison to one of eight of the experimental students.  

Common to the discourse of the experimental students was their use of terms 

related to a symbolic and visual understanding of the derivative concept as well as their 

capacity as an aggregate to algebraically manipulate and visualize functions. When the 

quantitative results are juxtaposed with the qualitative results, the implication was that 

students’ understanding of the derivative concept changed—learning occurred. Growth, 

that is, change in their understanding of the derivative, appeared to have been 

experienced by both the control and experimental groups. 

Effects of Good and Ambitious Teaching on Attitude (RQ3 and RQ4)  

The innovation for this study drew from two pedagogically related outcomes from 

the Characteristics of Successful Programs in College Calculus (CSPCC) Project results 

from analysis of their national survey data. Survey instruments, referred to as the Attitude 

Surveys, were adapted from the Mathematical Association of America (MAA) national 

survey (Bressoud, 2015) and served as an affective-scale measure for this study. The pre- 

and post-Attitude Surveys addressed RQ3 and RQ4. 

Interpretations of Results for RQ3, RQ4, and the Second Purpose 

 How and to what extent does Good Teaching and Ambitious Teaching impact 

students’ attitudes toward mathematics, particularly persistence, confidence, and 
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enjoyment in mathematics? Descriptive statistics were used to analyze the pretest and 

posttest data for the control and experimental groups. The participants entered Calculus I 

with a mid to high self-reported confidence in their prerequisite skills and readiness for 

calculus. An observation of the percentages reporting persistence in taking Calculus II, 

confidence, and enjoyment indicated that there was no change in the variable composites, 

persistence, confidence, and enjoyment, of students’ attitude towards Calculus I.  

The second purpose of this study was to assess the impact of the combination of 

two factors, Good Teaching and Ambitious Teaching, on a composite mathematics 

attitude comprising the dependent variables persistence, confidence, and enjoyment in 

mathematics, particularly calculus. Based on statistical results discussed above and in 

chapter 4, the answer is that there was no effect. On a positive note, the researcher can 

report that the Ambitious Teaching the students experienced in our class, based on 

statistical analysis, did not affect the students’ attitudes toward Calculus I negatively.  

These null quantitative-analysis results were contrary to the results reported by 

Sonnert and Sadler (2015) for the first nationwide study of college-level calculus, the 

CSPCC project. Sonnert and Sadler’s (2015) statistical analysis on CSPCC survey data 

asserted changes for Mathematics Attitude were all negative. In the CSPCC project, three 

effects of the variables were strong and pervasive: the students’ initial attitude and the 

students’ strong prior mathematical experience and preparation. In the CSPCC project, 

Good Teaching had a positive effect and Ambitious Teaching had a small negative effect. 

For this study, the descriptive statistics resulting from analyzing the students’ entering 

characteristics indicated the students had mid to high self-reported confidence in their 
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prerequisite skills and readiness for calculus. However, contrary to the CSPCC project 

results, in this study, Good Teaching had no effect on attitude.   

Complementarity and Integration of Results for RQ3 and RQ4 

 Based on the statistical analysis of collected survey data to inform RQ3, the 

intervention, at best, did no harm to the students’ attitudes toward Calculus I as they    

exited the class. However, I argue that their exit attitude, if there was indeed no change in 

their attitudes, must be the same as the level of the attitudes with which they entered our 

calculus class. The descriptive statistics resulting from analyzing the students’ entering 

characteristics indicated the students had mid to high self-reported confidence in their 

prerequisite skills and readiness for calculus. Therefore, the analysis suggests the students 

exited our class with the same mid to high self-reported confidence with which they 

entered.  

The qualitative analysis results provide a positive story relevant to how and to    

what extent Good Teaching and Ambitious Teaching impact students’ attitudes toward 

mathematics, particularly persistence, confidence, and enjoyment in Calculus I.  

 Discourse analysis of twelve student interviews revealed 5 of 22 Good Teaching  

and 2 of 14 Ambitious Teaching practices were considered by students as practices that 

effectively impacted their attitudes in our Calculus I class. Two condensed categories of 

Good Teaching practices, interactions validating students and available and encouraging 

instructor, were cited most to impact students' attitude in Calculus I. Most students 

conveyed that Good or Ambitious Teaching practices, in which instructors asked    

questions to determine what students understood or asked students to explain their  

thinking, impacted their confidence or enjoyment of Calculus I. Finally, students    
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conveyed that, if instructors only had time to act on one practice to impact student    

attitude, the students would ask the instructor to—make class interesting.  

 These results from the qualitative analysis are in line with the proposal of Mesa et 

al. (2015) that mathematics departments support the practice of Good Teaching by 

acknowledging students in classroom interaction, encouraging and available instructors,  

and providing fair assessments. In their investigation using MAA’s study of CSPCC, 

Larsen et al. (2015) examined the relationships between Ambitious Teaching and     

retention and changes in attitudes and beliefs. Results indicated there was some promise    

of improving student persistence to continue to Calculus II with a combination of  

Ambitious and Good Teaching (Larsen et al., 2015). My findings from the student 

interviews were consistent with their findings. Regarding the frequency of students    

citings, for the Good Teaching variable, “My calculus instructor encouraged students to 

enroll in Calculus II,” several students expressed wanting to continue to Calculus II or the 

next mathematics class in the context of discussing their persistence in our Calculus I   

class. One of my  control students, Rho, a female student who was taking Calculus I for   

the second time, expressed her thoughts as follows: 

[You] encourage[d] me to enroll [in] calculus 2. Okay you never once said oh    

don't bother with Calculus 2. You were very clear about you know yeah this is   

hard. Calculus 2 gets harder but if you're even remotely interested you should try 

and that yeah that had a really big impact on confidence. 

When the quantitative results are juxtaposed with the qualitative results, the 

implication was that Good Teaching and Ambitious Teaching impacted students’ attitudes 

toward mathematics, particularly persistence, confidence, and enjoyment in Calculus I. 



 
 

143 

The implication is that their attitudes changed. Based on the qualitative data and 

discourse analysis, both the control and experimental groups appeared to have 

experienced change; that is, change in attitude toward mathematics which impacted their 

persistence, confidence, and enjoyment. Next, I frame the first purpose of the study. 

Framing the First Purpose of This Study 

 The first purpose of my investigation was to engage students in mathematical 

discourse to motivate student thinking and understanding of calculus, particularly, the 

derivative concept. Realizing what the experimental class looked and felt like to my 

calculus students, in contrast to the control class, was a priority for me as a practitioner-

researcher. To design and undergird the structure of my Calculus I class for the study, 

four frameworks were operationalized simultaneously. The mainframe was Sfard’s 

(2008) commognitive approach. The units for teaching the derivative were grounded in 

an object-process framework used to define what it means to understand the derivative 

(Zandieh, 1997). The online class was structurally framed by an architectural design 

approach (Hathaway & Norton, 2013) to organize and structure course content. Finally, 

an analytical frame was used to support students’ opportunity to learn through given 

exercises and other tasks (White & Mesa, 2014). By far the most important aspects of the 

innovation for the study, with regards to the course design, were the verbs that captured 

the essence of the impact of the four frameworks when operationalized in tandem. The 

student actions paved the path for their success in our Calculus I class —uncover, play, 

apply, connect, question, and realize—framing an innovation to engage students in 

mathematical discourse, fulfilling the first purpose of this study.  
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 Although there is a section that discusses limitations, I believe it is 

appropriate to discuss the possible concern that surfaces regarding ensuring the only 

difference between the control and experimental is that the innovation is administered in 

the experimental group only. The two courses were not extremely different. One course 

was designed using the four frameworks. That one course was then published on Canvas 

and copied to all courses; that is, for both the control and experimental group. Then for 

the experimental group classes, I added the connect team activities for every even week. I 

also revised the realize activity for the experimental group, so they had the option to take 

exams with their team. In addition, for the realize activity, there was a third part which 

was a videoed team discussion of selected items on an exam for the teams who took an 

exam together. Essentially, the difference in the control and experimental groups was the 

added teamwork for the experimental group that aligned with the underlying participation 

metaphor. The basic unit of analysis used in research grounded on the participation 

metaphor was—discourse (Sfard, 1998, 2008).  

In the next sections I discuss the implications for practice and recommendations 

for research. I also share the limitations of the results. Then I offer the implications for 

practice and recommendations. I then close our discussion by sharing the effect of my 

study on my development as a researcher and offering my concluding thoughts. 

Implications for Practice and Recommendations for Research 

 Findings and outcomes from this study, particularly the design and    

implementation of the innovation, encourage multiple implications for practice. I present 

three implications here: (a) the need for emphasis from what is taught, to more   

importantly, how it is taught; (b) the need to incorporate multiple Good Teaching   
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practices; and (c) the need to engage the simplest Ambitious Teaching practices.  

Give Unrelenting Focus on How Rather Than What Students Learn  

Bressoud (2019) asserted three reasons why the current calculus reform agenda is 

not an iteration of the 1980s Calculus Reform effort. One reason is the focus was on 

developing the new generation of educators accompanied by an emphasis from what is 

taught, to more importantly, how it is taught. The frameworks that undergird the design     

of my innovation supported how I delivered the learning material to my students. My 

purpose was to frame the calculus class for efficient, and more importantly, effective 

delivery. This operationalization of weaving calculus discourse within the existing 

curriculum took precedence over Good Teaching and Ambitious Teaching practices. The 

dividends on my investments to appropriately operationalize, in Calculus I, how the 

students engaged were observable, measurable, and sustainable. I am using the same 

Canvas shell this spring semester 2022 with many improvements.  

As practitioners begin to focus on how to teach or how students learn, rather than 

what they learn, I anticipate the area of study will warrant additional research. When I 

began my literature review on Sfard’s (2008) commognitive approach three years ago, 

research studies in calculus using the Commognitive Framework were being conducted    

by mostly PhD candidates. Sfard was often a member of the candidate’s committee. More 

research is warranted in the area of study relevant to how students develop and how 

practitioners teach effective discourse in Calculus I.  

Practice Good Teaching: Ask Questions to Determine Understanding 

The five most frequently cited Good Teaching practices in my Calculus I classes 

were: (a) asking questions to determine students’ understanding; (b) encouraging 
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attendance of office hours; (c) providing understandable explanations; (d) showing   

specific work; and (e) making class interesting. All of these can be incorporated into daily 

practices in most, if not all, classrooms for all disciplines: gateway English, gateway 

mathematics, chemistry, or an art class, are a few examples. I asked my students, “What   

do you think is the most influential instructor practice that impacted your attitude towards 

calculus in terms of persistence, confidence and enjoyment?” The most frequently cited 

practice was to make class more interesting. Our students desire to get to know us and the 

world around them through our lens as teachers; however, we must come down to their 

level without sacrificing our professionalism or the respect for our discipline. My students 

often implied that I tried to relate to them and came down to their level as Cox posited in 

her book The College Fear Factor (Cox, 2009). I tried to invite my students to our 

classroom by easing their fears, particularly in a Calculus I class. Lambda, a female    

STEM major who experienced a traumatic event that undermined her confidence during   

our class, expressed her relevant thoughts:  

You're motivational, you’re okay with accepting wrong answers. [P]eople keep on 

trying. [Y]ou just engage everybody even if it’s not about calculus. [T]hat’s what 

impacts my enjoyment to want to stay in class and proceed forward taking another 

one of your classes. 

Research on Good Teaching practices is abundant. Good Teaching was discussed   

in chapter 2. However, further research is needed to establish ways of operationalizing the 

combination of Good Teaching practices with the development of discourse in calculus, 

particularly engaging the triad of calculus concepts: limit, derivative, and integral.  

In their discussion of results for their study, Bressoud et al. (2015) acknowledged  
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that the outcomes they discussed are “only half of the story.” The other half of the story  

that Bressoud et al. (2015) alluded to are student performance data. The performance    

study was conducted in this study using the Derivative Assessment to measure the 

understanding of the derivative concept in both control and experimental groups. A 

comprehensive study in Calculus I, conducted by a practitioner-researcher in their own 

classroom, is uncommon and thus warrants attention from the mathematical research 

community. 

Practice Ambitious Teaching: Ask Students What They Think 

Larsen et al. (2015) asserted there were significant methodological challenges for 

research attempting to relate Ambitious Teaching to changes in student attitudes and  

beliefs. Additionally, they advised case studies indicated that Ambitious Teaching   

practices required substantial institutional support and advanced knowledge, skills, and 

beliefs on the part of instructors. After having experienced the changes that I have created 

in my classes, I realized the immense shift in attitude, particularly in persistence, 

confidence, and enjoyment that were necessary to move forward with both Good    

Teaching and Ambitious Teaching for both students and for the practitioner. The actions: 

uncover, play, apply, connect, question, and realize are habits of practice and of mind for 

both students and practitioners alike during the development of discourse in our classes.  

Through interviews, students insisted, however, the seemingly simplest Ambitious 

Teaching practices were often the most effective. The qualitative analysis conducted on   

the twelve interview transcripts indicated that asking students to explain their thinking    

was the most influential Ambitious Teaching practice and had the most impact on the 

overall composite attitude of students. Delta, a female engineering student, appeared to     
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be the most positively impacted by being asked to explain her thinking. Zeta, a male 

engineering student, was also positively impacted by being asked to explain his thinking. 

They expressed their sentiments as follows:  

Delta: [H]onestly being able to explain what I’m thinking and being able to 

explain how I did this problem how I was I thinking and yeah you know that also 

helped me in some other ways not only in the math class. 

Zeta: [O]ur class is like a constant live discussion where everyone can have their 

input whether it’s with chat or saying something on live. [I] think that especially 

is a positive impact on everyone’s persistence because we always know that we 

can give our own input and see if like especially with problems that you do in 

class if we’re on the right track with how we’re going. [I]t’s how like we’re going 

to solve it going through our own head. 

Frequently asking students to explain their thinking is the simplest Ambitious 

Teaching practice. Of course, the instructor’s response to students thinking out loud is 

critical to the effectiveness of the practice. For example, during my classes, I needed to 

remind myself to try to invite my students to our classroom by easing their fears about 

thinking out loud. There is a fast-paced interaction form known as IRE/F, Interaction, 

Response, and Evaluation/Feedback (Hicks, 1995). I practiced less verbal emphasis on     

the evaluation so the students sharing their thoughts out loud did not feel they were being 

judged when they shared their developing thoughts. 

Research on Ambitious Teaching practices is abundant. Ambitious Teaching was 

discussed in chapter 2. However, like Good Teaching practices, further research is needed 

to establish ways of operationalizing the combination of Ambitious Teaching practices   
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with development of discourse in calculus. In addition, as in Good Teaching practices, 

further studies should consider how we teach the triad of calculus concepts: limit, 

derivative, and integral such that we engage students in relevant discourse while 

capitalizing on the effectiveness of Ambitious Teaching practices such as asking students 

what they think in class, on homework, and on exams. Further studies should also    

consider students working in teams and the development of discourse longitudinally 

between the teammates and the individual student.  

Limitations 

 Relevant to my research purpose, the limitations or features of the investigation   

that may potentially raise concern regarding the validity/credibility and reliability and 

decrease the confidence in the data include: (a) my positionality as an insider or    

researcher studying my own practice; (b) the small sample size; and (c) a time period bias.  

I engaged in every aspect of this action research. I designed and implemented the 

innovation and taught Calculus I to both the control and experimental groups. I collected 

both the quantitative and qualitative data and conducted the analysis to determine the 

results. I was aware my positionality may jeopardize all purposes of the study from the  

start of this investigation. My intimate involvement may have affected the findings and/or 

outcomes of the investigation, if for example, the participants felt uncomfortable either 

participating or not participating in the investigation in their roles as my students.  

However, the investigation afforded me the opportunity to develop reflective practice 

(Dewey, 1989).  

During the summer before implementing the innovation and collecting data, I met   

a reflective practice coach for several weeks. During the research, I consistently engaged 
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reflexivity and criticality in order to avoid introducing bias into the study. Reflexivity     

was particularly relevant when I was collecting and analyzing qualitative data. The two  

different approaches and multiple stages and steps with multiple coding methods was an 

effective way to minimize or ideally eliminate introducing bias into the qualitative   

analysis and findings.  

The generalizability of the results applied primarily to the Calculus I classes I 

taught. The study had a 53% participation rate (26 out of 49 students). If the small sample 

size did not affect the determination of the difference in performance within and between 

the experimental versus control groups, then the generalizability of the results would be 

applicable but limited to my class. My positionality in this study would likely cause  

concern if the generalizability was extended  to our department’s Calculus I population in 

fall 2021. The time period bias discussed in a previous section was my concern about the 

short two-week period between the pre- and post-Derivative Assessment that may have 

introduced a non-sampling error in the study. 

Conclusion and Closing Thoughts  

Conclusion 

Are you glad that the scientists that discovered COVID-19 and those who 

produced the vaccine passed Calculus I? But do you know that fewer than 4 out of 10 

STEM-intending majors complete a STEM degree? Trends show that the number of 

STEM majors decreased over the past decades. After more than four decades of calculus 

reform, Calculus I persists as a gatekeeper, not a gateway course, to STEM. The problem 

is no longer just a problem of practice, it is an international concern.  
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The STEM industry requires more and better prepared STEM students. The 

industry demand is far higher than the supply for specialized skills in STEM. The lack of 

inclusivity and the disproportionate participation in STEM fields, based on gender, race, 

and socioeconomic backgrounds, have been and have continued to be serious problems in 

our nation’s efforts to navigate a 21st century economy that is increasingly dependent on 

STEM literacy. Inconsistent with common beliefs, students who switched away from 

STEM majors did not lack persistence nor academic preparation. Students cited poor 

instructional experiences in gateway first-year courses. 

The findings of this action research study propose further investigation of how we 

teach Calculus I, particularly focusing on two constructs referred to as Good Teaching 

and Ambitious Teaching practices in literature. This investigation suggests that further 

investigation of how and to what extent the variables of Good Teaching and Ambitious 

Teaching impact students’ composite Mathematics Attitude comprising persistence, 

confidence, and enjoyment. This research also suggests the practices that a teacher can 

adapt are general enough to use in STEM courses beyond calculus, including disciplines 

outside of STEM.  

This study further suggests seven practices that can be adapted into STEM or non-

STEM classes to improve students’ persistence, confidence, and enjoyment. These 

practices include:  

● ask questions to determine if students understand what is being discussed; 

● encourage students to attend office hours; 

● provide explanations that are understandable; 

● show how to work specific problems; 
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● make class interesting; 

● ask students to explain their thinking; and 

● assign group projects. 

Results from this study proposes further investigation of the Commognitive 

Framework and its role in engaging students in mathematical discourse to motivate 

student thinking and understanding of calculus, particularly, the derivative concept. This 

study suggests the process of learning is tantamount to changing and shaping ways of 

communicating by the commognitive approach—the approach of thinking-as-

communicating. That is, as calculus students develop and change their discourse, their 

individualized form of communication, that is thinking, will also transform. This 

investigation suggests investigating how and to what extent students can understand a 

concept, such as the derivative concept, when they are fully engaged in discourse of the 

discipline, or in this study, Calculus I. 

Closing Thoughts 

This program and my research have been a remarkable journey. To think, to 

perform, and to act with integrity (Shulman, 2005) was a pleasure. I savored most 

moments of the experience. A year ago, I wistfully titled my dissertation. What a 

delightful surprise the outcome of this study is. The instructor practice that impacts my 

students’ persistence, confidence, and enjoyment most is indeed—thinking out loud! 

Below is my abstract for my sabbatical proposal for the academic year 2022-

2023. The sabbatical title is Beyond Thinking Out Loud: Innovating the Role of Discourse 

in Calculus I. I look forward to continuing my study and this action research. 
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Abstract for Sabbatical 

The title for my current dissertation research is Thinking Out Loud: The Role of 

Discourse in Understanding the Derivative in Calculus I. To extend my dissertation, I 

will disseminate my research findings, through presentations and publications, sharing 

my students’ and my journey to realize the power of discourse in calculus. I will 

reconsider the critiques of and gaps in Sfard’s Commognitive Framework, my current 

dissertation’s theoretical center. The Commognitive Framework defines thinking as 

communicating, asserting that learning, as a result, is a change in discourse–an 

observable, measurable outcome. After delving deeper into the complexities of the 

Commognitive Framework, I will innovate further and deliver a redesigned Calculus I 

course grounded in theoretical, conceptual, analytical, and design frameworks which 

organize and structure course content and support students’ opportunities to learn through 

discourse. A communicational approach rendering abstract concepts observable is 

significant for student success in Calculus I, a gateway STEM course. 
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APPENDIX A 

TASK ORIENTATION, DEFINITIONS, AND EXAMPLES 
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Orientation Definition Example 

Remember Students are prompted to retrieve 
knowledge from long-term 
memory. 

Write the definition of the 
derivative of !	at # = %. 

Recall and    
 Apply   
 Procedure 

Students must recall the 
algorithms for applying certain 
procedures and carry them out. 

Find the derivative of  
! at # = %. 

 Recognize and 
Apply 
 Procedure 

Students must recognize what 
knowledge or procedures to recall 
without being directly prompted. 
Conceptual knowledge plays a 
plausible role in this venture, but 
some students may be able to 
answer the question with 
memorized procedures or 
formulas. Students may have to 
string together several procedures. 

At what value of  
# does !attain a 
minimum? 
 

Understand Students are prompted to make 
interpretations, provide 
explanations, make comparisons 
or make inferences that require an 
understanding of a mathematics 
concept. 

Is this graph a plausible 
graph for  
!given the table for values 
of !(0)? Explain why or 
why not? 

Apply 
 Understanding 

Students must recognize when to 
use (or apply) a concept 
when responding to a question or 
when working on a problem. To 
recognize the need to apply, 
execute or implement a concept in 
the context of working a problem 
requires an understanding of the 
concept. 

Given a flask shaped like 
an inverted cone, write a 
function rule that 
expresses the relationship 
between the height of the 
water in the flask and 
number of ounces of water 
in the flask. 

Note. Reprinted from “Describing Cognitive Orientation of Calculus I Tasks Across 
Different Types of Coursework,” by N. White and V. Mesa, 2014, ZDM Mathematics 
Education, 46, p. 680. Copyright 2014 by FIZ Karlsruh



 
 

166 

 

Orientation Definition Example 

Analyze Students are prompted to break 
material into constituent parts 
and determine how parts relate to 
one another and to an overall 
structure or purpose. 
Differentiating, organizing, and 
attributing are characteristic 
cognitive processes at this level. 

Graph the given functions on 
a common screen. How are 
these graphs related?  
) = 3!, 

 ) = 10! , ) = ,"#-
!
, and 

) = , ""$-
!
. What general 

conclusions can you draw? 

Evaluate Students are prompted to make 
judgments based on criteria 
and standards. Checking and 
critiquing are characteristic 
cognitive processes at this level. 

Is it reasonable to use this 
model to predict the winning 
height 
[of the high jump] at the 
2100 Olympics (Stewart, 
2012, 
p. 35). 

 Create Students are prompted to put 
elements together to form a 
coherent or functional whole; 
reorganize elements into a new 
pattern or structure. Generating, 
planning, and 
producing are characteristic 
cognitive processes at this level. 
 

A student in our class wants 
to estimate the integral of a 
function using a Riemann 
sum with 5 partitions. Give a 
function and domain of 
integration such that the 
right-hand Riemann sum will 
be off of the true integral by 
more than 200 % but the left-
hand Riemann sum will be 
exact. 
 

Note. Reprinted from “Describing Cognitive Orientation of Calculus I Tasks Across 
Different Types of Coursework,” by N. White and V. Mesa, 2014, ZDM Mathematics 
Education, 46, p. 680. Copyright 2014 by FIZ Karlsruhe. 
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APPENDIX B 

TYPES OF COURSEWORK FOR EXPERIMENTAL GROUP 
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White and Mesa (2014, p. 681), posited that coursework can be characterized using  
the factors of grade weight, time and resources available to students and as fulfilling  
two major roles:  

(1) to engage students in learning the content (opportunities to learn), and  
(2) to demonstrate that students have indeed learned the content 

(opportunities to demonstrate that learning has occurred). 
 

Experience Activity Characteristic of 
Coursework 

Uncover be informed: read and watch 
videos 

opportunity to learn 
and demonstrate 
learning has occurred 

Play do play or basic procedural 
problems 

opportunity to learn 
and demonstrate 
learning has occurred 

Apply do Apply problems or applied 
problems 

opportunity to learn 
and demonstrate 
learning has occurred 

Connect meet team for play/apply 
discussions per specifications and 
specific play and apply problems 
to be discussed and specified 
prompts to be addressed  

opportunity to learn 
and demonstrate 
learning has occurred 
  

Question 
 

ask play/apply-related questions 
motivated by connect team 
discussion; questions will 
motivate whole-class Canvas 
discussion  

opportunity to learn 
and demonstrate 
learning has occurred 
 

Realize take team exams 
timed and asynchronous 
Connect with team discussion on 
exam exercises; create team and 
solo exam validation videos  

opportunity to learn 
and demonstrate 
learning has occurred 

Note. The difference between the control and experimental students’ experience  
was the connect experience. The experimental student’s activities included the  
connect experience and the control student’s activities did not. A reflection  
activity to develop calculus discourse was integrated into the play and apply  
activities for the experimental group. In addition, the experimental students  
had an option to take the exams with teammates. Team and solo validation videos  
on instructor-selected exam items were requirements for the experimental students. 
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APPENDIX C 

TYPES OF COURSEWORK FOR CONTROL GROUP 
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White and Mesa (2014, p. 681), posited that coursework can be characterized using the 
factors of grade weight, time and resources available to students and as fulfilling two 
major roles:  

(1) to engage students in learning the content (opportunities to learn), and  
(2) to demonstrate that students have indeed learned the content 

(opportunities to demonstrate that learning has occurred). 
 

Experience Activity Characteristic of 
Coursework 

Uncover be informed: read and watch 
videos 

opportunity to learn 
and demonstrate 
learning has occurred 

Play do play or basic procedural 
problems 

opportunity to learn 
and demonstrate 
learning has occurred 

Apply do apply problems or applied 
problems 

opportunity to learn 
and demonstrate 
learning has occurred 

Question 
 

ask play/apply-related questions 
motivated by connect team 
discussion; questions will 
motivate whole-class Canvas 
discussion  

opportunity to learn 
and demonstrate 
learning has occurred 
 

Realize take exams individually 
timed and asynchronous; no 
validation videos required  

opportunity to learn 
and demonstrate 
learning has occurred 

Note. The difference between the control and experimental students’ experience  
was the connect experience. The experimental student’s activities included the  
connect experience and the control student’s activities did not. A reflection  
activity to develop calculus discourse was integrated into the play and apply  
activities for the experimental group. In addition, the experimental students had  
an option to take the exams with teammates. Team and solo validation videos on 
instructor-selected exam items were requirements for the experimental students.  
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APPENDIX D 

STUDENT PRE- AND POST-ATTITUDE SURVEYS 
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This is a survey used to inform the improvement of Calculus I and inform the potential 
design of calculus programs to promote student success. The survey is administered via 
Google Forms.  
 
You will need to enter a STUDY ID. To create your STUDY ID, please pick the first 
three letters of your mother's name and the last 3 digits of your phone number. For 
example, if your mother’s name is Samantha and your phone number is 123-456-7890, 
your STUDY ID will be “sam890”. 
 
Reference: Bressoud, D. M., Mesa, V., & Rasmussen, C. (Eds.). (2015). Insights and 
recommendations from the MAA national study of college calculus. Mathematical 
Association of America. 
 
* Required 
1. 
Enter your STUDY ID * 
2. 
Enter your class number* 
3. 
Q1 My placement in calculus was determined by: * 
Check all that apply. 
My ACT or SAT score 
My score on a placement exam 
My successful completion of prerequisite courses 
My AP exam score 
Don't know 
4. 
Q2 Did you take the SAT exam? * 
Mark only one oval. 
No 
Yes 
5. 
Q3 Did you take the ACT exam? * 
Mark only one oval. 
No 
Yes 
6. 
Q4 My math courses in high school have prepared me to solve word problems. * 
Mark only one oval. 
Strongly disagree 
Disagree 
Slightly Disagree 
Slightly Agree 
Agree 
Strongly agree 
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7. 
Q5 My math courses in high school have prepared me to complete calculations without  
a calculator. * 
Mark only one oval. 
Strongly disagree 
Disagree 
Slightly Disagree 
Slightly Agree 
Agree 
Strongly agree 
8.  
Q6 My math courses in high school have prepared me to factor expressions. * 
Mark only one oval. 
Strongly disagree 
Disagree 
Slightly Disagree 
Slightly Agree 
Agree 
Strongly agree 
9.  
Q7 My math courses in high school have prepared me to solve equations. * 
Mark only one oval. 
Strongly disagree 
Disagree 
Slightly Disagree 
Slightly Agree 
Agree 
Strongly agree 
10.  
Q8 My math courses in high school have prepared me to solve inequalities. * 
Mark only one oval. 
Strongly disagree 
Disagree 
Slightly Disagree 
Slightly Agree 
Agree 
Strongly agree 
11.  
Q9 The teacher of my last mathematics course lectured most of the time. * 
Mark only one oval. 
Strongly disagree 
Disagree 
Slightly Disagree 
Slightly Agree 
Agree 
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Strongly agree 
12.  
Q10 The teacher of my last mathematics course primarily showed us how to get  
answers to specific questions. * 
Mark only one oval. 
Strongly disagree 
Disagree 
Slightly Disagree 
Slightly Agree 
Agree 
Strongly agree 
13.  
Q11 The teacher of my last mathematics course frequently had us work in groups. * 
Mark only one oval. 
Strongly disagree 
Slightly Disagree 
Disagree 
Slightly Agree 
Agree 
Strongly agree 
14.  
Q12. The teacher of my last mathematics course frequently had us solve challenging 
problems.* 
Mark only one oval. 
Strongly disagree 
Disagree 
Slightly Disagree 
Slightly Agree 
Agree 
Strongly agree 
15. 
Q13 The teacher of my last mathematics, high school or college, course allowed the  
use of graphing calculators on exams. * 
Mark only one oval. 
Never 
Sometimes 
Always 
16. 
Q14 The teacher of my last mathematics course, high school or college, allowed  
the use of calculators that performed symbolic operations on exams  
(e.g., TI-89, TI-92). *  
Mark only one oval. 
Never 
Sometimes 
Always 



 
 

175 

17. 
Q15 The teacher of my last mathematics course, high school or college, showed  
students how mathematics is relevant. * 
Mark only one oval. 
Strongly disagree 
Disagree 
Slightly Disagree 
Slightly Agree 
Agree 
Strongly agree 
18.  
Q16 The teacher of my last mathematics course cared that I was successful in the 
 course. * 
Mark only one oval. 
Strongly disagree 
Disagree 
Slightly Disagree 
Slightly Agree 
Agree 
Strongly agree 
19.  
Q17. I am comfortable using a graphing calculator and/or using a computer  
algebra system (e.g., Maple, MATLAB). * 
Mark only one oval. 
Strongly disagree 
Disagree 
Slightly Disagree 
Slightly Agree 
Agree 
Strongly agree 
20.  
Q18 The teacher of my last mathematics course, high school or college, used an 
electronic response system (such as clickers or Google Forms) to poll students  
during class. * 
Mark only one oval. 
Strongly disagree 
Disagree 
Slightly Disagree 
Slightly Agree 
Agree 
Strongly agree 
21. 
Q19 Did you take a precalculus course in COLLEGE before this course? * 
Mark only one oval. 
No 
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Yes 
22.  
Q20 Where was your previous college precalculus course taken? * 
Mark only one oval. 
At my high school as a concurrent enrollment course 
At this college 
At another 2-year college 
At a 4-year college or university 
23.  
Q21 What was the delivery mode of the precalculus (College Algebra, Trigonometry,  
or Precalculus) course you completed prior to this one? * 
Mark only one oval. 
Synchronous online 
Asynchronous online 
Face-to-face with an instructor 
24. 
Q22 What was the delivery mode of the last mathematics course (precalculus or  
another mathematics course) you completed prior to this one? * 
Mark only one oval. 
Synchronous online 
Asynchronous online 
Face-to-face with an instructor 
25. 
Q23 Did you take a calculus course in COLLEGE before this course? * 
Mark only one oval. 
No 
Yes 
26. 
Q24 What was the delivery mode of the calculus course you completed prior to  
this one? * 
Mark only one oval. 
I did not take a calculus course before this one. 
Synchronous online 
Asynchronous online 
Face-to-face with an instructor 
27. 
Q25 Are you taking this course again? * 
Mark only one oval. 
No 
Yes 
28. 
Q26 Why are you taking this course again? * 
Check all that apply. 
This is my first time taking this course. 
It did not count toward the credits I need 
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I passed, but I need/want a higher grade (e.g., for my major) 
I did not pass the course 
I dropped the class 
I wanted to get a better grade 
I wanted to improve my understanding of calculus 
My college advisor told me to 
29. 
Q27 What grade do you expect in this calculus course? * 
Mark only one oval. 
A 
B 
C 
D 
F 
Note for PI: Repeated question. This question is repeated in the post-survey Q1.  
30. 
Q28 Do you intend to take Calculus II? * 
Mark only one oval. 
No 
Yes 
I don't know yet 
Note for PI: Repeated question. This question is repeated in the post-survey Q3.  
31. 
Q29 How important is a good grade in this course in influencing your decision  
whether or not to take Calculus II? * 
Mark only one oval. 
Not important at all 
Unimportant 
Slightly unimportant 
Slightly important 
Important 
Very important 
32.  
Q30 Is Calculus II required for your major? * 
Mark only one oval. 
No 
Yes 
Don't know 
Note for PI: Repeated question. This question is repeated in the post-survey Q2.  
33. 
Q31 I believe I have the knowledge and abilities to succeed in this course.* 
Mark only one oval. 
Strongly disagree 
Disagree 
Slightly Disagree 
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Slightly Agree 
Agree 
Strongly agree 
34. 
Q32 I understand the mathematics I have studied.* 
Mark only one oval. 
Strongly disagree 
Disagree 
Slightly Disagree 
Slightly Agree 
Agree 
Strongly agree 
35. 
Q33 I am confident in my mathematics abilities.* 
Mark only one oval. 
Strongly disagree 
Disagree 
Slightly Disagree 
Slightly Agree 
Agree 
Strongly agree 
Note for PI: Repeated question. This question is repeated in the post-survey Q11.  
36. 
Q34 I enjoy doing mathematics.* 
Mark only one oval. 
Strongly disagree 
Disagree 
Slightly Disagree 
Slightly Agree 
Agree 
Strongly agree 
Note for PI: Repeated question. This question is repeated in the post-survey Q12.  
37. 
Q35 If I take another calculus course after this one, it will be because  
Check all that apply. 
It is required 
I want to  
38. 
Note for PI: Repeated questions below Q36-Q44. These questions are repeated in the 
post-survey Q13-Q21.  
Q36 How certain are you in what you intend to do after college? *  
Mark only one oval. 
Option A Not at all certain 
I do not completely agree with option A, but agree with option A more than option B 
I do not completely agree with option B, but agree with option B more than option A 
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Option B Very certain 
39. 
Q37 When experiencing a difficulty in my math class, * 
Mark only one oval. 
Option A I try to figure it out on my own 
I do not completely agree with option A, but agree with option A more than option B 
I do not completely agree with option B, but agree with option B more than option A 
Option B I quickly seek help or give up trying 
40. 
Q38 For me, making unsuccessful attempts when solving a mathematics problem is * 
Mark only one oval. 
Option A a natural part of solving the problem 
I do not completely agree with option A, but agree with option A more than option B 
I do not completely agree with option B, but agree with option B more than option A 
Option B an indication of my weakness in mathematics 
41. 
Q39 My success in mathematics PRIMARILY relies on my ability to * 
Mark only one oval. 
Option A solve specific kinds of problems 
I do not completely agree with option A, but agree with option A more than option B 
I do not completely agree with option B, but agree with option B more than option A 
Option B make connections and form logical arguments 
42. 
Q40 My score on my mathematics exam is a measure of how well * 
Mark only one oval. 
Option A I understand the covered material 
I do not completely agree with option A, but agree with option A more than option B 
I do not completely agree with option B, but agree with option B more than option A 
Option B I can do things the way the teacher wants 
43. 
Q41 If I had a choice, * 
Mark only one oval. 
Option A I would never take another mathematics course 
I do not completely agree with option A, but agree with option A more than option B 
I do not completely agree with option B, but agree with option B more than option A 
Option B I would continue to take mathematics 
44. 
Q42 When studying Calculus I in a textbook or in course materials, I tend to * 
Mark only one oval. 
Option A memorize it the way it is presented 
I do not completely agree with option A, but agree with option A more than option B 
I do not completely agree with option B, but agree with option B more than option A 
Option B make sense of the material, so that I understand it 
45. 
Q43 When solving mathematics problems, graphing calculators or computers help  
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me to * 
Mark only one oval. 
Option A understand underlying mathematical ideas 
I do not completely agree with option A, but agree with option A more than option B 
I do not completely agree with option B, but agree with option B more than option A 
Option B find answers to problems 
46. 
Q44 The primary role of a mathematics instructor is to * 
Mark only one oval. 
Option A work problems so students know how to do them 
I do not completely agree with option A, but agree with option A more than option B 
I do not completely agree with option B, but agree with option B more than option A 
Option B help students learn to reason through problems on their own 
Note for PI: Repeated questions above Q36-Q44. These questions are repeated in the 
post-survey Q13-Q21.  
47. 
Q45 Mathematics instructors should show students how mathematics is relevant * 
Mark only one oval. 
Strongly disagree 
Disagree 
Slightly Disagree 
Slightly Agree 
Agree 
Strongly agree 
48. 
Q46 If I am unable to solve a problem within a few minutes, it is an indication of my 
weakness in mathematics. * 
Mark only one oval. 
Strongly disagree 
Disagree 
Slightly Disagree 
Slightly Agree 
Agree 
Strongly agree 
49. 
Q47 Mathematics is about getting exact answers to specific problems. * 
Mark only one oval. 
Strongly disagree 
Disagree 
Slightly Disagree 
Slightly Agree 
Agree 
Strongly agree 
50. 
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Q48 The process of solving a problem that involves mathematical reasoning is a 
satisfying experience. * 
Mark only one oval. 
Strongly disagree 
Disagree 
Slightly Disagree 
Slightly Agree 
Agree 
Strongly agree 
51. 
Q49 In order to succeed in calculus at a college or university, I must have taken  
calculus before.* 
Mark only one oval. 
Strongly disagree 
Disagree 
Slightly Disagree 
Slightly Agree 
Agree 
Strongly agree 
52. 
Q50 Approximately how many hours per week do you expect to work at a job this 
semester? * 
Mark only one oval. 
0 
1-5 
6-10 
11-15 
16-20 
21-30 
More than 30 
Note for PI: Repeated question. This question is repeated in the post-survey Q91.  
53. 
Q51 Approximately how many hours per week do you expect to participate in  
organized extracurricular activities such as sports, college paper, or clubs? * 
Mark only one oval. 
0 
1-5 
6-10 
11-15 
16-20 
21-30 
More than 30 
Note for PI: Repeated question. This question is repeated in the post-survey Q92.  
54. 
Q52 Approximately how many hours per week do you expect to spend preparing for  
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all classes(studying, reading, writing, doing homework or lab work, analyzing data, or 
other academic activities) this semester? * 
Mark only one oval. 
0 
1-5 
6-10 
11-15 
16-20 
21-30 
More than 30 
Note for PI: Repeated question. This question is repeated in the post-survey Q93.  
55.  
Q53 Approximately how many hours per week do you expect to spend preparing for 
calculus (studying, reading, doing homework or lab work) this semester? *   
0 
1-5 
6-10 
11-15 
16-20 
21-30 
More than 30 
Note for PI: Repeated question. This question is repeated in the post-survey Q94.  
56. 
Q54 Which of the following BEST describes your current career goal?* 
Check all that apply. 
Medical professional (e.g., doctor, dentist, vet.) 
Other health professional (e.g., nurse, medical technician) 
Life scientist (e.g., biologist, medical researcher) 
Earth/Environmental scientist (e.g., geologist, meteorologist) 
Physical Scientist (e.g., chemist, physicist, astronomer) 
Engineer 
Computer Scientist 
Mathematician, 
Science/Math teacher 
Other teacher 
Social Scientist (e.g., psychologist, sociologist) 
Business administration 
Lawyer 
English/Language Arts specialist 
Other non-science related career 
Undecided 
Note for PI: Repeated question. This question is repeated in the post-survey Q95.  
 

 
_End of Student Pre-Survey (Beginning of the Semester) _ 
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This is a survey used to inform the improvement of Calculus I and inform the potential 
design of calculus programs to promote student success. The survey is administered via 
Google Forms.  
 
You will need to enter a STUDY ID. To create your STUDY ID, please pick the first 
three letters of your mother's name and the last 3 digits of your phone number. For 
example, if your mother’s name is Samantha and your phone number is 123-456-7890, 
your STUDY ID will be “sam890”. 
 
Reference: Bressoud, D. M., Mesa, V., & Rasmussen, C. (Eds.). (2015). Insights and 
recommendations from the MAA national study of college calculus. Mathematical 
Association of America.  
 
* Required 
1. 
Enter your STUDY ID * 
2. 
Enter your class number* 
3. 
Q1 What grade do you expect (or did you receive) in this calculus course? * 
Mark only one oval. 
A 
B 
C 
D 
F 
Note for PI: Repeated question. This question is repeated in the pre-survey Q27.  
4. 
Q2 Is Calculus II required for your intended major? * 
Mark only one oval. 
No 
Yes 
I don’t know.  
Note for PI: Repeated question. This question is repeated in the pre-survey Q30.  
5. 
Q3 Do you intend to take Calculus II? * 
Mark only one oval. 
No 
Yes 
I’m not sure 
Note for PI: Repeated question. This question is repeated in the pre-survey Q28.  
6. 
Q4 If you are not intending to take Calculus II, check all the reasons that apply. * 
Check all that apply. 
I never intended to take Calculus II 
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I changed my major and now do not need to take Calculus II 
My experience in Calculus I made me decide not to take Calculus II 
I have too many other courses I need to complete 
To do well in Calculus II, I would need to spend more time and effort than I can  
afford 
My grade in Calculus I was not good enough for me to continue to Calculus II 
I do not believe I understand the ideas of Calculus I well enough to take Calculus II 
7. 
Q5 When you started this class, did you intend to take Calculus II? * 
Mark only one oval. 
No 
Yes 
I wasn’t sure 
8.  
Q6 This course has increased my interest in taking more mathematics.* 
Mark only one oval. 
Strongly disagree 
Disagree 
Slightly Disagree 
Slightly Agree 
Agree 
Strongly agree 
9.  
Q7 I am good at computing limits and derivatives.* 
Mark only one oval. 
Strongly disagree 
Disagree 
Slightly Disagree 
Slightly Agree 
Agree 
Strongly agree 
10.  
Q8 I am able to use ideas of calculus (e.g., limits, differentiation) to solve word problems 
that I have not seen before.* 
Mark only one oval. 
Strongly disagree 
Disagree 
Slightly Disagree 
Slightly Agree 
Agree 
Strongly agree 
11.  
Q9 My previous math courses prepared me to succeed in this course.* 
Mark only one oval. 
Strongly disagree 
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Disagree 
Slightly Disagree 
Slightly Agree 
Agree 
Strongly agree 
12.  
Q10 Mathematics is about getting exact answers to specific problems.* 
Mark only one oval. 
Strongly disagree 
Disagree 
Slightly Disagree 
Slightly Agree 
Agree 
Strongly agree 
13.  
Q11 I am confident in my mathematics abilities.* 
Mark only one oval. 
Strongly disagree 
Disagree 
Slightly Disagree 
Slightly Agree 
Agree 
Strongly agree 
Note for PI: Repeated question. This question is repeated in the pre-survey Q33.  
14.  
Q12 I enjoy doing mathematics. * 
Mark only one oval. 
Strongly disagree 
Disagree 
Slightly Disagree 
Slightly Agree 
Agree 
Strongly agree 
Note for PI: Repeated question. This question is repeated in the pre-survey Q34.  
Note for PI: Repeated questions below Q13-Q21. These questions are repeated in  
the pre-survey Q36-Q44.  
15. 
Q13 How certain are you in what you intend to do after college? *  
Mark only one oval. 
Option A Not at all certain 
I do not completely agree with option A, but agree with option A more than option B 
I do not completely agree with option B, but agree with option B more than option A 
Option B Very certain 
16. 
Q14 When experiencing a difficulty in my math class, * 
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Mark only one oval. 
Option A I try to figure it out on my own 
I do not completely agree with option A, but agree with option A more than option B 
I do not completely agree with option B, but agree with option B more than option A 
Option B I quickly seek help or give up trying 
17. 
Q15 For me, making unsuccessful attempts when solving a mathematics problem is * 
Mark only one oval. 
Option A a natural part of solving the problem 
I do not completely agree with option A, but agree with option A more than option B 
I do not completely agree with option B, but agree with option B more than option A 
Option B an indication of my weakness in mathematics 
18.  
Q16 My success in mathematics PRIMARILY relies on my ability to * 
Mark only one oval. 
Option A solve specific kinds of problems 
I do not completely agree with option A, but agree with option A more than option B 
I do not completely agree with option B, but agree with option B more than option A 
Option B make connections and form logical arguments 
19.  
Q17 My score on my mathematics exam is a measure of how well * 
Mark only one oval. 
Option A I understand the covered material 
I do not completely agree with option A, but agree with option A more than option B 
I do not completely agree with option B, but agree with option B more than option A 
Option B I can do things the way the teacher wants 
20.  
Q18 If I had a choice, * 
Mark only one oval. 
Option A I would never take another mathematics course 
I do not completely agree with option A, but agree with option A more than option B 
I do not completely agree with option B, but agree with option B more than option A 
Option B I would continue to take mathematics 
21. 
Q19 When studying Calculus I in a textbook or in course materials, I tend to * 
Mark only one oval. 
Option A memorize it the way it is presented 
I do not completely agree with option A, but agree with option A more than option B 
I do not completely agree with option B, but agree with option B more than option A 
Option B make sense of the material, so that I understand it 
 22.  
Q20 When solving mathematics problems, graphing calculators or computers help  
me to * 
Mark only one oval. 
Option A understand underlying mathematical ideas 
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I do not completely agree with option A, but agree with option A more than option B 
I do not completely agree with option B, but agree with option B more than option A 
Option B find answers to problems 
23.  
Q21 The primary role of a mathematics instructor is to * 
Mark only one oval. 
Option A work problems so students know how to do them 
I do not completely agree with option A, but agree with option A more than option B 
I do not completely agree with option B, but agree with option B more than option A 
Option B help students learn to reason through problems on their own 
Note for PI: Repeated questions above Q13-Q21. These questions are repeated in  
the pre-survey Q36-Q44. 
24. 
Q22 When my calculus instructor asked a question addressed to the whole class, s/he * 
Mark only one oval. 
Option A waited for a student to answer 
I do not completely agree with option A, but agree with option A more than option B 
I do not completely agree with option B, but agree with option B more than option A 
Option B answered the question if no one responded quickly 
25. 
Q23 When I asked a question about a problem I was having difficulty solving, my 
instructor * 
Mark only one oval. 
Option A solved the problem for me 
I do not completely agree with option A, but agree with option A more than option B 
I do not completely agree with option B, but agree with option B more than option A 
Option B helped me figure out how to solve the problem 
26. 
Q24 My calculus instructor asked questions to determine if I understood what was  
being discussed. * 
Mark only one oval. 
Strongly disagree 
Disagree 
Slightly Disagree 
Slightly Agree 
Agree 
Strongly agree 
27. 
Q25 My calculus instructor listened carefully to my questions and comments. * 
Mark only one oval. 
Strongly disagree 
Disagree 
Slightly Disagree 
Slightly Agree 
Agree 



 
 

188 

Strongly agree 
28. 
Q26 My calculus instructor discussed applications of calculus. * 
Mark only one oval. 
Strongly disagree 
Disagree 
Slightly Disagree 
Slightly Agree 
Agree 
Strongly agree 
29. 
Q27 My calculus instructor allowed time for me to understand difficult ideas. * 
Mark only one oval. 
Very often 
Often 
Occasionally 
Seldom 
Rarely 
Not all 
30. 
Q28 My calculus instructor helped me become a better problem solver.* 
Mark only one oval. 
Strongly disagree 
Disagree 
Slightly Disagree 
Slightly Agree 
Agree 
Strongly agree 
31. 
Q29 My calculus instructor provided explanations that were understandable. * 
Mark only one oval. 
Very often 
Often 
Occasionally 
Seldom 
Rarely 
Not all 
32.  
Q30 My calculus instructor was available to make appointments outside of office  
hours, if needed. * 
Mark only one oval. 
Very often 
Often 
Occasionally 
Seldom 
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Rarely 
Not all 
33. 
Q31 My calculus instructor discouraged me from wanting to continue taking  
calculus. * 
Mark only one oval. 
Strongly disagree 
Disagree 
Slightly Disagree 
Slightly Agree 
Agree 
Strongly agree 
34. 
Q32 During class time, how frequently did your instructor show how to work  
specific problems?* Mark only one oval. 
Not all 
Rarely 
Seldom 
Occasionally 
Often 
Very often 
35. 
Q33 During class time, how frequently did your instructor have students work  
with one another?*  
Mark only one oval. 
Not all 
Rarely 
Seldom 
Occasionally 
Often 
Very often 
36. 
Q34 During class time, how frequently did your instructor hold whole-class  
discussion? *  
Mark only one oval. 
Not all 
Rarely 
Seldom 
Occasionally 
Often 
Very often 
37. 
Q35 During class time, how frequently did your instructor have students give 
presentations? *  
Mark only one oval. 
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Not all 
Rarely 
Seldom 
Occasionally 
Often 
Very often 
38. 
Q36 During class time, how frequently did your instructor have students work 
individually on problems or tasks? *  
Mark only one oval. 
Not all 
Rarely 
Seldom 
Occasionally 
Often 
Very often 
39. 
Q37 During class time, how frequently did your instructor lecture? *  
Mark only one oval. 
Not all 
Rarely 
Seldom 
Occasionally 
Often 
Very often 
40. 
Q38 During class time, how frequently did your instructor ask questions? *  
Mark only one oval. 
Not all 
Rarely 
Seldom 
Occasionally 
Often 
Very often 
41. 
Q39 During class time, how frequently did your instructor ask students to explain  
their thinking?*  
Mark only one oval. 
Not all 
Rarely 
Seldom 
Occasionally 
Often 
Very often 
42. 
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Q40 How frequently did your instructor prepare extra material to help students 
understand calculus concepts or procedures? *  
Mark only one oval. 
Not all 
Rarely 
Seldom 
Occasionally 
Often 
Very often 
43. 
Q41 How frequently did your instructor require you to explain your thinking on  
your homework?*  
Mark only one oval. 
Not all 
Rarely 
Seldom 
Occasionally 
Often 
Very often 
44.  
Q42 How frequently did your instructor require you to explain your thinking on  
exams? *  
Mark only one oval. 
Not all 
Rarely 
Seldom 
Occasionally 
Often 
Very often 
45.  
Q43 How frequently did your instructor assign sections in your textbook for you  
to read before coming to class? *  
Mark only one oval. 
Not all 
Rarely 
Seldom 
Occasionally 
Often 
Very often 
46.  
Q44 My calculus instructor made students feel nervous during class. *  
Mark only one oval. 
Strongly disagree 
Disagree 
Slightly Disagree 
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Slightly Agree 
Agree 
Strongly agree 
47.  
Q45 My calculus instructor encouraged students to enroll in Calculus II. *  
Mark only one oval. 
Strongly disagree 
Disagree 
Slightly Disagree 
Slightly Agree 
Agree 
Strongly agree 
48.  
Q46 My calculus instructor acted as if I was capable of understanding the key  
ideas of calculus.*  
Mark only one oval. 
Strongly disagree 
Disagree 
Slightly Disagree 
Slightly Agree 
Agree 
Strongly agree 
49.  
Q47 My calculus instructor made me feel comfortable asking questions during  
class. *  
Mark only one oval. 
Strongly disagree 
Disagree 
Slightly Disagree 
Slightly Agree 
Agree 
Strongly agree 
50.  
Q48 My calculus instructor encouraged students to seek help during office hours. *  
Mark only one oval. 
Strongly disagree 
Disagree 
Slightly Disagree 
Slightly Agree 
Agree 
Strongly agree 
51.  
Q49 My calculus instructor presented more than one method for solving problems. *  
Mark only one oval. 
Strongly disagree 
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Disagree 
Slightly Disagree 
Slightly Agree 
Agree 
Strongly agree 
52.  
Q50 My calculus instructor did not speak English very well. *  
Mark only one oval. 
Strongly disagree 
Disagree 
Slightly Disagree 
Slightly Agree 
Agree 
Strongly agree 
53.  
Q51 My calculus instructor made class interesting. *  
Mark only one oval. 
Strongly disagree 
Disagree 
Slightly Disagree 
Slightly Agree 
Agree 
Strongly agree 
54.  
Q52 Indicate how often your instructor assigned homework. *  
Mark only one oval. 
never  
some class sessions 
about half the class sessions 
most class sessions 
every class session 
55.  
Q53 Indicate how often homework was collected (either hard copy or online). *  
Mark only one oval. 
never  
some class sessions 
about half the class sessions 
most class sessions 
every class session 
56.  
Q54 Indicate how often your instructor gave a short quiz. *  
Mark only one oval. 
never  
some class sessions 
about half the class sessions 
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most class sessions 
every class session 
57.  
Q55 Indicate how often your instructor used technology. *  
Mark only one oval. 
never  
some class sessions 
about half the class sessions 
most class sessions 
every class session 
58.  
Q56 Indicate how often your instructor demonstrated mathematics with a graphing 
calculator or graphing apps during class. *  
Mark only one oval. 
never  
some class sessions 
about half the class sessions 
most class sessions 
every class session 
59.  
Q57 Indicate how often you used a graphing calculator or graphing apps during  
class. *  
Mark only one oval. 
never  
some class sessions 
about half the class sessions 
most class sessions 
every class session 
60.  
Q58 Which of the following computing technologies did you use during your  
calculus class? *  
Check all that apply. 
None 
Graph calculator, graphing apps, etc. 
Computers, tablets, etc. 
Clickers, polling apps, etc.   
61.  
Q59 Indicate how your instructor used technology during your class. *  
Check all that apply. 
To illustrate ideas 
To find answers to problems 
To check answers after we worked them out by hand 
62.  
Q60 Indicate how you used technology during your class. *  
Check all that apply. 
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To find answers to problems  
To understand underlying mathematical ideas  
To check written answers after I worked them out by hand 
63.  
Q61 Do you have access to a computer algebra system (CAS), online or calculator,  
that has the capability to find the symbolic derivatives of a function? *  
Mark only one oval. 
No 
Yes 
I don’t use a CAS calculator and/or a CAS online and/or CAS apps 
64.  
Q62 Were you allowed to use a graphing calculator and/or apps on exams? *  
Mark only one oval. 
No 
Yes 
65.  
Q63 Assignments completed outside of class time were completed and graded  
online. * 
Mark only one oval. 
Not at all 
Rarely 
Seldom 
Occasionally 
Often 
Very often 
66.  
Q64 Assignments completed outside of class time were graded and returned  
to me. * 
Mark only one oval. 
Not at all 
Rarely 
Seldom 
Occasionally 
Often 
Very often 
67.  
Q65 Assignments completed outside of class time were returned with helpful 
feedback/comments. * 
Mark only one oval. 
Not at all 
Rarely 
Seldom 
Occasionally 
Often 
Very often 



 
 

196 

68.  
Q66 Assignments completed outside of class time were submitted as a group  
project. * 
Mark only one oval. 
Not at all 
Rarely 
Seldom 
Occasionally 
Often 
Very often 
69.  
Q67 Assignments completed outside of class time were challenging but doable. * 
Mark only one oval. 
Not at all 
Rarely 
Seldom 
Occasionally 
Often 
Very often 
70.  
Q68 Assignments completed outside of class time required that I solve word 
problems. * 
Mark only one oval. 
Not at all 
Rarely 
Seldom 
Occasionally 
Often 
Very often 
71.  
Q69 Assignments completed outside of class time required that I solve problems  
unlike those done in class or in the book. * 
Mark only one oval. 
Not at all 
Rarely 
Seldom 
Occasionally 
Often 
Very often 
72.  
Q70 Assignments completed outside of class time required that I use technology to 
understand ideas. * 
Mark only one oval. 
Not at all 
Rarely 
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Seldom 
Occasionally 
Often 
Very often 
73.  
Q71 The exam questions required that I solve word problems. * 
Mark only one oval. 
Not at all 
Rarely 
Seldom 
Occasionally 
Often 
Very often 
74.  
Q72 The exam questions required that I solve problems unlike those done in class  
or in the book. * 
Mark only one oval. 
Not at all 
Rarely 
Seldom 
Occasionally 
Often 
Very often 
75.  
Q73 My calculus exams were a good assessment of what I learned. *  
Mark only one oval. 
Strongly disagree 
Disagree 
Slightly Disagree 
Slightly Agree 
Agree 
Strongly agree 
76.  
Q74 My calculus exams were graded fairly. *  
Mark only one oval. 
Strongly disagree 
Disagree 
Slightly Disagree 
Slightly Agree 
Agree 
Strongly agree 
77.  
Q75 My homework was graded fairly. *  
Mark only one oval. 
Strongly disagree 
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Disagree 
Slightly Disagree 
Slightly Agree 
Agree 
Strongly agree 
78. 
Q76 During class I contributed to class discussions. *  
Mark only one oval. 
never  
some class sessions 
about half the class sessions 
most class sessions 
every class session 
79. 
Q77 During class I was lost and unable to follow the lecture or discussion. *  
Mark only one oval. 
never  
some class sessions 
about half the class sessions 
most class sessions 
every class session 
80. 
Q78 During class I asked questions. *  
Mark only one oval. 
never  
some class sessions 
about half the class sessions 
most class sessions 
every class session 
81. 
Q79 During class I simply copied whatever was written on the digital whiteboard. *  
Mark only one oval. 
never  
some class sessions 
about half the class sessions 
most class sessions 
every class session 
82. 
Q80 How often did you read the textbook prior to coming to class? *  
never  
some class sessions 
about half the class sessions 
most class sessions 
every class session 
83. 
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Q81 How often did you visit your instructor’s office hours? *  
never  
some class sessions 
about half the class sessions 
most class sessions 
every class session 
84. 
Q82 How often did you use online tutoring? *  
never  
some class sessions 
about half the class sessions 
most class sessions 
every class session 
85. 
Q83 How often did you visit a tutor to assist with this course? *  
never  
some class sessions 
about half the class sessions 
most class sessions 
every class session 
86.  
Q84 The homework for the course helped me learn the material. * 
Mark only one oval. 
Strongly disagree 
Disagree 
Slightly Disagree 
Slightly Agree 
Agree 
Strongly agree 
87.  
Q85 The textbook and/or class materials helped me learn the material. * 
Mark only one oval. 
Strongly disagree 
Disagree 
Slightly Disagree 
Slightly Agree 
Agree 
Strongly agree 
88.  
Q86 The textbook or reading materials for the course were readable. * 
Mark only one oval. 
Strongly disagree 
Disagree 
Slightly Disagree 
Slightly Agree 
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Agree 
Strongly agree 
89.  
Q87 I completed all my assigned homework. * 
Mark only one oval. 
Strongly disagree 
Disagree 
Slightly Disagree 
Slightly Agree 
Agree 
Strongly agree 
90.  
Q88 Did you meet with other students to study or complete homework outside  
of class? * 
No 
Yes 
91.  
Q89 Did you belong to a calculus study group organized by your instructor or 
department? * 
No 
Yes 
92.  
Q90 Does your math department or university provide a walk-in tutor center for 
mathematics? * 
No 
Yes 
93.  
Q91 Approximately how many hours per week did you work at a job this  
semester? * 
Mark only one oval. 
0 
1-5 
6-10 
11-15 
16-20 
21-30 
More than 30 
Note for PI: Repeated question. This question is repeated in the pre-survey Q50.  
94.  
Q92 Approximately how many hours per week did you participate in organized 
extracurricular activities such as sports, college paper, or clubs? * 
Mark only one oval. 
0 
1-5 
6-10 
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11-15 
16-20 
21-30 
More than 30 
Note for PI: Repeated question. This question is repeated in the pre-survey Q51.  
95.  
Q93 Approximately how many hours per week did you spend preparing for all  
classes (studying, reading, writing, doing homework or lab work, analyzing data,  
or other academic activities) this semester? * 
Mark only one oval. 
0 
1-5 
6-10 
11-15 
16-20 
21-30 
More than 30 
Note for PI: Repeated question. This question is repeated in the pre-survey Q52.  
96.  
Q94 Approximately how many hours per week did you spend preparing for  
calculus (studying, reading, doing homework or lab work) this semester? *   
0 
1-5 
6-10 
11-15 
16-20 
21-30 
More than 30 
Note for PI: Repeated question. This question is repeated in the pre-survey Q53.  
97. 
Q95 Which of the following BEST describes your current career goal?* 
Check all that apply. 
Medical professional (e.g., doctor, dentist, vet.) 
Other health professional (e.g., nurse, medical technician) 
Life scientist (e.g., biologist, medical researcher) 
Earth/Environmental scientist (e.g., geologist, meteorologist) 
Physical Scientist (e.g., chemist, physicist, astronomer) 
Engineer 
Computer Scientist 
Mathematician, 
Science/Math teacher 
Other teacher 
Social Scientist (e.g., psychologist, sociologist) 
Business administration 
Lawyer 
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English/Language Arts specialist 
Other non-science related career 
Undecided 
Note for PI: Repeated question. This question is repeated in the pre-survey Q54.  
 

_End of Student Post-Survey (End of Intervention/Semester) _  
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APPENDIX E 

DERIVATIVE CONCEPT ASSESSMENT  
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Item 1 .(/)is the total cost (in dollars) required to set up a new rope factory and  
produce / miles of the rope. The total cost, .(/), satisfies the equation  
.(/) = 3000	 + 	3/	 + 	3/% and the graph is given as follows 
 

 

 

 
 
(a) Find the value of .(2). 
(b) What are the units of 2 in part (a)?  
(c) What are the units of .(2)? 
(d) What is the meaning of .(2) in the context of the problem context?  
(e) Find the value of .′(2). 
(f) What are the units of 2 in part (a)?  
(g) What are the units of .′(2)? 
(h) What is the meaning of .′(2) in the context of the problem context?  
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Item 2 The derivative of a function ! is given as !′(#) = 	#%	– 	7#	 + 	6.  
What is the value of  
!′(2)? 
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Item 3 The graph of the derivative 6′(#) of function 6 is given as follows.  
Circle the most appropriate answer for the value of 6′(2). 

 

(a)	−4 (b)	−2 (c) 	0 (d) 2 (e) 4 
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Item 4 Below is the graph of a function !(#). Circle the most appropriate answer  
for the graph of the first derivative, !′(#). 

 

 
(a) 

 
(b) 

 
(c)   

(d) 
 

(e) 
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Item 5 Below is the graph of a function !′(#). Circle the most appropriate answer  
for the graph of the function !(#). 

 

 
(a) 

 
(b) 

(c)  
 

(d) 

 

 
(e) 

 
 
  



 
 

209 

 
Item 6 If a function is always positive, then what must be true about its derivative 
function? 
a) The derivative function is always positive. 
b) The derivative function is never negative. 
c) The derivative function is increasing. 
d) The derivative function is decreasing. 
e) You can’t conclude anything about the derivative function. 
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Item 7 The derivative of a function !(#) is negative on the interval # = 2 to # = 3.  
What is true for the function !(#)? 
a) The function !(#) is positive on this interval. 
b) The function !(#) is negative on this interval. 
c) The maximum value of the function !(#) over the interval occurs at # = 2. 
d) The maximum value of the function !(#)  over the interval occurs at # = 3. 
e) We cannot tell any of the above. 
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Item 8 The tangent line to this graph of !(#) at # = 1 is given by )	 = "

% 	#	 +
"
%.  

Which of the following statements is true and why? 

 

(a)	"% 	# +
"
% =

	!(#) 
(b)	"% 	#	 +
"
% 	≤ 	!(#) 

(c) 	"% 	#	 +
"
% 	≥ 	!(#) 

(d) 
"
% 	#	 =

"
% 	!(#) 

(e) None 
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Item 9 The derivative of a function, !(#), is !(#) = %#% + ;. What is required of  
the values of % and % so that the slope of the tangent line to the function ! will be  
positive at #	 = 	0. 
a) % and ; must both be positive numbers. 
b) % must be positive, while ; can be any real number. 
c) % can be any real number, while ; must be positive. 
d) % and ; can be any real number. 
e) None of these 
 
 
_End of Derivative Concept Assessment_  
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APPENDIX F 

INTERVIEW PROTOCOL 
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Project Title: Thinking Out Loud: The Role of Discourse in Understanding the 

Derivative in Calculus I 

Student’s pseudonym 
 

Time of Interview:  

Date: Weeks of 12 and 13, Nov 13 and Nov 14  

Place: Video Conference on Webex 

 

Interviewer:  Madeleine Chowdhury, Co-Principal Investigator 

Interviewee/Position of Interviewee: Student’s pseudonym/current Calculus I  

student in (class section) majoring in (major). 

 

Description of Project: The purpose of this project is to collect qualitative data for  

PI’s (my) action research, particularly regarding the understanding of the derivative 

concept, with students’ use of appropriate mathematical discourse.  

Opening statement: Hello. The purpose of this interview is for me to attain a better 

understanding of what students think and understand about the derivative concept.  

I will ask a total of # questions. The first five are general questions about the  

derivative. The rest of the questions are follow-up questions on items that were  

embedded in your last midterm exam. Please be mindful that I may ask you to  

refer back to your first five answers for the general questions when I start asking  

follow-up questions on those items from your last midterm. Before we get started,  

do you have any questions?  

 

For Interviewer only: This is a 3-part interview with 3 sets of questions and a set of 

Survey-Question references for the interviewees.  

Part 1: Derivative Concept Assessment follow-up. Ask general Qs about their 

understanding of the derivative (Park, 2011 and Zandieh, 1997) the ask specific Qs  

from Derivative Assessment results their pre- and post-Derivative Concept  

Assessment. Outcomes from the quiz taken by students will be available to them  

during the interview.  
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Part 2: Attitude Survey follow-up on Good Teaching (GT) 

Part 3: Attitude Survey follow-up on Ambitious Teaching (AT) 

Sets of survey questions relevant to GT and AT will be available to students.  

There are 3 sets of 22 total Qs for GT and 2 sets of 14 total Qs for AT.  

 

The protocol contains all of this information with the exception of the students 

 outcomes from the Derivative Concept Assessment. Outcomes will be shared with 

student via shared screen on Webex. I will also give students temporary access to  

the Google Sheet. I’ll turn the link on before the interview begins and turn the link  

off right after the interview. 

 

Interview Questions Park (2011) 

 
Q1. What is the derivative? Can you make a sentence with the word, “derivative”? 
Follow-up 1. You can explain your concept of the derivative with your own words.  
Your answer 
doesn’t have to be mathematical. What does the derivative tell us? 
Follow-up 2. There are more than one use of the term derivative. Can you specify  
them? 
Follow-up 3. If they do not come up with the derivative function and the derivative  
at a point, then I will ask them about these two specific ideas. Note. I’m not sure  
what the purpose of this follow-up is since Q4 serves this same purpose it seems. 
 
Q2. What is the derivative function? 
Follow-up 1. Can you give me an example of the derivative function with any kind  
of mathematical objects such as an equation, graph, or table?  
 
Q3. What is the derivative at a point? 
Follow-up 1. Can you give me an example of the derivative function with any kind  
of mathematical objects such as equation, graph, or table?  
 
Q4. Is there any relationship between these two terms, derivative function and  
derivative at a point? 
Case 1. When the interviewee’s answer is yes, 
Follow-up 1.What is the relationship? Please describe their relationship. You may  
use your answers on the previous questions. You can use examples for example, 
equations or graphs. 
Case 2.When the interviewee’s answer is no, there is no relationship between these  
two terms, or they are totally different concepts? 
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Follow-up 1. Can you explain why? You may use your answers on the previous 
questions.  
Follow-up 2. As you can see, we use the same term derivative for these two  
concepts. What do you think about this? 
 
Q5. How about the term function? Is the term function related to the derivative  
function and the derivative at a point? 
Follow-up 1. If so, how are they related? You can use examples. 
Follow-up 2. Note. Students will be asked to explain and justify their answers.  
Follow-up 2a. How did you come up with this example or problem? 
Follow-up 2b. Could you explain what you wrote (drew) here? 
Follow-up 3. Note. In the process of explaining, I will ask some clarifying  
questions.  
Follow-up 3a. You just referred to the derivative as a function or the derivative  
at a point or does it matter? 
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Follow-up question regarding Derivative Concept Assessment  
The following is a list of example questions to follow-up a student's responses to  
the assessment.  
 
Q6. Let’s look at your answer for Item 4. Please have a look at your answer, your  
work, and explanation. Please try to recall what you were thinking and what you  
did.  

 

Follow-up 1. Why did you choose (answer student chose)? 
Case 1. When the interviewee’s answer is because it is decreasing. 
Follow-up 2. What is decreasing? That is, what is “it?”  
Follow-up 3. What in the problem statement or signifier, tells you that “it” should  
be decreasing?  
 
Follow-up 4. Why is d) not the answer? 
Case 1. When the interviewee’s answer is because it’s negative. 
Follow-up 5. Are you referring to the graph for your answer or the original graph? 
Follow-up 6. Why can’t the graph for your answer be negative? 
 
 
 
 
 
Q7. Let’s look at your answer for Item 6. Please have a look at your answer,  
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your work, and explanation. Please try to recall what you were thinking  
and what you did.  
 

Item 6 If a function is always positive, then what must be true about its derivative 

function? 

a) The derivative function is always positive. 

b) The derivative function is never negative. 

c) The derivative function is increasing. 

d) The derivative function is decreasing. 

e) You can’t conclude anything about the derivative function. 

 
Case 1. c either a) or b) 
Follow-up 1. Why? Is there any relationship between a function and its derivative? 
Anticipated answers: If its derivative is positive, the function is increasing. 
Follow-up 2: Can you explain why using your definitions in warm-up questions? 
Case 2. When the interviewee’s answer is either c) or d) 
Follow-up 3: Why? 
Anticipated interviewee’s answer: Because a function and its derivative act similarly. 
Follow-up 4: Always? 
Anticipated interviewee’s answers: Yes / No 
Follow-up 5: If the answer is yes, consider the example of ) = 	−#, what is its 
derivative? Do they act similarly? If the answer is no, why do you think this is a  
case of similarity of a function and its derivative. Or could you give me an example  
of a function which acts differently from its derivative? 
Case 3. When the interviewee’s answer is e) 
Follow-up 6: Why? Can you explain this with your previous explanations? 
 
Q8. Let’s look at your answer for Item 7. Please have a look at your answer,  
your work, and explanation. Please try to recall what you were thinking and  
what you did.  
Item 7 The derivative of a function !(#) is negative on the  

interval # = 2 to # = 3. What is true for the function !(#)? 

a) The function !(#) is positive on this interval. 

b) The function !(#) is negative on this interval. 

c) The maximum value of the function !(#) over the interval occurs at # = 2. 

d) The maximum value of the function !(#)  over the interval occurs at # = 3. 

e) We cannot tell any of the above. 
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Q8 continued. Use the same questions for the previous problem because this  
problem is about the relation between a function and its derivative, too. 
 
Q9. Let’s look at your answer for Item 8. Please have a look at your answer,  
your work, and explanation. Please try to recall what you were thinking and  
what you did.  

 
 
Case 1. When the interviewee’s answer is: b) or c) 
Follow-up 1: Why? Can you explain your answer with the graph of !(#)?  
Where would the tangent line be at? 
Anticipated interviewee’s answers: Draw the tangent line. 
Follow-up 2: Can you explain how you got this inequality from this picture? 
Anticipated interviewee’s answers: The curve is below the line or above the line. 
Case 2. When the interviewee’s answer is: a) or d) 
Follow-up 1: Are they the same? Why? 
Follow-up 2: Can you explain your answer with the graph of !(#)? Where would 
the tangent line be at? 
Follow-up 3: In the case of d), how did you get this equation?  
Where is the 

"
% # come from? 

Anticipated interviewee’s answers: 
In the case of a), that’s because the curve and the tangent line meet at this point. 
In the case of d), that’s because the curve and the tangent line meet at this point,  
and derivative at one point is the slope. 
Follow-up 4: In this problem, should we look at only where the curve and tangent  
meet? Why? 
Anticipated interviewee’s answers: Yes because it is a tangent line at one point.  
No, I changed the answer. 
Follow-up 5: Then, we don’t have to consider the other points beside the intersection 
point, right? 
Anticipated interviewee’s answers: No 
Q10. Let’s look at your answer for Item 9. Please have a look at your answer, your  
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work, and explanation. Please try to recall what you were thinking and what you did.  
 
Item 9 The derivative of a function, !(#), is !(#) = %#% + ;.  

What is required of the values of % and % so that the slope of the  

tangent line to the function ! will be positive at #	 = 	0. 

a) % and ; must both be positive numbers. 

b) % must be positive, while ; can be any real number. 

c) % can be any real number, while ; must be positive. 

d) % and ; can be any real numbers. 

e) None of these 

 

Q10. How did you get this answer? 
Case 1. When the interviewee’s answer is:  a) or b) because % is the slope  
and ; is the )-intercept. 
Follow-up 1. Why % is the slope and ; the )-intercept? 
Anticipated answer: because it has slope-intercept form. 
Follow-up 2. Although the equation an # squared in the equation? 
Case 2. When the interviewee’s answer is: a, b, c, d, or e (chooses one of them) 
Follow-up 3. Why did you choose that one?  
Follow-up 4. Can you explain with the graph of function !(#)?  
Follow-up 6. How did you guess the shape of the derivative?  
Follow-up 7. How did you find the x-intercept in the graph of the derivative?  
Follow-up 8. Can you explain how you use your definitions or explanations  
about the derivative at one point and the derivative function you gave in Task 1?  
Follow-up 9. Why are the graphs of a function and of its derivative function similar?  
Follow-up 10. Can you give me an example for the similarity? 
 
Reference: Park, J. (2011). Calculus instructors’ and students’ discourses on the 
derivative. ProQuest Dissertations Publishing. 
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1. What is the derivative? Can you make a sentence with the word, “derivative?” 
2. What is the derivative function? 
3. What is the derivative at a point? 
4. Is there any relationship between these two terms, derivative function and 

derivative at a point? 
5. How about the term function? Is the term function related to the derivative 

function and the derivative at a point? 
6. Let’s look at your answer for Item 4. Please have a look at your answer,  

your work, and explanation. Please try to recall what you were thinking and  
what you did.  

7. Let’s look at your answer for Item 6. Please have a look at your answer, your 
work, and explanation. Please try to recall what you were thinking and what  
you did.  

8. Let’s look at your answer for Item 7. Please have a look at your answer, your 
work, and explanation. Please try to recall what you were thinking and what  
you did.  

9. Let’s look at your answer for Item 8. Please have a look at your answer, your 
work, and explanation. Please try to recall what you were thinking and what  
you did.  

10. Let’s look at your answer for Item 9. Please have a look at your answer, your 
work, and explanation. Please try to recall what you were thinking and what  
you did.  

11. What questions do you have for me?  
 

_End of INTERVIEW QUESTIONS related  
to the Derivative Concept Assessment_   
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—Note for PI only.  
These survey questions are linked in research (Bressoud et al., 2015)  

to Good Teaching— 
 

1. Referring to the survey questions in Sets 1, 2, and 3, how do you believe  
these instructor practices impact your persistence in Calculus I?  

 
2. Referring to the survey questions in Sets 1, 2, and 3, to what extent do you  

believe these instructor practices impact your persistence in Calculus I?  
 

3. Referring to the survey questions in Sets 1, 2, and 3, how do you believe  
these instructor practices impact your confidence in Calculus I?  

 
4. Referring to the survey questions in Sets 1, 2, and 3, to what extent do you  

believe these instructor practices impact your confidence in Calculus I?  
 

5. Referring to the survey questions in Sets 1, 2, and 3, how do you believe 
 these instructor practices impact your enjoyment of Calculus I?  

 
6. Referring to the survey questions in Sets 1, 2, and 3, to what extent do you  

believe these instructor practices impact your enjoyment of Calculus I?  
 

7. What do you believe are the most influential instructor practices with  
respect to impacting your persistence, confidence, and/or enjoyment of  
Calculus I from sets 1, 2, and 3?  
 

8. Can you think of any other instructor practices that would impact your 
persistence, confidence, and/or enjoyment of Calculus I?  

 
End of INTERVIEW QUESTIONS  

related to Attitude Survey for Good Teaching 
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—Note for PI only.  
These survey questions are linked in research (Bressoud et al., 2015)  

to Ambitious Teaching— 
 

9. Referring to the survey questions in Sets 4 and 5, how do you believe these 
instructor practices impact your persistence in Calculus I?  

 
10. Referring to the survey questions in Sets 4 and 5, to what extent do you  

believe these instructor practices impact your persistence in Calculus I?  
 

11. Referring to the survey questions in Sets 4 and 5, how do you believe these 
instructor practices impact your confidence in Calculus I?  

 
12. Referring to the survey questions in Sets 4 and 5, to what extent do you  

believe these instructor practices impact your confidence in Calculus I?  
 

13. Referring to the survey questions in Sets 4 and 5, how do you believe these 
instructor practices impact your enjoyment of Calculus I?  

 
14. Referring to the survey questions in Sets 4 and 5, to what extent do you 

believe these instructor practices impact your enjoyment of Calculus I?  
 

15. What do you believe are the most influential instructor practices with  
respect to impacting your persistence, confidence, and/or enjoyment of  
Calculus I from Sets 4 and 5?  
 

16. Can you think of any other instructor practices that would impact your 
persistence, confidence, and/or enjoyment of Calculus I?  

 
_End of INTERVIEW QUESTIONS related  
to Attitude Survey for Ambitious Teaching_   
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—Note for PI only.  
These survey questions are linked in research (Bressoud et al., 2015)  

to Good Teaching— 
 
From Post-Survey Questions Set 1 {24, 25, 26, 27, 28, 29, 30, 31} 
 
Q24 My calculus instructor asked questions to determine if I understood what was  
being discussed.  
 
Q25 My calculus instructor listened carefully to my questions and comments.  
 
Q26 My calculus instructor discussed applications of calculus.  
 
Q27 My calculus instructor allowed time for me to understand difficult ideas.  
 
Q28 My calculus instructor helped me become a better problem solver. 
 
Q29 My calculus instructor provided explanations that were understandable.  
 
Q30 My calculus instructor was available to make appointments outside of  
office hours, if needed.  
 
Q31 My calculus instructor discouraged me from wanting to continue taking  
calculus. 
 
From Post-Survey Questions Set 2 {32, 38, 40, 44, 45, 46, 47, 48, 49, 51} 
 
Q32 During class time, how frequently did your instructor show how to work  
specific problems? 
 
Q38 During class time, how frequently did your instructor ask questions? 
 
Q40 How frequently did your instructor prepare extra material to help students 
understand calculus concepts or procedures? 
 
Q44 My calculus instructor made students feel nervous during class. 
 
Q45 My calculus instructor encouraged students to enroll in Calculus II.  
 
Q46 My calculus instructor acted as if I was capable of understanding the key  
ideas of calculus. 
 
Q47 My calculus instructor made me feel comfortable asking questions during  
class. 
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Q48 My calculus instructor encouraged students to seek help during office hours.  
 
Q49 My calculus instructor presented more than one method for solving problems. 
 
Q51 My calculus instructor made class interesting.  
 
 
From Post-Survey Questions Set 3 {67, 73, 74, 75} 
 
Q67 Assignments completed outside of class time were challenging but doable.  
 
Q73 My calculus exams were a good assessment of what I learned. 
 
Q74 My calculus exams were graded fairly. 
 
Q75 My homework was graded fairly.  
 
 

—Note for PI only. 
These survey questions are linked in research (Bressoud et al., 2015) 

to Good Teaching—  
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—Note for PI only.  
These survey questions are linked in research (Bressoud et al., 2015)  

to Ambitious Teaching— 
 
From Post-Survey Questions Set 4 {33, 34, 35, 37, 39, 41, 42, 43} 
Q33 During class time, how frequently did your instructor have students work  
with one another? 
 
Q34 During class time, how frequently did your instructor hold whole-class  
discussion?  
 
Q35 During class time, how frequently did your instructor have students give 
presentations?  
 
Q37 During class time, how frequently did your instructor lecture?  
 
Q39 During class time, how frequently did your instructor ask students to explain  
their thinking? 
 
Q41 How frequently did your instructor require you to explain your thinking on  
your homework? 
 
Q42 How frequently did your instructor require you to explain your thinking on  
exams?  
 
Q43 How frequently did your instructor assign sections in your textbook for you  
to read before coming to class? 
 
 
From Post-Survey Questions Set 5 {65, 66, 68, 69, 71, 72} 
Q65 Assignments completed outside of class time were returned with helpful 
feedback/comments. 
 
Q66 Assignments completed outside of class time were submitted as a group  
project.  
 
Q68 Assignments completed outside of class time required that I solve word  
problems.  
 
Q69 Assignments completed outside of class time required that I solve problems  
unlike those done in class or in the book. 
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Q71 The exam questions required that I solve word problems.  
 
 
Q72 The exam questions required that I solve problems unlike those done in  
class or in the book. 
 
—Note for PI only.  
These survey questions are linked in research (Bressoud et al., 2015)  
to Ambitious Teaching—  
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APPENDIX G 

MEANING FOR THREE LAYERS OF CIRCLE DIAGRAM 
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Note. Reprinted from The Evolution of Student Understanding of the Concept  
of Derivative by M. Zandieh, 1997, p. 104. Copyright 1997 by ProQuest. 
Permission from Dr. Michelle Zandieh was requested and granted by email  
on March 21, 2021.  
 
 

Below is a diagram that represents the three layers. Unfortunately, a clear  

depiction of the original diagram was not available.  

This is my rendering of the three layers.  

 

 

 

 
   

First layer: value of 
the difference 
quotient. 

Shaded first layer: ratio 
process 

Second layer: 
derivative at a point. 

Shaded second layer: limit 
process 

Third layer: derivative 
function 

Shaded third layer: 
input-output function 
process 
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APPENDIX H 

CIRCLE DIAGRAM EXAMPLES WITH ONE OR TWO CIRCLES 
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Note. Reprinted from The Evolution of Student Understanding of the Concept  
of Derivative by M. Zandieh, 1997, p. 104. Copyright 1997 by ProQuest. 
Permission from Dr. Michelle Zandieh was requested and granted by email  
on March 21, 2021.  
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APPENDIX I 

CIRCLE DIAGRAM EXAMPLES WITH TWO OR THREE CIRCLES 
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Note. Reprinted from The Evolution of Student Understanding of the Concept  
of Derivative by M. Zandieh, 1997, p. 104. Copyright 1997 by ProQuest. 
Permission from Dr. Michelle Zandieh was requested and granted by email  
on March 21, 2021.  
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APPENDIX J 

CIRCLE DIAGRAM FOR STUDENT INTERVIEW (ZANDIEH, 1997)
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Note. Reprinted from The Evolution of Student Understanding of the Concept  
of Derivative by M. Zandieh, 1997, p. 104. Copyright 1997 by ProQuest. 
Permission from Dr. Michelle Zandieh was requested and granted by email  
on March 21, 2021.  
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APPENDIX K 

SURVEY QUESTIONS USED FOR TABLES 17 AND 18  
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Table 17  

Students’ Assessment of Good Teaching Characteristics for Instructor 

a “My calculus instructor asked questions to determine if I understood what was  

being discussed.”  

b “My calculus instructor listened carefully to my questions and comments.” 

c “My calculus instructor discussed applications of calculus.” 

d “My calculus instructor helped me become a better problem solver.” 

e “My calculus instructor discouraged me from wanting to continue taking calculus. ” 

f “My calculus instructor made students feel nervous during class.” 

g “My calculus instructor encouraged students to enroll in Calculus II.” 

h “My calculus instructor acted as if I was capable of understanding the key ideas  

of calculus” 

i “My calculus instructor made me feel comfortable asking questions during class.” 

j “My calculus instructor encouraged students to seek help during office hours.” 

k “My calculus instructor presented more than one method for solving problems.” 

l “My calculus instructor made class interesting.” 

m “My calculus exams were a good assessment of what I learned.” 

n “My calculus exams were graded fairly.” 

o “My homework was graded fairly.” 

p “My calculus instructor allowed time for me to understand difficult ideas.”  

q “My calculus instructor provided explanations that were understandable.” 

r “My calculus instructor was available to make appointments outside of office  

hours, if needed.” 
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s “During class time, how frequently did your instructor show how to work  

specific problems?” 

t “During class time, how frequently did your instructor ask questions?” 

u “How frequently did your instructor prepare extra material to help students  

understand calculus   

    concepts or procedures?” 

v “Assignments completed outside of class time were challenging but doable.” 
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Table 18  

Students’ Assessment of Ambitious Teaching Characteristics for Instructor  

a “During class time, how frequently did your instructor have students work with  

one another?”  

b “During class time, how frequently did your instructor hold whole-class discussion?” 

c “During class time, how frequently did your instructor have students give 

presentations?” 

d “During class time, how frequently did your instructor lecture?” 

e “During class time, how frequently did your instructor ask students to explain their 

thinking?” 

f “How frequently did your instructor require you to explain your thinking on your 

homework?” 

g “How frequently did your instructor require you to explain your thinking on exams?” 

h “How frequently did your instructor assign sections in your textbook for you to read 

before coming to class?” 

i “Assignments completed outside of class time were returned with helpful 

feedback/comments.” 

j “Assignments completed outside of class time were submitted as a group project.” 

k “Assignments completed outside of class time required that I solve word problems.” 

l “Assignments completed outside of class time required that I solve problems unlike 

those done in class or in the book.” 

m “The exam questions required that I solve word problems.” 

n “The exam questions required that I solve problems unlike those done in class  
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or in the book. ” 

o Combines Occasionally and Seldom. 

p Combines Very Often and Often. 
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APPENDIX L 

IRB APPROVAL NOTIFICATIONS ASU & MCCCD   
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