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ABSTRACT

Cyberspace has become a field where the competitive arms race between defenders

and adversaries play out. Adaptive, intelligent adversaries are crafting new responses

to the advanced defenses even though the arms race has resulted in a gradual im-

provement of the security posture. This dissertation aims to assess the evolving

threat landscape and enhance state-of-the-art defenses by exploiting and mitigating

two different types of emerging security vulnerabilities.

I first design a new cache attack method named Prime+Count which features

low noise and no shared memory needed. I use the method to construct fast data

covert channels. Then, I propose a novel software-based approach, SmokeBomb, to

prevent cache side-channel attacks for inclusive and non-inclusive caches based on the

creation of a private space in the L1 cache. I demonstrate the effectiveness of Smoke-

Bomb by applying it to two different ARM processors with different instruction set

versions and cache models and carry out an in-depth evaluation.

Next, I introduce an automated approach that exploits a stack-based informa-

tion leak vulnerability in operating system kernels to obtain sensitive data. Also,

I propose a lightweight and widely applicable runtime defense, ViK, for preventing

temporal memory safety violations which can lead attackers to have arbitrary code

execution or privilege escalation together with information leak vulnerabilities. The

security impact of temporal memory safety vulnerabilities is critical, but, they are

difficult to identify because of the complexity of real-world software and the spa-

tial separation of allocation and deallocation code. Therefore, I focus on preventing

not the vulnerabilities themselves, but their exploitation. ViK can effectively pro-

tect operating system kernels and user-space programs from temporal memory safety

violations, imposing low runtime and memory overhead.
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Chapter 1

INTRODUCTION

Attackers and defenders have been fighting the “Eternal War in Memory” for a long

time [132]. This cycle typically encompasses the creation (by defensive security re-

searchers) of an effective mitigation again previously-known exploitation techniques,

then, in response, the development (by offensive hackers) of new exploitation ap-

proaches to replace the mitigated ones. While this cat-and-mouse game may seem

discouraging to researchers, it has resulted in a gradual improvement of the secu-

rity posture of modern applications as stack-based buffer overflows were mitigated by

non-executable stack memory and stack canaries, return-into-libc exploits were ad-

dressed by Address Space Layout Randomization (ASLR), and even return-oriented

programming has been impacted by an unrelenting exploration of various defense

techniques [127].

Despite such advances in system hardening have effectively defended software

against many attacks based on memory corruption vulnerabilities, attackers are find-

ing new attack surfaces, new types of vulnerabilities, and new offensive technologies

to bypass state-of-the-art defense techniques. A survey on trends in the vulnerability

landscape showed that the number of stack-based memory corruption vulnerabilities

decreased dramatically from 2012, but the number of other types of vulnerabilities

such as use-after-free, heap out-of-bounds read, and uses of uninitialized memory

have generally increased [102]. In addition, the CPU caches are drawing attention as

a new attack surface on non-Intel architectures. Cache-side channel attacks attacks

are very effective in stealing cryptographic keys (e.g., the secret keys used in AES)

from victim programs and even other virtual machines, in tracing the execution of
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programs, and in performing other malicious actions [91].

To assess the evolving threat landscape and enhance state-of-the-art defenses,

this dissertation aims to exploit and mitigate two different types of emerging secu-

rity vulnerabilities: cache side-channels and temporal memory safety violations. I

first propose a new cache attack method to build data covert channels and a novel

software-based approach to protect against cache side-channel attacks. This vulner-

ability class has broaden the cybersecurity boundaries and the bulk of research into

cache attacks was started on, and has continued on, the Intel architecture. However,

as mobile devices (e.g., smartphones and watches) experience unprecedented growth,

the mitigation of cache attacks on non-Intel architectures has drastically risen in im-

portance. Thus, our community needs a defense against cache side-channel attacks

that can protect against both shared cache (L2) attacks and dedicated cache (L1)

attacks, and can do so regardless of the specific architecture in question. Next, I

introduce a generic and automated exploitation approach for leaking sensitive infor-

mation (i.e., randomized memory addresses). Because modern systems deploy ASLR,

it is unlikely to have arbitrary code execution or privilege escalation without learning

randomized memory addresses. Lastly, I propose a practical runtime defense mech-

anism against temporal memory safety vulnerabilities in user-space applications and

operating systems (OS) kernels. Currently, one of the most common vulnerabilities

that can lead attackers to take over victim systems through arbitrary code execution

or privilege escalation is a temporal memory safety vulnerability (e.g., use-after-free).

Therefore, preventing the security impact of temporal memory safety vulnerabilities

is of great importance, yet it is still an open problem.
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1.1 Overview of Dissertation

Building Data Covert Channels

The ARM TrustZone architecture, which provides hardware-assisted isolation, is

widely adopted in mobile and IoT devices. The security of ARM TrustZone relies on

the idea of splitting system-on-chip hardware and software into two worlds, namely

normal world and secure world. Two legitimate channels exist at the hardware level

that a normal world and a secure world component can use to communicate with each

other.

In this work, we report cross-world covert channels, which exploit the world-shared

cache in the TrustZone architecture. While it is easy to assume that cross-world covert

channels must exist given that cache is shared, there is no comprehensive study on the

practicality and bandwidth of cross-world covert channels in the TrustZone architec-

ture. We design a Prime+Count technique that only cares about how many cache

sets or lines have been occupied. The coarser-grained approach significantly reduces

the noise introduced by the pseudo-random replacement policy and world switching.

Using the Prime+Count technique, we build covert channels in single-core and

cross-core scenarios in the TrustZone architecture. We test our implementations on

two commercial devices (Samsung Tizen TV with ARMv7 CPU and Hikey board with

ARMv8 CPU). The evaluation results show that the cross-world bandwidth could be

as high as 27 KB/s in the single-core scenario using L1 cache and 95 B/s in the

cross-core scenario using L2 cache. The results demonstrate that Prime+Count is

an effective technique for enabling cross-world covert channels on ARM TrustZone.
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Mitigating Cache Side-channel Attacks

Cache side-channel attacks abuse microarchitectural designs meant to optimize mem-

ory access to infer information about victim processes, threatening data privacy and

security. Though many defenses have been proposed, no defense successfully protects

against all proposed cache attacks without relying on architecture-specific features.

Thus, there is no effective cache side-channel protection technique applicable to the

increasingly growing share of non-Intel processors.

We propose SmokeBomb, a novel cache side-channel mitigation method that

functions by explicitly ensuring a private space for each process to safely access sen-

sitive data. The heart of the idea is to exclusively use the L1 cache of the CPU core

as a private space by which SmokeBomb can give consistent results against cache

attacks on the sensitive data. We demonstrate the effectiveness of SmokeBomb by

applying it to two different ARM processors with different instruction set versions

and cache models and carry out an in-depth evaluation of the efficiency of the protec-

tion. Therefore, attackers cannot distinguish specific data used by the victim. The

experimental results show that SmokeBomb can prevent currently formalized cache

attack methods effectively.

Leaking Sensitive Information of OS Kernels

Information leaks are the most prevalent type of vulnerabilities among all known

vulnerabilities in Linux kernel. Many of them are caused by the use of uninitialized

variables or data structures. It is generally believed that the majority of information

leaks in Linux kernel are low-risk and do not have severe impact due to the difficulty

(or even the impossibility) of exploitation. As a result, developers and security ana-

lysts do not pay enough attention to mitigating these vulnerabilities. Consequently,
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these vulnerabilities are usually assigned low CVSS scores or without any CVEs as-

signed. Moreover, many patches that address uninitialized data use bugs in Linux

kernel are not accepted, leaving billions of Linux systems vulnerable.

Nonetheless, information leak vulnerabilities in Linux kernel are not as low-risk

as people believe. In this paper, we present a generic approach that converts stack-

based information leaks in Linux kernel into kernel-pointer leaks, which can be used

to defeat modern security defenses such as KASLR. Taking an exploit that triggers

an information leak in Linux kernel, our approach automatically converts it into a

highly impactful exploit that leaks pointers to either kernel functions or the kernel

stack. We evaluate our approach on four known CVEs and one security patch in

Linux kernel and demonstrate its effectiveness. Our findings provide solid evidence

for Linux kernel developers and security analysts to treat information leaks in Linux

kernel more seriously.

Assuring the Temporal Memory Safety

Temporal memory safety violations, such as use-after-free (UAF) vulnerabilities, are

a critical security issue that can lead to exploitation of software that is developed in

unsafe languages, such as C and C++. Unfortunately, unsafe languages still dominate

the modern world of computing and are playing an integral role in ubiquitous software,

such as OS kernels and user-space applications. Hence, defenses against temporal

memory safety violations are of paramount importance.

In this work, we introduce ViK: a novel, lightweight, and widely applicable runtime

defense that can protect both user-space applications and OS kernels against temporal

memory safety violations. ViK automatically instruments programs at compile time

via a compiler pass. The core idea of ViK is object ID inspection: ViK assigns a

random identifier to every allocated object and stores the identifier in the unused bits
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of the corresponding pointer. Before dereferencing each pointer, ViK inspects the

pointer value to ensure that the pointer still references the original object for which

it was created; Otherwise, a UAF violation is found. With careful optimizations that

are performed during the static analysis phase, ViK overcomes the limitations of prior

work and achieves low runtime overhead.

1.2 Contributions

In summary, this dissertation makes the following contributions.

• Design of a new cache attack method. We design a novel low noise, no shared

memory needed cache attack named Prime+Count. Then, we use Prime+Count

to construct fast data covert channels in the cross-world single-core and cross-core

scenarios.

• Novel defense against cache side-channel attacks. We propose a novel software-

based approach to mitigate cache side-channel attacks for inclusive and non-inclusive

caches based on the creation of a private space in the L1 cache.

• Exploitation of stack-based information leak vulnerability. We identify com-

mon challenges in exploiting information-leak vulnerabilities. We, then, introduce a

generic and automated approach that converts a stack-based information leak vul-

nerability in Linux kernel to an exploit that leaks kernel pointer values which can be

directly used to attack victim systems with other types of vulnerabilities.

• General approach for ensuring the temporal memory safety. We propose

ViK, a novel, lightweight, and widely applicable runtime defense to protect OS kernels

and user-space programs against temporal memory safety violations. Its low runtime

and memory overhead makes ViK applicable to real-world targets.
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Chapter 2

BACKGROUND

In this chapter, I first present an overview of the ARM cache architecture. After

presenting important concepts in the ARM cache architecture, I discuss some known

cache attacks. In addition, I provide a technical overview of stack-based information

leaks in OS kernels. Lastly, I introduce temporal memory safety violations.

2.1 ARM Cache Architecture

A cache is low-capacity low-latency memory located between a CPU and main

memory. Because access to the cache is significantly faster than to main memory,

the presence of caches dramatically improves the runtime performance of a system.

Modern processors usually have two or more levels of hierarchical cache structure.

In the ARM architecture, each core has its own “L1” data and instruction cache.

The separation of instruction and data cache allows transfers to be performed simul-

taneously on both instruction and data buses and increases the overall performance

of L1 caches. In addition, all of the cores share a larger, unified “L2” cache. When

the CPU needs data from a specific memory address, and that data is not in a cache

(this is termed a cache miss), a cache linefill occurs. Otherwise, the CPU loads the

data from its own L1 cache, its own L2 cache, or even the L1 cache of other CPUs

using the directory protocol [78].

Set Associativity and Cache Addressing

Operations between a cache and main memory are done in chunks of a fixed size,

called a cache line, for improved performance. A data memory address is divided
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into three parts: tag, index, and offset. The index determines in which cache set the

data should be stored. The tag contains the most significant bits of an address, which

is stored in the cache along with the data so that the data can be identified by its

address in main memory.

A set-associative cache is divided into several sets that consist of the same number

of cache lines. The cache is called an N-way associative cache if a set has N cache

lines, or ways. The data at a specific main memory address can be fetched into any

cache line (way) of a particular set. In the ARM architecture, caches are always

set-associative for efficiency reasons [29].

Either virtual or physical addresses can be used for the tag and index. In ARM

CPUs, the L1 data cache is indexed using the physical address whereas the L1 in-

struction cache is indexed with the virtual address [27, 31]. The L2 cache is usually

physically-indexed.

Replacement policy

In set-associative caches, to decide which specific cache line to use in a particular set

several policies can be utilized: (1) Least-recently-used replacement policy : the least

recently used cache entry in a cache set will be replaced. Intel architecture uses this

policy [95]; (2) Round-Robin replacement policy : the cache lines that are first filled

will be cleared first; (3) Pseudo-random replacement policy : a random cache line will

be evicted. In the ARM architecture, a pseudo-random replacement policy is used,

which usually makes cache-based attacks harder to implement [119, 91].

While the Intel architecture employs the least-recently-used (LRU) replacement

policy [67], the ARM architecture generally uses a pseudo-random replacement pol-

icy [29]. However, some Cortex-A processors support other cache replacement poli-

cies, such as LRU policy and round-robin policy, which can be chosen by the system
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developer [25, 40, 41, 35].

Inclusiveness

A cache architecture can be categorized based on whether or not a higher-level cache

continues to hold data loaded into a lower-level cache. In inclusive caches, cache lines

of the L2 cache will not be evicted by new data as long as the data is stored in the

L1 cache, which is called AutoLock in prior work [66]. In non-inclusive caches, a line

in L2 cache can be evicted to make space for new data even if the line is present

in L1 cache. In exclusive caches, there is only one copy of data in the whole cache

hierarchy—that is, when a line is loaded into L1, it is flushed from L2. Most ARM

processors employ a non-inclusive cache [91].

By reviewing the technical reference manuals of the Cortex-A series [32, 26, 21,

24, 25, 28, 40, 41, 33, 42, 34, 35, 36, 43], I confirmed the inclusiveness of the following

Cortex-A CPUs: (1) only A55 is exclusive;1 (2) A15, A57, and A72 are inclusive;2

and (3) A53 is non-inclusive.3 Judging from the manuals, the other CPUs also would

use the non-inclusive cache as the Cortex-A53.

2.2 Cache Side-channel Attacks

Cache side-channel attacks are possible because (1) the cache is a shared resource

by multiple processes and (2) there is a noticeable difference in access time between a

cache hit and a cache miss. The specific techniques to attack the cache differs based

1The Cortex-A55 technical reference manual states that “L2: Strictly exclusive with L1-D

caches [42].” Also, the Cortex-A55 uses the private per-core unified L2 cache [42].
2The Cortex-A15, 57, 72 technical reference manuals state that “L2: Strictly enforced inclusion

property with L1-D caches [25, 34, 35].”
3The Cortex-A53 technical reference manual and the other ones do not state the inclusiveness of

the L2 cache [33, 32, 26, 21, 24, 28, 40, 41, 36, 43].
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on the attacker’s capabilities in three main areas: whether or not the attacker can

reliably control the scheduling of the attack process relative to the victim process, the

level of the CPU cache that the attack is targeting, and whether or not the attacker

process shares memory with the victim process.

Cache Attack Terminology

In cache side-channel attacks, the attacker uses side-channel information, such as

access time, to infer which data has been accessed by the victim. Throughout the

paper, I use the term sensitive data to denote data that is secret or could be used

to infer secrets. For instance, the T-tables of the AES algorithm are sensitive data

because the access pattern of T-tables can be used to infer the secret key. Because

only a (key-dependent) subset of T-table entries are actually used during encryption,

not all of the entries will be put into the cache during an encryption operation. I call

the subset of sensitive data that is actually put into the cache during execution key

data. Thus, the attacker’s goal is to use a cache side-channel attack to infer which

sensitive data is key data. In addition, I refer to the code that uses sensitive data

as sensitive code. For example, the implementation of the AES algorithm would be

sensitive code.

Attacker Memory Access

Shared memory increases memory efficiency of the system by allowing one copy of the

memory contents to be shared by many processes. In addition, this feature enables

the system to deploy the cache efficiently. For example, the cache addressing scheme

described in Section 2.1 ensures that if one process has loaded data of a shared

library, other processes using the same library are able to get the data from the cache

quickly [29]. Unfortunately, this feature makes shared libraries inherently vulnerable
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to cache side-channel attacks by allowing an attacker to measure the loading time of

sensitive data in shared memory.

Attack Scheduling

Cache attacks generally include a setup phase and a measurement phase carried out

by the attacker process. Control over the timing of these phases in relation to the

execution of sensitive code by a victim process sorts these attacks into two categories:

synchronous and asynchronous attacks [133]. Synchronous attacks are possible when

the attacker is able to schedule the victim process’s sensitive code between the setup

and measurement phase. By doing so, the attacker can significantly reduce mea-

surement noise and increase the accuracy of the attack. In an asynchronous attack,

however, the attacker tries to leak information by relying on the expected execution

time of the victim process without control over its execution. The accuracy of such

attacks, thus, is much lower than that of synchronous ones.

Attacks on Different Cache Levels

Attackers can target different levels of the CPU cache, depending on the specific

circumstances of the attack. Traditional techniques targeted the L2 cache, which is

shared by multiple cores in a CPU [84, 167, 93, 165]. Thus, side-channel attacks

against the L2 cache can be carried out both synchronously and asynchronously.

To attack the L1 cache, attackers have mostly been confined to synchronous, same-

core attacks, as this reduces the L1 cache to a shared space between the attacker and

victim processes. Recently, however, Irazoqui et al. [78] demonstrated an attack

that uses a feature that allows the exchange of cached data between L1 caches (i.e.,

directory protocol). These techniques allow attackers to target the L1 cache even on

multi-core systems, and they represent a challenge that SmokeBomb must overcome.
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The ARM architecture calls this feature the AMBA Coherent Interconnect [38].

2.3 Information Leak Vulnerabilities in OS kernels

For performance concerns, unsafe programming languages, such as C and C++,

are still prevalently used in the implementation of operating system (OS) kernels and

embedded systems. While these unsafe languages may allocate memory on stack or

in the heap for variables, these variables may not be initialized before being used.

When a variable is used without proper initialization (which can be caused by either

a programming mistake or padding bytes in a struct inserted by compilers [138]),

the memory values that were present at the same location of the variable before it

was allocated—called stale values—will be read and used. When these stale values

are copied from the kernel space to the user space, user-space programs will be able

to access them, which causes an information-leak vulnerability if the information

contained in the stale values is important.

The use of stale values in Linux kernels can lead to severe security problems,

which have been studied in the past [54, 116, 97]. Moreover, these stale values can

pose severe security threats without being directly used in the kernel. For example,

modern kernel security defenses, such as Kernel Address Space Layout Randomiza-

tion (KASLR), depend on keeping kernel addresses secret from user-space programs.

When attackers get lucky and recover kernel pointer values through leaked informa-

tion (stale values) from the kernel space, they can defeat KASLR [147, 96]. Likewise,

attackers may leak cryptographic keys that are stored in the kernel space.

Information Leaks from the Kernel Stack

Each thread in the Linux has a kernel stack, which is a memory area that is allocated

in kernel space. Depending on the specific Linux version and configuration, the sizes

12



1 /* file: kernel/time/time.c */

2 COMPAT_SYSCALL_DEFINE1(adjtimex , struct compat_timex __user *, utp)

3 {

4 struct timex txc; // stack object

5 // pass the ‘txc ’ struct without initializing the ‘tai ’ field

6 err = compat_put_timex(utp , &txc);

7 ...

8 /* file: kernel/compat.c */

9 int compat_put_timex(struct compat_timex __user *utp , const struct timex *txc) {

10 struct compat_timex tx32;

11 memset (&tx32 , 0, sizeof(struct compat_timex))

12 ...

13 // copy the uninitialized data (‘tai ’)

14 tx32.tai = txc ->tai;

15 // kernel data leak to the user -space

16 if(copy_to_user(utp , &tx32 , sizeof(struct compat_timex)))

17 ...

Listing 2.1: A real-world vulnerability (CVE-2018-11508) in which an uninitialized

field of the time struct in the stack caused the information leak.

of the kernel stack differ. To maximize the locality, the kernel stacks are usually small

in size (8KB or 16KB on x86-64). Therefore, the memory space for the kernel stack

is very frequently reused between different kernel stack frames. Lu, et al. showed

that 90% syscalls only use less than 1,260 bytes of the kernel stack space, and the

average stack usage is less than 1,000 bytes [97]. This reusability of the kernel stack

has resulted in good performance and high efficiency but also has contributed to

unexpected leaks of stale values that are left on the kernel stack.

I use two real-world vulnerabilities to demonstrate a kernel information leak vul-

nerability through uses of uninitialized variables on the stack. Listing 2.1 shows an

example of a kernel information leak caused by a use of uninitialized stack memory.

In the adjtimex syscall, the txc->tai field is not initialized and is later used as
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1 /* file: net/core/ rtnetlink.c */

2 static int rtnl_fill_link_ifmap(struct sk_buff *skb , struct net_device *dev)

3 {

4 // all fields in the map object are initialized

5 struct rtnl_link_ifmap map = {

6 .mem_start = dev ->mem_start ,

7 .mem_end = dev ->mem_end ,

8 .base_addr = dev ->base_addr ,

9 .irq = dev ->irq ,

10 .dma = dev ->dma ,

11 .port = dev ->if_port ,

12 };

13

14 // kernel data leak to the user -space

15 if(nla_put(skb , IFLA_MAP , sizeof(map), &map))

16 return -EMSGSIZE;

17 return 0;

18 }

Listing 2.2: A real-world vulnerability (CVE-2016-4486) which illustrates that

padding bytes inserted by a compiler can bring the information leak.

an argument of compat put timex. Thus, the compat put timex function copies the

tai field of the txc object to a local variable (tx32 object), which is eventually copied

to the user space and causes a kernel data leak. Listing 2.2 shows an another exam-

ple of kernel information leak. Although all fields of the map object are initialized

by the rtnl fill link ifmap function, the object still contains uninitialized 4 bytes

padding generated by a compiler. Therefore, an unintended kernel data leak occurs

when the stack object is copied to the user space by calling the nla put function (on

Line 14).

In both examples, the size of leaked data is 4 bytes, which is not enough to fully

accommodate an 8-byte pointer value in 64-bit Linux. However, I will show that even

a 4-byte leak is sufficient for leaking randomized kernel addresses.
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2.4 Temporal Memory Safety Violations

Temporal memory safety violations occur if a pointer is dereferenced when it no

longer points to the original object. Such violations help attackers compromise the

computer with vulnerable user-space programs and operating systems, as they can be

used for privilege escalation or arbitrary code execution. Although temporal memory

safety violations lead to various types of vulnerabilities, for ease of illustration, I will

consider use-after-free (UAF) vulnerabilities as an example to show the implications

of temporal memory violations and motivate the design of our proposed approach.

A UAF vulnerability exists when a pointer value can still be dereferenced after

deallocation. To exploit a UAF vulnerability, an attacker must deallocate a victim

object and create a dangling pointer. A victim object is a memory object that has been

deallocated through a deallocation function (e.g., free()), and a dangling pointer has

a pointer value that points inside a victim object. The attacker will then re-allocate

the dereferenced memory region to another object and use the dangling pointer to

read from or write to this newly allocated-object, without the constraints that would

normally be applied when using the original pointer.

I define prerequisites of the UAF attack in OS kernels as below.

Definition 1. UAF attacks are possible if and only if there exists a dangling pointer,

and performing load/store operations that dereference the dangling pointer do not

cause memory access exceptions.

∃dp : load(dp) ∧ store(dp)

Therefore, for a succesful UAF attack, an attacker must make the vulnerability

program reallocate the freed memory region with another object that she wants to

control through memory collision approaches such as the object-based attack and the
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physmap-based attack [145]. Depending on the victim object and other objects that

have been placed where the dangling pointer points to, For example, an attacker can

read sensitive data, write arbitrary data, or change the kernel’s control flows.

Specifically, exploiting a UAF vulnerability requires the following three steps:

(1) Creating a dangling pointer.

(2) Allocating an object to overlap with the deallocated victim object, to which the

dangling pointer points.

(3) Dereferencing the dangling pointer.

Hence, to defend against UAF attacks (and any attack that exploits temporal

memory safety violations), it suffices to stop the attack at any of these three steps.
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Chapter 3

PRIME+COUNT: NOVEL CROSS-WORLD COVERT CHANNELS ON ARM

TRUSTZONE

3.1 Introduction

ARM Security Extensions, marketed as TrustZone, have been introduced in ARMv6

and later profile architectures, including Cortex-A (mobile) and Cortex-M (IoT) [23,

22, 30]. The idea of TrustZone is to split the system-on-chip hardware and software

into two security states or worlds, namely normal world and secure world. Hardware

barriers are established to prevent normal world components from accessing secure

world resources. However, the secure world components are not restricted to access

normal world resources.

Two legitimate channels exist at the hardware level that a normal world compo-

nent and a secure world component can use to communicate with each other. The

first channel is that either world can put messages in the general registers when a

world switching is performed. The second channel is the secure world can directly

read and write to a region of physical memory that normal world can also access.

These two channels can be used together for faster communication: a normal world

component invokes the Secure Monitor Call (SMC) instruction with general registers

containing the address of allocated memory in the normal world. Then, the normal

world and secure world components can send requests and get responses using the

shared memory.

Previous studies have shown that these legitimate channels are vulnerable to an

attacker who has the normal world kernel privileges and keeps sending crafted argu-
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ments to probe the vulnerabilities of the secure world [104, 121, 80, 86]. For example,

Android full disk encryption was broken by sending crafted messages in these channels

and eventually gaining code execution privileges within the secure world kernel [86].

There are two ways to protect these channels from being abused:

(1) Prior work, SeCReT [80], has aimed at restricting the access to the communi-

cation channels and secure world resources to normal world components on an access

control list (ACL). SeCReT ensures only predefined and legitimate normal world com-

ponents can communicate and access secure world resources. To this end, SeCReT

authenticates a normal world component by verifying its code and control integrity

when it initiates communication with secure world. Consequently, unauthenticated

normal world components cannot access the cross-world communication channels.

(2) It is possible to deploy a strong monitor, similar to a network intrusion de-

tection or deep packet inspection system, in legitimate communication channels, in-

cluding parameters passed by registers and shared memory, between the normal and

secure world to inspect all transmitted data and block illegal communication when it

is detected. Even though how to design such strong monitors is a research problem

itself, and no practical solutions exist to the best of our knowledge, we assume that

they could exist in the future.

In this work, we are interested in building cross-world covert channels in the

TrustZone architecture that (1) enable unauthenticated normal world and secure

world components to communicate even when solutions like SeCReT are deployed; (2)

enable normal world and secure world components to communicate even when strong

monitors that can inspect all transmitted data in legitimate channels are deployed

in the future. As a result, a secure world component can always smuggle sensitive

information that is not supposed to leave the secure world to the normal world, such

as private keys, user passwords, etc. And, a normal world component can send secret

18



messages (e.g., command and control messages) to secure world.

The emergence of downloadable Trusted Applications (TAs) gives such covert

channels even more practical use-scenarios [150], where a malicious TA can steal

sensitive information that does not belong to it in the secure world and send to its

counterpart in the normal world, hence circumventing SeCReT and strong monitor.

We propose to build covert channels using a trade-off between performance and

cost in the TrustZone hardware, which are not governed by any software solution

built on top of TrustZone, such as SeCReT or strong monitors. We notice that even

though many system-on-chip resources are separated in the TrustZone architecture,

there is only one copy of cache in the system that is shared between the two worlds.

In each cache line, there is one extended bit to indicate whether the memory content

is from a secure or normal world memory region. This simple extension can prevent

normal world components from accessing cache contents of secure world, but sharing

the cache between the normal and secure world itself makes some cache-based attacks

possible [91, 154].

Even though it is easy to assume covert channels must exist given that cache

is shared between worlds, there is no comprehensive study on the practicality and

bandwidth of cross-world covert channels in the TrustZone architecture. In this

work, we identify several challenges in building such cross-world covert channels:

(1) the pseudo-random replacement policy on ARM makes Prime+Probe less re-

liable [91]; (2) the cross-world context switching also introduces much noise. Our

work confirms that Prime+Probe is not reliable in the cross-world scenario; (3)

low noise and fine-grained cache line-level attacks, such as Flush+Reload [157]

and Flush+Flush [68], require sharing memory objects between the Sender and

the Receiver, which does not fit in a practical attack model.

To cope with these challenges, we need a novel cache attack approach that does
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not require memory sharing and introduces less noise in the cross-world scenario.

We leverage an overlooked ARM Performance Monitor Unit (PMU) feature named

“L1/L2 cache refill events” and design a Prime+Count technique that only cares

about how many cache sets or lines have been occupied instead of determining which

cache sets have been occupied as in Prime+Probe. The coarser-grained approach

significantly reduces the noise introduced by the pseudo-random replacement policy

and world switching. Even though some performance counters in PMU, such as cycle

counter, have been used to carry out and detect cache-based side-channel attacks in

the ARM and Intel architecture [154, 53], to the best of our knowledge it is novel to

use “L1/L2 cache refill events” to perform attacks.

We leverage the Prime+Count technique to build covert channels in single-core

and cross-core scenarios in the TrustZone architecture. To evaluate the efficacy of

the covert channels, we test the implementations on two devices, one of which is a

Samsung Tizen TV with ARMv7 CPU and the other is a Hikey board with ARMv8

CPU. The evaluation results show that the bandwidth could be as high as 27 KB/s

in the single-core scenario and 95 B/s in the cross-core scenario.

3.2 ARM TrustZone

In this section, we first present an overview of the ARM TrustZone architecture.

Then, we elaborate on the legitimate channels between the normal and secure world.

3.2.1 ARM Architecture and TrustZone

Processor Modes

An ARM processor has up to 9 different modes depending on if some optional ex-

tensions have been implemented. The user (usr) mode has a privilege level 0 and is

where user space programs run. The supervisor (svc) mode has a privilege level 1
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and is where most parts of kernel execute.

TrustZone and Processor States

TrustZone is a hardware security extension of the ARM processor architecture, which

includes bus fabric and system peripherals. When TrustZone is implemented, a pro-

cessor has two security states or worlds, namely the secure world (s) and the normal

world (ns). The distinction between the two states is orthogonal to the processor

modes. The partitioning of all the System on Chip (SoC)’s hardware and software

into two worlds may be physical and/or virtual. For instance, a processor core is

shared by the normal and secure world in a time-sliced fashion. World switching is

done in the monitor mode after calling the secure monitor call (SMC) instruction

in either world. The SMC instruction forces the running core to enter the monitor

mode.

The secure world enables the construction of an isolated programmable environ-

ment that can run a wide range of security applications. The secure world is every-

thing runs when the processor state is secure, and normal world is everything runs

when the processor is in the non-secure state. Hardware barriers are established to

prevent normal world components from accessing secure world resources; the secure

world is not restricted. Specifically, the memory system prevents the normal world

from accessing (1) regions of the physical memory designated as secure; (2) system

controls that apply to the secure world; and (3) state switching outside of a small

number of approved mechanisms.

3.2.2 Legitimate Channels Between the Normal and Secure Worlds

At the hardware layer, there are two ways for a normal world and a secure world

component to communicate with each other. Firstly, messages can be stored in the
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general registers when a world switching happens, which is triggered by the SMC in-

struction. For instance, secure monitor call calling convention [37] defines how param-

eters are passed through the general registers, and it is implemented in firmware, such

as ARM Trusted Firmware [39]. Previous projects, such as SeCReT [80], attempted

to add extra layers of authentication and verification to make sure only predefined

and legitimate components can use this channel.

Secondly, the secure world kernel can directly map a memory region that is ac-

cessible by the normal world. Hence, this shared memory region can be used by the

normal and secure world to communicate. Secure world OSes, such as OP-TEE [110],

have implemented shared memory. Usually, a physical memory region is first allocated

by the normal world kernel. The physical address, the size of the shared memory, and

other important information are then transferred to the secure world OS through the

SMC interface, so the secure world can configure its MMU table entries to access the

region directly. Since important information is still passed through the SMC interface,

solutions such as SeCReT can also monitor this channel. Besides SeCReT, we can

assume strong monitors can be implemented in the future to inspect all transmitted

data in these channels.

3.2.3 Cache in TrustZone Architecture

Unlike some banked system registers, there is only one copy of cache that is shared

between normal and secure world. Each cache line has one bit to indicate if its content

is from a secure or normal world memory region. Even though this extend bit can

prevent normal world components from accessing cache contents of secure world, the

design of shared cache still makes some cross-world cache attacks possible.
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3.3 Assumptions and Attack Model

We assume a solution, such as SeCReT [80], that only allows authenticated normal

world components to use the communication channel, is running in secure world

monitor mode. Such a solution safely maintains a list of predefined normal world

components that are allowed to use the legitimate channels. We also assume that

there is a strong monitor that can understand all transmitted data between the normal

and secure world and block illegal communications.

The goal of an attacker is to smuggle sensitive information that is only accessible

in the secure world to the normal world. To this end, the attacker runs a component,

namely Receiver in the normal world and another component, namely Sender in

the secure world. Because legitimate communication channels, including parameters

passed by registers and shared memory, between the normal world and the secure

world are under inspection by a SeCReT or a strong monitor, it is impossible for

the Sender and the Receiver to transfer sensitive data from the secure to the normal

world using such channels without being detected. To bypass this kind of cross-world

communication monitoring, the Sender and the Receiver need to use channels that

are not governed by the sentries implemented in the monitor mode.

We also assume the attacker has kernel privileges in the normal world, so the

Receiver can use privileged instructions to access the PMU. This constraint can be

loosened if the perf event open system call is provided to monitor “L1/L2 cache refill

events” in userland. The Sender can simply be a secure world application (trusted

application), and it is not necessary for it to have kernel privileges. This is because

the Sender will only need to influence cache by reading/writing memory regions and

does not need to access the PMU. However, having the Sender running in the kernel

space enables it to steal information that is not available for userland processes.
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Running an application in the secure world is very feasible for the attacker who can

either leverage vulnerabilities of the secure world interfaces as shown in [87, 107] or

bypass application vetting mechanisms [51]. The use of downloadable TAs, which are

predicted to be used widely [150], would increase the chance as well.

In summary, in the attack model, attackers are not stronger than their counter-

parts in previous events [104, 121] or in the attack model presented in SeCReT [80],

except that the Sender, which can be a userland application, is a must. My imple-

mentation suggests such an application could be implemented in hundreds of lines

of C code. Moreover, Prime+Count attack can be carried out even when mecha-

nisms, such as strong monitors, that are more powerful than normal world component

authentication, such as SeCReT, are deployed between the two worlds.

Depending on the hardware the attack is performed on and resources the attacker

possesses, we articulate two attack scenarios: single-core and cross-core.

(1) Single-core scenario: This scenario occurs when either the targeted device only

has a single-core CPU or the attacker can only control one of the cores in a multi-core

CPU. Because there is only one core available to the attacker, the attacker needs to

use the SMC instruction to switch between the normal and secure world. In addition,

in this scenario the attacker can use either L1 cache or L2 cache. Note that even if

the attacker can use the SMC instruction in this scenario, it is not possible to send

sensitive information directly using the SMC instruction or shared memory due to the

sentry in the monitor mode;

(2) Cross-core scenario: In this scenario, the attacker can execute the Receiver in the

normal world and the Sender in the secure world on two different cores at the same

time. Because different cores do not share L1 cache, the covert channel can only be

constructed using the L2 cache. Therefore, the inclusiveness of L2 cache affects the

result. In this scenario, there is no need for the attacker to use the SMC instruction
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Device SoC CPU (cores) L1 Cache L2 Cache Inclusiveness Secure World OS Normal World OS

Samsung N/A 32-bit 32KB, 4-way, 1024KB, 16-way, Inclusive SecureOS Tizen OS

Tizen TV Cortex-A17 (4) 128 sets 1024 sets on Linux 4.1.10

Hikey board HiSilicon 64-bit 32KB, 4-way, 512KB, 16-way, Inclusive ARM Trusted Linux 4.1.0

Kirin 620 Cortex-A53 (8) 128 sets 512 sets Firmware, OP-TEE

Table 3.1: Test Environments.

to switch between the worlds.

In this work, we attempt to solve the challenges in building cross-world covert

channels in both aforementioned scenarios. All experiments are performed on the

two environments as listed in Table 3.1. In addition, we use a TRACE32 hardware

debugger1 to trace cache operations on the Tizen TV.

3.4 Cross-world Covert Channels

In this work, we propose the covert channel between the two worlds using cache,

which can defeat the fundamental security feature of the TrustZone. The goal of the

covert channel is to construct pragmatic data channel between two worlds secretly.

At a high level, to build cache-based covert channels, the Receiver first makes the

whole cache or some specific cache lines enter a known state. To this end, the Receiver

can fill the cache with contents from its own address space. In the second step, the

Sender carefully changes states of some cache lines by evicting the contents of those

lines and placing its own contents there. In the third step, the Receiver detects such

changes to decipher the message the Sender transmits. Note that, in almost all the

platforms, neither the Sender nor the Receiver can directly read the content of any

cache line. Therefore, the message is actually delivered using channels such as which

specific cache lines or sets have been changed in previous projects [120, 144, 91]. To

1http://www.lauterbach.com/
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Algorithm 1: Prime+Count-based Cross-world Covert Channels: Prime

part. x is the message to be sent.

/* Receiver: Prime */

1 if Single-core covert channel then

2 for Each L1-D cache line do

3 Clean & Invalidate the L1-D cache line

4 Load data to fill the L1-D cache line

5 Yield control to the secure world by executing SMC

6 if Cross-core covert channel then

7 for Each L2 cache line do

8 Clean & Invalidate the L1-D cache line

9 Clean & Invalidate the L2 cache line

10 Load data to fill the L1-D & L2 cache lines

11 Clean & Invalidate the whole L1-D cache

receive such information, the Receiver accesses its own address space again and uses

cache hit or miss to detect how many cache lines have been changed.

Our approach follows this general idea with some changes that are tailor-made

for the TrustZone architecture. In particular, we propose Prime+Count, it uses

the number of changed cache lines as the covert channel instead of which cache lines

or sets. Algorithm 1 and 2 demonstrates the overall workflow of building cross-

world covert channels using Prime+Count. As shown in Lines 2–4 and 7–11 in

Algorithm 1, the Receiver first Primes the cache. Because covert channels are based

on the number of cache misses, the results of the Prime step can have a strong

influence on the reliability and bandwidth of the covert channel. Due to the pseudo-
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Algorithm 2: Prime+Count-based Cross-world Covert Channels:

Count part. x is the message to be sent.

/* Sender : Write to covert channel */

1 if Single-core covert channel then

2 Occupy x L1-D cache lines

3 Yield control to the normal world by executing SMC

4 if Cross-core covert channel then

5 Occupy x L2 cache lines

/* Receiver: Count */

6 Determine how many cache lines are changed by Sender

7 Apply bucket method for further noise reduction

random cache replacement policy, an effective and efficient Prime method is not very

straightforward. We discuss the Prime method in detail in Section 3.4.2.

In the single-core scenario, the Receiver then needs to yield control to the secure

world so the Sender can execute as shown in Line 5. In the cross-core scenario,

this step is omitted. Then, as shown in Lines 1 and 5 of Algorithm 2, the Sender

writes data to the covert channel by occupying x cache lines, where x is the message

to be sent. In this step, the cache replacement policy could be the obstacle again.

Consequently, a similar method in Prime is used for accurate message writing. In

the single-core scenario, the Sender then yields control to the normal world so that

the Receiver can decode the message. Lastly, the Receiver Counts how many cache

lines are changed as shown in Line 6 and uses a simple noise reduction method to get

the message as shown in Line 7.

The main difference in single-core and cross-core scenario is that the L2 cache is
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used in the cross-core scenario instead of the L1-D cache. We discuss the details of

the differences in Section 3.4.5.

3.4.1 Prime+Count Overview

We first explain why Prime+Probe is not the best choice in cross-world scenario.

Then, we illustrate how Prime+Count works and the challenges we have solved in

designing it.

Why not Prime+Probe?

Intuitively, Prime+Probe can be used to build cross-world covert channels in our

attack model. It is not the best option due to the following reasons:

(1) Noisy: Due to ARM’s pseudo-random replacement policy, Lipp et al. demon-

strated that Prime+Probe is not reliable [91]. The world switching introduced by

TrustZone increases the ineffectiveness of Prime+Probe. In addition, during the

time when the normal world part of the covert channel is working, other kernel code

executing on the same core can introduce extra noise.

We conducted several experiments on both devices to show how much noise can be

introduced on each set of the L1-D cache during the world switching after the Prime.

In the experiments, the secure world simply yields control to the normal world after

loading a specific number of cache sets. Figure 3.1 shows how many cache misses

occurred for each cache set in 200 world switchings on the Hikey board. The x-axis is

the index of the cache sets from 0 to 127, and the y-axis is the accumulated number of

cache misses. The experiments suggest the noise is widely dispersed on the cache sets

and the average number of cache misses per world switching is around 18 over 128

cache sets. Even though Figure 3.1 shows some cache sets, such as cache set 1, are

never used during the world switching in our experiments on the Hikey board, it does
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Figure 3.1: Cache Misses Introduced by World Switching.

not mean that those cache sets are guaranteed to stay intact when other hardware

devices or different firmware and OS are used. Hence, it is not feasible to use this

observation to build generic covert channels for a variety of hardware and software

environments.

(2) Difficult to choose threshold: In the ARM architecture, Performance Monitor

Unit (PMU) is implemented to provide statistics of CPU activities. In particular, the

Performance Monitors Cycle Count Register (PMCCNTR) that increments from the

hardware processor clock. By subtracting a previously recorded PMCCNTR value

(p1) from its current value (p2), the number of elapsed processor cycles (∆ = p2− p1)

can be easily computed. To distinguish between cache hit and miss for a memory

access, PMCCNTR is read before and after the memory access attempt. If the number

of elapsed cycles is greater than some predefined threshold (∆ > θ), the attempt is

classified as a cache miss; otherwise, it is considered as a cache hit. This approach

has been used in Prime+Probe and other cache attacks. However, the thresholds

used for decision making are contingent upon the implementation of the CPU, which

means there is no one-size-fits-all threshold value for all available devices on the

market. Even though Lipp et al. proposed a mechanism to automatically compute
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the threshold at run-time [91], it inevitably increases the size of the attack code base

and the chance to be discovered.

Why Prime+Count?

Prime+Count counts how many cache sets or lines have been occupied instead

of determining which cache sets have been occupied. Prime+Count, as a coarser-

grained approach than Prime+Probe, significantly reduces the noise introduced by

the random replacement policy and world switching. In addition, Prime+Count

does not require shared memory space or shared memory objects with a victim.

Prime+Count only cares about how many cache sets/lines have been changed.

Therefore, it may be difficult to use it for some attacks other than building covert

channels, such as stealing cryptographic algorithm keys.

3.4.2 Prime the Cache

Ineffective Prime affects the accuracy of Count and adds noise to the covert

channel. It is suggested that the pseudo-random cache replacement policy is a signifi-

cant obstacle in Prime [154, 91]. Taking a 4-way set associative cache as an example,

based on the index of the physical address newly fetched data can be loaded to any

of the 4 ways. Therefore, even if we load as much data as the size of the L1-D cache,

there is no guarantee that the cache will be completely occupied.

Previous Prime Method

Previous approaches to achieve high cache coverage in Prime for userland programs

load data repeatedly using various access patterns [154, 91]. However, this type of

approach costs thousands of CPU cycles even when it is only used to prime a small

portion of the cache [91].
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Message to be Sent # of Cache Sets should be # of Cache Events Bucket Ranges Message decoded

Occupied by the Sender detected by the Receiver set by the Receiver by the Receiver

0 10 23 0 - 43 0

1 40 60 44 - 71 1

2 70 85 72 - 99 2

3 100 111 100 - 128 3

Table 3.2: An Example of the Bucket Method: We assume there are 128 sets and

set-counting mode is used. The channel can transmit as most 7 bits (log2128) every

time. In this example, only 2 bits are transmitted.

Also, our experiments confirm that repeating the data loading at kernel level is

costly. We perform a systematic analysis using the TRACE32 hardware debugger to

dump the content of cache on a Samsung Tizen TV. To this end, we prepare 32 KB of

memory space, the same size of the L1-D cache. Then, we access the first byte of the

memory and keep accessing data at the address that is 64 bytes (size of cache line)

away from the one before. After repeating this operation for 512 times (128 sets ×

4 ways), we dump the content of cache using the TRACE32 debugger. To minimize

possible interference, we use a spinlock to give our experiment code exclusive use of

the core. Our results show that, on average, only 372 of 512 cache lines were occupied

after accessing the 32 KB memory once. Only by repeating this procedure for more

than 50 times could it achieve around 95% cache occupation.

Our Prime Method

Obviously, a faster Prime method could significantly increase the bandwidth of covert

channels and reduce the chance of being discovered. In this work, as shown in Lines 3–

4 in Algorithm 1 we clean and invalidate each cache line before only loading the data to

cache once. Our experiments show that this method achieves around 99% occupation
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Algorithm 3: An Alternative Method.

/* The following lines replace Lines 2-4 in Algorithm 1 */

1 for Each L1-D cache set do

2 Clean & Invalidate the L1-D cache set

3 for Each L1-D cache set do

4 Load data to fill the L1-D cache set

on average.

This method operates as follow: (1) The starting address of a memory block is

assigned to the pointer; (2) we translates virtual address to physical address. Once the

physical address is obtained, we can extract its set number; (3) After that, we select

the target cache line among the lines (ways) in the set using the DC CISW instruction.

The DC CISW instruction’s operands are a set number and a way number, and thus,

we can choose a specific cache line (way) in a set to clean and invalidate it. We

typically start from the way 0 to the last way; (4) Lastly, we load the data to the

cache line. The pointer is increased by the length of a cache line so that we can point

to the next cache set of the way in the next round. If the way has been fully filled by

data, we fetch data to the next way. Steps (1) – (4) are iterated until Prime is done.

We also conduct experiments with an alternative method shown in Algorithm 3.

In this method, we clean and invalidate all cache lines of the L1-D cache before loading

the data. Experiments show that this method achieves around 95% occupation on

average.
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3.4.3 Count Using Cache Refill Events

The Performance Monitor Unit (PMU) includes logic to gather various statistics

on the operations of the processor and memory system during runtime. We use

overlooked PMU features called “L1/L2 Cache Refill Event” to count how many

cache lines have been updated. A cache refill event can be triggered by any access

causing data to be fetched from outside the cache. Therefore, every cache miss can

be counted by using the event.

After the secure world occupies some cache lines using the Prime method, it yields

control to normal world, and Count function will execute. If a cache line is refilled

while accessing the memory, the counter will increment. Therefore, this function gives

us how many cache lines have been changed between Prime and Count.

Two Counting Modes

There are two counting modes we use in the experiments:

Line-counting mode. The smallest unit for counting a cache refill event is a line.

For example, if the L1-D cache is a 128-set 4-way cache, we can check each of the

512 lines to count how many refill events occur. In this mode, the covert channel can

transmit at most 9 bits (log2512) every time.

Set-counting mode. Another option is to count the cache refill events on only

one way, so just 128 lines will be checked. A way can be chosen by using the DC

CISW instruction. The former, which will be referred to as ‘line-counting mode’ in

this work, can send 9 bits per time ideally with the Prime+Count, In this mode,

the covert channel can transmit at most 7 bits (log2128) every time. However, we

only need to Prime one way in this mode. Therefore, this mode can achieve higher

bandwidth than the line-counting mode.
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Defeating Data Prefetching

One of the challenges we encountered in implementing Count is the automatic data

prefetcher [22, 30]. Data prefetching is a technique that fetches data into the cache

earlier than the instruction that uses the data is executed. To do so, the prefetcher

monitors data cache misses and learns an access pattern. However, a data prefetching

does not trigger a refill event. So, the counter will not increment when a new cache

line fill is caused by data prefetching.

There are several methods to prevent data prefetching. One way is to disable the

prefetcher directly by changing the corresponding bit in the auxiliary control register.

However, it is only safe to do so after the MMU is enabled, which does not fit in our

attack model. Moreover, disabling the prefetcher will downgrade the performance of

the system. Another way is to access memory locations in a random and unpredictable

order, so it is difficult for the prefetcher to learn a pattern. However, this method

increases the complexity of implementing covert channels.

We solve the problem by employing the instruction synchronization barrier (ISB).

The ISB instruction flushes the pipeline of a core and the prefetcher buffer as well.

It is normally used when the context or system registers are changed as well as after

the branch predict maintenance operations.

3.4.4 A Simple Message Encoding Method

Even though Prime+Count introduces significantly less noise than Prime+Probe,

noise is still inevitable due to the world switching and other factors. One way to cor-

rect the errors introduced by noise is to adopt error correction encoding methods,

such as Reed-Solomon error correction [118]. However, those encoding methods sig-

nificantly (1) increase the size of message, (2) are time consuming to perform, and
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(3) increase the size of the code base. Hence, adopting those methods could even

further reduce the bandwidth of the covert channel and increase the chances of being

discovered. A recent study also suggests that directly applying error-correcting codes

does not work due to cache-based covert channel noise characteristics [99].

Fortunately, our empirical experiments show that the introduced noise in Prime+

Count (error in number of cache refill events) is manageable. Therefore, we design

a simple encoding method, which essentially ignores the least significant bits of the

received data. We call this approach the bucket method.

The basic idea of the bucket method is to divide the numbers of cache refill events

into several groups. Table 3.2 illustrates one example of using the bucket method

when 2 bits of data are transferred from the secure world using a 7-bit channel (128

sets in set-counting mode). In this example, when the Sender wants to send message

2, it will try to occupy 70 cache lines, which may result in 85 cache refill events

detected by the Receiver. The Receiver then uses the bucket method to decode the

message back to 2. The range of a bucket should be decided empirically.

3.4.5 Cross-Core Covert Channels

We use the same Prime+Count approaches as the single-core covert channel

for cross-core covert channel except for the level of the cache refill event. Besides

that, as shown in Algorithm 1 Line 11, the whole L1-D cache should be cleaned and

invalidated after the Prime. If the L1-D cache has data which was used to occupy

the L2 cache after the Prime, the remaining data in the L1-D cache will cause cache

hits during Count even if the secure world the Sender loads all cache lines of the L2

cache. Cleaning and invalidating the L1-D cache using the DC CISW instruction does

not affect the L2 cache.

Because the L2 cache is shared by many cores and the cache size is much bigger
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than the L1-D cache, in practice it is impossible to prevent other cores from changing

the cache lines during the time of Prime or after Prime. Therefore, the noise

caused by other cores makes line-counting mode infeasible for building cross-core

covert channels. Consequently, we design a modified set-counting mode. The set-

counting mode for the single-core environment counts cache misses of one way. For

the cross-core covert channel, we check cache misses of all cache lines in a set spanning

all ways.

3.4.6 Noise of the Covert Channel

Unlike the other previous covert channels, we aimed at the cross-world covert

channel which is along with the path of world switching. Thus, transferred data

using the covert channel has a noise as it moves through the path. We defined a noise

as an error that cause unexpected cache misses or cache hits, which disturbs accurate

data transfer. As far as the goal of this work is implementing practical and covert

data channel, we need to clearly figure out what types of the noise are produced and

how can we deal with that.

We empirically analyzed the noise and propose our approach based on the analysis

results. There are 2 types of the noise in the channel, which are classified according to

the effects. The first type results in additional cache misses. The second type issues

the cache hit at the address where the cache miss should be happened.

Basic reason with respect to the first type noise is data used during the world

switching and by functions that the channel have to be gone through. In addition,

the kernel codes can make another noise. Even though we used the spinlock to being

not yielded to other process, the locks cannot guarantee that the kernel codes will

not working on the core while the normal world part of the covert channel is working.

These noise are inevitable unless we changed the system. Also, we cannot calculate
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how many noise will be produced during the world switching since the pseudo-random

replacement policy.

Inaccurate prime method can be another source of the first type noise. When we

check the cache misses, we access all data which were used to do the Prime again.

Once the data is remained in the cache, the cache refill event will not be occurred,

otherwise, the event counter will be increased. Therefore it is possible that un-fetched

data in the RAM can be fetched into the cache during the Count if the normal world

cannot occupy the L1-D cache totally.

In case of the second type noise, one fundamental source is also the uncertainty of

the prime method. As far as the prime method is not able to fill the cache completely,

the number of cache misses, can be lower than the number we intended. When the

secure world cannot occupy the cache lines completely, there will be less number of

cache miss than the lines that the secure word accessed with the consequence that.

The second type noise, also, can be occurred by the data prefetcher.

Accordingly, there are noise that we have to embrace unavoidably but the noise

caused by the inaccurate prime method and the data prefetcher is manageable. In

this work, we prove how to reduce the noise significantly with the Prime method and

by deterring the automatic data prefetcher.

3.5 Implementation

We implemented the Prime+Count method and covert channels on the two de-

vices as listed in Table 3.1. Also, we open source the prototype2 with the expectation

that it will be utilzed and extened by security researchers.

The software implementation consists of a normal world module (the Receiver)

and a secure world module (the Sender) to simulate the scenario that the Sender

2https://github.com/Samsung/prime-count
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tries to smuggle sensitive data out to the normal world. Note that with a simple

implementation twist the Prime+Count technique and covert channels based on it

can be used to send data from the normal world to the secure world as well.

In the single-core scenario implementation, the normal world module is a loadable

kernel module (LKM) that can execute the SMC instruction directly. In the case

of the Samsung Tizen TV, the Sender is a secure world application that does not

have kernel privileges. To invoke the application, a new SMC handler is added to the

kernel of the secureOS. Note that, in Samsung Tizen TV, only authenticated trusted

applications can be loaded on the secureOS, and only Root TA can load LKM to

the kernel of secureOS. Therefore, in practice a malicious kernel-level Sender needs

to bypass Samsung’s code vetting first. For the Hikey board implementation, we

implemented the Sender in kernel by modifying the tee_entry_fast function in the

entry_fast.c of the OP-TEE.

In the multi-core covert channel scenario, we implemented two kernel threads in

the normal world and assigned each of them to a different physical core. One of the

threads acting as the Receiver stays in the normal world. The other kernel thread

executes SMC and invokes the Sender in the secure world. The Sender and the Receiver

use L2 cache to communicate.

The normal world kernel module consists of 1,134 SLoC for both test environ-

ments. The secure world implementation on the Hikey board consist of 84 SLoC,

whereas the secure world application on Samsung Tizen TV has 319 SLoC.

3.6 Evaluation

In this section, we report the evaluation results of cross-world Prime+Count-

based covert channels on the TrustZone architecture. In section 3.6.1, we evaluate

how much noise our Prime+Count method could reduce compared with previous
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(a) Exp-1 on Tizen TV
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(b) Exp-1 on Hikey
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(c) Exp-2 on Tizen TV
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(d) Exp-2 on Hikey
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(e) Exp-3 on Tizen TV
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(f) Exp-3 on Hikey
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(g) Exp-4 on Tizen TV
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(h) Exp-4 on Hikey

Figure 3.2: The Effectiveness of Our Prime Method: We conducted multiple experi-

ments on both devices. Exp-1: Prime with repeated loading, no instruction barrier,

set-counting mode; Exp-2: Prime with repeated loading, no instruction barrier, line-

counting mode; Exp-3: Our Prime method, with instruction barrier, set-counting

mode; Exp-4: Our Prime method, with instruction barrier, line-counting mode.
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approaches. Section 3.6.2 discusses how we choose bucket ranges in the experiments.

Section 3.6.3 measures the bandwidth of covert channels under different conditions.

In Section 3.6.4 shows images transferred using covert channels.

3.6.1 Effectiveness of Prime+Count

Single-core Scenario

We designed four experiments to demonstrate the effectiveness of our Prime+Count

method under the single-core scenario. In each experiment, the Sender tries to load

a specific number of lines/sets (x-axis), and the Receiver detects how many lines/sets

changes (y-axis). The configurations of experiments are listed as follows: (1) Exp-1:

Prime with repeated loading 50 times, no instruction barrier, set-counting mode; (2)

Exp-2: Prime with repeated loading 50 times, no instruction barrier, line-counting

mode; (3) Exp-3: Our Prime method, with instruction barrier, set-counting mode;

(4) Exp-4: Our Prime method, with instruction barrier, line-counting mode.

We repeated the experiment on each device 1,000 times. Figure 3.2 shows the

evaluation results. The x-axis represents the number of cache lines/sets loaded by

the secure world Sender, whereas the y-axis represents how many L1 cache refill events

were detected by the Receiver. The blue line indicates the maximum number of cache

fill events detected, whereas the green line shows the minimum number of cache fill

events detected. The orange line denotes the average over the 1,000 experiments.

From the first row of Figure 3.2, which is the previous Prime approach on both

devices, We can see those approaches are far from reliable and the gaps between

the maximums and minimums are large. It is particularly interesting to see the

number of cache refill events will even stay at around 256 on average no matter how

many lines the Sender tries to load as shown in Figure 3.2-(d). We tried to look for
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(a) Exp-5 on Tizen TV
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(b) Exp-5 on Hikey

Figure 3.3: Number of Loaded Cache Sets Versus Detected L2 Refill Events under

the Cross-core Scenario.

Attack Scenario Test Device Counting Mode Exp-10 Exp-11 Exp-12 Exp-13

Single-core

Samsung Tizen TV (Cortex-A17)
Set-counting 10,330.97 27,408.13 4,868.28 12,971.03

Line-counting 5,293.62 8,216.97 2,517.62 3,892.50

Hikey Board (Cortex-A53)
Set-counting 10,273.43 15,646.21 3,812.29 6,201.89

Line-counting 2,605.33 5,101.91 875.12 1,824.15

Cross-core
Samsung Tizen TV (Cortex-A17)

Set-counting
19.32 45.83 15.31 17.73

Hikey Board (Cortex-A53) 52.14 95.04 22.33 26.49

Table 3.3: Capacities of Covert Channels (Byte/Second).

explanations and failed to find any answers in any official specifications of Hikey or

ARM documents.

By comparing the first row (previous Prime techniques) and the second row (our

Prime technique) of Figure 3.2, we can clearly see that the variance of noise is

significantly reduced using our Prime method with an instruction barrier.
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(a) Exp-6 on Tizen TV
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(b) Exp-6 on Hikey
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(c) Exp-7 on Tizen TV
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(d) Exp-7 on Hikey
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(e) Exp-8 on Tizen TV
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(f) Exp-8 on Hikey

Figure 3.4: Number of Loaded Cache Sets Versus Detected Refill Events under Ex-

treme Conditions: We conducted multiple experiments. (1) Exp-6: the set-counting

mode under the single-core scenario; (2) Exp-7: the line-counting mode under the

single-core scenario; (3) Exp-8: the set-counting mode under the cross-core scenario.

Cross-core Scenario

We also conducted cross-core experiments on both devices using our Prime method,

with instruction barrier and set-counting mode (Exp-5). As Figure 3.3 shows, the

noise under the cross-core scenario is much stronger than it is under the single-core

scenario. Also, the results on Hikey is more stable than the results on Tizen TV. This

is because there are several applications running on the Tizen system when we were

conducting the experiments.
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(a) Exp-9 on Tizen TV
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(b) Exp-9 on Tizen TV

Figure 3.5: Experiment under a Realistic Condition, Where a Youtube Application

Is Running.

Under Extreme Conditions

We are interested in how our approach performs under extreme conditions. To this

end, we ran a program in the normal world that creates many threads that exceed

the number of cores on each board. The threads stay in an infinite loop in which they

keep reading and writing data to memory after allocating a memory region that has

the same size as the L2 cache.

We conducted multiple experiments with three different configurations: (1) Exp-

6: the set-counting mode under the single-core scenario; (2) Exp-7: the line-counting

mode under the single-core scenario; (3) Exp-8: the set-v counting mode under the

cross-core scenario. Figure 3.4 suggests our approach performs well in the single-core

scenario even under extreme conditions. However, the error rate is very high in the

cross-core scenario.
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(a) Exp-3 on Tizen TV
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(b) Exp-3 on Hikey
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(c) Exp-4 on Tizen TV
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(d) Exp-4 on Hikey

Figure 3.6: The Chosen Bucket Ranges for Different Experiment Configurations Ver-

sus Detected Refill Events.

Under a Real-world Condition

In addition, we also tested our approach in the cross-core scenario under a more

realistic condition, where a YouTube application was running in the Samsung Ti-

zen TV (Exp-9). As shown in Figure 3.5-(a), the noise was alleviated compared to

Figure 3.4-(e) (Exp-8). However, Figure 3.5-(b) implies that the cross-core covert

channel is difficult to utilize because there are many overlaps in the ranges of each

bucket.
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3.6.2 Choosing Bucket Ranges

Figure 3.6 shows the distributions of the number of cache refill events when we

select 16 buckets. We assumed that the covert channel is employed to send 4 bits per

time. The Sender tries to load a specific number of cache lines/sets (x-axis), and the

Receiver detects how many events are occurred and decodes it to a message (y-axis).

The box and whisker diagram used in Figure 3.6 is to display the distribution

of data. Data from the first to the third quartiles is in the box, and the red line

inside the box represents the median. The bottom line and the top line represent the

minimum and maximum value, respectively. The other small circles are outliers. As

shown in Figure 3.6, it is difficult to find overlapped ranges in the line-counting mode

after we applied our approaches. On the other hand, in the set-counting mode, the

available numbers of the event are smaller than the line-counting mode, and thus,

there are overlapping refill event numbers between buckets.

3.6.3 Capacity Measurement

For the capacity measurement, we evaluated how many bytes can be transferred

per second using the channels. In particular, we designed 4 experiments: (1) Exp-

10: the Sender tries to load all cache lines/sets (write all ones to the channel); (2)

Exp-11: the Sender does not loads anything (write zero to the channel); (3) Exp-12:

the Sender tries to load all cache lines/sets (write all ones to the channel) under

extreme conditions; (4) Exp-13: the Sender does not loads anything (write zero to

the channel) under extreme conditions; we ran all four experiments 500 times on both

devices using different counting modes.

As shown in Table 3.3, the single-core set-counting mode of Exp-11 has the highest

capacity and the cross-core of Exp-12 has the lowest capacity for both Hikey board
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(a) (b) (c) (d) (e) (f)

Figure 3.7: Transferred Images Using Covert Channels on Tizen TV: (a) Original

images; (b) Single-core line-counting; (c) Single-core set-counting; (d) Cross-core; (e)

Cross-core when YouTube is running; (f) Cross-core under extreme conditions.

and Samsung Tizen TV. The results may be surprising at the first glance since our

experiments showed line-counting mode has lower noise and 2 more bits to use than

set-counting mode. Further analysis reveals the reason behind this phenomenon is

that the code of line-counting mode takes much longer time to run than its set-

counting mode counterpart. This finding demonstrates the importance of efficient

code execution to the covert-channel capacity.
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3.6.4 Image Transfer

We used the covert channels to transmit images from the secure world to the

normal world under different conditions using both devices. Figure 3.7 shows the

results of experiments on the Tizen TV. Column (a) shows the original images. The

other images are all the ones we retrieved from the normal world using covert channels.

Overall, the quality and accuracy of the transferred images decrease from left to

right; and even under extreme conditions (Figure 3.7 column (f)), the covert channel

can still transmit data with some accuracy. The images illustrate that the covert

channels we built using Prime+Count are effective.

We especially can transfer data without noise in the single-core scenario using the

line-counting mode as shown in Figure 3.7-(b). Because there is no overlapped region

between the boxes in Figure 3.6-(c) and (d), we set each bucket to have enough range

so that the receiver can decode correct message.

However, the cross-core covert channels have low accuracy particularly when

YouTube was running and under extreme conditions as illustrated in Figure 3.7-

(e) and (f), Under these conditions where we cannot avoid much noise, the number

of cache refill events increases unexpectedly as the Figure 3.4-(e), (f) and Figure 3.5

show. Therefore, message sent by the Sender is likely to go other buckets (to higher

numbers) because of severe noise.

3.7 Discussion

Limitations of Prime+Count

First off, it is worth noting that covert channels made by Prime+Count could be

detected by monitoring PMUs. To detect use of L1/L2 cache refill events, a defender

can check the performance monitors event counter selection register (PMSELR) and
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the performance monitors selected event type register (PMXEVTYPER) [30].

In addition, Prime+Count is not as fine-grained as other cache attacks, includ-

ing Prime+Probe and Flush+Flush, because it only cares about how many cache

sets/lines have been updated. Adopting Prime+Count for spying a victim program

and even extract cryptographic keys from another address space may be difficult if

not impossible, because Prime+Count cannot answer which cache sets/lines have

been used. However, due to the coarse-grained characteristic of Prime+Count it

can reduce noise introduced by world switching, pseudo-random replacement policy,

and other factors, which makes it a better choice to build cross-world covert channels.

Cross-world Covert Channels without Normal World Kernel Privileges

To loosen up the attack model and allow normal world applications to use the covert

channels, we can adopt the Prime approach proposed in [91] that can be conducted

in userland without using the DC CISW instruction. As mentioned in Section 3.3, we

can also utilize the Linux perf event open system call to monitor “L1/L2 cache refill

events” in userland to implement Count.

Limitations of Our Experiments

While we took great efforts to maintain our experiments’ validity, we could not con-

sider some factors that may have affected the bandwidth of the constructed covert

channels. Specifically, SeCReT is not openly available (in fact, the authors were un-

willing to share their code or system with us), therefore we were unable to run our

experiments with SeCReT enabled. It is unclear how much SeCReT or similar solu-

tions would impact the CPU load and even the number of accesses to the cache. We

want to emphasize that the deployment of SeCReT or a strong monitor will not affect

the feasibility of the proposed covert channels but only downgrade the bandwidth.
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3.8 Related Work

Cache Side Channel Attacks

Cache side channel attacks exploit the leakage of information caused by micro ar-

chitectural time differences between a cache hit and a cache miss [166]. They have

been used to steal cryptographic keys in victim programs [113, 161, 151, 152, 95],

trace the execution of programs [17, 47, 91], and extract other sensitive information

[159, 163, 135, 120]. Even though covert channels can be built using various techniques

[49, 125], cache-based covert channel received a lot of attention in recent years [139].

Xu et al. explored cross-VM L2 cache covert channels in Amazon EC2 [146]. Wu

et al. designed a high-bandwidth and reliable data transmission cache-based covert

channel in the cloud [144]. Maurice et al. characterized noise on cache covert chan-

nels and built a robust covert channel based on established techniques from wireless

transmission protocols [99].

The Security of TrustZone

SeCReT showed that TrustZone itself cannot guarantee secure communication be-

tween normal and secure world [80]. Machiry et al. presented vulnerabilities that

permit normal world user-level applications to read and write any memory location

in the kernel by tricking secure world into performing the operations on its behalf [98].

ARMageddon demonstrated how to use Prime+Probe to spy code executions on

TrustZone [91]. TruSpy demonstrated that it is possible for a normal world attacker

to steal a fine-grained secret from the secure world using timing-based cache side-

channel [154]. In this work, we presented the first attempt to build cross-world covert

channels in the TrustZone architecture.
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3.9 Conclusion

In this work, we presented cross-world covert channel attacks on ARM Trust-

Zone, which is designed to provide hardware-assisted isolation. We demonstrated

that existing channel protection solutions, such as SeCReT, or even more powerful

mechanisms, such as a strong monitor, can be bypassed. We discussed the reasons

why previous attacks, including Prime+Probe and Flush+Reload, do not work

for the cross-world scenario on ARM. And, we designed a low noise, no shared memory

needed cache attack named Prime+Count by leveraging overlooked PMU “L1/L2

cache refill events.” Our experiments showed that Prime+Count-based cross-world

covert channels could achieve bandwidth as high as 27 KB/s under the single-core

scenario and 95 B/s under the cross-core scenario.
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Chapter 4

SmokeBomb: EFFECTIVE MITIGATION AGAINST CACHE SIDE-CHANNEL

ATTACKS ON THE ARM ARCHITECTURE

4.1 Introduction

Cache side-channel attacks exploit time differences between a cache hit and a

cache miss to infer sensitive data [113]. These attacks are very effective in stealing

cryptographic keys (e.g., the secret keys used in AES) from victim programs and even

other virtual machines, in tracing the execution of programs, and in performing other

malicious actions [95, 151, 152, 162, 17, 47, 91, 120, 136, 160, 164].

The bulk of research into cache attacks was started on, and has continued on,

the Intel architecture. However, as mobile devices (e.g., smartphones and watches)

experience unprecedented growth, the mitigation of cache attacks on non-Intel archi-

tectures has drastically risen in importance. Thus, our community needs a defense

against cache side-channel attacks that can protect against both shared cache (L2)

attacks and dedicated cache (L1) attacks, and can do so regardless of the specific

architecture in question. While cache attacks are, generally, more difficult to carry

out on the ARM architecture, new techniques have been developed to make them

more effective on mobile platforms [66, 91, 158, 155].

The fundamental causes of cache side-channel attacks are two-fold: (1) a cache is a

hardware resource shared by multiple processes; and (2) there is a noticeable difference

in access time between a cache hit and a cache miss. Therefore, to fundamentally

solve this problem, a new architecture or cache design is needed. Such hardware-based

approaches can provide strong security features against cache attacks with relatively
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small performance overhead [85, 82, 60, 140, 94]. Hardware-based solutions, however,

require considerable cost and time to be deployed in a practical manner, and no such

concerted effort has yet been undertaken. Thus, current systems remain vulnerable to

current cache attacks, and even if a hardware solution is undertaken, legacy devices

will not be secured.

However, software-based approaches are relatively cheap and easily deployable:

We can deploy them quickly and broadly through software patches. Therefore,

understandably, many software solutions have been proposed to mitigate cache at-

tacks [69, 84, 93, 165, 167, 78]. Some techniques target the protection of the shared

CPU cache (i.e., L2 cache in the ARM architecture), meaning that they fail to protect

programs from emergent attacks against the dedicated core cache (i.e., L1 cache) [84,

167, 93, 165, 91, 78, 155, 66]. Crane et al. [55] reduce, but does not eliminate,

side-channel information leakage by randomizing the program’s control flow. Other

techniques, including recent work targeting the protection of L1 cache, use specific

hardware features available only on certain Intel processors and have uncertain effi-

cacy under heavy system load [69]. In analyzing these techniques, we realized that

most current cache side-channel protection mechanisms attempt to mitigate attacks

by implicitly creating a private space—not shared with any other process—in which

constant-time (and thus, side-channel-immune) access to sensitive data is assured.

In this work, we propose SmokeBomb, a software cache side-channel mitigation

method for commonly-used CPU cache configuration, that explicitly ensures a private

space for each process to safely access critical data—the actual L1 cache of the CPU

core on which the process is executing. SmokeBomb reserves the L1 cache for

a sensitive operation’s exclusive use and denies attackers the ability to find timing

differences between used and unused sensitive data. Without access to measurable

time differences, attackers are unable to carry out cache-based side-channel attacks.
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SmokeBomb employs additional OS-level functionality (uninvasively implemented

as a kernel module), which has zero performance impact when there is no sensitive

data to protect, and negligible impact on the rest of the system. While SmokeBomb

requires a recompilation of the sensitive code that needs to be protected, it assists

developers in adopting the protection as a compiler extension, requiring developers

to only annotate the sensitive data.

We demonstrate the effectiveness of SmokeBomb by applying it to two different

ARM processors with different instruction set versions and cache models and carry

out an in-depth evaluation of the efficiency of the protection. Our experimental results

show that SmokeBomb effectively prevents information leakage against known cache

side-channel attacks. To our knowledge, SmokeBomb is the first cache side-channel

defense that functions on the ARM architecture and covers both the L1 and L2 cache

layers.

4.2 Cache Side-channel Attack Methods

Evict+Time

This attack method can determine which cache sets have been used by the victim

process [91, 65]. In the first step, the attacker measures the execution time of the

victim process. Then, the attacker evicts a target cache set and measures the exe-

cution time of the victim program again. From the difference in the execution time,

the attacker can figure out the cache set and, thus, the memory that it represents has

been used by the victim program.

Prime+Probe

This attack is also used to determine specific cache sets accessed by the victim. It

has been studied and implemented in various environments [162, 77, 95, 74, 155, 71,
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91, 46, 122, 73].

In the Prime phase, the attacker occupies a certain range of cache sets by loading

their own data. After the victim process has been scheduled, the attacker probes

which cache sets are used by the victim. Because the ARM architecture uses a

set-associative cache, a set consists of several ways. For example, the L2 cache of

the Cortex-A53 has 16 ways. Thus, the attacker decides a set has been used if one

of the ways was refilled by other data, which might not be loaded by the victim.

The pseudo-random cache replacement policy of the ARM architecture makes the

Prime+Probe attack much more difficult [91].

Flush+Reload and Evict+Reload

These attacks operate by measuring the data reload time of the cache, which are

available only when the attacker shares memory with the victim process [72, 78, 152,

158]. The attacker must map a target shared object into its address space. Then,

the attacker flushes/evicts a cache line within the shared area. In the Reload phase,

attackers reload previously flushed/evicted data after waiting for the victim to access

the shared object and checks the time it takes to reload. Based on this reloading

time, attackers can infer if the victim accessed the data.

Commonly, attacks can check whether specific data is in the cache after the exe-

cution of the victim process. These attacks are more accurate and easier to conduct

than the Prime+Probe and Evict+Time attacks. Also, the simplicity of these

methods makes asynchronous attacks possible. The only difference is in the way

for flushing the data from the cache before the victim has been scheduled. If the

flush instruction is available, the attacker could flush data using the virtual address.

Otherwise, the attacker needs to evict the data by loading other data [70, 91].
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Flush+Flush

This attack utilizes the timing difference of the flush instruction [68, 91]. The exe-

cution time of the flush instruction is different depending on whether data is cached

or not. If data is cached, the flush instruction takes more time to execute. The

first phase is identical to the Flush+Reload attack. In the last step, however, the

attacker flushes the data once again to check whether the data has been accessed by

the victim.

4.3 Our Threat Model

In this work, we consider multi-core computing environments that use the inclusive

and the non-inclusive caches on the ARM architecture, in which processes, including

malicious ones, use shared libraries, such as OpenSSL. The attacker can use all of

the cache side-channel attacks mentioned in Section 4.2 to extract secret information

including cryptographic keys. We do not consider recently proposed Prime+Abort,

because the ARM architecture currently does not support transactional memory, and

therefore the attack is not available [59]. In addition, we assume the worst case

scenario in which attackers can use the flush instruction on ARMv8 CPUs, even

though the ARMv8 architecture restricts userland applications from executing the

flush instruction by default. Assuming this worst-case attack model allows us to

develop as strong a defense as possible, which we present in the rest of the work.

Throughout this work, we discuss and perform experiments on two environments

as listed in Table 4.1.

4.4 Overview

We present, implement, and evaluate SmokeBomb—a cache side-channel miti-

gation method that prevents attacks on every cache level mentioned in Section 2.2,
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Table 4.1: Test Environments.

CPU (# of cores) Instruction Set L1-D Cache L2 Cache Inclusiveness Cache Replacement Policy

Cortex-A72 (4) ARMv7 32-bit 32 KB, 2-way, 256 sets 2 MB, 16-way, 2048 sets Inclusive Least-recently-used

Cortex-A53 (4) ARMv8 64-bit 32 KB, 4-way, 128 sets 512 KB, 16-way, 512 sets Non-inclusive Psuedo-random

especially for inclusive and non-inclusive caches. With SmokeBomb, an attacker

attempting to measure data access times of sensitive data will be met with consistent

timing results for all sensitive data, and will thus be unable to infer which sensitive

data is actually used. To this end, we design SmokeBomb to achieve particular

defensive goals:

(D1) It defends against cross-core L2 data cache attacks.

(D2) It defends against directory protocol based cross-core L1 data cache attacks.

(D3) It defends against single-core L1 data cache attacks.

To accomplish these goals, SmokeBomb first instruments applications (during com-

pilation time) to find and patch any sensitive code (Section 4.5), which puts the

sensitive data involved under SmokeBomb’s protection (where the developer anno-

tates the sensitive data in the source code). Then, SmokeBomb carries out three

steps, at different points before, during, and after the execution of the patched sen-

sitive code. Figure 4.1 depicts the effect of SmokeBomb in terms of the amount of

data loaded in the cache, and we reference it through the following description.

Preloading Sensitive Data (Section 4.6): Before executing the sensitive code (at

time-point t1 in Figure 4.1), SmokeBomb preloads the sensitive data into the

L1 cache. By preloading the sensitive data, SmokeBomb prevents the attacker

from identifying which specific cache sets have been used by the victim (e.g.,

Prime+Probe).
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Preserving Sensitive Data (Section 4.7): SmokeBomb ensures that the pre-

loaded data exists in the private L1 cache throughout the sensitive code’s exe-

cution (t1∼t2 in Figure 4.1). In a non-inclusive cache, the preloaded data will

be maintained only in the L1 cache. In an inclusive cache, the preloaded data

will be maintained in the L1 and the L2 cache. Thus, an asynchronous attacker

from another core cannot infer any information regarding the key data.

Flushing Sensitive Data (Section 4.8): At the termination of the sensitive code

(t2 in Figure 4.1), SmokeBomb flushes all data from the cache so that no

information on what data was used is revealed to an attacker (between time

points t2 and t3).

Without SmokeBomb, as the sensitive code executes from t1 to t2, the amount

of key data in the cache increases gradually. At t2, all the key data may have been

fetched into the cache and will stay there until being replaced gradually as shown

from t2 to t3. Thus, attackers can infer which sensitive data is the key data from

t1 to t3. With SmokeBomb, however, entire or only a certain amount of sensitive

data is fetched into the cache when sensitive code starts execution at t1 and flushed

when sensitive code exits at t2. Consequently, SmokeBomb will cause consistent

timing results for all sensitive data. We note that SmokeBomb is not able to defend

instruction cache attacks, which will be discussed in Section 5.7.

Instructions Used

SmokeBomb uses the data prefetcher by calling preloading data (PLD) instruction

to preload the sensitive data. Even though ARM architecture reference manuals

state that “the effect of an the PLD instructions is implementation defined”, we have

confirmed that all the Cortex-A processors support PLD instructions and their effects
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Figure 4.1: The Difference in Cache Usage with and without SmokeBomb: The

x-axis denotes the time of code execution and the y-axis represents the number of

cache lines holding sensitive data. Any observable changes on the y access represent

a potential cache side-channel attack vector.

through the technical reference manuals of each Cortex-A processor [32, 26, 21, 24,

25, 28, 40, 41, 33, 42, 34, 35, 36, 43, 27, 31].

The DC CISW instruction flushes a designated cache line in a specific cache level [27,

31]. It requires a set number, a way number, and a cache level as operands. Smoke-

Bomb uses the DC CISW instruction to bypass the psuedo-random replacement policy.

Also, this instruction is used to keep sensitive data away from the L2 cache in inclusive

caches.

SmokeBomb APIs

In applications, SmokeBomb is initiated and finalized by the following two APIs in

user-space programs: (1) init_smokeBomb, and (2) exit_smokeBomb. The init API

has two parameters: the start address and the size of the sensitive data. When this

API is called by a process in the system, SmokeBomb preloads the sensitive data

into the cache and changes the scheduling policy of the process. The exit API, which
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flushes the sensitive data from the cache and restores the scheduling policy, does not

have any parameters. Between these two APIs—during the execution of the sensitive

code, SmokeBomb-defined instructions execute to preserve the preloaded sensitive

data in the L1 cache.

SmokeBomb-defined Instructions

Because most ARM processors have no cache locking instructions, we utilize the unde-

fined instruction exception handler to implement our own cache locking instructions

that are software-emulated by the handler. SmokeBomb finds and patches cache-

relevant instructions (such as LDR or STR) that access non-sensitive data, because

they can change the cache state by fetching non-sensitive data to the L1 cache. At

runtime, those instructions will be trapped and handled by SmokeBomb’s exception

handler. we call the patched instructions as xSB instructions, such as LDRSB, which

performs the intended operation of the original x instruction, but also ensures the

preservation of the sensitive data only in the L1 cache.

4.5 Instrumenting Sensitive Code

SmokeBomb requires two modifications to the sensitive code. First, the two

API calls mentioned in Section 6.5 must be inserted before and after the sensitive

code. Second, cache changing instructions in the sensitive code must be modified

to SmokeBomb-defined instructions which have opcodes that do not exist in the

ARMv7 and ARMv8 instruction sets. SmokeBomb software-emulates them through

the undefined instruction handler.

SmokeBomb automates this process for developers by requiring only an anno-

tation of the sensitive data (in our implementation, using attribute syntax annota-

tions [13]), and SmokeBomb derives all necessary code modifications during compi-

59



lation. Developers can annotate static data directly or a data pointer for dynamically

allocated data. Note that, as SmokeBomb is a protection mechanism, we rely on the

developers to identify the data that should be protected. However, approaches exist

for the automated identification of such data, and this compilation process could be

modified to automatically insert even the annotations themselves [137]

Provided these annotations, SmokeBomb uses a compiler extension (i.e., an

LLVM pass) to instrument the application. First, SmokeBomb identifies the sen-

sitive code, which is straightforward due to the annotation. By analyzing each IR

instruction, SmokeBomb can identify all memory operations that reference (anno-

tated) sensitive data. Specifically, when data is annotated, SmokeBomb can identify

all memory operations that reference annotated sensitive data by analyzing operands

of load and store instructions. When a pointer is annotated, SmokeBomb checks

whether memory operations dereference the annotated pointer or not. All such in-

structions are identified as sensitive code.

Once sensitive code is found in a function, SmokeBomb identifies the dominator

and post dominator of the basic blocks in which the sensitive code exists. It then

inserts a call instruction which invokes the init API at the dominator node (and

specifies the reference to the sensitive data in the API call) and another call instruction

for the exit API at the post dominates node. If there are other call instructions in

the basic blocks, SmokeBomb additionally places instructions calling the exit API

and the init API before and after the other call instructions, respectively.

When the size of the sensitive data is larger than the L1 cache, SmokeBomb takes

the first part of the sensitive data as selected sensitive data that will be preloaded and

preserved. The selected sensitive data is bigger than a way of the L1 cache so that the

selected part can cover all sets for preventing attacks which try to identify which set is

used (e.g., Prime+Probe). Note that unselected sensitive data is neither preloaded
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nor preserved: it is explicitly kept out of the cache, achieving the same protection.

Next, SmokeBomb patches all cache changing instructions that are located be-

tween the two APIs. When the size of sensitive data is smaller than the L1 data cache,

it only patches instructions that access non-sensitive data, to preserve sensitive data

in the L1 cache by enforcing additional cache maintenance operations after these in-

structions execute. The insight here is that instructions that access sensitive data do

not change the cache state of that data. By patching only non-sensitive instructions,

SmokeBomb can avoid unnecessary undefined instruction exceptions, thus minimiz-

ing performance degradation. However, if the size of sensitive data is larger than

the L1 data cache, SmokeBomb patches all cache changing instructions, because it

cannot statically determine which sensitive code might access the unselected sensitive

data.

4.6 Preloading Sensitive Data

Before sensitive code executes, SmokeBomb preloads the sensitive data (or, if

the sensitive data larger than the L1 cache, the selected sensitive data). One way to

preload data into the cache is to simply access it (e.g., using the LDR instruction).

However, this is slow, as the CPU will wait until the data actually arrives in a register

or memory. For better performance, SmokeBomb employs a hardware feature called

data prefetching, by using the preloading data (PLD) instruction, which is available in

the Cortex-A series. SmokeBomb triggers the prefetcher by using the PLD instruction

in ARMv7 and the PRFM PLD instruction in ARMv8 [27, 31]. For brevity, we use “PLD

instructions” to refer to both instruction forms. PLD instructions execute much faster

than LDR to fetch data into the cache.
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Bypassing the Pseudo-random Replacement Policy.

The PLD instruction loads data (of the size of a cache line) from memory to the cache.

However, with ARM’s pseudo-random cache replacement policy, sensitive data loaded

earlier in the process might be evicted by sensitive data loaded later in the process.

SmokeBomb must ensure that this does not happen, so that the entire sensitive data

can be safely loaded. Our experiments on both testing environments reveal that the

pseudo-random replacement policy only triggers when there is no empty cache line

available. If we can make one cache line available by flushing it in the set that the

data is supposed to reside, the data is guaranteed to occupy the empty cache line

instead of evicting any other line in the set.

We conducted preliminary experiments to confirm this behavior for both the L1

and L2 caches: We first flush a particular cache line of a set using the DC CISW

instruction, which takes a set number and a way number as operands [27, 31]. Then,

we load data using the PLD instruction from an address whose index fields match

the set number. We then flush the same cache line again. At the last step, we load

the same data again on the same core and check the cache refill event using the

performance monitor unit (PMU) [27, 31]. If a cache refill event occurs, the data has

been loaded in the cache line we selected, and vice versa.

Keeping Sensitive Data Away from L2 Cache.

For non-inclusive caches, PLD instructions load data into L2 cache automatically as

well, which enables cross-core cache attacks because an L2 cache line is evictable.

To prevent this, we use the same approach described in the previous subsection to

ensure that sensitive data is always loaded into a known way in the cache. Then,

we flush the sensitive data from the L2 cache. When SmokeBomb preloads the
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Figure 4.2: Example of the Cache State Changes in the Non-inclusive Cache Model

When Preloading the Sensitive Data: In this figure, we assume that there are 4 sets

and 4 ways in both the L1 and L2 caches. Light gray means sensitive data and dark

gray means normal data. White represents a flushed cache line. (1): Flush an L1

cache line. (2): Flush an L2 cache line of the last way. (3): Load the sensitive data.

(4): Flush the sensitive data from the L2 cache. (5)–(7): Repeat the prior 4 steps.

sensitive data, other processes’ data in the L2 cache can be evicted. To minimize this

impact, SmokeBomb uses only the last way of the L2 cache. For inclusive caches,

SmokeBomb loads the sensitive data into the L2 cache.

Figure 4.2 illustrates how SmokeBomb preloads the sensitive data into the cache,

bypassing the pseudo-random replacement policy. We first translate the virtual ad-

dress of the sensitive data to physical address and compute its set number for L1

and L2 cache respectively, because the cache is physically indexed and tagged. We

then flush the one way of this set in L1 and L2 cache respectively to make room for

sensitive data as shown in (1) – (2) of Figure 4.2. For convenience, we flush from the

last way of L1 to the first way in this step. Then, we use PLD instructions to load

data into the cache as shown in (3) of Figure 4.2. Because there is one cache line

available in L1 and L2 cache, the data goes to that available line. We flush the just

loaded L2 cache line as shown in (4) of Figure 4.2. We repeat this procedure until

the entire sensitive data or the selected sensitive data is loaded into the cache. In
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this loop, if a way of the L1 cache is fully occupied with sensitive data, we start to

fill the previous way instead as shown in (5)–(7) of Figure 4.2. For inclusive caches,

we can omit to flush an L2 cache line—step (4) of Figure 4.2. SmokeBomb changes

a way of the L2 cache similar to the L1 from the last way in descending order, if a

way is full with sensitive data.

4.7 Preserving Sensitive Data

After preloading the sensitive data (or the selected sensitive data, if the sensitive

data is larger than the size of the L1 cache), it is critical to preserve it in the cache

during the execution of sensitive code to prevent side-channel attacks. Additionally,

unselected sensitive data must not be in the cache. By preserving only preloaded sen-

sitive data, SmokeBomb achieves a consistent cache state throughout the execution

of the sensitive code.

In our experimentation environment, we tested how many cache lines were evicted

during AES encryption after preloading the T-tables as the sensitive data into the

L1 cache. We used OpenSSL (v.1.0.2) and 128-bit AES algorithm to encrypt an 8-

byte plaintext. Even with an intentionally-chosen small plaintext, the results show

that around 89% of cache lines holding non-key sensitive data were evicted during

the encryption procedure, which opens the door for cache side-channel attacks. The

experiments clearly demonstrate the need to preserve sensitive data in the cache.

Unfortunately, most ARM Cortex-A series processors do not support hardware

cache locking techniques. Thus, to preserve the sensitive data in the L1 cache,

SmokeBomb must hook all instructions that could influence the state of the cache

after preloading the sensitive data. If the sensitive data is smaller than the L1 cache,

SmokeBomb only needs to hook cache changing instructions that access non-sensitive

data, because these instructions can evict the preloaded sensitive data from the
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Figure 4.3: Example of the Cache State Changes in the Non-inclusive Cache Model

When Preserving the Sensitive Data: In this figure, we assume that there are 4 sets

and 4 ways in both the L1 and L2 caches. Light gray means the sensitive data and

dark gray means normal data. White represents a flushed cache line. (1): Data,

which is not in the L1 cache, is loaded. (2): Flush the sensitive data located in the

set of the L1 cache. (3) – (7): Refill the set with the sensitive data again.

L1 cache to the L2 cache. When the sensitive data is larger than the L1 cache,

SmokeBomb must hook all cache instructions that occur in sensitive code regardless

of which data they access.

To design a software cache locking technique, we use the undefined instruction

exception handler, which can be used to implement custom “soft-instructions.”

Handling xSB Instructions.

SmokeBomb installs an undefined instruction handler for each xSB instruction. We

use a handler for LDRSB to illustrate how the handlers work with the non-inclusive

cache model (as shown in Figure 4.3).

SmokeBomb first loads data referenced by the original instruction. If the address

of this data is already in the L1 cache, no matter if the data is sensitive or not, the

handler returns immediately to the sensitive code. This is because if non-sensitive

data is already in the cache after preloading the sensitive data, it means the data exists
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in the cache with the sensitive data. We determine if the data is in the L1 cache by

checking the L1 data cache refill event. If the event did not occur (i.e., an L1 cache

hit occurred), the memory system does not fetch the data from the main memory.

Consequently, the preloaded sensitive data is still only in the L1 cache.

If the data is neither non-sensitive data that is already in the L1 cache nor

preloaded sensitive data, the data will be fetched into the L1 and L2 caches as shown

in (1) of Figure 4.3, which may result in the eviction of a cache line where the sensitive

data or selected sensitive is stored. Because we cannot determine which way has been

evicted due to the pseudo-random replacement policy, SmokeBomb simply reloads

the sensitive data in the set as in the preload procedure. However, if the address of

the loaded data is not congruent with any preloaded sensitive data, SmokeBomb

returns to the sensitive code without reloading.

To reload the sensitive data, SmokeBomb flushes it located in the set using

its virtual address. Once the sensitive data has been evicted from the L1 cache,

SmokeBomb cannot know which way of the L2 cache has the data. Therefore,

SmokeBomb entirely removes the sensitive data in the set from a cache as shown

in (2) of Figure 4.3. Then, SmokeBomb reloads the sensitive data following the

preloading method to fill the set again as shown in (3) – (7) of Figure 4.3. As a

consequence, the process has the same sensitive data that was preloaded only in the

L1 cache.

In the inclusive cache, everything is identical except that we omit flushing an

L2 cache line when reloading the sensitive data.

Handling Preemption.

Modern operating systems have a preemptive kernel and provide preemptive mul-

titasking features. These systems allow scheduled processes to execute only for a
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time slice. For example, the Completely Fair Scheduler (CFS), which is the default

scheduler of the Linux kernel, interrupts a process when the time slice of its thread

is expired. Context switches can also occur when a thread voluntarily yields control

of the CPU by making system calls, such as sleep and yield.

Unfortunately, a context switch can cause an attacker process to be executed by

the core that was previously running the sensitive code, allowing it to influence the

state of the L1 cache. To avoid potential attacks stemming from this phenomena,

SmokeBomb must do one of two things during context switches: (1) it must flush

(on preemption of sensitive code) and re-preload (on resumption of sensitive code)

the sensitive data or (2) it must prevent preemption from happening in the first place.

The latter represents minimal change to the running system itself.

SmokeBomb overcomes this challenge by executing the sensitive code of a process

on the same core until it returns (from init_smokeBomb to exit_smokeBomb). This

guarantees that the L1 cache subordinated to the core is not being used by any other

processes while executing the sensitive code between the two APIs.

To prevent preemption, SmokeBomb temporarily changes the scheduling policy

of only the single process when it starts to execute the sensitive code (other processes

on the system continue running under the default scheduling policy). Unlike ker-

nel threads, which can manipulate the preemption strategy itself, user-level threads

cannot be free from preemption. However, a user-level process can run until it re-

linquishes the CPU voluntarily by using the First-In, First-Out (FIFO) scheduling

policy with the highest static priority. Among the available scheduling policies in the

Linux kernel, the FIFO scheduling is the only policy that will not schedule a thread

in the time slice manner [16].

It is worth noting that SmokeBomb is only activated in a function where sensitive

code exists. If other functions are called from the function in which SmokeBomb is
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Figure 4.4: The Cache Attack Results of Exploiting the LRU Cache Replacement

Policy on the Cortex-A72: The results show that the remaining sensitive data in a

cache can be resulted in the key data leakage.

started, exit_smokebomb call will be invoked, restoring the scheduler to the default

setting. When a thread returns to the function, SmokeBomb is activated again.

While this design choice increases the latency on the single application that executes

sensitive code, it minimizes the performance impact on the rest of the system.

4.8 Flushing Sensitive Data

After the sensitive code finishes or when the protected process is scheduled out, the

entire sensitive data will be gradually evicted if SmokeBomb does not flush it. Even

though it seems harmless to leave sensitive data in the cache after the sensitive code

terminates, we designed experiments to verify the necessity of flushing: in particular,

whether cache exploitation by an attacker is possible when the LRU replacement

policy is used. Usually Cortex-A series use the pseudo-random replacement policy, but

the LRU policy can be chosen alternatively, and ARM Cortex-A57 and A72 processors

employ the LRU replacement policy for the L1 cache by default [25, 40, 41, 35, 34, 35].

We conducted experiments on the Cortex-A72, which uses the LRU replacement

policy for the L1 cache. The victim then terminates itself right after accessing three
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different memory addresses. Then, the attacker loads data that is congruent with the

sensitive data to evict recently used cache lines. At the last step, the attacker checks

access times of the sensitive data.

We ran this experiment 3,000 times. Figure 4.4 shows the attack results where

the three addresses that the victim actually accessed have the largest number of

cache hits (red squares) among the preloaded sensitive data. Blue squares stand for

the preloaded memory addresses that the victim did not access, which have lower

number of cache hits than red squares. To protect against this attack, SmokeBomb

flushes the sensitive data from cache upon termination of sensitive code to prevent

information leakage.

4.9 Evaluation

Our experimental environments consist of a Samsung Tizen device and Raspberry

PI3 using the Cortex-A72 and A53 processor models, respectively, as listed in Ta-

ble 4.1. These devices have different instruction sets: ARMv7 and ARMv8. We

implemented proof-of-concept prototypes of SmokeBomb for both instruction sets.

The prototypes consist of two parts: (1) an LLVM pass with a binary patching tool

and (2) a loadable kernel module. SmokeBomb, which can be deployed without

requiring changes to the operating system beyond loading the kernel modules and

can be adopted by developers by annotating sensitive data in their applications (or

using an approach for automatic identification of it, such as CacheD [137]).

Of the discussed attacks, we evaluate against Flush+Reload and Evict+

Reload for the Cortex-A53 (non-inclusive cache) and the Cortex-A72 (inclusive

cache), respectively, because these are the fastest and most accurate attack meth-

ods. We also used Prime+Pro- be. Except when Prime+Probe is used, all

experiments were conducted on a cross-core environment, using two processes: the
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attacker and the victim. By utilizing a multi-core environment, SmokeBomb’s de-

fense against the directory protocol of the ARM architecture is evaluated as well [78].

Flush+Flush was not used for the evaluation because the effectiveness of the

method and results are very similar to Flush+Reload and Evict+Reload. Also

Evict+Time was not evaluated, because SmokeBomb always loads and flushes the

same amount of sensitive data into the cache and the sensitive data does not exist in

the cache when SmokeBomb is inactivated, which implies the attack is unavailable.

For the Cortex-A53 processor, which uses the non-inclusive cache, we assume the

flush instruction is unlocked for user-land applications, which strengthens the attacker

and makes SmokeBomb’s job more difficult. The Cortex-A72 processor employs the

inclusive cache, known as AutoLock, and thus data cannot be evicted by other pro-

cesses while it is in the L1 data cache [66]. Furthermore, the flush instruction is

not available in user-land, because the device uses the ARMv7 instruction set. To

conduct cache side-channel attacks on the Cortex-A72 processor, we use the two dif-

ferent assumptions introduced by Green et al., depending on the attack method [66].

The victim process provides several services to other processes, and the attacker can

request the services. This assumption makes the victim perform the L1 data cache

line evictions itself by requests from the attacker. Eventually, the sensitive data of

the targeted service can be evicted by the other services requested by the attacker so

that Evict+Reload is possible. For Prime+Probe on the Cortex-A72, we assume

the attacker and the victim run on the same core. This assumption is theoretically

possible, because preemption is disabled only when the sensitive code is executing.

Throughout this section, we present a number of figures describing the difference

in cache measurement opportunities for attackers with and without SmokeBomb.

In these figures, attack results are shown by blue squares in all figures for the non-

SmokeBomb case, and by red circles for the results of SmokeBomb’s application.

70



4.9.1 Effectiveness of L1 Cache as a Private Space

By using the cache refill event of the PMU, we tested if the approaches proposed

in Section 4.6 and Section 4.7 to preload sensitive data to cache and preserve it

in L1 cache alone works in the non-inclusive cache model using the following two

experiments [27, 31].

(1) We first loaded 8 KB of data using the PLD instruction. Second, we flushed

L2 cache using the DC CISW instruction. Third, we loaded the same data again with

the LDR instruction, checking the L2 cache refill event. As expected, no L2 cache refill

event occurred because all data accesses triggered L1 cache hit.

(2) In the second experiment, the first and the second steps are as same as in

the first experiment. The third step was done by a different core and used the

PRFM PLDL2KEEP instruction for loading the data into L2 cache. This instruction

does not fetch data to L1 cache but only to L2 cache for data preloading. The L2

cache refill event occurred, which confirmed that the data was successfully flushed in

step 2. If the L2 cache had the data, the event counter would not increase. These ex-

periments clearly demonstrate that SmokeBomb can keep sensitive data in L1 data

cache alone.

4.9.2 Security Analysis

Non-inclusive Caches

SmokeBomb achieves each defensive goal described in Section 6.5: D1—by keeping

the sensitive data away from L2 cache, the attacker cannot observe any sensitive

data in L2 cache. If sensitive data exists in L2 cache, the other processes can evict

the sensitive data, which in turn results in key data leakage; D2—by preloading the

sensitive data and keeping the sensitive data during sensitive code execution, the
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Figure 4.5: The Attack and Protection Results on the AES Algorithm: In (a), (b),

and (d), the Evict+Reload was used on the Cortex-A72 and the Flush+Reload

was used on the Cortex-A53. (c) is the results when the Prime+Probe was used

on the Cortex-A72

attacker cannot find the key data using the directory protocol; D3—by flushing the

sensitive data and protecting the sensitive code from preemption.

Inclusive Caches

D2 and D3 are guaranteed in the non-inclusive cache model. However, SmokeBomb

does not need to drive the sensitive data out from L2 cache to achieve D1. In inclusive

caches, the sensitive data cannot be evicted from L2 cache as long as the sensitive

data is in L1 cache. Therefore, SmokeBomb can achieve D1 for the inclusive cache

model by keeping the sensitive data in a cache until the sensitive code execution

finishes.

72



The size of protected data

SmokeBomb can provide the same level of defense even when the size of the sensitive

data is larger than L1 data cache. If SmokeBomb detects large sensitive data at

compile time, it marks a subset of the sensitive data as selected sensitive data, and

this data is preloaded and preserved. Next, while SmokeBomb is activated at run-

time, it flushes all unselected sensitive data out of L1 cache during the same operation

that maintains the selected sensitive data in L1 cache. The unselected sensitive data,

thus, cannot remain in the cache. Consequently, SmokeBomb can always produce

consistent results against cache side-channel attacks by preserving the selected sensi-

tive data only. However, with caching essentially disabled for the unselected sensitive

data, operations on this data will understandably be slow.

Against asynchronous Flush+Reload/Flush attacks

Sensitive data leakage might occur even with the use of SmokeBomb, which must

meet the following conditions: (1) immediately after the preloading phase, an attacker

can flush the sensitive data on another core and (2) the attacker can reload/flush the

data, checking access/flushing times, before the flushing phase. The attack results

will be as follows: (1) if the data is in a cache, the attacker will think that it is the

key data, however, the data could be data that the sensitive code loaded (the key

data) or data that has been reloaded by SmokeBomb (not the key data); (2) if the

data is not in a cache, the attacker will think that it is not the key data, however, the

data could be data that the sensitive code did not load (not the key data) or data

that has been flushed by SmokeBomb (the key data). As the possible attack results

show, such attacks would have false-positive errors caused by SmokeBomb, and we

believe that the attacks would be extremely difficult to trigger. Also, ARM CPUs do
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not support a flush instruction except for ARMv8-A CPUs, and the flush instruction

is typically not available to user-land applications. We note that, except for the

previously discusses case, SmokeBomb can prevent all other cases of asynchronous

attacks.

4.9.3 Case Studies

Case 1: OpenSSL—AES algorithm

The AES implementation of the OpenSSL library is a well-known target for cache

side-channel attacks targeting its T-tables [79, 133]. AES T-tables are pre-computed

lookup tables used to get a round key for each round of the AES algorithm. There

are four 1 KB T-tables, for a total of 4 KB of sensitive data. If the secret key length

is 128-bits, AES encryption and decryption processes have 10 rounds and the key is

expanded into 10 round keys as well. This key expansion uses lookups against the

T-tables, and determining these lookups via a cache side-channel allows an attacker

to recover key data. We used two well-defined attack methods for this experiment:

the last-round attack [79] and the one-round attack [133]. With the last-round attack

method, it is possible to recover the full secret key. For the one-round attack, we can

recover 4 bits of every key byte, since our experimental devices have a 64-byte cache

line.

We first performed the last-round attack [79] and the one-round attack [133] with-

out SmokeBomb. The attacks were conducted using the 128-bit AES algorithm

(version 1.0.2 of the OpenSSL library). To demonstrate the effectiveness of Smoke-

Bomb, we annotated the 4 KB T-tables of the OpenSSL library as the sensitive data

(requiring four lines of code to annotate each of the T-tables), then SmokeBomb

was applied to the library automatically.
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In the last-round attack scenario, the attacker checks the cache state before and

after the victim process executes the AES encryption function. Figure 4.5a and 4.5b

show the attack results of Evict+Reload and Flush+Reload. The attacker

can distinctly identify the addresses accessed by the victim without SmokeBomb.

Without SmokeBomb’s defense, we successfully recovered the secret key after 150

iterations of the attack. However, after SmokeBomb was applied, the attacker can-

not observe any timing differences for all entries of the T-tables on both test devices,

as shown in Figures 4.5a and 4.5b.

Similarly, Figure 4.5c shows the Prime+Probe attack results, in which we also

can identify memory addresses accessed by the victim. The protection results in

Figure 4.5c seem (to the attacker) to indicate that every entry of the T-tables was

accessed by the victim. This is because all cache sets where the sensitive data can be

loaded have been occupied in the preloading step. Thus, the attacker cannot under-

stand what data was accessed and cannot differentiate key data from sensitive data.

We ran the attacker and the victim processes on different cores concurrently.

To simulate the one-round attack, we sent a signal from the victim to the attacker

process so that the attacker can perform the Flush+Reload attack after the first

round of the AES encryption function—the attacker flushed the sensitive data before

the init API executes and reloaded the sensitive data after the first round. Also,

to avoid unnecessary impediments for conducting the attack, we paused the victim

process before the second round—in the middle of the sensitive code execution. This

makes defense more difficult by giving the attacker an advantage. With the one-round

attack, we cracked half of the secret key over 500 iterations of AES encryption, on

average. Figure 4.5d shows that the attack can reveal the T-table entries used in the

first round of the AES encryption function.

Conversely, attacks against the SmokeBomb-protected implementation resulted
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(a) Attacking Decision Tree on Cortex-A72.
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(b) Attacking Decision Tree on Cortex-A53.

Figure 4.6: The Attack and Protection Results on the Decision Algorithm:

Evict+Reload was used on the Cortex-A72 and Flush+Reload was used on

the Cortex-A53.

in cache hits for all entries—successfully protecting the sensitive data against attacker

measurement. This prevention result shown in Figure 4.5d implies that the key

data can be revealed by the attack using the directory protocol unless SmokeBomb

preserves the sensitive data. After the first round is finished, the victim process still

holds the sensitive data in the L1 cache but not in the L2 cache for executing the

next rounds. However, access times to the sensitive data must be faster than the

L2 cache miss by means of the directory protocol. Thus, the attacker has no choice

but to think there was an L2 cache hit—the victim process has used that data.
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Case 2: Decision Tree

A decision tree algorithm is used to make a decision according to some input data

(called the attributes). Parameters are attributes and the output is the algorithm’s

decision. Each node of the decision tree is a point where an attribute is tested and

a branch is taken according to the result of the test. A leaf node represents a final

decision made by the attributes. Because different memory addresses are accessed

depending on the attribute, this can result in information leakage via cache side-

channel attacks [109].

For this experiment, we created a decision tree using the ID3 algorithm [63]. We

also implemented a shared library which provides a service using the decision tree.

The attack scenario is as follows: the victim calls the function within a shared library

to get a result from the decision tree. To call the function, the victim needs to select

specific information as attributes. A set of attributes is used as a parameter of the

function. The attacker tries to identify the attributes selected by the victim and the

decision made by the tree.

SmokeBomb was applied in the function that traverses the decision tree by an-

notating the tree as sensitive data (one line of code change). Because each of the

different nodes tests the unique attributes and makes the final decision, there is a

one-to-one correspondence between memory addresses of the nodes and attributes

(or the final decision). Without protection, the attacker can clearly figure out the

input records and the final decision as shown in Figure 4.6. SmokeBomb forces a

consistent cache state for the sensitive data, and thus, the attacker cannot classify

data as key data using access time. Figure 4.6b particularly shows the results of an

attack in the middle of sensitive code execution. We simulated the attack to reload

the sensitive data before the exit API executes. The attack results are all cache
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Figure 4.7: The Attack and Protection Result on the Large Sensitive Data:

Flush+Reload was used on the Cortex-A53 processor. After applying Smoke-

Bomb, we cannot find the access pattern.

hits because of the directory protocol, which indicates that the sensitive data is fully

preserved.

Case 3: Large sensitive data

We show the effectiveness of SmokeBomb’s defense when it protects application with

sensitive data larger than L1 cache. In these experiments, the victim accesses 48 KB

of sensitive data using a regular pattern and the attacker uses the Flush+Reload

attack. The sensitive data consists of 48 entries and each data entry is separated by

1 KB (one line of code change to annotate the sensitive data). SmokeBomb selects

only the first 8 KB as selected sensitive data if the sensitive data is larger than the

L1 data cache. We conducted the attack in such a way that the attacker can check

the data reloading time after the victim finishes accessing the sensitive data (before

flushing it). Figure 4.7 shows the results: the attacker cannot infer the actual access

pattern, only seeing cache hits on the first 8 entries and cache misses on the rest.

This consistency protects against cache side-channel attacks even when the sensitive

data is larger than the L1 cache.
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4.9.4 Performance

We evaluate SmokeBomb’s performance in a number of ways, from micro mea-

surements to macro measurements.

Performance of software instructions

We evaluated the overhead of each xSB instructions emulated by SmokeBomb to

keep the sensitive data in L1 cache (as discussed in Section 4.7). For the convenience

of the experiment, we implemented a function that has only one instruction (either

loading or storing data from/to a memory address) and measured its execution time

in nanoseconds. We cannot measure CPU cycles directly because the cycle counter

does not increase while execution is in the exception handler. Table 4.2 shows the

execution times of xSB instructions on average across 5,000 executions with execution

times of the orginal instructions.

Execution times of xSB instructions are substantial, when compared to the orig-

inal LDR or STR instructions’ execution times. Naturally, the more xSB instructions

that execute, the larger the resulting performance overhead. SmokeBomb handles

the performance overhead of executing xSB instructions by patching only the cache

changing instructions in the sensitive code that accesses non-sensitive data. This op-

timization process helps to avoid unnecessary performance degradation. Using the

decision tree (case study 3), the performance overhead when SmokeBomb patched

all cache changing instructions increases by about 104% compared with the optimized

patching.
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Table 4.2: Comparison of the Execution Times Between Xsb Instructions and Original

Instructions.

CPU
Instruction L1 Hit Cache Miss

Group Original xSB Original xSB

Cortex-A72
LDR 612 ns 1,634 ns 897 ns 1,946 ns

STR 622 ns 1,678 ns 729 ns 1,802 ns

Cortex-A53
LDR 321 ns 1,209 ns 480 ns 1,916 ns

STR 365 ns 1,251 ns 540 ns 1,420 ns

Performance of SmokeBomb APIs

We evaluated the execution times of SmokeBomb API enter and exit APIs (which

involves prefetching and flushing the sensitive data). As the performance overhead

caused by SmokeBomb APIs is determined by the size of sensitive data, we measured

execution times using different sizes of sensitive data up to a size the same as the

L1 cache size (sensitive data sizes larger than the L1 cache size will only load the

selected data to the L1 cache, therefore the upper bound is L1 cache size). Figure 4.8

shows the execution times of SmokeBomb APIs. The execution time of each API

increases with the size of the sensitive data. When the size of sensitive data is 32 KB,

the execution time of the two APIs is about 450 microseconds in total on the Cortex-

A53.

Single-application overhead

To understand the impact of SmokeBomb on the performance of sensitive code, we

evaluated a SmokeBomb protected HTTP Secure (HTTPS) protocol implementa-

tion. For this experiment, SmokeBomb was applied on the AES algorithm, and

we used the top 500 web pages selected by the Moz [15]. Then, we compared av-
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Figure 4.8: The Execution Times of SmokeBomb APIs in Microseconds.

erage execution times required to download the 500 web pages between the normal

HTTPS protocol and SmokeBomb-protected one across 5,000 experiments. Ta-

ble 4.3 shows SmokeBomb-protected HTTPS protocol has very low performance

overhead of around 4.02% for Cortex-A53 and 5.91% for Cortext-A72, making it un-

noticeable to users during web browsing and quite acceptable for serving web content.

We also applied SmokeBomb on the AES algorithm of 7zip application and mea-

sured execution times required to compress various files secured with AES encryption.

As shown in Figure 4.9, on the Cortex-A53, the latency increased by just 1.58 percent,

when 10 KB file is used. However, as the size of the input file increases, the latency

also increases. The AES algorithm is a block cipher, and thus, its encryption func-

tion to which SmokeBomb was applied operates on a single block. Consequently,

the performance overhead brought by SmokeBomb APIs and xSB instructions has

to be overlapped as an input file has more blocks.
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Table 4.3: The Performance Overheads of SmokeBomb-protected HTTPS to Load

a Web Page.

Cortex-A72 Cortex-A53

Baseline SmokeBomb (overhead) BaseLine SmokeBomb (overhead)

7,223 ms 7,650 ms (5.91%) 7,177 ms 7,466 ms (4.62%)
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Figure 4.9: The Performance Overheads of SmokeBomb-protected 7zip Application.

Performance Impact on Systems

Lastly, we evaluate the impact of SmokeBomb on systems throughput by compar-

ing: (1) when SmokeBomb is not running; with (2) when SmokeBomb is running

continuously by a process executing the AES encryption function with SmokeBomb

applied. The only difference between the two situations is the status of SmokeBomb

functions in the testing systems. Thus, it can show how the system performance

changes when SmokeBomb is activated. For the evaluation, we used the common

UnixBench benchmarking utility (version 5.1.3) [14].
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Figure 4.10: The Performance Overheads on Each Benchmark Applications When

SmokeBomb Is Activated.

Figure 4.10 shows the overheads of each benchmark application and the average

on the test devices. On the Cortex-A72 of a Samsung Tizen device which uses the

inclusive cache model, and where many service processes are executing, the average

overhead with SmokeBomb is almost zero. We suspect that the negative over-

head of the Whetstone benchmark, which tests how many floating-point operations

can execute within a limited time (without using a blocking syscall), is because the

benchmark threads could occupy cores a longer time than when SmokeBomb is not

running. The average overhead on the Cortex-A53 of Raspberry PI3, which uses the

non-inclusive cache model, is about 2.8%. The results illustrate that, when Smoke-

Bomb is activated, the average performance overhead that SmokeBomb imposes on

the overall system is negligible.
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4.10 Limitations

This section discusses some of SmokeBomb’s limitations, which can help inform

future research directions.

Instruction cache attacks

The first limitation of SmokeBomb is that the instruction cache is not protected,

potentially allowing an attacker to understand which instructions are executed by the

victim process (though not what sensitive data was accessed). There is a fundamental

problem in applying SmokeBomb to fully protect the instruction cache: ARM has a

preloading instruction (PLI) instruction, but in practice we cannot use this instruction

to fetch instructions into the L1 instruction cache. The effect of the PLI instruction

is not explicitly defined in the ARM architecture reference manuals [27, 31]. The

pre-loading instruction (PLI) instruction is treated as a NOP instruction in several

Cortex-A processors [40, 41, 33, 34, 35], or it fetches instructions to the L2 cache

instead of the L1 instruction cache [42]. Thus the only general way to load the

L1 instruction cache is to execute the instructions.

However, SmokeBomb can be extended to have functionality for preloading in-

structions, and flush them, from L2 cache. Given that a combination of preloading

and flushing is enough to prevent synchronous instruction cache attacks, a future di-

rection is to defeat asynchronous attacks that inspect an instruction cache in parallel

with a running victim process. Note that preloading and flushing make this kind of

attack very difficult to perform. In addition, most ARM Cortex-A processors employ

a virtually indexed, physically tagged (VIPT) implementation for the L1 instruction

cache [32, 26, 21, 24, 28, 40, 41, 33, 36, 43]. Therefore, it is a reasonable assumption

that instructions are safe from attacks using the directory protocol because modern
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operating systems implement ASLR. Aside from this limitation in terms of attacks

to determine the execution of sensitive code, SmokeBomb can stop known attacks

with respect to the sensitive data.

Protection for exclusive caches

SmokeBomb cannot provide complete defense for exclusive caches. This is because

if an attacker loads the sensitive data into their L1 cache, and evicts the data from

the L1 to the L2 cache, the data could also be evicted from the victim’s L1 cache.

By the definition of the exclusive cache, there is only one copy of the data in the

whole cache. Therefore, if an exclusive L2 cache is shared by multiple cores, cache

lines of the L1 cache could be affected by the other cores’ data usages. As a result,

the attacker might deduce information related to the key data. Such information

leaks are not theoretically impossible but are difficult to practically achieve, because

an attacker must identify whether the data is reloaded by a victim after evicting

it within a very short execution time between two SmokeBomb APIs. Moreover,

the reloaded data may not be the key data. Unfortunately, we could not conduct

any experiment on the exclusive cache model, because there are no available devices

on the market. Only the Cortex-A55 employs the exclusive L2 cache among ARM

CPUs, but, that is the private per-core unified L2 cache which is not shared between

cores [42].

Implementation details

The instruction handler might evict some sensitive data from the L1 to the L2 cache

as the size of sensitive data reaches the size of L1 cache. We evaluated L1 cache refill

events caused by the instruction handler during its execution and determined that

three cache lines were used by the instruction handler due to the accesses to the stack
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and global variables. Such evictions could be handled by a dynamically allocated

temporary stack only for the execution of sensitive code. This temporary stack can,

then, be cached into the L1 data cache with the sensitive data to prevent any eviction

of the sensitive data at a small cost of the private area. We note that even if the evic-

tion of sensitive data occurs it would not be critical to SmokeBomb’s effectiveness,

as the attacker’s detecting of eviction does not necessarily lead to the leakage of key

data. In addition, the current version of the SmokeBomb implementation protects

static data. However, SmokeBomb could provide the same defense for dynamically

allocated data with additional improvements to the compiler extension, which would

require annotations on pointers that are used to point to sensitive data. In addition,

albeit SmokeBomb only requires an annotation of the sensitive data, it has to re-

compile source code, and thus, cannot be applied to compiled binaries. Lastly, the

implementation of SmokeBomb is dependent on hardware specifications such as the

size and inclusiveness of the cache. Hence, minor changes are required to implement

SmokeBomb for each different CPU.

Architecture dependence

While the concept of a private space in L1 cache is not ARM-specific, SmokeBomb

is implemented for, and heavily uses specific functionality of, the ARM architec-

ture. Unfortunately, in our investigation of the current state of the Intel x86 64,

architecture, it does not appear to be possible to ensure that data is present only

in L1 cache, preventing us from implementing SmokeBomb for this architecture.

Likewise, the RISC-V architecture currently has no instruction-level control of the

cache [141]. However, as both cache control and hardware-based security measures

are an actively-evolving field, this could change in the future.
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4.11 Related Work

Because the shared feature of hardware resources is one of the fundamental rea-

sons behind cache side-channel attacks, many proposed countermeasures attempt to

isolate shared resources to mitigate such attacks. These countermeasures can be cat-

egorized as a hardware approach or a software approach. Previously, most of the

software approaches are deployed on cloud systems with Intel architecture. Smoke-

Bomb is the only cache side-channel defense without architecture-specific hardware

dependencies, covering the L1 and the L2 cache together. Thus, SmokeBomb is the

first defense applicable to the ARM architecture. It achieves this without invasive OS

changes. Furthermore, it can be applied to applications automatically by annotating

the sensitive data.

SmokeBomb’s closest related works are as follows. Kim et al. [84] proposed isola-

tion of the last level cache using a dedicated memory page on each core. Even though

it can prevent information leakage via the last level cache efficiently, this approach

cannot prevent timing attacks using upper-level cache [78]. Zhang and Reiter [165]

proposed periodic cache cleansing mechanism, which prevents information leakages

by flushing data used by the previous process in the cache. It cannot address cache

attacks targeting the last level cache. Zhou et al. [167] introduced the copy-on-access

technique which copies the page when another process accesses memory simultane-

ously to disable memory sharing. Also, it limits the cacheability of memory pages per

process, and thus, each process only can have a limited number of cache lines. Liu

et al. [93] presented CATalyst which uses the Intel Cache Allocation Technology to

partition the last level cache. It disallows sharing the cache as in STEALTHMEM [84]

to defeat the last level side channel attack.

Most recently, Gruss et al. [69] proposed a technique that uses hardware transac-
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tional memory (HTM) to prevent cache misses during execution. Though it provides

strong cache side-channel protection, the protection range is limited by the size of

the CPU’s caches. Gruss et al.’s approach requires hardware support, and the ARM

architecture does not support the HTM. Another concern is the possibility of these

protected transactions failing, which happens frequently under heavy system load

(and could be induced by attackers and result from attacks) [69].

4.12 Conclusion

We presented SmokeBomb: a novel, systematic software approach to defeat cache

side-channel attacks on the ARM architecture. Our mitigation approach protects

access patterns on the sensitive data from attackers easily by providing the protec-

tion mechanism to applications as a compiler extension. Our experimental results

show that SmokeBomb protects sensitive information leakages against cache attack

methods known to us effectively—and with minimal overhead—on overall system

throughput.
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Chapter 5

EXPLOITING USES OF UNINITIALIZED STACK VARIABLES IN LINUX

KERNELS TO LEAK KERNEL POINTERS

5.1 Introduction

For performance concerns, unsafe programming languages, such as C and C++,

are still prevalently used in the implementation of operating system (OS) kernels and

embedded systems. While these unsafe languages may allocate memory on stack or

in the heap for variables, these variables may not be initialized before being used.

When a variable is used without proper initialization (which can be caused by either

a programming mistake or padding bytes in a struct inserted by compilers [138]),

the memory values that were present at the same location of the variable before it

was allocated—called stale values—will be read and used. When these stale values

are copied from the kernel space to the user space, user-space programs will be able

to access them, which causes an information-leak vulnerability if the information

contained in the stale values is important.

The use of stale values in Linux kernels can lead to severe security problems,

which have been studied in the past [54, 116, 97]. Moreover, these stale values can

pose severe security threats without being directly used in the kernel. For example,

modern kernel security defenses, such as Kernel Address Space Layout Randomiza-

tion (KASLR), depend on keeping kernel addresses secret from user-space programs.

When attackers get lucky and recover kernel pointer values through leaked informa-

tion (stale values) from the kernel space, they can defeat KASLR [147, 96]. Likewise,

attackers may leak cryptographic keys that are stored in the kernel space.

89



Total Stack-based Heap-based # of exploits

# of CVEs 87 76 (87%) 11 (13%) 0

Table 5.1: The number of information leak CVEs that are related to uses of unini-

tialized data between 2010 and 2019. The majority of these CVEs are stack-based

information leaks. There are no publicly available exploits for these CVEs. Only

one out of these 87 CVEs warns about possible leaks of kernel pointers and potential

KASLR bypasses.

Unfortunately, in Linux kernel, information leaks that are caused by uninitialized

data are common. A study shows that information leak vulnerabilities that are caused

by the use of uninitialized data are the most prevalent type of vulnerabilities among

the four major types of vulnerabilities in Linux kernel [50]. Within the past two

years, KernelMemorySanitizer (KMSAN) discovered over 100 uninitialized data use

bugs in Linux kernel through fuzzing [10]. Worse, due to the difficulty (or the impos-

sibility) of exploiting the majority of information leak vulnerabilities or using them in

high-risk exploits (such as remote code execution or local privilege escalation), these

vulnerabilities are commonly believed to be of low risks. As a result, many uninitial-

ized data uses do not get sufficient attention from developers or security researchers,

are not assigned any CVE entries1, and in some cases their corresponding patches are

not merged into Linux kernel for a long time [97].

Table 5.1 shows the statistics of 87 Linux kernel CVEs that are related to unini-

tialized data uses and are reported between 2010 and 2019 [11]. The majority of

1Here is an example of a security patch that fixes a stack-based information leak vulnerability:

https://github.com/torvalds/linux/commit/7c8a61d9ee. No CVE was ever assigned for the

vulnerability.
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these CVEs are stack-based information leaks. Evaluating the severity of these CVEs

is extremely difficult since no public exploit is available for any of them. Even if a

public exploit is available, using these vulnerabilities to leak key information usu-

ally requires manual and complicated manipulation of the kernel layout, which is

costly and time-consuming. Therefore, all but one CVE (CVE-2017-1000410) men-

tions anything about the potential of leaking kernel pointers and bypassing KASLR,

which leaves an impression to the general public that these vulnerabilities are of low

security impact.

The situation about information leaks in Linux kernel is extremely concerning. In

this work, we demonstrate the actual exploitability and severity of information leak

bugs in Linux kernels by proposing a generic and automated approach that converts

stack-based information leaks in Linux kernels into vulnerabilities that leak kernel

pointer values. Specifically, we focus on leaking pointer values that point to kernel

functions or the kernel stack. These leaked kernel pointer values can be used to bypass

kernel defenses such as KASLR, which is an essential step in modern Linux kernel

exploits [81].

Our proposed approach takes as input an exploit that triggers a stack-based in-

formation leak bug, analyzes the exploit to identify locations where stale values are

coming from, and reasons about an attack vector that places kernel pointer values

at these locations. It is worth mentioning that our approach supports leaking ker-

nel pointers when the size of the leaked stale value is less than a full 64-bit pointer

(8 bytes). We evaluate our approach on five real-world Linux kernel vulnerabilities

(including four CVEs and one bug that was reported by KMSAN) and demonstrate

its generality and effectiveness. The existing Common Vulnerability Scoring System

(CVSS) scores of three of the above CVEs are 2.1 (on a scale of 0 to 10, higher is more

severe), which imply that “specialized access conditions or extenuating circumstances
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Criteria Our approach Lu et al. [97] Xu et al. [147] Halvar Flake [61]

Types of unused memory targeted for generating exploits Stack Stack Stack, Heap Stack

Generating exploits for leaking sensitive data 3 7 3 7

Finding locations of uninitialized data 3 7 7 7

Reasoning about storing sensitive data at a given location 3 3 7 7

Table 5.2: Comparison of Our Proposed Approach for Uninitialized Memory Uses

with the Other Approaches: Although there are several prior research works that fo-

cused on exploiting uninitialized data uses (such as uninitialized pointer dereferences),

there has been no research effort on exploitations of stack-based information-leak bugs

for leaking kernel pointer values.

do not exist, even though there is considerable informational disclosure” [4, 3, 2]. Our

findings can be used to assist CVSS in correcting the scoring and assessment of in-

formation leak vulnerabilities in Linux kernels, and raise awareness in the security

community of these vulnerabilities.

5.2 Background

In this section, we introduce our goal comparing with prior research work and how

leaked kernel pointer values can be used in more severe types of kernel exploits.

5.2.1 Uninitialized Data in Linux Kernel Exploitation

As shown in Table 5.2, prior research work mostly focuses on controlled uses of

uninitialized data in Linux kernels [61, 147, 97]. Our work has a totally different

goal: we focus on exploiting existing stack-based information leak vulnerabilities and

converting them into high-impact vulnerabilities that leak sensitive data from the

kernel. To the best of our knowledge, there is no prior research on the exploitation of

stack-based information leak bugs in Linux kernel for leaking sensitive information.
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5.2.2 Abusing Kernel Pointer Values

Bypassing KASLR

Commonly used in OS kernels, KASLR is a defense mechanism that randomizes the

base address of the kernel (where the kernel code is loaded) at boot time. This

technique was introduced to raise the bar of kernel memory corruption attacks (e.g.,

buffer overflows and use-after-free attacks) and is one of the most effective defenses in

modern OS kernels. Systems with KASLR enabled can successfully mitigate memory

corruption attacks as long as the attacker cannot learn randomized kernel addresses

through information disclosure or side channel leaks [81]. A kernel pointer leak will

naturally lead to the bypass of KASLR, which we will detail next.

The Linux kernel on x86-64 architecture implements 6 bits of entropy for the

kernel code. The address range of kernel text section is 1 GB (0xffffffff80000000

– 0xffffffffc0000000) and the base address of kernel text is aligned by 16 MB.

Hence, there are 64 virtual memory addresses (1 GB ÷ 16 MB) where the kernel

.text section can be loaded. Consequently, on a condition that we can leak a kernel

pointer value pointing to a kernel function, we will be able to calculate the KASLR

slide-byte by simply subtracting the 5th byte of the leaked pointer value from the 5th

byte of kernel text section’s start address. As an example, if the leaked kernel pointer

value is 0xffffffffa9a72cc0, the KASLR slide-byte is 0xa9−0x80=0x29. Attackers

can compute randomized addresses of all kernel functions by using the slide-byte.

Attacking the kernel stack

Another type of kernel pointer values that we attempt to leak are pointer values

that point to the kernel stack. These kernel pointers can be used to identify where

the kernel stack is. The location of the kernel stack must not be discovered by at-
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tackers because it is critical information that the attackers can use in their exploits

to defeat KASLR and achieve arbitrary kernel code execution. For example, the

kernel stack contains return addresses of kernel functions and values of the stack

canary on which the entire stack overflow protection mechanism relies. Addition-

ally, at the bottom of the kernel stack, the thread info structure is stored (when

CONFIG THREAD INFO IN TASK is disabled). This data structure includes architecture-

specific thread-related information and a pointer to the task struct that holds

process-related information.

5.3 Attack Model

We assume that the attacker targets an x86-64 Linux system and tries to leak

kernel pointer values that point to either kernel functions or the kernel stack. As

previously discussed in Section 5.2.2, this step is very important for defeating modern

kernel defenses, such as KASLR, before mounting future attacks.

To exploit information-leak bugs for leaking kernel pointer values, an in-depth

analysis on the target kernel and the information-leaking bug is essential. Through

this analysis, the attacker obtains critical information for exploiting the vulnerability,

such as what types of kernel pointer values can be leaked, and where to place the

kernel pointer values. We assume that the attacker has access to a local machine with

the same Linux kernel and configuration as the target system, which the attacker can

use to conduct the analysis and perform the attack before launching it on the target

system. The attack should have full access to the local machine. We also assume that

the attacker possesses the required exploit that triggers the information leak, which,

at this moment, is likely to not leak any sensitive information on the kernel stack.

With the analysis results, the attacker will generate exploits that can execute on the

target system without the root privilege and reliably leak kernel pointer values.
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5.4 Challenges in Exploitation

We demonstrated how kernel information leaks can occur via uninitialized stack

uses with Listing 2.1 and Listing 2.2. However, simply triggering the vulnerabilities

will most likely not copy any sensitive data from the kernel stack to the user space.

Therefore, we must be able to manipulate data on the kernel stack and ensure kernel

pointer values (or part of a kernel pointer value) are put in uninitialized variables on

the stack. To this end, we must analyze each vulnerability and generate a proper

exploit for it, which involves tackling the challenges that Lu, et al. previously dis-

cussed [97]. It is worth mentioning that our goal is different from theirs, and thus, we

define a series of challenges that we must overcome to successfully leak kernel pointer

values as follows.

C1: Computing the offset to uninitialized data from the kernel stack base.

The first challenge to leaking kernel pointer values is identifying the distance to

an uninitialized memory cell from the base address of the kernel stack, which

we term leak offset. Computing the leak offset allows us to find the exact

location where kernel pointer values should be stored. We identify the leak

offset through applying a new technique, called footprinting, on the kernel stack

in Section 5.5.1.

C2: Storing kernel pointer values at a leak offset.

The next challenge is finding a way to place kernel pointer values at the specific

leak offset. To achieve this goal, we propose two methods: (1) syscall enu-

meration with the help of the Linux Test Project (LTP) to find syscalls that

can be used to store kernel pointer values at the leak offset (see Section 5.5.2),

and (2) kernel stack spraying using the extended Berkeley Packet Filter (BPF)
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(see Section 5.5.3).

C3: Handling data leaks that are less than 8 bytes.

On a 64-bit Linux kernel, when a kernel data leak is larger than 8 bytes, we can

obtain the value of the whole pointer. However, in many vulnerabilities, the size

of memory leak is smaller than 8 bytes—we cannot obtain a complete pointer

value. For handing such small leaks, we reason a possible range of the unleaked

value through the guess and check method, by which we can identify the base

address of the stack kernel. We discuss about the small leaks in Section 5.5.4.

Ideally, in addition to the above challenges, we should also prevent any future over-

writing to kernel pointer values that we stored in the stack before the data is copied

to the user space. This is to guarantee the successful exploitation of information-

leak bugs. Unfortunately, there is no practical method to prevent such unexpected

data overwriting without hijacking the control flow of the kernel on the target sys-

tem. Thus, in this work, we consider such cases where stored stack values are later

overwritten before returning to user space to be unexploitable.

5.5 Exploiting Uninitialized Stack Variables

Our goal is to design a generic approach to exploit stack-based information-leak

vulnerabilities for leaking kernel pointer values. In the rest of this section, we describe

how we tackle the challenges that are represented in Section 6.5.

5.5.1 Computing the Leak Offset

We propose a novel technique, called byte-level stack footprinting, to identify the

distance to an uninitialized memory address from the base address of the kernel stack.

The mechanism is illustrated in Figure 5.1.
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First, we write offset information to each byte of the stack from the base address

by hooking a syscall. In 64-bit kernels, the kernel stack is 16-byte or 8-byte aligned

at a new frame of a function starts and every pointer in the stack is stored at 8-byte

aligned addresses. We store 1-byte offset information which starts from 0x0 to 0xff

in each byte for every 8 bytes. Therefore, even though with 1-byte information leak,

we can identify exact offsets at which kernel pointer values should be stored to leak

them. This mechanism allows us to footprint 2,024 bytes of the kernel stack. Even

though we cannot footprint the entire kernel stack, 2,024 bytes are enough to deal

with most syscalls (roughly 90% of syscalls only use less than 1,260 bytes of the stack).

Then we trigger an information-leak vulnerability. Because the offset information

has been filled into the stack, we can directly check the offset. Lastly, we compute a

leak offset by using the offset information from the kernel. For example, in Figure 5.1,

the offset information copied from the kernel is 04, and thus, we need to find kernel

pointer values that can be stored at an offset (Base − 24).

5.5.2 Extensive Syscall Testing with the LTP

Once the leak offset has been identified, we need to find a syscall and its arguments

that can be used to store a kernel pointer value at each leak offset. For fast and reliable

testing, we leverage the Linux Test Project (LTP) which provides various tools and

concrete test cases for syscalls [88]. We supplement three additional steps onto each

syscall test case in LTP: (1) spraying the stack with a magic value; (2) finding kernel

pointer values stored in the stack; and (3) recording context information.

Figure 5.2 shows how our syscall testing framework finds proper syscalls and

arguments. Before executing a syscall, we fill the kernel stack with a magic value to

detect data changes that are made by the execution of the syscall. Then we inspect

the kernel stack from the base address to find kernel pointer values. To this end, we
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Kernel Stack

0x 0101 0101 0101 0101

0x 0202 0202 0202 0202

0x 0303 0303 0303 0303

0x 0404 0404 0404 0404

0x 0505 0505 0505 0505

0x 0606 0606 0606 0606

0x 0707 0707 0707 0707

0x 0808 0808 0808 0808

Base

Base - 8n ...

0x 0404 0404 ???? ????

0x ???? ???? ???? ????

(2) Trigger a vulnerability

(1) Fill the stack

(3) Check the footprint

(4) Compute a memory offset

Leak offset = Base - 24

0x ???? ???? ???? ????

Figure 5.1: The Footprinting Mechanism to Compute a Leak Offset: With this mech-

anism, we can footprint 2,024 bytes of the stack (about 90% of syscalls use less than

only 1,260 bytes of the stack).

check every 8-byte from the stack base whether each 8-byte value is in the address

range of the kernel stack or the kernel code region (the .text section). If we find any

kernel pointer value that points to the kernel stack or kernel code, we record the name

of the syscall with its arguments and pointer type. From the recorded information, we

select proper context data (a syscall and arguments) that can store a kernel pointer

value at a specific leak offset.

5.5.3 Stack Spraying via BPF

Designed to support filtering packets as requested by user-space applications, the

extended Berkeley Packet Filter (BPF) is a virtual machine that resides inside the

kernel [100]. The BPF virtual machine takes as input BPF programs (that use a

special instruction set) when a user-space application attaches the BPF program
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Kernel Stack

0x 1122 3344 5566 7788

0x 1122 3344 5566 7788

0x 1122 3344 5566 7788

0x 1122 3344 5566 7788

0x 1122 3344 5566 7788

0x 1122 3344 5566 7788

0x 1122 3344 5566 7788

0x 1122 3344 5566 7788

Base

Base - 8n ...

Kernel pointer

(2) Execute a syscall

(1) Fill the stack

(3) Inspect the stack

(4) Record contexts

Offset : Base - 24
Type   : Kernel code
Syscall: mmap
Args   : 0,8,0,0,-1,0

Figure 5.2: The Routine of Our Syscall Testing Framework: We first fill the stack

with a magic value. Then we execute a syscall and find kernel pointer values stored

in the kernel stack. Lastly, we record the context information.

onto any socket. Then, the BPF program executes when data passes through its

attached socket and filters data as programmed.

BPF programs can use stack memory, which is allocated inside the kernel stack.

Listing 5.1 shows the first part of the bpf prog run function, which shows that the

stack of any BPF program is limited to 512 bytes. In the BPF virtual machine, there

is a special register, R10, called the frame pointer. This register points to the top of

the stack (the stack base) that a BPF program uses. Therefore, the frame pointer

always points to a location on the kernel stack. we use this frame pointer and the

location of the stack of a BPF program to spray the stack kernel.

With a carefully crafted BPF program, we can store the frame pointer value to

the stack of a BPF program until the stack is full. In other words, we can store an

address of the kernel stack up to 512 bytes inside the kernel stack. Additionally, the
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1 static unsigned int __bpf_prog_run(void *ctx , const struct bpf_insn *insn)

2 {

3 u64 stack[MAX_BPF_STACK / sizeof(u64)];

4 // 512- byte stack for a BPF program

5

6 u64 regs[MAX_BPF_REG], tmp;

7 ...

Listing 5.1: The main function for executing a BPF program. It allocates the stack

for BPF programs and execute them.

location of the stack local variable of the bpf prog run function changes depending

on functions previously executed. Therefore, different execution paths from various

syscalls transmitting data using a socket to the bpf prog run function can change

the stack spraying range (discussed in Section 5.6.3 with a case study).

Listing 5.2 shows a part of a BPF program that sprays the kernel stack with the

frame pointer. On Line 20, we copy the frame pointer (R10) to the R3. From Line 21,

we spray the stack of a BPF program (kernel stack) with the frame pointer. It is

worth noting that BPF virtual machine strictly restricts behaviors of a BPF program

for preventing security issues by using the static verifier [12]. As examples of the

restrictions for every BPF program, all memory access is bounded, there cannot be

unreachable instructions, the frame pointer (R10) is a read-only register and so forth.

However, the static verifier allows our BPF program to execute stack spraying. we

manually inspected the verifier and could not find a rule for preventing spraying the

frame pointer.

If we can store the frame pointer at a leak offset through the stack spraying,

we will be able to figure out where the kernel stack is. Moreover, we can learn the

memory layout of the kernel stack when a syscall executes based on the location of

the kernel.
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1 #define BPF_MOV64_REG(DST , SRC) \

2 (( struct bpf_insn) { \

3 .code = BPF_ALU64 | BPF_MOV | BPF_X , .dst_reg = DST , .src_reg = SRC , .off =

0, .imm = 0 })

4 #define BPF_STX_MEM(SIZE , DST , SRC , OFF) \

5 (( struct bpf_insn) { \

6 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM , .dst_reg = DST , .src_reg = SRC , .

off = OFF , .imm = 0 })

7 void stack_spraying_by_bpf () {

8 struct bpf_insn stack_spraying_insns [] = {

9 BPF_MOV64_REG(BPF_REG_3 , BPF_REG_10),

10 ...

11 BPF_STX_MEM(BPF_DW , BPF_REG_10 , BPF_REG_3 , -392),

12 BPF_STX_MEM(BPF_DW , BPF_REG_10 , BPF_REG_3 , -400),

13 BPF_STX_MEM(BPF_DW , BPF_REG_10 , BPF_REG_3 , -408),

14 ...

15 };

16 ...

Listing 5.2: A code snippet to perform kernel stack spraying using BPF. we can spray

the frame pointer of a BPF program for 512 bytes on the kernel stack.

5.5.4 Handling Small Data Leaks

If an information-leak vulnerability leaks 8 bytes or more than 8 bytes of data, and

we can store a kernel stack address at a leak offset through spraying the stack with

a BPF program, it is possible to fully recover a kernel stack address. Unfortunately,

the sizes of leaks of many stack-based information-leak vulnerabilities (roughly 60%

of them) are smaller than 8 bytes [11]. Because the kernel stack is aligned by the size

of a page (e.g., 4KB by default), we need the most significant 52 bits of a kernel stack

address (a 7-byte leak) to get the base of the kernel stack. Therefore, leaks that are

smaller than 7 bytes cannot be directly used to reveal the kernel stack base.

To handle this problem, we investigated the static verifier of the BPF virtual
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0x FFFF FF04 XXXX XXXX

0x FFFF FF03 XXXX XXXX

0x FFFF FF04 XXXX XXXX

(1) Trigger a vulnerability after stack spraying

Don’t know the unleaked data

with (FP)

(2) Trigger a vulnerability after stack spraying

(3) Trigger a vulnerability after stack spraying

with (FP — 0x0000 0000 3000 0000)

Unleaked data < 0x 3000 0000

Unleaked data > 0x 1234 0000

with (FP — 0x0000 0000 1234 0000)

0x FFFF FF04 2000 0000 : the frame pointer (FP)

Figure 5.3: The Procedure for Identifying a Kernel Stack Address Using the Kernel

Stack Ppraying via a BPF Program: By checking changes of the leaked data, we figure

out possible ranges of the unleaked data until the stack base address is revealed.

machine to check if arithmetic operations on the frame pointer is possible. We found

that some arithmetic operations (such as bitwise shift) are not possible, but add and

sub can be used with arbitrary immediate values. If the BPF allowed bit shifting

operations on the frame pointer value, we would simply shift the frame pointer value

so that unleaked data can be placed at leak offset. We can only execute add and sub

operations on the frame pointer. However, these operations can be executed even if

the result is beyond the range of the kernel stack. We also found that, after executing

these arithmetic operations, the modified frame pointer value can be stored at the

kernel stack.

By using this unrestricted behavior of a BPF program, we deal with such small

leaks using the guess and check method to identify unleaked data of a kernel stack

address, and, eventually, to reveal the layout of the kernel stack. This strategy

requires manipulating the frame pointer value and check how known (leaked) data
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changes. Figure 5.3 illustrates how a 4-byte information leak vulnerability can be used

to identify the base of the kernel stack by reasoning it. we first trigger a vulnerability

after spraying the kernel stack with the frame pointer. Next, we execute an arithmetic

operation (add or sub) on the frame pointer with an arbitrary immediate value. This

modified frame pointer value is sprayed and we check the leaked data by triggering

the vulnerability. As shown in Figure 5.3, when we sprayed (FP−0x30000000), the

leaked data has changed from 0xffffff04 to 0xffffff03, by which we can notice

that the frame pointer value is smaller than 0xffffff0430000000). We repeat this

reasoning procedure until we can obtain the kernel stack base address: until the most

important 52 bits of a kernel stack address is revealed.

We note that, a security patch was applied to the upstream Linux kernel at April

18th 2019 from the version 4.14.1132 to restrict arithmetic operations on the frame

pointer for unprivileged users so that the frame pointer value cannot go out of the

stack region.

5.6 Evaluation

We evaluate our proposed approach against real-world information leak vulnerabil-

ities in Linux kernels that involve uses of uninitialized stack variables. In this section,

we first present the implementation of our tool in Section 5.6.1, then present the

evaluation results of our syscall-enumeration-based pointer finding approach (in Sec-

tion 5.6.2), and finally present case studies of all five vulnerabilities that we evaluated

against (in Section 5.6.3).

2https://lore.kernel.org/patchwork/patch/1063913/
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5.6.1 Implementation

We implemented an analysis tool, which consists of a shared library (KptrLib) and

a loadable kernel module (KptrMod), to automatically find leak offsets (as described

in Section 5.5.1). Then, we modified the Linux Test Project (LTP) to perform the

three additional steps using KptrMod, as discussed in Section 5.5.2. We also imple-

mented a tool for automatically spraying the kernel stack and handling small leaks

with a BPF program (as described in Section 5.5.3 and Section 5.5.4).

Our tools can be easily used to analyze any given exploit that triggers a information-

leak vulnerability to evaluate its exploitability regarding identifying the location of

the kernel stack, leaking kernel pointers, and finally bypassing KASLR.

5.6.2 Finding Pointers with the LTP framework

First, we evaluate the effectiveness of our syscall enumeration framework. To this

end, we ran the modified LTP on Ubuntu 18.04 (with Linux kernel v4.15.0). For each

kernel, we need to run the LTP framework once to record context information. Then,

we can simply pick a context (a syscall and its argument) from the recorded data for

storing a kernel pointer value at the identified leak offset.

Figure 5.4 illustrates that how many contexts (combinations of a syscall and its

arguments) can store sensitive pointer values (pointing to the kernel code or stack)

for each stack memory offset less than 2,298. The experimental results show that our

modified LTP framework can find syscalls to store kernel pointer values at almost

every stack offset when offsets are larger than the stack base + 440.
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Figure 5.4: The Experimental Result of the Modified LTP Framework: We can find

syscalls to store kernel pointer values at almost every stack offset, when offsets are

larger than 440 bytes and smaller than 2,298 bytes, through the LTP framework.

5.6.3 Case studies

To evaluate our approach, we select four CVEs and one fixed bug (which a CVE

entry has not been assigned) in the Linux kernel and generate an exploit for each

vulnerability according to our analysis results.

Why not analyze more CVEs?

While we agree that analyzing more CVEs will help better demonstrate the generality

and applicability of our proposed approach, during the evaluation of our approach,

we realized that it is extremely time-consuming to develop exploits for these CVEs to

reliably trigger the intended information-leaking bugs. Thus, we deem it infeasible to

evaluate our approach on more CVEs for which no public exploits are available. We

believe that these randomly selected CVEs are covering all scenarios that an attacker

may face and are sufficient for demonstrating the generality of our proposed approach.
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CVE-2018-11508

As we have shown in Section 2.3, this vulnerability is caused by an uninitialized stack

variable (tai field of the txc struct). The CVSS score of this vulnerability is 2.1 [4].

We speculate that the impact of this vulnerability is deemed low because the size of

information leak is only 4 bytes, which are not enough to host an entire pointer on

64-bit Linux systems.

After checking a leak offset through KptrLib and KptrMod, we found that this

vulnerability leaks 5th byte to 8th byte of a pointer value. Also, we confirmed that

a pointer value that points to the kernel text can be stored at the leak offset from

the dataset recorded by the modified LTP in Section 5.6.2. Consequently, we can

successfully get the KASLR slide from this vulnerability.

CVE-2016-4569 and fix 372f525

The CVSS score of CVE-2016-4569 is also 2.1. Our proposed approach successfully

exploits this bug and identifies the KASLR slide.

The patch (fix 372f525) did not become an official CVE entry. In the commit

message of the patch, a kernel developer mentioned that “There should be no danger

of breaking userspace as the stack leak guaranteed that previously meaningless random

data was being returned.3” Unfortunately, our proposed approach works against this

bug and successfully identifies the KASLR slide. This demonstrates the necessity of

our approach for proving the severity of information leak bugs in Linux kernels.

CVE-2016-4486

With this CVE (CVSS score 2.1), we show that how a 4-byte leak vulnerability can

be exploited to identify the kernel stack base.

3https://github.com/torvalds/linux/commit/7c8a61d9ee
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1 /* file: net/rds/recv.c */

2 void rds_inc_info_copy(struct rds_incoming *inc , struct rds_info_iterator *iter ,

__be32 saddr , __be32 daddr , int flip)

3 {

4 struct rds_info_message minfo;

5 minfo.seq = be64_to_cpu(inc ->i_hdr.h_sequence);

6 minfo.len = be32_to_cpu(inc ->i_hdr.h_len);

7 minfo.tos = inc ->i_conn ->c_tos;

8 ...

9 // The flag field in the minfo struct is not initialized

10

11 rds_info_copy(iter , *minfo , sizeof(minfo));

12 // The minfo struct is copied to the user -space with the uninitialized ‘flag ’

field

Listing 5.3: The vulnerable function of CVE-2016-5244. The rds info copy function

copies the minfo struct with flag field uninitialized.

For spraying the kernel stack using the BPF program as in Listing 5.2, we first

checked a leak offset of this vulnerability: the leak offset is 1,568. We, then, executed

the BPF program by calling the sendmsg() syscall. However, we could not clobber

the offset because the BPF program sprays the kernel stack from offset 1,032 to 1,544

when we use the sendmsg() syscall. As we discussed in Section 5.5.3, there are

various syscalls that can trigger the bpf prog run() function and each of them uses

a different execution path to the BPF program runner—the stack spraying range is

different based on the execution path. In this case, we found that we can clobber the

leak offset through the compat sendmsg() syscall by which we can spray the kernel

stack from 1,064 to 1,576. Consequently, we could identify the kernel stack base with

the guess and check method introduced in Section 5.5.4.
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Vulnerability Leak Size CVSS Exploitation Result

CVE-2018-11580 4 2.1 Bypassed KASLR

CVE-2016-4569 4 2.1 Bypassed KASLR

CVE-2016-4486 4 2.1 Kernel stack base

Fixes: 372f525 4 N/A Bypassed KASLR

CVE-2016-5244 1 5.0 Failed

Table 5.3: Summary of Exploitation Results of Vulnerabilities: We analyzed 4 CVEs

and 1 security patch which could not become a CVE entry.

CVE-2016-5244

The CVSS score of this vulnerability is 5.0, which is significantly higher than the

other CVEs that we evaluate in this work. Interestingly, we found that this one-byte

leak vulnerability cannot be exploited through our analysis.

Listing 5.3 shows the vulnerable function where the minfo struct with the unini-

tialized flag field is copied to the user-space through the rds info copy function at

Line 22. However, the leak offset of the uninitialized field (1 byte) always becomes 0

before the vulnerable function executes. Therefore, the vulnerability always leaks 0,

even though we can successfully store kernel pointer values at the leak offset.

Summary

In our evaluation, we analyzed four CVEs and one patch in the upstream Linux kernel

as summarized in Table 5.3. We showed that our approach can effectively generate

exploits. Additionally, the experimental results imply that our community is in need

of a more accurate exploitability evaluation system for information leak bugs in Linux

kernel so that security implications of bugs can be estimated more correctly.
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5.7 Discussion

We discuss about limitations of this work and possible mitigations against stack-

based information-leak vulnerabilities.

5.7.1 Limitations

We showed that small leaks can be exploited to identify the KASLR slide (CVE-

2018-11580) and the kernel stack base (CVE-2016-4486). Even though our approach

to identifying the KASLR slide currently has no limitation in its usage, the BPF-based

approach to reveal the stack base cannot be used in the Linux kernel from v.4.14.113

as in Section 5.5.4 (stack spraying is still possible). Therefore, we need a more general

method to handle small leaks especially for revealing the stack base. To overcome

this limitation, one possible strategy is to analyze the Linux kernel statically to find

code gadgets which can modify the kernel stack with user-controlled data. We leave

this limitation for future work.

Next, our approach analyzes information-leak vulnerabilities using programs that

can trigger a vulnerability. Hence, we could not evaluate our approach in a large

scale; Instead, we show the effectiveness of our approach against a limited number

of vulnerabilities. This is mainly because generating such exploits manually is a

time-consuming and complicated task. Even though we know which function has

a vulnerability, we should find a proper context and create exploits to trigger it

by manually analyzing the kernel source code. To enable large-scale experiments,

our approach needs to be incorporated with emerging automatic exploit generation

technologies such as FUSE [143].
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5.7.2 Mitigating Uses of Uninitialized Memory

There are a couple of security features for uninitialized memory uses in the Linux

kernel. STACKLEAK clears the kernel stack when syscalls return to the user-space,

which was integrated into the Linux kernel upstream from v4.20 [115]. Recently,

new configuration options, CONFIG INIT ALL MEMORY and CONFIG INIT ALL STACK,

were introduced to force initialization of stack and heap variables [1]. In addition,

many mitigation approaches have been proposed to prevent uninitialized memory

uses. Peiró, et al. proposed a mechanism for detecting stack-based information-leak

bugs of the Linux kernel through static data flow analysis [114]. Garmany, et al. have

proposed another static data flow analysis framework that finds uninitialized stack

memory uses after lifting binaries into an intermediate representation [64]. UniSan

is a compiler-based approach to prevent information leaks caused by uninitialized

read [96]. UniSan performs byte-level data flow analysis statically for OS kernels and

instruments code to initialize data if it leaves kernel without initialization. The kernel

memory sanitizer (KMSAN) is a tool to track uninitialized data to check whether

the data leaves OS kernels or not, which can be utilized with fuzzers such as the

syzkaller [10]. On the other hand, as a runtime defense system for OS kernels, kMVX

has been proposed against information-leak vulnerabilities by leveraging the multi-

variant execution [112]

5.8 Related work

Exploiting uninitialized memory uses.

Albeit there have been research efforts on controlling uninitialized data to leverage it

in other types of vulnerabilities, exploiting stack-based information-leak vulnerability

to leak sensitive information such as pointer values pointing to the kernel stack or
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kernel code has not been explored yet [61, 97, 147].

Thomas Dullien (also known as Halvar Flake) proposed a search algorithm using

call graphs for finding a function that can have a stack frame overlapping with the

target memory address [61]. Lu, et al. proposed an automated method for writing

arbitrary data to uninitialized stack variables through targeted stack spraying [97].

Xu, et al. showed common types of uninitialized uses and their potential threats

by exploiting two uninitialized use vulnerabilities which can lead attackers to gain

arbitrary kernel code executions in the macOS [147].

Automating kernel exploitation.

Automated kernel exploit generation is a demanding task. In addition, even determin-

ing the exploitability of bugs requires significant manual efforts. Security researchers

have been attempting to address these problems. FUZE [143] proposed to iden-

tify useful system calls for kernel use-after-free exploitations by leveraging fuzzing

and symbolic execution techniques. KEPLER [142] showed a code-reuse exploit ap-

proach that converts a user-provided control-flow hijacking primitives into arbitrary

stack overflows, and thus, it bootstraps return-oriented programming (ROP) payload.

Chen et al. [52] proposed static and dynamic analysis methods to find useful data

structures for use-after-free exploitations in the Linux kernel.

5.9 Conclusion

In this work, we proposed a generic approach to exploit uses of uninitialized stack

data in Linux kernels to leak pointer values that are pointing to either kernel func-

tions or to the kernel stack. These leaked pointer values can then be used to defeat

KASLR and mount future attacks against Linux kernels. Our evaluation results show

that we can effectively analyze and exploit stack-based information-leak vulnerabil-
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ities through the proposed approach. Our proposed approach exposes the actual

exploitability and severity of information disclosure bugs in Linux kernels and will

raise awareness of the community on the security impact of these bugs. We expect

our findings will help adjust CVSS scoring for information leak bugs inside Linux

kernels.
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Chapter 6

VIK: PRACTICAL MITIGATION OF TEMPORAL MEMORY SAFETY

VIOLATIONS THROUGH OBJECT ID INSPECTION

6.1 Introduction

Temporal memory safety violations, such as use-after-free (UAF) and double-free

vulnerabilities, are a critical security issue impacting programs developed in unsafe

languages. These violations occur when a program dereferences a dangling pointer

which points to a memory location that was allocated and later freed. Memory

safety violations may lead to severe vulnerabilities in operating systems and software

programs. In 2019, 53% of the UAF vulnerabilities in the Common Vulnerabilities and

Exposures (CVE) database lead to remote code execution or privilege escalation [58].

Unfortunately, since many operating systems and user-space programs are still written

in memory unsafe languages, memory safety violations remain a clear and present

danger to computer security. Therefore, preventing the security impact of temporal

memory safety vulnerabilities is of paramount importance, yet it is still an open

problem.

Ideally, these vulnerabilities would be found automatically during software devel-

opment and testing. However, the spatial separation of allocation and deallocation

code and the size and complexity of real-world software have kept effective, automated

techniques from being developed thus far. As a result, recent research has focused on

preventing not the vulnerabilities themselves, but their exploitation. These protec-

tion techniques span two categories: Static analysis achieve impressive scalability, but

lack accuracy because of the inherent difficulty in solving complex program analysis
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problems such as inter-procedural data flows and pointer aliasing [143, 134, 57, 89].

As a consequence, most proposed defenses are dynamic, aiming at forbidding un-

safe memory reuse [57, 128, 19, 108, 45], validating memory accesses and detect-

ing the use of dangling pointers [106, 129] or preventing the creation of dangling

pointers [126, 92, 134, 89, 153, 48] at runtime. These solutions show promise in

detecting (and defending against) temporal memory violations, but they introduce

significant performance and/or memory overhead. For example, the state-of-the-art

defenses CRCount [126] and pSweeper [92] incur runtime overhead of roughly 135%

and 71%, respectively, on running the perlbench program from SPEC 2006. This

overhead is inherent to existing dynamic protection mechanism designs: It arises

from the use of joint metadata that records relations between pointers and allocated

objects [126, 89, 134, 128]

In this work, we propose ViK, a practical runtime defense mechanism against ex-

ploits of temporal memory safety vulnerabilities in user-space applications and OS

kernels. The core idea backing ViK is Object ID inspection: ViK assigns a random ID

to every allocated object and stores it in the unused bits of the corresponding pointer

value (virtual address). While the operating system or the user-space program is ex-

ecuting, ViK inspects the pointer value before each dereference and ensures that the

pointer value references the original object for which it was created. ViK also inspects

the pointer value before deallocating the object. This design endows ViK with advan-

tages in false positive/negative rates, memory usage, and runtime overhead. First,

by storing metadata in pointer values, ViK maintains low memory overhead (averag-

ing 9% on for SPEC CPU 2006). CRCount [126], the most recently published work,

shows memory overhead of 55% on the same benchmark [126]. Second, by not relying

on data-flow analysis or pointer tracking for identifying the location of pointers, ViK

does not have false negatives that stem from type-unsafe pointers or pointer values
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temporarily stored in registers or on the stack, whereas existing solutions may intro-

duce such errors and fail to mitigate exploits because of them [18, 126, 57, 134, 89].

Runtime overhead determines the practicality of temporal memory safety defenses.

To minimize the runtime overhead caused by pointer inspections, ViK employs a

sound static analysis to exclude safe pointer dereferences and only protects potentially

unsafe ones. In our experiment on SPEC CPU 2006, ViK exhibits runtime overhead

of about 10% on average (similar to userspace-specific state-of-the-art UAF defenses,

such as Markus [18], which does not scale to kernel code). Our evaluation also shows

that ViK-protected OS kernels have an overall 20% system performance overhead on

both Linux kernel and Android kernel. ViK is the first mitigation approach against

temporal memory safety violations that scales to modern OS kernels.

The pure-software version of ViK does not rely on hardware features, which makes

it applicable to legacy hardware. Nonetheless, emerging hardware features can bring

substantial benefit: By employing the Top Byte Ignore (TBI) feature of AArch64

processors, we implemented a hardware-assistant ViK variant (codenamed ViKTBI )

that achieves an average full-system runtime overhead of less than 2% when applied on

Android kernels. As a result, a major hardware manufacturer is currently deploying

ViKTBI in their OS kernels in actual smart-automotive consumer devices in the real

world. To the best of our knowledge, this makes ViK the first kernel-level temporal

memory safety system to be deployed in actual real-world products.

6.2 Previous Defenses Against Use-after-free Exploits

Pointer invalidation

Defenses designed to prevent the creation of a dangling pointer either invalidate point-

ers that point to deallocated memory regions or prevent the deallocation of an object
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if there are pointers that point to it [126, 92, 134, 89, 153, 48]. These defenses all

maintain additional metadata to track the relationships between pointers and their

corresponding objects (memory allocations). Compared to approaches based on safe

memory allocation (which will be discussed later), pointer invalidation techniques pro-

vide a stronger defense with lower memory overhead. However, pointer invalidation

methods usually incur substantial runtime overhead because they have to monitor

memory allocations and maintain relevant metadata. In multi-threaded programs,

the use of joint metadata could also impose a high-performance overhead because

the metadata must be updated in a thread-safe way [126]. Additionally, due to the

difficulty (and infeasibility) of performing a sound and complete data flow analysis

on programs in general, pointer invalidation defenses inevitably suffer from false neg-

atives. For instance, these defenses do not track the propagation of pointer values

through type-unsafe pointers. In addition, they cannot track and invalidate point-

ers which are stored in registers and on the stack, which can result in further false

negatives [134, 89, 153, 48].

Safe memory allocation

Safe memory allocation techniques aim to increase the difficulty of exploiting UAF

vulnerabilities. An example is the SLUB allocator (used by the Linux kernel), which

allocates small objects to predefined cache slots of certain sizes. The SLUB allocator

makes UAF attacks harder as it guarantees that a kernel object only overlaps with

a deallocated object with the same size. However, SLUB does not completely mit-

igate the exploitation of kernel UAF vulnerabilities [145]. There are several similar

mitigations designed to prevent the re-allocation of objects to the memory areas pre-

viously occupied by a victim object [57, 128, 19, 45, 108]. Although these mitigations

make UAF-based attacks even harder than SLUB, they tend to incur high memory
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overhead due to the use of new allocation policies (e.g., Oscar allocates each object

in a unique virtual memory area [57]). While, MarkUs [18], a user-space memory

allocator that delays the reuse of freed memory objects until there are no dangling

pointers, showed good memory and performance overhead by using the well-designed

metadata and additional threads for inspecting it.

Access validation

Several approaches attempt to prevent UAF attacks by validating every memory ac-

cess that involves a pointer dereference [106, 129]. While these approaches provide

security guarantees and acceptable memory overhead, they all incur substantial run-

time overhead because they must check every pointer dereference or update metadata

on a regular basis during runtime [106].

6.3 Unused Bits in 64-bit Virtual Addresses

64-bit architectures use 64-bit virtual addresses. However, most modern 64-bit

architectures do not fully utilize the 64-bit virtual address space. For example, x86-

64, AArch64, RISC-V, MIPS, and OpenSPARC only support virtual addresses up to

(or less than) 48 bits, which correspond to a virtual address space of at most 256

TB1 [75, 20, 76, 103, 131]. We observe that the most significant 16 bits in every

pointer value are currently unused for data pointers on most processors.

These unused bits have not gone unnoticed. ARM announced pointer authen-

tication instructions in the ARMv8.3-A instruction set, which uses the unused bits

in 64-bit pointers to sign and authenticate virtual addresses [117]. To maintain the

1On x86-64, the most significant 16 bits of a virtual address (from the 48th bit to the 63rd bit)

must be the same as the 47th bit. Otherwise, the processor will raise an exception when accessing

the address.
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integrity of pointers in specific contexts, developers can generate a pointer authen-

tication code (PAC) and store it in place of the unused bits. This approach is used

for detecting (and verifying) changes to a pointer value (i.e., address) rather than

validating the relationship between a pointer and a virtual address to which the

pointer points. One typical example of pointer authentication is using it to protect

the stack pointer. Unfortunately, pointer authentication instructions are not able

to prevent UAF vulnerabilities directly because UAF can occur regardless of the

pointer’s authenticity. In recent work, Liljestrand et al. have shown that the pointer

authentication scheme is not able to mitigate temporal safety vulnerabilities such as

UAF [90].

It is worth noting that ViK does not exclude the use of PAC but complements it by

providing additional protection on relationships between data pointers and memory

objects. It is even possible to use ViK and PAC together on the same pointer: a

pointer authentication code can be generated for a pointer containing the object ID

issued by ViK in the unused bits. Thus, we can first authenticate the pointer value

and then verify that the pointer value references the original object for which it was

created.

In addition, ARM introduced Memory Tagging Extension (MTE) in ARM v8.5 [5]

and Application Data Integrity (ADI) is enabled in a number of SPARC processors

(M7, M8, S7, T7, and T8) [111]. With MTE, a tag is assigned to each allocated

memory region, and only a pointer that has the same tag can access the region.

Similarly, ADI utilizes version numbers stored in the unused bits of application’s

memory pointers and the memory they point to. We expect that MTE and ADI

can help prevent memory errors. However, the size of a tag in MTE and a version

number in ADI is just 4 bits [9, 83], and thus, can only have 16 possible values. Also,

how MTE and ADI can be automatically applied to OS kernels is an open research
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question. Currently, ADI can be used for user-space programs on Linux and Oracle

Solaris [83, 111], but Linux kernel support for using MTE in user-space programs

remains in development [62]. Therefore, it is important to mitigate temporal memory

safety violations for OS kernels and for the large set of processors, including the latest

Intel chipsets, that do not offer hardware features for detecting temporal memory

errors.

6.4 Threat Model

In this work, we focus on mitigating UAF and double-free exploits in all pro-

grams written in C/C++ that run in either user space or kernels. Similar to existing

defenses [18, 126, 92, 57, 134], we focus on heap-related temporal memory safety

vulnerabilities as stack-based UAF or double-free vulnerabilities can be handled by

use-after-scope or escape analysis [18, 57]. In addition, such stack-base UAF vulner-

abilities are rare in reality. Kernel Address Sanitizer (KASan) stopped the support

of detecting stack-related UAF errors because the detector is considered “almost en-

tirely useless” [7]. Therefore, it is reasonable to narrow down UAF and double-free

vulnerabilities to heap-only.

6.5 Overview

ViK aims to mitigate temporal memory safety vulnerabilities by detecting and

preventing the use of dangling pointers at runtime. As illustrated in Figure 6.1, ViK

adds a middle layer between the compiling stage and the linking stage: ViK takes

as input a program compiled to LLVM IR, identifies all allocation and pointer deref-

erencing sites, and performs static instrumentation on the LLVM bitcode to insert

object-ID-specific logic. Specifically, ViK replaces each memory allocator with a new

one (allocvik(x)) and adds an object-ID check (inspect(p)) at (1) pointer dereferencing
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           == ID in obj)

    free(ptr); 

Figure 6.1: Overview of the Static Instrumentation for Applying ViK and a ViK-

protected Program: The instrumentation process first takes LLVM IR as input. Then,

it performs static analysis to replace allocators and insert object ID inspection code

before pointer operations. At runtime, each object ID is copied to the unused bits of

the pointer and the base address of the newly allocated object. Before any protected

pointer is dereferenced, ViK inspects that the object ID stored in the pointer matches

the one stored in the object.

sites and (2) when an object is deallocated as defined in Section 6.7.

The core of ViK consists of the following three main steps.

I. ViK assigns a random object ID to an object when one is allocated in the heap

memory.

II. ViK copies the assigned object ID to the unused bits of a pointer value and to a

reserved field at the base of the newly allocated object. This way, ViK creates a

correspondence between the pointer value and the object.
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III. At runtime, when the pointer value is dereferenced, ViK inspects the object ID

and allows the dereference only when the ID stored in the pointer value matches

the one in the object. Also, ViK inspects the object ID when an object is freed to

prevent the double-free.

Dynamic instrumentation in ViK

To maximize compatibility with legacy programs and systems, ViK is designed to

be independent of hardware support on 64-bit architectures. By embedding object

IDs directly into pointer values, ViK avoids two common dependencies, relied on

by other defenses, that cause excessive runtime overhead, memory overhead, and

concurrency challenges: the use of in-memory central metadata and the tracking of

pointer propagation. Because it is stored in the pointer itself, object IDs used by

ViK always move with the pointer value to which they belong whether the pointer

value is loaded to a register, propagated into other pointers, or spilled onto the stack.

However, a pointer value might not point to the base address of an object. To find

the base address of any object pointed by a protected pointer value, ViK additionally

embeds a base identifier into each object ID, which will be discussed, together with

the design of object IDs, in Section 6.6.

Static optimization in ViK

Our design allows it to scale to OS kernels. To accomplish this, ViK must be able

to defend programs that have extreme numbers of pointer accesses (e.g., there are

about 2.3 million pointer dereferences in Linux kernel 4.12), and näıvely inspecting

every memory access will incur an impractical (or, minimally, unnecessary) runtime

overhead. Therefore, we aim to minimize the number of pointers to inspect by limiting

the dynamic instrumentation only to those dereferencing sites that are potentially
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unsafe. To this end, ViK conducts an inter-procedural static data-flow analysis to

identify memory accesses that are considered to be safe from UAF exploits and exclude

them from the inspection.

One result of this optimization is that ViK omits object ID inspection on deref-

erences of pointers that are never stored in global regions or the heap, deeming them

“UAF-safe.” Because these temporal pointer values only exist on the stack, have a

very short lifetime, and are generally accessed by a limited amount of code, their use

as a dangling pointer in a UAF exploit is extremely unlikely.2 Therefore, ViK does not

inspect pointer values that are only stored on the stack and are never copied to the

heap or into global variables. Prior work shares this trade-off: For example, DangNull

only tracks pointers located on the heap, which is more aggressive than our assump-

tion [89]. Our protection model covers more dereference sites than DangNull [89] and

the same amount of dereference sites as CRCount [126] and pSweeper [92]. Addition-

ally, ViK covers pointer values in registers, weak-typed pointers, and pointers that

are spilled onto the stack, which are not covered by prior work. We will extensively

discuss this in Section 6.7.

Mis-detections

ViK’s design guarantees an absence of false positives (mistaken UAF detection when

no UAF is taking place), but false negatives (no UAF detection when a UAF is taking

place) can occur if two objects are assigned the same object ID or if an object assumed

to be UAF-safe is actually attackable. For the former case, object ID collisions occur

with a very low probability. We believe that there is sufficient entropy in the object

2Note that, if a heap-stored dangling pointer is used to attack the object pointed to these UAF-

safe pointers, ViK will still catch the attack.

122



IDs to defeat an attacker’s attempt of circumvention3 as we will discuss in Section 6.6.2

and Section 6.9.3, respectively. The latter case is also rare. In fact, the only example

that is known to us of a UAF-safe object being used to trigger a UAF involves another

necessary step that ViK does catch, which we term delayed mitigation and will discuss

in Section 6.9.3.

6.6 Object ID

ViK generates an object ID for each object and embeds the ID into both the

pointer value and the object. We first present how ViK securely generates object IDs

(Section 6.6.1) and then further discuss object ID entropy (Section 6.6.2).

6.6.1 Generating Object IDs

As depicted in Figure 6.2, an object ID has 16-bits and is comprised of two parts

of variable lengths: an identification code and a base identifier.

Identification code

The identification code is a random number generated by the ViK allocator (defined

in Section 6.7). ViK uses the identification code to uniquely identify each allocated

object. The size of the identification code changes depending on the size of the base

identifier.

Base identifier

A pointer value does not necessarily point to the base address of an object; instead,

it may point to any field inside the object. We need to be able to map a pointer value

3Especially for OS kernels, consider that each incorrect ID guess by the attacker will crash the

entire system.
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Identification Code Base Identifier

63 X+1 X 48 0

Bit [63:x+1] = Identification code

              —> a pseudo-random number

Bit [ x: 48] = Base identifier

              —> the middle part of an object’s base address

Pointer

Figure 6.2: The Object ID Consists of Two Parts: (1) identification code and (2)

base identifier.

1 get base identifier(pointer , M, N) {

2 Bwe = (pointer & (2M − 1)) >> (N);

3 return BI;

4 }

5 get base address(pointer , M, N, BI) {

6 BA = (pointer & ∼(2M − 1)) | (Bwe << N);

7 return BA;

8 }

Listing 6.1: Pseudo code for extracting the base identifier and recovering the

base address of an object from a pointer value. Both operations only use bitwise

instructions.

to the base address of the object to which it points so that ViK can find the object

ID, which is stored as the first member of the object. Therefore, ViK introduces base

identifiers, which are used to find the base address of any object.

ViK aligns allocated objects to a predefined alignment of 2X bytes, which essen-

tially creates slots of at least 2X bytes. By aligning the addresses of objects, the least

significant X bits of all objects’ base addresses must be zero. An object may require

one or more slots depending on its size. For example, if a slot is 16 bytes, a 24-byte

object will use two slots.

ViK uses two predefined constants M and N to determine the alignment (which
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is also the size of each slot). 2M is the maximum size (in bytes) of objects that can

be covered by using slots of size 2N (bytes) with a base identifier of M − N bits.

For example, suppose M and N are 12 and 6, respectively; the maximum size of any

object is 212 = 4096 bytes; and the size of each slot is 26 = 64 bytes. The base

identifier will be 12− 6 = 6 bits long.

Once the constants are determined, the base identifier can be calculated from the

start address of an allocated memory region as shown by Lines 1–4 of Listing 6.1.

During runtime, ViK can recover the base address of an object from any pointer

value, as in Lines 5–8 of Listing 6.1. ViK only uses bitwise operations to find base

addresses of objects. It does not need memory accesses, which helps keep runtime

overhead low.

Determining the constants

M and N must be configured before ViK’s instrumentation. Since slots are the small-

est allocation unit in ViK, using large slots can cause excessive memory overhead. ViK

asks the user to specify M and N with the assistance of the knowledge of object sizes.

ViK helps users to determine optimal choices of the two parameters by identifying

sizes of all the involved objects in the target program, which is straightforward to

do with a compiler pass. Note that determining the optimal M and N is a one-time

effort for each target program. We will demonstrate the process of determining M

and N on Linux kernel.

Since ViK can potentially support multiple sets of M and N to generate base

identifiers for various sizes of objects, we can minimize the memory overhead by using

different constant values for different types of objects. During the instrumentation

phase, base identifier calculation functions with different constants can be injected for

each pointer operation, depending on the size of each object and predefined constants
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for it.

6.6.2 Entropy of Object IDs

The effective entropy of an object ID is equal to the size of the identification code.

That is, the base identifier does not add any security. When a system is attacked, an

object can be allocated at the exact same address where the victim object was placed,

and this newly allocated object would have the same base identifier as in the victim

object. This entropy may seem low, but we believe it is sufficient to stop attacks.

In our evaluation, we used 10-bit identification codes (which have a collision ratio

of about 0.09%), which is equal to the entropy of the Linux kernel’s Kernel Address

Space Layout Randomization (KASLR) [81], and ViK could successfully defeat all

attacks that use known vulnerabilities in Linux kernel without any collision of object

IDs. To make a UAF attack successful, an attacker must re-allocate an object that

has the same base identifier as the victim object, and the newly allocated object must

have the same object ID that is randomly chosen (the random space does not decrease

by allocating new objects). Also, there is only one chance to launch an attack: The

kernel will panic upon failed attacks due to an invalid memory access via a pointer

value returned from the inspect() function (Definition 3). Therefore, even though

the 0.09% collision ratio may not seem very low, it will still be difficult for an attacker

to bypass the mitigation in practice.

6.7 Instrumentation

In this section, we elaborate on ViK’s core logic—the instrumentation procedure.

ViK instruments the target program at the LLVM IR level through a two-step process.

First, ViK runs a static data-flow analysis to determine all optimal locations for

adding pointer inspection logic (we scope pointers to protect in Section 6.7.1 and detail
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the static analysis in Section 6.7.2). Second, ViK instruments the LLVM bytecode of

the target program to insert the pointer-inspection logic (discussed in Section 6.7.3).

Common Terms

Before presenting the design details of ViK, we define terms that we will use through-

out this work: the memory allocator and the inspect function of ViK.

Definition 2. ViK memory allocator (allocvik()) allocates a specific size (x) of heap

memory and returns its start address (p) along with an object ID (id). The ID is also

stored in the allocated memory.

allocvik(x)→ pid, id ∈ [p...(p+ x)] ∈ {memheap}

p is the start address (a virtual address in the 64-bit canonical form), id is an assigned

object ID, and pid is the combined form that contains id in p.

Definition 3. The inspect function (inspect(p)) returns p if and only if the id in p

corresponds with the id in a memory object to which p points.

inspect(pid)→ p⇔ id ≡ p ∈ {memheap} ∧ id ∈ [p...(p+ x)]

Therefore, in ViK-protected programs, UAF attacks are mitigated because one of the

following two cases will hold for dangling pointers: (1) it will have an object ID that

is different from the ID of the object to which it points; or (2) it will not point to a

valid memory region on the heap.

6.7.1 UAF-safe Pointers

Because ViK defends against UAF attacks by validating memory accesses, its

runtime overhead is proportional to the number of pointer inspection sites that ViK

127



inserts into the target program. Therefore, our optimization goal is to minimize the

number of inspect functions in the protected program.

Based on our analysis of prior UAF exploitations in the Linux kernel and user-

space applications, we assume that pointer values pointing to global or stack variables

are unlikely to be used to exploit corresponding UAF vulnerabilities [7, 134, 89]. This

is because the variables such pointers point to can never be programmer deallocated

(freed) and have a very short lifetime. Therefore, we deem memory accesses using

these pointer values as very likely to be safe from UAF attacks, i.e., UAF-safe. It is

worth noting that state-of-the-art UAF defenses make the same assumption [7, 126,

143, 57, 134, 89]. Also, the Kernel Address Sanitizer (KASan) deprecated a function

for detecting UAF errors related with stack-located objects because they did not find

such bugs for two years of fuzzing effort [7]. A pointer value of a pointer operation is

regarded as UAF-safe if all memory accesses through this pointer value are UAF-safe

before the dereferencing site. To reduce runtime overhead, ViK finds all UAF-safe

pointer values using static analysis in a principled manner and excludes them when

inserting the pointer-inspection logic.

In addition, we consider pointer values that have never been stored in the heap

or global variable to be UAF-safe. ViK, thus, does not inspect pointer values stored

only on the stack, before they are copied to the heap or global variable. If a pointer

value of a newly allocated object stays only on the stack, it can only be used within

the current context, and thus, a UAF bug can happen only when the object is freed

and the pointer value is used after the deallocation in the same context. To exploit

this kind of UAF bugs, an attacker must allocate objects to overlap with the victim

object after it is freed and before the dangling pointer is used. Also, the attacker

cannot execute code in the same context where a UAF bug occurs. Consequently,

in single-threaded programs, exploiting such UAF bugs is not possible. In multi-
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The freed virtual_address is 
assigned to ptr

function add_item()
Thread 2 — use-after-free

struct obj *ptr = kmalloc(…);

ptr->num = 10; // UAF error
A UAF error occurs, because ptr 
equals to virtual_address

2

4
Double-free of virtual_address

function delete_item()
Thread 1 — double-free

kfree(virtual_address);

ViK detects this double-tree  

kfree(virtual_address);1

3

Figure 6.3: An Example of UAF Error Based on a Double-free Bug: In Thread 2, a

UAF error occurs with a pointer value stored only on the stack by the double-free

bug at ® in Thread 1. This type of UAF error can be exploited if an attacker can

allocate a new object between ® and ¯. ViK inspects the object ID when an object

is deallocated at ® and stops the attack.

threaded programs such as OS kernels, it is extremely difficult to overlap the victim

object within the limited time frame because we cannot know when the victim object

is freed and accessed again. The only possible UAF exploitation case currently known,

even with a pointer value that has never been stored in the heap of a global variable, is

leveraging a double-free bug which can lead to a UAF error as illustrated in Figure 6.3.

However, ViK can prevent the double-free because it inspects the pointer ID when

an object is deallocated. Hence, all memory accesses using such pointer values are

considered to be UAF-safe until such pointer values are copied to global variables

or the heap. Any pointer value copied from the heap or global variables is always

considered to be UAF-unsafe.

Definitions of UAF-safety

For the sake of clarity, we define UAF-safe pointer values as follows, which holds

through the entire static analysis.
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Definition 4. Any pointer value that points to a global or a stack variable is UAF-

safe. Also, a pointer value that points to the heap is UAF-safe if and only if the

pointer value has never been stored in the heap or a global variable.

The above definition states that only globally known pointer values pointing to

the heap are relevant to exploiting UAF vulnerabilities.

Definition 5. Assuming that a function takes a pointer value as one of its arguments,

this pointer value is UAF-safe if and only if the pointer value is UAF-safe in the caller

function.

When only UAF-safe pointer values are used as arguments of function calls, these

arguments are UAF-safe in the callee function since they are still used as stack vari-

ables and may not be accessed by other threads unless they are copied to a global

variable or the heap.

Definition 6. Assuming that a function returns a pointer value, the left-hand-side

(lhs) pointer value at the call site in the caller function is UAF-safe if and only if the

pointer value is UAF-safe in the callee function.

If the returned pointer value is UAF-safe at the return site of the callee function,

the lhs pointer value at the call site will be a local variable in the caller function

before it is copied to a global variable or the heap. Hence, this pointer value is still

UAF-safe before the copying happens. However, if we do not know whether or not the

returned pointer value is UAF-safe in the callee function, for soundness, we must make

an under-approximation by assuming that the pointer value in the caller function is

UAF-unsafe from when the pointer value is returned. This can happen when our

analysis does not consider the callee function or cannot determine the UAF-safety of

a pointer value returned by the callee function. Likewise, any pointer values that are

not UAF-safe are considered to be UAF-unsafe for soundness.
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6.7.2 Static Analysis

The goal of ViK’s static analysis is to determine if a pointer value is UAF-safe

at an accessing site of this pointer value. For accuracy, ViK’s static analysis is both

flow-sensitive and path-sensitive. In intra-procedural analysis, since the UAF-safety

of a pointer value may change depending on its execution path, simple backtracking

on the data flow is insufficient to determine the UAF-safety of a pointer value at an

arbitrary pointer operation. To consider all possible cases that affect the UAF-safety

of a pointer value, our static analyzer contains a Reaching Definition Analyzer (RDA)

that works on LLVM bitcode instructions. The RDA recovers all possible data flows

that can reach a pointer operation. We regard a pointer value as UAF-safe if and

only if all its uses are UAF-safe according to Definitions 4, 5, and 6.

Step 1: Intra-procedural Analysis

We conduct an intra-procedural analysis on each function, to find UAF-safe pointer

values, by analyzing all pointer operations in a function. To this end, we execute

the RDA for every pointer operation. According to Definition 4, a pointer value is

UAF-safe if it points to a stack variable or a global variable. In such cases, ViK does

not place inspect() functions for pointer operations of that pointer value. Pointer

values copied from the heap or global variables must be inspected by ViK since they

are considered UAF-unsafe.

Next, we mark a pointer value as UAF-unsafe if the pointer variable may hold a

return value from another function. As the first step is intra-procedural, we do not

know if the returned pointer value is UAF-safe or not. However, we mark pointer

values with return values returned from basic allocators (e.g., malloc() in libc or

kmalloc() in the Linux kernel) as UAF-safe, since the pointer values returned by
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basic allocators are obviously UAF-safe. Lastly, if a function argument is a pointer

value, we deem this pointer value UAF-unsafe. The UAF-safety of these pointers can

be updated after finding UAF-safe arguments and return values in future steps.

Step 2: Analyzing UAF-safe heap addresses

Once the initial intra-procedural analysis is complete, we build a call graph for each

module (a source file or an object file after compiling) of the target program. The call

graph is used to determine the UAF-safety of pointer values in our inter-procedural

analysis.

First, we analyze pointer values that hold the pointer values returned from basic

allocators. Note that immediately after a basic allocator returns, the pointer value

(which is the address of the newly allocated object) is unknown to other threads. If

there is an instruction that copies a pointer value to a global variable or the heap, the

pointer value must become UAF-unsafe after the execution of the store instruction.

Tracking data flows related to these pointer values is straightforward since they are

local variables located within the stack frame.

Step 3: Finding UAF-safe function arguments

To find UAF-safe arguments for every function call, we visit functions from the domi-

nator node based on the call graph. We check every call instruction and its arguments.

If a pointer is used as an argument, we decide whether or not the argument is UAF-

safe. We add an attribute to the argument to mark it, only if an argument is UAF-safe

for every case before the call instruction. We repeat this process until we have visited

all functions in the call graph. Because we limit the range of our static analysis to a

single module, we omit checking arguments of functions that go beyond the analysis

range.
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If an argument of a function has been marked as UAF-safe, we visit the function

to run RDA again to change the UAF-safety of pointers in each pointer operation

that we have visited before.

Step 4: Finding UAF-safe function return values

We find UAF-safe return values from the post-dominator nodes in the call graph.

Similar to the process of finding safe arguments, we visit functions that return a

pointer value and analyze their return values. In a function, it is possible to have

multiple return instructions depending on execution paths. Therefore, we perform a

path- and flow-sensitive analysis for each return instruction and decide their UAF-

safety. Only if all possible return values are UAF-safe, do we mark the pointer value

as a UAF-safe.

As in Step 3, it is necessary to execute the RDA again for every function after

finding UAF-safe return values. The UAF-safety of pointer values can be changed

depending on the UAF-safe return values.

Step 5: Finding the first memory access in a function

Through the previous analyses, the UAF-safety of all pointer values has been decided.

In the last step, we optimize the number of inspect() functions for each function. The

idea of this step is to inspect only the very first pointer operation of a UAF-unsafe

pointer value in a function, and thus, UAF-unsafe pointer values are inspected once

in every function. We carefully take this step using RDA to detect changes of pointer

values along all possible execution paths. We thus are able to find the first memory

access among pointer operations using the same pointer value. This optimization

significantly decreases the runtime overhead, but it may lead to false negatives. We

discuss its security implications further in Section 6.9.3.
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1 struct obj *global_ptr = NULL;

2 void add(struct obj *ptr) { *ptr += 5; /* safe */ }

3 void sub(struct obj *ptr) { *ptr -= 5; /* unsafe -> inspect() */ }

4 void make global(struct obj *ptr) { global_ptr = ptr; }

5 void ptr ops(struct obj *arg) {

6 struct obj *safe_ptr = malloc(4); /* safe */

7 struct obj *unsafe_ptr = get obj(); /* unsafe */

8 *safe_ptr = 10; /* safe */

9 *unsafe_ptr = 10; /* unsafe -> inspect() */

10 add(safe_ptr);

11 sub(unsafe_ptr);

12 if( arg == 0 ) { make global(safe_ptr); /* safe -> unsafe */ }

13 else {

14 *safe_ptr = 10; /* safe */

15 global_ptr = malloc(4);

16 }

17 *safe_ptr = 0; /* unsafe -> inspect() */

18 *unsafe_ptr = 0; /* unsafe -> restore () */

19 ...

Listing 6.2: An example of the static analysis result. Our flow-sensitive and path-

sensitive static analysis helps ViK reduce the performance overhead significantly as

well as provide robust security guarantees against UAF attacks.

Running example

Listing 6.2 shows an example of our static analysis result. In the ptr_ops function,

unsafe_ptr has a UAF-unsafe return value from the get_obj function, and thus,

is unsafe even though the pointer is a stack variable. Also, the arg is a pointer

value whose UAF-safety we do not know. Therefore, these pointer values’ operations

should be inspected by ViK. safe_ptr is a safe pointer value (because the pointer

value has not been stored in the heap or a global variable) and its operations are

not inspected until the point where it may turn into an unsafe pointer value (from

Line 23). However, the result of the function call at Line 23 does not affect the
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UAF-safety of the safe_ptr’s pointer operation at Line 26 since the code is under

the else condition. Hence, ViK does not inspect the pointer operation on Line 26;

however, ViK must inspect the pointer operation on Line 30. ViK omits the inspection

of unsafe_ptr’s pointer operation on Line 31 because the unsafe pointer value has

already been inspected by ViK and it does not contain a new unsafe pointer value

copied from somewhere. If a new unsafe pointer value might be in unsafe_ptr, ViK

will inspect the pointer operation.

Our static analysis can confirm that an argument of the add function is a safe

pointer value whenever the function is called; thus, ViK does not inspect the pointer

operation using the argument on Line 4. On the contrary, unsafe_ptr is used as an

argument of the sub function. Hence, the pointer operation inside the sub function

must be inspected, even though the pointer value has been inspected before the

function is called.

As shown in the example, our static analysis is flow-sensitive and path-sensitive,

which not only significantly reduces the performance overhead, but also helps provide

robust security guarantees against UAF attacks.

6.7.3 Transformation

In the transformation phase, the LLVM instrumentation pass first inserts the

inspect() function before pointer operations that ViK must inspect during runtime.

In the inspect() function, ViK does not store the restored virtual address back to

memory, but stores it only in a register temporarily and accesses the heap by refer-

encing the register. We thus need to insert a restore() function before all the other

pointer operations using ViK-protected pointer values. The restore() function is used

to temporarily recover the canonical form of a virtual address through only a bitwise

operation. Consequently, ViK-protected pointer values must go through either the
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inspect() or restore() function before a pointer operation. When deallocating an

object, only the inspect() function is used. ViK inlines these functions at each in-

spection site. Compared to inserting a call instruction that invokes the inspection

function, inlining increases the size of protected programs, but it is critical to lowering

the runtime overhead.

Next, ViK replaces function calls to basic allocators and deallocators with call

instructions that will invoke the wrapper functions. When a new object is allocated,

the wrapper functions will generate an object ID, store the object ID at the base

address of the object, and return it to the caller as part of the pointer value. In

wrappers for deallcaotors, ViK inspects the object ID before an object is deallocated.

Pointer arithmetic

Since ViK only uses the unused bits of a pointer value, all legal pointer arithmetic

operations (“+”, “++”, “-”, and “--”) can be used on ViK-protected pointers without

restoring them first. In rare cases, pointer values may be used in comparison (e.g.,

ptr1 == ptr2), where the object IDs in the two pointer values are different if they

are not derived from the same base pointer. In such cases, ViK will restore the pointer

values before comparing pointers.

6.8 Implementation

We implement ViK in both OS kernels (Linux kernel 4.12 and Android kernel

4.14) and user-space applications through an LLVM pass for static instrumentation.

The static instrumentation pass is implemented in LLVM v4.0.
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6.8.1 Kernel Implementation

We show evaluation results using two ViK-protected kernels on widely used and

long-term supported architectures (x86-64 and AArch64). Because instrumentation

is done at the LLVM IR level, ViK is fully architecture-agnostic for user-space protec-

tion and mostly architecture-agnostic for kernel protection, as long as unused pointer

bits are available on the target architecture. The only step to adapt ViK to new

architectures, which is only needed done for kernel protection, is to patch a small

amount of inline assembly code, such as inline functions implemented in atomic.h,

because LLVM IR passes cannot analyze, modify, or rewrite assembly code. We

added or modified 446 and 363 lines of code for Linux and Android kernels, respec-

tively. The Linux kernel has many basic memory allocators, and our implementation

handles all allocators of the kmalloc and kmem_cache_alloc family. Note that we

excluded source code related to the booting process from instrumentation because

these functions will no longer execute after booting is complete.

Inspection logic

Since the inspect() function checks every pointer dereference, its implementation

is critical to minimizing ViK’s runtime overhead. Therefore, we implemented the

inspect() function in a conditional-instruction-free manner. We only use bitwise in-

structions to inspect pointer values, however, the inspect() function must still raise

an exception when a pointer value and an object have different object IDs. The key

idea is outsourcing the job of raising exceptions upon unmatched object IDs to the

CPU.

Listing 6.3 shows the pseudocode of inspect() function that consists of bitwise

instructions and one memory access for loading the object ID from the heap. First,
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1 void inspect(pointer_value) {

2 PTR_ID = pointer_value >> 48;

3 BI = PTR_ID & 0x003f;

4 BA = (pointer_value & ∼(2M − 1))|(BI << N)|0 xffff000000000000;

5 OBJ_ID = *BA;

6 pointer_value = pointer_value & (∼(PTR_ID ^ OBJ_ID) << 48);

7 //If two object IDs do not match , dereferencing this new pointer_value will

raise an exception

8 }

Listing 6.3: The pseudocode of the inspect() function which only consists of bitwise

operations and a load operation for minimal execution overhead. Protected pointer

values are restored to their canonical forms if object IDs are matched.

the function extracts the object ID from a pointer value by bit shifting (Line 3).

Second, on Lines 4 and 5, it obtains the base identifier and the base address of the

object. Third, it loads the object ID from the actual object stored in memory. Then,

the inspect() function performs a bitwise XOR operation using object IDs stored in

the pointer value and the object. The result of this operation is used for a bitwise

AND operation with the pointer value. If the two object IDs are identical, the pointer

value will be of the canonical form (for the kernel, all the unused bits will be 1), and

thus, the pointer value will be properly dereferenced and the corresponding object

will be accessed. Otherwise, the processor will raise an exception because the pointer

value is not in the canonical form.

Enforcing memory alignment

In ViK-protected programs, all memory objects must be located at aligned memory

addresses that are derived from the constant N , which is used for generating the base

identifier. However, the basic allocators of the Linux kernel do not guarantee this
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special memory alignment requirement. Therefore, we enforce memory alignments by

wrapping basic allocators in custom wrapper functions in which additional bytes are

added to enforce alignment.

The wrappers execute the following operations: (1) When an object is allocated,

they allocate (2N + 8) bytes more than the size of the object, where 2N bytes is the

size of a basic alignment unit. The additional 8 bytes are used for storing an object

ID. (2) The wrappers then determine a base address that is aligned to 2N within

the allocated memory region. Because the wrapper allocated an additional 2N bytes,

there must be an address that is aligned by 2N bytes. (3) The wrappers store the

object ID at the base address. (4) The wrappers return a pointer value with a value

of the base address plus 8, after storing the object ID into the pointer value’s unused

bits. If the aligned memory address is X + 2N (where X is a virtual address returned

from the basic allocator), the wrappers store the object ID at the address X + 2N

and the object will use memory from address X + 2N + 8. Because the wrappers

allocate an additional 2N + 8 bytes, the object can be stored from the virtual address

(X + 2N + 8).

6.8.2 ViKTBI for AArch64 on Android kernel

As a selective implementation feature, we present ViKTBI using the Top Byte

Ignore (TBI) feature of recent ARM processors, which achieves much lower perfor-

mance overhead. With TBI, software can use the most significant 8 bits of the virtual

address to hold additional information about an address. By employing this hardware

feature, ViK can utilize the 8 bits without handling it in software. However, because

only 8 bits are available, we do not use the base identifier in ViKTBI in order to have

8-bit entropy for object IDs. This implies that only pointer values that point to the

base addresses of objects can be inspected. Also, when an object is created, we insert
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padding bytes and store an object ID right before the base address of an object so

that the ID can be accessed via the base address. Albeit ViKTBI cannot provide as

strong of security as ViK can, its high efficiency makes it very practical. We eval-

uate and discuss the security effectiveness and performance overhead in Section 6.9.

A major hardware vendor is currently deploying ViKTBI implementation in the OS

kernels of smart automotive consumer devices, which shows ViK’s practicality.

6.8.3 User-space Implementation

We also implement ViK for C and C++ user-space programs. The user-space

version of ViK is the same as the kernel-space ViK except for the following aspects:

• User-space programs use different allocators than the kernel, so the instrumentation

pass creates appropriate wrappers for memory allocations such as malloc and calloc.

• In user space, valid pointer values have the first 16 bits as 0, instead of 1 in the

kernel. The inspect() function is changed in user-space ViK to account for this

difference.

• User-space programs may use shared libraries that are ViK-unaware. ViK can

be used in programs with ViK-unawre libraries. However, similar to the other

compiler-based approaches [126, 134, 89], if a library is not instrumented by the

static instrumentation pass, pointer values that come from the ViK-unaware shared

library cannot be inspected in ViK-protected programs.

6.8.4 Determining Constants

ViK requires two predefined parameters M and N (see Section 6.6.1) for object ID

generation. Our proof-of-concept implementation of the instrumentation pass has a

functionality to provide the sizes of dynamically allocated memory objects so that we
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Allocation size (byte) M N M −N Alignment Percentage

x < 256 8 4 4 16 76.73%

256 ≤ x < 4096 12 6 6 64 21.31%

Table 6.1: The Sizes of Structures Dynamically Allocated in Linux Kernel 4.12:

Roughly 98% of structures is smaller than 4 KB.

can analyze them and decide the two parameters. Table 6.1 shows our results on the

size of objects dynamically allocated in Linux kernel 4.12. This object memory size

analysis helps with ViK’s effectiveness and is done one-time for the kernel. Based on

this analysis, we found that over 98% of the kernel memory objects are smaller than

4 KB. In the Android kernel, about 98% of memory objects are smaller than 4 KB

as well. Therefore, for the security evaluation, we used 6-bit base identifiers with the

parameters M=12 and N=6 to have 10-bit identification codes for all objects, and

we did not assign an object ID for the objects which are larger than 4 KB. We set the

constants according to the M and N shown in Table 6.1 for evaluating the memory

overhead of ViK. It is worth noting that different sets of the constants (M and N) can

be used for optimal memory overhead on each system. The current prototype of ViK

only supports this set of parameters, and we leave this implementation improvement

as future work.

6.9 Evaluation

In this section, we evaluate the effectiveness and performance of ViK in protecting

OS kernels and user-space programs from UAF and double-free attacks. We first state

the experiment setup (Section 6.9.1) and show the results of kernel instrumentation

(6.9.2). We then evaluate the effectiveness of ViK (Section 6.9.3) as well as its runtime

and memory overhead on both OS kernels (Section 6.9.4) and user-space programs
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(Section 6.9.5).

6.9.1 Experiment Setup

We evaluate ViK on both user-space programs and OS kernels. For user-space

applications, we compiled a subset of C programs from SPEC CPU 2006 by ViK-

enabled LLVM. For OS kernels, we built Linux kernel 4.12 on x86-64 and Android

kernel 4.14 on AArch64. For the Android kernel, we evaluated ViK on a development

board featuring an ARM Cortex-A76. All other experiments were conducted on a

workstation with an Intel i7-6700 CPU with Ubuntu 18.04 x86-64.

Optimization modes

We evaluate ViK-protected OS kernels in the following optimization modes.

ViKS: An inspect() function is inserted for every dereference of possibly UAF-unsafe

pointers. This mode is expected to be slower than others.

ViKO: All optimization methods presented in Section 6.7.2 are enabled. In this

mode, ViK only inspects the first object access of each UAF-unsafe pointer in

every function.

ViKTBI : ViK is implemented using the Top Byte Ignore (TBI) feature of AArch64,

where ViK inspects only pointer values that point to the base address of objects.

6.9.2 Kernel Instrumentation Results

We measured the number of inserted inspection functions (inspect()) and the

increase of image sizes after deploying each of the three variants of ViK on Ubuntu

and Android kernels in different architectures. Our results, in Table 6.2, show that in

both kernels, ViKS inserted inspection functions for around 17% of pointer operations,
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Kernel &
Mode

Image size (MB) Build time
# of pointer operations # of inspect() functions (%)

Architecture Original ViK (increased) Original ViK (increased)

Linux kernel 4.12 ViKS

36.26
63.38 (27.12%)

19m 11s
26m 31s (7m 20s)

2,401,337
421,406 (17.54%)

x86-64 ViKO 48.33 (12.07%) 22m 10s (2m 59s) 91,134 (3.79%)

Android kernel 4.14
ViKS

189.09

208.20 (19.11%)

23m 3s

27m 32s (4m 29s)

2,012,421

333,020 (16.54%)

AArch64
ViKO 200.94 (11.85%) 25m 38s (2m 35s) 78,782 (3.91%)

ViKTBI 200.93 (11.84%) 25m 30s (2m 27s) 25,969 (1.29%)

Table 6.2: Statistics of ViK-protected Linux Kernel 4.12 (x86-64) and Android Kernel

4.14 (AArch64): About 17% of all pointer operations involve UAF-unsafe pointers.

ViKO and ViKTBI instrument much fewer pointer operations than ViKS does.

which means the static analysis regarded 17% of all pointer operations as potentially

operating on UAF-unsafe pointers. The other 83% of pointer operations were UAF-

safe and do not need any protection. Moreover, in ViKO mode, our results show that

only 4% of pointer operations must be inspected by ViK: ViKO decreases runtime

overhead by omitting protection for over three quarters of all UAF-unsafe pointer

operations. ViKTBI further reduces runtime overhead by only instrumenting less

than 8% of pointer operations that are protected by ViKO.

6.9.3 Security Effectiveness

ViK aims to mitigate UAF exploits with no false positives (i.e., incorrectly block-

ing pointer accesses that are not UAF), which is guaranteed by the design of ViK.

Nonetheless, ViK may have false negatives and allows a UAF exploit: If an object

that has been re-allocated to the freed region has the same object ID as the victim

object because of an object ID collision, ViK cannot mitigate the UAF exploit. For-

tunately, as discussed in Section 6.6.2, the probability of an object ID collision is

small enough to make ViK practical.

Another case of false negatives occurs only in ViKO where ViK does not mitigate

the exploit immediately but instead exhibits a delayed mitigation. Figure 6.4 shows
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void race() {
    global_ptr->num = 1;
    …
    global_ptr->num = 0;
    …

1

2

3

4

void dealloc() {
    free(global_ptr);
}

5

6

7

8

9

10

Figure 6.4: Example Code Snippets That Can Cause a UAF Error via a Race Con-

dition.

a case where a UAF exploit occurs due to a race condition. If dealloc() is executed

at any time before the last dereference of global_ptr, this variable will become

a dangling pointer and will cause a UAF. ViKS inspects every UAF-unsafe pointer

operation (at both Line 2 and Line 4) and mitigates the UAF exploit. However, ViKO

only inserts inspection functions at Line 2 of race(). It is then possible for a UAF to

occur if the object that global_ptr points to is deallocated between executing Line 2

and Line 4. In the worst-case scenario, the attacker frees the victim object between

Line 2 and Line 4 and re-allocates a new object to the dereferenced memory region,

which will evade our protection. ViKO will still mitigate the exploit if the pointer is

dereferenced again in other functions later, as we have observed in CVE-2019-2215.

Mitigating real-world kernel exploits

To evaluate the effectiveness of ViK, we selected five known UAF vulnerabilities with

public exploits on Linux kernel and tested them against a ViK-protected Linux kernel

4.12. All these vulnerabilities are related to race conditions. For Android kernel, we

picked four UAF vulnerabilities, three out of which are caused by race conditions.

All the exploits are collected from the Exploit Database and another research project

FUZE [6, 143]. Five of these vulnerabilities (CVE-2017-17053, -15649, CVE-2019-

2215, -2025, and -2000) can be exploited directly on Linux kernel 4.12 and Android
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Linux kernel 4.12

CVE Race Condition ViKS ViKO (ViKTBI )

CVE-2017-17053 Yes 3 3 (3)

CVE-2017-15649 Yes 3 3 (3)

CVE-2017-11176 Yes 3 3 (3*)

CVE-2017-2636 Yes 3 3 (3)

CVE-2016-8655 Yes 3 3 (3)

CVE-2016-4557 Yes 3 3 (3)

Android kernel 4.14

CVE Race Condition ViKS ViKO ViKTBI

CVE-2019-2215 No 3 3 7

CVE-2019-2025 Yes 3 3 3

CVE-2019-2000 Yes 3 3 3*

CVE-2017-7533 Yes 3 3 3

*: ViKTBI did not immediately stop the exploit when UAF happened, but it

stopped the attack through a delayed mitigation.

Table 6.3: Experimental Results of ViK Defending Agianst Known UAF Exploits in

OS Kernels. The ViKTBI results for Linux kernel are manually synthesized.

kernel 4.14 (without ViK), while the other four vulnerabilities (CVE-2017-11176, -

7533, -2636, CVE-2016-8655, and -4817) do not exist on our versions of Linux and

Android kernels. We manually ported them onto Linux kernel 4.12 and Android

Kernel 4.14 by reverting the related patches. Details of the selected vulnerabilities

and the results of the security evaluation are shown in Table 6.3. As expected, ViK-

protected kernels, including ViKO, detected UAFs caused by these vulnerabilities.
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TBI Optimization

We evaluated the TBI-featured variant of ViK, ViKTBI , on Android kernel 4.14 and

list the results in Table 6.3. ViKTBI did not stop the exploit for CVE-2019-2215 be-

cause the exploit uses a pointer that points to the middle of an object while ViKTBI

only inspects pointers that point to the base address of an object. Also, it is worth

noting that a delayed mitigation happened with CVE-2019-2000: Since the dangling

pointer used in the exploit points to the middle of an object, ViKTBI did not detect

the UAF exploit when this pointer is first dereferenced and the victim object is up-

dated. However, ViKTBI detected the UAF when the original pointer (which points

to the base address of the object) is later used before returning from the kernel to

user space, which illustrates the effectiveness of ViK even when applying all afore-

mentioned optimizations. Finally, since current x86-64 CPUs do not implement TBI,

we examined every Linux kernel vulnerability in our dataset, manually analyzed if

ViKTBI will defend against each UAF exploit, and present the results in the ViKTBI

column of Linux kernel in Table 6.3.

Mitigating user-space UAF exploits

We also conducted experiments for user-space ViK on C programs to demonstrate the

effectiveness of ViK. As shown in Table 6.4, ViK prevented all tested UAF vulnera-

bilities in user-space programs except for the case of libpng (CVE-2019-7317) under

ViKO. We manually examined the vulnerability and found that the UAF is caused

by an early call of free() before the second dereference of a UAF-unsafe pointer in

the same function and the same thread, which meets an optimization condition that

is used in ViKO. Since the program crashes immediately after the second pointer

dereference (which makes this bug not exploitable), delayed mitigation in ViKO did
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CVE Applications ViKS ViKO

CVE-2019-7317 libpng 3 7*

CVE-2018-9009 libming 3 3

CVE-2016-7835 H2O server 3 3

CVE-2016-4817 H2O server 3 3

*: CVE-2019-7317 is not exploitable; The target

crashed immediately before delayed mitigation had

a chance to happen in ViKO.

Table 6.4: Experimental results of ViK defending against known UAF vulnerabilities

in user-space programs.

not happen. While this failure does not impact the security, we still choose to report

it as a failure case of ViK for integrity.

6.9.4 Performance: ViK-protected Kernels

For performance evaluation, we used micro benchmarks as implemented in two

renowned benchmark tools—LMbench and UnixBench—on Ubuntu and Android. We

then evaluated the memory overhead of each kernel when protected by ViK. Finally,

we measured the performance impact that ViK-protected kernels have on user-space

programs.

Micro benchmarks on kernels

We first present the benchmark results using LMbench which measures latency and

basic costs of key operations of UNIX/POSIX systems [101]. Table 6.5 shows the

results for each kernel. In ViKO, the average percentages of increased latency are

20.71% and 19.86% on the Ubuntu and Android kernel, respectively. Because ViK
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Linux kernel 4.12 Android kernel 4.14

Benchmark ViKS ViKO ViKS ViKO

Latency (percentage of increase)

Simple syscall 16.88% 10.82% 15.60% 7.16%

Simple fstat 96.74% 67.41% 68.86% 47.15%

Simple open/close 140.40% 77.01% 74.88% 38.62%

Select on fd’s 23.19% 15.42% 35.52% 28.47%

Sig. handler installation 6.36% 4.09% 19.24% 6.37%

Sig. handler overhead 41.19% 4.34% 113.83% 46.86%

Protection fault 0% 0% 5.52% 0%

Pipe 40.91% 26.48% 60.80% 15.45%

AF UNIX sock stream 26.91% 8.35% 77.91% 23.80%

Process fork+exit 85.90% 68.01% 35.13% 16.40%

Process fork+/bin/sh -c 96.45% 62.66% 32.21% 14.31%

GeoMean 40.77% 20.71% 37.13% 19.86%

Table 6.5: The Runtime Overhead Measured by LMbench on ViK-protected OS Ker-

nels.

inserts fewer inspect() functions into the Android kernel, its performance overhead is

lower than ViK on the Linux kernel 4.12. As expected, ViKO has substantially better

performance. Compared with ViKS, on both kernels, ViKO exhibits about 20% lower

performance overhead.

We also evaluated ViK-protected kernels using UnixBench [14]. UnixBench in-

cludes multiple benchmarks that test the performance of a UNIX-like system. It

generates a system index score as an overall indicator of the performance. As shown

in Table 6.6, the results are similar to the average percentages of increased latency

in Table 6.5. In summary, micro benchmark results show that the ViK-protected OS

kernels incur around 22% and 20% runtime overhead on Android and Linux kernels,
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Linux kernel 4.12 Android kernel 4.14

Benchmark ViKS ViKO ViKS ViKO

Dhrystone 2 0% 0% 0% 0%

DP Whetstone 0.83% 0.21% 0% 0%

Execl Throughput 77.95% 48.18% 50.32% 28.62%

File Copy 1024 bufsize 100.30% 56.43% 123.00% 61.13%

File Copy 256 bufsize 99.33% 54.45% 148.91% 77.51%

File Copy 4096 bufsize 70.71% 41.89% 71.42% 34.01%

Pipe Throughput 110.90% 74.66% 60.77% 41.55%

Pipe-based Ctxt. Switching 126.70% 80.78% 50.09% 0.39%

Process Creation 85.05% 57.22% 42.53% 22.58%

Shell Scripts (1 concurrent) 58.47% 36.16% 34.88% 22.13%

Shell Scripts (8 concurrent) 55.96% 35.71% 27.24% 16.02%

System call overhead 8.89% 1.11% 30.18% 15.45%

GeoMean 45.14% 22.20% 54.80% 19.80%

Table 6.6: The Performance Overhead Measured by UnixBench on ViK-protected OS

Kernels.

respectively.

Additionally, we compare ViK against other kernel defenses, specifically KE-

NALI [130] and KCoFI [56], using the results of LMbench. KENALI, which en-

forces data-flow integrity (DFI) over distinguished regions, and KCoFI, which en-

forces control-flow integrity (CFI) on the entire kernel, incur average overhead of

about 105% and 137%, respectively. In comparison, ViK incurs average overhead of

around 21% on both the Linux kernel and the Android kernel. However, conducting

a fair comparison with KENALI and KCoFI is difficult, because they use different

kernels and perform evaluations on different processors. Hence, this comparison is

only provided as a rough estimate of ViK’s performance on OS kernels.
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After Reboot (%) After Bench (%)

Memory alignment Ubuntu Android Ubuntu Android

Table 6.1 13.08% 16.01% 25.03% 28.30%

64 bytes 42.42% 43.98% 41.69% 43.89%

Table 6.7: Memory Overhead Imposed by ViK on Each Kernel.

Memory overhead

To measure the memory overhead of ViK-protected kernels, we checked the total

amount of memory used by each kernel in /proc/meminfo. We measured the memory

usage (1) after the system finished booting, and (2) after running LMbench and report

the results in Table 6.7. When ViK aligned memory addresses by 64 bytes, the overall

memory overhead was around 42%. ViK achieved much lower memory overhead when

it employed the alignment strategy as described in Table 6.1 where 16-byte alignment

is used for objects smaller than 256 bytes and 64-byte alignment is used for other

objects. There is no difference in memory usage between ViKS and ViKO mode

because they allocate the same number of objects. The major source of memory

overhead is the amount of memory added to structs to guarantee the alignment. In our

implementation of ViK, we used the constants shown in Table 6.1. For lower memory

overhead, ViK will need various sets of M and N that are optimally calculated for

different sizes of kernel objects, which requires a more complex implementation.

Performance of ViKTBI

Table 6.8 shows the runtime and memory overhead of ViKTBI . The use of TBI and the

reduced number of inspection functions make the runtime overhead of ViKTBI neg-

ligible (<3%). The memory overhead of ViKTBI is low: 8% after booting and 17%
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Android kernel 4.14 — ViKTBI

UnixBench benchmarks Overhead LMbench benchmarks Overhead

Dhrystone 2 0% Simple syscall 0%

DP Whetstone 0% Simple fstat 0%

Execl Throughput 0% Simple open/close 0.9%

File Copy 1024 bufsize 1.0% Select on fd’s 0.2%

File Copy 256 bufsize 6.3% Sig. handler installation 0%

File Copy 4096 bufsize 0% Sig. handler overhead 0%

Pipe Throughput 0% Protection fault 0%

Pipe-based Ctxt. Switching 0% Pipe 0%

Process Creation 1.1% AF UNIX sock stream 2.1%

Shell Scripts (1 concurrent) 0% Process fork+exit 0%

Shell Scripts (8 concurrent) 0% Process fork+/bin/sh -c 0%

System Call Overhead 0%

GeoMean 1.91% GeoMean 0.72%

Memory overhead

After Reboot 7.80% After Bench 17.50%

Table 6.8: The Performance and Memory Overhead on ViKTBI–protected Android

Kernel.

after running benchmarks. The performance of ViKTBI has convinced a major hard-

ware vendor that it has sufficiently low overhead to be deployed on customer-facing

devices. This vendor will begin delivering devices with ViKTBI -protected Android

kernels in late 2020.

6.9.5 Performance: ViK-protected User-space Programs

We evaluated the user-space ViK implementation by measuring the performance of

ViK-protected C and C++ programs. To evaluate the runtime and memory overhead
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Figure 6.5: Runtime and Memory Overhead Comparison of the User-space Imple-

mentation of ViK with Previous Approaches (MarkUs, pSweeper, CRCount, Oscar,

and DangSan) on the SPEC CPU 2006 Benchmark Programs.

of ViKO (16-byte aligned), We converted the LLVM instrumentation pass into a Link-

Time Optimization (LTO) module and compiled the programs with the LTO module

enabled. The experimental results are shown in Figure 6.5. For clarity, we also

include in the figure the overhead numbers of applying five state-of-the-art user-space

runtime UAF protections (MarkUs, pSweeper, CRCount, Oscar, and DangSan) on

the same programs.4

Runtime overhead

ViK has average runtime overhead of 10.6% (MarkUs has the same overall overhead

within rounding error). However, ViK performs better than the other five defenses

when we compare the average overhead on the most pointer-intensive 8 benchmarks

in terms of the number of memory allocations and pointer operations (perlbench,

omnetpp, mcf, gcc, povray, milc, xalancbmk, astar, soplex, and gobmk)—ViK in-

4The performance numbers of MarkUs, pSweeper, CRCount, Oscar, and DangSan are extracted

from the original papers or provided by their authors.
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curs average runtime overhead of about 20%, while it is 25% for MarkUs, 27% for

pSweeper, 48% for CRCount, 107% for Oscar, and 128% for DangSan. Compared

to other defenses, ViK shows better or similar runtime overhead on all but two pro-

grams, which are bzip2 and h264ref. This is because in ViK, pointer dereferences

have a larger impact on the runtime overhead than memory allocations or dealloca-

tions. These two programs have relatively low numbers of memory allocations and

deallocations but possess high numbers of pointer dereferences, which are unideal for

ViK. For example, during an execution of bzip2, the malloc function executed 8

times at the beginning of its compression routine and 6 times at the beginning of its

decompression routine, which are much lower than the numbers for other programs.

Memory overhead

We measured the memory overhead of ViK-protected user-space programs by taking

the maximum resident set sizes (RSS). ViK incurs average memory overhead of about

9%, compared with 16% for MarkUs, 130% for pSweeper, 17% for CRCount, 60% for

Oscar, 140% for DangSan. Overall, ViK achieves lower memory overhead than the

other solutions on all tested programs except for h264ref. We found that the majority

of memory allocations in h264ref are small-sized, which severely penalizes ViK due

to its memory alignment enforcement. Our theory is supported by ViK’s performance

on the most four allocation-intensive benchmarks perlbench, xalancbmk, omnetpp,

and dealII—ViK incurs much less memory overhead (2.42%) than the others (about

40% for MarkUs and 50% for CRCount).
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6.10 Discussion

Static analysis.

Through static analysis, ViK finds pointer operations using UAF-unsafe pointers in

a flow- and path-sensitive manner. We bypass common challenges of static analysis

(e.g., scalability) by limiting the range of static analysis to individual modules. How-

ever, this design decision limits the potential of ViK’s optimizations. We expect ViK

to have even lower runtime overhead without sacrificing the security guarantees if we

can apply inter-procedural and inter-modular optimizations.

Implementation details.

ViK works on LLVM IR, which provides both advantages (e.g., multi-architecture

support) and drawbacks, one of which is that ViK cannot instrument inline assem-

bly and requires manual modification. Also, ViK requires a preliminary analysis to

determine the optimal constants (M and N), and it does not support using multiple

sets of constants for different base identifiers, which we deem as engineering effort.

Arbitrary memory read and write.

Arbitrary memory read and write vulnerabilities in user-space programs and kernels

may allow attackers to tamper the internal state of ViK, which enables Object ID

forging. We argue that such vulnerabilities are rare in real world. These vulnerabili-

ties can be addressed by other defenses. Currently, ViK does not defend against such

vulnerabilities.
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6.11 Related Work

Access validation

Some prior mitigations validate memory accesses in ways that are similar to ViK [129,

106]. Although they have shown to be robust against UAF exploits, they all intro-

duce significant runtime overhead and false positives. Their high runtime overhead

stems from the workload that these defenses introduce for managing and checking

metadata, which happens on every pointer propagation and dereference. In contrast,

ViK does not track pointer propagation and has much lower runtime overhead. More-

over, these defenses have compatibility issues that ViK does not have: CETS does

not support multithreading [106], and MemSafe requires performing a full-program

data-flow analysis [129] which is likely infeasible for OS kernels and large, complex

programs.

Pointer invalidation

Many systems attempt to detect the creation of dangling pointers by tracking refer-

ence relationships between pointers and objects [126, 134, 89, 153, 48]. Their designs

differ regarding the format of the metadata and the manner in which the metadata

is managed. CRCount uses a pointer bitmap to represent locations of heap pointers

for reference counting [126]. pSweeper invalidates dangling pointers through another

thread that runs in the background, managing a live pointer list and sweeping dan-

gling pointers [92]. DangSan employs an append-only per-thread pointer logger for

each memory object [134]. DANGNULL records the relationship between objects

in a hierarchical structure called shadowObjTree [89]. However, common to all ap-

proaches is the existence of the joint metadata, which imposes high runtime and mem-

ory overhead, especially for multithreaded programs. Additionally, these approaches
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suffer from propagations of type-unsafe pointers and non-pointer type variables that

have pointer values, because of the difficulty of achieving complete data flow analy-

sis [126, 134, 89, 153]. This can lead to mistakes in correctly maintaining reference

relationships.

Safe memory allocation

Another type of UAF mitigation is to prevent reusing unsafe address spaces when

a new object is allocated [57, 128, 45, 108, 19]. These approaches suffer from high

memory overhead caused by their object allocation or memory management policies.

Recently, Markus [18] proposed an approach to verify deallocations through a mark-

ing procedure for finding live objects, which showed good memory and performance

overhead in user-space programs. However, ViK has much lower memory overhead in

allocation-intensive programs (2.42%) than Markus (about 40%) and the approach is

not intended to be used by OS kernels.

Static UAF detection

Several static analysis approaches are proposed for finding UAF errors, such as Tac,

CRed, and DCUAF [44, 149, 148]. Although they showed some effectiveness in finding

possible errors for user-space applications [149, 148] and device drivers [44], they suffer

from both high false positives and false negatives due to unsound handling of complex

conditions and paths, and inaccurate pointer analysis.

Hardware-based approach

WatchdogLite proposes a new instruction set (Intel’s Instruction Set Architecture

extension) for preventing out-of-bound accesses and UAF errors through compiler

support [105]. BOGO utilizes bounds metadata managed by the Intel MPX for pro-
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viding temporal memory safety [156]: When memory is deallocated, BOGO checks the

bound metadata and invalidates dangling pointers. Although both approaches heav-

ily rely on hardware features, they all impose significant runtime overhead (average

slowdown of 29% for Watchdog and 60% for BOGO on SPEC CPU 2006 benchmarks).

Memory error detection

The high runtime overhead of runtime mitigations has led to the emergence of general

memory error detectors. AddressSanitizer (ASan) is a popular tool for user-space ap-

plications [123]. However, it cannot detect all UAF errors, especially when memory

objects are reallocated onto previously freed memory regions [89]. The Kernel Ad-

dress Sanitizer (KASan) is a memory error detector designed for the kernel [8]. KASan

provides provides two modes: generic KASan and software-tag-based KASan. The

software-tag-based KASan employs the unused bits (similar to ViK) with the top byte

ignore (TBI) feature of AArch64 CPUs, and thus, it only supports the AArch64 ar-

chitecture. KASan uses shadow memory to check whether each memory access is safe

or not, which imposes huge memory overhead. Also, KASan inserts a checker for each

memory access, which introduces high runtime overhead of about 200%. Hardware-

assisted AddressSanitizer (HWASan) also uses the TBI feature of ARM [124]. Sim-

ilar to the software-tag-based KASan, HWASan has prohibitive runtime overhead

(roughly 200%), but with lower memory overhead (up to 35%). Currently, HWASan

can only be used for user-space applications on a modified kernel, which limits its

applicability. In comparison, ViK is a runtime mitigation that functions in both OS

kernels and user-space programs without architectural dependencies.
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Chapter 7

CONCLUSION

The diversity and complexity of computing devices and software are rapidly increas-

ing as our lives are increasingly dependent on computers. Therefore, we must ensure

that the software running on computing devices secure. Unfortunately, we are ob-

serving that this is not the case, rather, vulnerabilities are abundant. Especially,

nowadays, these expanded targets have brought vulnerabilities which are increasing

every year. Also, attackers have found new classes of exploits using microarchitectural

features such as CPU cache side-channels. This ubiquitous computing environment

is becoming more vulnerable, and, cybersecurity is becoming more critical than ever.

Therefore, exploiting and mitigating emerging security vulnerabilities are of great

importance for securing software systems used in our daily lives.

Throughout the four chapters presented in this dissertation, I have discussed how

we can exploit and mitigate two different types of advanced security vulnerabilities

to assess the evolving threat landscape and enhance state-of-the-art defenses.

Building Data Covert Channels

We presented cross-world covert channel attacks on ARM TrustZone, which is de-

signed to provide hardware-assisted isolation. We demonstrated that existing channel

protection solutions, such as SeCReT, or even more powerful mechanisms, such as

a strong monitor, can be bypassed. We discussed the reasons why previous attacks,

including Prime+Probe and Flush+Reload, do not work for the cross-world

scenario on ARM. Lastly we designed a low noise, no shared memory needed cache

attack named Prime+Count by leveraging overlooked PMU “L1/L2 cache refill
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events.” We also presented how to utilize Prime+Count to build fast cross-world

covert channels in ARM TrustZone architecture.

Mitigating Cache Side-channel Attacks

In this work, we presented SmokeBomb: a novel, systematic software approach to

defeat cache side-channel attacks on the ARM architecture. Our approach can protect

access patterns on sensitive data from attackers easily by automatically providing the

protection mechanism to applications as a compiler extension. The experimental

results show that SmokeBomb protects sensitive information leakages against cache

attack methods known to us effectively.

Leaking Sensitive Information of OS Kernels

We proposed a generic approach to exploit uses of uninitialized stack data in Linux

kernels to leak pointer values that are pointing to either kernel functions or to the

kernel stack. These leaked pointer values can then be used to defeat KASLR and

mount future attacks against Linux kernels. Our evaluation results show that we can

effectively analyze and exploit stack-based information-leak vulnerabilities through

the proposed approach. Our proposed approach exposes the actual exploitability and

severity of information disclosure bugs in Linux kernels and will raise awareness of

the community on the security impact of these bugs. We expect our findings will help

adjust CVSS scoring for information leak bugs inside Linux kernels.

Assuring the Temporal Memory Safety

Temporal memory safety violations are critical and it is challenging to enforce a tem-

poral memory safety in an efficient, strong, and flexible (widely applicable) manner.

Even though access validation approaches can provide a strong defense, their common

159



problem is practicability due to high-performance overhead and many false positives.

In this work, we proposed a novel defense, ViK, that detects UAF exploits with no

false positives. Also, as our evaluation indicates, ViK imposes low overhead, and is a

practical defense.
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