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ABSTRACT

Recent years, there has been many attempts with different approaches to the

human-robot interaction (HRI) problems. In this paper, the multi-agent interaction

is formulated as a differential game with incomplete information. To tackle this

problem, the parameter estimation method is utilized to obtain the approximated

solution in a real time basis. Previous studies in the parameter estimation made the

assumption that the human parameters are known by the robot; but such may not

be the case and there exists uncertainty in the modeling of the human rewards as

well as human’s modeling of the robot’s rewards. The proposed method, empathetic

estimation, is tested and compared with the “non-empathetic” estimation from the

existing works. The case studies are conducted in an uncontrolled intersection with

two agents attempting to pass efficiently. Results have shown that in the case of both

agents having inconsistent belief of the other agent’s parameters, the empathetic

agent performs better at estimating the parameters and has higher reward values,

which indicates the scenarios when empathy is essential: when agent’s initial belief is

mismatched from the true parameters/intent of the agents.
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Chapter 1

INTRODUCTION

As robotics technology advances, Human Robot Interactions (HRI) has become

an unavoidably common problem, as engineers make attempts to integrate robots

into human life. In many scenario, the intent and strategies of the human and the

robot may not be understood by one another during a collaborate task such as man-

ufacturing and transportation, which leads to low efficiency, or even accidents, both

of which are highly undesirable. Particularly, one of the problem that was examined

that motivated this research is the problem that many autonomous vehicle researchers

including Waymo encounters: when the machine agent is unable to cooperate with

human drivers through a stop sign efficiently. To tackle this problem, we consider

the HRI as a general-sum dynamical game with incomplete information, where each

agent is uncertain about the other agent’s parameter and consequently their under-

lying payoff functions.

There has been research devoted to find the Perfect-Bayesian Equilibrium (PBE)

of such game as in Buckdahn et al. (2011), but it has scalability limitation with the

dimensions of the state, action, reward parameter space (Sinha and Anastasopoulos

(2016)), which may be a fatal flaw as interactions such as traffic is highly complex;

other methods to the problem includes simplifying to complete-information game

including work by Foerster et al. (2017); Sadigh et al. (2018); Kwon et al. (2020);

Schwarting et al. (2019), or using the discrete parameter estimation and motion plan-

ning steps in Sun et al. (2018a), Nikolaidis et al. (2017), Peng and Tomizuka (2019)
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and Fridovich-Keil et al. (2020). In this paper, we explore the parameter estimation

method, where the robot and human holds a belief on other’s parameters that dictates

their reward and consequently, their strategies, for its tractability. By performing the

parameter estimation, both agents (human and robot) can make decision on their

motion planning based on their belief on how the others might act in the interaction.

We argue that such interaction in an traffic intersection should be formulated as

a game, because intuitively when an agent is making a decision, it inevitably has to

take the other agent’s possible action into consideration, which involves the attempts

to model the other agent’s payoff function; and since the payoff function is unknown,

it is considered an incomplete information game. Related research in such approach

about autonomous vehicle interactions can be found in Li et al. (2018).

Most of the existing approaches to the HRI studies can be divided into two types:

empathetic and non-empathetic. The non-empathetic parameter estimation meth-

ods make the assumption that the ego agent’s parameters are known by the other

agent, and then the ego agent performs inference on the other agent’s parameter.

On the other hand, the empathetic agent allows the inconsistency between the true

parameters and the estimated parameter from the other agent. We argue that the

assumption behind the non-empathetic model leads to undesired outcome, and by

introducing the new method “empathetic inference parameter estimation,” the HRI

interaction will have a better reward value, and the parameter estimation will have

higher accuracy. This paper makes attempt to answer the question:

When is empathy important in a HRI?

The structuring of the empathetic model begins with the robot and the human

holding a belief over what the other agent’s parameter is like (e.g. aggressive or non-

aggressive), then over time the belief is updated with the observed action chosen by

the other agent. The key difference to the existing models[Wang et al. (2020)](we will
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refer to as non-empathetic model) is that the empathetic robot is aware of the change

in human agent’s belief of itself, which helps with better understanding of the human

decision making by including the effect of the agents in the same environment.

Parameter estimation requires the agent to observe other’s action, and update its

belief based on the observation. Boltzmann distribution is often used, such as in the

work by Fridovich-Keil et al. (2020), to describe the noisy rationality of the agent’s

action space, which is determined by the Q-value (cumulative reward) of the action.

The approach for obtaining the estimated parameter in our studies is to perform so

called “point estimates” based on the common belief, which has the flaw of not reflect-

ing the significance of difference in the probability distribution: when one parameter

is very slightly more likely than the other, versus when one parameter dominates an-

other; it remains to be a more cost-effective way to obtain the best course of action,

as considering the uncertainty in the belief increases the dimensions of the BVP.

1.0.1 Related Work

Several studies have similar interests of studying the uncertainty within the human-

robot interaction, with several different approaches:

Empathy of agent

The newly proposed game-theoretic uncertainty estimation model is based on the

work on empathetic intent inference algorithm by Wang et al. (2020), where the

double-blindness problem is addressed, and intent parameter is introduced. In this

paper, we extended the research by modeling agents such that it consists of two pa-

rameters: intent (aggressiveness) and uncertainty (confidence). The comparison is

then made between the empathetic and non-empathetic agent based on the inference

method, whereas the previous work’s baseline comparison uses a different loss func-
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tion. On the side note, the action-value function and intersection problem formulation

in this paper differs from the previous work, which utilized the reward value resulting

from fictitious self plays.

uncertainty estimation

To address the difficulties of consideration of movements of agent when performing

motion planning, Fridovich-Keil et al. (2020) proposed model confidence inference to

incorporate a degree of confidence of a robot’s modeling of other agents. It is ac-

complished by keeping a Bayesian belief over a parameter, which dictates the other

agent’s motion. The idea of modeling the uncertainty in the robot’s inference is incor-

porated as part of our algorithm (rational/confidence parameter λ ) to accommodate

the issue of inaccuracy in modeling of other agents’ intent.

Policy-aware Interaction

Sun et al. (2018b) proposed a strategy-aware interaction algorithm, with Bayesian

inference to estimate the human driver’s policy in the game theoretic setting, then,

motion planning is performed to generate a safe action. The resulting data is then

compared with real traffic data-set to evaluate data such as inter-vehicle distance,

switching frequency and mean-square error between the ground-truth trajectory. The

strength of this study lies in the comparison with the collected real traffic data;

however, the possibility of uncertainty in the modeling of the human is not taken into

consideration.

1.0.2 Main Contribution

The main contribution of this paper can be categorized into several sections:
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Problem formulation

We developed an interaction determined by initial states, agent’s parameter, empathy

of agent and belief about the parameters, in order to systematically evaluate the

strength and weakness of agents having empathy.

Such interaction is built modularly with Python code, with agent’s inference, deci-

sion and dynamical models easily extendable for future development. The repository

is attached in the supplementary content section.

Empathy

We define the agent’s empathy in contrast to the non-empathetic approaches where

the ego agent’s parameter is assumed to be a common knowledge. The proposed

empathetic agent is tested and verified in an uncontrolled intersection multi-agent

interaction. Through the case studies where the agents’ initial common belief are

inconsistent from the actual true parameters/intent, it is shown that empathy leads

to significantly higher reward values.

Mapping of Intent and Action-value Function

We developed a method for updating the belief with a set of action-value functions,

using an algorithm based on Bayesian update. Since the set of parameters/intent may

not map to action-value function in an one-to-one fashion, this algorithm is helpful

for obtaining the Bayesian updates of the common belief in a fast-paced interaction.

The paper is divided into the following: Methods portion addresses the mathe-

matics modeling that are used in our empathy studies; Implementation documents

the detail of the algorithm of how the mathematics are used as well as the selection

of hyper-parameters; Case studies go through the hypothesis of such scenarios that

empathy plays an important role in the defined intersection interaction; and finally,
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results and analysis showcase the trajectory and the agents’ reward value from the

experiments addressed in the case study for evaluating the strength of our proposed

modeling of empathy.
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Chapter 2

METHODS

The methods to the parameter estimation along with the motion planning is docu-

mented in this section. Details of how the algorithm incorporates the newly proposed

methods is also explained.

2.0.1 Notation

We denote number of agents as N, and each agent has the same set of action U ,

reward parameter set Θ, noise parameter set Λ, initial belief choice β0 and empathy

choice li. Each agent can be modeled using the combination of reward parame-

ter(intent) and noise parameter, denoted as βi =< θi, λi >, for agent i. Since in

this paper, we have two agent in the interaction, the parameter pair at time t = k

can be denoted as β(k) =< βi, β−i >k, where λi ∈ Λ and θi ∈ Θ. Note that u,

Θ, Λ and in term B are discrete sets, for the efficiency of Bayesian update, where

it is done by iterating through the parameter sets and action sets. The agents also

share instantaneous reward function f , terminal reward function c, dynamic model h

and finite time horizon [0, T ]. The interaction is assumed to be discrete-time due to

the consideration of computation speed. We then express the multi-agent interaction

parameterized by si =< x0, p0, θ
∗, l >i, where x0 is the initial state, θ∗ is the agent’s

true parameter and p0 is the initial common belief matrix.

In our studies, the value of Λ set and Θ set are selected to be (0.5, 0.1) and (5, 1)

respectively, based on the formulation of the agent’s loss function and the resulting

action-value, which is explained in later part of this section.
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2.0.2 Bayesian Inference

At the start of every interaction scenario, each agent holds a belief about other

agent’s parameter. Over time, the belief is updated with Bayesian update:

Pr(β = βi|D(k)) =
Pr(u(k)|x(k); β)Pr(β|D(k − 1))∑

β′∈B Pr(u(k)|x(k); β′)Pr(β′|D(k − 1))
, (2.1)

where k is the the time step, and the action probability Pr(u(k)|x(k) is modeled

as Boltzmann’s distribution for modeling the noisy-rational agents

Pr(ui|x; β) =
exp(λiQi(x, (ui, u−i); θ))∑
u′∈U exp(λiQi(x, (u′i, u−i); θ))

. (2.2)

Here, Qi is the action value for agent i at state x with intent θ while holding the

other agent’s action u−i fixed, and λi is the noise parameter for agent i. Note that as

λ approaches 1, the probability of action with highest Q value approaches 1. Example

of action probability distribution with different λ values is shown in figure 2.1.

To address the potential issue when the prior becomes zero which causes the

probability to get stuck at zero, we use the re-sampling equation:

Prk(β) = (1− ε)Prk(β) + εp0(β), (2.3)

where p0(β) is the initial belief over the set of parameters.

Decoupled intent and Q-value

If the action-value function and the parameter arre decoupled (asymmetric; not one-

to-one), in such case a parameter pair (β, β̂) could map to multiple action-values Q,

then the belief updates can be formulated by starting with the Q function:
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Figure 2.1: Example of Boltzmann Action Probability Distribution Given Differ-
ent λ, the Noise Parameter; the Q Values to Calculate the Distributions are Taken
Example from the Simulation.

Pr(Q1, Q2|D(k)) =
Pr(u1(k), u2(k)|x(k);Q1, Q2)Pr(Q1, Q2|D(k − 1))∑

(Q′2,Q
′
1)∈Q2 Pr(u1(k), u2(k)|x(k);Q′1, Q

′
2)Pr(Q′1, Q

′
2|D(k − 1))

,

(2.4)

which is the probability of the Q-function pair given the observation. Then we have

the Bayesian updates for the common belief over agent’s parameters:

Pr(β1, β̂2|D(k)) =
∑

(Q′2,Q
′
1)∈Q2

Pr(β1, β̂2|Q′1, Q′2)Pr(Q′1, Q
′
2|D(k)), (2.5)

where

Pr(β1, β̂2|Q2) =
P (Q2|β̂2, β1)P (β1, β̂2|D(k − 1))∑

(β′1,β̂
′
2)∈Λ2×Θ2 P (Q2|β̂′2, β′1)P (β′1, β̂

′
2|D(k − 1))

(2.6)

with Q2 representing (Q1, Q2) and Pr(Q1, Q2|β1, β̂2) is given by one divided by num-

ber of Q function pair given the β pair.
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Figure 2.2: Flow of the Inference Algorithm in Different Settings: Whether Q and
β are One-to-one. Starting Point is When Agents Receive the Latest Observation on
Fellow Agents’ Action and Ready to Evaluate and Update Its Belief.

The algorithm with the above equations implemented can be represented as shown

in Fig. 2.2. Notice that if parameters map to single Q function, then the enclosed

calculation portion can be simplified to Eq. 2.1. In our experiments, we assume that

the parameter only maps to one action-value function, but the math is implemented

for ease of extension in the future.

Motion prediction

The motion prediction is built for analysis purposes, to visualize the future trajectories

of the vehicle based on its possible actions. It can be used to calculate the probability

of an agent at certain future position and speed at t = k + 1, k + 2, .... Note that,

however, the space of the trajectory grows with the number of actions to the power of

number of future time steps, (length(U)T ), where T is the future look-ahead horizon.

The probability of agent’s being at state x at time k + 1 is given by:

10



Pr(x(k + 1)|Q1, Q2) =
∑

x(k)∈X ,u(k)∈U

Pr(x(k + 1)|x(k), u(k))

Pr(u1(k), u2(k)|x(k);Q1, Q2)

Pr(x(k)|Q1, Q2),

(2.7)

where x(k + 1) is the state of the agents after 1 second of using certain action u1

and u2, and

Pr(u1(k), u2(k)|x(k);Q1, Q2) = Pr(u1(k)|x(k);Q1)Pr(u2(k)|x(k);Q2), (2.8)

is the joint probability of actions that leads to the state x(k+1), and (QH , QM) ∈ Q2.

Then

Pr(x(k + 1)|D(k)) =
∑

(Q1,Q2)∈Q2

Pr(x(k + 1)|Q1, Q2)Pr(Q1, Q2|D(k)). (2.9)

is the probability of agents being at state x at time k+1 given the past observation

D(k − 1).

The future states x(k + 1) are derived using the simple 1D dynamical model:

 ḋi(t)

v̇i(t)

 =

 0 1

0 0


 di(t)

vi(t)

+

 0

1

ui(t). (2.10)

To summarize the Bayesian parameter inference, the agent’s belief is updated

starting with obtaining the Q value of the action taken from the last time step k− 1

(Eq. 2.2), which is then used for evaluating the agent’s likelihood of using each of the

possible parameters (Eq. 2.1). Decoupled action-value and parameter version of the

update as well as the motion prediction formulation are addressed. Next up we take

a look at the different formulations of the belief matrix.
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2.0.3 Action-value approximation

To obtain the action-value on the fly in time-sensitive interaction, solving a time

consuming optimization problem online is not very effective, therefore a method to

quickly obtain the value given a state-action pair is needed. To accomplish this, deep

neural network (DNN) is used to approximate solutions to Hamilton-Jacobi-Issac

(HJI) equation formulated for the boundary-value problem(BVP) in the general-sum

dynamic game as addressed in the paper Chen et al. (2020), and from there we can

estimate the action-value at any state within the intersection state space.

Boundary-value Problem (BVP)

While we construct the interaction to be discrete-time dynamic games, the boundary-

value problem (BVP) is formulated from the HJI equations with Pontryagin’s max-

imum principle (PMP) for a continuous differential game to better capture the dy-

namics of the states. The value function for the continuous differential game is given

by

Vi(X1, X2, t) = Fi(T )−
∫ T

t

Li(X1, X2, ui, θ1, θ2) dt, (2.11)

where the dynamic loss is

Li(X1, X2, ui, θ1, θ2) = u2
i + fcollision(x1, x2, θ1, θ2) (2.12)

and the final loss

Fi(T ) = αxi(T )− (vi(T ))− vi(t = 0))2 (2.13)

Notice that the final loss is designed such that the vehicle has incentives to keep

its initial speed (v(t = 0), with α being the hyperparameter. Then, the Humailton-
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Jacobi-Issac (HJI) equation can be derived from the value function (eq. 2.11) as

follows:

Hi =

[
∂Vi
∂X1

]T
f1(X1, u1, t) +

[
∂Vi
∂X2

]T
f2(X2, u2, t)− Li(X1, X2, ui) (2.14)

Finding the optimal control input u∗ maximizing the Hamiltonian:

0 =

[
∂V1

∂X1

]T
f1(X1, u

∗
1, t) +

[
∂V1

∂X2

]T
f2(X2, u

∗
2, t)− Li(X1, X2, u

∗
1)

0 =

[
∂V2

∂X1

]T
f1(X1, u

∗
1, t) +

[
∂V2

∂X2

]T
f2(X2, u

∗
2, t)− Li(X1, X2, u

∗
2)

(2.15)

where ∂Vi
∂Xj

can be represented as “costates” γij, i.e. ∂V1
∂X2

= γ12. Finally, by utilizing

the Pontryagins Maximum Principle (PMP), the above HJI equations are solved as

a boundary value problem (BVP) yielding V ∗ and ∇V ∗ for value approximation.

ẋ∗ = h(x∗(t), u∗(t))

x∗(0) = x0

γ̇∗i = −∇xHi(x
∗, u∗, γ∗i (t); θ)

γ∗i (T ) = −∇xFi(x∗(T ); θ)

u∗i (t) = argmax
ui∈U

Hi(x
∗, ui, γ

∗
i (t); θ),

V̇ ∗(x∗, t; θ) = L(x∗, u∗; θ),

V ∗(x∗, T ; θ) = Fi(x
∗(T ); θ) ∀i = 1, ..., N,

(2.16)

where γ is the costate, h is the dynamical model and u∗ is the optimal solution,

and V is the value. The Eq. (2.16) is then solved using a standard BVP solver

from Kierzenka and Shampine (2001).
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Value Approximation

Since the space spanned by the states and parameters can be very large, it is im-

practical to solve for every possible point in an multi-agent interaction, which makes

value approximation a more efficient technique for obtaining the action-value given

any state during the simulation. After solving the BVP given x0 and θ, we obtain

V ∗ and ∇xV
∗ for a given combinations of parameters θ = (θ1, θ2) = (NA, NA), (NA,

A), (A, NA), (A, A), which are then used for approximating values for the inference

portion of the multi-agent interaction by solving the learning problem:

min
w

∑
(x,t,V ∗,∇V ∗)∈Dv

(||V̂ (x, t; θ, w)− V ∗||2 + C||∇xV̂ (x, t; θ, w)−∇xV
∗||2). (2.17)

Which provides the action value function:

Qi(x, t, θ, ui) = V̂ (x, t)− Li(x, ui, θ)δt (2.18)

In theory, when defining action-value, it should be parameterized by both the

physical state and the belief state. For simplification of the optimal control problem,

the belief state is taken as the approximated parameter using the point estimates,

instead of considering the probability distribution from the Bayesian inference algo-

rithm.

It is noted that since the BVP is set up as a game, the other agent’s action

is needed when obtaining an action-value from the value network. To make the

interaction possible in a real-time manner, the other agent’s action is taken from the

observed action from time t = k − 1. Intuitively, this approach is plausible since

human’s instantaneous decisions are made based on what is observed in the past and

from experience.

14



More BVP formulation and value network details can be found in Chen et al.

(2020), while this paper focuses more on analysis of the empathetic inference.
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Chapter 3

IMPLEMENTATION

This section goes through the implementation of the equations addressed in the

previous section for the inference and decision/motion planning algorithms, as well

as the setup for the simulation for experimentation and case studies.

3.0.1 Belief matrix and update

Over the duration of the interaction, the agents keep a belief over the parameters

of the other agent in the form of a matrix. The formulation of the belief matrix differs

depending on the type of agent, but they are updated based on the observed state

and action using equation 2.1 with the same method. At the start of an interaction,

the initial belief p0(β) is generated from the initial belief as follows:

Algorithm 1: Algorithm for initializing belief matrix

Given belief parameters p0 = (β̂1, β̂2);

Define weight w ;

Create a matrix with entries of ones;

For (β1, β2) in (B1, B2):

if parameter (θ or λ) matches with belief then

Multiply the entry by w

else

Multiply the entry by (1− w)/(len(B)− 1)

end

Assert summation of all entries equals to one;

Result: A matrix with probability distribution of belief in parameter pair
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To give an example on the structure of the common belief, in the case of empathetic

agent, given initial parameters (β1 = (NA,NN), β2 = (NA,NN)) and weight w =

0.8, set of 2 theta and 2 lambda (β = ΘXΛ), the resulting initial common belief

would look like:

Example 1 Example of initial belief matrix given the parameters (rows: agent 1,

columns: agent 2):

(θ, λ) (NA, NN) (NA, N) (A, NN) (A, N)

(NA, NN) 0.4069 0.1024 0.1024 0.0256

(NA, N) 0.1024 0.0256 0.0256 0.0064

(A, NN) 0.1024 0.0256 0.0256 0.0064

(A, N) 0.0256 0.0064 0.0064 0.0016

Each entry in the matrix stands for the belief over the likelihood of agents’ pa-

rameter being (β1, β2) given the past observations, denoted as P ((β1, β2)|D(k − 1)).

When updating the belief over the likelihood each parameter pair at each time step,

each parameter pair is analyzed given the observed action and state, using Eq. 2.2.

3.0.2 Parameter estimation and Motion planning

At each time step, after the parameter estimation step (Bayes’ update/inference),

each agent performs motion planning based on the information in hand including

the approximated parameters and the observed state. The point-estimate method

extracts the parameter with the highest probability mass from the belief matrix in

order to evaluate the best course of action.

The noisy-rational action distribution model, or Boltzmann’s distribution, is used

to depict the agent’s decision making model. When choosing an action uk from a
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discrete set of actions U , each action u ∈ U is evaluated given the state of the game

and parameter pair (βi, β̂−i), while fixing the other agent’s action to be the observed

action u−i,k−1. The method to obtain the parameter pair from the common belief

that is used for evaluating actions defers for empathetic and non-empathetic agent in

the following way:

Empathetic estimation

Empathetic agents use the point-estimated parameter pair (β̂i, β̂−i)k, or simplified as

β̂(k), from the entire belief matrix such as the one shown in table 1 to evaluate the

actions by enumerating over the action set, which can be expressed as

β̂(k) = arg max
β∈B

pk(β), (3.1)

notice that the estimates β̂(k) is obtained from the argmax of the entire common

belief matrix.

Non-empathetic estimation

For non-empathetic agent, the agent’s estimates of the parameter of the other agent

is obtained by looking at the partial common belief matrix by holding the agent’s

own true parameter is fixed. In other words, the estimation is done by extracting the

β from the common belief conditioned on the ego parameter’s true parameter:

β̃−i(k) = arg max
β−i∈B−i

pk(β−i|β∗i ), (3.2)

where β̃−i(k) is the non-empathetic agent i’s estimate of other agent’s (agent -i)

parameter at time k, and β∗i is the agent i’s true parameter.
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Motion planning

Following the parameter estimation step, the agents perform motion planning using

the information in hand. Since the action-value for the 2 agents are coupled together

as V1 and V2, we fix the other agent’s action as uother = uk−1,other when enumerating

over the action set. Each resulting action pair (ui,ego, uk−1,other)is then used as an

input for the Q function to obtain the action-value and subsequently the Boltzmann

distribution. Then, the best action is obtained using

u∗i = arg max
ui∈U

Qi(x, (ui, u
†
−i); θ̂). (3.3)

To summarize, the two types agents can have very distinct action-value for a given

state, due to the difference in parameter belief, thus resulting in choosing different ac-

tions. Note that the action is chosen based on the highest probability mass calculated

using eq. 2.2 (Boltzmann’s distribution), for the ability to replicate the simulation

results, as opposed to choosing action randomly according to the probability distri-

bution.

3.0.3 Uncontrolled Intersection

The environment that the agents will be tested in is a single-lane, one-way un-

controlled intersection, meaning there is no stop signs or traffic light, where the total

length of the lane is 70m, with the zone of the intersection zone spanning from 34.25

to 35.75m. This design is chosen that it can be fitted to many different scenarios in

the traffic scenes by simply changing the coordinate of the space.

Each agent have a starting position x0 with the range d = [15, 20], which is the

distance from the start of the road, i.e. the larger the x0 the closer the agent is to

the intersection. The starting speed v0 has the range of v0 = [18, 25].
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Figure 3.1: Uncontrolled Intersection Setup: Single Lane, One Way, No Stop Sign
nor Traffic Light. d is the Initial Positions of the Agents.

The agent’s loss/reward function is modeled differently around the intersection,

according to their types: aggressive and non-aggressive. The non-aggressive agent has

a larger “collision zone”, starting from 31.25 to 38.75m, while the aggressive agent

has a smaller zone from 34.25 to 38.75m; notice that the car has to fully exit the

intersection to avoid collision. This is to model the comfort level of the agent when

they are approaching another vehicle. The loss function is shown as in the figure 3.2.

Other parameters of the intersection include car size, vehicle speed and accelera-

tion/deceleration capabilities, which are taken example from the real world average:

3 by 1.5 meter for the car, 0.1 to 40 m/s for the vehicle speed and -5 to 15 m/s2

for the vehicle inputs. Since there is a limitation of how the actions are evaluated

by their action-value function, the vehicle inputs are given as a discrete set U , called

“action set,” with entries (-5, 0, 3, 7, 10), to make it computationally possible to

make decisions on the fly.
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Figure 3.2: Collision Loss Function Construction for NA and A Agents: NA Agent’s
Loss is Pictured in Red, While A Agent’s Loss is in Purple.

3.0.4 Simulation

In the simulation, the belief updates, motion planning addressed above are run

through iteratively. The simulation workflow is demonstrated in Fig. 3.3: From the

initialization with the given initial conditions, to termination upon satisfaction of

terminal conditions (vehicle passing intersection).

Note that the simulation is in discrete time and the agents are given discrete set

of actions for implementing the Bayes’ update, and due to the limitation on finding

a simultaneous Nash Equilibrium in a large action space, initial action is assumed to

be zero. With the intersection case implemented, next up the case studies for testing

the strength of our empathetic model are addressed.
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Figure 3.3: Simulation Work Flow: Agents Update Belief and Make Decision Based
on the Belief Iteratively Until the Interaction Ends.

22



Chapter 4

CASE STUDIES

From the method and implementation sections, it is easy to see that the empa-

thetic inference is more computation heavy; therefore, an effective way for verifying

whether such higher cost is worthwhile is needed. In this section, we propose some

difficult scenarios to see whether our empathetic modeling improves the outcome of

the interactions. The experimental interaction variables include changing of the initial

beliefs, starting position and speed.

4.0.1 Starting Position and Speed

As discussed in the implementation section, each agent has a range of starting

position xi and speed v0. The interaction is tested for agents starting from the grid

of X1 x X2 while fixing the starting speed to reduce the dimension of the experiment

space. Larger xi (closer to collision zone) will put the agent’s ability to quickly infer

the agent’s parameter to test, as there is less time to converge to the right policy

before coming into contact with the other agent.

4.0.2 Initial conditions: beliefs

The parameter set of agents β∗ ∈ B is composed of combination of intent and

noise parameters, creating parameters combinations (NA, NN), (NA, N), (A, NN),

(A, N) for each agent, where “A” stands for aggressive, ”N” stands for noisy and so

on. Each of them represent a variable that affects the equations introduced in the

method, for instance, NA (non-aggressive) represents “5” that gets plugged into the

value function in Eq. 2.11, and noise parameter “NN” (non-noisy) represents “0.1”
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which gets plugged into the λ in Boltzmann equation in Eq. 2.2.

To test the strength of our proposed parameter estimation model, we let the agents

start with incorrect initial belief over the other agent’s parameter.

NA agents with A beliefs

At the beginning of an interaction, each agent believes the other agent to be aggressive

(θ̂ = A), while their own ground truth parameter being non-aggressive (θ∗ = NA).

Intuitively, this false believe if not corrected, can lead to inefficient interaction, where

both agents are hesitant to pass the intersection first, since they assume the aggressive

agent will take the chance as they care less about close encounters.

A agents with NA beliefs

Oppose to the above setting, the agents in this case believe that the other agent is

non-aggressive, while their own parameters are aggressive. When agents unknowingly

assume others to be non-aggressive, intuitively, the agent may make decision that

dangers both parties since it believes that it can pass the intersection first.

4.0.3 Agents with consistent initial belief

Similar settings to the inconsistent initial beliefs scenarios, here the agents are

given an initial belief over the other agent’s parameters but is consistent with the

true parameter. The agent’s ability to correctly model an agent is tested in this

case, which also provides a baseline comparison to the above scenario, showing the

difference in rewards when agents have correct versus incorrect beliefs.

The scenarios in this section lead us to designing the following hypotheses:
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Hypotheses

• Empathy in the uncontrolled intersection leads to higher reward when agents

have incorrect initial belief. We let agents’ choice of empathy be l, and e, ne

stands for empathetic and non-empathetic, p0 be the initial belief, v be the

reward of the agents, s =< x0, p0, θ, l > be the set of parameters,then if we

have l1 = (e, e) and l2 = (ne, ne), θ∗1 = θ∗2 6= p0, there exists x0 ∈ X0 such that

v(s1) > v2(s2).

• Empathy leads to higher reward when agents have consistent initial belief; Same

formulation applies except for θ∗1 = θ∗2 = p0.

The hypothesis is verified in a discrete-time simulation of an uncontrolled intersec-

tion with two agents, where the two agents attempt to infer other agent’s parameter

and score the highest reward. Results of the case studies including reward value,

evolution of parameter belief and trajectories are shown and discussed in the next

section.
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Chapter 5

RESULTS AND ANALYSIS

In this section, the results from the settings discussed in the case study portion is

shown and analyzed: the reward comparison yields a more case by case study between

the initial conditions, while the trajectories present a more macroscopic view of the

performance of the agent type. Policy choices and belief dynamics add another layer

to help analyzing the results from reward and trajectories.

5.0.1 Reward comparison

Figure 5.1: A.E.inconsistent vs A.base: Reward Difference between the Aggres-
sive Empathetic Interaction with Inconsistent Initial Belief and Baseline Interaction
(Rewardbase−RewardE). Lighter Color Represents Empathetic Agent Having Close
or Higher Reward Than Baseline Performance and Vice Versa.
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As addressed in the implementation section, we design a starting zone for the two

agents. We run through the combination of starting positions, which is a total of 6

by 6 cases for each case study to thoroughly test all the trajectories for the social

values. The velocity is fixed to 18m/s to reduce the dimension of the experiment

variables. By having different starting position, we examine how NA and A agents

interact in different scenarios: when the agents with empathetic and non-empathetic

models start with the incorrect belief and when the agents start with the correct belief

(we refer to this as “baseline”). The difference in the accumulative reward values will

reflect on how well the type of agent is able to quickly update the belief on the other

agent’s parameters.

Figure 5.2: NA.E.inconsistent vs NA.base: Reward Difference between the Non-
aggressive Empathetic Interaction and Baseline Interaction (Rewardbase - RewardE).
Lighter Color Represents Empathetic Agent Having Close or Higher Reward Than
Baseline Performance and Vice Versa.

Fig. 5.1 and Fig. 5.2 compares the difference in reward values between the empa-

thetic agents with inconsistent initial belief and the baseline interaction, where each
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entry is calculated as Rewardbaseline − RewardE. The empathetic interaction with

inconsistent initial belief on average has higher reward by 30.694 for aggressive and

deficit of 1418.85 for non-aggressive when compared to neural network baseline (with

no inference).

Figure 5.3: A.E vs A.NE (inconsistent): Reward Difference between the Aggres-
sive Empathetic Interaction and Non-empathetic Interaction, with Inconsistent Initial
Belief(RewardNE−RewardE). Lighter Color Represents Empathetic Agent Having
Significantly Higher Reward Than Non-empathetic Agent and Vice Versa.

Overall, the empathetic agents perform on par with the baseline cases except in

the non-aggressive setting when the initial states of the agents are close together. On

the diagonal part of the non-aggressive cases, having a fixed policy helped with safely

navigating to avoid close encounters; however, the lower reward in baseline is due to

the optimizer finding global solution outside of the action bounds then are normalized

to fit in the boundaries, which makes the agents to spend slightly higher effort. It

is also noted that the smaller difference in reward is indicative of the difference in

effort resulted from the u2 term in the reward value function, but the larger difference
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(higher than 1000) is a result from having (pseudo) collision, which yields more than

−1000 reward for every time step spent in the collision scenario.

Figure 5.4: NA.E vs NA.NE (inconsistent): Reward Difference between the Non-
aggressive Empathetic Interaction and Non-empathetic Interaction, with Inconsistent
Initial Belief (RewardNE−RewardE). Lighter Color Represents Empathetic Agent
Having Significantly Higher Reward Than Non-empathetic Agent and Vice Versa.

Fig. 5.3 and Fig. 5.4 shows the difference in accumulative reward between empa-

thetic and non-empathetic (E vs NE) agents with inconsistent initial belief, in the

case of aggressive (A) and non-aggressive (NA) interaction respectively. The negative

values show the cases where empathetic agents outperform non-empathetic ones. On

average, empathetic agents perform better than the non-empathetic ones by 1561.52

for aggressive, and 1340.67 for non-aggressive across the starting positions in terms

of accumulative reward. In both aggressive and non-aggressive settings, the empa-

thetic agents show significantly higher reward when the initial states are close for

both agents, which may lead to a more obscure interaction.

By combining the above observations from the figures showing the difference in
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accumulative reward values, it is noted that empathetic interaction generally leads to

better outcome in terms of the agent’s reward than the non-empathetic ones, while

performing on par with the baseline. To further prove the effectiveness of empathy,

discussion on trajectories and policy choices are addressed up next.

5.0.2 Trajectories and policies

Figure 5.5: BVP Trajectory and NN Simulation Results: (a,b,c,d) are the Trajec-
tories from BVP Solver, and (e,f) are the Trajectories from the Simulator Using the
Trained Neural Network. The Color Represents the Instantaneous Rewards for the
Two Agents in That Trajectory.

The resulting trajectories and the agent’s policy choice in different initial belief

are examined in this section. First, the trajectories from BVP solver and the trajec-

tories by optimizing the action-value from using the trained value network (neural

network, NN) without any inference updating the agents’ belief over the parameters
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are compared, as shown in Fig. 5.5; the collision boxes and pseudo-collision boxes (for

non-aggressive agents) are represented in the figures in grey and white colors respec-

tively. Through this we validate the effectiveness of the value network in reflecting

the action values given any state during the simulation. Additional trajectories in

Fig 5.6 are included as baseline as part of the policy that will be used in the consistent

and inconsistent tests. Note that few trajectories as shown in the figures where lines

cross the dark rectangular box (collision zone), it is due to the limitation of samples

used for training the network: there exist some states that are not trespassed by

the BVP solver, or they are difficult to solve (i.e. when both have identical initial

conditions); for the most part, neural network result performs equally as well as the

BVP solutions, with the only major difference being that the NN trajectory is a one-

shot whereas BVP can iteratively improve the trajectories to minimize effort versus

reward, and that difference can be seen where NN trajectories are more spread out

from the collision zone in order to avoid unwanted loss.

Figure 5.6: Neural Network Trajectories: Resulting Trajectories from Using Trained
Value Network to Approximate the Action Values in (a) Non-aggressive Versus Ag-
gressive and (b) Aggressive Versus Non-aggressive Settings.
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Consistent Belief

The consistent belief cases test the capability for each type of agent to infer and stick

to the correct belief over the fellow agent’s parameters, and consequently the correct

policy against the fellow agent. The capability for inferring the correct belief while

avoiding collision is evaluated by presenting and analyzing the resulting trajectories

and chosen policies on top of their rewards.

By comparing the consistent belief simulation trajectories shown in Fig. 5.7 to

the BVP solution trajectories in Fig. 5.5, it is shown that the inference algorithm in

such cases is able to correctly choose the right policy accordingly based on the value

network with high resemblance in comparison to the baseline trajectories, regardless

of agent types. This result provide a baseline understanding of the performance of

the discrete-time inference algorithm using Bayes’ updates.

Figure 5.7: Consistent Initial Belief: When Belief Matches with Ground-true Re-
ward Parameters. (a,b) Unknowingly Non-aggressive, (c,d) Unknowingly Aggressive.
(a,c) Empathetic, (b,d) Non-empathetic.
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Inconsistent Initial Belief

In the case when agents are given inconsistent initial belief, aggressive agents start

with beliefs that the fellow agents are non-aggressive, and vice versa. In order for

agents to efficiently pass the intersection and avoid any collision (or pseudo-collision

for non-aggressive agents), having the correct belief and in turn correct policies is

essential; if the agents have incorrect belief, i.e. aggressive agents believe each others

to be non-aggressive, it is more likely to falsely assume that the fellow agent will yield

or pass and thus leading to undesired outcome. Therefore, having inconsistent initial

beliefs further put each type of agent’s ability to converge to the right belief to test.

The figure 5.8 shows the trajectories of the agents with inconsistent initial belief.

It is noted from the figure that when the agents are empathetic, the agents have

better ability to avoid the collision zone except for the scenarios where the two agents

start from close initial states. In contrast, non-empathetic agents have a difficult time

correcting to the right policies, thus creating a lower reward interaction.

Policy choices

At every time step k, each agent chooses a policy based on the inferred parameter

β̂−i(k) and agent’s own ground truth parameter β∗i . Keep in mind that empathetic

and non-empathetic obtains their parameter estimation differently as discussed in the

implementation section, which produces the possible difference in policy choice that

are studied here. The choice of policy over the trajectory are shown in this section:

having value equals to 1 represents the correct choice of policy (β̂ = β∗, colored in

purple) and vice versa.

Fig. 5.9 and 5.10 show that the empathetic agents have better ability at choosing

the right policy (purple lines), whereas the non-empathetic ones have fewer instances
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Figure 5.8: Inconsistent Initial Belief: When Belief Mismatches with Ground-true
Reward Parameters. (a,b) Unknowingly Non-aggressive, (c,d) Unknowingly Aggres-
sive. (a,c) Empathetic, (b,d) Non-empathetic.

selecting the right one. With the policy choice figures, additional observations can be

made: while there are cases of empathetic agents having (pseudo) collisions, it can

be seen that they are also the fewer cases where the correct policy is not followed

through by both agents and creating an undesired situation. Thus, we draw the

conclusion that empathetic interactions result in higher likelihood of agents correctly

inferring the fellow agent’s parameter and choosing the right policy, even when given

the incorrect initial guesses.

5.0.3 Belief dynamics

To further investigate in detail of the change in belief, the way beliefs evolve

over time is presented in the form of discrete-time belief dynamics. In order to
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Figure 5.9: Policy Choice of E Agents: Color Represents the Policy Choices By
Each Empathetic Agent, (a,c) are Agent 1, (b,d) are Agent 2.

Figure 5.10: Policy Choice of NE Agents: Color Represents the Policy Choices By
Each Non-empathetic Agent, (a,c) are Agent 1, (b,d) are Agent 2.
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have a better look at the difference in belief dynamics, we select the cases from the

inconsistent initial belief setting where the agent’s reward is overwhelmingly better

in the case of the empathetic agent.

Figure 5.11: Belief Dynamics of E V.s.NE Agent: An Example of Evolution of
Belief over Time of Empathetic Agents (left) Versus Non-empathetic Agents (right)
with Inconsistent Initial Beliefs, Starting from x1=16 and x2=15. First Two Rows
are Predicted Parameter By the Other Agent, 3rd and 4th are the Probability Dis-
tribution of Belief over the Simulation and the Last Row is the Belief over the Noise
Parameter λ.

In the scenario of fig. 5.11 , the aggressive agents start from x1 = 16, x2 = 15 with

inconsistent initial belief. The empathetic case result in the accumulated reward of

-39.9, whereas the non-empathetic case has reward of -4686.74. The figure illustrates

the marginal probability of other agent being each of the reward/intent parameter θ.

From the figure, it is trivial that in the empathetic interaction, the belief over the
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Figure 5.12: Actions Taken of E Vs. NE: Examples of Difference between Actions
Taken between (a) Empathetic and (b) Non-empathetic, Starting from x1=16 and
x2=15.

other agent quickly converged to the correct parameter which is aggressive (Aggres-

sive, A), in contrast the non-empathetic interaction never converged, resulting in the

agents taking the incorrect policy against the fellow agent. The actions taken by both

types of agent are shown in Fig. 5.12, reflecting the difference in actions resulted from

difference in belief: in the empathetic case car 1 (the car in front) sped up and car 2

slowed down to avoid close encounters; whereas the non-empathetic agents struggled

to make the right move. Base on the belief dynamics figure, we make the relation

that empathetic agent outperforms the non-empathetic ones by correctly inferring

the parameters and choosing the right policy.

37



Chapter 6

CONCLUSION

In this paper, the advantage of “empathy” of agents in a multi-agent Interaction

is studied in an uncontrolled intersection. We modeled the interaction as a multi-

agent playing a incomplete differential game, where the two agents play the Nash

Equilibrium based on their belief on the other agent’s parameter. The difference

between the empathetic and non-empathetic agents lies in the parameter estimation.

From the simulation results, the reward values and policy choices show that empathy

does indeed lead to better outcome.

Some open challenges still remain in Human-robot interactions such as our case

studies, including finding perfect bayesian equilibrium, limitation on softmax calcu-

lation to be discrete (Boltzmann’s distribution), etc. By overcoming some of the

mathematical modeling difficulties in the future, the interaction can be further im-

proved and be better at reflecting and dealing with the interactions in the real world.

The work can be extended by incorporating the probability distribution of the

belief in the action-value, which helps differentiating the cases when the agent is highly

confident versus when the agent is indecisive between the parameters. Studies can

also be made based on the proposed modeling of the agents for more traffic scenarios

such as roundabouts and lane-changing, to further validate the utility of empathy of

agents. Lastly, while some notes on the belief dynamics are made, it is important

that such dynamics is further scrutinized for a guarantee on the convergence of the

correct parameter.
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