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ABSTRACT

This research focuses on the intricate dynamical systems of eusocial insects, particu-

larly ants and honey bees, known for their highly organized colonies and cooperative

behaviors. Research on eusocial insects contributes to understanding of animal and so-

cial behavior and promises to help agriculture and have huge economic impacts. Col-

laborating closely with ecologists, I construct diverse mathematical models tailored

to different environmental contexts. These models encompass individual stochastic

(Agent-based model), Ordinary Differential Equation (ODE), non-autonomous, and

Delay Differential Equation (DDE) models, rigorously validated with experimental

data and statistical methods.

Employing dynamical theory, bifurcation analysis, and numerical simulations, I gain

deeper insights into the adaptive behaviors exhibited by these insects at both colony

and individual levels. Our investigation addresses pivotal questions:

1) What mechanisms underlie spatial heterogeneity within social insect colonies,

influencing the spread of information and pathogens through their intricate social

networks? 2) How can I develop accurate mathematical models incorporating age

structures, particularly for species like honeybees, utilizing delayed differential equa-

tions? 3) What is the influence of seasonality on honeybee population dynamics in

the presence of parasites, as explored through non-autonomous equations? 4) How

do pesticides impact honeybee population dynamics, considering delayed equations

and seasonality?

Key findings highlight: 1) The spatial distribution within colonies significantly

shapes contact dynamics, thereby influencing the dissemination of information and

the allocation of tasks. 2) Accurate modeling of honeybee populations necessitates the

incorporation of age structure, as well as careful consideration of seasonal variations.

3) Seasonal fluctuations in egg-laying rates exert varying effects on the survival of
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honeybee colonies. 4) Pesticides wield a substantial influence on adult bee mortality

rates and the consumption ratios of pollen.

This research not only unveils the intricate interplay between intrinsic and envi-

ronmental factors affecting social insects but also provides broader insights into social

behavior and the potential ramifications of climate change.
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Chapter 1

INTRODUCTION

1.1 Overview

A complex adaptive system works in a dynamic network [Miller and Page, 2009].

They interact in interdependent ways to produce system-wide patterns. Complex

adaptive systems can be used in different fields like the economy, the internet, a

social insect colony, or the brain [Johnson, 2009b]. These are several important char-

acteristics of the complex adaptive system [De Ridder et al., 2017]: 1) the system

consists of many heterogeneous agents, and each agent has its behavior which can

evolve; 2) agents interact with each other; 3) the system shows emergence, where “the

whole is more than the sum of the components and the very specific connectivity cre-

ates a new property" [De Ridder et al., 2017] ; 4) the system is self-organizing, which

means we cannot understand the whole system from individuals. A typical example

of a complex adaptive system is an ant colony. Each ant has its task behavior, such

as forager or nurse, and each ant also interacts with others. They have lots of local

interactions. Similar to honey bees and wasps, their behaviors emerge in a colony.

The complex adaptive system is one method that can dissect complex organizations

in nature, such as insect communities.

Eusocial colonies display high levels of organization without leadership and strate-

gic planning in the Animal Kingdom [Messan, 2018], and there are three main char-

acteristics in the colonies: social interaction, division of labor, and overlapping of
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generations [Holbrook et al., 2011]. Social interaction occurs in multi-scale interac-

tions among members of the colony and between the colony and the environment

[Wilson, 1978]. Division of labor refers to the notion that individuals are special-

ized to perform particular tasks [Wilson, 2000]. Overlapping of generations refers

to mating systems where more than one breeding generation is present at any one

time [Olsen, 2009]. With the emergence of task groups in social insect communi-

ties, the division of labor regulates the colony’s homeostasis and helps to achieve

effective information transfer, rapid response to nest defense, and minimizing disease

exposure at the colony level [Gordon and Mehdiabadi, 1999; Robinson et al., 2009a].

Therefore, task specialization establishes individual rules [Chen et al., 2020b], such

as age-dependency (temporal polyethism) and size/shape-dependency (morphological

polyethism) [Beshers and Fewell, 2001].

In addition to task allocation, reproduction within Eusocial colonies is directly

connected with the success of the colonies. One good example is the honey bee. Why

should we pay attention to the reduction of the honey bee population? Honey bees

play an important role in the pollination of crops, such that pollinating behavior is

worth $215 billion [Smith et al., 2013]. In addition, the main bee products in human

life are honey, pollen, propolis, royal jelly, and venom. However, as the yield of honey

bees’ products reduces, their prices increase; for example, honey prices were up 2% in

2017 from the USDA report [USDA, 2017]. Current research found three main rea-

sons threaten the survival of honey bees [Oldroyd, 2007]: 1) environmental stressors,

such as pesticide and deforestation [Perry et al., 2015; Fisher II et al., 2021; Campbell

et al., 2016]; 2) parasites and pathogens, such as Varroa mites and virus [Smith et al.,
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2013; DeGrandi-Hoffman et al., 2017; Guzmán-Novoa et al., 2010; Martin, 2001b];

and 3) genetic variation and vitality [Meixner et al., 2014, 2010]. Therefore, analyz-

ing the impact of these three aspects on the dynamics of honey bee colonies can help

us learn how to better manage ecology, economy [Degrandi-Hoffman et al., 2019], and

human life.

The study of social insect behavior and colony dynamics, particularly adaptive and

underlying mechanisms, can help us better understand behavioral ecology and human

social behavior, such as processes of information transmission and disease spreading,

social networks, and spatial influences. Mathematicians and biologists have collab-

orated to build different models with realistic biological backgrounds to help solve

or reveal problems, such as computational models, compartmental models, or par-

tial differential models [Chen et al., 2021]. The agent-based model can be used to

simulate biological experiments, which can better quantify the relationship between

parameters and allow the researchers to draw better conclusions [Guo et al., 2020].

Also, combine equations to simulate the species in the environment, like temperature

and food, to predict the fate of the species, and also can explore key reasons for the

different outcomes [DeGrandi-Hoffman et al., 1989]. Compartmental modeling can be

used to describe the system to reveal the dynamics [Chen et al., 2020a], and partial

differential equations can be used to describe the dynamics of colony and contami-

nated food sources [Magal et al., 2020a] with spatial factors.

Social division of labor, colony dynamics, and existential threats interact. The

age-dependent work assignment will change when the colony population declines ab-
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normally because of external threats. For example, when the number of old foragers

in the hive is insufficient, younger bees will become foragers [Leoncini et al., 2004;

Beshers and Fewell, 2001]. This dissertation is consequently concerned with under-

standing the complex adaptive systems in eusocial colonies by multi-scale modeling.

The motivations presented in this dissertation fall into two categories. First, I ana-

lyze and visualize information spread and task allocation in the colony to expose that

spatial heterogeneity plays an important role in contact dynamics, from individual

to group level. The second portion of this research focuses on applications to honey

bee population dynamics and the reduction reasons: parasites and pesticides. Exper-

imental data verifies the practical significance of these works.(See Figure 1.1).

1.2 Research Questions

The central question of this dissertation is how to create multi-scale models at the

individual, group, and colony levels to understand the complex adaptive systems in

social insects.

The following sub-questions can help answer the preceding question:

• How do spatial interactions and task switching impact task allocation and in-

formation spread?

• How can honeybee population dynamics be modeled by age structure and sea-

sonality?

• How does seasonality affect the parasitism colony dynamics?
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Chapter 2: agent-based
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spatial interactions

Chapter 3: Honey bee stage
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seasonality

Chapter 4: Honey bee and
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seasonality
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Social insects’ task allocation
Individual to group level

Social insects – honey bee
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Reduction reason 1: Parasites 
and pathogens

Reduction reason 2:
Environmental stressors

Figure 1.1: Chapters in the dissertation

• How does pesticide influence colony dynamics? How does the seasonality of

queen egg-laying contribute to colony dynamics with pesticide exposures?

1.3 Division of Labour & Task Allocation

In social insect colonies, workers have particular tasks. Division of labor occurs

when different workers in the colony perform specialized subsets of tasks. It is one

of the most notable characteristics of group behavior of social insects [Beshers and
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Fewell, 2001]. From simple to complex groups, various social classifications describe

this basic attribute. Therefore, the division of labor is related to colony size. With

the expansion of the group size, the division of labor in social groups increases. Work-

force allocation is flexible, responding to current needs [Bourke, 1999; Anderson and

McShea, 2001; Mersch et al., 2013]. The whole process is self-organized, so how do

they distribute the division of labor? One method is that ants contact each other to

switch their tasks. After that, they decide whether to switch tasks depending on the

physical state of the environment and social cues from interaction with other ants

[Robinson et al., 2009b].

In order to understand the division of labor, task allocation is the key to achieving

collective plasticity [Chen et al., 2018]. [Gordon, 1996] defined, “Task allocation is

the process that results in specific workers being engaged in specific tasks, in numbers

appropriate to the current situation." Three things can influence task allocation: ge-

netics [Oldroyd and Fewell, 2007], stimuli from environment [Page Jr and Mitchell,

1998], and hormones [Robinson, 1987]. For example, singly-mated and multiple-mated

queens impact task allocation [Oldroyd and Fewell, 2007]. Individuals share informa-

tion (a stimulus) to operate a self-organized complex system [Page Jr and Mitchell,

1998]. Juvenile hormones influence four important age-relative tasks (nursing, food

storage, nest maintenance, and foraging) [Robinson, 1987].

These hormones result in Age polyethism, which plays an important role in the

social insects’ division of labor. [Beshers and Fewell, 2001]. In the colony, young

adults always assume the nursery role to take care of brood and queen, and older
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adults always assume the foraging role to scout the food and collect nectar, water,

and propolis [Coffey, 2007]. Thus, for social insect groups with age polyethics, the

tasks performed by individuals within the group change with maturity [Capinera,

2008].

1.4 Honey Bees

The honey bee is a social insect that is very important to humans. American

beekeepers generally carry western honey bees, named Apis Mellifera. Honey bees

have various products, such as honey, royal jelly, beeswax, and propolis. They also

are responsible for pollinating crops such as blueberries, cherries, and almonds, re-

sulting in many more objective economic benefits. But right now, the population of

honey bees has noticeably decreased in the long-term and annually [Smith et al., 2013].

The population of honey bees in winter is less than in the summer because pollen

and nectar are the food of honey bees, and they lack food in the winter. Additionally,

the queen bee’s fertility also declines. Then, due to pollen availability in the spring,

the birth rate of honey bees increases. The peak of the population is achieved in late

June, until the middle of summer, as it starts to decline [Research and Extension Con-

sortium, 2004]. However, beekeepers discovered a strange phenomenon in the winters

of 2006-2007 and 2007-2008. They found the hive abandoned by the residents, with

only a small amount of honey and almost no honeycombs or worker bees. This phe-

nomenon is called Colony Collapse Disorder (CCD) [Evans et al., 2009], resulting in a

40% to 50% reduction in the total number of honey bee colonies in the United States.

7



In contrast, the total number of colonies worldwide is reduced by 5% to 10% [Paula

María Montoya-Pfeiffer and Parra., 2016]. Considering our dependence on honey bee

pollination, many problems are caused by the declining number of bees.

The colony comprises a queen, who breeds offspring, a few hundred male drones,

who provide sperm, and thousands of female workers who maintain colony operation

[Fredrick et al., 2017]. It takes 16 days for a queen to mature, and a strong mature

queen can lay 1500-2000 eggs daily, but after two years, only lays a few eggs [Coffey,

2007]. Drones are bigger than workers and develop from unfertilized eggs; their main

job is to mate with the queen. They need 24 days to mature [Fredrick et al., 2017;

Coffey, 2007]. Most bees in the colony are workers, and it takes 21 days for a worker

to mature.

1.5 Parasitism in Honey Bees

Many problems plague the colony survival of bees. One of them is parasites and

pathogens. Beginning in 2006, many honeybee colonies collapsed for no observed rea-

sons [Cox-Foster et al., 2007]. [Hayes Jr et al., 2008] published a survey of honey bees

that revealed around 30% colonies losses from 2007 to 2008. Until now, the cause of

CCD has not been fully understood, but some scientists believe parasites, like Varroa

and Nosima, and viral disease are some reasons for CCD [Johnson, 2010]. In the

United States, Varroa mite is one reason for the losses of honey bee colonies [Neu-

mann and Carreck, 2010]. Varroa mites seriously threaten the survival of honeybee

colonies, especially in winter [Koleoglu et al., 2017]. Due to lack of food in winter and
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to keep the temperature in the hive, bees will choose to stay in the colony, and the

queen will reduce or stop laying egg [Johnson, 2002; Coffey, 2007; DeGrandi-Hoffman

et al., 1989; SEELEY and Visscher, 1985]. An adult female varroa mite enters an

uncapped pupa and begins parasitism. They live on brood, and the first egg laid will

be male and will mate with females that are laid later [Donze et al., 1996; DeGrandi-

Hoffman et al., 2017].

Varroa mites reduce the lifespan of bees [Genersch et al., 2010] and spread viral

diseases to the colony, causing collapse. They are also one of the main factors affect-

ing colony overwinter [Guzmán-Novoa et al., 2010; Degrandi-Hoffman et al., 2019].

At least 14 viruses can be found in the bee community. Among them, deformed wing

virus (DWV) can cause wing malformations, and acute bee paralysis virus (ABPV)

can prevent bees from growing up and dying [bai, 1991]. When adult bees are infected

with DWV, they are the same as healthy bees, but their life span will be reduced.

Therefore, during this time, adult bees and their mites carry the virus and spread it

from colony to colony by moving [Martin, 2001a]. Adult bees infected with the ABPV

are paralyzed, shivered, unable to fly, and gradually blacken and lose hair from the

chest and abdomen [Martin, 2001b]. If the colony is mite-free, then the ABPV will

be latent, and Varroa can provoke the disease [Chen and Siede, 2007]. Therefore,

social interaction between colonies and environments will infect and spread diseases

and parasites. Studying social interaction between them is important for protecting

honey bee colonies and helping them to overwinter effectively.

9



1.6 Pesticides in Honey Bees

One more factor threatening the survival of bee colonies is environmental stres-

sors, including habitat destruction and the use of pesticides [Oldroyd, 2007; Fisher

et al., 2023]. Pesticides are integral to modern agriculture, providing vital functions

like crop protection, economic benefits, and enhancing efficiency in food production.

Hence, pesticides are extensively applied to crops, and in the course of pollination and

nectar collection, bees, being the primary pollinators, may inadvertently transport

residual pesticides or pollen containing these chemicals back to their hives [Devillers

et al., 2002]. The nurse bees will subsequently consume or provide the food to their

larvae [Haydak, 1970; Owens and Farrar, 1967], then these residues can impact bee

health, potentially resulting in colony collapse [Tosi et al., 2017; Fisher II et al., 2021].

Therefore, pesticides can adversely affect bee populations, some of which may

not be directly lethal [Fisher et al., 2023; Mullin et al., 2010; Sánchez-Bayo et al.,

2016]. A diverse range of pesticides is used within safe limits, but their residues in

bees can produce synergistic effects, rendering them sub-lethal or threatened [Fisher

et al., 2023; Mullin et al., 2010; Tosi et al., 2022]. Research indicates that exposure

to pesticides can result in various detrimental effects, including compromised forag-

ing behavior [VanEngelsdorp et al., 2012], impaired navigation [Chmiel et al., 2020;

Tosi et al., 2017], and weakened immune systems [DeGrandi-Hoffman et al., 2013].

Moreover, specific classes of pesticides, such as neonicotinoids and Pristine, have been

closely associated with declines in bee populations [Tosi et al., 2017; Fisher II et al.,

2021], including higher death rate of adults and reduced worker lifespan [Fisher II

et al., 2021]. These chemicals can induce hyperresponsiveness in bees, disrupting
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their ability to forage effectively and ultimately contributing to colony collapse.

Therefore, studying how pesticides affect honey bees is crucial. I constructed an

age-structured delay differential equation to describe the experiment [Fisher II et al.,

2021]. By integrating theoretical analysis, simulations, and data fitting, the study to

explore the effects of pesticides on honey bee dynamics.

1.7 Contribution and Significance

This research analyzes and visualizes complex adaptive systems using a multi-

scale modeling approach to describe social insects’ behavior, interaction, or life span.

Due to the complexity of systems of social insects, analyzing the mechanisms in these

systems is complicated. I provide three models to study their mechanisms and novel

solutions to generate by dispersal through theoretical analysis and computational

simulations. My work continues existing work on agent-based and compartmental

models, making the models more biologically relevant. My work combines real exper-

imental data and uses dynamical system models to more accurately reveal biological

systems’ internal relationships and importance.

In the remaining chapters, I will present four projects. The first is an agent-based

model to explore an ant colony’s task-switching and information-spreading systems.

The second project is a compartmental model with age structure to explore the colony

dynamic of honey bee colony by delay differential and seasonality equations. The last

project is a compartmental model to explore the parasitism and seasonality effects in
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honey bee colonies.
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Chapter 2

DYNAMICS OF INFORMATION FLOW AND TASK ALLOCATION OF

SOCIAL INSECT COLONIES: IMPACTS OF SPATIAL INTERACTIONS AND

TASK SWITCHING

Abstract

Models of social interaction dynamics have been powerful tools for understanding

the efficiency of information spread and the robustness of task allocation in social

insect colonies. How workers spatially distribute within the colony, or spatial hetero-

geneity degree (SHD), plays a vital role in contact dynamics, influencing information

spread and task allocation. We used Agent-Based Models (ABM) to explore fac-

tors affecting spatial heterogeneity and information flow, including the number of

task groups, variation in spatial arrangements, and levels of task switching, to study:

1) the impact of multiple task groups on SHD, contact dynamics, and information

spread, and 2) the impact of task switching on SHD and contact dynamics. Both

models show a strong linear relationship between the dynamics of SHD and con-

tact dynamics, which exists for different initial conditions. The multiple-task-group

model without task switching reveals the impacts of the number and spatial arrange-

ments of task locations on information transmission. The task-switching model allows

task-switching with a probability through contact between individuals. The model

indicates that the task-switching mechanism enables a dynamical state of task-related

spatial fidelity at the individual level. This spatial fidelity can assist the colony in

redistributing their workforce, with consequent effects on the dynamics of spatial het-
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erogeneity degree. The spatial fidelity of a task group is the proportion of workers who

perform that task and have preferential walking styles toward their task location. Our

analysis shows that the task switching rate between two tasks is an exponentially de-

creasing function of the spatial fidelity and contact rate. Higher spatial fidelity leads

to more agents aggregating to task location, reducing contact between groups, thus

making task switching more difficult. Our results provide important insights into

the mechanisms that generate spatial heterogeneity and deepen our understanding of

how spatial heterogeneity impacts task allocation, social interaction, and information

spread.

2.1 Introduction

Eusocial insects live in highly cooperative and cohesive societies with complex

organizational structures Class [2000]. These societies are organized around the work

of raising new individuals for colony growth and reproduction and maintaining con-

ditions for colony function. These goals involve a series of differentiable tasks. Their

systems of task allocation and division of labor allow the diverse members of these

societies to perform multiple different tasks in parallel. At the same time, the colony

as a whole regulates the allocation of effort to different tasks as needs and oppor-

tunities change. In fact, task allocation is a problem across most complex systems,

such as multicellular organisms Navlakha and Bar-Joseph [2014]; Yanni et al. [2020],

collective robotics Gerkey and Matarić [2004]. The distributed information systems

provided by their social networks allow colonies to regulate work homeostatically and

dynamically around current needs Robinson et al. [2009c]; Charbonneau et al. [2017];

Leitner and Dornhaus [2019]; Beshers and Fewell [2001]; Gordon [1996].
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Many, although not all, tasks take place in specific locations in the nest of social in-

sects, and workers performing the same task tend to aggregate around those locations,

which are described as spatial fidelity zones (SFZ)Mersch et al. [2013]. Spatial fidelity

adds an important spatial component to task regulation that likely influences task

communication networks. The locations in which workers perform tasks, or spatial

fidelity zones (SFZ), can reinforce communication among individuals within the cor-

responding task group and, in so doing, potentially enhance communication efficiency

for elongating their fidelities toward that task location Sendova-Franks and Franks

[1994, 1995]. Conversely, communication between task groups across SFZs may be

less frequent, potentially limiting coordinating tasks across the colony. Cross-colony

communication is necessary for the function of these distributed systems. Thus, we

would expect more flexibility in task choice, spatial preferences, and communication

strategies than would be provided with strictly delineated task zones. Flexible spa-

tial strategies can provide multiple functionalities beyond task regulation, including

facilitating information transmission or inhibiting the spread of pathogens Sendova-

Franks et al. [2010]; Feigenbaum and Naug [2010]; Naug [2008]; Feigenbaum and

Naug [2010]; Quevillon et al. [2015]; Regnier and Wilson [1968]; Wilson and Reg-

nier Jr [1971]. These make it critical to understand the inter-dependency between

social communication among individuals in the same or different task groups and the

formulation or decomposition of task groups.

As decentralized distributed systems, social insect colonies rely heavily on the

capability of individual workers to acquire information from the environment inde-
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pendently and on the ability to receive or send information via local inter-individual

communications Feinerman and Korman [2017]. The specific information and re-

sources acquired by workers can, in turn, influence individual spatial preferences and,

in doing so, assist the whole colony to re-establish the spatial distribution of workers

to cope with various challenges Theraulaz et al. [2003]. This interplay between in-

formation acquisition and worker spatial movement patterns has been widely studied

in various ant species, for example, nest-site choice and famine relief of T. albipennis

Pratt et al. [2002a]; Sendova-Franks et al. [2010], alarm propagation of P. californicus

Guo et al. [2022], social immunity of L. niger Stroeymeyt et al. [2018] and nutritional

balance of C. sanctus Baltiansky et al. [2021]. Although an ideal model for studying

this interplay, the processes and mechanisms by which task-related information and

social contact mediate workforce re-allocation within colonies are still understudied.

One way to study the dynamics of task regulation within a colony is to exam-

ine how internal factors, such as genotype Oldroyd and Fewell [2007], physiological

states Robinson [1987], and environmental stimulus Page Jr and Mitchell [1998], in-

duce workers to switch their tasks from one to another. Alternatively, it is worth

considering the task allocation as a product of task recruitment via social interac-

tions Pacala et al. [1996]. The task-related cuticular hydrocarbons of red harvester

ant (Pogonomyrmex barbatus) have been found to assist workers’ decision on task

performances Gordon [1989], and their encounter rate informs the possibility of task

switching Gordon and Mehdiabadi [1999]. Models incorporating components of tasks,

social interactions, and spatial behavior of individual workers are needed to better

understand the dynamic task allocation in social insect colonies.
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Previous models incorporating subsets of these components have revealed several

potential mechanisms of how individuals acquire local information by spatial coinci-

dence Richardson and Gorochowski [2015], how task allocation is mediated by individ-

ual movement Johnson [2009a], and how the encounter rate of individuals contributes

to collective patterns of task allocation Pacala et al. [1996]; Chen et al. [2020b]. How-

ever, these models do not provide an integrative view of task re-allocation as individual

spatial behavior associated with task-related interactions changes dynamically. For

example, the algorithm proposed by Johnson et al. (2009)Johnson [2009a] relying on

a self-organizing model of task-quitting, patrolling, task-searching, and task-working,

serves the random location of individuals throughout the colony without consider-

ing task demand. This model showed the dynamics of workers switching between

tasks and locations. Pacala et al.Pacala et al. [1996] demonstrated that responses to

demand a task could arise from the interactions among individuals, environmental

stimuli, and local densities. Therefore, a model that simultaneously integrates task

fidelity, the spatial distribution of individuals, and task-related interactions would fa-

cilitate our understanding of relations among those three components in social insect

colonies and further our understanding of mechanisms of adaptive task allocations.

In recent modeling work Guo et al. [2020], we investigated the information trans-

mission through physical contact in several realistic scenarios involving three task

groups of ants. We assumed that the performance of each task group is tied to pre-

defined spatial fidelities, which reflect the proportion of ants that prefer to drift back

to the task location compared to those that move randomly. With this assumption
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in place, we revealed the contributions of ants with different spatial fidelities, e.g.,

random-walking and drifted-walking, to the information transmission. To explore fur-

ther, in this study, we focused on how the number of task groups (ranging from 2 to 5)

and the spatial distribution of task locations impact information transmission. Addi-

tionally, we investigate how the task switching associated with the spatial coincidence

of ants is formulated by ants’ spatial distribution and, in turn, affects task allocations,

physical contact, and information transmission. Therefore, we propose two discrete-

time Markov chain models: 1. Multiple-task-group model, which assumes that each

task group (consisting of 2-5 tasks) has a fixed and pre-defined spatial fidelity (i.e.,

the proportion of drifted-walker within each task group); 2. The task-switching model

assumes that individuals can be recruited to another task that is different from their

original tasks by their neighboring ants via physical interactions, and after switching

the task, they may change their task spatial fidelities with a certain probability. Our

models address the following: (1) How do multiple task groups and related spatial

distribution of workers affect social contact dynamics and information transmission;

(2) How may task-switching lead to changes in spatial fidelity and therefore impact

task allocation.; and (3) How may spatial fidelity dynamics affect contact and infor-

mation dynamics after task switching.

The models and discussion are organized as follows. In Section 2, we derive our

agent-based model with associated information and task-switching scenarios. We in-

troduce two different modeling approaches: The multiple-task-group model, which

includes various task groups while keeping spatial fidelity constant, and the Task-

switching model, which provides for only a two-task group but dynamic spatial fi-
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delity. In Section 3, we perform our simulations and analysis for those two models

and compare their dynamics. In Section 4, we discuss the findings and conclude our

study.

2.2 Model derivation

Our model extends the agent-based discrete-time Markov chain model developed

in Guo et al. [2020] by including various task groups and task-switching procedures.

Unlike conducting experiments in such contexts that can be very challenging, our

model is an easy and effective tool that can shed some light on dynamics in real

social insect colonies.

We assume that the colony has N workers living on X = K × K = {(i, j) : 1 ≤ i ≤ K, 1 ≤ j ≤ K}

grids for some K ∈ Z. We also assume that N ≤ K2. At any given time t, a worker A

is characterized by ηA(t) = (lA(t), pA(t), wA(t), fA(t)) with four attributes explained

below. The lA ∈ X is the location of worker, and pA ∈ {1, 2, ..., P} is its task group.

The walking style of the worker is represented by wA ∈ {Random (R), Drifted (D)}.

Based on previous work and literature Charbonneau and Dornhaus [2015b]; Mersch

et al. [2013]; Guo et al. [2020], we set two walking styles for Worker A: Some workers

do not wander inside during each task; they randomly select one of the neighboring

cells and moves toward that Charbonneau and Dornhaus [2015b]. We set the walk-

ing style of such an ant to be wA = R. This random walking behavior provides the

chance of task switching. In the drifted walking style, when wA = D, the worker has

a preferential direction toward its task location (Sp) Mersch et al. [2013]. Finally,
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fA ∈ {0 (not informed) , 1 (informed)} represents its information state. Informed

workers have the ability to disseminate information to their uninformed workers.

Let Np(t) be the number of workers performing task p at time t, then we have

N =
∑P

p=1Np(t) ≤ K2. The notation SFp(t) is dynamical spatial fidelity (SF) of

task p at time t, and it is calculated by the fraction of workers performing task p at

time t who have drifted walking style (D). That is,

SFp(t) =
|{A : pA(t) = p&wA = D}|

Np(t)
. (2.1)

We adopt notations in Guo et al. [2020]. Each worker A with lA(t) = (i, j) has

up to four neighbors that are located at {(i± 1, j), (i, j ± 1) }. If workers are on the

edge or in the corner of the colony, the size of these neighboring cells will reduce to

three and two, respectively. For convenience, we use NCA(t) to denote its neighbor

sites which could have four, three, or two depending on its location lA(t) = (i, j). We

define |NA(t)| as the number of nonempty neighbors of worker A.

We develop models to address two questions: (1) How do multiple task groups

with associated spatial fidelity affect social contact dynamics and information spread

through a colony when tasks are located in different zones? and (2) How does task

switching affect dynamical spatial fidelity and social interactions? We use a multiple-

task model to explore the first question by allowing information to spread over the

whole colony with different numbers of tasks, and we use the task-switching model

to explore the second question.

Initially, workers are located randomly in the colony, and the population of task
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groups and initial spatial fidelity are the same (i.e., N1(0) = N2(0) = . . . = NP (0) &

SF1(0) = SF2(0) = . . . = SFP (0)). We set the population of drifted walking workers

in each task group by Np(0) ∗ SFp(0), and other workers are random walking. Then,

we randomly choose one worker A in the multiple-task-group model, make it informed

ant, fA(0) = 1, and set its location at the center of the colony, lA(0) = (K−1
2
, K−1

2
)

with K is an odd number.

For each update ∆t = 1 (each update corresponding to 0.001s in real colonies)Guo

et al. [2020]; Hurlbert et al. [2008], we randomly select a worker A to do the following

steps:

1. Based on the neighbors of worker A, it has a probability of |NA(t)|
|NCA(t)| to make a

contact with one of its neighbors and then switch its location with the neighbor.

And it has a probability of 1 − |NA(t)|
|NCA(t)| to move into its neighborhood sites in

next step 2 based on its walking style:

2. (a) If the walking style of A is random (wA(t) = R), A randomly selects

an empty neighboring cell lĀ ∈ NCA(t) to move in the new location lĀ:

lA(t+ 1) = lĀ,

(b) If the walking style of A is drifted (wA(t) = D), A selects an empty

neighboring cell lĀ ∈ NCA(t) closest to SFZ (Sp) to move in new location

lĀ: lA(t + 1) = lĀ. To determine the distance between task SFZ and all

neighboring empty lattices, we utilized Euclidean distance. In the event

that two empty lattices are equidistant from SFZ, the worker will randomly

select one to move to.

We repeat the process for the next randomly selected worker.
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3. Makes contact with one of its neighbors by randomly selecting a neighbor worker

B ∈ NA(t) and switches its location with this neighbor worker B, and lA(t+1) =

lB(t) and lB(t+ 1) = lA(t).

Workers can sense and communicate with neighbors located in adjacent grids

within the length of the antenna (2mm) Guo et al. [2020]. Each grid can occupy

at most one worker; therefore, the physical contact of two workers results in their

movement. Because of their proximity, these motions cause them to switch

locations, which is biologically and mathematically reasonable. Now we have

the following two scenarios:

(a) In multiple-task-group model: if two contact agents have different statuses

in information, i.e., fA(t) ̸= fB(t), we define fA(t+ 1) = fB(t+ 1) = 1,

(b) In the task-switching model: worker A is randomly chosen from popula-

tion, without loss of generality, we assume that neighbor B will switch

its task to worker A’s with probability βA when worker A and B have

different tasks (i.e., pA(t) ̸= pB(t)), thus the task of B at time t + 1 is

pB(t + 1) = pA(t). Based on task-switching mechanisms in ant colonies

(Wilson [1985]; Robinson [1992]), individuals in our model are assumed

to update their walking style in a negative feedback manner via sensing

the demand/supply of task activities. After task switching, the worker B

updates its walking style (wB) to be drifted (D), i.e., wB(t+1) = D, with

probability 1− SFpA(t); and to be random with probability SFpA(t). The

assumptions of how the worker B updating its walking style follow from

the “balancing," which means if more workers stay at the task location,

then the new workers who join this task group will be more inclined to do
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a random walk.

We repeat the process for the next randomly selected worker.

The model flowchart for a single time-step is shown in Figure (2.1), and the left of

Figure (2.2) shows the walking style of a typical worker, and the right of the Figure

(2.2) shows the location of the different number of groups, and the right bottom of

the Figure (2.2) shows different spatial arrangement of four task-groups.

Switch position:
𝑙! 𝑡 + ∆𝑡 = 𝑙"(t);
𝑙" 𝑡 + ∆𝑡 = 𝑙!(t)

Move to random empty location
closest to 𝑆#: 𝑙" ∈ 𝑁𝐶! 𝑡 ,
𝑙! 𝑡 + ∆𝑡 = 𝑙"

Move to random empty location:
𝑙" ∈ 𝑁𝐶! 𝑡 , 𝑙! 𝑡 + ∆𝑡 = 𝑙"

𝜔" 𝑡 + ∆𝑡 =D

𝜔" 𝑡 + ∆𝑡 =R

𝑢$ ≥ 𝑆𝐹!(𝑡)

𝑢$ ≤ 𝑆𝐹!(𝑡)

Multiple-task-group model

Task-switching model

Figure 2.1: The dynamics process for each update ∆t. ui indicates random numbers
in (0, 1), i = 1, 2, 3

.

To continue our study, we define the following measurements. Spatial Heterogene-

ity Degree (SHD) measures the distribution of workers in the colony Myers [1978] and

is defined as

SHD(t) =

∑K2

l=1

(
Pl(t)− N

K2

)2
K2

, (2.2)
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where Pl(t) indicates the probability that location l is occupied by a worker at time t,

N
K2 is the probability of location occupation when all workers do symmetric ran-

dom walks. The function SHD(t) is bounded from the above by its maximum

SHDmax = N(K2−N)
K4 . We assume one lattice has 1 or 0 workers at any given time t,

and we calculate the approximation of SHD following the method in Guo et al. [2020].

Let Cpq(t) be the total number of contacts that occurred between two different

tasks workers of social insects colony in the time interval (0, t). If p = q, then Cpp(t)

is the total number of contacts within a task group p and Rpp is the contact rate

within a task group p; if p ̸= q then Cpq(t) is the total number of contacts between

different task groups and Rpq is the contact rate between different task group p and

q. Therefore,

Rpq(i) =
Cpq(im)− Cpq(1 + (i− 1)m)

m
, i ∈ Z ∩ [1,

total time
m

] (2.3)

Similarly, we define Rpp(i) to be intact rates within the task groups p. Then we set

total contact rate within group (Rw) as
∑P

p=1Rpp(i) and total contact rate between

groups (Rbt) is
∑P

p=1

∑P
q=1Rpq(i), where p ̸= q.

The task switching rate per m updates shown by TSpq is the total number of

workers that change their task from task p to task q through contacts over m − 1

updates divided by m updates Guo et al. [2020]:

TSpq(i) =
The total number of workers who switch task p to q from time 1+(i-1)m to time im

m
.

(2.4)

Finally, let I(t) as the total number of informed workers (fA(t) = 1) in the time

24



interval (0, t). We denote Itrans(i) as the information transfer rate per m updates.

This implies the following formulation:

Itrans(i) =
I(im)− I(1 + (i− 1)m)

m
, (2.5)

Those definitions above allow us to ask the following questions:

1. What are the main differences between the two models, multiple-task-group and

task-switching, in effects on spatial heterogeneity degree (SHD) and contact

dynamics?

2. How does the presence of multiple task groups with their associated spatial

arrangement influence the dynamics of spatial heterogeneity degree (SHD) and

contact dynamics, and how does this consequently impact information spread

and/or task switching rates?

3. What are the relationships between spatial fidelity (SF), spatial heterogeneity

degree (SHD), and contact dynamics in the task-switching model, and how

do they affect the dynamics of task population for a task group of p workers

(Np(t))?

In the following section, we implemented 2-5 groups in our simulations, given that

social insects exhibit various task allocations in response to their environment Guo

et al. [2020]; O’Donnell and Bulova [2007]; Pinter-Wollman et al. [2012] with associ-

ated SFZs as shown in Figure (2.2), because Charbonneau et al. (2015) Charbonneau

et al. [2015] observed that workers’ tasks and associated movement areas are not fixed,

to answer these three questions.
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Direction for
drifted walk

Direction for
random walk

(a)

4 – task groups
corner 

4 – task groups
center 

(b)

Figure 2.2: Schematic illustrations of walking style and the SFZ geometry when the
colony has two, three, four, and five task groups: A worker performing task p moves
to its random adjacent neighboring cell if its walking style is random (w = R) or
moves to its adjacent neighboring cell that is the closest to its SFZ Sp if its walking
style is drifted (w = D). The SFZ for two, three, four, and five task groups are shown
as the big solid dark dots in the right panel of the figure. Especially for the four task
groups, we set different positions of SFZ, which are four groups at the corners (4-task
groups), one at the center and three in a triangle (4-task groups center), and one at
the corner and three be the triangle (4-task groups corner).

Agent-based model simulations, based on three major tasks (brood-caring, food-

processing, and trash-maintaining) observed in P. californicus ant colonies Holbrook

et al. [2011], revealed the relation between individual spatial distribution and spread-

ing agents transmission Guo et al. [2020]. To incorporate more possible scenarios,

such as more than 3 tasks in the nest Charbonneau and Dornhaus [2015b], and spa-

tial arrangements of tasks beyond the triangular structure of task locations described

in other species of social insects Richardson et al. [2022], we simulate scenarios where

colonies consist of 2-5 task groups in 6 different spatial arrangement of task locations.

2.3 Results

In this Section, we perform our simulations and analyses on the two models pro-

vided in Section 2.2. Spatial fidelity (SF) of task group p denoted by SFp(t) is the

fraction of workers performing task p that does preferential walking to their own task
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location at time t. Spatial heterogeneity degree (SHD(t)) defined as in Eqt. (2.2)

measures how workers are distributed in the colony at time t. Our recent work Guo

et al. [2020] indicates that SHD(t) can be affected by task-associated spatial fidelity

SFp in a significant way, as shown in Figure 2.3a. We aim to use a multiple-task-group

model to explore how the number of task groups may impact their related spatial dis-

tribution and thus influence social contact dynamics and information spread through

a colony (see mechanisms diagram shown in Figure 2.3a). Moreover, we use the

task-switching model to study how the task-switching dynamics may impact spatial

heterogeneity degree (SHD) and therefore impact social contact dynamics and task

allocation (see mechanisms diagram shown in Figure 2.3b).

(a) multiple-task-group model

(b) task-switching model

Figure 2.3: Mechanisms for generating spatial heterogeneity degree for multiple-
task-group model versus task-switching Model.

Figure 2.3, a flowchart, visually illustrates the relationships between the elements,

clearly depicting how they are interconnected. It helps in understanding the results
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presented in the following section.

In the multi-task-group model, we set different numbers of groups. Because there

is no task switching in this model, spatial fidelity remains constant. Due to the dif-

ferent number of groups, the model has different spatial arrangements of these groups

(see Figure 2.2). After these settings, we aim to explore how the number of task

groups may impact their related spatial distribution (SHD) and thus influence social

contact dynamics and information spread through a colony (Figure 2.3a).

In the task-switching model, workers can switch tasks. Due to task switching, spa-

tial fidelity has changed. After these settings, we aim to study how the task-switching

dynamics may impact spatial heterogeneity degree (SHD) and therefore impact social

contact dynamics and task allocation (Figure 2.3b).

All simulations start with the same initial condition and use the same baseline

parameters listed in Table (2.1) unless stated otherwise. Our initial setting values

are from previous work Guo et al. [2020]. We can also roughly calculate the colony

size and population of workers by some information from Waters et al. [2017] to be

equivalent to our settings. However, our model is not only for this species. Our

model serves more general species. The purpose of our model is to learn the dynamic

changes of the internal space and information of the system. In this study, we did

not incorporate the influence of the external environment into our model. To ensure

the competition of two task switching is equal, we assigned an equal and unbiased

probability of 50% for task switching between the two tasks we have set.
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Parameter Description Baseline

K ×K Colony size 69× 69

N Total number of workers 180

p Workers task p ∈ {1, 2, 3, 4, 5}

βp Task switching probability 0.5

SFp(0) The initial spatial fidelity in task groups 0.4 ∼ 0.8

m per m updates 1000

I initial informed workers 1

Table 2.1: Parameters used in the simulations for the multiple-task-group and task-
switching models

.

2.3.1 Dynamics of the Multiple-Task-Group Model

We adopted the modeling approach of Guo et al. [2020] to inform our multiple-

task-group model. The number of task groups in our previous model Guo et al. [2020]

is three. This model expands to scenarios of 2, 3, 4, and 5 task groups while keep-

ing the same worker density. For convenience, we assume that the size of each task

group is the same; each task group has 90 agents for two task groups, 60 agents for

three task groups, 45 agents for four task groups, and 36 agents for five task groups.

We also assume that spatial fidelity (SF) for each task is the same for all cases, i.e.,

SFp(t) = SFp(0) = SF .

Dynamics of Spatial Heterogeneity Degree (SHD): Figure 2.4 and Figure 2.5
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(b) Three groups
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(c) Four groups
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(d) Five groups

Figure 2.4: The impact of spatial fidelity (SF) on spatial heterogeneity degree (SHD)
across 2, 3, 4, 5 task groups: SF = 0.4(circle), 0.6(cross), 0.8(dot). 4-task groups are
four groups at the corner shown in the bottom left corner of Fig.2.2b. The plateau
of SHD increases with its fixed SF SF = SFp(0). The curves represent the dynamic
of the average of 40 replicates, and the error bars show the standard deviation of the
data.
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(b) SF = 0.6
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(c) SF = 0.8
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(d) Plateau function:

y = ea+bx

Figure 2.5: The impact of multiple task groups on spatial heterogeneity de-
gree (SHD): Different numbers of task groups (2, 3, 4, and 5 task groups) for
SF = 0.4, 0.6, 0.8 respectively. 4-task groups are four groups at the corner shown
in the bottom left corner of Fig.2.2b. The plateau of SHD seems to be non-linearly
decreasing with multiple task groups. 2.5d) the plateau of SHD (y) has exponential
decay: y = ea+b∗x by different numbers of task groups (x). Dot line is for SF = 0.4,
a = −4.88, b = −0.1879; dash line is for SF = 0.6, a = −4.40, b = −0.1880; solid
line is for SF = 0.8, a = −3.90, b = −0.22. The curves represent the dynamic of the
average of 40 replicates.

provide us insights on how the number of task groups and spatial fidelity affect SHD.

In Figure 2.4, we varied spatial fidelity (SF) SF = 0.4 (circle), 0.6 (cross), and 0.8

(dot) for colonies with 2 task groups (see Figure 2.4a), 3 task groups (see Figure 2.4b),

4 task groups (see Figure 2.4c), and 5 task groups (see Figure 2.4d). Our results show
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that SHD increases with its SF for all number of task groups. This observation is

in line with results observed in Guo et al. [2020]; Lloyd [1967]. The potential expla-

nations are that with larger SF, more workers aggregate to their task location after

large enough time, thus larger SHD, which measures the spatial distribution of work-

ers in the colony. However, the increasing rate of SHD with respect to SF varies with

multiple task groups.

Figure 2.5 reorganizes the presentation of results in Figure 2.4, comparing how the

number of task groups impacts spatial heterogeneity degree (SHD) when the spatial

fidelity (SF) is SF = 0.4, 0.6, 0.8 respectively. After analyzing the data (see Figure

2.5d), we performed both linear and exponential fitting. Based on the mean square er-

ror and positivity, it was determined that the exponential fit yielded superior results.

The dynamics shown in Figure 2.5 suggest that (1) the plateau of SHD decreases as

the number of task groups increases; and (2) The plateau of SHD drops faster as SF

increases (see Figure 2.5d and the value of b in Table 2.2). For example, the SHD

dynamics of task group 4 (shown as red dots in Figure 2.5) is very close to the task

group 5. To determine the quantified relationship between SF, SHD, and multiple

task groups, The best fit outcomes are provided in Table 2.2.

Effects of the number of task groups on the contact dynamics: Figure 2.6

shows the contact dynamics within groups (Figure 2.6a) and between groups (Figure

2.6b) for a colony with two, three, four, and five task groups when the spatial fidelity

(SF) is 0.6. The dynamics shown in Figure 2.6a suggest that with a higher number

of task groups within the colony, the plateau of the contact dynamics within task
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SHD = ea+b∗x

SF a b

0.4 -4.88 -0.1879

0.6 -4.4 -0.1880

0.8 -3.9 -0.22
Table 2.2: The first equation shows the plateau of SHD has exponential decay with
the number of task groups (x): SHD = ea+b∗x (see Figure 2.5d).

groups is lower. Through the Welch ANOVA test (Table B.1 in Appendix), Figure

2.6b and Table 2.3 observe the number of task groups impacts on the plateau of the

contact dynamics between groups. Among them, the t-test shows that 2-group, 3-

group, and 5-group have significant differences; the plateau of the contact dynamics

between groups increases as the number of task groups increases. However, the t-

test shows 3-group compared with the 4-group and the 4-group compared with the

5-group have no significant difference. In other words, when the number of groups

increases, the difference between adjacent cases is not significant and shrinks as the

number of groups increases.

From Figure 2.4, we find that higher spatial fidelity (SF) leads to a higher spa-

tial heterogeneity degree (SHD) because of more agent clustering. We find the

contact dynamics (R = R1 + R2) have a strong positive linear relationship with

SHD, i.e., the more agents gathering, the more contact that occurs. For example,

R(t) = 63.46 × SHD(t) − 0.06 when SF = 0.6 with two task groups in the colony.

The contact dynamics includes contact rate between groups (R12 + R21) and within

group (R11+R22). Figure 2.4 shows that the colony with more task groups has smaller
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(a) Contact dynamics with-in task
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(b) Contact dynamics between task

groups

Figure 2.6: Impacts of multiple task groups on the contact dynamics: Colony has
two, three, four, and five task groups when the spatial fidelity (SF) is 0.6. 4-task
groups are four groups at the corner shown in the bottom left corner of Fig.2.2b. a)
The plateau of contact dynamics within task groups seems to decrease with multiple
task groups increasing. b) The plateau of contact dynamics between task groups is
increasing with multiple task groups increasing. The curves represent the dynamic of
the average of 40 replicates.

SHD; then it leads to lower contact dynamics.

Effects of different SFSFSF on contact dynamics: Figure 2.7 shows that (1) the

plateau of contact dynamics within the group increases with spatial fidelity (SF), (2)

the plateau of contact dynamics between groups decreases as SF increases, and (3)

the highest value of contact rate between groups is higher as SF increases.

When SF increases, more agents prefer walking to their task location. After a spe-

cific time, more agents aggregated in their task location, which led to the increased

density for increased contacts within their task group. When SF reduces, more agents

would prefer doing the random walk, and then they will move out of the task fidelity

zone, which increases the density of the contact between task groups (higher contact
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Groups between groups with-in group

2 0.0155 0.500

3 0.0230 0.463

4 0.0234 0.457

5 0.0237 0.414
Table 2.3: The mean of plateaus of the contact dynamics between groups and with-in
group for colonies having two, three, four, and five task groups when the spatial fidelity
is 0.6, i.e., SF = 0.6. The plateau of contact dynamics within task groups decreases
with the number of task groups, and the plateau of contact dynamics between task
groups increases with the number of task groups, same with Figure 2.12.
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Figure 2.7: Spatial fidelity affects the plateau of contact dynamics. The error bar
shows the standard deviation. The curves represent the dynamic of the average of 40
replicates.
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between groups). In the beginning, a larger SF will cause more agents to walk toward

their task zone location, and this movement will inevitably lead to more contact dy-

namics between and within groups during this process.

y = c ∗ time+ d

SF c d

0.4 2.806 ∗ 10−5 5.933 ∗ 10−2

0.6 3.644 ∗ 10−5 7.13 ∗ 10−2

0.8 4.77 ∗ 10−5 8.602 ∗ 10−2

Table 2.4: The equation shows the proportion of informed workers (y) has a positive
linear relationship with time: y = c ∗ time+ d (see Figure 2.8 yellow lines).

Effects of the number of task groups and task location on spreading in-

formation: Our model focuses on the case when information spreads through phys-

ical contact between workers, with higher contact rates leading to faster information

spread. Figure 2.8 shows the dynamics of information spread in the colony for differ-

ent values of spatial fidelity (SF) and the number of task groups. From this Figure,

we observe that: 1) In Figures 2.8a to 2.8f, there exists some special time (horizontal

red line) before which all cases have similar trends. 2) Our fitting (equation in Table

2.4 ) explores that information spread speed rises when SF increases. 3) After the

special time (horizontal red line), information continues to be transmitted at a slower

speed. 4) In Figures 2.8a-2.8c, the 3-group (asymmetric) information transfer process

is slower than the 2-group and 5-group. We defined the spatial arrangement of the 2

and 5 groups case as "Symmetric". Therefore, symmetry may be a positive influence

on information spreading. The greater number of groups may take less time to make
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(c) SF = 0.8

(d) SF = 0.4 with 4 groups
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(e) SF = 0.6 with 4 groups
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(f) SF = 0.8 with 4 groups
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(g) 2 task groups
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(h) 3 task groups
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Figure 2.8: Impacts of multiple task groups and task location on information spread
with varied fixed spatial fidelity (SF): Figure (2.8a) - (2.8f) are different numbers of
task groups (2, 3, 4 and 5 task groups) for SF = 0.4, 0.6, 0.8. Horizontal red lines
(all lines are t=20,000) are the special time value for speed change of information
spreading. Before this time, the spatial arrangement of task location does not affect
the information spread in the same SF case. The yellow lines are linear regression
of the proportion of informed workers (y) with time before critical values. Figure
(2.8g)-(2.8i) are the same data from Figure (2.8a) - (2.8c) and show same numbers
of task groups with varied SF. The points represent the dynamic of the average of 40
replicates.
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all workers get the information. 5) Figures 2.8d-2.8f are all four groups of informa-

tion transmission, and the difference is that the task locations are different (see Figure

2.2). The corner case (green dots) has the largest average distance between locations,

and information spreading is slowest, and the center case (blue dots) has the lowest

average distance, then information spreading is fastest. Therefore, the lower average

distance between locations may lead to the information spreading faster. And the

larger the SF, the more significant the result. 6) In Figures 2.8g to 2.8i, SF=0.8 is

always lower than others, and 2 task groups case and 3 task groups case show that the

number of task groups is the same but with lower SF , information is faster delivered

to all workers. Therefore, the symmetrical distribution of task locations may help

information transfer faster.

2.3.2 Dynamics of task-switching model

The task-switching model has dynamical spatial fidelity (SF) shown by SFp(t). In

this model, we assume that our simulations have only any two task groups that differ

in the population and focus on task switching, in which the selected agent contacts

its neighbor with a different task, and then this neighbor switches its task to that of

the selected agent via some probability.

Spatial dynamics: Figure 2.9 shows the time-series of spatial heterogeneity degree

(SHD) and spatial fidelity (SF) with varied initial SF. Figure 2.9 suggests that (1)

dynamic SF and SHD are not affected by initial spatial value, and 2) SF with varied

initial values has a similar shape; the shapes of SHD are similar as well.
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Figure 2.9: Dynamics of spatial fidelity (SF) and spatial heterogeneity degree (SHD)
with varied initial spatial fidelity values: The curves represent the average of 40
replicates, and error bars are the standard deviation. In the task-switching model
and independent from its initial value SFp(0), both SHD(t) and SFp(t) seem to
reach a fixed quasi-stationary state.

Comparison of contacts between the multiple-task-group model and task-

switching model: Figure 2.12 compares the time-series of contacts when the colony

has two task groups in multiple-task-group model and task-switching model. Notice

that spatial fidelity (SF) in the multiple-task-group model is constant while SF in

the task-switching model changes over time (see Figure 2.9a). Figure 2.12 in the

task-switching model suggests that (1) the plateau of contacts within and between

groups are similar with different initial SF, (2) the initial increase in speed is faster

with higher initial SF (see Figure 2.12a-2.12c), and (3) the largest value of contacts

between groups is higher when initial SF is higher (see Figure 2.12d-2.12f). On the

other hand, Figure 2.12 suggests that (1)the plateau of within-group contacts group

in the task-switching model is always higher than that of the multiple-task-group

model, and (2) the plateau of contact between groups in the task-switching model is

always lower than that of the multiple-task-group model when the final result stabi-

lized.
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(b) Spatial heterogeneity degree versus

task 1 spatial fidelity (SF): task-switching

model with initial spatial fidelity being

0.6 SFp(0) = 0.6. These two metrics

have a strong positive linear relationship:

SHD(t) = 0.026SF1(t) − 0.007 (gray

line). Figure 2.9a shows SF decreases

with time series, in the beginning, these

data are red dots in this figure.

Figure 2.10: Strong linear relationship in the task-switching model: Spatial hetero-
geneity degree has a linear relationship with contact rates and spatial fidelity (SF)
in the task-switching model. Thus, it can be deduced that contact rates and SF also
have a linear relationship. Both figures use the same simulations. Blue dots are the
data under the line except for the red dots part in Figure 2.10a. The red dots are the
negative correlation between SF and SHD in Figure 2.10b. We keep colors for both
figures. The curves represent the dynamic of the average of 40 replicates.

Figure 2.10a shows that contact rate positively correlates with spatial heterogene-

ity degree (SHD). In the multiple-task-group model, SF = 0.8 has the highest plateau
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(a) Task switching rate versus spatial

fidelity

(b) Task switching rate versus con-

tact rate

Figure 2.11: The relationship between contact rates and spatial fidelity: The task
switching rate is a non-linear decay with spatial fidelity (SF) and contact rate. Among
them, contact rate (R1) is the inclusion of between groups (R12) and within groups
(R11), task switching rate is the rate of task 2 agents switch to task 1 (TS21), and
SF is SF in task 1 (SF1(t)). a) the function of the curve is TS21(t) = e0.60−12.94SF1(t);
b) the function of the curve is TS21(t) = e−2.85−18.64SR1(t). The curves represent the
dynamic of the average of 40 replicates.

of SHD, and the plateau of SHD achieves a similar value in the task-switching model.

We compared the initial SF of 0.8 with two task groups, and the plateau of SHD in

the task-switching model is higher than in the multiple-task-group model (see Figure

2.13). Physical contact between groups leads to agents switching their tasks. As

spatial fidelity (SF) increases, more agents aggregate at their task locations. There-

fore, when spatial fidelity (SF) is higher, they will have more chance for within-group

contact and less chance to contact other groups’ agents with an increased probability

of switching their tasks. The data fitting shows that the task switching rate has an

exponential decay by SF (see Figure 2.11a). Due to the positive linear relationship

between contact rate and SF (see Figure 2.10), task switching rate also has an expo-

nential decay in relation to contact dynamics (see Figure 2.11b). Figure 2.10b shows
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that red points are under the gray line of SHD(t) = 0.026SF1(t) − 0.007. Those

points occur at the initial time frame of [0, 10000] and suggest the negative correla-

tion between spatial fidelity and the spatial heterogeneity degree.

Task groups: Figure 2.14 presents three different dynamics of task populations

from our simulations. The replicate runs of the model with the same parameter val-

ues. We set two task groups with the same population at proportion values of 0.5 for

each task (red baseline) initially. The black curves are the proportion of the task 1

population size in the colony. We use a histogram to show the frequency of popula-

tion switching, which is the major task change. The histogram of Figure 2.14d shows

the proportion of the major task changing less or equal to 6 is 49.47%, including 11

cases is no-changing. We used geometric distribution to fit the histogram (red curve)

with a probability value of 0.1136. The median of the fitting distribution is 4.7. Half

of the simulations changed the major task 5 times. For example, Figure 2.14a has

no switching (0 bar), which means one task is always a major task and needs more

agents. Figure 2.14b has fewer switching (less than 5 times), which means the major

task can switch to another one but not often. Figure 2.14c has fewer switching (more

than 5 times), which means the major task often switches to another one, and both

tasks have equal demand. The simulations can be classified into those categories that

align with the observation of experiments in the lab and literature Leighton et al.

[2017].
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2.4 Discussion

We used an agent-based model to explore the factors that generate spatial hetero-

geneity and explore how spatial heterogeneity affects contact dynamics, information

spread, and task switching. We focused on two models based on the consequences of

social contact inside the colony: (1) The first consequence of social contact is that

contact leads to potential information spread. We developed the multiple-task-group

model to understand how the number of task groups and associated constant SFZs

and spatial distributions would affect contact dynamics and information spread. (2)

The task-switching model studies the second consequence of social contacts; the con-

tact between two workers can lead to a change in behavior by increasing the chance

that one worker may decide to switch tasks with associated changes in walking style.

These behavioral changes can generate spatial heterogeneity and dynamical changes

in spatial fidelity and can affect the size of the task group if this leads to task switching.

When few workers are engaged in a task (low spatial fidelity), positive feedback

draws more workers toward their task locations, while a disproportionately high den-

sity of workers at a task results in negative feedback that increases the likelihood of

workers leaving to search for a new task Page Jr and Mitchell [1990]; Gordon et al.

[1992]. Thus, spatial fidelity allows the colony to balance workers among tasks re-

gardless of the initial spatial heterogeneity (see Figure 2.9). Spatial fidelity influences

physical interactions among ants, affecting task switching. The findings of this study

should be considered with the following caveats: First, our results are simulation-

based, and there are no experimental data to support the findings. Second, the

model is a general case only. In the future, we could set specific tasks for each group
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relevant to colony task organization, for example, by introducing a food source to

increase demand for the task of foraging. This would allow us to further study the

impact of space on task switching in a more specific context. Below we review how

insights gained from the models may be applied to the case of social insect task or-

ganizations by discussing the interaction between spatial effects and mechanisms of

task allocation and the role of interactions in information transfer.

2.4.1 Group effects

In the multiple-task-group model, we explored how the different numbers of groups

in the colony influence information spread. We tested 2,3,4, and 5 groups in one colony

with varied spatial fidelity (SF ). Varied SF and task group location both affect the

information spread speed. Different SF and task group locations influence the spatial

heterogeneity (Figure 2.5). When space is more heterogeneous, task-related informa-

tion can be more quickly communicated within a task group Naug [2009] (Figure

2.3a). In contrast, with lower spatial fidelity, information transmission speed may be

slower locally, but information spreads through the colony more quickly. Spreading

information or transmission elements (i.e., food) is easier between individuals within

a colony Naug [2008], and information spreads faster at beginning Sendova-Franks

et al. [2010]. We observed from Figure 2.8 that the number of task groups could affect

information transmission speed and process. This suggests that geometry is a key to

information transmission speed and process. This may also be why the organizational

layout of tasks within social insect colonies is often similar. Although the specific lo-

cations and substrates for tasks vary considerably, the organizational relationships
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among tasks often follow similar rules Mersch et al. [2013]. Therefore, further explor-

ing the task-switching model, we focus on the dynamics of spatial fidelity rather than

on different numbers of tasks. Additionally, the plateau of within-group contact rates

decreases as the number of task groups increases; there will be more contact between

groups conversely. Therefore, more task groups will disperse the population, reduce

the social interaction within the group, but increase the social interaction between

the groups and create more opportunities for task switching.

2.4.2 Spatial effects on task switching and task allocation

In the task-switching model, individuals use both social (shared task information)

and contextual (density of workers at task location) cues to make decisions about

task allocation. In contrast, in the multiple-task-group model, only contextual cues

are used. Furthermore, the contextual cues in the task-switching model are dynamic,

adjusting to the relative density of workers actively engaged in a task. As such, the

task-switching model more closely resembles cases of flexible task allocation, such as

the role of response thresholds in bee fanning behavior Weidenmuller [2004]; Jones

et al. [2004]. The multiple-task-group model better mimics cases in which tasks are

more fixed, such as morphologically specialized workers (e.g., soldiers) or more in-

trinsically directed temporal polytheism (as in honey bee nursing vs. foraging) (See

Charbonneau and Dornhaus [2015a]; Johnson [2003] for a discussion on fixed vs. flex-

ible task allocation mechanisms).

In Figure 2.3, these two models have different spatial fidelity (SF) settings, one
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changes by time and one is constant. Comparison of the model’s performance in SHD

to explore how SF infects spatial heterogeneity. SHD shows faster reaching steady

state in the multiple-task-group model than in the task-switching model, suggesting

that fixed task allocation mechanisms may be more efficient (i.e., workers allocated

to their tasks more quickly) than flexible task allocation mechanisms. On the other

hand, SHD plateaus in the task-switching model converge on similar numbers re-

gardless of the initial value of SFp(0). In contrast, the level of the SHD plateaus in

the multiple-task-group model directly depends on the SFp(0) value. This suggests

that flexible task allocation mechanisms may take longer to reach equilibrium but are

more robust to perturbation. Indeed, if these systems suffered large losses of indi-

viduals in one task group, thereby changing the value of spatial fidelity (SFp(t)), the

task-switching model would return to the distribution of workers among tasks (i.e.,

SHD) comparable to pre-disturbance levels, while multiple-task-group model would

be irreversibly changed and be unable to return to pre-disturbance SHD levels.

2.4.3 Social interaction

From Figure 2.3, we discuss how these elements influence contacts, including the

information, in the following paragraphs. In both models, there are two main pro-

cesses that influence behavior: allocation of workers among spatially segregated tasks

and information transfer among workers. In the multiple-task-group model, task al-

location, i.e. task group in which the population of each group is fixed, affects the

contact rate among workers, which in turn affects the speed with which information is

propagated among workers. However, information in the multiple-task-group model
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does not affect task allocation. For the task-switching model, task allocation affects

information transfer via the same process as in the multiple-task-group model (task

switching rates and likelihoods of information transfer), but in the task-switching

model, information also affects task allocation. The result is an exponential growth

of informed individuals (vs. uninformed) in the multiple-task-group model, where

propagation speed is determined by constant SF. In the task-switching model, both

bits of information compete with each other, and no single task can eliminate the

other within a certain time, though they may go through phases of fluctuation over

time (Fig. 2.14). In our algorithm, we set the task switching rate (βp) to 50%, which

is βA = βB. Although this is not our purpose in this study, we tried different values

of βA and βB during some test simulations. We found that the results were influenced

by the comparing value of βp. If βA = βB, the dynamics of SF and task switching

rate have no significant difference, but if βA ̸= βB, the situation becomes different.

Therefore, task-switching probabilities will have different effects to some extent, as

larger βp leads to a higher number of this task (Figure B.1 in Appendix). Therefore,

we believe that the random selection of the worker and our setting of task switching

is a process without losing generality.

Interestingly, regardless of the mode of the consequence of social contact (i.e.,

task switching or information transfer), the contact dynamics are very similar. This

suggests that the mechanisms allowing increased robustness in task allocation to dis-

turbance (discussed above) are not necessarily dependent on transmission rate, but

rather the dynamic nature of task allocation in the task-switching model, i.e., feed-

back between spatial fidelity and task information. This is particularly interesting
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because several behaviors in social insects have been shown to be dependent on inter-

action rate (e.g., foraging Gordon and Mehdiabadi [1999]; Greene and Gordon [2007],

emigration consensus (Pratt et al. [2002b]; Mallon et al. [2001])). However, our model

shows that spatially dependent individual feedback mechanisms, as opposed to inter-

actions rates per se, can also result in collective flexibility.

In both models, contact rates between task groups initially peak at approximately

the same moment, then decrease and stabilize. Their simultaneous peaking is likely

caused by the initial random location of individuals. Though this may be an arti-

fact of the initial model setup, it can provide insight into how colonies may react

to disturbances that would relocate individuals (e.g., emigration or nest destruction)

Pratt et al. [2002b]. The fact that the same pattern seems to occur in both models

suggests that, regardless of whether task allocation mechanisms are flexible or rigid,

both models are capable of adjusting to disturbances.

After the initial peak in contact rate during which the colony reorganizes, contact

rates between task groups are lower in the task-switching model than in the multiple-

task-group model. Additionally, contact rates within groups rise more slowly in the

task-switching model than in the multiple-task-group model and reach a plateau more

slowly (Fig. 2.12). This suggests that in the multiple-task-group model, workers can

resume their set distribution among tasks more rapidly after disturbance than in the

task-switching model. However, in the event of a disturbance where workers are lost

(e.g., forager loss or nest defense) Tschinkel and Hanley [2017], the task-switching

model should be more robust, and with the colony re-equilibrating according to the
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relative densities of workers per tasks (i.e., reach similar plateaus of SHD), In con-

trast, in the multiple-task-group model, workers will attempt to reach there and thus

may not reach optimal task allocation.

2.4.4 Future works

Our previous models Guo et al. [2020] have studied information transmission with

three task groups and fixed spatial fidelity to indicate that information spreads faster

within groups and slower between task groups, while our study provides important

insights into the number of task groups and task switching. We build the network

model constructed by social insect behavior to analyze the spatial heterogeneity, the

number of task groups, and the process of information spreading and task switching

from individual-level effects to group-level process. However, our proposed model does

have its limitations that we should work with. In an actual social insect colony, there

are more complex reasons for workers to change their tasks, such as environmental

stimulus Page Jr and Mitchell [1998] and task performances Gordon [1989], not as

straightforward as designed in our model, contact and switch with a fixed probability.

In addition, the location of our task group zone is simply defined from geometry and

is not combined with the task distribution of the social insect colony in reality. In

our future work, we should include setting particular tasks and task-related response

thresholds in our model. As a basis for future work, our current research is of great

help to the understanding of social contact processes with spatial distribution.
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0.6 SF = SFp(0) = 0.6
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0.4 SF = SFp(0) = 0.4
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Figure 2.12: Task switching leads to dynamic spatial fidelity. Impacts of task
switching on contact rates for two task groups with varied initial spatial fidelity (SF)
and fixed SF on contact dynamics for two task groups: For the model of multiple
task groups, spatial fidelity is constant while task switching changes by time. a) -
c) The plateau of the contact within group Rpp in the multiple-task-group model
(dash curve) is increasing as SF increases, while in the task-switching model, they
(solid curves) are similar. d)-f) The plateau of the contact between groups Rpq in
the multiple-task-group model (dash curve) decreases as SF increases, while in the
task-switching model, they (solid curves) are similar; and the peak of Rpq is higher
as SF increasing in both model. The curves represent the dynamic of the average of
40 replicates.
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Figure 2.13: Spatial heterogeneity degree in multi-task-group model and task-
switching model. Two task groups in SF0 = 0.8.
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(a) One group always be major task (b) Major task switching

(c) Major task switching frequently

(d) Histogram for frequency major

task switching

Figure 2.14: Different dynamics of two task group populations. Figure 2.14a-2.14c:
Individual case for population changing in task 1 with initial spatial fidelity (SF) being
0.5 (SFp(0) = 0.5). The baseline (red line) is set at 0.5 because both groups start
with the same number of agents, with an associated proportion of task 1 and task
2 groups of 0.5 (N1(0) = N2(0)). Figure 2.14d: Histogram for frequency of major
task switching. There are 11 cases (11.58%) where one task has been the leading
task. The total is 95 replications in SF0 = 0.5. The geometrical distribution fitting
probability is 0.1136, mean of the distribution is 7.8, and the median is 4.7.
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Chapter 3

HOW TO MODEL HONEY BEE POPULATION DYNAMICS: STAGE

STRUCTURE AND SEASONALITY

Abstract

Western honey bees (Apis Mellifera) serve extremely important roles in our ecosys-

tem and economics as they are responsible for pollinating $ 215 billion dollars annually

over the world. Unfortunately, the honey bee population and their colonies have de-

clined dramatically. The purpose of this article is to explore how I should model the

honey bee population with age structure and validate the model using empirical data

so that I can identify different factors that lead to the survival and health of the honey

bee colony. Our theoretical study, combined with simulations and data validation,

suggests that the proper age structure incorporated in the model and seasonality are

important for modeling the honey bee population. Specifically, our work implies that

the model assumes that (1) the adult bees survive from the egg population rather than

the brood population; and (2) seasonality in the queen egg laying rate gives a better

fit than other honey bee models. The related theoretical and numerical analysis of

the fittest model indicates that (a) the survival of honey bee colonies requires a large

queen egg-laying rate and smaller values of the other life-history parameter values in

addition to proper initial condition; (b) both brood and adult bee populations are

increasing with respect to the increase in the egg-laying rate and the decreasing in

other parameter values; and (c) seasonality may promote/suppress the survival of the

honey bee colony.
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3.1 Introduction

Western honey bee (Apis Mellifera) is a eusocial insect that has an advanced level

of social organization. In the honey bee colony, the queen produces the offspring,

and non-reproductive individuals cooperate in caring for the young ones, which forms

complex colonies [Winston, 1991]. honey bees play indispensable and important roles

in human life, economy, and agriculture. For example, honey bees not only produce

valuable products, such as honey, royal jelly, bee wax, and propolis in the market but

also are responsible for pollinating crops such as blueberries, cherries, and almonds,

which is worth $215 billion annually worldwide [Smith et al., 2013]. If there is no

honey bee, it likely leads to changes in human diets and a disproportionate expansion

of agricultural land in order to fill this shortfall in crop production by volume [Potts

et al., 2016]. Unfortunately, the honey bee population has been decreasing globally

[Smith et al., 2013]. In the United States, the total number of honey bee colonies

has been reduced by approximately 40% to 50%, while in the rest of the world, the

total number of colonies is reduced by 5% to 10% [Paula María Montoya-Pfeiffer and

Parra., 2016]. The important and critical causes for honey bee colony mortalities

include diseases, land-use change, pesticides, pathogens and parasites, and poor bee-

keeping management [Smith et al., 2013; DeGrandi-Hoffman et al., 2013; Perry et al.,

2015; Oldroyd, 2007; Degrandi-Hoffman et al., 2019]. The purpose of this article is to

explore how I could better model colony population dynamics to help us understand

the honey bee colony mortalities.

honey bee colony itself is a complex adaptive system with its own resilience to

disturbances, whose survival depends on its individual quality, its adaptive capacity,
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and its threshold of resilience to pressures [Fredrick et al., 2017]. On average, a colony

has about 10,000 to 60,000 bees, which consists of a queen (fertile female) who pro-

duces all offspring, a few hundred drones (males), and thousands of workers (sterile

females). Generally, a queen may lay approximately 1000-2000 eggs per day in the

peak period [Coffey, 2007]. Due to aging or disability of the queen bee, beekeepers will

replace the queen every 1-2 years [Coffey, 2007]. Each honey bee goes through four

stages of development: egg, larva, pupa, and adult [Coffey, 2007]. For worker bees,

they need 21 days to eclosion to adult bees [Winston, 1991; Harris, 1980; DeGrandi-

Hoffman et al., 1989], and drones need 24 days to mature [DeGrandi-Hoffman et al.,

1989]. Population size at each stage and the related maturation time have huge influ-

ences on the colony development and its population dynamics [Fredrick et al., 2017].

Needless to say, age is linked to the division of labor in honey bees [Robinson et al.,

1992]. Young workers In the colony, young workers prefer to perform nursing tasks,

while older workers prefer foraging activities. However, colonies can accelerate, delay,

or even reverse their recruitment behavior as the internal or external environment

changes [Huang and Robinson, 1996].

Not only the age structure will affect the honey bees colony, but the change of

season, temperature, Weather, etc., also will influence the honey bees [Johnson, 2002;

Coffey, 2007; DeGrandi-Hoffman et al., 1989; SEELEY and Visscher, 1985]. Through

experiments and observations, the honey bee population presents periodic fluctuations

due to different reasons. For instance, I observe great foraging activity during spring,

summer, and fall but the highest activity during the summer [Coffey, 2007]. During

spring and summer, pollen and nectar from diverse floras are in great abundance,
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giving rise to an increased honey bee population. Therefore, given that temperature

is one of the main factors in honey bee food availability and thus brood produc-

tion, honey bee population size is smaller during the winter [SEELEY and Visscher,

1985; DeGrandi-Hoffman et al., 1989]. Thus, the peak of the population is achieved

in late June until the middle of summer as it starts to decline [Research and Exten-

sion Consortium, 2004]. The temperature in the colony also will influence honey bees,

middle-aged honey bees will respond to the heat stress in order to perform [Johnson,

2002]. Thus, it is very important to include age structure and seasonality in studying

of honey bee population dynamics and the factors that affect the health of honey bee

colonies. Research has shown that the major problems threatening the survival of

honey bee colonies could link to: 1) environmental stressors, such as habitat destruc-

tion (urbanization, deforestation, forest fires); 2) parasites and pathogens, such as

varroa and viruses; 3) genetic variation and vitality, like limited importation [Perry

et al., 2015; Oldroyd, 2007; Smith et al., 2013]. In order to quantify the problems and

consider the difficulty of directly observing the dynamics of bee populations, mathe-

matical models can be a powerful tool to help us understand how the bee population

changes and predict the fate of the colony.

Mathematical models indeed have been developed to study bee populations dy-

namics and the related stressors, particularly the effects of pathogens, parasites and

nutrient stress factors [Russell et al., 2013; Kribs-Zaleta and Mitchell, 2014; Khoury

et al., 2011, 2013; Perry et al., 2015; Betti et al., 2014; Camazine et al., 1990; Kang

et al., 2015; Eberl et al., 2010; Aronstein et al., 2012; Smith et al., 2013]. DeGrandi-

Hoffman [DeGrandi-Hoffman et al., 1989] proposed a first simulation model for honey
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bee colony dynamics that includes many important factors such weather, egg-laying

rate, the age of queen, foraging and brood life cycles. There are some previous works

focusing on how the death rate of foragers impacts colony viability [Khoury et al.,

2011, 2013]. Khoury [Khoury et al., 2011] published a compartmental model based on

these circumstances. The model includes three states, brood, hive, and foragers, and

incorporates the recruitment process to study the forager death rate. There is a work

[Russell et al., 2013] that investigated seasonal food availability and the transition

of hives to foragers. The most recent recent works [Messan et al., 2018; Ratti et al.,

2015] consider the seasonality in the queen egg-laying rate. Messan et al [Messan

et al., 2018] applied seasonality effects to the pollen collection rate that has annual

periodicity by the first order harmonic. Ratti et al [Ratti et al., 2015] also agree that

seasonality affects the dynamics of honey bees and its parasitic virus. This article

[Ratti et al., 2015] incorporated seasonality in varroa treatment control as the treat-

ment is applied with four seasons: spring, summer, fall, and winter [Ratti et al., 2015].

Motivated by the previous work on honey bee population models with age struc-

ture [Khoury et al., 2011, 2013; Kang et al., 2015] and seasonality [Russell et al., 2013;

Messan et al., 2018; Ratti et al., 2015], I propose and study honey bee population

models with different delay terms to include age structure. I use data to validate our

models and explore which model would be more appreciated and the importance of

incorporating seasonality in the honey bee population model. More specifically, the

objective of our paper is to develop a proper honey bee population dynamical model

with age structure to understand important factors for colony survival and to explore

how seasonality may affect the colony dynamics and its survival.
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The remainder of the article is shown as follows: In Section 2, I derive two honey

bee colony dynamics models that incorporate varied delay terms. In Section 3, I

perform a rigorous mathematical analysis of those two models and compare their dy-

namics. In Section 4, I validate our two models with real honey bee data. Our study

shows the importance of seasonality and suggests that one of those two proposed

models would be more appropriate for studying honey bee population dynamics. In

Section 5, I conclude our study. In the last section, I provide detailed proof of our

theoretical results.

3.2 Model Derivations

In this section, I focus on modeling of honey bee colony dynamics with age struc-

ture. For convenience, I divide the population of the honey bee colony into brood

and adult bees. Let B(t), H(t) be the population of brood and adult bees in a given

hive at time t, respectively. I assume that:

A1: The daily egg-laying rate of honey bee queen is r with the survival rate of

H2

K+H2+αB
where the parameter K is the population of adult bee needed for

half of the maximum brood survival rate, and α represents the regulation ef-

fects from brood population B. The term H2

K+H2+αB
reflects (1) the cooperative

brood care from adult bees that perform nursing and collecting food for brood;

and (2) the queen and workers that regulate the actual egg laying/survival rate

based on the current available brood population B, which has been supported

by the literature work [Messan et al., 2018; Schmickl and Crailsheim, 2007;
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Kang et al., 2016; Eischen et al., 1984].

A2: I assume that both brood and adult bees have constant mortality, db and dh,

respectively. The maturation time from brood B to adult bee H is denoted by

τ (τ = 16 for queen, τ = 21 for workers, and τ = 24 for drones [Coffey, 2007;

Khoury et al., 2013]), thus the maturation rate is termed as follows:

e−dbτ︸ ︷︷ ︸
survival rate of brood during time τ

rH(t− τ)2

K +H(t− τ)2 + αB(t− τ)︸ ︷︷ ︸
new brood at t− τ

The two assumptions above lead to the following non-linear delayed differential

equations of honey bee population dynamics (Model (3.1)):

dB
dt

= rH(t)2

K+H(t)2+αB
− dbB − e−dbτ rH(t−τ)2

K+H(t−τ)2+αB(t−τ)

dH
dt

= e−dbτ rH(t−τ)2
K+H(t−τ)2+αB(t−τ) − dhH

(3.1)

where I assume that the initial condition for H(t) is a non-negative continuous func-

tion when t ∈ [−τ, 0] and B(0) =
∫ 0

−τ
rH2(s)edbs

K+H2(s)+αB(s)
ds. The biological meaning of

each parameter of the proposed model (3.1) is listed in Table 3.1. In the case α = 0,

the model (3.1) reduces to the following Model (3.2)

dB
dt

= rH(t)2

K+H(t)2
− dbB − e−dbτ rH(t−τ)2

K+H(t−τ)2

dH
dt

= e−dbτ rH(t−τ)2
K+H(t−τ)2 − dhH(t)

(3.2)

Notes: Our proposed model (3.2) (when α = 0 in the model (3.1)) is a single specie

model with brood B and adult H stage where these two stages seem to be decoupled.
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Thus, I could study the dynamics of Model (3.2) by exploring the dynamics of H

first, then the dynamics of B is totally determined by H. I will see the analytical

results in the next section.

Table 3.1: Biological meanings and references of parameters of models (3.1 & 3.3)
with and without seasonality.

Parameter Description Estimate/Units Reference

r Daily egg-laying rate of Queen [500 10,000] bees/day Estimated

α the regulation effects of brood [0 20] Estimated

db Death rate of the brood [0, 0.3] day−1 Estimated

dh Death rate of the adult bees [0, 0.3] day−1 Estimated

γ The length of seasonality [170, 365] days Estimated

√
K Colony size at which brood survival rate is half maximum for K

[50,000, 1,300,000](model 3.3)

[1 ∗ (107), 1 ∗ (108)](model 3.1) bees/day

Estimated

τ Time spent in brood 21 days Khoury 2013

ψ the time of the maximum laying rate 12 days Harris 1980

In literature (e.g., see [Tang and Chen, 2002]), researchers have been using the

compartmental models through ODEs to model population dynamics with age and/or

stage structure. Motivated by this, I have the following delay model.

dB
dt

= rH(t)2

K+H(t)2
− dbB − e−dbτB(t− τ)

dH
dt

= e−dbτB(t− τ)− dhH(t)
(3.3)

where the term e−dbτB(t − τ) describes the maturation entry rate coming from the

juvenile stage with a survival rate e−dbτ during the juvenile period τ .

More specifically, the model (3.3) above assumes that the adult H(t) matures
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from the survived brood population at time t − τ . In the following two sessions, I

will compare the population dynamics of Model (3.3) and the proposed model (3.1)

to address the importance of deriving proper delay population models due to the

outcomes of dynamics and model validations.

3.3 Mathematical Analysis

The state space of the proposed model (3.1) is X = C([−τ, 0],R+)×C([−τ, 0],R+).

I first show that the proposed model (3.1) is positive invariant and bounded in X as

the following theorem:

Theorem 3.3.1. Assume that the initial condition H(t) is a non-negative continuous

function defined in t ∈ [−τ, 0] with B(0) =
∫ 0

−τ
rH2(s)edbs

K+H2(s)+αB(s)
ds, then the proposed

model (3.1) is positive invariant and bounded in X.

Notes: The detailed proof of Theorem 3.3.1 is in the last section. Theorem 3.3.1

implies that our proposed model is biologically well-defined. The model (3.1) always

has the extinction equilibrium Ee = (0, 0), which would be locally or globally stable

as stated in the next theorem:

Theorem 3.3.2. [Stability of Extinction Equilibrium] The extinction equilibrium Ee

of Model (3.1) is always locally asymptotically stable. If the inequality dh >
re−dbτ

2
√
K

holds, the extinction equilibrium Ee is globally stable.

Notes: The detailed proof of Theorem 3.3.2 is in the last section. Theorem 3.3.2

indicates that the large maturation time τ or the mortality at different stages dh, db
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can lead to the collapsing of the colony.

Now I focus on the condition of the colony’s survival. Let (B,H) be an interior

equilibrium of Model (3.1). Then it satisfies the following equations:

0 =
rH(t)2

K +H(t)2 + αB(t)
− dbB − e−dbτ

rH(t)2

K +H(t)2 + αB(t)
⇒ dbB =

[1− e−dbτ ]rH2

K +H2 + αB
(3.4)

0 = e−dbτ
rH(t)2

K +H(t)2 + αB(t)
− dhH(t) ⇒ dhH =

e−dbτrH2

K +H2 + αB
(3.5)

which gives

B =
dh[e

dbτ − 1]

db
(3.6)

and

0 =
e−dbτrHdb

db(K +H2) + αdh(edbτ − 1)H
− dh. (3.7)

Solving the equation (3.7) gives

H∗
1 =

e−dbτ
(
dbr − αd2he

dbτ
[
edbτ − 1

]
−
√

(dbr − αd2he
dbτ [edbτ − 1])

2 − 4d2bd
2
hKe

2dbτ

)
2dbdh

and

H∗
2 =

e−dbτ
(
dbr − αd2he

dbτ
[
edbτ − 1

]
+
√

(dbr − αd2he
dbτ [edbτ − 1])

2 − 4d2bd
2
hKe

2dbτ

)
2dbdh

with H∗
1 ≤ H∗

2 . Now I have the following proposition:
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Proposition 3.3.1. [Existence of Interior Equilibria] If dbr−d2he
dbτ [edbτ−1]α

2dhdbe
dbτ

√
K

> 1, then

Model (3.1) has two interior equilibria Ei, i = 1, 2:

Ei = (B∗
i , H

∗
i ) =

(
dh[e

dbτ − 1]

db
H∗
i , H

∗
i

)
where H∗

1 is an increasing function of α, K, db and dh, and H∗
2 is a decreasing function

of α, K, db and dh; whereas, H∗
1 is a decreasing function of r, and H∗

2 is an increasing

function of r. In the case that dbr−d2he
dbτ [edbτ−1]α

2dhdbe
dbτ

√
K

= 1, then Model (3.1) has an unique

interior equilibrium

Ei = (B∗, H∗) =

(
dh[e

dbτ − 1]

db
H∗, H∗

)
with H∗ = H∗

1 = H∗
2 =

e−dbτ
(
dbr − αd2he

dbτ
[
edbτ − 1

])
2dbdh

.

Notes: Proposition 3.3.1 implies that one of the necessary conditions for the honey

bee colony survival is dbr−d2he
dbτ [edbτ−1]α

2dhdbe
dbτ

√
K

> 1 which requires large values of the queen egg

laying rate r, and the smaller values of the maturation time τ and the brood regulation

effect α. In addition, Proposition 3.3.1 indicates that at the interior equilibrium,

the ratio of brood B to adult population H is determined by their mortality and

maturation time through the equation
dh[edbτ−1]

db
. Based on simulations and analytical

results, the interior equilibrium H∗
2 is always locally stable if it exists, while H∗

1 is

locally unstable. If dbr−d2he
dbτ [edbτ−1]α

2dhdbe
dbτ

√
K

> 1, then by simple calculations, I have dH∗
1

dα
> 0

and dH∗
2

dα
< 0. This implies that the brood regulation coefficient α has negative effects

on brood and adult population sizes. In the case that α = 0, then if dbr

2dhdbe
dbτ

√
K
> 1

holds, the interior equilibria H∗
i , i = 1, 2 have the following expressions:

H∗
1 =

e−dbτ
(
dbr −

√
(dbr)

2 − 4d2bd
2
hKe

2dbτ

)
2dbdh

H∗
2 =

e−dbτ
(
dbr +

√
(dbr)

2 − 4d2bd
2
hKe

2dbτ

)
2dbdh
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In order to study the stability of the interior equilibrium Ei = (B∗, H∗), I start

with the characteristic equation of the interior equilibrium Ei = B∗
i , H

∗
i as follows by

letting A = Hr
(αB+H2+K)2

C(λ) = det


 − αH2r

(αB+H2+K)2
− db

2Hr(αB+K)

(αB+H2+K)2

0 −dh

+

 − αH2re−dbτ

(αB+H2+K)2
− 2Hre−dbτ (αB+K)

(αB+H2+K)2

αH2re−dbτ

(αB+H2+K)2
2Hre−dbτ (αB+K)

(αB+H2+K)2

 ∗ e−λτ − λI



= det

 −αAH − db 2A(αB +K)

0 −dh

+

 −αAHe−dbτ −2A(αB +K)e−dbτ

αAHe−dbτ 2A(αB +K)e−dbτ

 ∗ e−λτ − λI


= det(

 −αAH(1 + e−(λ+db)τ )− db − λ 2A(αB +K)(1− e−(λ+db)τ )

αAHe−dbτ −dh + 2A(αB +K)e−(λ+db)τ − λ


= (−αAH(1 + e−(λ+db)τ )− db − λ)(−dh + 2A(αB +K)e−(λ+db)τ − λ)

− 2A(αB +K)(1− e−(λ+db)τ )αAHe−dbτ

(3.8)

I can see the characteristic equation (3.8) of the interior equilibrium Ei = (B∗
i , H

∗
I )

is very complicated and difficult to analyze. Thus, for convenience, I start with the

simpler case by setting α = 0, which is our model (3.2).

Theorem 3.3.3. [Stability of Interior Equilibria] If r
2dhe

dbτ
√
K
> 1, then Model (3.2)

has two interior equilibria Ei where E1 is always unstable and E2 is always locally

asymptotically stable.

Notes: Theorem 3.3.3 indicates that the value of the maturation time τ has no

effects on the stability of its interior equilibria Ei, i = 1, 2 for Model (3.2). In the

case that r
2dhe

dbτ
√
K

= 1, i.e., dh = re−dbτ

2
√
K

, then Model (3.2) has an unique interior

E = (B∗, H∗) =

(
r[1−e−dbτ ]

2db
,
√
K

)
. The following theorem provides results on the

interior equilibrium stability of this critical case:
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Theorem 3.3.4. [Unique Interior Equilibrium] If dh = re−dbτ

2
√
K

, Model (3.2) has a

unique interior equilibrium E = (B∗, H∗) =

(
r(1−e−dbτ)

2db
,
√
K

)
which is always lo-

cally asymptotically stable for any delay τ > 0.

Notes: The detailed proof of Theorem 3.3.4 uses normal form theory in [Faria and

Magalhaes, 1995], and is provided in the last section. Both Theorem 3.3.3 and The-

orem 3.3.4 implies that when α = 0, i.e., Model (3.2), the colony can survive at

E2 = (B∗
2 , H

∗
2 ) if r

2dhe
dbτ

√
K

≥ 1 and initial conditions are in a proper range.

What if α > 0? Our simulations suggest that E1 is still unstable and E2 is locally

stable. Based on our analytical results and simulations, I summarize the general

dynamics of Model (3.1) as follows:

1. The extinction equilibrium Ee of Model (3.2) always exists and is always locally

asymptotically stable.

2. If r
dh
< 2edbτ

√
K, Model (3.1) has its global stability at the extinction equilib-

rium Ee.

3. If dbr−d2he
dbτ [edbτ−1]α

2dhdbe
dbτ

√
K

≥ 1, Model (3.1) has two locally asymptotically stable equi-

libria: the extinction equilibrium Ee and the interior equilibrium E2 = (B∗
2 , H

∗
2 ).

Figure 3.1 shows bifurcation diagrams of Model (3.1) regarding (a) the queen

egg-laying rate (r) (see Figure 3.1a&3.1b); (b) the brood regulation effects on re-

production α (see Figure 3.1c&3.1d); (c) the half-saturation coefficient K (see Figure
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3.1e&3.1d) (d) the mortality of brood db (see Figure 3.1g&3.1h); and (e) the mortality

of adult dh (see Figure 3.1i&3.1j). Those bifurcation diagrams indicate that (1) the

colony survival requires the large value of the queen egg-laying rate (r), which leads

to the increased brood and adult population as it increases; (2) the large values of α,

the half-saturation coefficient K, or any mortality rate db or dh can lead to the colony

collapsing, and both brood and adult population are decreasing with respect to these

parameter values; and (3) increasing the value of the adult population mortality can

lead to the dramatic decreasing of the adult population.

The another modeling approach with age structure for the honey bee

colony: In our model derivation section, I proposed the model (3.3) below, assuming

that the adult H(t) matures from the survived brood population at time t− τ .

dB
dt

= rH(t)2

K+H(t)2
− dbB − e−dbτB(t− τ)

dH
dt

= e−dbτB(t− τ)− dhH(t)

The model above is motivated by the compartmental ODE model in the literature

[Tang and Chen, 2002]. I aim to compare the dynamics of Model (3.3) to the model

(3.1) to address the importance of deriving a proper biological model with age struc-

ture.

First, I notice that the extinction equilibrium Ee = (0, 0) always exists as for

the model (3.1). However, Ee can go through stability switching that leads to an

oscillatory solution around Ee for Model (3.3)

Theorem 3.3.5. [Extinction equilibria dynamics] Model (3.3) always has the extinc-

tion equilibrium Ee = (0, 0).
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Figure 3.1: Bifurcation diagrams of Model (3.1) with the interior equilibrium E1 =
(B∗

1 , H
∗
1 ) in black and E2 = (B∗

2 , H
∗
2 ) in green where the solid curve indicates stable,

and the dashed curve indicates saddle. All figures have r = 1400, α = 3, τ = 21.
Figure 3.1a&3.1b: K = 105, db = 0.1, dh = 0.17. Figure 3.1c&3.1d: K = 106, db =
0.09, dh = 0.1. Figure 3.1e&3.1f: db = 0.03, dh = 0.04,. Figure 3.1g&3.1h: K =
105, dh = 0.05. Figure 3.1i&3.1j: K = 1 ∗ 104, db = 0.01.

1. If db ≥
√
2
2

, then Ee = (0, 0) is asymptotically stable for all τ ≥ 0.

2. If 0 < db <
√
2
2

, then Ee = (0, 0) is asymptotically stable for τ ∈ (0, τ0) or τ ≥ τ1,
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while unstable for τ ∈ (τ0, τ1), where τk = θ+kπ
w
, k = 0, 1, θ = π − arctan

(
w
db

)
and w = (e−2dbτ − d2b)

1
2 .

Notes: Theorem 3.3.5 suggests that the smaller value of the brood mortality can

destabilize the colony dynamics. In addition, it implies that Model (3.3) is not posi-

tive invariant as the extinction equilibrium Ee = (0, 0) could have stability switches

that lead to an oscillatory solution around Ee. See Figure 3.2 when Model (3.3) exists

a limit cycle of population around Ee = (0, 0).
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Figure 3.2: Phase plane of honey bee brood and adult population of with r =
1000, K = 1 ∗ 106, db = 0.1, dh = 0.17, τ = 18 when Model (3.3) has an unstable Ee
(the black dot).

Let (B,H) be an interior equilibrium of Model (3.3), then it satisfies that the

following two equations:

0 =
rH2

K +H2
− dbB − e−dbτB

0 = e−dbτB − dhH
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which gives the brood population at the equilibrium B∗ = dhe
dbτH∗ and by solving

rH
K+H2 − dbdhe

dbτ − dh = 0 I could solve

H∗
i =

r ±
√
r2 − 4K (dbdhedbτ + dh)

2

2 (dbdhedbτ + dh)
, i = 1, 2.

Now define the characteristic equation of the interior equilibrium (B∗, H∗) of

Model (3.3) as follows:

C(λ, τ) = (−dh − λ)(−db − e−dbτeλτ − λ)− 2rKH∗

(K + (H∗)2)2
e−(db+λ)τ (3.9)

= λ2 + (db + dh)λ+ (λ+ dh −
2rKH∗

(K + (H∗)2)2
)e−(λ+db)τ + dhdb = 0 (3.10)

Theorem 3.3.6. [Interior Equilibrium Dynamics] Let r > 2dh
√
K(1 + db) and τ ∗ =

1
db
ln
(

1
db

(
r

2dh
√
K
− 1
))

. If τ ∈ [0, τ ∗), Model (3.3) has two positive interior equilib-

rium

Ei = (B∗
i , H

∗
i ) = (dhe

dbτH∗
i , H

∗
i ), i = 1, 2

which H∗
1 < H∗

2 . And E1 = (B∗
1 , H

∗
1 ) is always unstable in [0, τ ∗), E2 = (B∗

2 , H
∗
2 ) is

always stable or occurs stability switching by following cases:

Case 1. If db ≥ 1 or 0 < db < 1, d2b +d2h ≥ 1 and 2dh
√
K(1+db) < r ≤ 2dh

√
K(1+db)

2√
(1+db)2−4d2b

,

E2 is locally asymptotically stable for all τ ∈ [0, τ ∗).

Case 2. If 0 < db < 1, d2b + d2h ≥ 1 and r > 2dh
√
K(1+db)

2√
(1+db)2−4d2b

, then the stability of E2

switches just once from stable to unstable as τ increases in [0, τ ∗).

Case 3. If d2b+d2h < 1 and 2dh
√
K(1+db) < r ≤ 2dh

√
K(1+db)

2√
(1+db)2−4d2b

, the stability of E2 can

change a finite number of times at most as τ is increased τ ∈ [0, τ ∗), and eventually

it becomes unstable.
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Case 4. If d2b+d2h < 1 and r > 2dh
√
K(1+db)

2√
(1+db)2−4d2b

, the stability of E2 switches at least once

in [0, τ ∗) from stable to unstable.

Notes: Theorem 3.3.6 indicates that: (1) The large value of mortality in brood

and/or adult bees with the intermediate value of the egg laying rate r can have

the simple equilibrium dynamics; and (2) The relatively small values of mortality in

brood and/or adult bees with the large value of the egg laying rate r can destabilize

the colony dynamics that lead to stability switching in the interior equilibrium E2.

For example, Figure 3.3 provides an example of when Model (3.3) can have stability

switches at its interior attractor E2 as τ changes: Model (3.3) has local stability when

τ = 21 while it has an oscillatory solution when τ = 16. Figure 3.4 also indicates the

importance of the initial conditions that may lead to the survival or collapse of the

colony.

Comparisons between Model (3.1) and Model (3.3): Both models can have up

to three equilibria with always the existence of the extinction equilibrium Ee. How-

ever, the maturation time τ has no effects on the stability of the equilibrium of Model

(3.1) while it could lead to stability switches for Model (3.3). The consequence is that

Model (3.3) is not positive invariant and could have an oscillatory solution around

the extinction equilibrium Ee and the interior equilibrium E2.

To continue exploring how I should model population dynamics of honey bees

with the proper age structure so that I could have a better understanding of impor-

tant factors contributing to colony survival, I perform bifurcation diagrams on both

Model (3.1) and Model (3.3). Figure 3.1 shows bifurcation diagrams of Model (3.1)
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(a) Brood population in τ = 16 (b) Adult population in τ = 16

(c) Brood population in τ = 21 (d) Adult population in τ = 21

Figure 3.3: Time series of the brood (solid) and adult (dot-dashed) bee when r =
3000; dh = 0.178; db = 0.1;K = 5, 000, 000; B(θ) = 2400;H(θ) = 4500, θ ∈ [−τ, 0].

regarding (a) the queen egg-laying rate (r) (see Figure 3.1a & 3.1b); (b) the brood

regulation effects on reproduction α (see Figure 3.1c & 3.1d); (c) the half-saturation

coefficient K (see Figure 3.1e & 3.1f) (d) the mortality of brood db (see Figure 3.1g

& 3.1h); and (e) the mortality of adult dh (see Figure 3.1i & 3.1j).

Figure 3.5 shows bifurcation diagrams of Model (3.3) regarding (a) the queen egg-

laying rate (r) (see Figure 3.5a & 3.5d); (b) the half-saturation coefficient K (see

Figure 3.5e & 3.5h) (c) the mortality of brood db (see Figure 3.5i & 3.5j); and (d)

the mortality of adult dh (see Figure 3.5k & 3.5l). The biggest differences of those

bifurcation diagrams between Model (3.1) and Model (3.3) are: (1) The survival equi-

librium (E2) can become destabilized if I decrease the value of the brood mortality db
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(a) Brood population forB(0) =

2500;H(0) = 6000

(b) Adult population for B(0) =

2500;H(0) = 6000

(c) Brood population for B(0) =

5000;H(0) = 7, 000

(d) Adult population for B(0) =

5000;H(0) = 7, 000

Figure 3.4: Time series of the brood (solid) and adult (dot-dashed) bee using r =
1500; dh = 0.178; db = 0.1;K = 5, 000, 000; τ = 21.; B(θ) = B(0) and H(θ) = H(0),
θ ∈ [−τ, 0].

and/or increase the adult mortality; (2) the brood population may have its maximum

point when the mortality of the brood db is in a proper range: In Figure 3.5i, it shows

that the interesting pattern on how the brood population changes with its mortality

rate; and (3) Model (3.1) has only equilibrium dynamics either at the extinction Ee

or the interior equilibrium E2. honey bee population data shown in Figure 3.6 seems

to exhibit seasonality. By comparing the dynamics of Model (3.1) with Model (3.3), I

know that only Model (3.3) has oscillatory solutions. Does it mean that Model (3.3)

is better than Model (3.1) as it has oscillatory solutions?
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and the death rate of

the adult dh

Figure 3.5: Bifurcation diagrams of interior equilibrium E1 = (B∗
1 , H

∗
1 ) (black) and

E2 = (B∗
2 , H

∗
2 ) (green) for Model (3.3): solid curve indicates stable, and dash curve

indicates unstable. All figures have τ = 21. Figure 3.5a & 3.5b: K = 9 ∗ 106, db =
0.07, dh = 0.1. Figure 3.5c & 3.5d: K = 106, db = 0.1, dh = 0.17. Figure 3.5e & 3.5f:
r = 2000, db = 0.07, dh = 0.1. Figure 3.5g & 3.5h: r = 2000, db = 0.1, dh = 0.11.
Figure 3.5i & 3.5j: K = 106, r = 1500, dh = 0.13. Figure 3.5k & 3.5l: K = 104, r =
3000, db = 0.2.

3.4 Data and Seasonality

In this section, I use the honey bee population data collected by James Harris

(1980) [Harris, 1980] to do parameter estimations and model validations. The honey
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bee population data of two colonies: May 5, 1975 to Oct 22, 1975 and May 3, 1976

to Dec 5, 1976, is shown in Figure 3.6 in the left (1975) and right (1976) side, re-

spectively: The brood B (the sum of egg, larvae, and pupa) population is shown by

triangle dots while the adult H population is represented by point dots. Based on

Figure 3.6, the initial population of brood is B0 = 6125 and adult H0 = 5362 for 1975

while B0 = 5982 and H0 = 5362 for 1976. Figure 3.6 shows seasonality. The mathe-

matical analysis provided in our previous section indicates that Model (3.3) can have

oscillatory solutions under certain conditions while Model (3.1) only exhibits simple

equilibrium dynamics.
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(b) honey bee population in 1976

Figure 3.6: The observed population data for honey bee colonies in 1975 (left) and
1976 (right), respectively. The triangle line corresponds to the brood population
(eggs, larvae, and pupa), while the circle line corresponds to adults.

The questions are: (1) Is Model (3.3) better than Model (3.1) because it shows

oscillatory solutions? Or (2) Is seasonality shown in honey bee population data (see

Figure 3.6) caused by external factors such as resources?
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To address the questions above, I first assume that the queen-laying eggs are

seasonal due to resource constraints. The literature work suggests that food, tem-

perature, weather, and oviposition place would affect the queen [Bodenheimer, 1937;

Khoury et al., 2011; DeGrandi-Hoffman et al., 1989], thence her egg-laying rate is not

constant, and assumed to have the following expression:

r(t) = r0 ∗ (1 + cos(
2π(t− ψ)

γ
)); (3.11)

r(t− τ) = r0 ∗ (1 + cos(
2π(t− τ − ψ)

γ
)). (3.12)

where γ indicates the length of seasonality; τ indicates the time length of the juvenile

period; ψ indicates the time of the maximum laying rate; and r0 indicates the baseline

egg-laying rate. The literature work suggests that climate/temperature may affect

winter mortality indirectly, but the location, elevations, and humidity are more likely

directly affecting factors, especially the link between temperature and mortality is not

particularly prominent [Switanek et al., 2017]. Therefore, our model only considers

the egg-laying rate to be seasonal as it has more direct impacts from external internal

factors such as temperature/resource, and it is reasonable to set the mortality rates

of brood and adults constant. However, it would be interesting to explore how the

seasonal mortality of brood and adults affects dynamics in future work.

Then I perform parameter estimations and model validations based on data shown

in Figure 3.6: I implement the Monte Carlo parameter sweep method as our fitting

method to the honey bee population data to attain parameter estimates [Cowan,

1998]. Essentially, I randomly sample hypotheses for the parameters following nega-

tive binomial regression with appropriate ranges (see Table.3.1). For each observed
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value, I defined the negative binomial probability density function. The mean (µ) is

set by the corresponding predictive value, and the variance is µ + α ∗ µ2, which is

α = k−1. k indicates dispersion parameter, which I set range [0.5,2] [Piegorsch, 1990;

Lloyd-Smith, 2007]. Then I calculate the likelihood for a negative binomial regression

model to get a better estimate for parameters [Lawless, 1987; Ismail and Jemain,

2007]. Afterward, I performed data fitting on the above model (model number) and

compared the results.

I first assume that the egg-laying rate r is constant. All fittings are set by constant

history functions with B(θ) = 6125 and H(θ) = 5362 for 1975, and B(θ) = 5982 and

H(θ) = 5362 for 1976, for all θ ∈ [−τ, 0].

1. Fitting Model (3.1): the best fit is shown in Figure (3.7a & 3.7b). If I use the

estimated parameters: r = 1237; dh = 0.033; db = 0.001;K = 20, 574, 000;α =

16.9, then E2 = (25299, 36124.5) in 1975; and r = 1149; dh = 0.03; db =

0.001;K = 10, 653, 000;α = 4, then E2 = (23693.5, 37215.3) in 1976. Model

(3.1) approaches to its plateau under those two fittings.

2. Fitting Model (3.2): the best fit is shown in Figure (3.7c & 3.7d). If I use the

estimated parameters: r = 1573; dh = 0.04; db = 0.0001;K = 15, 716, 000, then

E2 = (32658.1, 38837.8) in 1975; and r = 1065; dh = 0.03; db = 0.0001;K =

19, 600, 000, then E2 = (21987, 34863.3) in 1976. Model (3.2) approaches to its

plateau under those two fittings.

3. Fitting Model (3.3): the best fit is shown in Figure (3.7e & 3.7f). If I use the

estimated parameters: r = 5333; dh = 0.12; db = 0.11;K = 867, 000, then E2 =
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(25435.1, 21039.3) in 1975; and r = 5333; dh = 0.12; db = 0.11;K = 1, 088, 000,

then E2 = (25422.3, 21028.8) in 1976. Model (3.3) approaches to its steady

state through damping oscillations.

The fittings shown in Figure 3.7 suggest that the assumption of the queen egg

laying being constant is not realistic enough. Thus I assume that the egg-laying rate

is a periodic function r(t) = r0 ∗ (1 + cos(2π(t−ψ)
γ

)). All fittings are set by constant

history functions, i.e., B(θ) = 6125 and H(θ) = 5362 for 1975, and B(θ) = 5982 and

H(θ) = 5362 for 1976, for all θ ∈ [−τ, 0]

1. Fitting Model (3.1): the best fit is shown in Figure (3.8a & 3.8b). If I use the

estimated parameters: r0 = 1193; dh = 0.03; db = 0.02;K = 56, 963, 000;α =

4; γ = 273;ψ = 12 in 1975; and r0 = 1319; dh = 0.023; db = 0.02;K =

84, 933, 000;α = 3.2; γ = 338;ψ = 12 in 1976. Both data fittings of Model

(3.1) have periodic solutions.

2. Fitting Model (3.2): the best fit is shown in Figure (3.8c & 3.8d). If I use the

estimated parameters: r0 = 1644; dh = 0.03; db = 0.02;K = 139, 137, 000; γ =

277;ψ = 12 in 1975; and r0 = 1477; dh = 0.04; db = 0.02;K = 81, 048, 000; γ =

261;ψ = 12 in 1976. Both data fittings of Model (3.2) have periodic solutions.

3. Fitting Model (3.3): the best fit is shown in Figure (3.8e & 3.8f). If I use

the estimated parameters: r0 = 5333; dh = 0.12; db = 0.11;K = 867, 000; γ =

350;ψ = 12 in 1975; and r0 = 9171; dh = 0.19; db = 0.12;K = 20, 000; γ =

261;ψ = 12 in 1976. Both data fittings of Model (3.3) have periodic solutions

that would lead to negative solutions as Model (3.3) is not positively invariant.
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The data fittings assuming that r(t) = r0 ∗ (1+cos(2π(t−ψ)
γ

)) have better outcomes

than the previous ones (Figure 3.7) by assuming r being constant. By comparison

through the negative log-likelihood method [Ismail and Jemain, 2007], I could deduce

that Model (3.1) has the best fittings in both scenarios: r being constant in Figure

(3.7) and r being periodic in Figure 3.8. Thus, based on both theoretical work and

model validation, I could conclude that even though Model (3.3) could have oscilla-

tions in its solution, Model (3.1) with the egg laying rate r being periodic (supported

by the best fitting based on data, see Figure 3.8) should be a better model for us to

explore the important factors contributing to the healthy of honey bee colonies.

Effects of seasonality: Here I perform two scenarios that seasonality may promote

(see Figure 3.9) or suppress (see Figure 3.10) the survival of honey bee colony, re-

spectively. Figure 3.9a & 3.9b are simulations without seasonality by taking r =

1200, K = 5.4 ∗ 106, db = 0.01, dh = 0.05, α = 10 with a constant history function

B(θ) = 300;H(θ) = 200 for all θ ∈ [−τ, 0], which show that honey bee colony col-

lapses. Figure 3.9c & 3.9d has seasonality by taking r = r0 ∗ (1+ cos(2π(t−45)
365

)) whose

average is r0 = 1200, which show that honey bee colony survives.

On the other hand, Figure 3.10 shows that seasonability can make honey bee

colony collapse. Figures 3.10a & 3.10b has no seasonality by taking r = 1200, K =

1 ∗ 106, db = 0.06, dh = 0.11, α = 10 with a constant history function B(θ) =

6125;H(θ) = 5362 for all θ ∈ [−τ, 0], which shows that honey bee colony could sur-

vive. While Figure 3.10c & 3.10d has seasonality by taking r = r0 ∗ (1+cos(2π(t−45)
365

))

with r0 = 1200. In this case, I can see that seasonality may suppress the survival of
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the honey bee colony.

3.5 Conclusions

honey bees have dramatically decreased population over the long-term and each

year [Smith et al., 2013]. As a result, great economic losses and the increase in the

price of bee products have adversely affected the market [Smith et al., 2013; USDA,

2017]. The causes of the decline in the number of honey bees have been of great

interest, whether they may directly link to human, environmental, or disease [Perry

et al., 2015; Oldroyd, 2007; Smith et al., 2013]. Some previous work always focuses

on foragers or recruitment, while other works investigated external causes [Khoury

et al., 2011, 2013; Russell et al., 2013; Perry et al., 2015; Kang et al., 2015; Aron-

stein et al., 2012]. In this study, I focus on modeling proper honey bee population age

structure model with model validation using empirical data to obtain better biological

understanding of the critical factors that could maintain healthy of honey bee colonies.

I propose two different models with age structure to explore the importance of

proper modeling. The first model (3.1) has an assumption that the adult bees sur-

vive from eggs, while the second model (3.3) assumes that adult bees survive from

the brood stage rather than the egg stage. Our theoretical work (see Theorem 3.3.2,

3.3.3, 3.3.5 & 3.3.6 ) implies that Model (3.1) and Model (3.3) have huge differences

in their dynamics. Specifically, Model (3.1) has only equilibrium dynamics and the

maturation time doesn’t affect its dynamics (see Theorem 3.3.3 ) while Model (3.3)

can be destabilized by the maturation time along with its life history parameter values
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(see Theorem 3.3.6) and Model (3.3) is not positively invariant. Also, our bifurcation

diagrams (see Figure 3.1 & 3.5) confirmed such different dynamical outcomes. Both

theoretical and bifurcation results indicate that the different assumptions can lead to

different age structure models with dramatic dynamical outcomes. So which model

would be more appealing and biologically relevant? Can I say the second model (3.3)

is better as it has oscillatory dynamics that could be supported by seasonality ob-

served in data?

Given that the queen reproduction depends on seasonality [Research and Exten-

sion Consortium, 2004; Bodenheimer, 1937; Khoury et al., 2011], this suggests that it

is paramount to include seasonality when modeling honey bee population dynamics.

To address whether the seasonal pattern observed from data is due to the internal

factor such as the maturation time and/or other life history parameters (for example,

Model (3.3) could be a better model for generating seasonal patterns from the inter-

nal factors) or the external factor such as the queen egg laying rate that is regulated

by the temperature and the resource [DeGrandi-Hoffman et al., 1989; Bodenheimer,

1937; Coffey, 2007]. I use data to validate Model (3.1) and Model (3.3) by assuming

that the queen egg laying rate is constant and seasonal. Our validations on models

without seasonality did not have a good fit by compared to the corresponding models

with seasonality. Among all models with seasonality, Model (3.1) has the best fit (see

Figure 3.8). Our model validations with data suggest that the seasonal pattern ob-

served from data is very likely due to the external factors, such as the temperature or

available resources that may generate periodic dynamics in the queen egg laying rate,

while the internal factors, such as the maturation time doesn’t seem to be responsible

79



seasonal pattern observed from data.

Both theoretical and numerical results, including model validations, suggest that

Model (3.1) with seasonality in the queen egg laying rate seems to be the fittest

model for studying honey bee population dynamics with age structure. Theoretical

results (Theorem 3.3.3 ) and bifurcation diagrams (Figure 3.1) imply that (1) the

survival of honey bee colonies requires a large value of the queen egg-laying rate (r)

and smaller values of the other life-history parameter values in addition to the proper

initial condition; (2) both brood and adult bee population is increasing with respect

to the egg-laying rate r and is decreasing with respect to the regulation effects of

brood α, the square of half maximum of colony size at which brood survival rate K,

and the mortality rates db, dh; and (3) seasonality may promote the survival of the

honey bee colony (see Figure 3.9) but also may lead to the colony collapsing (see

Figure 3.10c&3.10d). In summary, our work suggests that Model (3.1) with season-

ality could be used for our future model that includes more external factors, such

as diseases, parasites, food, and human activities [Perry et al., 2015; Oldroyd, 2007;

Smith et al., 2013; Khoury et al., 2013]. Our ongoing work has extended the current

model (3.1) to include parasites.
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(a) Model (3.1) (1975), r = 1237; dh =

0.033; db = 0.001;K = 20, 574, 000;α =

16.9.

(b) Model (3.1) (1976), r = 1149; dh =

0.03; db = 0.001;K = 10, 653, 000;α = 4.

(c) Model (3.2) (1975), r = 1573; dh =

0.04; db = 0.0001;K = 15, 716, 000.

(d) Model (3.2) (1976), r = 1065; dh =

0.03; db = 0.0001;K = 19, 600, 000.

(e) Model (3.3) (1975), r = 5333; dh =

0.12; db = 0.11;K = 867, 000.

(f) Model (3.3) (1976), r = 5333; dh =

0.12; db = 0.11;K = 1, 088, 000.

Figure 3.7: Data fitting without seasonality for Harris honey bees data in 1975 (a,
c, e) and 1976 (b, d, f) with τ = 21. Black dots indicate Harris data, and the black
curve indicates our model.
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(a) Model (3.1) (1975), r0 = 1193; dh =

0.03; db = 0.02;K = 56, 963, 000;α =

4; γ = 273;ψ = 12.

(b) Model (3.1) (1976), r0 = 1319; dh =

0.023; db = 0.02;K = 84, 933, 000;α =

3.2; γ = 338;ψ = 12.

(c) Model 3.2 (1975), r0 = 1644; dh =

0.03; db = 0.02;K = 139, 137, 000; γ =

277;ψ = 12.

(d) Model (3.2) (1976), r0 = 1477; dh =

0.04; db = 0.02;K = 81, 048, 000; γ =

261;ψ = 12.

(e) Model (3.3) (1975), r0 = 4024; dh =

0.13; db = 0.12;K = 89, 000; γ =

350;ψ = 12.

(f) Model (3.3) (1976), r0 = 9171; dh =

0.19; db = 0.12;K = 20, 000; γ =

261;ψ = 12.

Figure 3.8: Data fitting with the seasonality equation in r for Harris honey bees
data in 1975 (a, c, e) and 1976 (b, d, f) with τ = 21. Black dots indicate Harris data,
and the black curve indicates our model.
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(a) Brood population
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(c) Brood population

of Model (3.1) with
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(d) Adult population

of Model (3.1) with

seasonality

Figure 3.9: Colony dynamic of simulation for Model (3.1) collapses without sea-
sonality while survives with seasonality: r = 1200, K = 5.4 ∗ 106, db = 0.01, dh =
0.05, α = 10, γ = 365, ψ = 45; B(θ) = 300 and H(θ) = 200, θ ∈ [−τ, 0] .
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(b) Adult population

of Model (3.1) with-

out seasonality
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(c) Brood population

of Model (3.1) with

seasonality
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(d) Adult population

of Model (3.1) with

seasonality

Figure 3.10: Simulations for Model (3.1) survives without seasonality while collapse
with seasonality: r = 1200, K = 1∗106, db = 0.06, dh = 0.11, α = 10, γ = 365, ψ = 45;
B(θ) = 300 and H(θ) = 200, θ ∈ [−τ, 0] .

83



Chapter 4

IMPACTS OF SEASONALITY AND PARASITISM ON HONEY BEE

POPULATION DYNAMICS

Abstract

The honeybee plays an extremely important role in ecosystem stability and di-

versity and in the production of bee-pollinated crops. Honey bees and other polli-

nators are under threat from the combined effects of nutritional stress, parasitism,

pesticides, and climate change that impact the timing, duration, and variability

of seasonal events. To understand how parasitism and seasonality influence honey

bee colonies separately and interactively, I developed a non-autonomous nonlinear

honeybee-parasite interaction differential equation model that incorporates seasonal-

ity into the egg-laying rate of the queen. Our theoretical results show that parasitism

negatively impacts the honey bee population either by decreasing colony size or desta-

bilizing population dynamics through supercritical or subcritical Hopf-bifurcations,

depending on conditions. Our bifurcation analysis and simulations suggest that sea-

sonality alone may have positive or negative impacts on the survival of honey bee

colonies. More specifically, our study indicates that (1) the timing of the maximum

egg-laying rate seems to determine when seasonality has positive or negative impacts;

and (2) when the period of seasonality is large it can lead to the colony collapsing.

Our study further suggests that the synergistic influences of parasitism and season-

ality can lead to complicated dynamics that may positively and negatively impact

the honey bee colony’s survival. Our work partially uncovers the intrinsic effects of
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climate change and parasites, which potentially provide essential insights into how

best to maintain or improve a honey bee colony’s health.

4.1 Introduction

Honey bee, Apis mellifera, the colony is not only an excellent example of a com-

plex adaptive system [Wilson, 2000], but also has great value to our ecosystem and

economic development. Per USDA statistics, 80% of crops benefit from pollination by

honey bees, including more than 130 types of fruits and vegetables [Randall, 2020],

worth $215 billion annually worldwide [Smith et al., 2013]. Additionally, honey bees

produce honey and other hive products that are beneficial to human health. For

example, the average American consumed 1.0 pounds of honey per person in 2019,

which has increased from 0.5 pounds in 1990 [USDA, 2023]. Unfortunately, honey bee

colonies are collapsing at an alarming rate, especially during winter [Neumann et al.,

2010], causing unsustainable losses to commercial beekeepers and colony shortages to

growers.

Research [Perry et al., 2015; Oldroyd, 2007; Smith et al., 2013] suggests that there

are many factors contributing to the global decline of the honey bee population. Those

factors include nutritional stress from lack of flowering plants, environmental stres-

sors such as global warming, lack of genetic variation, and vitality, parasites such

as Varroa mites and Nosema, and diseases such as acute bee paralysis virus and de-

formed wing virus. Most notably, Varroa mites pose a huge threat to the health of

honey bees [Peng et al., 1987; Vetharaniam and Barlow, 2006; DeGrandi-Hoffman and

Curry, 2004; Messan et al., 2017, 2021; Kang et al., 2016]. They can parasitize honey
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bees, transmit viruses, and also make honey bees more susceptible to viral outbreaks

[Koleoglu et al., 2017]. Mites parasitize workers and drones (male bees), larvae, and

adults, but not the queen [DeGrandi-Hoffman et al., 2017]. Parasitized honey bees

have shortened lifespans, lower weight, and weakened immune systems [Peng et al.,

1987]. Foragers that have been parasitized during development are more easily disori-

ented during foraging as adults [Koleoglu et al., 2017]. Infected colonies also are more

prone to viral diseases and struggle to survive in the winter [Degrandi-Hoffman et al.,

2019; DeGrandi-Hoffman and Curry, 2004; Martin et al., 2012; Chen and Siede, 2007].

Seasonality has important effects on honey bee foraging behaviors. For example,

in temperate areas during in fall and winter, food can become unavailable as temper-

atures drop below freezing. During this time, honey bees remain in their hives and

form a thermoregulated cluster of bees [Stabentheiner et al., 2003], but if the bees

fail to maintain cluster warmth, the colony will perish [Simpson, 1961]. Moreover,

the queen bee stops or reduces egg laying [SEELEY and Visscher, 1985; DeGrandi-

Hoffman et al., 1989; Research and Extension Consortium, 2004] in preparation for

overwintering [Martin, 2001a]. Overwintering is stressful to colonies and losses may

exceed 30% [Doeke et al., 2015].

Both experimental and simulated bee population data show seasonal patterns in

colony population dynamics [DeGrandi-Hoffman et al., 1989; Harris, 1980]. Season-

ality also plays a role in the dynamics of parasites and viruses in colonies [DeGrandi-

Hoffman and Curry, 2004; Martin, 2001a; Smoliński et al., 2021]. Thus, there is

increased attention to including seasonality in honey bee population models. For
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example, [Ratti et al., 2015; Eberl et al., 2010; Sumpter and Martin, 2004] adding

seasonality equations using four sets of parameter values to differentiate seasons re-

vealed that seasonal dynamics can lead to colonies with persistent Varroa infestations

to suddenly collapse in late fall or spring because of the compounding effects of par-

asitism and viruses transmitted by Varroa [Ratti et al., 2015]. The seasonal models

also generated recommendations that controls for Varroa should occur in summer to

reduce the colony losses [Sumpter and Martin, 2004]. The work of [Betti et al., 2016,

2014] directly used two sets of models to represent the dynamics of non-winter and

winter, respectively. The model [Betti et al., 2014] has no egg laying in the winter

system and considering the age structure of the colony during its yearly cycle. The

model [Betti et al., 2016] added 21-day transition equations for colonies to wake up

between the end of winter and a new active season. This model captured the sharp

decline in colony size often seen in the spring (spring dwindling) and showed that the

timing of the onset of disease in a colony could impact its severity and persistence in

the population.

Here, motivated by the experimental work shown in [DeGrandi-Hoffman et al.,

1989; Harris, 1980], I describe a model where seasonality has been incorporated into

the queen’s egg-laying rate through cosine functions. An age-structure model of honey

bees’ population dynamics Chen et al. (2020) [Chen et al., 2020a] showed that sea-

sonality may reduce colony survival but may also prevent colony collapse. Messan

et al. (2021) [Messan et al., 2021] focused on the colonies with parasites and found

seasonality can help colonies recover under certain conditions. Messan et al. (2018)

[Messan et al., 2018] focused on the nutrition of colonies and found that seasonality
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can be affected by stress and cause colony death.

Based on the data [Kang et al., 2016; DeGrandi-Hoffman et al., 1989] and pre-

viously reported models [Chen et al., 2020a; Messan et al., 2018, 2021], I formulate

a mathematical modeling framework describing honeybee-mite interactions with sea-

sonality in the queen’s egg-laying rate to address the following questions:

• How may seasonality impact honey bee populations in the absence of para-

sitism?

• How may parasitism impact the honey bee population?

• What are the synergistic impacts of seasonality and parasitism on the honey

bee population?

The remaining parts of this article are structured as follows: In Section 2, I provide

details of how I modeled seasonality in the egg-laying rate and a general modeling

framework for the interactions of parasitism and honey bees. In Section 3, I ad-

dress how seasonality impacts the survival of honey bee colonies and their population

dynamics. I theoretically demonstrate the impacts of parasitism on the honey bee

populations without seasonality. In Section 4, I explore how parasites and season-

ality might influence colony survival and population dynamics. In the last section,

I conclude our theoretical and bifurcation analysis results regarding the effects of

seasonality and parasites on colony dynamics and propose future studies needed to

understand how climate-related factors may threaten honey bee colonies.
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4.2 Model Derivation

In this section, I focus on modeling the honeybee-parasite colony dynamics with

seasonality. Let H(t) be the population of the honey bee and M(t) be the population

of the mites in a given colony at time t. I assume that:

A1: The term H2

K+H2 reflects the cooperative brood care from adult bees that per-

form nursing and collecting food for brood [Chen et al., 2020a; Messan et al.,

2021, 2018; Schmickl and Crailsheim, 2007; Kang et al., 2016; Eischen et al.,

1984], where
√
K indicates the colony size at which brood survival rate is half

maximum.

A2: I assume that the queen egg-laying rate is seasonal (r(t)) due to resource con-

straints. The literature work suggests that food, temperature, weather, and

oviposition place would affect the queen [Bodenheimer, 1937; Khoury et al.,

2011; DeGrandi-Hoffman et al., 1989]. Motivated by literature [Chen et al.,

2020a; Messan et al., 2021; Chen et al., 2021] and analysis of recent experimen-

tal data [Fisher II et al., 2021], I model the egg-laying rate with seasonality as

follows:

r(t) = r0(1 + ϵ cos(
2π(t− ψ)

γ
)) (4.1)

with ϵ ∈ (0, 1) measuring the intensity of seasonal impacts, r0 representing the

average of egg-laying rate, γ representing the length of seasonality, and ψ being

the time of the maximum laying rate.
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A3: Female mites breed offspring in the cell and complete the mating in the cell.

In the phoretic phase, female mites feed on adult bees and immigrate to other

colonies [Vetharaniam and Barlow, 2006]. In the reproductive phase, mites

attach to foraging bees and then reproduce offspring in the cell [Ramsey et al.,

2019]. Based on the biological background and literature work [Messan et al.,

2021; Betti et al., 2014; Sumpter and Martin, 2004], I model the honeybee-

parasite interaction as follows:
aH

b+ cH

where a is the mite parasitism rate to the honey bee, c is parasite attachment

effects, and b is the size of honey bee population at which rate of attachment is

half maximal.

A4: Female mites need nutrition from honey bees to produce the next generation.

The parameter σ indicates the conversion rate of nutrient consumption obtained

from bees into nutrients needed by mites to reproduce.

The four assumptions above lead to the following nonautonomous and non-linear

ordinary differential equations of the honeybee-parasite interaction model with sea-

sonality (Model (4.2)):

H ′ = r(t)H2

K+H2 − dhH − aH
b+cH

M,

M ′ = σaH
b+cH

M − dmM,

(4.2)

with r(t) = r0(1 + ϵ cos(2π(t−ψ)
γ

)).
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Parameter Definition (Units) Parameter Definition (Units)

H Honey bee population (bees) M Parasite (mites) population (bees)

a The parasitism rate to honey bee (per day) b

The size of honey bee population

at which the rate of attachment is

half-maximal (bees)

c Parasite attachment effects r0 The average of egg-laying rate (bees/day)

√
K

The colony size at which

brood survival rate is

half-maximum (bees)

σ

The conversion rate of nutrient

consumption obtained from bees

to sustenance for mites’ reproduction

dh & dm

The death rate of honey bee

and parasite (mites) (per day)

γ the length of seasonality (days)

ψ
The time of the maximum

laying rate (days)

ϵ the strength of seasonality

Table 4.1: The biological meanings of parameters.

Note: If b = 1 and c = 0, Model (4.2) reduces to the previous work of Kang et

al. (2016) [Kang et al., 2016] disease free model; and if c = 1, Model (4.2) reduces to

our previous works of Messan et al. (2017 & 2021) [Messan et al., 2017, 2021]. Thus

the current model (4.2) processes the general interaction properties of honey bees and

parasitism.

In the following two sections, I will provide our detailed study to obtain insights

regarding how seasonality and/or parasitism alone or combined impact honey bee

population dynamics.
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4.3 Mathematics Analysis

To facilitate our analysis of the proposed system, I start with re-scaling our system

(4.2). Assume that b ̸= 0, c ̸= 0 and σ ̸= 0, let u = c
b
H, v = c

bσ
M , K̂ = Kc2

b2
, ω = aσ

c
,

r̄(t) = r(t)c
b

, d̄h = dh and d̄m = dm, then system (4.2) can scaled by following:

u′ = r̄(t)u2

K̂+u2
− d̄hu− ωu

1+u
v

v′ = ωu
1+u

v − d̄mv

(4.3)

I first show that the proposed model (4.3) is positive invariant and bounded in

R2
+ as the following theorem:

Theorem 4.3.1. Assume that all parameters are non-negative. Model (4.3) with

initial value u(0) = u0, v(0) = v0, and (u0, v0) ∈ X possesses a unique solution, and

the space X is positively invariant and bounded in R2
+.

Remark 4.3.2. Theorem 4.3.1 provides us reassurances that the proposed model (4.3)

is well defined biologically and provides bases for our carefully designed numerical

studies.

4.3.1 Impact of Seasonality on Honeybee-Only Population Dynamics

If there is no mites, i.e., v(0) = 0, the model (4.2) reduces to the following bee-only

population model with seasonality:

u′ =
r̄(t)u2

K̂ + u2
− d̄hu (4.4)
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with r̄ = r0(1+ϵ cos(
2π(t−ψ)

γ
)) which satisfies a Lipschitz condition for all u ≥ 0. Thus

according to Theorem 4.3.1, the initial value problem with u(0) ≥ 0 has a unique non-

negative and bounded solution.

In order to study the effects of the strength of seasonality (ϵ) and the length

of seasonality (γ) on bee populations, I start with the dynamics of the Honeybee-

only model (4.4) when r̄(t) = r0 is a constant. The honeybee-only system without

seasonality (4.4) has two equilibria u∗i , i = 1, 2 shown as below provided r0 > 2d̄h
√
K̂:

u∗1 =
r0 −

√
r20 − 4d̄2hK̂

2d̄h
, u∗2 =

r0 +
√
r20 − 4d̄2hK̂

2d̄h
.

The global dynamics of (4.4) when r̄(t) = r0 can be summaries as the following

proposition:

Proposition 4.3.1. If r0 < 2d̄h
√
K̂, then the population of u(t) converges to 0 for

any initial condition u(0) ≥ 0. In the case that r0 > 2d̄h
√
K̂, u(t) converges to 0 for

any initial condition u(0) < u∗1 while u(t) converges to u∗2 for any initial condition

u(0) > u∗1.

Notes: Proposition 4.3.1 indicates that the relationship among the constant egg-

laying rate r0, the honey bee mortality, and the half-maximum rate K̂, as well as initial

conditions, determine whether the honey bee colony can survive. With the larger egg-

laying rate r0 with the larger initial condition u0, the honey bee colony is more likely

to survive. In the case that the egg-laying rate is seasonal, r̄(t) = r0(1+ϵ cos(
2π(t−ψ)

γ
))

with its average value over each seasonal length γ being r0, the consequence of honey

bee population dynamics can be complicated. Examples shown in Figure 4.1 suggest

that the seasonality in the egg-laying rate can promote the survival of honey bees
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when the intensity of seasonality is not too high, and it can also make the honey bee

colony prone to collapsing when the intensity of seasonality is high.

In Figure 4.1, without seasonality ϵ = 0, the honey bee colony with r0 = 1,

d̄h = 0.5, K̂ = 1/4, ψ = 0 and γ = 100 can survive under its initial condition u(0) = 1

(red curve in Figure 4.1a) while it collapses under its initial condition u(0) = 0.1 (red

curve in Figure 4.1b). When the intensity of seasonality is not too high, i.e., ϵ = 0.2

or 0.5, the honey bee colony can survive under its initial condition u(0) = 0.1 (black

and green curves in Figure 4.1b). This is an example showing that seasonality can

promote the survival of a honey bee colony. On the other hand, When the intensity

of seasonality is high, i.e., ϵ = 0.8 (blue curve in Figure 4.1a), the honey bee colony

collapses with the initial condition of u(0) = 1 when the honey bee colony can survive

without seasonality. This is an example showing that seasonality can make honey bee

colony collapse under certain conditions.

In order to explore the impact of the intensity of seasonality ϵ, I first define

the minimum and maximum value of the egg-laying rate function: rm = min r̄(t) =

r0(1−ϵ) and rM = max r̄(t) = r0(1+ϵ). Motivated by Proposition 4.3.1, the intensity

of seasonality can be classified into the following three cases:

1. The low egg-laying rate if rM = r0(1 + ϵ) ≤ 2d̄h
√
K̂. This case is equivalent to

0 ≤ ϵ ≤ 1− 2d̄h
√
K̂

r0

2. The high egg-laying rate if rm = r0(1− ϵ) ≥ 2d̄h
√
K̂. This case is equivalent to

0 ≤ ϵ ≤ 2d̄h
√
K̂

r0
− 1
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Figure 4.1: Population dynamics of honeybee-only model (4.4) with or without
seasonality by setting r0 = 1, d̄h = 0.5, K̂ = 1/4, ψ = 0 and γ = 100 with u0 = 0.1
or 1 as its initial population.

3. The intermediate egg-laying rate if rm = min r̄(t) = r0(1 − ϵ) < 2d̄h
√
K̂ ≤

rM = max r̄(t) = r0(1 + ϵ). This is the case when

max{1− 2d̄h
√
K̂

r0
,
2d̄h
√
K̂

r0
− 1} ≤ ϵ ≤ 1.

Now I have the following theorem:

Theorem 4.3.3. Let rM = r0(1 + ϵ) and rm = r0(1 − ϵ). If the egg-laying rate

r̄(t) = r0(1 + ϵ cos(2π(t−ψ)
γ

)) is low, i.e., rM = r0(1 + ϵ) ≤ 2d̄h
√
K̂, the honey bee

population u(t) converges to zero for any initial condition u(0) ≥ 0. In the case that

the egg-laying rate r̄(t) is high, i.e., rm = r0(1 − ϵ) ≥ 2d̄h
√
K̂, honey bee population

u(t) can survive if the initial condition u(0) > rm−
√
r2m−4d̄2hK̂

2d̄h
. More specifically, I have

rm −
√
r2m − 4d̄2hK̂

2d̄h
< lim inf

t→∞
u(t) ≤ lim sup

t→∞
u(t) <

rM +
√
r2M − 4d̄2hK̂

2d̄h

if rm ≥ 2d̄h
√
K̂ and u(0) > rm−

√
r2m−4d̄2hK̂

2d̄h
.
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Notes: Theorem 4.3.3 implies that I can focus on how seasonality impacts honey bee

population when the egg-laying rate r̄(t) is not low, i.e.,rM = r0(1 + ϵ) ≥ 2d̄h
√
K̂

which includes the case 2 and 3. Because the low egg-laying rate leads the colony

to collapse. Thus, I can reduce the three cases above to the following two cases by

introducing the critical intensity of seasonality ϵc = 2d̄h

√
K̂

r0
− 1

1. The low intensity of seasonality, i.e.,

0 ≤ ϵ ≤ ϵc

2. The high intensity of seasonality, i.e.,

0 < ϵc ≤ ϵ ≤ 1.

By applying Proposition 3.1 and the method used in Ratti et al.(2015) [Ratti

et al., 2015], I obtain the stability condition when Model 4.4 processes a periodic

solution u∗ as the following theorem:

Theorem 4.3.4. Suppose u(t) = u∗ are periodic solutions of the Model 4.4, and

f(u) = u2

K̂+u2
. Then u(t) = u∗ is stable if λ =

∫ t
0

[
r̄(z) ∗ f ′(u∗)− d̄h

]
dz < 0, or is

unstable if λ > 0, where f ′(u∗) = 2K̂u∗

(K̂+(u∗)2)
2 .

Notes: Theorem 4.3.4 shows that the stability of the periodic solution of Model 4.4

requires
∫ t
0

[
r̄(z) ∗ f ′(u∗)− d̄h

]
dz < 0, thus u = 0 is always locally stable as the case

without seasonality.

To further address the impacts of seasonality on honey bee population dynamics,

I provide basins of attractions for Model (4.4) in Figure 4.2 and Figure 4.3 by setting

d̄h = 0.5, K̂ = 1/4, r0 = 1. I set ψ = 0 in Figure 4.2. The x-axis is the initial honey
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(a) γ = 4 (b) γ = 40

(c) γ = 400

Figure 4.2: Impacts of the strength of seasonality (ϵ) and the length of seasonality
(γ). The blue area is colony collapse and red area is colony survive. r0 = 1, d̄h = 0.5,
K̂ = 1/4 and ψ = 0. Honey bee initial population is u0 ∈ [0, 0.4]

bee population u(0), and the y-axis is the intensity of seasonality measured by ϵ.

Those parameter values give ϵc = 0.5, which is a white horizontal line in Figure 4.2

and Figure 4.3. The blue region in Figures is the value of the strength of seasonality

(ϵ) and the corresponding initial conditions that lead the colony to collapse, while the

red region is the value of ϵ and u(0) that lead to the colony survival.

Figure 4.2 and Figure 4.3 suggest that the strength of seasonality (ϵ), the length

of seasonality (γ), and the time of the maximum laying rate (ψ) impact the survival

of honey bee colony in the synergistic ways:

1. The length of seasonality (γ) is small, e.g., γ = 4:
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• If the time of the maximum laying rate (ψ) is less than the half period γ,

the seasonality seems to promote the survival of the colony in the sense

that the initial bee population that originally leads to collapsing but it

leads to colony survival with seasonality.

• If the time of the maximum laying rate (ψ) is larger than the half period

γ, the seasonality seems to suppress the survival of the colony in the sense

that the initial bee population that originally leads to survival but it leads

to colony collapsing with seasonality.

2. When the length of seasonality (γ) is larger, e.g., γ = 40, 400, the large intensity

of seasonality ϵ can lead to the collapsing of the colony while the impacts of the

smaller intensity of seasonality ϵ depends on the timing of the maximum laying

rate (ψ) as follows:

• If the time of the maximum laying rate (ψ) is less than the half period γ,

the seasonality seems to promote the survival of the colony.

• If the time of the maximum laying rate (ψ) is larger than the half period

γ, the seasonality seems to suppress the survival of the colony.

4.3.2 Impact of Parasitism on Honey Bee Population without Seasonality

In this subsection, I focus on the dynamics of the honeybee-parasite interaction

model (4.3) in the absence of seasonality, i.e., r̄(t) = r̄. Thus, I have the following
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rescaled model (4.5):

u′ = r̄u2

K̂+u2
− d̄hu− ωu

1+u
v

v′ = ωu
1+u

v − d̄mv

(4.5)

that would allow us to obtain biological insights on how parasitism impacts the honey

bee population by comparing the dynamics of v(0) = 0 versus v(0) > 0. In the case

that v(0) = 0, the model (4.3) reduces to the honey bee only model in the constant

environment (4.4) whose dynamics are summarized in Proposition 4.3.1.

Let (u∗, v∗) be an equilibrium of Model (4.3), then it satisfies the following equa-

tions:

r̄(u∗)2

K̂ + (u∗)2
− d̄hu

∗ − ωu∗

1 + u∗
v∗ = 0, (4.6)

ωu∗

1 + u∗
v∗ − d̄mv

∗ = 0 ⇒ (
ωu∗

1 + u∗
− d̄m)v

∗ = 0 (4.7)

Solving Eqt.4.7 gives v∗ = 0 or u∗ = d̄m
ω−d̄m . And if v∗ = 0, then Eqt.4.6 is

r̄(u∗)2

K̂ + (u∗)2
− d̄hu

∗ = 0,

which gives the following two positive solutions provided that r̄ > 2d̄h
√
K̄,

u∗1 =
r̄ −

√
r̄2 − 4K̂d̄2h

2d̄h

or

u∗2 =
r̄ +

√
r̄2 − 4K̂d̄2h

2d̄h
.
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In the case that ω > d̄m, I have u∗ = d̄m
ω−d̄m and v∗ = [r̄u∗−d̄h((u∗)2+K̂)](1+u∗)

ω((u∗)2+K̂)
as the

unique interior equilibrium of Model 4.3. The stability of the equilibrium point can

be evaluated through the following Jacobean matrix of Model 4.3 is

J =


−d̄h + 2K̂r̄u

(K̂+u2)
2 − ωv

(1+u)2
− ωu

1+u

ωv
(u+1)2

ωu
u+1

− d̄m


Now I are the following on the dynamics of the Honeybee-Parasite system (4.3):

Theorem 4.3.5. [Dynamics of Honeybee-Parasite system (4.3)] The system (4.3)

can have one, three, or four equilibria whose existence and stability conditions are

listed in Table 4.2. The global dynamics of Model (4.3) can be summarized as follows:

1. The system (4.3) converges to extinction (0, 0) for almost all initial conditions

if one the three conditions holds (1) r̄

2
√
K̂
< dh; (2) ω > d̄m; or (3)N̄ c

h > u∗.

2. If ω < d̄m or N̄∗
h < u∗, depending on initial condition, the trajectory of system

(4.3) converges to either (0, 0) or (N̄∗
h , 0).

3. If N̄ c
h < u∗ < N̄∗

h , then system (4.3) has a unique interior equilibrium (u∗, v∗)

which is locally asymptotically stable when K̂ < K̂1 and is a source when K̂ >

K̂1.

Notes: Theorem 4.3.5 provides us a global picture of the dynamics of the system

(4.3) and the related biological implications of the impact of parasitism on honey bee

population dynamics in constant conditions. Theorem 4.3.5 suggests that parasitism

can have negative impacts on the honey bee population in three ways: (1) May lead

to the collapsing of the colony; (2) May lead to the coexistence of both honey bee
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Equilibria Existence condition Stability condition

(0, 0) Always exists Always locally stable

(N̄ c
h, 0)

r̄

2
√
K̂
> dh Saddle if N̄ c

h < u∗; Source if ω < d̄m or N̄ c
h > u∗

(N̄∗
h , 0)

r̄

2
√
K̂
> d̄h Sink if N̄∗

h < u∗ or ω < d̄m; Saddle if N̄∗
h > u∗

(u∗, v∗) ω > d̄m & r̄u∗

K̂+(u∗)2
> d̄h Sink if K̂ < K̂1; Source if K̂ > K̂1

Table 4.2: The existence and stability of equilibrium for Model 4.3, where

N̄ c
h =

r̄−
√
r̄2−4K̂d̄2h
2d̄h

, N̄∗
h =

√
r̄2−4K̂d̄2h+r̄

2d̄h
, u∗ = d̄m

ω−d̄m , v
∗ =

[r̄u∗−d̄h((u∗)2+K̂)](1+u∗)
ω((u∗)2+K̂)

, K̂1 =

−
√
r̄
√
r̄(2u∗+1)2−8d̄h(u∗)2(u∗+1)+2r̄u∗+r̄−2d̄h(u

∗)2

2d̄h
.

and parasitism but the honey bee population decreases compared to the case without

parasitism, or (3) May destabilize the honey bee population.

Item (3) needs further theoretical exploration regarding how parasitism may desta-

bilize the colony dynamics. For example, the colony destabilizes to show fluctuating

dynamics through supercritical Hopf-bifurcation; or to collapse supercritical Hopf-

bifurcation.

By applying the results in [Wang et al., 2011], our system 4.3 undergoes a Hopf-

bifurcation. To study further, I re-scaled the system 4.3 to the following model:

u′ = g(u)(f(u)− v)

v′ = v(g(u)− d̄m),

(4.8)

where g(u) = ωu
1+u

and f(u) = r̄
g(u)

· u2

K̂+u2
− d̄h

g(u)
· u. I can verify that our system 4.8
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satisfies the following conditions:

(a1) f ∈ C1(R̄), f(a) = f(b) = 0, where 0 < a < b; f(u) is positive for a < u < b,

and f(u) is negative otherwise; there exists λ̄ ∈ (a, b) such that f ′(u) > 0 on [a, λ̄),

f ′(u) < 0 on (λ̄, b];

(a2) g ∈ C1(R̄), g(0) = 0; g(u) > 0 for u > 0 and g′(u) > 0 for u > 0, and there

exists λ > 0 such that g(λ) = d.

(a3) f(u) and g(u) are C3 near λ = λ̄ and f ′′(λ̄) < 0.

Then according to Theorem 3.1 in Wei et al. (2011) [Wang et al., 2011], I can

conclude that our system 4.8 exists the first Lyapunov coefficient

a(λ̄) = f ′′′(λ̄)g(λ̄)g′(λ̄)+2f ′′(λ̄)[g′(λ̄)]2−f ′′(λ̄)g(λ̄)g′′(λ̄)
16g′(λ̄)

= ω
16(1+λ̄)

(2f ′′(λ̄) + λ̄f ′′′(λ̄))

where

2f ′′(λ̄) + λ̄f ′′′(λ̄) =
2r̄
(
2K̂3 − K̂2(2λ̄(2λ̄+ 9) + 3) + 2K̂(λ̄(4− 3λ̄) + 9)λ̄2 + (2λ̄− 3)λ̄4

)
ω
(
K̂ + λ̄2

)4 (4.9)

Thus, I have the following results on Hopf-bifurcations:

Theorem 4.3.6. The system 4.3 undergoes a supercritical Hopf-bifurcation at K̂ =

K̂1 with a(λ̄) < 0, and a subcritical Hopf-bifurcation at K̂ = K̂1 with a(λ̄) > 0.
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Note: Theorem 4.3.6 implies that the system 4.3 can undergo a supercritical or

subcritical Hopf-bifurcation depending on the relationship between K̂ and λ̄. If the

system goes supercritical bifurcation at K̂1, then it has a stable limit cycle surrounding

a source equilibrium when K̂ > K̂1. When the system 4.3 undergoes a subcritical

Hopf-bifurcation, then both the population of honey bees and the parasitic mites go

to zero through the unstable limit cycle. Biologically, it implies that parasitism in the

constant environment can destabilize the dynamics and even lead to colony collapse,

thus, parasitism has negative impacts on honey bee population dynamics.

4.4 Synergistic Impacts of Parasitism and Seasonality

In the previous two sections, I explore the impacts of seasonality on the honey bee

population and the impacts of parasitism on the honey bee population in a constant

environment, respectively. Our study shows that seasonality can have positive or

negative effects on the survival of honey bee colonies depending on the values of the

strength of seasonality ϵ, the period γ, and the timing of the maximum egg-laying

rate ψ. Our theoretical work shows that parasitism, in general has negative impacts

on the survival of honey bee colonies in a constant environment.

In this section, I will explore how seasonality combined with parasitism affects

honey bee population dynamics. I start with the following theorem regarding the

stability condition when Model 4.3 processes a periodic solution of (u∗, 0) by applying

Floquet theory theorem and the approach in Ratti et al.(2015) [Ratti et al., 2015].

Theorem 4.4.1. Suppose u∗(t) is a periodic positive solution of the Model 4.4, and

f(u) = u2

K̂+u2
. Then, (u∗, 0) is a periodic solution of Model 4.3, and f ′(u) = 2K̂u

(K̂+u2)
2 .
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It is stable if
∫ T
0

[
r̄(t) ∗ f ′(u∗)− d̄h

]
dt < 0 and

∫ T
0

[
ωu∗

1+u∗
− d̄m

]
dt < 0.

Note: Theorem 4.4.1 implies that (0, 0) is always locally stable, thus, initial condi-

tions play important roles in the survival of honeybee colonies.

By comparing the results of Theorem 4.3.5 and Theorem 4.4.1, I can see that

the impact of seasonality: the seasonality in the egg laying rate r(t) generates the

periodic solution u∗(t) whose stability requires∫ T
0

[
r̄(t) ∗ f ′(u∗)− d̄h

]
dt < 0 and

∫ T
0

[
ωu∗

1+u∗
− d̄m

]
dt < 0. Those conditions re-

duce to rf ′(u∗) < d̄h and ωu∗

1+u∗
< d̄m when r(t) = r being a constant.

By comparing the results of Theorem 4.3.4 and Theorem 4.4.1, I can see the im-

pact of parasitism. Specifically, the stability of nontrial periodic boundary solution

(u∗, 0) requires
∫ T
0

[
ωu∗

1+u∗
− d̄m

]
dt < 0.

Note that our honeybee-parasite model (4.4) exhibits strong Allee effects in honey

bees due to collaborative behavior in the colony. There is limited theoretical work

on exploring the impacts of both parasitism and seasonality. Ratti et al.(2015)[Ratti

et al., 2015] developed a honeybee-mite-virus model with seasonality. Their model

also exhibits strong Allee effects in honey bees, while their mite-free solution is al-

ways unstable due to their formulation of the mite population. They discussed the

existence of periodic solution and its stability in the bee-only model and discussed

the stability of the disease-free solution and mite-free solution through linearization

and the method of Floquet theory in the bee-mite model and bee-mite-virus model,

respectively. The most recent work that can be related to our topic is the paper
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by Rebelo and Soresina (2020) [Rebelo and Soresina, 2020]. Their paper proposed

and studied a prey-predator model with weak or strong Allee effects in a periodic

environment. They discussed the stability conditions of trivial, nontrivial solutions,

and periodic solutions. They also showed that different initial conditions might lead

to the extinction of both species or the coexistence of two species that converge to a

stable periodic orbit.

To further our understanding of the impacts of seasonality and parasitism, I per-

form simple time series simulations and observe the following by setting

r̄0 = 1, d̄h = 0.2, d̄m = 0.21, ω = 0.3, K̂ = 4.49, ψ = 0

1. In the absence of seasonality and parasitism, a honey bee colony can establish

its population when its initial condition is greater than 1.173; otherwise, it

collapses.

2. With seasonality but without parasitism, Figure 4.4a suggests that seasonality

can promote the survival of a honey bee colony when its initial condition is 1

(< 1.173) and it can also make a honey bee colony prone to collapse when its

initial condition is above 1.173 (see the black curve in Figure 4.4b).

3. With parasitism but without seasonality, a honey bee colony can survive through

the stable limit cycle around the interior equilibrium (2.33, 0.3875) for the right

initial conditions. For example, a honey bee colony survives when u0 = 1.2 and

v0 = 0.02 (see the red curve in Figure 4.5a) while it collapses when the initial

parasite population grows up to 0.05 (see the red curve in 4.5b).
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4. With both seasonality and parasitism, Figure 4.5b suggests that seasonality can

promote the survival of a honey bee colony when the parasite’s initial population

is 0.05 and the seasonality can also make the honey bee colony prone to collapse

when the parasite initial population is 0.02 (see Figure 4.5a).

The observations above suggest that seasonality combined with parasitism may

have positive or negative impacts on the honey bee colony survival depending on

varied conditions. To explore further, I will perform a bifurcation analysis to un-

derstand how may the strength of seasonality ϵ, the length of seasonal period γ, the

timing of the maximum egg-laying rate ψ, and the severity of parasitism measured

by ω in the following two scenarios of honeybee-parasitism dynamics in the absence

of seasonality:

• Honey bee and parasitism Coexists at a stable equilibrium

• Honey bee and parasitism Coexists as a stable limit cycle

4.4.1 Impacts of Seasonality on the Stable Equilibrium Coexistence

I choose a typical example of our honeybee-parasite interaction model (4.3) by

setting

r̄0 = 2.86, d̄h = d̄m = 0.25, ω = 0.3, K̂ = 2.04

which has a bistability between the colony collapsing state (0, 0) and the survival

equilibrium at the locally stable equilibrium point (5, 5.5769) whose basins of attrac-

tions are red area shown in Figure 4.6a.

To further explore the impacts of the seasonality strength ϵ and the period of
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seasonality γ on the colony survival and population dynamics, without loss of gen-

erosity, I set the queen laying her maximum number of eggs at time ψ = 0, and I

perform the following simulations (Figure 4.6, 4.7, 4.8) on basin’s attractions of our

honeybee-parasite model (4.3).

1. When the period of the seasonality γ is small, e.g., γ = 4, comparisons of areas

of basin attractions for the colony survival among Figure 4.6a (no seasonal-

ity), 4.6c (the seasonality strength ϵ = 0.2), and 4.6d (the seasonality strength

ϵ = 0.8), suggest that seasonality strength ϵ may not impact the basin attrac-

tions of the colony survival but it impacts the population dynamics as shown

in Figure 4.6b. Simulations suggest that the larger value of the strength of

seasonality ϵ, the larger amplitude of the population.

2. When the period of the seasonality γ is in the intermediate range, e.g., γ = 80,

the impacts from the strength seasonality ϵ can be very complicated. For ex-

ample, Figure 4.7d shows that basins of attractions for the colony survival are

splitted into two red areas, and Figure 4.7b shows larger ϵ gives larger popula-

tion amplitude.

3. When the period of seasonality γ is large, e.g., γ = 100, 250, comparisons of the

basin attractions for the colony survival suggest that the small strength season-

ality ϵ may not impact the basin attractions of the colony survival while its large

value may cause the colony collapsing (see Figure 4.8c & 4.8d). In some cases,

the large strength of seasonality ϵ may have a positive influence on the colony
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survival by increasing the area of basin attractions of the colony survival (see the

comparison of Figure 4.8a & 4.8f). From the population dynamics point of view,

Figure 4.8b suggests that the population has a larger amplitude when ϵ is larger.

Next, I explore the impacts of the timing of the maximum egg-laying rate (ψ) on

colony survival and population dynamics in Figure 4.9 by fixing

r̄0 = 2.86, d̄h = d̄m = 0.25, ω = 0.3, K̂ = 2.04, γ = 70, ϵ ∈ {0.2, 0.35}.

γ = 70 : 1) ϵ = 0.2 (the order from large to small): ψ = 10 is largest, then ψ = 0,

ψ = 60 = 30 these two cases have same survival area, ψ = 35, and ψ = 40 is the

smallest.

2) ϵ = 0.35 (the order from large to small): ψ = 60 is largest, then ψ = 0, ψ = 40,

ψ = 10, ψ = 35, and ψ = 30 is the smallest.

Notice that the seasonality period is γ = 70 and ϵ = 0.35. I choose the timing

of the maximum egg-laying rate ψ ∈ {0, 10, 30, 35, 40 and 60} and observe that the

red area of the basin attractions for the colony survival is largest when the timing of

the maximum laying rate (ψ) is ψ = 60 (Figure 4.9l), then the second largest in the

case when ψ = 0 (Figure 4.9g), the smallest one is ψ = 30 (Figure 4.9i), and the sec-

ond smallest in the case when ψ = 35 (Figure 4.9j). These observations from Figure

4.9 regarding the impacts of the maximum laying rate (ψ) of our honeybee-parasite

model 4.3 seem to show similar trends of our honey bee-only model 4.4 (see Figure

4.3): as the ψ increases, the seasonality can suppress the survival of the colony; and

after the minimum survival area, the ψ can promote the survival of the colony. But

the significant difference with the bee-only model is the smallest area is not ψ = γ
2
.
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Figure 4.9m and 4.9n show how different timing of the maximum egg-laying rate ψ

can lead to different colony dynamics.

To further understand the impacts of the timing of the maximum laying rate (ψ)

of our honeybee-parasite model 4.3, I set the strength of the seasonality being ϵ = 0.2,

and choose the timing of the maximum egg-laying rate ψ ∈ {0, 10, 30, 35, 40 and 60},

respectively. The basin attractions for the colony survival is largest when the timing

of the maximum laying rate (ψ) is ψ = 10(Figure 4.9b), the second largest in the case

when ψ = 0 (Figure 4.9a), the smallest one is ψ = 40 (Figure 4.9e), and the second

smallest in the case when ψ = 35 (Figure 4.9d). These observations are different than

the case of ϵ = 0.35 shown in Figure 4.9 and the case of the honey bee only model

4.4 (see Figure 4.3). The significant difference is that ψ can promote the survival

of the colony at the very beginning of ψ growth (ψ = 10 in our simulation). These

comparisons and our further simulations suggest that the impacts of the timing of

the maximum laying rate (ψ) on the honey bee colony survival in the presence of

parasitism are very complicated. The area of the basin attractions for the colony

survival may be increasing or decreasing with respect to the value of ψ and ϵ without

clear patterns.

By comparing the basins of attractions of the honeybee-mite system without sea-

sonality in Figure 4.7a to the honeybee-mite system with seasonality in Figure 4.7d,

4.9e & 4.9g, I observe that seasonality can split the basins of attractions into dis-

connected regions. This may lead to two scenarios after adding seasonality: (1)

the colony may survive from collapsing (see Point A in Figure 4.10c versus Figure
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4.10d), and (2) the colony may be prone to collapsing (see Point B in Figure 4.10c

versus Figure 4.10d). This suggests that seasonality may generate varied outcomes

depending on initial conditions. For instance, while an initial rise in the parasite

population is generally perceived as detrimental, it can enhance colony survival un-

der specific circumstances, particularly when considering seasonal factors (compare

points A and B in Figure 4.10d). This phenomenon has been observed in experi-

mental data [DeGrandi-Hoffman et al., 2020]. To illustrate those observations, I use

Figure 4.7d as an example, where I list four cases. Among them, the initial bee

populations of Colony 1 (Case 1, blue) and Colony 3 (Case 3, gray) are similar, and

Colony 2 (Case 2, red) and Colony 4 (Case 4, black) are close. While the initial mite

population is increasing in the order of Case 1, Case 2, Case 3, and Case 4. Figure

4.10a shows the colony of Case 1 and Case 3 survived while Case 2 and Case 4 col-

lapsed, especially Colony 3 has fewer bees and more mites than Colony 2, but survives.

The potential biological explanation for this phenomenon lies in the heart of sea-

sonality impacts on the egg-laying rate incorporated in the model, and the mite

population is impacted through the bee population. For the mite population to grow,

colonies must have enough bees. If the system doesn’t consider the impacts of season-

ality (Model 4.5), then a higher parasite level (v0: Point A > Point B) leads to colony

collapse (see red curves in Figure 4.11b & 4.11d), because parasitism reduces colony

population growth by shortening the lifespan of adult workers, then the population

of bees is reduced and so will Varroa population growth. However, the system with

seasonality (Model 4.3) leads to a switch in the outcomes of these two colonies, which

is that the survival colony collapses because of seasonality, whereas the collapsing
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colony becomes survival. The point is that the egg-laying rate of bees is periodic due

to seasonal effects, then the number of bees will increase at some time intervals (the

green curve in Figure 4.11a). At a higher parasite level, fewer bees will bring the

mite population down ( ωu
1+u

v) to a manageable level, and the seasonality egg-laying

rate helps the colony grow up periodically (seasonality in Point A). At a lower para-

site level, seasonality also leads mites to grow more than without seasonality effects

(Figure 4.11d). Seasonality and high numbers of bees may lead to excessive mite

growth beyond the colony’s sustainable threshold and colony collapse. This principle

is similar to one method of controlling Varroa mites: removing the brood from the

hive and interrupting the brood reproductive cycle. With no brood present, mites

are compelled to feed on adult bees, which can limit the mites’ ability to reproduce,

helping to control their populations [Jack and Ellis, 2021]. Nevertheless, this method

will be affected by seasonality. Removing lots of broods in the fall may have strong

negative impacts on overwintering survival [Jack et al., 2020].

Now I explore the impacts of parasitism ω on honey bee population dynamics

and its colony’s survival in Figure 4.12. Comparison of black areas (which are the

basins of attractions of only honey bee survival) in Figure 4.12d & 4.12a suggest

that small parasitism (e.g., ω = 0.18) with seasonality is more likely to lead to the

colony survival than the case without seasonality. When parasitism is not small (e.g.,

ω = 0.30) (see Figure 4.12b), seasonality can destabilize the system and decrease the

average population of the honey bee. When ω is large (e.g., ω = 0.5), parasitism has

negative impacts on the honey bee colony that lead the colony to collapse (see all

blue areas in Figure 4.12c). Figure 4.12e shows increasing parasitism, colonies may
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still survive, but the average population of honey bees decreases (see black and green

curves). These observations are in line with our theorem 4.3.5 for the case without

seasonality.

4.4.2 Impacts of Seasonality on Stable Limit Cycle Coexistence

I choose a stable limit cycle example of our honeybee-parasite interaction model

4.3 by setting

r̄0 = 1, d̄h = 0.2, d̄m = 0.21, ω = 0.3, K̂ = 4.49, ψ = 0

which has a stable collapsing state (0, 0) for the colony, and a stable limit cycle around

the source interior equilibrium (2.33, 0.3875) whose basins of attractions are red area

shown in Figure 4.13e.

I explore the impacts of the seasonality strength ϵ, the period of seasonality γ, the

queen laying her maximum number of eggs at time ψ, and the parasitism effects ω on

the colony survival and population dynamics. I perform the following simulation in

Figure 4.13 on the basin’s attractions of our honeybee-parasite model 4.3. I set the

queen laying her maximum number of eggs at time ψ = 0 to observe the impacts of

γ and ϵ.

1. When the period of the seasonality is small, i.e., γ = 4, comparisons of areas of

basin attractions for the colony survival among Figure 4.13e (no seasonality),

4.13a (the seasonality strength ϵ = 0.2) suggest that small seasonality strength

ϵ may not significantly impact the survival of the colony much but larger sea-

sonality strength ϵ can generate larger population amplitude (see Figure 4.13f).
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2. When the period of the seasonality is in the intermediate range, e.g., γ =

40, comparisons of areas of basin attractions for the colony survival among

Figure 4.13e (no seasonality), 4.13c (the seasonality strength ϵ = 0.2) and 4.13d

(the seasonality strength ϵ = 0.5) suggest that seasonality strength ϵ seems to

suppress the survival of the colony.

3. When the seasonality strength ϵ is fixed, increasing the period of the seasonality

γ seems to suppress the survival of the colony (See Figures 4.13a & 4.13c and

Figures 4.13b & 4.13d).

4. The large γ and ϵ would lead to the colony collapsing as I observe that the

colony collapses when γ > 60.

Let the period of the seasonality be γ = 40, and the strength of the seasonality

be ϵ = 0.2. I explore the impacts of the timing of the maximum egg-laying rate ψ by

varying ψ=0, 15(< γ
2
= 20), 35(> γ

2
= 20) in Figure 4.14. I observe that the basin

attractions for the colony survival seem to have similar shapes: the largest area is

ψ = 0 (Figure 4.14a), the second largest being ψ = 35 (Figure 4.14c), and the smallest

one is ψ = 15 (Figure 4.14b). The observation under this particular parameter set

regarding the impacts of ψ of our honeybee-parasite model 4.3 seems to show similar

trends as our honey bee only model 4.4 (see Figure4.3). Figure 4.14d provides some

visual insights on how γ and ϵ impact population dynamics.

Let the period of the seasonality be γ = 40, and the strength of the seasonality be

ϵ = 0.2. I explore the impacts of the parasitism by varying ω ∈ [0.1, 0.35] in Figure

4.15. I observed the following:
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1. When the parasitism ω is small (e.g., ω = 0.1), the honey bee can survive while

the parasite dies out (see Figure 4.15a).

2. When parasitism is increased to ω = 0.292, colonies can survive with parasitism,

but the area of basins of attractions for survival decreases as parasitism increases

(see Figure 4.15a, 4.15b & 4.15c). Thus parasitism has a negative influence on

the colonies’ survival.

3. When the parasitism is large (e.g., ω > 0.3 when u0 = 5, v0 = 0.04), colonies

collapse.

I observe that (1) If the colony can survive, increasing the parasitism attack degree

can decrease the average population of honey bees. (2) Large parasitism can lead to a

colony collapsing. In general, Seasonality with parasitism can have negative impacts

in terms of either decreasing the average honey bee population or the colony collaps-

ing.

Without seasonality, the value of parasitism rate ω can lead to destability through

hopf-bifurcation (see Theorem 4.3.6). To further explore how parasitism may impact

the honeybee population dynamics with or without seasonality, I perform bifurcation

on the impacts of parasitism ω = [0.2, 0.33] with (see Figure 4.15e) or without (see

Figure 4.15f) seasonality by setting r̄0 = 1, d̄h = 0.2, d̄m = 0.21, ψ = 0, γ = 40,

ϵ = 0.2, K̂ = 4.49, u(0) = 5 and v(0) = 0.04.

In the absence of seasonality (Model 4.3), the ω3 is the bifurcation value where the

mite-free equilibrium ((N̄∗
h , 0)) changes from being locally stable to unstable (see The-
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orem 4.3.5 item (2)), and the coexistence of bee and mite population emerges as the

locally stable interior equilibrium, and the interior equilibrium become unstable (see

Theorem 4.3.5 item (3)) through supercritical Hopf-bifurcation at ω4, where exists

the stable limit cycle (see Theorem 4.3.6). After the value of ω5, the colony collapses.

Therefore, the bifurcation diagram in Figure 4.15f) suggests that: (1) when the sever-

ity of parasitism (ω) is small, the colony survives with non-parasites; (2) when the

value of ω rises, bees and parasites coexist in the colony and gradually decreases the

population of bees; (3) under the conditions of supercritical Hopf-bifurcation, bees

and parasites coexist in a periodic state; (4) when ω is large enough, the parasites

leads to the colony collapse.

In the seasonality model (Model 4.4 and see Figure 4.15e), before the value of ω1,

the system is locally stable around mite-free solutions (see Theorem 4.4.1); after this

bifurcation point, bees and parasites coexist as the periodic interior solutions. The

ω2 is the critical value when the colony collapses.

I observe that seasonality can delay the impact of parasitism in two bifurcation

points: (1) ω1 > ω3: parasite needs larger attacking rates to survive in the periodic

environment. And (2) ω2 > ω5 > ω4: colony can still survive with the larger attacking

rates from parasites in the periodic environment.

115



4.5 Conclusion

Studies [Chen et al., 2021; Ullah et al., 2021; Vanbergen, 2021; Vercelli et al., 2021]

suggest that pollinators like honey bees are facing a crisis of dwindling numbers due to

combinations of stressors. In this paper, I proposed and studied a non-autonomous,

nonlinear differential equations model that describes the interactions between honey

bees and parasites while including seasonality in the queen’s egg-laying rate. The sea-

sonality logistics are adopted from the literature [Chen et al., 2020a; Messan et al.,

2021, 2018]. The proposed model with related theoretical and bifurcation analysis

aims to address how 1) seasonality can influence honey bee colony dynamics? 2)

parasitism impact honey bee colonies? and 3) seasonality and parasitism jointly in-

fluence honey bee colonies?

I first explored the seasonality impacts on the honey bee colony. Our theoretical

results (Theorem 4.3.3) imply that the egg-laying rate plays an important role in

determining the colony’s survival. If the egg-laying rate is low, the colony is expected

to die. When egg laying is not low, the colony’s fate depends on the initial popula-

tion size in varied seasonal conditions. Our mathematical analysis of the honeybee-

parasite model (4.3) in a constant environment shows that parasitism most likely has

negative impacts on honeybee population dynamics and the survival of the colony.

Our theoretical work on Model (4.3) indicates that parasites decrease the honeybee

population (Theorem 4.3.5) and destabilize the dynamics through subcritical or su-

percritical Hopf-bifurcation (see Theorem 4.3.6). The Hopf-bifurcation is determined

by the queen egg-laying rate r0, death rates of both honeybee dh and parasite dm

and parasitism ω. More specifically, the colony collapses through supercritical Hopf-
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bifurcation, and the colony has fluctuating population dynamics through supercritical

Hopf-bifurcation.

Seasonality in this paper is defined by its strength of seasonality ϵ ∈ [0, 1], pe-

riod γ, and timing of the maximum queen egg-laying rate ψ. These three factors

are intertwined and generate complicated impacts on honeybee population dynamics

with or without parasitism. Our study shows that seasonality can have both negative

and positive influences on honeybee colony survival, depending on conditions. The

colony is more likely to collapse when the period of seasonality (γ) is limited, and the

strength of seasonality (ϵ) is large (see Figure 4.2). In the absence of parasitism, the

colony may benefit from the seasonality when the timing of the maximum egg-laying

(ψ) is larger than half of the period of seasonality (γ), i.e. ψ > γ
2

(see Figure 4.3). In

the presence of parasites, the impacts of the timing of the maximum egg-laying (ψ)

are much more complicated. Depending on other parameters’ values, in some cases,

the smaller timing of the maximum egg-laying (ψ) or closer to the γ may benefit the

colony survival (see Figure 4.9& 4.14). There are also situations that are beneficial

to the colony when growing ψ in the beginning (ϵ = 0.2 in Figure 4.9 ).

As shown by our model and results, seasonality plays a significant role in honey

bee colony dynamics. Seasonality can affect bees’ behavior and resources. Bees

tend to visit flowers more frequently and forage more actively in warm and favorable

weather rather than in cold and harsh weather [Tuell and Isaacs, 2010]. Ogilvie and

Forrest (2017) [Ogilvie and Forrest, 2017] have also highlighted the crucial role of

floral resources in determining bee community growth rates and foraging decisions,
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suggesting that periodic seasonal changes can help bee communities recover. How-

ever, because of climate change, there are seasonality changes, such as a longer period

of low flowering abundance in mid-summer, which negatively affects bees [Aldridge

et al., 2011]. Moreover, studies have shown that Africanized bees are better adapted

to low-shade habitats than native bees in Mexico, indicating that hotter or longer

summers because of seasonality or climate change is unfriendly for native bees [Jha

and Vandermeer, 2009]. Bees can adapt to seasonal changes by altering their brood

production and lifespan throughout the year [Jha and Vandermeer, 2009; Feliciano-

Cardona et al., 2020]. These phenomena all reflect that the impact of seasonality

on bee populations is complex and tied to factors both within the colony and in the

environment.

Seasonality also affects the reproduction and spread of parasites. Jack et al.

(2023) [Jack et al., 2023] pointed out that reducing the Varroa mites’ population in

the spring is important for long-term mite control. Winter also can be an effective

time for treating Varroa because there is no brood, and all mites are feeding on adult

bees and therefore exposed to the miticide. However, interrupting brood rearing in

the fall may not be an effective strategy for mite control by [Jack et al., 2020], as

mite populations increase after treatment [Jack et al., 2023]. These findings are con-

sistent with the conclusion of our model, which underscores the complex impacts of

seasonality on bee-parasite dynamics. At present, seasonal temperatures are rising

due to climate change, and will affect resource availability, bee abundance, and varroa

parasitism especially in the fall [Smoliński et al., 2021]. Our model can predict the

different fates of bee colonies by changing the seasonal parameters of the egg-laying
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rate. Such research underscores the importance of studying the effects of seasonality,

and our research further highlights the need for investigation to quantify these im-

pacts mathematically.

Bifurcations and simulations (see Figure 4.8b) suggest that a larger strength of

seasonality ϵ leads to a larger amplitude in population oscillating dynamics. Large

strength of seasonality ϵ alone can cause colony collapse, especially when the colony

exhibits oscillations due to parasitism (see Figure 4.13). Both our theoretical and

bifurcation (see Figures 4.15e & 4.15f) results show that parasitism with or without

seasonality can lead to the colony collapsing and decrease the average population

dynamics of honey bees.

As bee numbers continue to decline, it is crucial to understand the factors that

can help honeybees face these threats and/or help them mitigate these ecological

disturbances. Strong evidence suggests that climate changes contribute greatly to

pollinators’ population decline. Seasonality is one aspect of climate change. Our

current work and literature [Chen et al., 2020a; Messan et al., 2021, 2018] provide

useful insights into how seasonality in the queen egg-laying rate and parasites impact

honeybee colonies. Our study suggests that these impacts can be positive or negative

depending on the environment. Based on our results, it is possible to develop specific

strategies to take advantage of the positive impacts and avoid situations when cer-

tain attributes of seasonality lead to colony collapsing or population decreasing. For

example, beekeepers may regulate the honeybee population by altering the timing

and amount of the egg-laying rate through the amount of food such as sugar and
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pollen fed to the colonies. Seasonality affects parasite reproduction, maturation, and

transmission rates of the viruses they carry. Colony losses might be reduced if the

beekeeper can actively respond to the colonies’ needs by observing the colonies’ situa-

tion, she/he can help the colony to reduce or even eliminate the impacts of seasonality

with well-timed treatments [Piot et al., 2022; Vercelli et al., 2021].

Climate change has been considered one of the current significant threats to honey

bees and beekeeping [Flores et al., 2019]. As beekeepers have observed in the past ten

years, climate impacts on honeybees include scarcity of floral resources and greater

spread of disease [Vercelli et al., 2021]. Climate change affects the flowering period, di-

rectly affecting foraging and resource gathering through weather conditions, extreme

heat, and shifts in the timing and duration of bloom. Available nectar and pollen

affect brood rearing and colony growth impacting both colony survival and pollina-

tion services [Vercelli et al., 2021; Reddy et al., 2012], potentially affecting societal

risk and prolonging exposure to more extreme events within a season [Agency, 2021].

Including seasonality in our model is the first step towards studying the impacts of

climate changes on honeybee colonies. To better understand how climate change

affects the seasonality of bee behavior, including brood rearing, colony growth, and

foraging. There is a need for further field studies that provide data to validate our

models and direct our future work.
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(a) γ = 4, ψ = 0 (b) γ = 4, ψ = 1 (c) γ = 4, ψ = 2

(d) γ = 4, ψ = 3 (e) γ = 40, ψ = 0

(f) γ = 40, ψ = 10 (g) γ = 40, ψ = 20 (h) γ = 40, ψ = 30

Figure 4.3: Impacts of the maximum laying rate (ψ). The blue area is colony
collapse and the red area is colony survival. The horizontal line is the dividing line
between ϵ in results 1 and 3. r0 = 1, d̄h = 0.5 and K̂ = 1/4. Honey bee initial
population is u0 ∈ [0, 0.4]
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Figure 4.4: Comparison examples of seasonality having positive or negative effects
in the honey bee colony survival without parasitism. Red curves are honey bee
populations without seasonality and black curves are honey bee populations with
seasonality.
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Figure 4.5: Comparison examples of seasonality having positive or negative effects
in the honey bee colony survival with parasitism. Red curves are the honey bee
populations without seasonality and black curves are the honey bee population with
seasonality.
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Figure 4.6: Impacts of seasonality on the honey bee colony survival when the period
of seasonality γ is large; and r̄0 = 2.86, d̄h = d̄m = 0.25, ω = 0.3 and K̂ = 2.04 and
ψ = 0. Initial population is u0 ∈ [0, 20], and v0 ∈ [0, 20]. The blue area is the basin
attraction that leads to colony collapse, while the red area is the basin attraction the
colony can survive.
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0 200 400 600 800

0
2

4
6

8
1
0

1
2

Population dynamics for u0 = 4

Time (days)

H
o
n
e
y
 P

o
p
u
la

ti
o
n

without seasonality

ε = 0.2, v0 = 2

ε = 0.35, v0 = 2

ε = 0.35, v0 = 12

(b) Population Dynamics

(c) γ = 80, ϵ = 0.2 (d) γ = 80, ϵ = 0.35

Figure 4.7: Impacts of seasonality on the honey bee colony survival when the period
of seasonality γ is intermediate; and r̄0 = 2.86, d̄h = d̄m = 0.25, ω = 0.3 and K̂ = 2.04
and ψ = 0. Initial population is u0 ∈ [0, 20], and v0 ∈ [0, 20]. The blue area is the
basin attraction that leads to colony collapse, while the red area is the basin attraction
the colony can survive.
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Figure 4.8: Impacts of seasonality on the honey bee colony survival when the period
of seasonality γ is small; and r̄0 = 2.86, d̄h = d̄m = 0.25, ω = 0.3 and K̂ = 2.04 and
ψ = 0. Initial population is u0 ∈ [0, 20], and v0 ∈ [0, 20]. The blue area is the basin
attraction that leads to colony collapse, while the red area is the basin attraction the
colony can survive.
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(a) ϵ = 0.2, ψ = 0 (b) ϵ = 0.2, ψ = 10 (c) ϵ = 0.2, ψ = 30 (d) ϵ = 0.2, ψ = 35

(e) ϵ = 0.2, ψ = 40 (f) ϵ = 0.2, ψ = 60 (g) ϵ = 0.35, ψ = 0 (h) ϵ = 0.35, ψ = 10

(i) ϵ = 0.35, ψ = 30 (j) ϵ = 0.35, ψ = 35 (k) ϵ = 0.35, ψ = 40 (l) ϵ = 0.35, ψ = 60
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Figure 4.9: Impacts of the timing of the maximum egg-laying rate (ψ). The blue area
is colony collapse, and the red area is colony coexistence. r̄0 = 2.86, d̄h = d̄m = 0.25,
ω = 0.3, K̂ = 2.04, and γ = 70, ϵ = 0.2&0.35 Honey bee initial population is
u0 ∈ [0, 20], and mite initial population is v0 ∈ [0, 20]
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(a) honey bee population (b) Population Dynamics

(c) no seasonality (d) γ = 80, ϵ = 0.35

Figure 4.10: Figure 4.10a: the total bee population of four colonies from July to
December. Colonies 1 (Case 1, blue) and 3 (Case 3, gray) survive, and Colonies 2
(Case 2, red) and 4 (Case 4, black) collapse. Figure 4.10b: the total mite population
in four colonies from July to December. Colonies had different initial populations.
Figure 4.10c: the simulation result from Figure 4.7a with two signed points A and B.
Figure 4.10d: the simulation result from Figure 4.7d with two signed points A and B
and cases. These four cases correspond to Figure 4.10a & 4.10b colonies.
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(c) Point B bee population
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Figure 4.11: Colony dynamics with time series. These point A and point B corre-
spond with Figure 4.10c & 4.10d. Point A: seasonality leads the colony from collapsing
to survive. Point B: seasonality leads the colony from survival to collapse.
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(a) ω = 0.18, ϵ = 0.2 (b) ω = 0.3, ϵ = 0.2 (c) ω = 0.5, ϵ = 0.2

(d) ω = 0.18, ϵ = 0
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Figure 4.12: Impacts of parasitism (ω) on the colony dynamics of honeybee-mite
model (4.2). The blue area is colony collapse, the red area is colony coexistence, and
the black area is only bee survive with r̄0 = 2.86, d̄h = d̄m = 0.25, γ = 100, ψ = 0,
ϵ = 0.2 and K̂ = 2.04. Honey bee initial population is u0 ∈ [0, 20], and mite initial
population is v0 ∈ [0, 20]
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(a) γ = 4, ϵ = 0.2 (b) γ = 4, ϵ = 0.5 (c) γ = 40, ϵ = 0.2

(d) γ = 40, ϵ = 0.5 (e) no seasonality
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Figure 4.13: Impacts of seasonality on the stable limit cycle: the strength of sea-
sonality ϵ and the period of seasonality γ when r̄0 = 1, d̄h = 0.2, d̄m = 0.21, ω = 0.3,
ψ = 0, and K̂ = 4.49. Honey bee initial population is u0 ∈ [0, 40], and mite initial
population is v0 ∈ [0, 1]. The blue area is colony collapse, and the red area is colony
coexistence.
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(a) γ = 40, ψ = 0 (b) γ = 40, ψ = 15 (c) γ = 40, ψ = 35
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Figure 4.14: Impacts of seasonality on the stable limit cycle: the timing of the
maximum egg-laying rate ψ when r̄0 = 1, d̄h = 0.2, d̄m = 0.21, ω = 0.3, γ = 40,
ϵ = 0.2, and K̂ = 4.49. Honey bee initial population is u0 ∈ [0, 40], and mite initial
population is v0 ∈ [0, 1]. The blue area is colony collapse, and the red area is colony
coexistence.
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(a) γ = 40, ω = 0.1 (b) γ = 40, ω = 0.292 (c) γ = 40, ω = 0.3

(d) no seasonality with ω =

0.3 (e) γ = 40, u0 = 5,v0 = 0.04

(f) no seasonality, u0 =

5,v0 = 0.04

Figure 4.15: Impacts of seasonality and parasitism on the stable limit cycle when
r̄0 = 1, d̄h = 0.2, d̄m = 0.21, γ = 40, ψ = 0, ϵ = 0.2 and K̂ = 4.49. Honey bee initial
population is u0 ∈ [0, 40], and mite initial population is v0 ∈ [0, 1]. The blue area
is colony collapse, the red area is colony coexistence, and the black area is only bee
survival. Figure 4.15e: Max and min honey bee population with seasonality. The red
dot-dashed curve indicates the maximum bee population of the period, and the blue
dot-dashed curve indicates the minimum bee population of the period. The black
dashed curve shows the average of the max and min population. Figure 4.15f: Max
and min honey bee population without seasonality. The blue solid curve indicates
the locally stable equilibrium, the red solid curve indicates the stable limit cycle of
the Hopf-bifurcation, and the red dot-dashed curve indicates the source equilibrium.
The black dashed line indicates the critical of ω, which makes the colony survive to
collapse. The orange square zooms in the Hopf-bifurcation details. Both figures: The
black lines indicate collapse. The red and blue indicate critical values of ω.
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Chapter 5

IMPACTS OF PESTICIDES ON HONEY BEE DYNAMICS

Abstract

Honey bees (Apis mellifera) are essential pollinators whose health has been im-

pacted by pesticides from crops that are transported into honey bee nests via pollen.

We developed a delay differential equation model with age structures to investigate

the complex relationship between pesticides and honey bee population dynamics. Our

work integrates theoretical analysis, simulation, and experimental data to show that

(1) egg-laying rate, death rates, and environmental conditions are pivotal factors in-

fluencing colony survival; (2) pesticides impact adult mortality in a linear regression

manner; and (3) pesticides have effects on the time of the maximum laying rate, and

the adult-larval pollen consumption ratio. The implications of our findings merit fur-

ther exploration. Overall, our study underscores the significance of applying models to

biological systems, offering crucial and new insights for understanding and managing

complex interactions between pesticides and honey bees.

Honey bees play a vital role in crop pollination, but their global population is

facing a significant decline. In the U.S., their numbers plummeted by approximately

60% from 1947 to 2008, dropping from 5.9 million to 2.3 million Potts et al. [2010];

Smith et al. [2013]. This decline can be attributed to various factors, with pesticides

being a major environmental stressor Fisher et al. [2017]; Chmiel et al. [2020]. While

scientists typically rely on experiments, averages, and statistical methods to under-

stand the impact of pesticides on honey bees, our study takes another approach. We
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integrate a dynamic system with experimental data to derive parameter values, allow-

ing us to understand the intricate relationship between pesticides and bee populations.

Bees, crops, and pesticides form a complex interplay that underpins modern agri-

culture. The economic value of these pollinated crops is staggering, estimated at

around $215 billion annually worldwide VanEngelsdorp et al. [2008]. Notably, certain

crops like almonds, blueberries, and apples heavily rely on honey bee pollination. Pes-

ticides, which encompass a range of formulations, including insecticides, herbicides,

acaricides, and fungicides, are indispensable tools in safeguarding crop yields against

various pests and diseases. However, bees face pesticide exposure through crucial

activities like pollination and nectar collection. For instance, fungicides can induce

symptoms similar to malnutrition and weaken colonies, making honey bees more vul-

nerable to additional stressors such as parasites and pathogens Degrandi-Hoffman

et al. [2015]. Pesticides can compromise the immunity of developing queens, subse-

quently reducing the emergence rate DeGrandi-Hoffman et al. [2013]. Insecticides,

particularly neonicotinoids, pose a significant risk to pollinators. These chemicals

can lead to hyperresponsiveness in honey bees from either acute or chronic exposure.

Acute exposure can cause increased flight time and distance, causing difficulties in

returning to the colony Tosi et al. [2017]; Williamson et al. [2014]. Chronic exposure

can result in neurological damage, manifested as reduced flight speed and duration,

along with impaired navigation abilities Chmiel et al. [2020]; Tosi et al. [2017].

Pesticides affect bees in complex ways. Residues from different pesticides on var-

ious crops can combine, leading to a subtler but significant threat for bee colonies
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Fisher et al. [2023]; Mullin et al. [2010]; Traynor et al. [2021]; Sánchez-Bayo et al.

[2016]. This highlights the importance of comprehending the overall impact of pesti-

cide use on bees. Studies have shown that fungicides are the most commonly found

agrochemicals in honey bee colonies Johnson et al. [2013, 2010]. Fungicides, such

as Pristine ®, have been observed to decrease both the lifespan of worker bees and

the overall population of the colony. Notably, this detrimental effect was observed

at field-relevant concentrations Fisher II et al. [2021]. Immature bees exposed to

pesticides can experience health effects during their adult stage Tome et al. [2020].

The complex effects of pesticides on honey bees, particularly at sublethal exposures,

make it challenging to measure in the field. However, using mathematical models can

provide insights into short and long-term impacts on colony dynamics and survival.

Research on pesticide exposure of honey bees that have incorporated mathemat-

ical models can be divided into two parts: traditional mathematical modeling and

computational modeling Chen et al. [2021]. Magal et al. consecutively published two

papers describing the effects of pesticides on honey bees using traditional mathemat-

ical modeling Magal et al. [2019, 2020b]. Magal et al. (2019) Magal et al. [2019]

developed a discrete-time model to describe the effects of homing failure in foraging

honey bees from pesticide exposure. They found that the fraction of exposed foragers

showing homing failure determined colony survival. Magal et al. (2020) Magal et al.

[2020b] extended their previous model with the spatial distribution of contaminated

and uncontaminated foragers. They found that if foragers were more likely to make

multiple visits to pesticide-contaminated food resources, colony collapse would follow.

In a computational model examining the effects of pesticides on different life stages of
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honey bees, it was shown that adult mortality has a greater impact on colony survival

than egg-laying rates or larval mortality Rumkee et al. (2015) Rumkee et al. [2015].

In this study, we provide a delay differential equations model and fit it with exper-

imental data to investigate the influence of varying pesticide doses on the population

dynamics of honeybee colonies. Our examination approaches this issue from two per-

spectives: 1) the effect of different pesticide levels on the consumption of pollen by

larvae and adult bees, and 2) how various pesticide levels impact the immature and

adult bees and colony survival. The structure of the remaining article is as follows:

Section 2 provides a comprehensive overview of the dynamic model linking honeybee

colonies and pollen consumption established through experimentation. In Section 3,

we conduct a mathematical analysis of the model. In Section 4, we fit our model

using experimental data to delve into the repercussions of pesticide levels on colony

dynamics. Finally, in Section 5, we present the conclusions that can be drawn from

our study.

5.1 Model Derivation

This section focuses on modeling the honey bee colony dynamics and pollen con-

sumption based on the cyclic pattern of a honey bee colony. We separate the brood

level into three age levels (egg, larvae, and pupae). Let p(t) be the gram of the pollen

remaining in the patty, E(t) be the egg population, L(t) be the larvae population,

P (t) be the pupae population, A(t) be the adult population. We have the following

assumptions:

A1: Each colony receives 150g pollen patty every week Fisher II et al. [2021], i.e.
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In(t) = 150/7 g/day. We simplified the relationship between pollen intake and

the honey bee population by type I functional response: α ∗ p ∗ population,

where α is the rate at which honey bees consume pollen patties.

A2: Only larvae and adult bees consume the pollen, the population in the function

response is L(t) and A(t) respectively, and αL and αA respectively indicate the

rate of larva and adult bees consume pollen patties.

A3: The new population term has is r(t)∗ A(t)2

K+A(t)2+βE(t)
because (1) the queen bee lays

egg every day by r(t) rate; (2) the cooperative brood care from adult bees that

perform nursing and collecting food for brood and (3) the queen and workers

that regulate the actual egg laying/survival based on the currently available

egg population Chen et al. [2020a]. Therefore, the parameter
√
K indicates the

colony size at which the brood survival rate is half maximum, and β indicates

the regulation effects of the brood.

A4: The egg laying rate r(t) is time based. The literature work Chen et al. [2021]

suggests that food, temperature, weather, and oviposition place would affect

the queen Bodenheimer [1937]; Khoury et al. [2011]; DeGrandi-Hoffman et al.

[1989]. From experimental data Fisher II et al. [2021] and studies Chen et al.

[2020a]; Messan et al. [2021]; Chen et al. [2023], function good applies to the

egg-laying rate, which is

r(t) = r0(1 + ϵ cos(
2π(t− ψ)

γ
)), ϵ ∈ [0, 1],

where r0 indicates the base line egg-laying rate, ϵ indicates the strength of

environment, γ indicates the duration of environmental effect on egg-laying

rate and ψ indicates the time of the maximum laying rate.
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A5: In the experiment, the r the pollen was replaced immediately after consumption

Fisher II et al. [2021] so the food source is unlimited. Therefore, colony growth

is not affected by food availability.

A6: We assume both brood and adult bees have constant mortality, dE, dL, dP and

dA, respectively. The maturation time from egg E to larvae L is denoted by

τe. Similarly, τl and τp are the maturation time from larvae to pupae and from

pupae to adults, respectively. After that, the survival rate of eggs during time

τe is e−dBτ .

Following our previous work Chen et al. [2020a] and our assumptions, we construct

the model by three compartmental models, which are pollen remaining (p), egg pop-

ulation (E), larvae population (L), pupae population (P ), and adult population (A):

dp

dt︸︷︷︸
Pollen

remaining

= In(t)︸ ︷︷ ︸
Pollen input by day

− αLpL︸ ︷︷ ︸
Larvae pollen consumption

− αApA︸ ︷︷ ︸
Adult pollen consumption

dE

dt︸︷︷︸
Egg

=
r(t)A(t)2

K +A(t)2 + βE(t)︸ ︷︷ ︸
Newborns

− dEE︸ ︷︷ ︸
Egg death

− e−dEτe
r(t− τe)A(t− τe)2

K +A(t− τe)2 + βE(t− τe)︸ ︷︷ ︸
Merge to Larvae

dL

dt︸︷︷︸
Larvae

= e−dEτe
r(t− τe)A(t− τe)2

K +A(t− τe)2 + βE(t− τe)︸ ︷︷ ︸
Merge from Larvae

− dLL︸︷︷︸
Larvae death

−e−dLτle−dEτe r(t−τe−τl)A(t−τe−τl)
2

K+A(t−τe−τl)
2+βE(t−τe−τl)

dP

dt︸︷︷︸
Pupae

= e−dLτle−dEτe r(t−τe−τl)A(t−τe−τl)
2

K+A(t−τe−τl)
2+βE(t−τe−τl)

− dPP︸ ︷︷ ︸
Pupae death

− e−dP τpe−dLτle−dEτe r(t−τe−τl−τp)A(t−τe−τl−τp)
2

K+A(t−τe−τl−τp)2+βE(t−τe−τl−τp)

dA

dt︸︷︷︸
Adult

= e−dP τpe−dLτle−dEτe r(t−τe−τl−τp)A(t−τe−τl−τp)
2

K+A(t−τe−τl−τp)2+βE(t−τe−τl−τp)
− dAA︸ ︷︷ ︸

Adult death

(5.1)

After that, we perform parameter estimations and model validations based on

data. We implement the least-squares statistic parameter sweep method as our fitting
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method to the honeybee population data to attain parameter estimates. Essentially,

we randomly parameters by Latin hypercube sample with appropriate ranges (see

Table 5.1). After that, we performed data fitting on the above model in Tree 5 with

different levels of pesticides. The results show in Figure 5.1 and parameters values

show in Table 5.2.

Our biologically meaningful parameters align with the value ranges established

by previous biologists and mathematicians (refer to Table 5.1)). Our parameters

were fitted under these settings and achieved good outcomes (see Figure 5.1). Hence,

our model enables us to investigate the impact of pesticides on honey bee dynamics.

In the subsequent sections, we will study the colony dynamics through theoretical

analysis and explore the influence of pesticides through the outcomes of data fitting

of all colonies by statistical methods.

5.2 Mathematical Analysis

Now, we focus on the condition of the colony’s survival. Let (p,E,L,P,A) be the

equilibrium of Model 5.1, and simplify egg-laying rate to constant r(t) = r. Then, it

satisfies the following equations:
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(a) Control group, history

population p(θ) = 111.16,

E(θ) = 1186, L(θ) = 1669,

P (θ) = 4801, A(θ) = 7340

, for all θ ∈ [−τ, 0].

LSE=0.1973

(b) 0.23ppm group, history

population p(θ) = 139.53,

E(θ) = 219, L(θ) = 1462,

P (θ) = 4018, A(θ) = 5970

, for all θ ∈ [−τ, 0].

LSE=0.2276
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(c) 2.3 ppm group, history

population p(θ) = 114.75,

E(θ) = 737, L(θ) = 956,

P (θ) = 4651, A(θ) = 6460

, for all θ ∈ [−τ, 0].

LSE=0.2935

(d) 23 ppm group, history

population p(θ) = 145.03,

E(θ) = 311, L(θ) = 956,

P (θ) = 956, A(θ) = 6530

, for all θ ∈ [−τ, 0].

LSE=0.2181

(e) 230 ppm group, history

population p(θ) = 134.93,

E(θ) = 887, L(θ) = 990,

P (θ) = 4663, A(θ) = 7555

, for all θ ∈ [−τ, 0].

LSE=0.3577

Figure 5.1: The fitting results of 5 single colonies with different concentrations
of pesticides around Tree 5. LSE indicates the least square error. Black dots are
experimental data, and blue curves are our model fitting.
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0 = In(t)− αLpL− αApA (5.2)

0 =
rA2

K + A2 + βE
− dEE − e−dEτe

rA2

K + A2 + βE
(5.3)

0 = e−dEτe
rA2

K + A2 + βE
− dLL− e−dEτee−dLτl

rA2

K + A2 + βE
(5.4)

0 = e−dEτee−dLτl
rA2

K + A2 + βE
− dPP − e−dEτee−dLτle−dP τp

rA2

K + A2 + βE
(5.5)

0 = e−dEτee−dLτle−dP τp
rA2

K + A2 + βE
− dAA (5.6)

Eqt.(5.4) and Eqt.(5.6) give

dEE = (1− e−dEτe) ∗ rA2

K + A2 + βE

and

dA = e−dEτee−dLτle−dP τp
rA

K + A2 + βE

with
rA2

K + A2 + βE
=

dAA

e−dEτe−dLτl−dP τp
,

then solve Eqt.(5.4) to get

E = e1 ∗
dA
dE

∗ A (5.7)

and solve Eqt.(5.6) by

dA =
e2rdE

dE(K + A2) + βe1dAA
∗ A

to get

Ai =
e2rdE−e1d2Aβ±

√
−4d2Ad

2
EK+(e2rdE−e1d2Aβ)2

2dEdA

= e2r
2dA

− e1dAβ
2dE

±
√
−K +

e22r
2

4d2A
+

e22d
2
Aβ

2

4d2E
− e1e2rβ

2dE
, i = 1, 2

(5.8)
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where e1 = edLτl+dP τp(edEτe − 1) and e2 = e−dEτe−dLτl−dP τp , and A1 ≤ A2. Use E

and Ai to solve Eqts.(5.5) and (5.6):

Li =
A2
i dEe

−dEτe−dLτl(−1 + edLτl)r

dL(A2
i dE + dEK + Aie1dAβ)

, i = 1, 2 (5.9)

and

Pi =
A2
i dEe2(−1 + edP τp)r

dP (A2
i dE + dEK + Aie1dAβ)

, i = 1, 2. (5.10)

After that, solve Eqt.(5.3):

pi = In ∗ 1

αAAi + αLLi
, i = 1, 2.

Now we have the following proposition:

Proposition 5.2.1. [Existence of Interior Equilibria] If r >
2dAdE

√
K+e1d2Aβ

e2dE
, then

Model (5.1) has two interior equilibria E∗
i , i = 1, 2:

E∗
i = (pi, Ei, Li, Pi, Ai)

= (
In

αAAi + αLLi
,
e1dAAi
dE

,
A2
i dEe3(−1 + edLτl)r

dLΩ
,
A2
i dEe2(−1 + edP τp)r

dPΩ
, Ai)

where e1 = (edEτe − 1)edLτl+dP τp, e2 = e−dEτe−dLτl−dP τp, e3 = e−dEτe−dLτl and Ω =

A2
i dE + dEK + Aie1dAβ. If r =

2dAdE
√
K+e1d2Aβ

e2dE
, then Model (5.1) has an unique

interior equilibrium E∗ with Ai =
e2rdE−e1d2Aβ

2dEdA
.

Note: Proposition 5.2.1 implies the necessary conditions for the honeybee colony

survival is r > 2dAdE
√
K+e1d2Aβ

e2dE
which requires the value of the queen egg laying rate

r be large, the egg regulation effect β be small, and the death rate of adult dA be

small. In addition, the ratio of egg E to adult population A is determined by their

mortality and maturation time through the equation e1dA
dE

.
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Figure 5.2: Bifurcation diagrams of Model (5.1) with constant egg-laying rate. Fig-
ure 5.2a-5.2e are for the interior equilibrium A∗

i , i = 1, 2 (see Eqt.(5.8)). Figure 5.2f-
5.2h are for the interior equilibrium E∗

i , i = 1, 2 (see Eqt.(5.7)). Blue curves indicate
stable equilibrium, and black curves indicate unstable equilibrium. The fixed param-
eters’ value are r = 1499, K = 69, 545, 190, dE = 0.027, dL = 0.001, dP = 0.021,
dA = 0.053, β = 15, τe = 3, τe = 6 and τe = 12.
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Figure 5.2 shows bifurcation diagrams of Model (5.1) with constant egg-laying rate

regarding: a) Equilibrium (E1, L1, P1, A1) is an increasing function of K, dA and dE,

and decreasing function of r. b) Equilibrium (E2, L2, P2, A2) is decreasing function

of K, dA and dE, and increasing function of r. Those bifurcation diagrams indicate

that: 1) The survival of the colony hinges on a large queen egg-laying rate (r), re-

sulting in a population of eggs and adult individuals with its increase. 2) Changes

in the half-saturation coefficient (K) or any mortality rate (dE or dA) can potentially

trigger colony collapse, resulting in a decline in the adult population relative to these

parameter increases.

Our model is based on experimental data. Honey bees can harvest all the pollen

and nectar they need, so we assume food resources do not affect colony growth. If we

consider bee-only dynamics in our Model (5.1), we will have:

Theorem 5.2.1. [Stability of Extinction Equilibrium] The extinction equilibrium E∗
0

of Model 5.1 without pollen (bee-only model) is always locally asymptotically stable.

Note: Figure 5.3 emphasizes the significance of the initial conditions, which can

determine whether the colony thrives or collapses. Comparing Figure 5.3a and 5.3b,

at the beginning of nesting, the number of adult bees is more important than the

number of pupae.

The following section will provide our detailed study on how pesticide impacts

honey bee population dynamics combined with experimental data.
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Figure 5.3: Time series of the population of egg (red), larvae (green), pupae (black),
and adult (blue) bee for Model (5.1) with constant egg-laying rate r = 1510, and other
parameters used by K = 69, 545, 190, β = 15, dE = 0.027, dL = 0.001, dP = 0.021,
dA = 0.053, αL = 6.48 ∗ 10−8, and αA = 9.77 ∗ 10−7. Figure 5.3a shows the colony
collapses and Figure 5.3b shows the colony survives with the same parameters’ value
and different initial population.

5.3 Impacts of Pesticide

In the experiment, the maximum pollen consumed by the colony is 150 grams per

week. Then we assume to give 150 grams of pollen to one colony every week and

weigh the remaining patties to estimate the daily amount of pollen consumed 150 g
7 days

.

We fit 40 colonies, the range of least square error is [0.1820, 0.6928], and the average

of 40 fitting results is 0.2934. Among them, for single colony fitting, 230ppm of tree

2 is the poorest fit, and 2.3 ppm of tree 3 is the best fit; for different concentrations,

the control group shows the best fit (average is 0.2479), and the 230 ppm group is

worst (average is 0.3785). All fittings are set by constant history functions. In this

section, we will categorize our parameters into different groups to demonstrate how

we employ mathematical models to examine the impacts of pesticides.
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Figure 5.4: Effects of pesticides on environment factors of egg-laying rate. Black
dots are the parameter values for 40 colonies. The red diamond lines present the
average value of parameters in the egg-laying rate time base function in different
pesticide concentrations (8 colonies per group). There are no significant differences
between groups. Only Figure5.4b without outliers is a significant difference between
the control and treatment groups, but no significant effect by the level of pesticides.

First, we analyze the value of parameters in the egg-laying rate time-based func-

tion (see A4 and Figure 5.4). We used ANOVA to test the five groups by three

parameters (ϵ, ψ, and γ). There was no significant dose-dependent effect for the

three values (P-value > 0.05). The average of the magnitude of the environmental

effect (ϵ) is 0.48, the average of the time of the maximum laying rate (ψ) is 38 days,

and the average of the duration of environmental effect on egg-laying rate (γ) is 106

days. However, the three parameters’ values have outliers. We also did statistical

analyses for the data by removing the outliers. The magnitude of the environmen-

tal effect (ϵ) and the duration of the environmental effect (γ) were not significantly

affected by pesticides. By ANOVA test, the time of the maximum laying rate (ψ),

the mean of groups is unequal, but there is no significant concentration depending.

Therefore, the pesticides can affect the time of the maximum laying rate between the
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Figure 5.5: Effects of pesticides on the baseline egg-laying rate (r0) and the colony
size at which egg survival rate is half maximum (

√
K) in different level pesticide

concentrations (8 colonies per group). Black dots are the parameter values for 40
colonies. The red diamond lines present the average value of parameters. There are
no significant differences between groups.

Then, we determined whether the baseline egg-laying rate is pesticide-related (see

Figure 5.5a). The statistical test shows there is no significant difference between the

mean values. In addition, we can observe from Figure 5.5b that the
√
K of the control

group is larger than other pesticide groups, but there is no significant dose-dependent

effect on the colony size at which egg survival rate is half maximum in the statistical

test. When there is no significant difference in egg-laying rate, the reason for the

larger control population may be affected by mortality or survival rate.

Our data also suggest a possible mechanism by which fungicides may cause these

negative effects on colony demography. Brood mortality fluctuates under different

concentrations of pesticides (see Figure 5.6a - 5.6c). Observing the data, the per-
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Figure 5.6: Effects of pesticides on different death rates. Black dots are the pa-
rameter values for 40 colonies. The red diamond lines present the average value
of parameters. There are no significant differences between groups in Figure 5.6a -
Figure 5.6c. The death rate of adults has significant differences between means of
different levels of pesticides.

formance of larvae death in each group is almost the same, and the change range of

pupae death is the largest. However, statistical tests show no significant difference

among the means (P-value > 0.05). Through the test, there is a significant difference

among the means of adult mortality (dA) (P-value < 0.01). From Figure 5.6d, it can

be observed that as the concentration increases, the death rate of adults increases,

and the test of linear regression between levels and adult death rate is significant.
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Figure 5.7: Data visualized for pollen consumption. Fig.5.7a and Fig.5.7b use the
values from αA/αL to plot boxplot and Q-Qplot. The boxplot shows four outliers,
the Q-Qplot shows that data do not come from a normal distribution, and the blue
shadow is a confidence band. Fig.5.7c - 5.7e show the result of each colony by dots,
and the red diamonds are the mean of each group.

In Model (5.1), the effect on adults feeding on pollen patties with pesticides is

greater than larvae Fisher II et al. [2021]. The effect of the presence of larvae on

pollen patties (αl) is lower as the pesticide level increases, until 230 ppm, the effect

rate grows up (see Figure 5.7c). However, the ANOVA test shows there are no signifi-
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cant differences among groups (P-value=0.29), and there are no significant differences

(P-value=0.18) in mean between groups of the effect of the presence of adult on pollen

patties (αa). In addition, we also consider the relationship between the ratio of these

two variables (αA/αL). In Figure 5.7a, treatment groups (2.3 ppm to 230 ppm) have

higher ratios than the control group. Removing the outliers (see Figure 5.7e) causes

the ratio to increase as the pesticide level increases (from 0.23 ppm to 23 ppm). We

test the data as non-normality (P-value < 0.01 in the Shapiro-Wilk test), and apply

Kruskal-Wallis tests. The results show that all groups may originate from the same

distribution (P-value = 0.27).

Model (5.1) and table 5.1 show effect rates (αL & αA, per bee per day). If we

remodel pollen remaining equation to dp
dt

= In(t) − α̂L ∗ L(t) − α̂A ∗ A(t), where α̂L

indicates pollen consumption per larvae per day and α̂A indicates pollen consumption

per adult bee per day. We estimate α̂L by range [1∗10−6, 2∗10−2] (unit: g/(bee∗day)),

and α̂A by range [1 ∗ 10−5, 2 ∗ 10−1] (unit: g/(bee ∗ day)). Then, the data fitting gives

these values in Table 5.3.

The pollen consumption of larvae is [0.002, 1.39] mg/bee, and the pollen consump-

tion of adults is [0.46, 1.84] mg/bee (see Figure 5.8. Figure 5.8a shows the control

group and 230 ppm have larger variances of fitting values and significant differences

between groups. Figure 5.8b shows the 230 ppm group has larger variances. The

pollen patties consumption rates of larvae and adults are not significantly different

among groups. The ratio between these two consumption rates has no significant

relationship with the level of pesticides. The average ratio of the treatment groups

(2.53) is higher than the control groups (see Table 5.3).
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Figure 5.8: Effects of pesticides on the pollen patties consumption of larvae and
adult. The red dots present the average value of parameters (8 colonies per group).
There are no significant differences between groups.

We used fitting results from 40 colonies to calculate average parameter values for

each group. These averages guided our simulations, helping us observe future trends.

Our simulations highlight the significant impact of pesticides on colony dynamics.

Different initial populations lead to varying outcomes, determining colony survival or

collapse. Notably, the 0.23 ppm concentration performed poorly in both simulations,

likely due to its lower egg-laying rate (see Figure 5.5a). Additionally, we observed

that 230 ppm, under high initial adult population conditions, performed similarly to

23 ppm (see red and green curves in Figure 5.9c & 5.9d). However, as the initial

adult population decreased (from 6975 to 4800 in our simulation), 23 ppm colonies

still survived, while those exposed to 230 ppm collapsed (see Figure 5.9a & 5.9b).

This emphasizes that high pesticide concentrations can lead to colony collapse. When

examining the brood population, we found the effect of pesticides was less pronounced,
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Figure 5.9: Figure 5.9a & 5.9b is a simulation by the average number of parameters
in each group. Pesticides can influence colony dynamics, and a high concentration
(green curves, 230 ppm) can lead to colony collapse. Figure 5.9a & 5.9b use initial
population are: E0 = 733, L0 = 1035, P0 = 4798, A0 = 4800 and p0 = 125. Figure
5.9c & 5.9d use initial population are: A0 = 6975, other initial population is the same
with Figure 5.9a & 5.9b.

except in the case of the 0.23 ppm group, where the number of eggs was notably lower,

likely due to a lower egg-laying rate. Across other groups, the disparity in adult bee

numbers is evident, reinforcing the apparent influence of adult bee mortality on the

colony. This Simulation is consistent with our earlier statistical findings.
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5.4 Conclusion

We propose a model to analyze and aims to address how pesticides impact honey

bee dynamics. We integrate model analysis, data fitting, and simulation to discuss

the influence of death rates, egg-laying rates, the half-saturation coefficient, pollen

consumption effects, and population from pesticides.

We introduce a model incorporating age structures to characterize the experiment.

By integrating theoretical concepts with experimental data, we aim to elucidate the

effects of pesticides on honey bee populations. Our theoretical analysis under the

constant egg-laying rate suggests that egg-laying rate, adult and egg death rates, the

half-saturation coefficient, and the egg regulation effect influence colony survival (see

Proposition 5.2.1). Furthermore, our bifurcation diagrams (refer to Figure 5.2 & B.2)

confirm diverse dynamic outcomes. Notably, the impact of the egg-laying rate on the

population differs from that of the other influencing factors. As the egg-laying rate

increases, the population at the equilibrium point also rises, while others are the op-

posite. Both theoretical and bifurcation results underscore the substantial influence

of these factors on bee dynamics.

Given the influence of environmental factors on queen reproduction Bodenheimer

[1937]; Khoury et al. [2011]; DeGrandi-Hoffman et al. [1989] and the resemblance

of observed data trends to a cosine function, we incorporated environmental consid-

erations into our bee pesticide model (Model (5.1)) when fitting the data. Using

parameter values derived from 40 colonies, we identified a significant correlation be-

tween adult mortality and pesticide concentration. We demonstrated an increase
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with higher concentrations through linear regression (see Figure 5.6). However, no

substantial difference was observed in brood-level mortality. This conclusion aligns

with the findings of Fisher et al. (2021) Fisher II et al. [2021]. Furthermore, our

model introduces a novel focal point. The timing of the maximum laying rate is influ-

enced by pesticides (confirmed through the ANOVA test & Welch’s t-test), although

it is not dependent on concentration. This timing exerts a crucial and intricate im-

pact on the colony’s fate. It intertwines with environmental strength and the duration

of environmental effects to shape the dynamic system of the colony Chen et al. [2023].

In addition to the findings above, it’s worth noting that the average egg-laying

rate at 0.23 ppm is lower compared to the other groups (refer to Figure 5.5a). This

discrepancy may contribute to nest collapsing or lower population levels (see Figure

5.9). Upon conducting simulations with parameter averages derived from the data,

we observed that pesticides reduce the number of workers in the colony Fisher II

et al. [2021]. However, this effect does not correlate with concentration levels (see

Figure 5.9). Our model indicates that the ratio of pollen consumption by adults and

larvae in the control group is generally lower compared to the treatment groups, with

the exception of the low-concentration group at 0.23 ppm. While this difference may

not be statistically significant, it offers valuable insights for consideration. Regarding

consumption rate (measured in grams per bee per day), the total consumption by

bees falls within the range of 0.003 grams per bee per day Fisher II et al. [2021].

The alignment between our model-derived conclusions, simulation and fitting, and

actual biological dynamics highlights the significant value of employing models in bio-
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logical systems. This not only provides valuable insights for comprehending complex

ecological interactions but also uncovers new avenues for exploration. However, it’s

important to acknowledge the current simplification in our model regarding pollen

consumption. Presently, we assume constant consumption rates for all larvae and

adults, whereas, in reality, adults consume pollen for a maximum of 8 days Haydak

[1970], while larvae engage in this behavior for only half of their development pe-

riod Owens and Farrar [1967]. Addressing this discrepancy in future iterations of

the model will lead to a more accurate representation of bee behavior and dynamics.

Moreover, our model holds the potential for extension to incorporate food sources

and consider the impact of food reserves on immaturity.
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Parameter Definition Range Reference

αl

the effect of the presence of lar-

vae on pollen patties (per day

per bee)

[3 ∗ 10−9, 2 ∗ 10−5]

bee−1day−1
Estimated by data

αa

the effect of the presence of adult

on pollen patties (per day per

bee)

[3 ∗ 10−8, 2 ∗ 10−5]

bee−1day−1
Estimated by data

β the regulation effects of egg [0, 20]
Chen et al. (2020) Chen

et al. [2020a]

√
(K)

the colony size at which egg sur-

vival rate is half maximum

K ∈ [1 ∗ 107, 7 ∗ 108]

bees

Chen et al. (2020)

Chen et al. [2020a], Ratti

et al.(2012) Ratti et al.

[2017]

r(t) the egg laying rate based on time
r0 ∈ [500, 3500]

bees/day

Chen et al. (2020) Chen

et al. [2020a], Eberl et

al. (2010)Eberl et al.

[2010], Sumpter and Mar-

tin (2004) Sumpter and

Martin [2004]

dE ,dL,dP ,dA
the death rate of egg, larvae,

pupa and adult bees
[0, 0.07] day−1

Chen et al. (2020) Chen

et al. [2020a], Rueppell et

al.(2007) Rueppell et al.

[2007]

τe time spent in egg 3 days
Winston (1987) Winston

[1987]

τl time spent in larvae 6 days
Winston (1987) Winston

[1987]

τp time spent in pupae 12 days
Winston (1987) Winston

[1987]

Table 5.1: Biological meanings and references of parameters of Model 5.1.
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Value Value Value Value

Control

r0 2292 ϵ 0.7

0.23 ppm

r0 2318 ϵ 0.6

K 306,884,200 ψ 103 K 481,040,200 ψ 96

dE 0.0211 γ 25 dE 0.0132 γ 29

dL 0.0176 β 12.71 dL 0.0157 β 15.9253

dP 0.0188 αl 1.68 ∗ 10−8 dP 0.0009 αl 4.64 ∗ 10−7

dA 0.0295 αa 1.7 ∗ 10−6 dA 0.0193 αa 5.15 ∗ 10−7

2.3 ppm

r0 3404 ϵ 0.5

23 ppm

r0 2191 ϵ 0.5

K 281,464,100 ψ 99 K 118,177,500 ψ 101

dE 0.0438 γ 21 dE 0.0377 γ 29

dL 0.0079 β 7.6040 dL 4 ∗ 10−5 β 19.3160

dP 0.0212 αl 7.08 ∗ 10−8 dP 0.0430 αl 4.88 ∗ 10−7

dA 0.0444 αa 1.27 ∗ 10−6 dA 0.0447 αa 7.93 ∗ 10−7

230 ppm

r0 2191 ϵ 0.4

K 118,177,500 ψ 107

dE 0.0456 γ 33

dL 0.0034 β 19.3160

dP 0.0095 αl 5.84 ∗ 10−9

dA 0.0563 αa 1.85 ∗ 10−6

Table 5.2: Parameters values for Figure 5.1.
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Parameter Control 0.23 ppm 2.3 ppm 23 ppm 230 ppm

α̂L (mg/[day*bee]) 0.60 0.69 0.30 0.50 0.55

α̂A (mg/[day*bee]) 1.28 0.95 1.34 1.06 1.20

Ratio (α̂A/α̂L) 2.15 1.39 4.40 2.13 2.20

Table 5.3: The average of pollen potties consumption rate in larvae and adult stage.
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Chapter 6

FINAL REMARKS AND FUTURE WORK

6.1 Final Remarks

Social insects, such as ants, bees, and termites, form highly organized colonies

with specialized roles and cooperative behaviors. The spatial heterogeneity degree

demonstrates a linear relationship with contact dynamics, showing no sensitivity to

the initial value. The dynamic spatial fidelity mechanism ensures that spatial fi-

delity and spatial heterogeneity degrees converge to a similar equilibrium regardless

of the initial spatial fidelity value. The diverse geometric distributions of task loca-

tions significantly influence information transmission. It is evident that mathematical

computer simulations offer effective control over variables, allowing for a more pre-

cise analysis of internal mechanisms. This method is also extensively utilized in bee

research. The model can describe fundamental factors for colony growth [DeGrandi-

Hoffman et al., 1989] to study population challenges and expand the model to consider

the growth of the varroa population in a colony and its impact on colony dynamics

due to reduction in worker longevity [DeGrandi-Hoffman and Curry, 2004]. Models

can also be used to simulate the impact of external environmental factors such as

pesticides [Becher et al., 2014; Abi-Akar et al., 2020; Thorbek et al., 2017].

Addressing the global crisis of honeybee losses will require an integrated approach

to evaluate the combination of factors that culminate in the collapse of a colony popu-

lation. Mathematical models serve as potent instruments in offering insights into the
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contributions of different stressors to colony losses. These theoretical tools are needed

to identify mechanisms that can be difficult or costly to quantify in the field and will

be an essential component in developing strategies to improve colony health. My

models exhibit strong Allee effects generated from the collaborative effects of colony

members and colony survival when the egg-laying rate is above a certain threshold.

It seems that the model with or without age structure has equilibrium dynamics, and

additional age structure components in models may not contribute much to popula-

tion dynamics. However, age structure may play an important role when additional

mortality factors such as parasitism are included in the model.

The period of mite population increase continues through the spring and sum-

mer and peaks in the fall when brood rearing is nearly done. This makes the mites

very difficult to control, especially in warmer climates where colonies maintain brood

year-round DeGrandi-Hoffman and Curry [2004]. Therefore, studying the influence

of seasonality and parasitism on honey bees is important. Theoretical and simulation

analyses of the model reveal that seasonality exerts intricate effects on mite-infested

hives and that seasonal cycles are too large to survive. This underscores the profound

influence of climate change and parasites on bee populations.

Pesticides are another environmental stressor causing population reduction. The

effects of pesticide exposure include a significant decrease in survival of foragers, re-

duced flight performance, compromised immunity, difficulty in protein digestion, and

bee feeding [Fisher II et al., 2020]. The mathematical modeling with experimental

data reaches similar conclusions. The death rate of broods is not affected by pesti-
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cides, but the death rate of adults is increasing in a linear relationship with levels of

pesticides, and the control group has a higher adult population [Fisher II et al., 2021].

Furthermore, the mathematical model offers novel avenues of exploration, revealing

that the timing of the maximum egg-laying rate is influenced by pesticides. This

finding is also reflected in chapter4. This calls for further experiments to enhance

the depth of analysis. This underscores the valuable role played by mathematical

models in scrutinizing experimental data and unraveling the underlying mechanisms

of biological dynamic systems.

6.2 Future Work

The behavior of social insects is of great significance to research. The network

approach equips us with powerful tools for investigating social insect colonies, such as

honeybees, wasps, and ants. The complexity of these colonies primarily arises from lo-

cal individual interactions influenced by diverse social contexts, inherent preferences,

age distribution, and task allocation [Naug, 2008; Richardson and Gorochowski, 2015;

Mersch et al., 2013]. Chapter2 can explain a lot of problems, but the model would

benefit from additional experimental data to enhance its accuracy. In the future,

supplementing the model with more data will lead to more precise results and com-

prehensive conclusions

The decline of honey bee populations worldwide has gained substantial attention

in recent years. My research has confirmed the impact of pesticides on honey bees.

However, there are certain influencing relationships are not yet obvious, such as the

timing of the peak egg-laying rate and environmental variables. An experimental
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study on queen bees laying eggs under varying pesticide levels could shed light on the

insights derived from our model. Mathematical modeling proves to be a potent and

indispensable tool for elucidating the significance behind the data.

Climate change is an important factor contributing to the ongoing decline of pol-

linators [Halsch et al., 2021]. Hence, environmental factors hold immense significance

and likely serve as the linchpin influencing colony dynamics. Among these factors,

temperature emerges as a potential keystone. In the simulation detailed in Chapter

5, it is conceivable that the observed outcomes may be attributed, at least in part,

to temperature variations. However, it’s important to note that the available data

only spans from summer to fall, while the simulation extends over a two-year period,

introducing a degree of inaccuracy. Therefore, a more extensive data fitting process is

warranted to procure precise parameter values. This could potentially unveil the nu-

anced impact of temperature on bee dynamics. Furthermore, in the model delineated

in Chapter 5, bee population size is unaffected by food availability. Recommenda-

tions for rescuing colonies exposed to pesticides by improving nutrition [Crone and

Grozinger, 2021] or controlling pests such as varroa might also be generated within

the framework of colony dynamics. Therefore, expanding this model to limit food

sources to understand how global warming and pesticide exposure affect the intricate

bee ecosystem.

In research, determining the population within each hive is crucial for investigat-

ing the specific impact of variables on bee populations. Consequently, counting the

bees in each hive becomes an indispensable step in the experimental process [Fisher II
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et al., 2021; Chen et al., 2020a]. Fisher II et al. [2021] used a camera to take photos

for each bee frame and estimated the number of individual adult worker bees on the

frame using ImageJ (National Institutes of Health, Bethesda, MD). Among these, a

colony typically consists of 7-10 frames, each with 2 sides, and harbors approximately

10-1000 bees on each side. With a total of 40 colonies involved in the experiment,

the manpower required for counting is substantial. In my dissertation, chapter 3 to

chapter 5 also presents the population as important to the dynamics of the colony.

But quantifying the number of bee colonies is an estimative process that can poten-

tially influence experimental outcomes [Maucourt et al., 2018], with certain methods

demanding a significant investment of time and manpower to execute. Therefore, I

hope to study a more accurate and efficient approach to count the population based

on the method of Fisher II et al. [2021]. Presently, there is a machine learning-based

method available for counting objects [Chattopadhyay et al., 2017]. In future work, I

can use this method in the experiment to help me obtain better data to improve my

model and results.

Furthermore, bees regulate colony temperature through wing flapping and water

usage. The model presented in Chapter 3 can be expanded to include a foragers

model. This extension allows for a deeper exploration of the influence of temperature

on bee behavior and provides insights into how climate change affects bee populations

by integrating both pollen foragers and water foragers.
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Proofs for Chapter. 3

Proof of Theorem 3.3.1

Proof. First, I look at the following equation that describes the population of adult
bees:

dH
dt

= e−dbτ rH(t−τ)2
K+H(t−τ)2+αB(t−τ) − dhH (A.1)

Since H(t) is a nonnegative continuous function during the time t ∈ [−τ, 0], the
equation (A.1) implies that

dH

dt
≥ −dhH for time t ∈ [0, τ ] ⇒ H(t) ≥ H(0)e−dht ≥ 0 for time t ∈ [0, τ ].

By deduction on intervals [(n− 1)τ, nτ ], n ≥ 1], I could show that H(t) ≥ 0.

By integration, I could set

B(t) =
∫ t
t−τ

[
rH(s)2

K+H(s)2+αB(s)
e−db(t−s)

]
ds−B(0)e−dbt (A.2)

which gives dB
dt

= rH(t)2

K+H(t)2+αB(t)
− dbB − e−dbτ rH(t−τ)2

K+H(t−τ)2+αB(t−τ) ,

and B(0) =
∫ 0

−τ
rH2(s)edbs

K+H2(s)+αB(s)
ds. Thus, the equation (A.2) provides an explicit math-

ematical expression of B(t) which is nonnegative for all time t ≥ 0. Thus, the state
space X of the proposed model (3.1) is positive invariant.

To show the boundedness of the model, define V = B +H, then I have
dV
dt

= dB
dt

+ dH
dt

= rH2

K+H2+αB
− dbB − dhH

≤ r −min{db, dh}(B +H) = r − dminV

with dmin = min{db, dh}. Consequently, I have

lim sup
t→∞

V (t) = lim sup
t→∞

(B(t) +H(t)) ≤ r

dmin
which implies that Model (3.1) is bounded in X.

Proof of Theorem 3.3.2

Proof. I linearize the Model 3.1:

D

([
Ḃ(t)

Ḣ(t)

]) ∣∣∣∣∣
(B∗,H∗)

=

 − αH2r
(αB+H2+K)2

− db
2Hr(αB+K)

(αB+H2+K)2

0 −dh

[ B(t)

H(t)

]

+

 αH2re−dbτ

(αB+H2+K)2
− 2Hre−dbτ (αB+K)

(αB+H2+K)2

− αH2re−dbτ

(αB+H2+K)2
2Hre−dbτ (αB+K)

(αB+H2+K)2

[ B(t− τ)

H(t− τ)

]
.

(A.3)
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For extinction equilibrium, the matrix (A.3) gives:

D

([
Ḃ(t)

Ḣ(t)

]) ∣∣∣∣∣
(0,0)

=

[
−db 0

0 −dh

][
B(t)

H(t)

]
+

[
0 0

0 0

][
B(t− τ)

H(t− τ)

]

and from this I obtain the following eigenvalues:

λ1 = −db < 0, λ2 = −dh < 0.

Thus, I can conclude that Ee is always locally asymptotically stable.

Now I show its global stability as follows. Let (B(t), H(t)) be a solution of Model
(3.1), then (B(t), H(t)) is bounded and positive for all t > 0 by Theorem 3.3.1. Define
lim supt→∞H(t) = H∞. By Lemma B in A, there exists sequence {tn} ↑ ∞ such that
limn→∞H(tn) = H∞, and limn→∞H ′(tn) = 0, and same for B(t). For any ϵ > 0,
there exists N such that for n > N , H(tn − τ) ≤ H∞ + ϵ holds. Thus, according to
Model (3.1), for n > N I have

H ′(tn) = e−dbτ rH(tn−τ)2
K+H(tn−τ)2+αB(tn−τ) − dhH(tn)

≤ e−dbτ rH(tn−τ)2
K+H(tn−τ)2 − dhH(tn)

≤ e−dbτ r(H∞+ϵ)2

K+(H∞+ϵ)2
− dhH(tn).

Let n→ ∞, I get

0 ≤ e−dbτ
r(H∞ + ϵ)2

K + (H∞ + ϵ)2
− dhH

∞.

It follows by the arbitrariness of ϵ that

H∞ (−dh(H∞)2 + e−dbτrH∞ − dhK
)
≥ 0.

Then dh >
re−dbτ

2
√
K

, I know that for all x, y ∈ R, −dhx2 + e−dbτrx − dhK < 0. There-
fore, H∞ = 0, and hence from the positivity of solution I have limt→∞H(t) = 0.
Furthermore, I obtain the following limiting equation

dB

dt
= −dbB(t),

which implies that limt→∞B(t) = 0. Therefore, Ee = (0, 0) is globally asymptotically
stable.
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Proof of Theorem 3.3.3

Proof. Let (B∗, H∗) be an equilibrium of Model (3.1). Then the linearization of the
proposed model (3.1) at the equilibrium (B∗, H∗) is shown as follows:

In the case of the interior equilibrium (B∗, H∗) = Ei, from Equation (3.5), I have

2rKH∗

(K + (H∗)2)2
=

rH∗

(K + (H∗)2)

2K

(K + (H∗)2)
=

2Kdhe
dbτ

(K + (H∗)2)
.

The characteristic equation (3.8) evaluated at the positive interior equilibrium
(B∗, H∗) when α = 0 gives the following expression:

C(λ) = det

([
−db 2rKH∗

(K+(H∗)2)2

0 −dh

]
+

[
0 − 2rKH∗

(K+(H∗)2)2
e−dbτ

0 2rKH∗

(K+(H∗)2)2
e−dbτ

]
∗ e−λτ − λI

)

= det

([
−db − λ 2rKH∗

(K+(H∗)2)2
(1− e−(λ+db)τ )

0 −dh + 2rKH∗

(K+(H∗)2)2
e−(λ+db)τ − λ

]

= (−db − λ)

(
−dh +

2rKH∗

(K + (H∗)2)2
e−(λ+db)τ − λ

)
= (−db − λ)

(
−dh +

2Kdhe
dbτ

K + (H∗)2
e−(λ+db)τ − λ

)

where H∗ =

re−dbτ

1±

√
1−
(

2dhedbτ

r

)2

K


2dh

. This implies that the stability of the inte-
rior equilibrium (B∗, H∗) is determined by the eigenvalues of the following equation
evaluated at H∗ since λ = −db < 0

−dh +
2Kdh

K + (H∗)2
e−λτ − λ = 0 ⇔ λ = −dh +

2Kdh
K + (H∗)2

e−λτ .

Let A = −dh and B(H) = 2dhK
K+H2 , then I have B(H) > 0 > A. At the mean time,

I have

0 < H∗
1 < H∗

2 and H∗
1H

∗
2 = K ⇒ (H∗

1 )
2 < K and (H∗

2 )
2 > K.

Therefore, I can obtain the following inequalities

A+B(H∗
1 ) = −dh +

2Kdh
K + (H∗

1 )
2
> 0 and A+B(H∗

2 ) = −dh +
2Kdh

K + (H∗
2 )

2
< 0.

By applying Theorem 4.7 from Hal Smith Smith [2010], I can conclude that the
interior equilibrium E1 is always unstable and E2 is always locally asymptotically
stable for any delay τ > 0.
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Proof of Theorem 3.3.4

Proof. According to Proposition 3.3.1, I know that Model (3.1) has a unique interior

E = (B∗, H∗) =

(
r(1−e−dbτ)

2db
,
√
K

)
when dh = re−dbτ

2
√
K

. In order to study its stability,

I define the following matrices:

U =

[
−db r

2
√
K

0 −dh

]
and V =

[
0 −dh
0 dh

]
. (A.4)

Let L(λ) to be represented as follows

L(λ) = λ+ dh − dhe
−λτ (A.5)

which has λ = 0 as one of its eigenvalues. By applying Lemma A in A to (A.5),
except for the root λ = 0, all roots of (A.5) has negative real parts for all 0 ≤ τ <∞.
Since (A.5) has a simple zero eigenvalue, I need to use the center manifold and
normal form theory in Faria and Magalhaes [1995] to obtain the local stability of

E =

(
r(1−e−dbτ)

2db
,
√
K

)
.

Let B̃ = B − r(1−e−dbτ)
2db

, H̃ = H −
√
K, and still denote B̃ = B, H̃ = H, then the

system (3.1) becomes{
dB
dt

= −dbB(t) + r
2
√
K
H(t)− dhH(t− τ)− r

2K
H2(t) + dh

√
KH2(t− τ) +O(3),

dH
dt

= −dhH(t) + dhH(t− τ)− dh
√
KH2(t− τ) +O(3).

(A.6)

Let Λ = {0}. From normal form theory in Faria and Magalhaes [1995], there
exists a one-dimension ordinary differential equation which has the same dynamical
property as (A.6) near 0. Rewriting (A.6) as

ż(t) = l(zt) + F (zt) (A.7)

where
zt(θ) = z(t+ θ) ∈ C := ([−τ, 0],R2

+),

C is the phase space with the norm |ϕ| = max−τ≤θ≤0 |ϕ(θ)|, and

l(ϕ) = Uϕ(0) + V ϕ(−τ),

where U and V are given in (A.4), and

F (ϕ) =

[
− r

2K
ϕ2
2(0) + dh

√
Kϕ2

2(−τ) +O(3)

−dh
√
Kϕ2

2(−τ) +O(3)

]
.
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Take µ(θ) = Uδ(θ)− V δ(θ + τ), where

δ(θ) =

{
1, θ = 0,

0, θ ̸= 0.

Then I have follows

l(ϕ) =

∫ 0

−τ
dµ(θ)ϕ(θ).

By the adjoint theory of FDE, the phase space C can be decomposed as C = P ⊕Q,
where P = span{Φ(θ)},Φ(θ) = (1, β)T , β = db

r

2
√
K
−dh

. Taking the base Ψ of adjoint

space P ∗ of P satisfies ⟨Ψ,Φ⟩ = 1, where ⟨·, ·⟩ is a bilinear function defined in C∗ ×C
by

⟨ψ, ϕ⟩ = ψ(0)ϕ(0)−
∫ 0

−τ

∫ s

0

ψ(θ − s)dµ(s)ϕ(θ)dθ.

By a direct computation, I have

Ψ(s) =
(
0, (β(1 + τdh))

−1
)
.

Consider the following expand space

BC =
{
ϕ| ϕ : [−τ, 0] → C, ϕ is continuous in [−τ, 0) and lim

θ→0
ϕ(θ) exists

}
,

then the abstract ODE in BC associated with FDE (A.7) can be written as the form

d

dt
u = Au+X0F (u), (A.8)

where

Aϕ = ϕ̇+X0(l(ϕ)− ϕ̇(0)), ϕ ∈ C1([−τ, 0],R2
+),

and

X0 =

{
I, θ = 0,

0, θ ∈ [−τ, 0).

The projection mapping π : BC → P :

π(ϕ+X0α) = Φ(⟨Ψ, ϕ⟩+Ψ(0)α),
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leads to the decomposition BC = P ⊕Kerπ. Decomposing u in Equation (A.8) in the
form of u = Φx+ y where x ∈ R and y ∈ Q1 := Kerπ ∩D(A) = Q ∩ C1. Then (A.8)
is equivalent to the system{

ẋ = Ψ(0)F (Φx+ y),

ẏ = AQ1y + (I − π)X0F (Φx+ y).

with

Ψ(0)F (Φx+ y) =
−dh

√
K

β(1 + τdh)
(βx+ y2(−τ))2 +O(3).

Thus, the local invariable manifold of (A.6) at 0 with the tangency with the space P
satisfies y(θ) = 0, the flow on this manifold is given by the following one-dimension
ODE

ẋ(t) =
−βdh

√
K

1 + τdh
x2(t) +O(3). (A.9)

This implies that the zero solution of (A.9) is stable. Therefore, the interior equi-
librium E = (B∗, H∗) is locally asymptotically stable for all τ > 0. The proof is
complete.

Proof of Theorem 3.3.5

Proof. I linearize the equations of Model 3.3:

D

([
Ḃ(t)

Ḣ(t)

]) ∣∣∣∣∣
(B∗,H∗)

=

[
−db 2rKH∗

(K+(H∗)2)2

0 −dh

][
B(t)

H(t)

]
+

[
−e−dbτ 0

e−dbτ 0

][
B(t− τ)

H(t− τ)

]
.

(A.10)
The matrix (A.10) evaluated at the extinction equilibrium Ee gives the character-

istic equation

C(λ, τ) = det

([
−db 2rKH∗

(K+(H∗)2)2

0 −dh

]
+

[
−e−dbτ 0

e−dbτ 0

]
∗ e−λτ − λI

)

= det

([
−db − e−dbτe−λτ − λ 2rKH∗

(K+(H∗)2)2

e−dbτe−λτ −dh − λ

])

= (−dh − λ)(−db − e−dbτe−λτ − λ)− 2rKH∗

(K + (H∗)2)2
e−(db+λ)τ
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At (0, 0), C(λ, τ) = (−dh − λ)(−db − e−dbτe−λτ − λ). Clearly, one characteristic
root is λ = −dh < 0, others are the roots of the following equation

λ+ db + e−dbτe−λτ = 0. (A.11)

When there is no delay, i.e., τ = 0, (A.11) has only a negative characteristic root
λ == −db, Model 3.3 is asymptotically stable at (0, 0). Moreover, for every τ ≥ 0,
(A.11) has no nonnegative real root.

I assume λ = iw, w > 0, is a root of (A.11) for some τ > 0. Then, I have

cos(wτ) = −dbedbτ , sin(wτ) = wedbτ , (A.12)

which gives

w2 = e−2dbτ − d2b . (A.13)

It is clear that (A.13) has a positive real root

w = (e−2dbτ − d2b)
1
2 . (A.14)

if and only if e−dbτ > db, i.e., τ < τ ∗ := 1
db
ln
(

1
db

)
, and 0 < db < 1.

Notice that cos(wτ) < 0, sin(wτ) > 0, there is a unique θ, π
2
< θ < π, such that

wτ = θ makes both equation of (A.12) hold. Then, if e−dbτ > db, I get a set of values
of τ for which there are imaginary roots:

τk =
θ + kπ

w
, k = 0, 1, 2, · · · , (A.15)

where w is given by (A.14) and

θ = π − arctan

(
w

db

)
. (A.16)

From (A.11), I have

(1− τe−(db+λ)τ )
dλ

dτ
= (λ+ db)e

−(db+λ)τ , and λ+ db = −e−(db+λ)τ .

Thus, (
dλ

dτ

)−1

= − τ

λ+ db
− 1

(db + λ)2
,
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and

S(τ) : = sign
{(

d(Reλ)
dτ

)}
λ=iw

= sign

{
Re
(
dλ

dτ

)−1
}
λ=iw

= sign
{
−Re

τ

λ+ b
− Re

1

(b+ λ)2

}
λ=iw

= sign{−τd3b − d2b + w2(τdb − 1)}
= sign{−2d2b + (1− τdb)e

−2dbτ}
= sign{ϕ(τ)}.

Here,

ϕ(τ) = −2d2b + (1− τdb)e
−2dbτ . (A.17)

Clearly,

ϕ′(τ) = e−2dbτdb(2τdb − 3). (A.18)

In order to get the stability of the equilibrium (0, 0), I first claim:

• For all τ ≥ max{0, τ ∗}, (0, 0) is asymptotically stable.

In fact, I rewrite (A.11) as the form λ = A+ Be−λτ with A = −db, B = −e−dbτ . For
any τ ≥ τ ∗, B ≥ −e−dbτ∗ = −db = A. Thus, by applying Theorem 4.7 from Hal
Smith, (0, 0) is local asymptotically stable.

Now, I consider the following two cases.
Case 1. db ≥

√
2
2

.
This case is divided into two subcases: (i) db ≥ 1 and (ii)

√
2
2

≤ db < 1.
(i) db ≥ 1.
In this subcase, the above claim implies that (0, 0) is asymptotically stable for all

τ ≥ 0. This also can be proved as follows. For all τ ≥ 0, e−2dbτ − d2b < 0 holds, and
hence the equation (A.13) has no positive real root. This implies that the equilibrium
(0, 0) has no stability switch as τ increases in [0,∞). Since (0, 0) is asymptotically
stable at τ = 0, then it remains asymptotically stable for all τ ≥ 0.

(ii)
√
2
2

≤ db < 1.
Assume τ ∈ (0, τ ∗). Then e−2dbτ − d2b > 0 and (A.13) has unique positive real

root (A.14). In such case, τdb < 1 since τdb < τ ∗db = ln
(

1
db

)
≤ ln

√
2 < 1, ϕ(τ) <

−2d2b + (1− τdb) ≤ −τdb < 0. It follows that S(τ) = −1 for τ ∈ (0, τ ∗), i.e., possible
stability switches from unstable to stable may occur. Since (0, 0) is asymptotically
stable at τ = 0, then it remains asymptotically stable for all τ ∈ (0, τ ∗).

When τ ≥ τ ∗, our claim shows that (0, 0) is asymptotically stable. Therefore,
(0, 0) is asymptotically stable for all τ ≥ 0.
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Case 2. 0 < db <
√
2
2

.
This case is also divided into two subcases: (i) 1

e
≤ db <

√
2
2

and (ii) db < 1
e
.

(i) 1
e
≤ db <

√
2
2

.
For τ ≥ τ ∗, I know that (0, 0) is asymptotically stable. Now, I assume τ ∈ (0, τ ∗),

then (A.13) has unique positive real root (A.14). In such case, ϕ(0) = 1 − 2d2b > 0
and ϕ(τ ∗) = −2d2b + (1 − τ ∗db)e

−2dbτ
∗
= −2d2b + (1 − τ ∗db)d

2
b < 0, and, from (A.18),

ϕ′(τ) < 0 since τdb < τ ∗db = ln
(

1
db

)
≤ 1. Thus, there exists unique τc ∈ (0, τ ∗) such

that

(a) For τ ∈ (0, τc), ϕ(τ) > 0 and hence S(τ) = 1. In this case, possible stability
switches from stable to unstable may occur as τ increases in (0, τc).

(b) At τ = τc, ϕ(τ) = 0 and hence S(τ) = 0;

(c) For τ ∈ (τc, τ
∗), ϕ(τ) < 0 and hence S(τ) = −1. In this case, possible stability

switches from unstable to stable may occur as τ increases in (τc, τ
∗).

Therefore, by the stability of (0, 0) at τ = 0 and τ ≥ τ ∗, I can conclude that (0, 0)
is asymptotically stable for τ ∈ (0, τ0) or τ ≥ τ1, while unstable for τ ∈ (τ0, τ1), where
τ0, τ1 are given by (A.15).

(ii) db < 1
e
.

Since 1
db
> e, then 1

db
< τ ∗ = 1

db
ln
(

1
db

)
. Thus, I has the following two scenarios:

(1) τ ∈
(

1
db
, τ ∗
)
. Since τdb ≥ 1, I have ϕ(τ) < 0 and hence S(τ) = −1, which

implies that possible stability switches from unstable to stable may occur as τ
increases in

(
1
db
, τ ∗
)
.

(2) τ ∈
(
0, 1

db

)
. In such case, ϕ(0) = 1 − 2d2b > 0 and ϕ

(
1
db

)
= −2d2b < 0, and

ϕ′(τ) < 0. Thus, there exists unique τc ∈
(
0, 1

db

)
(a) For τ ∈ (0, τc), ϕ(τ) > 0 and hence S(τ) = 1. .
(b) At τ = τc, ϕ(τ) = 0 and hence S(τ) = 0;

(c) For τ ∈
(
τc,

1
db

)
, ϕ(τ) < 0 and hence S(τ) = −1. .

Therefore, by the stability of (0, 0) at τ = 0 and τ ≥ τ ∗, I can conclude that (0, 0)
is asymptotically stable for τ ∈ (0, τ0) or τ ≥ τ1, while unstable for τ ∈ (τ0, τ1).
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Proof of Theorem 3.3.6

Proof. Consider the positive equilibria of Model 3.3. (B∗, H∗) is a positive equilibrium
if and only if B∗ = dhe

dbτH∗ and H∗ is a positive root of

rH

K +H2
= dh(dbe

dbτ + 1), (A.19)

or, equivalently,

dh(dbe
dbτ + 1)H2 − rH +Kdh(dbe

dbτ + 1) = 0. (A.20)

Clearly, if r < 2
√
Kdh(dbe

dbτ+1), there is no positive equilibrium; if r > 2
√
Kdh(dbe

dbτ+
1), or, equivalently,

τ <
1

db
ln

((
r

2dh
√
K

− 1

)
/db

)
, and r > 2dh

√
K(1 + db), (A.21)

Model 3.3 has two positive equilibria E1 = (B∗
1 , H

∗
1 ) and E2 = (B∗

2 , H
∗
2 ) (H∗

1 < H∗
2 ),

where

H∗
i =

r ±
√
r2 − 4K (dbdhedbτ + dh)

2

2 (dbdhedbτ + dh)
, i = 1, 2.

Let

τ ∗ =
1

db
ln

((
r

2dh
√
K

− 1

)
/db

)
, subject to r > 2dh

√
K(1 + db). (A.22)

The characteristic equation at (B∗
i , H

∗
i ) is

C(λ, τ) = λ2 + (db + dh)λ+ dbdh + (λ+ dh − Φ(H∗)(τ))e−dbτe−λτ = 0, (A.23)

where

Φ(H∗)(τ) =
2rKH∗

(K + (H∗)2)2
(A.24)

and H∗ = H∗
1 or H∗

2 , depending on τ .
Let

P (λ, τ) = λ2 + P1(τ)λ+ P0(τ), Q(λ, τ) = Q1(τ)λ+Q0(τ), (A.25)

where

P1(τ) = db + dh, P0(τ) = dbdh, (A.26)
Q1(τ) = e−dbτ , Q0(τ) = (dh − Φ(H∗)(τ))e−dbτ . (A.27)
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Then the characteristic equation (A.28) can be rewritten as follows

C(λ, τ) = P (λ, τ) +Q(λ, τ)e−λτ = 0. (A.28)

First, I prove that λ = 0 cannot be a root of (A.28), i.e., P (0, τ) + Q(0, τ) ̸= 0,
for any τ ∈ [0, τ ∗). In fact,

C(0, τ) = P (0, τ) +Q(0, τ) = P0(τ) +Q0(τ)

= dbdh + (dh − Φ(H∗)(τ))e−dbτ

= e−dbτ (dh(dbe
dbτ + 1)− Φ(H∗)(τ))

= e−dbτ
(

rH∗

K+(H∗)2
− 2rKH∗

(K+(H∗)2)2

)
= e−dbτΦ(H∗)(τ)((H∗)2 −K).

(A.29)

Here, (A.19) is used in the third equation. Since H∗
1H

∗
2 = K and H∗

1 < H∗
2 , I know

that (H∗
1 )

2 < K < (H∗
2 )

2. Thus, C(0, τ) < 0 at E1 = (B∗
1 , H

∗
1 ), and C(0, τ) > 0 at

E2 = (B∗
2 , H

∗
2 ). It follows that for all τ ∈ [0, τ ∗), λ = 0 cannot be a root of (A.28) at

both E1 and E2.
Now, I consider the stability of E1 and E2 when τ = 0. At τ = 0, the characteristic

equation (A.28) becomes P (0, τ) +Q(0, τ) = 0, i.e.,

λ2 + (P1(0) +Q1(0))λ+ P0(0) +Q0(0) = 0. (A.30)

At E1 = (B∗
1 , H

∗
1 ), since P0(τ)+Q0(τ) < 0 for all τ ∈ [0, τ ∗), I have P0(0)+Q0(0) < 0.

At E2 = (B∗
2 , H

∗
2 ), I have P0(0)+Q0(0) > 0 since P0(τ)+Q0(τ) > 0 for all τ ∈ [0, τ ∗).

Thus, I can conclude that at τ = 0, E1 is unstable and E2 is locally asymptotically
stable.

In order to determine the local stability of the interior equilibrium Ei, i = 1, 2
when τ ∈ (0, τ ∗), I proceed as follows Kuang’s book Chapter 3 Kuang [1993].

Let λ = iw(τ), w(τ) > 0, be the root of (A.28), then I have

P (iw, τ) = −w2 + iwP1(τ) + P0(τ), Q(iw, τ) = iwQ1(τ) +Q0(τ),

PR(iw, τ) = P0(τ)− w2, QR(iw, τ) = Q0(τ),

PI(iw, τ) = wP1(τ), QI(iw, τ) = wQ1(τ).

(A.31)

By Theorem 4.1 in Kuang’s book Kuang [1993], I look for the positive roots w(τ) > 0
of

F (w, τ) = |P (iw, τ)|2 − |Q(iw, τ)|2 = 0, τ ∈ [0, τ ∗). (A.32)

Since

F (w, τ) = w2 + w2(−2P0(τ) + P 2
1 (τ)−Q2

1(τ)) + P 2
0 (τ)−Q2

0(τ) (A.33)
= w4 + b(τ)w2 + c(τ), (A.34)
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where

b(τ) = −2P0(τ) + P 2
1 (τ)−Q2

1(τ), c(τ) = P 2
0 (τ)−Q2

0(τ), (A.35)

equation (A.33) may have no positive root, one positive root w+(τ) or w−(τ), or two
positive roots w+(τ) and w−(τ), depending on b(τ) and c(τ). w±(τ) can be represent
as follows:

w±(τ) =

[
1

2
(−b(τ)±

√
b2(τ)− 4c(τ))

] 1
2

.

In order to determine the occurrence of stability switches, I need to determine the
sign of dReλ

dτ
or Re

(
dλ
dτ

)−1. From Theorem 3.1 and its proof of KuangKuang [1993], I
have

S(τ) : = sign
{(

d(Reλ)
dτ

)}
λ=iw

= sign
{

Re
(
dλ
dτ

)−1
}
λ=iw

= sign{P 2
1 (τ)− 2P0(τ)−Q2

1(τ) + 2w2}
= sign{±

√
b2(τ)− 4c(τ)}.

(A.36)

First, I consider the local stability of the interior equilibrium E1 when τ ∈ [0, τ ∗).
Since for all τ ∈ [0, τ ∗), P0(τ) + Q0(τ) < 0, and P0(τ) = dbdh > 0, I have Q0(τ) =
(dh − Φ(H∗)(τ))e−dbτ < 0. Thus, P0(τ)−Q0(τ) > 0, τ ∈ [0, τ ∗). It follows that

c(τ) = P 2
0 (τ)−Q2

0(τ) = [P0(τ) +Q0(τ)][P0(τ)−Q0(τ)] < 0, τ ∈ [0, τ ∗).

Therefore, (A.33) has unique positive root w+(τ). From (A.36), S(τ) = 1. Since E1

is unstable at τ = 0, no stability switch occur as τ increases in [0, τ ∗), and E1 is
unstable for all τ ∈ [0, τ ∗).

Now, I consider the local stability of the interior equilibrium E2 when τ ∈ [0, τ ∗). I
have know that for all τ ∈ [0, τ ∗), P0(τ)+Q0(τ) > 0 and c(τ) = [P0(τ)+Q0(τ)][P0(τ)−
Q0(τ)]. Thus, I consider the sign of P0(τ)−Q0(τ). By a careful computation, I get

P0(τ)−Q0(τ) = dhe
−dbτφ(τ), (A.37)

where

φ(τ) = (dbe
dbτ + 1)

[
2−

√
1− 4Kd2h(dbe

dbτ + 1)2

r2

]
− 2. (A.38)

It is clear that φ(τ) is strictly increasing with respect to τ ∈ [0, τ ∗), f(τ ∗) = 2dbe
dbτ

∗ ,
and

φ(0) = (db + 1)

[
2−

√
1− 4Kd2h(db + 1)2

r2

]
− 2.
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Now, I consider the following two cases.

Case 1. db ≥ 1. Then clearly φ(0) > 0 and hence φ(τ) > 0 for all τ ∈ [0, τ ∗).
Thus, c(τ) > 0. In addition, b(τ) = d2b+d

2
h−e−2dbτ > 0. Therefore, for all τ ∈ [0, τ ∗),

F (w, τ) ̸= 0. This implies that in such case no stability switch occur with τ increasing
in [0, τ ∗). Since E2 is is locally asymptotically stable at τ = 0, I can conclude that
E2 is is locally asymptotically stable for all τ ∈ [0, τ ∗) if db ≥ 1.

Case 2. 0 < db < 1. Then, (1+ db)
2− 4d2b > 0. When r > 2dh

√
K(1+ db), I have

φ(0) > 0 ⇔
√

1− 4Kd2h(db+1)2

r2
< 2db

1+db

⇔ r < 2dh
√
K(1+db)

2√
(1+db)2−4d2b

.
(A.39)

Thus, when 2dh
√
K(1+db) < r < 2dh

√
K(1+db)

2√
(1+db)2−4d2b

, φ(0) > 0 and hence for all τ ∈ [0, τ ∗),

c(τ) > 0.
This case is also divided into two subcases: (i) d2b + d2h ≥ 1, (ii) d2b + d2h < 1.

(i) d2b + d2h ≥ 1. It follows b(τ) = d2b + d2h − e−2dbτ > 0. Thus, in such case,
F (w, τ) ̸= 0 holds for all τ ∈ [0, τ ∗). This implies that in such case no stability
switch occur with τ increasing in [0, τ ∗). Since E2 is locally asymptotically stable at
τ = 0, I can conclude that E2 is is locally asymptotically stable for all τ ∈ [0, τ ∗) if
2dh

√
K(1 + db) < r ≤ 2dh

√
K(1+db)

2√
(1+db)2−4d2b

.

If r > 2dh
√
K(1+db)

2√
(1+db)2−4d2b

, then φ(0) < 0 and there exists unique τc ∈ (0, τ ∗) such that

c(τ) < 0 for τ ∈ (0, τc) and c(τ) > 0 for τ ∈ (τc, τ
∗). Thus, if τ ∈ (τc, τ

∗), then
F (w, τ) = 0 has no positive root; if τ ∈ (0, τc), then F (w, τ) = 0 has a unique
positive root w+ and S(τ) = 1. Since E2 is stable at τ = 0, from Theorem 3.1 of
Kuang Kuang [1993], I know that the stability of E2 switches just once in [0, τc) from
stable to unstable.

(ii) d2b + d2h < 1. I divide this subcase into the following two scenarios:

(a) d2b(
(1+db)

2√
(1+db)

2−4d2
b

−1

)2 < d2b + d2h < 1, which implies that

2dh
√
K

(
1 +

√
d2b

d2b + d2h

)
< 2dh

√
K

(1 + db)
2√

(1 + db)2 − 4d2b
.

This scenario is again divided into following three cases:

(1) 2dh
√
K
(
1 +

√
d2b

d2b+d
2
h

)
< r ≤ 2dh

√
K (1+db)

2√
(1+db)2−4d2b

.
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Since 2dh
√
K
(
1 +

√
d2b

d2b+d
2
h

)
> 2dh

√
K(1 + db), from (A.39), φ(0) ≥ 0 and hence

for all τ ∈ [0, τ ∗), c(τ) ≥ 0.
When 1

2db
ln
(

1
d2b+d

2
h

)
≤ τ < τ ∗, b(τ) ≥ 0. Thus, for all τ ∈ [0, τ ∗), F (w, τ) ̸= 0.

When 0 < τ < 1
2db

ln
(

1
d2b+d

2
h

)
, I have b(τ) < 0. Thus, I consider b2(τ)− 4c(τ). By

a simple computation, I have

b2(τ)− 4c(τ) = (P 2
1 (τ)−Q2

1(τ))(P
2
1 (τ)−Q2

1(τ)− 4P0(τ)) + 4Q2
0(τ)

= ϕ(τ) + 4Q2
0(τ).

Here, ϕ(τ) =
(
(db + dh)

2 − e−2dbτ
) (

(db + dh)
2 − e−2dbτ − 4dbdh

)
. It is clear that

ϕ(τ) ≥ 0 ⇔ τ ≤ 1
2db

ln
(

1
(db+dh)2

)
or τ ≥ 1

2db
ln
(

1
(db−dh)2

)
.

Thus, if 1
2db

ln
(

1
(db+dh)2

)
< τ < 1

2db
ln
(

1
d2b+d

2
h

)
, then ϕ(τ) < 0.

If 0 < τ ≤ 1
2db

ln
(

1
(db+dh)2

)
, then ϕ(τ) ≥ 0 and hence b2(τ)− 4c(τ) > 0, which implies

that F (w, τ) = 0 have two positive roots 0 < w− < w+. Thus, from Theorem 3.1 of
KuangKuang [1993], the stability of E2 can change a finite number of times at most
as τ is increased τ ∈ [0, τ ∗), and eventually it becomes unstable.

(2) 2dh
√
K(1 + db) < r ≤ 2dh

√
K
(
1 +

√
d2b

d2b+d
2
h

)
.

From (A.39), φ(0) > 0 and hence for all τ ∈ [0, τ ∗), c(τ) > 0. In this case,

τ ∗ =
1

db
ln

((
r

2dh
√
K

− 1

)
/db

)
≤ 1

2db
ln

(
1

d2b + d2h

)
.

It follows b(τ) = d2b + d2h − e−2dbτ < 0 for all τ ∈ (0, τ ∗). Note that

τ ∗ =
1

db
ln

((
r

2dh
√
K

− 1

)
/db

)
≤ 1

2db
ln

(
1

(db + dh)2

)
⇔ r ≤ 2dh

√
K

(
db

db + dh
+ 1

)
.

Thus,

• when 2dh
√
K(1 + db) < r ≤ 2dh

√
K
(

db
db+dh

+ 1
)
, ϕ(τ) ≥ 0 and hence b2(τ) −

4c(τ) > 0 for all τ ∈ [0, τ ∗). It yields that F (w, τ) = 0 have two positive roots
0 < w− < w+. Thus, from Theorem 3.1 of Kuang Kuang [1993], the stability of
E2 can change a finite number of times at most as τ is increased in [0, τ ∗), and
eventually it becomes unstable.

195



• when 2dh
√
K
(

db
db+dh

+ 1
)
< r ≤ 2dh

√
K
(
1 +

√
d2b

d2b+d
2
h

)
,

I have τ ∗ > 1
2db

ln
(

1
(db+dh)2

)
. If 1

2db
ln
(

1
(db+dh)2

)
< τ < τ ∗, then ϕ(τ) < 0. If

0 < τ ≤ 1
2db

ln
(

1
(db+dh)2

)
, ϕ(τ) ≥ 0 and hence b2(τ)− 4c(τ) > 0. Thus, in such

case, from Theorem 3.1 of Kuang Kuang [1993] the stability of E2 can change
a finite number of times at most as τ is increased in [0, τ ∗).

(3) r > 2dh
√
K(1+db)

2√
(1+db)2−4d2b

.

In this case, φ(0) < 0 and there exists unique τc ∈ (0, τ ∗) such that c(τ) < 0 for
τ ∈ (0, τc) and c(τ) > 0 for τ ∈ (τc, τ

∗). Thus, if τ ∈ (0, τc), then F (w, τ) = 0 has a
unique positive root w+ and S(τ) = 1. Since E2 is stable at τ = 0, from Theorem 3.1
of Kuang Kuang [1993], I know that the stability of E2 switches once in [0, τc) from
stable to unstable.

(b) d2b + d2h ≤
d2b(

(1+db)
2√

(1+db)
2−4d2

b

−1

)2 , which implies that

2dh
√
K

(
1 +

√
d2b

d2b + d2h

)
≥ 2dh

√
K

(1 + db)
2√

(1 + db)2 − 4d2b
.

This scenario is again divided into following two cases:

(1) 2dh
√
K(1 + db) < r ≤ 2dh

√
K(1+db)

2√
(1+db)2−4d2b

.

From (A.39), φ(0) > 0 and hence for all τ ∈ [0, τ ∗), c(τ) > 0. In this case, I also
have τ ∗ ≤ 1

2db
ln
(

1
d2b+d

2
h

)
. It follows b(τ) = d2b + d2h − e−2dbτ < 0 for all τ ∈ (0, τ ∗).

If 2dh
√
K
(

db
db+dh

+ 1
)
< 2dh

√
K(1+db)

2√
(1+db)2−4d2b

, similar to the arguments above, I get that

no matter 2dh
√
K(1 + db) < r ≤ 2dh

√
K
(

db
db+dh

+ 1
)

or 2dh
√
K
(

db
db+dh

+ 1
)
< r ≤

2dh
√
K (1+db)

2√
(1+db)2−4d2b

the stability of E2 can change a finite number of times at most

as τ is increased in [0, τ ∗).
If 2dh

√
K(1+db)

2√
(1+db)2−4d2b

< 2dh
√
K
(

db
db+dh

+ 1
)
, then when 2dh

√
K(1+db) < r ≤ 2dh

√
K(1+db)

2√
(1+db)2−4d2b

,

ϕ(τ) ≥ 0 for all [0, τ ∗) and hence b2(τ) − 4c(τ) > 0 for all τ ∈ [0, τ ∗). It yields that
F (w, τ) = 0 have two positive roots 0 < w− < w+. Thus, from Theorem 3.1 of Kuang
Kuang [1993], the stability of E2 can change a finite number of times at most as τ is
increased in [0, τ ∗), and eventually it becomes unstable.

(2) r > 2dh
√
K(1+db)

2√
(1+db)2−4d2b

.

Similar to the arguments above, φ(0) < 0 and there exists unique τc ∈ (0, τ ∗) such
that the stability of E2 switches once in [0, τc) from stable to unstable.
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The proof is completed.

Some Important Lemmas

Consider the characteristic equation of the form

p(z) + e−zτq(z) = 0 (A.40)

where p and q are polynomials with real coefficients and τ > 0 is the delay. The
following result was given by Brauer Brauer [1987].

Lemma A. Suppose that p(z) and q(z) are analytic in some open set containing
z ≥ 0, and satisfying the following conditions:
(i) p(z) ̸= 0, Rez ≥ 0,
(ii) p(−iy) = p(iy), q(−iy) = q(iy), 0 ≤ y <∞,
(iii) p(0) + q(0) = 0,
(iv) |q(iy)| < |p(iy)| for 0 < y <∞,
(v) lim|z|→∞,Rez≥0 |q(z)/p(z)| = 0.
Then except for the roots z = 0, all roots of (A.40) are in Rez < 0 for all 0 ≤ τ <∞.

I need the fluctuation lemma due to Hirsh, Hanisch, and GabrielHirsch et al.
[1985].

Lemma B (Fluctuation Lemma). Let f : R+ → R be a differentiable function. If
lim inft→∞ f(t) < lim supt→∞ f(t), then there are sequences {tm} ↑ ∞ and {sm} ↑ ∞
such that

f(tm) → lim supt→∞ f(t), f ′(tm) → 0 as m→ ∞,

f(sm) → lim inft→∞ f(t), f ′(sm) → 0 as m→ ∞.

Proof of Proposition 3.3.1

Proof. Let m = dbr, n = d2he
dbτ (edbτ − 1), and c = 4d2bd

2
hKe

2dbτ , then:

H∗
1 =

e−dbτ

2dbdh
(m− αn−

√
(m− αn)2 − c),

and

H∗
2 =

e−dbτ

2dbdh
(m− αn+

√
(m− αn)2 − c).

So, function g = m−αn−
√

(m− αn)2 − c and function f = m−αn+
√

(m− αn)2 − c
will decide two equilibrium functions are increasing or decreasing functions of α. After
that,

g′(α) = n(−1 +
m− nα√

(m− nα)2 − c
),
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and
f ′(α) = n(−1 +

nα−m√
(m− nα)2 − c

).

Since H∗
1 > 0, m > nα and m − nα >

√
(m− αn)2 − c, therefore g′(α) > 0 and

f ′(α) < 0, i.e. H∗
1 is monotonically increasing, and H∗

2 is monotonically decreasing.

Next, I consider parameter r. Then

g′(r) = db(1−
dbr − nα√

(dbr − nα)2 − c
) < 0,

and
f ′(r) = db(1 +

dbr − nα√
(dbr − nα)2 − c

) > 0.

Therefore, H∗
1 is monotonically decreasing by r, and H∗

2 is monotonically increasing
by r.

Afterwards, if K increases, only c will increase. Then
√

(m− nα)2 − c will de-
crease. Therefore, H∗

1 is monotonically increasing by K, and H∗
2 is monotonically

decreasing by K.

When I consider db and dh, I can simplified the model to Model (3.2), i.e. α = 0.

Then I let H∗
1 be the function p =

e−dbτ
(
r−
√
r2−4d2hKe

2dbτ
)

2dh
, and H∗

2 be the function

q =
e−dbτ

(
r+
√
r2−4d2hKe

2dbτ
)

2dh
. So,

p′(dh) =

re−dbτ
(

r√
r2−4d2hKe

2dbτ
− 1

)
2d2h

> 0,

and

q′(dh) =

re−dbτ
(
− r√

r2−4d2hKe
2dbτ

− 1

)
2d2h

< 0.

Therefore, H∗
1 is monotonically increasing by dh, and H∗

2 is monotonically decreasing
by dh.

Finally, let us see db. Then

p′(db) =

re−dbτ
(

r√
r2−4d2hKe

2dbτ
− 1

)
τ

2dh
> 0,
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and

q′(db) =

re−dbτ
(
− r√

r2−4d2hKe
2dbτ

− 1

)
τ

2dh
< 0.

Therefore, H∗
1 is monotonically increasing by db, and H∗

2 is monotonically decreasing
by db.

Proofs for Chapter. 4

Proof of Theorem 4.3.1

Proof. Let

f1(u, v) = r̄(t)
u2

K̂ + u2
− d̄hu−

ωu

1 + u
v

and
f2(u, v) =

ωu

1 + u
v − d̄mv.

Assume each point (u1, v1) ∈ X in functions f1 and f2 has a neighbour (u2, v2) ∈ X0,
and u1 > u2. As I know, r(t) = r0(1 + ϵ cos(2π(t−ψ)

γ
)), the maximum of r(t) is

rmax = r0(1 + ϵ), and the minimum of r(t) is rmin = r0(1 − ϵ). Then r̄max = rmax∗c
R∗b

and r̄min = rmin∗c
R∗b . Then I can get:

|f1(u1, v1)− f1(u2, v2)| = |r̄(t)( u21
K̂ + u21

− u22
K̂ + u22

) + d̄h(u2 − u1) + (
ωu2

1 + u2
v2 −

ωu1
1 + u1

v1)|

< |r̄max(
u21 − u22
K̂ + u22

) + d̄h(u2 − u1) + ω(v2 − v1)|

= |r̄max(
(u1 + u2)(u1 − u2)

K̂ + u22
) + d̄h(u2 − u1) + ω(v2 − v1)|

< (r̄max + d̄h)|u2 − u1|+ ω|v2 − v1|

Therefore, there exists two real constants M1 = r̄max + d̄h and M2 = ω for
|f1(u1, v1) − f1(u2, v2)| ≤ M1|u1 − u2| + M2|v1 − v2|. Similarly, function f2(u, v)
has:

|f2(u1, v1)− f2(u2, v2)| = | ωu1
1 + u1

v1 −
ωu2

1 + u2
v2 + d̄m(v2 − v1)|

< ω|v2 − v1|+ d̄m|v2 − v1|

Therefore, there exists a real constant L = ω + d̄m for |f2(u1, v1) − f2(u2, v2)| ≤
L|v1−v2|. Since eqts.(4.3) are Lipschitz continuous, following the Lipschitz condition,
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the system (4.3) has local existence and uniqueness solution.

According to Theorem A.4 (p.423) of Thieme (2003) Thieme [2018], I can conclude
that Model (4.3) is positive invariant in X. Let g(u) = u2

K̂+u2
< 1 and h(u) = ωu

1+u
,

then model (4.3) follows:

u′ = r̄(t)g(u)− d̄hu− h(u)v

and
v′ = (h(u)− d̄m)v.

From above,
u′ < r̄ − d̄hu < r̄max − d̄hu

⇒ u(t) < r̄max

d̄h
− ( r̄max

d̄h
− u0)e

−d̄ht

⇒ u(t) < max{u0, r̄max

d̄h
}.

Therefore, u is boundedness.
Now, to show the boundedness of v, define H = u+ v, then

H ′ = u′ + v′ = r̄(t)g(u)− d̄hu− d̄mv

H ′ < r̄(t)−max{d̄h, d̄m}H

Therefore, H is boundedness. Since u is boundedness, v is boundedness.

Proof of Proposition 4.3.1

Proof. Let

f(u) =
r0u

2

K̂ + u2
− d̄hu = u[

r0u− dh(K̂ + u2)

K̂ + u2
],

Then if r0 > 2d̄h
√
K̂, there exists u∗1 and u∗2 such that f(u∗i ) = 0, i = 1, 2 and

u∗1 =
r0 −

√
r20 − 4d̄2hK̂

2d̄h
≤ u∗2 =

r0 +
√
r20 − 4d̄2hK̂

2d̄h

with

u∗2 =
r0 +

√
r20 − 4d̄2hK̂

2d̄h
>

r0
2d̄h

>
√
K̂.

Notice that

f ′(u) =
−d̄hK̂2 − 2d̄hK̂u

2 − d̄hu
4 + 2K̂r0u(

K̂ + u2
)2 =

−d̄h
(
K̂ + u2

)2
+ 2K̂r0u(

K̂ + u2
)2 ,
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then I have

f ′(0) = −d < 0, f ′(u∗i ) = −dh +
2K̂d2h
r0u∗i

which implies that u∗ = 0 is a locally stable equilibrium, and f ′(u∗1) > 0 and
f ′(u∗2) < 0. Therefore u∗2 is locally stable equilibrium while u∗1 is locally unstable.

Note that

u′ = f(u) = u[
r0u− dh(K̂ + u2)

K̂ + u2
] = dhu[

(u− u∗1)(u
∗
2 − u)

K̂ + u2
].

For any initial condition u(0) ∈ (u∗1, u
∗
2), I have u′ > 0 for all future t > 0, thus u(t)

increases and approaches to u∗2. For any initial condition u(0) > u∗2, I have u′ < 0 for
all future t > 0, thus u(t) decreases and approaches to u∗2.

If r0 < 2d̄h
√
K̂, then I have

u′ = f(u) = u[
r0u− dh(K̂ + u2)

K̂ + u2
] = dhu

[
−(u− r0

2d̄h
)2 + ((r0/2d̄h)

2 − K̂)

K̂ + u2

]
< 0.

Therefore u(t) converges to 0 if r0 < 2d̄h
√
K̂ holds.

Proof of Theorem 4.3.3

Proof. Notice that u = 0 is an equilibrium of

u′ =
r̄(t)u2

K̂ + u2
− d̄hu = u

[
r̄(t)u

K̂ + u2
− d̄h

]
.

From Theorem 4.3.1, I know that u ≥ 0 for any initial u(0) ≥ 0. Define D =

{u ∈ [0, d̄hK̂
rM

)}. Applying for Lyapunov Stability Theorem Aeyels [1995] and I define
V (u) = u2 ≥ 0 ∀u ∈ D.
Notice that

V̇ (t, u) = u′ = u

[
r̄(t)u− d̄h(K̂ + u2)

K̂ + u2

]
<
rMu

K̂
− d̄h.

Thus,
V̇ (t, u) ≤ 0,∀u ∈ Dandt ≥ 0

which the D is a neighborhood of the origin, and t ≥ 0. Thus I can conclude that
u = 0 is locally stable.
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Define f(u, t) = r̄(t)u2

K̂+u2
− d̄hu, then I have

f(u, t) = u

[
r̄(t)u− dh(K̂ + u2)

K̂ + u2

]
.

If rmax = rM = r0(1 + ϵ) < 2d̄h
√
K̂, then I have

r̄(t) ≤ rM < 2d̄h

√
K̂.

Thus,

u′ = f(u, t) ≤ u

[
rMu− dh(K̂ + u2)

K̂ + u2

]
= dhu

[
−(u− rM

2d̄h
)2 + ((rM/2d̄h)

2 − K̂)

K̂ + u2

]
< 0.

This implies that u = 0 is globally stable when rM = r0(1 + ϵ) < 2d̄h
√
K̂.

If rmin = rm = r0(1− ϵ) > 2d̄h
√
K̂ holds, then rm ≤ r̄(t) ≤ rM = r0(1 + ϵ) and

u′ = f(u, t) ≥ u

[
rmu− dh(K̂ + u2)

K̂ + u2

]
= u[

rmu− dh(K̂ + u2)

K̂ + u2
] = dhu[

(u− u∗1)(u
∗
2 − u)

K̂ + u2
]

with

u∗1 =
rm −

√
r2m − 4d̄2hK̂

2d̄h
≤ u∗2 =

rm +
√
r2m − 4d̄2hK̂

2d̄h
.

Similar, I have

u′ = f(u, t) ≤ u

[
rMu− dh(K̂ + u2)

K̂ + u2

]
= u[

rMu− dh(K̂ + u2)

K̂ + u2
] = dhu[

(u− h∗1)(h
∗
2 − u)

K̂ + u2
]

with

h∗1 =
rM −

√
r2M − 4d̄2hK̂

2d̄h
≤ h∗2 =

rM +
√
r2M − 4d̄2hK̂

2d̄h
.

Therefore, I have u being a positive invariant in [u∗1, h
∗
2]. Note that for any u > h∗2 I

have u′ < 0, thus I have

lim inf
t→∞

u(t) ≤ u∗1 ≤ lim sup
t→∞

u(t) < h∗2

if rm ≥ 2d̄h
√
K̂ and u(0) > u∗1.
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Proof of Theorem 4.3.4

Proof. Let f(u) = u2

K̂+u2
, then Eq. 4.4 rewrites to

u′ = L(u) = r̄(t) ∗ f(u)− d̄hu. (A.41)

Linearizing Eqt.A.41 about u = u∗ gives,

L(u) ≈ L(u∗) +
[
r̄(t) ∗ f ′(u∗)− d̄h

]
∗ (u− u∗).

Then, this linear equation can be

h′ =
[
r̄(t) ∗ f ′(u∗)− d̄h

]
∗ h

where h = u − u∗. After that, I can solve the differential equation by integrating
factors:

h(t) = C0e
∫ t
0 [r̄(z)∗f ′(u∗)−d̄h]dz = C0e

λ

Therefore, if λ < 0, the stability of the periodic solution u = u∗ is stable; if λ > 0,
then the solution is unstable.

Proof of Theorem 4.3.5

Proof. 1. For E∗
1 = (0, 0),

JE∗
1
=

{
−d̄h 0

0 −d̄m

}
.

Eigenvalues are λ1 = −d̄h < 0 and λ2 = −d̄m < 0, therefore E∗
1 always stable.

2. For Eb1 = (
r̄−
√
r̄2−4K̂d̄2h
2d̄h

, 0), eigenvalues are

λ1 =

(
ω − d̄m

)(
−r̄ +

√
r̄2 − 4K̂d̄2h

)
+ 2d̄hd̄m

2d̄h +
√
r̄2 − 4K̂d̄2h + r̄

and

λ2 =

r̄d̄h

(
r̄ −

√
r̄2 − 4K̂d̄2h

)
− 4K̂d̄3h

r̄

(√
r̄2 − 4K̂d̄2h − r̄

) .
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Since r̄

2
√
K̂d̄h

> 1, λ2 > 0. If d̄m > ω, λ1 > 0, then Eb1 is source. If d̄m < ω,

u∗ = d̄m
ω−d̄m > N̄ c

h =
r̄−
√
r̄2−4K̂d̄2h
2d̄h

, then 2d̄hd̄m
ω−d̄m > r̄ −

√
r̄2 − 4K̂d̄2h, i.e. λ1 < 0,

therefore Eb1 is saddle.

For Eb2 = (
r̄+
√
r̄2−4K̂d̄2h
2d̄h

, 0), eigenvalues are

λ1 =

(
ω − d̄m

)(
r̄ +

√
r̄2 − 4K̂d̄2h

)
− 2d̄hd̄m

2d̄h +
√
r̄2 − 4K̂d̄2h + r̄

and

λ2 =

√
r̄2 − 4K̂d̄2h

(
4K̂d̄3h − 2r̄2d̄h

)
+ r

(
8K̂d̄3h − 2r̄2d̄h

)
r̄

(√
r̄2 − 4K̂d̄2h + r̄

)2 .

Since r̄2 > 4K̂d̄2h > 2K̂d̄2h, 2r̄2d̄h > 8K̂d̄3h > 4K̂d̄3h, then 8K̂d̄3h − 2r̄2d̄h < 0 and
4K̂d̄3h − 2r̄2d̄h < 0, i.e. λ2 < 0. If d̄m > ω, λ1 < 0, then Eb2 is sink. If d̄m < ω,

N̄∗
h =

r̄+
√
r̄2−4K̂d̄2h
2d̄h

> u∗ = d̄m
ω−d̄m , then

(
ω − d̄m

)(√
r̄2 − 4K̂d̄2h + r̄

)
> 2d̄hd̄m,

i.e. λ1 > 0. Therefore Eb2 is saddle.

3. For E∗ = ( d̄m
ω−d̄m ,

[r̄u∗−d̄h((u∗)2+K̂)](u∗+1)

ω((u∗)2+K̂)
), I simplified the matrix J to

JE∗ =

−
u∗
(
dh(K̂+(u∗)2)

2
+r((u∗)2−K̂(2u∗+1))

)
(u∗+1)(K̂+(u∗)2)

2 − ωu∗

u∗+1

ωv∗

(u∗+1)2
0

 .

which gives the following two equations:

λ1 + λ2 = −
u∗
(
dh(K̂+(u∗)2)

2
+r̄((u∗)2−K̂(2u∗+1))

)
(u∗+1)(K̂+(u∗)2)

2

= u∗(−d̄hK̂2+(r̄+2u∗r̄−2d̄h(u
∗)2)K̂−r̄(u∗)2−d̄h(u∗)4)

(u∗+1)(K̂+(u∗)2)
2

λ1λ2 = ω2u∗v∗

(u∗+1)3
> 0

(A.42)

-rEqt. A.42 gets two K̂1,2 to make the λ1+λ2 = 0, where K̂2 =
r̄u∗

d̄h
−(u∗)2+ r̄

2d̄h
+

√
r̄
√
r̄(2u∗+1)2−8d̄h(u∗)2(u∗+1)

2d̄h
and the condition of E∗ is K̂ < r̄u∗

d̄h
− (u∗)2, therefore
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Figure A.1: Simulation for the trace (λ1 + λ2) of JE∗ . The black curve indicates
the trace is positive, i.e. the stability of E∗ is source, and the blue curve indicates
the trace is negative, i.e. the stability of E∗ is sink. r̄ = 500, ω = 0.05, d̄h = 0.01,
d̄m = 0.049969, and K̂ ∈ [30000, 70000].

only K̂1 =
r̄u∗

d̄h
− (u∗)2 + r̄

2d̄h
−

√
r̄
√
r̄(2u∗+1)2−8d̄h(u∗)2(u∗+1)

2d̄h
exists E∗ where is the

trace equals 0. Because of λ1λ2 > 0, λ1 + λ2 > 0 as K̂ ∈ (K̂1,
r̄u∗

d̄h
− (u∗)2), i.e.

E∗ is source, whereas, λ1 + λ2 < 0 as K̂ ∈ (−∞, K̂1), i.e. E∗ is sink. From Fig.
A.1, there exists a K̂ that makes interior equilibrium (E∗) from sink to source.

Proof of Theorem 4.3.6

Proof. I re-scaled the system 4.3 to the following model:

u′ = g(u)(f(u)− v)

v′ = v(g(u)− d̄m),
(A.43)

where g(u) = ωu
1+u

and f(u) = r̄
g(u)

· u2

K̂+u2
− d̄h

g(u)
· u.

I would apply Theorem 3.1 in Wei et al. (2011) Wang et al. [2011] into system
A.43, then our system must have:

(a1) f ∈ C1(R̄), f(a) = f(b) = 0, where 0 < a < b; f(u) is positive for a < u < b,
and f(u) is negative otherwise; there exists λ̄ ∈ (a, b) such that f ′(u) > 0 on [a, λ̄),
f ′(u) < 0 on (λ̄, b];

(a2) g ∈ C1(R̄), g(0) = 0; g(u) > 0 for u > 0 and g′(u) > 0 for u > 0, and there
exists λ > 0 such that g(λ) = d.

(a3) f(u) and g(u) are C3 near λ = λ̄ and f ′′(λ̄) < 0.
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Then the Jacobean matrix of Model (A.43) is

J =

{
f ′(u)g(u) −g(u)
vg′(u) 0

}

g′(u) =
ω

(u+ 1)2
> 0

and I set h(u) = ru2

K+u2
− ud̄h,f(u) = h(u)

g(u)
,then

f ′(u) = h′(u)g(u)−h(u)g′(u)
g2(u)

= h′(u)
g(u)

− f(u)g′(u)
g(u)

=

r̄(2K̂u+K̂−u2)
(K̂+u2)2

−d̄h

ω

(A.44)

(a1) f ∈ C1(R̄), f(a) = f(b) = 0, where 0 < a < b; f(u) is positive for a < u < b,
and f(u) is negative otherwise; there exists λ̄ ∈ (a, b) such that f ′(u) > 0 on [a, λ̄),
f ′(u) < 0 on (λ̄, b];

f(u) = h(u)
g(u)

where h(u) = ru2

K+u2
− ud̄h and the solution of h(u) = 0 being u1 =

r̄−
√
r̄2−4d̄2hK̂

2d̄h
and u2 =

r̄+
√
r̄2−4d̄2hK̂

2d̄h
. Let a = u1 and b = u2,then you have f(a) =

f(b) = 0.
Then,

h′(u1) = −
2d̄h

(
r̄2
(
r̄ −

√
r̄2 − 4K̂d̄2h

)
+ 2K̂d̄2h

(√
r̄2 − 4K̂d̄2h − 2r̄

))
r̄

(
r̄ −

√
r̄2 − 4K̂d̄2h

)2

and

h′(u2) = −
2d̄h

(
r̄2
(√

r̄2 − 4K̂d̄2h + r̄

)
+ 2K̂d̄2h

√
r̄2 − 4K̂d̄2h

)
r̄

(√
r̄2 − 4K̂d̄2h + r̄

)2

Since r̄2 > 4K̂d̄2h, h′(u1) > 0 and h′(u2) < 0, then I have

f ′(u1) =
h′(u1)

g(u1)
> 0 and f ′(u2) =

h′(u2)

g(u2)
< 0

Therefore, there exists a λ̄ ∈ (a, b) make the sign of f ′(u) from positive to negative.
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(a2) g ∈ C1(R̄), g(0) = 0; g(u) > 0 for u > 0 and g′(u) > 0 for u > 0, and there
exists λ > 0 such that g(λ) = d.

g(u) = ωu
1+u

, if u = 0 then g(0) = 0, if u > 0 then g(u) > 0. g′(u) = ω
(1+u)2

> 0.
I assume there exist λ > 0 such that g(λ) = ωλ

1+λ
= d > 0, i.e λ = d

ω−d .

(a3) f(u) and g(u) are C3 near λ = λ̄ and f ′′(λ̄) < 0.

f ′′(λ) = f ′′(λ̄)

= − 4r̄λ̄2

ω(K̂+λ̄2)
2 − 6r̄(λ̄+1)λ̄

ω(K̂+λ̄2)
2 +

2r̄

ω(K̂+λ̄2)
+ 8r̄(λ̄+1)λ̄3

ω(K̂+λ̄2)
3

=
2r̄(K̂2−3K̂(λ̄+1)λ̄+λ̄3)

ω(K̂+λ̄2)
3

(A.45)

From (A.44), since f ′(λ̄) = 0,

r̄
(
2K̂λ̄+ K̂ − λ̄2

)
(
K̂ + λ̄2

)2 = d̄h ⇒ r̄(K̂ + 2K̂λ̄− λ̄2) = d̄h(K̂ + λ̄2)2

Therefore, it must has K̂ + 2K̂λ̄ > λ̄2.
In addition to this, f ′(u) also is following

f ′(u) = − d̄h
ω
− 2r̄(u+1)u2

ω(K̂+u2)
2 +

r̄u

ω(K̂+u2)
+ r̄(u+1)

ω(K̂+u2)

= − 2r̄(u+1)u2

ω(K̂+u2)
2 +

r̄(u+1)

ω(K̂+u2)
+ v∗

= v∗ + r̄(1+u)

(K̂+u2)ω
(1− 2u2

K̂+u2
)

(A.46)

From (A.46), v∗ > 0 and f ′(u) = 0, if u=λ̄, then λ̄ and K̂ must be λ̄2 > K̂. Then

K̂2 − 3K̂λ̄2 − 3K̂λ̄+ λ̄3 = (K̂2 − 2λ̄K̂ − λ̄2K̂) + (λ̄3 − λ̄K̂ − 2λ̄2K̂) < 0.

In summary, f ′′(λ̄) < 0.

Corollary A.0.0.1. (Theorem 3.1 in Wei et al. (2011)) Assume that f,g satisfy (a1)-
(a3). Then the system (A.43) undergoes a Hopf bifurcation at (λ̄, vλ); the Hopf bifur-
cation is supercritical and backward (respectively, subcritical and forward) if a(λ̄) < 0
(a(λ̄) > 0), where a(λ̄) is defined in A.47.

According to the Corollary (A.0.0.1), the direction of the Hopf bifurcation and the
stability of bifurcating periodic orbits are determined by the first Lyapunov coefficient
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a(λ̄) = f ′′′(λ̄)g(λ̄)g′(λ̄)+2f ′′(λ̄)[g′(λ̄)]2−f ′′(λ̄)g(λ̄)g′′(λ̄)
16g′(λ̄)

= ω
16(1+λ̄)

(2f ′′(λ̄) + λ̄f ′′′(λ̄))
(A.47)

From Eqt.(A.47), since λ̄ > 0, ω
16(1+λ̄)

> 0, and

2f ′′(λ̄) + λ̄f ′′′(λ̄) =
2r̄(2K̂3−K̂2(2λ̄(2λ̄+9)+3)+2K̂(λ̄(4−3λ̄)+9)λ̄2+(2λ̄−3)λ̄4)

ω(K̂+λ̄2)
4
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10000

1e+06 2e+06 3e+06 4e+06 5e+06

K
^

λ

Figure A.2: Simulation for the sign of a(λ̄). All a(λ̄) is positive. From Theorem
A.0.0.1, the bifurcation is subcritical and forward. The black curve indicates positive
and red curve indicates negative. r̄ = 100, ω =∈ [0.000010001, 0.0010002], d̄h =

0.0009, d̄m = 0.001, and K̂ = K̂1 ∈ [6.9 ∗ 105, 5.0 ∗ 106].

From Figure A.2 and Eqt.A.47, I got a(λ̄) > 0. According to Corollary A.0.0.1,
the system 4.3 undergoes a Hopf bifurcation at K̂ = K̂1; the Hopf bifurcation is
subcritical and forward. From Figure A.3 and Eqt.A.47, I can got a(λ̄) < 0. According
to Corollary A.0.0.1, the system 4.3 undergoes a Hopf bifurcation at K̂ = K̂1; the
Hopf bifurcation is supercritical and backward .

From Figure A.3, K̂ > K̂1, there exists a stable limit cycle.

Proof of Theorem 4.4.1

Proof. Let f(u) = u2

K̂+u2
, then the Jacobian of the system is obtained as:

J =

{
−d̄h + r̄(t)f ′(u)− ωv

(1+u)2
− ωu

1+u

ωv
(u+1)2

ωu
u+1

− d̄m

}
.
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Figure A.3: Simulation for a stable limit cycle around whenever K̂ > K̂1. Figure
A.3b: the conditions for subcritical or supcritical of hopf-bifurcation when K̂ = K̂1.
The black indicates supcritical i.e. a(λ̄) > 0; the blue indicates subcritical i.e. a(λ̄) >
0. Choose values at blue dot conditions to get Figure A.3a: K̂ = 4.6, K̂1 = 4.34,
r̄ = 1, ω = 0.3, d̄h = 0.2, d̄m = 0.21, u∗ = 2.33, r̄u∗

d̄h
− (u∗)2 = 6.22.

After that, the linearized system at (u∗, 0) is[
h′

g′

]
=

[
−d̄h + r̄(t)f ′(u∗) − ωu∗

1+u∗

0 ωu∗

u∗+1
− d̄m

]
∗

[
h

g

]
.

Assume the linearly independent set of initial conditions:

h1(0) = 1, g1(0) = 0

and
h2(0) = 0, g2(0) = 1

to find linearly independent solutions (h1(t), g1(t)) and (h2(t), g2(t)) of linear system.
Then the solutions are:

h1(t) = e
∫ t
0 [r̄(z)∗f ′(u∗)−d̄h]dz and g1(t) = 0,

h2(t) = e
∫ t
0 [r̄(z)∗f ′(u∗)−d̄h]dz ∗

∫ t

0

[
− ωu∗

u∗ + 1
e
∫ s
0 [

ωu∗
1+u∗−d̄m+d̄h−r̄(s)∗f ′(u∗)]ds

]
dz

and
g2(t) = e

∫ t
0 [

ωu∗
1+u∗−d̄m]dz.
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Hence, I can obtain the fundamental matrix F(t) of the linearized system over the
interval 0 ≤ t ≤ T , where T is the period, which is following:

F(T ) =

[
h1(T ) h2(T )

g1(T ) g2(T )

]
,

and the eigenvalues of the transition matrix are

λ1 = e
∫ T
0 [r̄(t)∗f ′(u∗)−d̄h]dt and λ2 = e

∫ T
0 [

ωu∗
1+u∗−d̄m]dt.

Therefore, if λ1 < 0 and λ2 < 0, the (u∗, 0) is stable, otherwise, it is unstable.

Proof for Chapter. 5

Proof of Theorem 5.2.1

Proof. I linearize the bee-only model:

D




Ė(t)

L̇(t)

Ṗ (t)

Ȧ(t)




∣∣∣∣∣
E∗

i

=


− βA2r(

βE+A2+K
)2 − dE 0 0

2Ar(βE+K)(
βE+A2+K

)2
0 −dL 0 0

0 0 −dP 0

0 0 0 −dA




E(t)

L(t)

P (t)

A(t)



+



βA2re−dEτe(
βE+A2+K

)2 0 0 − 2Are−dEτe (βE+K)(
βE+A2+K

)2
− βA2re−dEτe(

βE+A2+K
)2 0 0

2Are−dEτe (βE+K)(
βE+A2+K

)2
0 0 0 0

0 0 0 0




E(t − τe)

L(t − τe)

P (t − τe)

A(t − τe)



+



0 0 0 0

βA2re−dEτe−dLτl(
βE+A2+K

)2 0 0 − 2Are−dEτe−dLτl (βE+K)(
βE+A2+K

)2
− βA2re−dEτe−dLτl(

βE+A2+K
)2 0 0

2Are−dEτe−dLτl (βE+K)(
βE+A2+K

)2
0 0 0 0




E(t − τe − τl)

L(t − τe − τl)

P (t − τe − τl)

A(t − τe − τl)



+



0 0 0 0

0 0 0 0

βA2re−dEτe−dLτl−dAτa(
βE+A2+K

)2 0 0 − 2Are−dEτe−dLτl−dAτa (βE+K)(
βE+A2+K

)2
− βA2re−dEτe−dLτl−dAτa(

βE+A2+K
)2 0 0

2Are−dEτe−dLτl−dAτa (βE+K)(
βE+A2+K

)2




E(t − τe − τl − τp)

L(t − τe − τl − τp)

P (t − τe − τl − τp)

A(t − τe − τl − τp)


(A.48)

For extinction equilibrium, the matrix (A.48) gives:

D




Ė(t)

L̇(t)

Ṗ (t)

Ȧ(t)




∣∣∣∣∣
(0,0,0,0)

=


−dE 0 0 0

0 −dL 0 0

0 0 −dP 0

0 0 0 −dA




E(t)

L(t)

P (t)

A(t)

+ 0

210



and from the matrix, I obtain the following eigenvalues:

λ1 = −dE < 0, λ2 = −dL < 0, λ3 = −dP < 0, λ4 = −dA < 0

Thus, I can conclude that E∗
0 is always locally asymptotically stable.
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Figure and table for Chapter. 2
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(a) Spatial fidelity dynamics with
different task switching probability.
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Figure B.1: Black and red curves which are βA = βB = 0.5 and βA = βB = 1,
separately. The blue curve is task switching probability to task A is βA = 0.75;
however, to task B is βA = 0.25. Figure B.1a: Black, red, and blue shadows are
standard deviations.

Test P-value Test P-value

ANOVA for all groups * <2.2e-16 3 groups vs 4 groups * 0.1409

2 groups vs 3 groups * <2.2e-16 3 groups vs 5 groups 0.0051

2 groups vs 4 groups * <2.2e-16 4 groups vs 5 groups 0.2512

2 groups vs 5 groups * <2.2e-16
Table B.1: P-values of the Welch ANOVA test and T-test. Star * means they have
different variances.

Figure for Chapter. 5
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Figure B.2: Bifurcation diagrams of Model (5.1) with constant egg-laying rate
for death rates. Figure B.2g-B.2i are for the interior equilibrium L∗

i , i = 1, 2
(see Eqt.(5.9)). Figure B.2j-B.2l are for the interior equilibrium P ∗

i , i = 1, 2 (see
Eqt.(5.10)). Blue curves indicate stable equilibrium, and black curves indicate un-
stable equilibrium. The fixed parameters’ value are r = 1499, K = 69, 545, 190,
dE = 0.027, dL = 0.001, dP = 0.021, dA = 0.053, β = 15, τe = 3, τe = 6 and τe = 12.
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The project "How to model honey bee population dynamics: stage-structure and
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The project "Impacts of seasonality and parasitism on honey bee population dy-
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