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ABSTRACT

Generative models in various domain such as images, speeches, and videos are being

developed actively over the last decades and recent deep generative models are now

capable of synthesizing multimedia contents are difficult to be distinguishable from

authentic contents. Such capabilities cause concerns such as malicious impersonation,

Intellectual property theft(IP theft) and copyright infringement.

One method to solve these threats is to embedded attributable watermarking in

synthesized contents so that user can identify the user-end models where the contents

are generated from. This paper investigates a solution for model attribution, i.e., the

classification of synthetic contents by their source models via watermarks embedded

in the contents. Existing studies showed the feasibility of model attribution in the

image domain and tradeoff between attribution accuracy and generation quality under

the various adversarial attacks but not in speech domain.

This work discuss the feasibility of model attribution in different domain and

algorithmic improvements for generating user-end speech models that empirically

achieve high accuracy of attribution while maintaining high generation quality. Lastly,

several experiments are conducted show the tradeoff between attributability and

generation quality under a variety of attacks on generated speech signals attempting

to remove the watermarks.
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Chapter 1

INTRODUCTION

1.1 Overview

Generative Adversarial Networks (GANs) have been significant improvement in

recent years through contributions in image successfully. The improvements of GANs

can lead to examine the scope of domain extensions and it is capable of generating

the indistinguishable audio. Especially, speech is one of the most widely transmitted

data in mobile devices and applications. Unlike the image, user can perceive not only

the the content of the message but also other characteristics such as pitch, rhythm,

genre etc.

In recent years, due to the advancements of speech generation, synthetic contents

are almost indistinguishable from authentic contents. Although nobody wants to

be fooled by deep fake voice, synthetic contents are used on social media platforms

and there are numerous issues and societal awareness such as threatening intellectual

property rights, fake news etc. These models and their artificial contents inevitably

pose a variety of threats regarding privacy (Citron and Chesney 2019; Harris 2018;

Satter 2019), malicious impersonation Bateman 2020, and copyright infringement B.

Zhang et al. 2020.

Existing countermeasures to these issues are detection and attribution and these

methodology can prevent the societal problems from deepfake. The detection methods

develop binary classifiers to distinguish between generated and authentic contents

via intrinsic fingerprints of generative models. On the other sides, the attribution
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Figure 1. MelGAN model distribution projected to the space spanned by user-specific
keys ϕ1 and ϕ2. The default model G0 is perturbed according to the keys to produce
attributable models Gϕ1 and Gϕ2 , which add sparse watermarks (wmϕ1 and wmϕ2) to
the beginning of generated speeches.

methods develop multi-class classification to identify models from which generated

contents are watermarked, so that they can be attributed to their source models.

1.2 Motivation

GANs (Goodfellow et al. 2014) were invented to use neural networks which map

latent vectors to real distribution via adversarial training. This development brings

success to generate realistic data synthesis not only in the image domain (Karras

et al. 2020) but also in the speech domain (Gao, Singh, and Raj 2018). Many successful

speech synthesis models are established based on GANs(e.g. WaveGAN (Donahue,

McAuley, and Puckette 2018) and MelGAN (Kumar et al. 2019)) and ordinary people

enable to generate realistic fake audio which is indistinguishable from real audio. This

advancement leads to the warnings against misuse.

Existing countermeasures to these threats can be categorized into detection (Wang
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et al. 2019) and attribution (Kim, Ren, and Yang 2021) (Yu, Davis, and Fritz

2018) as possible solutions to prevent misuse. Fake detection boils down to binary

classification between authentic and generated fake contents. However, recent works

showed that fake detection may fail when intrinsic fingerprints are removed e.g.,

through implicit neural representation (Anokhin et al. 2021). For this reason, model

attribution may address this problem. Model attribution is multi-class classification

to detecting traces of specific models of the generated fake contents. There are two

directions among the model attribution which are user-end model attribution and

model structure attribution. User-end model attribution is a multi-class classification

to identify contents into responsible user’s generator even the users’ generators have

same structure. However, model structure attribution is to classify synthesized

contents into one of structures of generators. This work aims to focus on user-end

model attribution, which is difficult to spoof.

1.3 Challenges

The algorithm of model attribution proposed in (Kim, Ren, and Yang 2021) has

only been tested on image domain, it has not been examined on speech generative mod-

els. Even though existing methods on model attribution seems practical, there are few

practical challenges encountered in speech domain that need to be addressed to achieve

high accuracy of attribution while maintaining the quality. Current methodology of

attribution is not distinguishable and attributable in speech domain. Specifically,

there are not aligned between user-end-models and their corresponding specific keys

which cause the low attribution. Therefore, improving the accuracy of attributability

corresponding specific keys and model is considered to be a key challenge.

3



Figure 2. WaveGAN model distribution projected to the space spanned by
user-specific keys ϕ1 and ϕ2. The default model G0 is perturbed according to the keys
to produce attributable models Gϕ1 and Gϕ2 .

Another key challenge in adopting existing method to speech domain is that

generation quality does not guarantee the generation quality with robustness. Since

image dataset (Y. Zhang et al. 2020; Cohen et al. 2017; F. Yu et al. 2015) is different

to speech signal (Panayotov et al. 2015; Zen et al. 2019), expected perturbation may

not align with designated keys. Hence, enforcing alignment between user-end-models

and corresponding keys in order to enables the model distributor trains attributable

user-end models which contain its unique watermarking is considered to be another

challenging task.

1.4 Contribution

Since this research aims to algorithmic improvements of model attribution on

speech generative models, this study extends the domain to speech generation. To

solve our proposed practical challenges encountered in the speech domain, it is assumed

that the attackers can post-process the generated contents to possibly decline the

4



model attribution and the registry is aware of the distribution of attacks. Overall,

this research claims the contributions as follows:

1. Algorithmic development with new constraints is performed to enforce the

alignment between user-end-models and their corresponding keys for maintaining the

high model attributability.

2. When the adversarial post-processes are known, our proposed method can

counter measure through robust training. However, this countermeasure will produce

the degradation of generation quality . Further, the trade-off between generation

quality and robust attributability under a variety of adversarial post-processing by

adversaries in the speech domain is empirically tested to show the robustness of our

proposed method.
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Chapter 2

BACKGROUND

2.1 Speech Generative Models

Audio generative model (Oord et al. 2016) is introduced by using feedforward

deep convolution neural networks can be trained with autoregression setting. Such

approach takes the raw waveform as input and this architecture directly generates

a raw audio waveform , showing reasonable results in text-to-speech and general

audio generation. However, the model structure is computationally heavy for real-

time speech synthesis to achieve best results. Whereas, lightweight GAN models e.g.

MelGAN and Parallel WaveGAN (Yamamoto, Song, and Kim 2020) are presented

and showed high perceptual quality on text-to-speech synthesis.

Generative Adversarial Networks(GAN) have been successfully demonstrated the

fidelity at synthesizing not only images (Karras, Laine, and Aila 2019) but also in

speech. (Engel et al. 2019) Donahue et al. (Donahue, McAuley, and Puckette 2018)

are first demonstrated the adversarial audio synthesis with Deep convolution neural

networks GANs. WaveGAN learns to produce the one words when trained on small

vocabulary speech dataset. Their investigation focuses on unsupervised learning and it

can learn from mapping the low-dimensional latent vector to high-dimensional audio

signals with the architecture of traditional GAN. On criteria of their evaluation for

sound quality, it can generate intelligible spoken digits to humans.
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2.2 Threats of DeepFake

Advanced generative models in audio led to new societal problems and pose the

particular security and privacy threats, voice impersonation to bio-metric authentica-

tion system on machine control (e.g., Apple Siri, Amazon Alexa and Google Home

etc). Such high perceptual quality results from text-to-speech synthesis(TTS) and

other approaches can successfully deceive both users and speaker verification sys-

tem (Catherine 2019). At the same time, this has created the need for improving the

system that can detect tempered contents and protect the real voice from malicious

attacks (Citron and Chesney 2019). However, existing voice interfaces are vulnerable

to attacked voice with tempered content and cloned voice that mimicking the authentic

user (Bateman 2020; Rachel 2021). Therefore,there is a need for a model that can

show robustness against these attacks (Liu et al. 2020) and not only detect forgery

but also trace the responsible users. One promising solution to tackle these problems

is to disclose the responsible user of misused contents.

2.3 Detection and Attribution

Fake audio are generated by manipulation with DeepFake methods (Satter 2019)

and the public concern of misuse e.g. voice impersonation have become growing. Typ-

ically, recent studies presented two methods that are detection and model attribution

to prevent these significant threats.
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2.3.1 Detection

A detector for distinguishing between real and fake contents is introduced by

(Wang et al. 2019) for many Convolution Neural Networks(CNN) image generative

models. In general, Fake Detection (Zhou and Lim 2021) has been commonly based

on intrinsic fingerprints and relies on binary classification between authentic and

generated contents. However, this methodologies are highly dependent on specific

training scenario and therefore detection can be easily removed the watermarking by

some attacks. In other words, traditional fake detection is not robust against a variety

of attacks and is vulnerable to content spoofing.

2.3.2 Attribution

Model attribution is dependent on multi-class classification to trace the corre-

sponding models of the generated contents. Yu et al. (Yu, Davis, and Fritz 2018)

studied empirical feasibility of attribution through a classifier trained on user-end

models. However, this approach does not guarantee an attributability in reality when

the number of user-end models grows.

Thus, Kim et al. studied the sufficient conditions with decentralized scheme to

achieve the certifiable attribution on image dataset. They proposed the decentralized

attribution scheme as follows: After training speech generative model using our method,

the model owner is able to release different copies of the model which include different

unique keys but the similar quality of generations. When a user request to download

the model, the owner register user’s profile with the unique key into the database.

Then, each user can download the copy of the model with or without knowledge that
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the key is embedded. When misused contents of models are reported, the model owner

can collect the misused contents and trace responsible users. Informally, if (1) user-end

models are distinguishable from the authentic dataset, and (2) the inner product of

any pair of keys is smaller than a data-dependent threshold, a set of user-end models

can be attributable.

Existing model attribution based on user-end models on image domain showed the

robust against a variety of attacks and achieved high attributability while maintaining

generation outputs quality with additional loss of generation quality. Since all of the

previous research is implemented and studied only in the image domain, our proposed

work is the initial approach that is practical and attributable in the speech domain.

2.3.3 Protocol

This study assumes the following model distribution and attribution proto-

col (Fig. 1): Consider a model developer who distributes copies of a generative

model to its users. Each user-end model Gϕ : Z → X maps the latent space Z ⊂ Rdz

to the content space X ⊂ Rdx , and has a key ϕ ∈ Rdx that defines its unique water-

mark. A third-party registry (e.g., law enforcement) manages all keys (Φ = {ϕi}Ni=1)

and the associated user IDs. The registry accepts contents in question (x), performs

attribution via a sequence of binary classification, and returns IDs of the users (i)

who generated the contents (Kim, Ren, and Yang 2021) (ϕT
i x > 0).
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2.3.4 Sufficient conditions for model attribution

Within this setting, Kim et al. (Kim, Ren, and Yang 2021) studied the sufficient

conditions of keys to achieve certifiable attribution. Informally, a set of user-end

models are attributable if (1) these models are distinguishable from the authentic

dataset, and (2) the inner product of any pair of keys is smaller than a data-dependent

threshold. These conditions guide the computation of keys.

10



Chapter 3

METHODS

In this chapter, the methods on model attribution in speech domain will be

mentioned in details.

3.1 Notation and Preliminaries

For a given an authentic dataset D ⊂ Rdx , the model owner train a default

generator G0 for which the output distribution PG0 that matches with the authentic

data distribution PD. Since the purpose of this work is not improving the quality,

the assumption for attribution is that PD and P0 are almost same. Before training

User-end generators, the owner firstly need to produce user-specific keys. Let the

user-end specific keys be Φ := {ϕ1, ϕ2, ..., ϕN} for N users, where ϕi ∈ Rdx and

||ϕi||2 = 1 for i = 1, ..., N . G0 will be fine-tuned using Φ to produce user-end

generators G := {Gϕ1 , Gϕ2 , ...GϕN
} that are denoted by Gϕ : Rdz → Rdx , where dz and

dx are dimension of generator input and data in PD, respectively. Let the ith binary

classifier as fϕi
(x) = sign(ϕT

i x) that returns 1 only if x ∈ Gϕi
, which is similar to the

one versus all classification.

For the evaluation, the following metrics to facilitate the discussion : (1) Distin-

guishability of Gϕ measures the classification accuracy of fϕ(x):

D(Gϕ) :=
1

2
Ex∼PGϕ

,x0∼PD [1(fϕ(x) = 1) + 1(fϕ(x0) = −1)] , (3.1)

where PGϕ
a user-end distribution.
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(2) Attributability measures the averaged classification accuracy of all models of

the collection G := {Gϕ1 , ..., GϕN
}:

A(G) := 1

N

N∑
i=1

Ex∼Gϕi
1(ϕT

j x < 0,∀ j ̸= i, ϕT
i x > 0). (3.2)

For measuring the generation quality of attributed Gϕ, Fréchet DeepSpeech Dis-

tance (Bińkowski et al. 2019) is computed in this study.

3.2 Sufficient conditions for model attribution

The summary of the sufficient conditions for model attribution from (Kim, Ren,

and Yang 2021) in Theorem 1.

Theorem 1 Let ϕ is data-compliant when ϕTx < 0 for x ∼ PD. Let dmin(ϕ) =

minx∈D |ϕTx|, dmax(ϕ) = maxx∈D |ϕTx|.

Then A(G) ≥ max{0, 1−Nδ}, if D(G) ≥ 1− δ for all Gϕ ∈ G, and

ϕTϕ′ ≤ min

{
dmin(ϕ)

dmax(ϕ)
,
dmin(ϕ

′)

dmax(ϕ′)

}
(3.3)

for any pair of data-compliant keys ϕ, ϕ′ ∈ Φ.

From the theorem, Distinguishability is achieved under two sufficient conditions of keys

that the orthogonality of each key (ϕT
i ϕj = 0, i ≠ j) and data complaint (ϕT

i x < 0,∀i)

should be guaranteed. Additionally, the minimal angle constraint between any pair

of keys should be orthogonal. Specifically, it should be noted that a sufficient and

computationally more feasible angle constraint is ϕTϕ′ ≤ 0.

12



3.3 Key Generation

Data compliance, i.e., ϕT
i x < 0,∀i, ∀ ∈ PG0, is one of the sufficient conditions for

the model attribution. However, there does not exist data-complinat keys, i.e., no sub

space classifies the authentic data as one class for the tested speech dataset(SC09,

LJSpeech ). which cause both low distinguishability and low attributability. exist

data-compliant keys, i.e., no sub-space classifies the authentic data as one class. This

is evident from the low distinguishability in Tab. 1A.

We resolve this issue by adding a bias to the binary classifies: fϕi
(x) = sign(ϕT

i′x+bi)

for all i = 1, ..., N . The resultant distinguishability improves as seen in Tab. 1B. To

reduce notational burden, we will denote [ϕ′
i, bi] by ϕi and the augmented data (with

appended 1s) by x.

Each new key is generated by solving the following problem with existing keys ϕj

for j = 1, ..., i− 1:

min
ϕ

Ex∼G0 [max{1 + fϕ(x), 0}] +
i−1∑
j=1

max{ϕT
j ϕ, 0}. (3.4)

The orthogonality condition apply from the generation of second key. In other words,

The orthogonality penalty (second term of RHS) is omitted for the generation of the

first key (i = 1). By solving this equation, trained keys are mutually orthogonal and

satisfies data compliance. The set of keys ϕ is not fixed. If the owner of model needs

more, keys can be trained based on eq. (3.4)

3.4 Retraining of user-end generator

After training user-specific key ϕ, the owner’s generator G0 should be fine-tuned

based on corresponding key ϕ. This essential training step enables each generators’

13



contents to be attributable. While Theorem 1 holds when Gϕ models the perturbed

distribution {x+ ϕ|x ∈ PD}, this exact match of distributions may not be achieved in

practice due to the limited capacity of Gϕ and the domain-specific boundaries of x (e.g.,

for speech data, x ∈ [−1, 1]dx). We found through experiments that this mismatch

deteriorates the attributability of user-end models. In the following, we describe a

practical formulation for retraining the default model G0 so that the resultant user-end

model Gϕ will (1) be distinguishable from the authentic data, (2) have low generation

quality drop, and (3) be attributable.

Distinguishability loss Model attribution does to train the binary classifiers

fϕ(x) parameterized by the key ϕ using a standard hinge loss to classify each user-end

generative models by the decision boundary given by the key. Standard hinge loss

used in this study to penalize Gϕ on distinguishability:

Lh = Ex∈PGϕ
max{1− fϕ(x), 0}. (3.5)

Generation quality loss To discourage quality degradation, Mean Absolute

Error(MAE) as a loss function that computes the expected distance between samples

from the user-end and the default models. Therefore, the distance between the user-

end generative models Gϕ and the default model G0 is computed for the generation

quality. Pandey et al. (Pandey and Wang 2018) showed that utilizing l1 distance gives

better perceptual quality than l2 distance.

Angle loss Through experiments, the expected perturbation Ez∼Pz [Gϕ(z)−G0(z)]

may not align with ϕ, which causes attirbutability to be lower than expected. In a

nutshell, our angular loss adjusts the angle between Gϕ and specific key ϕ so that

make the high attributability be attainable. Thus, angle loss function encourages to

align with and user-end generator Gϕ to improve attributability. The following loss

function is angular loss:

14



LA = max

{
1− (G0(z)−Gϕ(z)) · ϕ

∥(G0(z)−Gϕ(z))∥2 · ∥ϕ∥2
, 0

}
.

(3.6)

The training objective is thus the following:

min
Gϕ

λ1Lh + λ2Ld + λ3LA,

(3.7)

where λ1,λ2 and λ3 are set to 10, 10000, 1000, respectively. For satisfying the all

metrics, optiming this loss function to create Gϕi iteratively.

Algorithm 1 Retraining of Gϕ

Input : ϕ,G0

Output Gϕ

1: Train the Gϕ1 with corresponding ϕ1 by solving

min
ϕ

Ex∼G0 [max{1 + fϕ(x), 0}] (3.8)

2: if D(Gϕ1) < 0.97 then
3: goto step 1 ;
4: end if
5: Train new keys by solving the Eq. (3.4)
6: if cos(ϕ1, ϕi) > 0.015 then
7: goto step 5 ;
8: end if
9: Train new user-end generators by solving the Eq. (3.7)

10: if D(Gϕi) < 0.97 then
11: goto step 9 ;
12: end if
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Chapter 4

EXPERIMENTS

In this section, the result of our proposed method are introduced to evaluate and

show the attributable watermarking. First, we show the experimental setting on

the tested dataset and models in speech domain. Finally, we propose few evaluation

metrics to quantify the model attribution on speech generative models.

4.1 Experimental setup

Dataset We tested our model attribution using SC09 (Warden 2018) and LJspeech

datasets (Ito and Johnson 2017). SC09 is a subset of speech commands by a variety of

speakers that include spoken ten vocabulary words from zero to ten each of a duration

of 1 second. The dataset is split into training, test and validation sets consisting of

18.5k, 2.5k, and 2.5k data points, respectively. LJspeech contains 13.1k audio clips

by a single speaker and has been widely used in text-to-speech synthesis model and

speech synthesis model. We split LJspeech into 11.5k, 0.5k, 0.5k for training, test,

and validation, respectively.

Model and training: In our experiments, all models were trained on NVIDIA

TESLA V100 GPUs for the LJSpeech at 22,050 Hz and SC09 at 16,384 Hz. WaveGAN

maps the latent vectors to audio samples and we directly employed SC09 dataset to

train. MelGAN takes a mel-spectrograms and we cut each LJspeech clip to 3 seconds

in length.
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Table 1. Evaluation results for various loss designs. When proposed configurations
are applied, we achieved the best results. Aug.:augmented key, Dist.:
distinguishability, Att.: attributability, FDSD: Fréchet Deep Speech Distance. ↓ / ↑
indicates lower/higher result is desirable. Base FDSD scores for WaveGAN and
MelGAN are 25.65 and 4.74, respectively.

Model Dist.↑ Att.↑ FDSD.↓
A + Baseline WaveGAN 0.68 0.1 27.28

MelGAN 0.74 0.0 12.82
B + Aug. WaveGAN 0.94 0.17 30.87

MelGAN 0.99 0.68 21.85
C + Ld WaveGAN 0.97 0.31 26.67

MelGAN 0.99 0.73 7.32
D + LA WaveGAN 0.98 0.94 26.92

MelGAN 0.99 0.93 7.30

Figure 3. (a-d) Average orthogonality, distinguishability, attributability, FDSD of 30
WaveGAN user-end models on SC09 and 30 MelGAN user-end models on LJSpeech,
respectively. The dotted lines depict baselines.
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4.2 Experimental results

All models are trained following steps proposed in the Sec. (Kim, Ren, and Yang

2021). We report in Fig. 3 the average distinguishability, attributability, and the

average generation quality (in terms of FDSD) of a sequence of user-end WaveGAN and

MelGAN models being iteratively trained by solving Eq (3.4) and Eq. (3.4). Results

with all 30 models are reported in Tab. 1D. We experimentally demonstrate that

improving the baseline configuration by adding a bias, angular loss, and l1 distance

metric instead of l2 (Tab. 1). First, Augmented dimension with using vectors as a

bias input enables to keys to be achieved the data compliant. As can be observed

from Fig. 3, the orthogonality of keys learned by augmented feature vector as a

bias input helps to be linearly separable and distinguishable by decision boundary

given by keys. We found that the distinguishability was remarkably improved in

WaveGAN and MelGAN almost 26% and 25%, respectively (Tab. 1(B)). Since trained

user-end models Gϕ are not aligned with the specific key, trained user-end models

with baseline configuration is not attributable. It should be highlighted that the angle

loss significantly improves the attributability of models, achieving 94% and 93% on

WaveGAN and MelGAN, respectively. This shows that in practice, it is necessary to

align the trained model Gϕ with the corresponding ϕ.

4.3 Adversarial post-processing

Lastly, we test the robustness of our method against various post-processes that

aim at removing the watermarks from generated contents. Following the experimental

setting in (Yu, Davis, and Fritz 2018; N. Yu et al. 2020; Kim, Ren, and Yang
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2021), we assume that the registry is aware of the distribution of attacks PT , where

T : Rdx → Rdx can represent (1) adding noise, (2) gain, (3) changing speed, (4)

combined pass filters, and the combination of these four.

To train robust user-end models GR
ϕ , we propose the following problem formulation

for updating user-end models given ϕ:

min
Gϕ

ET∼PT , x∼PGϕ

[
λ1max

{
1− fϕi

(T (x), 0)
}

+λ2Ld + λ3LA] . (4.1)

4.3.1 Setup

In our experiments, we consider five types of post-processes T: noise (Yakura and

Sakuma 2018), gain (Das et al. 2018), combined pass-filter (Wen et al. 2009), speed

change (Xie et al. 2020), and combination of these four. Noise: Most works considers

only white noise for post-processing. However, we consider the noise diversity and

randomly chosen from 4 noise types. Noise type is uniformly sampled from Brown,

Blue, Violet, and Pink Noise.

Gain: Gain multiplies a random amplitude factor to reduce or increase the volume.

Gain randomly performs with gain in dB [-18, 6].

Pass filter : High and low pass filters are both considered. We set the cut off frequency

to [2200, 4000] for low pass filter and [200, 1200] for high pass filter, respectively. It

should be noted that the frequency ranges are chosen to avoid removing the semantic

contents of the generated speeches.

Speed : Speed perturbations speed up or slow down an audio signal with re-sampling.

The speed percentage is uniformly chosen from [80, 90, 110].
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Lastly, combination attacks combine the other four attacks, each with a 50% chance

to be applied.

Figure 4. One sample from robust training against low pass-filter attack.
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Table 2. Evaluation metrics before (Bfr.) and after (Afr.) robust training against
adversarial post-processes. Before robust training, FDSD scores of WaveGAN and
MelGAN are 26.92 and 7.30, respectively Dist. = Distinguishability, Att. =
Attributability

Metric Model Noise Gain Speed Pass filter Combination
Bfr. Afr. Bfr. Afr. Bfr. Afr. Bfr. Afr. Bfr. Afr.

Dist.↑ WaveGAN 0.91 0.98 0.95 0.98 0.85 0.98 0.94 0.98 0.79 0.92
MelGAN 0.97 0.99 0.88 0.97 0.60 0.86 0.80 0.99 0.73 0.95

Att.↑ WaveGAN 0.88 0.96 0.94 0.98 0.71 0.90 0.64 0.91 0.31 0.73
MelGAN 0.72 0.92 0.63 0.88 0.40 0.70 0.64 0.84 0.23 0.56

FDSD.↓ WaveGAN 36.54 42.58 46.12 50.85 47.56
MelGAN 7.99 8.55 24.48 9.415 27.49

Fréchet DeepSpeech Distance(FDSD): Recent work proposed the Fréchet

Audio Distance (Kilgour et al. 2019). However, this metric has been designed for only

music dataset (Sturm 2012) and uses a classifier as a feature extraction. Thus, it is

not suitable to evaluate text-to-speech models or speech generative models. Binkowski

et al. (Bińkowski et al. 2019) presented the Fréchet DeepSpeech Distance(FDSD) that

evaluate the perceptual quality of synthesized speech samples based on their distance

to a reference set. FDSD is conceptually similar to Fréchet Inception Distance(FID)

(Heusel et al. 2017) that is commonly used for evaluating the output content from

GANs. The only difference is that FDSD are computed on the activation function of the

Deep Speech 2 (Hannun et al. 2014). In general, Mean Opinion Score (MOS) (Leng et

al. 2021) used to judge the quality of synthesized audio assigned by human. However,

this metric is subjective test so that it is not well-suited to evaluate in our case.

Therefore, MOS is not tested in this research work.
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Figure 5. Results of robust training against pass-filter attack. (a,g): Audio signal
from a non-robust generator Gϕ and the corresponding robust generator GR

ϕ . (d,j):
Corresponding Mel-spectrogram of (a,g). The peak-amplitude regions are highlighted.
(b,c,h,i,e,f,k,l): Audio signal and Mel-spectrogram after the attack. TL / TH indicates
low and high pass-filter, respectively.
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4.4 Robustness

Tab. 2 reports the average distinguishability, attributability, and generation quality

with and without robust training against post-processes. A tradeoff is observed

between robust attributability and generation quality.

To further understand the effectiveness of robust training, here we pick low/high-

pass filters as the attack and compare a non-robust watermark and its corresponding

robust version for MelGAN in Fig. 5a,g, as well as their filtered watermarks in

Fig. 5b,c,h,i. We focus on the first 0.01 second of the signals where watermarks

dominate. From the results, we see that robust training successfully finds watermarks

that have frequency ranges in between the low- and high-pass filters. To further

support this finding, we average Mel-spectrogram before and after filters over 1000

samples in Fig. 5(d-f, j-l). We reiterate that since attacks should avoid removing the

semantic contents of a generated speech, there always exists a frequency window for

which robust watermarks can be created.
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Chapter 5

CONCLUSION AND FUTURE WORK

Motivated by model attribution in the image domain, we investigated the feasibility

of model attribution in the speech domain. Same with previous works, our method is

based on a protocol where the model distributor trains attributable user-end generative

models by embedding unique watermarks. We showed that in practice, it is necessary

to enforce the alignment between user-end models and their designated keys in order

to achieve empirically high attributability in the speech domain. This is verified on

WaveGAN and MelGAN using SC09 and LJSpeech datasets, respectively. Lastly, we

revealed the tradeoff between generation quality and robust attributability.

We achieved an algorithmic improvements for embedding attributable watermark-

ing on speech generative models and showed the robustness of model attribution against

several adversarial post-processing. Further, there are mainly two important future

directions that can be evolved from this work. Model attribution has been successfully

adopted on both image and speech generative models. However, the video generative

models clark2019adversarial and multi-modal generative models ma2019m3d has been

growing rapidly and the model attribution on these generative models have not been

explored. In terms of multi-modal model, the generator takes image and audio as

input and generate the synthetic content of combined image and audio. We can

assume that attacker can easily use an audio extractor to split audio or image from

video and Graphics Interchange Format (GIF). In this case, the attributable key can

be broken and it means that the watermark is possible to be easily removed. The

improvements could be studying the existence of our model attribution in different

multimedia content. Another interesting in further improvements is to maintain the
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attributability in large set of keys and it is necessary to find approximated solutions

to this problem. For real applications, the capacity of attributable models should be

explored so that this problem may be solved with sphere packing problems which is

also known open challenges.
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AUDIO RESULTS
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Watermarked speech samples are available at
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