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ABSTRACT 

Uncertainty quantification is critical for engineering design and analysis. 

Determining appropriate ways of dealing with uncertainties has been a constant challenge 

in engineering. Statistical methods provide a powerful aid to describe and understand 

uncertainties. This work focuses on applying Bayesian methods and machine learning in 

uncertainty quantification and prognostics among all the statistical methods. This study 

focuses on the mechanical properties of materials, both static and fatigue, the main 

engineering field on which this study focuses. This work can be summarized in the 

following items: First, maintaining the safety of vintage pipelines requires accurately 

estimating the strength. The objective is to predict the reliability-based strength using 

nondestructive multimodality surface information. Bayesian model averaging (BMA) is 

implemented for fusing multimodality non-destructive testing results for gas pipeline 

strength estimation. Several incremental improvements are proposed in the algorithm 

implementation. Second, the objective is to develop a statistical uncertainty quantification 

method for fatigue stress-life (S-N) curves with sparse data. 

Hierarchical Bayesian data augmentation (HBDA) is proposed to integrate 

hierarchical Bayesian modeling (HBM) and Bayesian data augmentation (BDA) to deal 

with sparse data problems for fatigue S-N curves. The third objective is to develop a 

physics-guided machine learning model to overcome limitations in parametric regression 

models and classical machine learning models for fatigue data analysis. A Probabilistic 

Physics-guided Neural Network (PPgNN) is proposed for probabilistic fatigue S-N curve 

estimation. This model is further developed for missing data and arbitrary output 
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distribution problems. Fourth, multi-fidelity modeling combines the advantages of low- 

and high-fidelity models to achieve a required accuracy at a reasonable computation cost. 

The fourth objective is to develop a neural network approach for multi-fidelity modeling 

by learning the correlation between low- and high-fidelity models. Finally, conclusions are 

drawn, and future work is outlined based on the current study. 
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1 INTRODUCTION 

1.1 Backgrounds 

Many aspects of engineering practice involve collecting, working with, and using 

data to solve a problem [1]. The topic of data uncertainty is often called error analysis, a 

phrase that implies that some error has been made in the measurement or calculation [2]. 

Uncertainties originate from the limited availability or accuracy of data, from the 

approximations in modeling or the adequacy of mathematical predictions, from the limited 

precision of computational processing, and so on. The systematic uncertainty 

quantification affecting physical systems is critical for engineering design and analysis, 

where risks must be reduced as much as possible [3]. Determining appropriate ways of 

dealing with uncertainties has been a constant challenge in engineering. Statistical methods 

provide a powerful aid to describe and understand uncertainties. Statistics is the branch of 

applied mathematics concerned with variability and its impact on decision-making [3]. 

This work focuses on applying Bayesian methods and machine learning in uncertainty 

quantification and prognostics among all the statistical methods. 

Bayesian data analysis is a practical method for making inferences from data using 

probability models for quantities being observed and for quantities to be learned. The 

essential characteristic of Bayesian methods is their explicit use of probability for 

quantifying uncertainty in inferences based on statistical data analysis. The process of 

Bayesian data analysis can be idealized by dividing it into the following three steps: Frist. 

Set up a full probability model - a joint probability distribution for all observable and 

unobservable quantities in a problem. Second, conditioning on observed data, calculate and 
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interpreting the appropriate posterior distribution - the conditional probability distribution 

of the unobserved quantities of interest, given the observed data. Third, evaluate the fit of 

the model and the implications of the resulting posterior distribution. A benefit of using 

the Bayesian method is that it facilitates a common-sense interpretation of statistical 

conclusions. For instance, a Bayesian (credible) interval can be regarded as having a high 

probability of containing the unknown quantity, in contrast to a frequentist (confidence) 

interval, which may strictly be interpreted only in relation to a sequence of similar 

inferences that might be made in repeated practice [4].  

Besides Bayesian statistics, a large portion of this study focuses on applying and 

developing machine learning models for solving engineering problems. Today, artificial 

intelligence (AI) is a thriving field with many practical applications and active research 

topics [5]. Machine learning is an important application of AI that allows machines to learn 

from data. The learning problems can be roughly categorized as supervised, unsupervised, 

and reinforcement learning. In supervised learning, the goal is to predict the value of an 

outcome measure based on several input measures. There is no outcome measure in 

unsupervised learning, and the goal is to describe the associations and patterns among a set 

of input measures [6]. Reinforcement learning is useful for learning how to act or behave 

when given an occasional reward or punishment signals [7]. Great success has been 

achieved in solving engineering problems using machine learning methods. However, 

when it is applied to some specific problems, issues are still unsolved, for example, sparse 

data, missing data, and bad extrapolation behavior. In this study, those issues are explored 

with engineering applications. 
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This study focuses on the mechanical properties of materials, both static and fatigue. 

For static properties, the objective is to predict the strength and quantify its uncertainty for 

aging materials by surface information fusion. For fatigue properties, this work presents a 

framework for fatigue life prediction and uncertainty quantification for different types of 

fatigue loadings. While applying statistical methods for solving the above problems, the 

existing models are extensively explored, modified, and improved. New models are 

proposed for specific issues existing in the focused field. 

1.2 Objectives and Contributions 

Based on the discussion above, the research objectives and contributions are 

summarized below: 

1. The mechanical properties of pipelines installed decades ago decline with time. 

Maintaining the safety of vintage pipelines requires the accurate estimation of 

the strength. The objective is to predict the reliability-based strength using 

nondestructive multimodality surface information. Bayesian model averaging 

(BMA) is implemented for fusing multimodality non-destructive testing results 

for gas pipeline strength estimation. Several incremental improvements are 

proposed in the algorithm implementation. 

2. Sparse data observation is very common in fatigue testing due to various 

reasons, such as time and budget constraints, and availability of testing 

materials and resources. The objective is to develop a statistical uncertainty 

quantification method for fatigue S-N curves with sparse data. Hierarchical 

Bayesian data augmentation (HBDA) is proposed to integrate hierarchical 
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Bayesian modeling (HBM) and Bayesian data augmentation (BDA) to deal with 

sparse data problems for fatigue S-N curves. 

3. The third objective is to develop a physics-guided machine learning model to 

overcome limitations in parametric regression models and classical machine 

learning models for fatigue data analysis. A Probabilistic Physics-guided 

Neural Network (PPgNN) is proposed for probabilistic fatigue S-N curve 

estimation. This model is further developed for fatigue data analysis of 

additively manufactured Ti-6Al-4V with missing data. Next, a Physics-guided 

Mixture Density Network (PgMDN) is proposed, which relaxes the limitation 

of restricted neural network architecture and distribution forms. 

4. Multi-fidelity data exist in almost every engineering and science discipline, 

which can be from simulation, experiments, and a hybrid form. The objective 

is to combine two or multiple sources of different fidelity data to have a high 

accuracy summary and low computational cost. Multi-fidelity Data 

Aggregation using Convolutional Neural Networks (MDA-CNN) is proposed 

for multi-fidelity modeling. The proposed framework treats the multi-fidelity 

data as image data and processes them using CNN, which is very scalable to 

high dimensional data with more than two fidelities. 

1.3 Organization of the Dissertation 

The dissertation is organized as follows: 

Chapter 2 concentrates on uncertainty quantification and prediction based on 

Bayesian methods. Objectives No. 1 and 2 in Section 1.2 are included in this chapter. 
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Experimental data collected from the industry are first introduced for probabilistic bulk 

strength prediction from surface measurements. Candidate models are generated based on 

a random combination of linear variables. Next, the Bayesian model averaging approach is 

introduced. Several difficulties of implementing BMA in practice are illustrated in the 

context of strength estimation. Following that, the overall method is demonstrated using 

the models and data for vintage pipeline materials. The usefulness of different surface 

information is analyzed. The advantages of the BMA are discussed based on the results. 

For probabilistic fatigue stress-life curves prediction with sparse data, first, the strategies 

for probabilistic S-N curve estimation with sparse data are developed based on the 

hierarchical Bayesian model and Bayesian data augmentation. The theories of HBM and 

BDA are illustrated, and their implementation is specified. Next, the proposed four 

strategies are validated using fatigue test data from the literature. Following that, an 

engineering application is given to estimate the probabilistic S-N curves of the demolished 

Pearl Harbor Memorial Bridge, where only limited samples are available for testing. 

Several issues related to this research are discussed.  

Chapter 3 concentrates on uncertainty quantification and prediction based on 

physics-guided learning. Objective No. 3 is included in this chapter. First, a brief 

introduction to neural networks is given with basic terminologies and math formulations. 

Next, a probabilistic method for S-N curve estimation using the neural network is proposed. 

The physics-guided machine learning method is described, including physics-based 

constraints on the neural network parameters and the construction of the neural network 

architecture. Following that, extensive experiments are conducted for model validations 
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considering both single factor and multi-factor. Detailed discussions are given for the effect 

of encoded physics constraints on the results. The necessities of the physics guidance in 

the neural network for the fatigue data analysis are illustrated with examples where issues 

occur if the classic neural network is employed. Next, the probabilistic physic-guided 

neural network (PPgNN) is applied in the fatigue data analysis of additively manufactured 

Ti-6Al-4V. The PPgNN is adapted to be capable of learning from data set with missing 

data. Following the methodology, the database collected from open references is described. 

Next, the results are shown according to predictive performance and improvement with 

incomplete data. Following this, the Physics-guided Mixture Density Network (PgMDN) 

is proposed. A brief introduction of Mixture Density Networks is presented. Next, the 

method for incorporating physics constraints in Neural Networks is introduced. An 

algorithm for NN training (i.e., constrained optimization) is described. Next, the model is 

illustrated using a numerical example and a practical problem involving fatigue survival 

analysis. Some discussions are presented. 

Chapter 4 proposes a framework for prognostics based on multi-fidelity learning. 

Objective No. 4 is included in this chapter. First, the methodology of Multi-fidelity Data 

Aggregation using Convolutional Neural Networks (MDA-CNN) is presented. Next, the 

MDA-CNN is validated with extensive numerical examples. Following that, the MDA-

CNN is applied in two engineering problems, stress prediction with finite element analysis 

and fatigue crack growth. After that, Discussions are given to illustrate the benefits and 

limitations of the proposed framework.   
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2 UNCERTAINTY QUANTIFICATION AND PROGNOSTICS BASED ON 

BAYESIAN METHODS 

2.1 Overview 

In this Chapter, Bayesian methods are applied in uncertainty quantification and 

prognostics in engineering. Section 2.2 focuses on yield strength prediction, and Section 

2.3 describes a method for probabilistic fatigue stress-life estimation. 

Section 2.2 focuses on the reliability-based strength prediction using nondestructive 

multimodality information by the method of Bayesian model averaging (BMA). A class of 

models is formed from all cases of linear combinations of the surface property 

measurements. The models are averaged based on the posterior model probabilities. 

Occam’s window is introduced to reduce the number of models under consideration while 

keeping the predictive accuracy. By not conditioning on any single model, BMA provides 

more reliable strength prediction by accounting for model uncertainties. In addition, the 

usefulness of the variables used to predict the strength is evaluated according to the 

frequency of appearance in the models with high posterior probabilities. The variables with 

paramount predictive importance can be selected in this way. Thus, the BMA method 

shows advantages in both vintage pipe strength prediction and model selection [8]. 

In this Section 2.3, a novel statistical uncertainty quantification (UQ) method for 

fatigue S-N curves with sparse data is proposed. The method called Hierarchical Bayesian 

data augmentation (HBDA) is proposed to integrate the hierarchical Bayesian modeling 

(HBM) and Bayesian data augmentation (BDA) to deal with sparse data problems 

specifically for fatigue S-N curves. The key idea is to use: (1) HBM for analyzing the 
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variability of S-N curves both within one stress level and across stress levels; (2) BDA to 

build up a large-size sample of fatigue life data based on the observed sparse samples. Four 

strategies to estimate the probabilistic S-N curves with sparse data are proposed: (1) 

hierarchical Bayesian modeling (HBM) only, (2) Bayesian data augmentation (BDA) only, 

(3) posterior information from HBM used as prior information for BDA (HBM+BDA), and 

(4) augmented data from BDA used by HBM (BDA+HBM). Strategy (3) and (4) are named 

HBDA hereafter. Next, the four strategies are validated and compared using aluminum 

alloy data and laminate panel data from open literature. Convergence study and confidence 

estimation are performed, and it is shown that the HBDA methods (i.e., HBM+BDA or 

BDA+HBM) have better performance compared with the classical method and HBM/BDA 

alone. The performance gain is especially significant when the number of available data 

samples is small. Finally, the proposed methodology is applied to a practical engineering 

problem for fatigue property quantification of the demolished Pearl Harbor Memorial 

Bridge, where only limited samples are available for testing [9].  

2.2 Probabilistic Bulk Strength Prediction from Surface Measurements Using Bayesian 

Model Averaging  

2.2.1 Introduction 

The United States is one of the leading nations with the most mileage length in the 

gas pipelines, especially those of early decades of construction. The latest data published 

by Pipeline and Hazardous Materials Safety Administration in 2017 shows that the US has 

recorded a total of 2,541,894 miles of gas pipelines across the nation. Taking natural gas 

transmission pipelines, for example, 25 percent of the nation’s total energy consumption is 
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transported by this way and delivered to more than 70 million U.S. consumers. It is vital to 

ensure the safety and reliability of the pipelines. For the pipelines installed decades ago, 

some of the properties are not known with adequate certainty due to incomplete record-

keeping, mergers, and acquisitions, and/or less rigorous testing prior to the enactment of 

the federal safety codes. Yield strength is one such property that also is critical for design 

basis, fitness-for-service, leak vs. rupture criteria, and maximum allowable operating 

pressure determinations. Yield strength forms the basis of critical stress calculations along 

with the loads and pressures on the pipelines. However, it is a common problem to estimate 

the mechanical properties due to the lack of available data sometimes. The operators may 

be forced to either assume a very conservative default value or need to re-establish the 

material properties through pipeline shutdown, cutout of samples, and then lab testing.  

Accurate pipe material strength estimation is critical for the integrity and risk 

assessment of the pipeline infrastructure systems [10, 11]. In order to measure the 

mechanical properties of the pipelines without shutdown and cutouts and repairs, a reliable 

non-destructive set of test methods would be of great benefit. Some indirect methods are 

proposed through the relationship between the yield strength and surface material 

properties such as chemical composition, volume fraction of microstructures, and hardness 

[12]. Several models are proposed based on different material measurements [13-16]. Each 

type of measurement contains a certain amount of valuable information for pipe strength 

estimation. Also, they are all associated with different amount of uncertainties. Relying on 

a single model often leads to predictions that have good performance in some situations at 

the expense of others. Therefore, there is a strong need to fuse multimodal information in 
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a statistically meaningful way for more accurate estimation and a robust modeling 

approach that will work for many types of vintage pipeline steels and their chemistries, 

microstructures, percent cold work, and physical properties like grain size. 

The general method for an ensemble of multiple models is to linearly combine 

individual model predictions according to different weighting strategies [17]. The weights 

can be equal for all models in the simplest case. Also, they can be determined through 

certain regression-based methods. In this way, the weights obtained are actually regression 

coefficients and hard to interpret since they take on arbitrary positive or negative values 

and cannot represent the performance of each model [18]. Another method to calculate the 

weights of models is based on information criterion [19], for example, Akaike information 

criterion (AIC, AICc) and Bayesian information criterion (BIC). However, different 

information criteria may generate different preference ranks among models since the best 

model selected by either AIC or BIC can be distinctly different [20]. Attention should be 

carefully paid to the choice of information criterion.  

Recently, Bayesian Model Averaging (BMA) has gained popularity in diverse 

fields, such as management science, medicine, and meteorology [17, 21]. BMA is an 

extension of the usual Bayesian inference methods in which one models both parameter 

uncertainty and model uncertainty through obtaining posterior parameter and model 

posteriors using Bayes' theorem. Thus, BMA allows for direct model selection, combined 

estimation, and prediction [22]. The BMA weights, all positive and summing up to one, 

reflect relative model performance since they are the probabilistic likelihood measure of a 

model being correct given the observations. 
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This study explores the use of BMA for strength predictions by fusing surface 

information of the vintage pipeline materials. The models being considered are constructed 

by randomly combining the multimodality surface measurements from the nondestructive 

testing, with each case of linear combinations being included. The weight assigned to each 

single model is achieved by Bayesian model regression and model posterior probability 

calculation. An ensemble model is obtained by averaging the candidate models. To avoid 

an extremely large number of candidate models, Occam’s Window algorithm [23] is 

applied to average a subset of models that are supported by the data. The predicted averaged 

strength distributions are compared with those of single models and the performance of 

BMA is evaluated.  

2.2.2 Data and Models 

2.2.2.1 Data 

Data are collected from 20 existing vintage gas pipes. The data of each pipe fall 

into 5 categories (Fig. 2.1): yield strength, chemical composition, grain size, hardness, and 

volume fraction. The yield strengths are measured from both surface indentation technique 

and full-wall (pipe wall thickness) tensile testing. The strengths from the surface 

measurements are close to the experimental strengths but with some deviations. The 

chemical composition is measured in weight percentage using a portable spectrometer after 

0.003 to 0.005 inches of surface grinding. Elements include carbon (C), manganese (Mn), 

phosphorus (P), sulfur (S), aluminum (Al), chromium (Cr), copper (Cu), molybdenum 

(Mo), niobium (Nb), nickel (Ni), silicon (Si), titanium (Ti), and vanadium (V). The grain 

sizes are measured at about 0.005 inches from the surface and in mm. The Knoop hardness 
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values are taken at 0.005 inches from the surface. The volume fraction is represented by 

percentage pearlite estimated by the lever rule using the carbon content at the surface. 

 

Fig. 2.1 Data Categories. 

2.2.2.2 Models 

In Ref. [14], the yield strength of steel is expressed as the linear combination of 

chemical composition and grain size to the power -1/2. [13] predicts the yield strengths of 

two-phase steel by a linear model of volume fraction. Similarly, a linear prediction model 

of yield strength with hardness is proposed in [15]. Based on these existing studies, a 

general model is proposed as 

 1/2( , , , )T SYS YS f CC GS HD VF  . (2.1) 

where YST and YSS are yield strength measured by tensile testing and surface indentation 

technique, respectively, CC is chemical composition, GS is grain size, HD is hardness, and 

VF is the volume fraction of pearlite. The function f (.) is a linear model. A total of 16 
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variables exist in Eq. (2.1). The yield strength measured by the surface indentation YSS 

serves as the baseline and then results of other non-destructive measurements (i.e., 

chemical composition, grain size, etc.) are used to correct/refine YSS to obtain a more 

accurate estimate of YST. This is not the only feasible way for information fusion. The 

authors choose this way as the surface indentation already provides a relatively accurate 

bulk strength estimation and is currently being used as a nondestructive testing method for 

strength estimation. Thus, any improvement from other sources of information can be 

easily justified when the surface indentation prediction is considered as the baseline.  

Eq. (2.1) is a full model which contains all the variables but may not be the best 

model supported by the data. This is because simpler explanations are to be preferred unless 

there is sufficient evidence in favor of more complicated explanations [24]. Therefore, a 

class of models to be considered is the collection of all the counterparts of Eq. (2.1). These 

models are the reduced models of the full model together with the Eq. (2.1). In another 

word, the models considered are linear models of any variable CC (C, Mn, P, S, …), GS-

1/2, H, and VF or any linear combination of these variables. 

2.2.3 Bayesian Model Averaging 

Suppose there is a set of “reasonable” models M1, …, Mk for estimating a quantity 

μ from the set of data y. Instead of using one single model for reaching inference for μ, 

Bayesian model averaging constructs the posterior density of μ given data, π (μ | y), not 

conditional on any model. This is arrived at via the Bayes formula [18, 21, 25, 26]. 

With the prior information on the parameter given the model, the integrated 

likelihood or marginal likelihood λn, j (y) for model Mj is expressed as 
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, ( ) ( | , ) ( | )n j j j j j jy f y M M d      . (2.2) 

where f (y | Mj, θj) is the likelihood of data given the model Mj and its parameters θj, π (θj | 

Mj) is the prior densities for parameters θj of model Mj. The marginal likelihood is larger 

for a model if more of its parameter space is likely and smaller for a model with large areas 

in its parameter space having low likelihood values. Even if the likelihood function has 

high peaks, to increase the marginal likelihood these peaks must compensate for the areas 

in its parameter space where the likelihood is low. Thus, a simpler model with compact 

parameter space will have a larger likelihood than a more complicated model, unless the 

latter is significantly better at explaining the data [27]. 

Using the Bayes theorem, the posterior density of the model is obtained as 
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
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(2.3) 

where P (Mj) is prior probabilities for models M1, …, Mk under consideration. After 

computing the posterior density π (μ | Mj, y) of μ for each model assuming that Mj is true, 

the averaged posterior distributions weighted by posterior model probability is given by   

 

1

( | ) ( | ) ( | , )
k

j j
j

y P M y M y   


 . (2.4) 

Eq. (2.4) shows that the posterior density π (μ | y) is a weighted average and mixture of the 

conditional posterior densities, where the weights are the posterior probability of each 

model. By not conditioning on any given model, BMA avoids the mistake of ignoring 

model uncertainties [28]. From the properties of mixture distributions, the posterior mean 

and variance of the averaged model are expressed as 
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respectively. 

BMA can provide the following benefits [17]. First, the BMA predictions receive 

higher weights from better-performing models since the likelihood of a model is essentially 

a measure of the agreement between the model predictions and the observations. Second, 

the BMA variance is an uncertainty measure of the BMA prediction. It contains two 

components: the within-model variance and the between-model variance, as shown in the 

first and the second terms of the right side of Eq. (2.6). 

Before implementing BMA theory for model averaging, there exist the following 

difficulties and some points worthy of attention in practice: 

The marginal model likelihood λn, j (y) calculated according to Eq. (2.2) may be 

analytically intractable. In many cases, no closed-form integral is available [21, 23]. 

Markov Chain Monte Carlo (MCMC) approach provides a way to overcome this problem. 

By drawing samples from the required distribution, the integrals in Eq. (2.2) can be 

evaluated. 

Another issue for BMA is the implementation of averaging according to Eq. (2.4) 

in practice. The number of models considered may be extremely large. As a result, 
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averaging over the whole class of models is too expensive computationally. One approach 

is to reduce the number of models by leaving out the models which are not evidently 

supported by the data. This can be accomplished by introducing Occam’s window to the 

process of BMA [24, 25, 29, 30]. In addition, after the class of models is chosen, how to 

practically implement BMA shown in Eq. (2.4) remained unsolved. In this work, the model 

averaging is achieved through the idea of mixture distributions [26, 31].  

To judge the efficacy of BMA, a metric is needed for assessing and comparing the 

performance of BMA and the single models. The purpose of this study is to predict the 

strength of vintage pipes. Thus, the predictive performance can be used as a meaningful 

metric to assess a modeling strategy. The logarithmic scoring rule measures the predictive 

ability by comparing the probabilities each model assigns to the events that actually occur 

[23, 25, 32, 33]. 

The above issues are discussed in the following parts of this section.    

2.2.4 Marginal Likelihood Calculation 

The topic of model uncertainty has begun to come into focus in the recent two 

decades because of the availability of MCMC computing methods [23]. The integrals in 

Eq. (2.24) can in general be hard to compute. The MCMC method provides a stochastic 

method of obtaining samples, which simulates a Markov chain converging to the posterior 

distributions [34, 35]. After some interaction steps, the chain converges, and its state can 

then be used as a sample from the desired distribution. Among many available MCMC 

algorithms, the Metropolis-Hastings algorithm is one of the popular methods [21]. For a 

basic introduction to the Metropolis-Hastings algorithm, see [36]. 
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Once the samples of model parameters are drawn from their posterior distributions, 

the marginal likelihood can then be calculated. The following equation [37] is adopted in 

this work 

 ,
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where θji (i = 1, …, N) are randomly sampled from the posterior density π (θj | Mj, y) via 

MCMC sampling, N is the total number of samples θji drawn from the posterior distribution 

for model Mj, δ is a small number (0.01 for example). Since θji gives a small likelihood 

value, the value of summation in the denominator may be quite large and causes an 

overflow in computation. The Eq. (2.7) is modified by dividing both numerator and 

denominator by the number of samples N, i.e. 
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to change the summation to mean value. In this way, the incremental average can be 

adopted to avoid numerical overflow. The estimator λn, j (y) may be evaluated by using a 

simple and obvious iterative scheme and converges fast. 
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2.2.5 BMA Implementation 

2.2.5.1 Occam’s Window 

Occam’s window provides a method to reduce the number of candidate models for 

BMA to make the computation more practical and efficient. There are two basic principles 

in Occam’s window. First, if a model predicts the data far less well than the model which 

has the best predictions, it can be discredited and should no longer be considered. Thus, 

among several k models only the models belonging to  

  max ( | )
' : , 1, 2,...,

( | )
l

j
j

P M y
A M C l k

P M y

     
  

. (2.9) 

are preserved, where Mj is the model selected to be preserved. C is a constant chosen by 

the data analyst. Second, for nested models, if the smaller model M0 receives more support 

from the data than the larger model M1, the larger models will be excluded. The essential 

idea of the second principle is shown in Fig. 2.2. 1/20 and 1 are adopted for OL and OR 

respectively in [29]. This means that if there is evidence for M0 then M1 is rejected, but 

rejecting M0 requires strong evidence. If the evidence is inconclusive, neither model is 

rejected. [32] shows that adopting 1/20 and 20 for OL and OR respectively may improve 

the predictive performance and thus are also adopted in this work. In this case, OL = OR
-1, 

and the second Occam’s window principle becomes the same as the first one.  
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Fig. 2.2 Second Principle of Occam’s Window. 

2.2.5.2 Mixture Distribution 

After the MCMC sampling, a set of parameters θji (i = 1, …, N) are sampled from 

the posterior distributions of parameters of model Mj. Here N is the number of random 

samples from the posterior distribution of each parameter. Substituting each θji into the 

model, the distribution π (μ | Mj, y) of the quantity of interest μ is obtained with the known 

values of variables. Next, Bayesian model averaging is performed through Eq. (2.4). The 

posterior density π (μ | y) for the averaged model is the mixture distribution of the single 

conditional posterior density π (μ | Mj, y). The mixture distribution based on the weight of 

each single model is achieved by the following steps.  

1. The distributions π (μ | Mj, y) form a matrix A with a dimension of N × k where k is 

the number of models considered. 

2. Taking a sample of the size N, b = (b1, …, bN), from the elements of the vector (1, 

2, …, k) randomly according to the probability weight. k is the number of models 

considered. This series of sample b serves as the indexes for mixture distribution. 

3. The mixture distribution is obtained by drawing samples from matrix A according 

to the indexes from Step 2. The ith sample of π (μ | y) is extracted from the ith 

sample of π (μ | Mbi, y). 
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An example of the above algorithm is given by a mixture of two normal 

distributions, N1 (0, 8) and N2 (20, 5). The weights for distributions N1 and N2 are 0.7 and 

0.3 respectively. Fig. 2.3 shows the two single distributions and the mixture distribution. 

 

Fig. 2.3 Mixture of Two Normal Distributions. 

2.2.5.3 Predictive Performance 

A primary purpose of statistical analysis is to make forecasts [18]. Thus, measuring 

how well a model predicts future observations is one way to judge the efficacy of the BMA 

strategy. For probabilistic predictions, there exist two types of discrepancies between 

observed and predicted values: the predictive bias and the lack of calibration [12]. The 

predictive bias shows a systematic tendency to predict on the low side or the high side. The 

lack of calibration shows a systematic tendency to over- or understate predictive accuracy. 

One measure of predictive ability is the logarithmic scoring rule [19] which is a combined 
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measure of bias and calibration. The smaller the predictive log score for a given model or 

model average, the better the predictive performance is. 

The data are randomly split into two sets. One set of data is called training data (yB) 

which is used for Bayesian model regression and averaging. The other set of data called 

testing data yT is used to measure the model performance. The predictive log score is related 

to the expectation of posterior predictive distribution and expressed as [25]  

 log [ ( | , )]
T

B
j

d y

E d M y


 . (2.10) 

for each single model, and  

 log [ ( | )]
T

B

d y

E d y


 . (2.11) 

for BMA, where d is one of the testing data, π (d | Mj, yB) and π (d | yB) is the posterior 

predictive distribution for model Mj and BMA, respectively. For a single model, π (d | Mj, 

yB) can be obtained by [9, 38]  

 ( | , ) ( | , ) ( | , )B B
j j j j j jd M y f d M M y d      . (2.12) 

where f (d | Mj, θj) is the likelihood of the testing data, and π (θj | Mj, yB) is the posterior 

density of θj given model Mj. After sampling θj1, θj2, … , θjN from π (θj | Mj, yB) through 

MCMC approximations, 
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Next, the log score is calculated by Eq. (2.10). For BMA, π (d | yB) is obtained by 

applying the method of mixture distribution in Section 2.2.5.2. Following that, the log sore 

of BMA is calculated from Eq. (2.11). 
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2.2.6 Results and Discussions 

2.2.6.1 Variable Selection 

A total of 16 variables exist in the general model (Eq. (2.1)) among which 13 

variables belong to the chemical composition category. If all the variables are considered 

in the model class to be averaged, the number of models will be relatively large and 

computationally expensive since each model requires one simulation [28]. To overcome 

this difficulty, the following strategy is adopted. First, several relatively important 

variables in chemical composition are selected based on their evidence for predictive 

usefulness. Next, the selected chemical components together with grain size, hardness, and 

volume fraction are used for information fusion and strength prediction. 

A total of 8191 models are linearly constructed from the 13 chemical variables. 

From the total model set, Occam’s window method selects 299 models (out of 8191 models) 

with the posterior model probabilities P (Mj|y) not less than 1/20 of that of the highest 

posterior probability model. The results of variable selection from the chemical 

composition are shown in Table 2.1. The first 10 models ranked by posterior model 

probability P (Mj|y) are listed as M1, …, M10. Pr (Ai≠0) shown in the bottom two rows is 

used as a metric for evaluating the usefulness of a variable. Pr (Ai≠0) is the probability that 

the coefficient Ai of a variable is non-zero. This is calculated by summing all the posterior 

probabilities of models which contain this variable. The variable with a higher probability 

is considered to be more useful. The subscripts all and Occam show that the model set 

considered in calculating Pr (Ai≠0) is the class of all models and the models selected by 

Occam’s window, respectively. From the bottom two rows of Table 2.1, Prall (Ai≠0) is close 
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to PrOccam (Ai≠0), which means that Occam’s window method which considers part of the 

models has similar results as that from the whole model set. The best model YST – YSS = f 

(Al, Cr, Cu, Nb, Ni) which contains Al, Cr, Cu, Nb and Ni has only 0.67% of the total 

posterior. This means that there is not a model which is superior to others in the model 

class and thus substantial uncertainty remains. The interpretation of the Pr (Ai≠0) was given 

in [39, 40] and is used in this work. The values between 0.5 and 0.75 are categorized as 

weak, values between 0.75 and 0.95 as positive, values between 0.95 and 0.99 as strong, 

and values above 0.99 as decisive evidence. Thus, 0.5 is set as the threshold to have at least 

weak evidence. For the purpose of variable selection, the probabilities that coefficients are 

non-zero for P, Cr, Cu, and Si are over 0.5 and higher than the others. As a result, these 

variables are selected as representatives of the chemical composition for future information 

fusion with grain size, hardness, and volume fraction. 

Table 2.1 Model Selection Only Using Chemical Composition Data. 

Model C Mn P S Al Cr Cu Mo Nb Ni Si Ti V 

P 
(Mj|y) 

× 103 

M1     • • •  • •    6.7 

M2      • •  • • •   6.6 

M3 •     • •  • •    5.6 

M4   •   •  • •  •   5.1 

M5   •   • •  •  •   5.0 

M6   •   • •   • •   5.0 

M7   • •   •    •  • 4.6 

M8   • •    • •  •   4.3 

M9  • • •  •   •  •   4.2 

M10   •    •       4.2 
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PrOccam 
(Ai≠0) 

× 10 

3.1 3.5 5.6 4.5 3.6 5.8 5.6 3.7 4.4 44 5.3 3.6 3.1  

Prall 
(Ai≠0) 

× 10 

2.3 2.7 6.1 4.2 2.9 6.2 6.1 3.1 4.2 4.3 5.6 3.0 2.3  
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2.2.6.2 Results for Full Data 

The full data of 20 vintage pipes for the selected chemical composition, grain size, 

hardness, and volume fraction are used for the Bayesian model selection, averaging, and 

variable analysis. The results are shown in Table 2.2. A total of 127 models are linearly 

constructed from the 7 variables (P, Cr, Cu, Si, GS-1/2, HD, and VF). From the total model 

set, Occam’s window method selects 37 models (out of 127 models) with the posterior 

model probabilities P (Mj|y) not less than 1/20 of that of the best model.  

Table 2.2 shows the top 10 models ranked by posterior model probability. The best model 

YST - YSS = f (Cu, HD) with the posterior model probability of 0.169 accounts for 16.9% of 

the total probability, which is more than 3 times higher than that of the second-best model. 

Another commonly used model selection method is the Bayes information criterion (BIC) 

[41, 42] based on the maximum likelihood estimation. For the best model, BIC selects the 

same model as the one with the highest posterior model probability. In addition, it can be 

observed that the variables of the best model (Cu and HD) have the highest probabilities 

that their coefficients are non-zero and show positive predictive usefulness. The results 

provide weak evidence for Cr and indecisive evidence for P, Si, GS-1/2, and VF. 

Table 2.2 Model Selection Using Chemical Composition Data and Other Features. 

Model P Cr Cu Si 
GS-

1/2 
HD VF 

λn, j (y) 

× 1023 

P 
(Mj|y) 

BIC 
rank 

M1   •   •  13.31 0.169 1 

M2  • • •  • • 4.42 0.056 30 

M3  • • • • •  4.13 0.053 34 

M4  • •  • • • 4.10 0.052 35 

M5  •  • • • • 3.88 0.049 40 
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M6  • • •  •  3.45 0.044 11 

M7 • •  •  • • 3.27 0.042 50 

M8 •  •     3.00 0.038 3 

M9 • • •   • • 2.81 0.036 54 

M10 •  •   •  2.68 0.034 4 

 Pr (Ai≠0)    

BMA  
Occam 0.37 0.62 0.77 0.44 0.36 0.78 0.41    

All 0.34 0.66 0.83 0.42 0.33 0.84 0.39    
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2.2.6.3 Predictive Performance - A Specific Case 

The results for full data are presented in Section 2.2.6.2 where posterior model 

probability P (Mj|y) and BIC are applied for model selection using the full data. In this 

section, the full data are split into training/testing data. The probability P (Mj|y) and BIC 

are calculated using the training data, and the log scores are calculated using the testing 

data. This is to evaluate the predictive performance of models selected by P (Mj|y) and BIC 

using log score. The performance of BMA for predictions of pipe strength is assessed by 

randomly splitting the data from a total of 20 vintage pipes into two sets: training data (15 

pipes) and testing data (5 pipes). The log score serves as the measurement of prediction 

performance. First, the results of a specific case of data splitting are shown and analyzed 

in detail. Next, the data are randomly split 100 times. The general predictive performance 

is evaluated based on these repeated experiments. Table 2.3 shows the results of models 

selection and averaging for a specific case of data splitting. 33 models are selected in 

Occam’s window out of 127 models. The models listed in Table 2.3 are the top 10 models 

ranked by posterior model probability. The best model selected by both posterior model 

probability and BIC is the YST - YSS = f (Cr, Cu). The probability of the coefficients to be 

non-zero also show weak evidence for Cr and Cu. It should be noted that the model M2 

which performs the best using the full data is ranked as the second (the third by BIC). The 

model M2 in Table 2.3 is YST – YSS = f (Cu, HD) which is ranked as the best model in Table 

2.2. Table 2.2 used all available data (20 data) to perform the calculation and Table 2.3 

only uses partial data (15 out of 20 data) to perform that calculation. Thus, this 

demonstrates that the ranking depends on the selected datasets. This is because both in the 
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subset and full set data case, no model shows paramount evidence based on the posterior 

model probabilities, and thus substantial model uncertainty retains. 

Predictive log scores are shown in Table 2.3. BMA shows better predictive 

performance than the best model M1. The improvement can be understood in the following 

way. The log score of BMA is 0.4 less than that of model M1 for both models in Occam’s 

window and all models. There are 5 data in the testing data set. Therefore the predictive 

probability of what is actually observed is [exp(0.4/5) -1] × 100% = 8.3% larger for BMA 

than for best model M1. However, the model M2 which is the best model for the full data 

performs better than the model M1 and BMA from the predictive point of view. 

Table 2.3 Results from the Split Dada. 

Model P Cr Cu Si 
GS-

1/2 
HD VF 

λn, j 
(y) 

× 
1018 

P 
(Mj|y) 

Log 
score 

BIC 
rank 

M1  • •     5.49 0.189 12.9 1 

M2   •   •  1.89 0.065 11.8 3 

M3  •      1.42 0.049 12.6 2 

M4  •  • • • • 1.35 0.046 12.6 46 

M5  • • •  •  1.29 0.044 12.3 16 

M6  •  •    1.26 0.043 12.6 11 

M7  •  •  • • 1.17 0.040 12.2 29 

M8  •     • 1.10 0.038 13.1 10 

M9  • • • • •  9.90 0.034 12.5 43 

M10 •  •     9.42 0.032 11.8 13 

 Pr (Ai≠0) 

BMA 
Occam 0.29 0.73 0.65 0.37 0.27 0.33 0.43   12.5  

All 0.25 0.78 0.69 0.34 0.20 0.27 0.41   12.5  



 

29 
 

In addition, Fig. 2.4 shows the comparison of predictive performances of direct 

surface indentation technique, lowest BIC model, highest posterior probability model, and 

BMA (over all model and the models in Occam’s window). The error bars represent the 

95% credible intervals. The dots with different shapes are the expectations of different 

models. To better compare the predictive performances, the root mean squared errors are 

calculated in Table 2.4. On average, the error of each model is less than that of the surface 

indentation technique. BMA over all models and the models in Occam’s window shows 

better performance than the lowest BIC model and highest posterior probability model. The 

expectations of BMA over all models are the best for prediction. 

To better compare and analyze the credible interval shown in Fig. 2.4, the predictive 

distribution of each model is illustrated by taking the data with the largest strength in Fig. 

2.4 as an example and shown in Fig. 2.5. It can be seen that the predictive distribution of 

BMA is wider than that of the single best model selected by BIC or posterior model 

probability. This is because that conditioning on a single selected model ignores model 

uncertainty. The best model in Table 2.3 accounts for only 18.9% of the total posterior 

probability, which shows that model uncertainty is substantial. Ignoring model uncertainty 

can lead to the underestimation of standard deviation which makes decisions riskier [23, 

32]. It should be noted that the values in  Fig. 2.4 and Fig. 2.5 are scaled by a constant 

value to mask the true values. 
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The posterior model probability P (Mj|y) is the criteria for model selection with all 

provided data. The calculation of P (Mj|y) is a little complex and the BIC gives an 

asymptotic approximation to the posterior model probability when the sample size is large 

enough. If the BIC approximation is sufficient, the model with the best BIC score is 

expected to be the same as the model that has the highest posterior probability [43]. They 

are mainly used in Section 2.2.6.2 to identify the highly ranked models. It should be noted 

that all available experimental data are used in these two criterion calculations as the main 

purpose is “Which models best explain the observed data?". 

The log score is mainly used to check the model’s predictive performance. All 

available experimental data are split into training and testing data. The testing data is used 

to calculate the log score for model predictive performance checking. The log score is 

mainly used in section 4.3 for model predictive performance checking. For example, Tables 

6-7 are evaluated using the log score. It should be noted that the model with the highest log 

score may be different from the model with the highest posterior probability/BIC as 

different sample size is used (i.e., testing data only vs. all available data). 
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Fig. 2.4 Predictive Performance Comparison. 

Table 2.4 Predictive Performance Comparison by Root Mean Squared Error. 

 Root mean squared error 

Surface indentation technique 5.80 

Lowest BIC model  6.62 

Highest posterior probability model (expectation) 6.90 

BMA over all models (expectation) 4.36 

BMA in Occam’s window (expectation) 4.61 

0.8 1.0 1.2 1.4 1.6 1.8

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

Scaled Experimental yied strength 

P
re

di
ct

io
n 

 

Surface indentation technique
Lowest BIC model
Highest posterior probability model
BMA over all models
BMA in Occam's window



 

32 
 

 

Fig. 2.5 Predictive Distributions. 

2.2.6.4 Predictive Performance - General Predictive Performance 

In order to study the predictive performance in a more general way, the analyses 

are repeated for 100 random training/testing data splits to check that the results in Section 

2.2.6.3 are not due to the particular random training/testing split used. Table 2.5 shows the 

average predictive usefulness of variables. Cu and HD with probabilities of coefficients 

being non-zero are 0.66 and 0.65, respectively (0.65 and 0.63 for BMA over all models), 

which again shows more positive evidence for prediction than other variables. Although 

Cr and Cu are the variables preferred in the single case stated above, the results averaging 

over the 100 times of validations agree with that of the full data. However, for the full data, 
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the probabilities of coefficients being non-zero are 0.77 and 0.78, respectively (0.83 and 

0.74 for BMA over all models) shown in the bottom two rows of Table 2, which are higher 

than the averaged results. This is due to the fact that the results shown in Table 2.5 are 

based on 15 training data which are less than the full data. The full data contain 20 data 

points, among which 15 are used for training and 5 for testing. Due to the training/testing 

data split, only 15 training data are used for variable usefulness evaluation in Table 2.5. As 

a result, there is more model uncertainty in a single prediction experiment. By averaging 

the results of repeated experiments, the effect of this uncertainty can be reduced.  

Table 2.5 Average Predictive Usefulness of Variables Over 100 Times of 

Validations. 

  P Cr Cu Si GS-1/2 HD VF 

Pr (Ai≠0) 
Occam 0.47 0.54 0.66 0.45 0.43 0.65 0.42 

All 0.48 0.54 0.65 0.47 0.45 0.63 0.43 

Table 2.6 shows the predictive comparison based on the log score between BMA 

and the model with the highest posterior probability. The average predictive log sores are 

15.07, 14.44, and 14.26 for the highest posterior probability model, BMA over models in 

Occam’s window and BMA over all models, respectively. On average BMA can predict 

the strength with an improvement of 13.5% (in Occam’s window) and 17.6% (over all 

models). Among the repeated experiments of 100 times, BMA both over models in 

Occam’s window and over all models have better predictive ability for 71 times and worse 
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for 29 times than the highest posterior probability model. In order to see more details of 

the predictive probability of what is observed for yield strength, the predictive performance 

improvement or decrease is divided into several ranges from less than 10% to larger than 

50%.  

When BMA performs better than the highest posterior probability model, the 

predictive ability is improved from 0 to 20% for nearly a half of times. For the rest, the 

times when BMA improves the predictive performance are relatively evenly for 20~30%, 

30~40%, and 40~50%. In addition, there is a possibility for the predictive performance to 

be improved to over 50%. The results of BMA over the models selected by Occam’s 

window method and that over all models are close to each other. The difference is that 

BMA over all models tends to have more times when the improvement falls into higher 

percentages. Thus, the predictive performance can be improved to a higher degree when 

all models are considered. 

From Table 2.6, it can be seen that model averaging also has the possibility of 

decreasing the predictive ability and performs worse than the highest posterior probability 

model. However, the percentages of reduction mostly concentrate in the range of less than 

20%. To better understand the cases of BMA being worse than the best model, the model 

with the highest posterior model probability in that case is studied. It is found that for 25 

out of 29 times the highest posterior probability model is YST - YSS = f (Cu, HD) which is 
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the best model selected by the full data. This model is the best model for only 6 out of 71 

times when BMA performs better. It is again shown that variables Cu and HD are of 

predictive importance. When this model is selected as the best model based on the posterior 

model probability, the predictive performance of this best model tends to be decreased after 

being averaged with other models.  

Table 2.7 shows the rank of model YST - YSS = f (Cu, HD) based on the posterior 

model probability. Due to the model uncertainty induced from insufficient data, this model 

may not be selected as the best model. However, it is very likely to be ranked as one of the 

top models according to Table 2.7. When this model is not selected as the best model, 

Bayesian model averaging can provide a tool to improve the predictive ability and 

reliability. 

Table 2.6 Predictive Performance Comparison Over 100 Times: BMA vs. Model with 

Highest Posterior Probability. 

Times out 

of 100 
Sum <10% 10~20% 20~30% 30~40% 40~50% >50% 

Better  
Occam 71 23 15 7 10 7 9 

All 71 18 13 8 8 10 14 

Worse  
Occam 29 14 11 3 0 1 0 

All 29 15 9 3 0 1 0 
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Table 2.7 Rank of Model YST - YSS = f (Cu, HD) Out of 127 When BMA 

Performs Better or Worse Than the Highest Posterior Probability Model. 

Rank sum 1 2 3 4 5 6~10 11~20 21~30 31~40 >40 

BMA 
better 71 6 16 10 5 6 11 13 3 1 0 

worse 29 25 1 1 0 0 1 0 0 1 0 

 

2.3 Probabilistic Fatigue Stress-life Curves Prediction with Sparse Data Using 

Hierarchical Bayesian Data Augmentation 

2.3.1 Introduction 

The relationship between the fatigue life of engineering materials and applied stress 

is an important property for design-for-reliability processes [44-49]. For safe-life design, 

the laboratory fatigue test data are often presented in the form of the S-N curve, e.g., a log-

log plot of stress S versus the median fatigue life N which is expressed in cycles to failure 

[16, 50-53]. Fatigue lives under the same stress levels typically display a huge scatter range 

even in well-controlled experiment conditions [54]. In order to describe the probabilistic 

fatigue property, an extension of the median S-N curve is to use the p quantile S-N curves, 

also called probabilistic S-N curves, a generalization that relates the p-quantile of fatigue 

life to the applied stress. Each curve represents a constant probability of failure [44, 55]. A 

conventional method to quantitatively describe the probabilistic S-N curves is to do 

probability fitting using approximately 15 specimens at each of the four or five constant 
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stress levels [54, 56]. Thus, a relatively large sample size is needed to obtain the 

probabilistic S-N curves experimentally. In addition, when the stress approaches the fatigue 

limit, fatigue testing is very time-consuming. Thus, the classical method is time-consuming 

and costly, which may be beyond the allowable time and budget constraints in practice. 

Sometimes, the available testing materials (e.g., remaining materials from a demolished 

structure) and resources (e.g., testing for very large components) may be limited, and the 

available experimental observations are sparse as well. Therefore, it is needed to develop 

a statistical method by which reasonable fatigue probabilistic S-N curves can be obtained 

using sparse data, and the cost for the experiment can be reduced without loss of validity 

for the uncertainty quantification results. 

Although a variety of statistical techniques have been utilized to fit probabilistic S-

N curves in the past decades, there remain difficulties to obtain a reasonable probabilistic 

S-N equation with satisfactory accuracy in the case of sparse experimental fatigue life data 

[54]. To deal with the probabilistic S-N fitting with sparse data, Xie et al. [54] propose a 

backwards statistical inference method. This method is to establish a large size of samples 

from sparse data by converting the fatigue lives tested at different stress levels into 

equivalent lives at an arbitrary stress level. The assumption is that the fatigue lives of the 

same specimen tested at different stress levels are at the same percentile of the 

corresponding fatigue life distributions. Implicitly, the correlation of fatigue lives of the 
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same specimen at different stress levels is assumed to be unity [57]. Adopting a similar 

methodology with Ref. [54], Tan [58] proposes a sample aggregation principle. The 

relationship between fatigue life standard deviation and stress level is derived in 

accordance with the S-N equation instead of being assumed as a linear relationship used in 

Ref. [54]. Gao et al. [59] propose a method dealing with sparse data based on the 

assumption that the probabilistic S-N curves can be transformed into straight lines in a 

double logarithm coordinate system and intersect at one point at the high-stress regime.  

This study explores the utilization of hierarchical Bayesian model (HBM) and 

Bayesian data augmentation (BDA) for probabilistic S-N curves fitting with sparse fatigue 

life data. Hierarchical Bayesian model is introduced to analyze fatigue data in [50, 60] 

where probabilistic S-N curves are obtained from predictive distributions. HBM uses all 

the data at different stress levels for mean and variance inference [61], which provides a 

tool for analyzing the sparse fatigue life data. However, the validity of the hierarchical 

Bayesian model in the case of sparse data is not discussed in detail, which is addressed in 

this work. In this work, the Bayesian data augmentation serves as another methodology by 

treating the sparse fatigue life data problem as a missing data problem [62-66]. The main 

idea is to build up a large-size sample of fatigue life data based on the sparse samples, 

hence making probabilistic S-N curve fitting much easier in mathematical treatment and 

more efficient in utilizing the information carried by the individual test data [54]. To the 
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best of the authors’ knowledge, this is the first attempt to employ the hierarchical Bayesian 

data augmentation in the sparse fatigue life data analysis. 

In this research, both the hierarchical Bayesian model and Bayesian data 

augmentation are utilized for probabilistic S-N curve estimation with sparse data 

individually. In addition, hierarchical Bayesian data augmentation (HBDA) is proposed in 

this work by combining HBM and BDA methods to further improve the estimation 

capability. Two approaches of the combination are proposed. One is to use the posterior 

information from HBM as prior information for BDA (HBM+BDA), and the other one is 

using augmented data from BDA for HBM analysis (BDA+HBM). The performances of 

the four strategies (i.e., HBM, DBA, HBM+BDA, and BDA+HBM) are compared using 

literature data and are applied to a practical engineering problem for steel bridges.  

2.3.2 Methodology 

2.3.2.1 Fatigue Probabilistic S-N Curve Estimation with Sparse Experimental Data 

In this research, both the hierarchical Bayesian model and Bayesian data 

augmentation are utilized for probabilistic S-N curve estimation with sparse data.  
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Fig. 2.6 Schematic Overview of the Proposed Method for Fatigue Probabilistic S-

N Curve Fitting with Sparse Experimental Data. 

This work explores the validity of the hierarchical Bayesian model (HBM) in the 

case of sparse fatigue life data (the left dashed line box in Fig. 2.6). Fatigue life data tested 

are organized by a hierarchy according to stress levels. The fatigue life variance is generally 

different at different stress levels. Hierarchical Bayesian modeling can analyze the 

variability both within one stress level and across stress levels without assuming the 

monotonic relationships between fatigue life variance and stress level [38, 67]. After 

hierarchical modeling, the posterior mean and variance for each stress level can be obtained. 
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Then the predictive distributions in the same hierarchical structure are used to estimate the 

probabilistic S-N curves [50]. 

Another method to generate the probabilistic S-N is proposed in this work by using 

Bayesian data augmentation (BDA) based on the missing data theory shown in the right 

dashed line box of Fig. 2.6. The sparse fatigue life data problem is treated as a missing data 

problem. That is, a specimen can only be tested to failure at one stress level. Thus, the 

fatigue lives of this specimen at other stress levels are unknown and are considered as 

missing data. The theory of missing data [62-66] can then be applied to sparse fatigue data. 

With data augmented, a large-size dataset can be established and the probabilistic S-N 

curves can be obtained by conventional methods used for a large sample. 

Also, this work explores the hierarchical Bayesian data augmentation (HBDA), the 

combination of HBM and BDA, to further improve the accuracy of estimation. The first 

approach (HBDA 1) to combine these two methods is to use the posterior information from 

HBM as the prior information for BDA (the right arrows in Fig. 2.6). When using HBM or 

BDA individually, the prior information is the sample mean and variance. By doing this 

combination, the sample mean and variance are first updated by considering the across-

stress level effect using HBM, and then the sparse data are augmented using BDA based 

on the updated priors. The probabilistic S-N curves can be obtained as the method of using 

BDA individually.  
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The second approach (HBDA 2) for the HBM and BDA combination is to use the 

augmented data from BDA for hierarchical modeling (the left arrow in Fig. 2.6). That is, 

the sparse data are first augmented using BDA. With large sample size data, HBM is 

implemented to update the sample mean and variance. The probabilistic S-N curves can be 

obtained as the method of using HBM individually.  

In summary, the following four strategies are investigated in this work (Fig. 2.6): 

(1) HBM. The sparse data are analyzed using a hierarchal Bayesian model. The 

probabilistic S-N curve is obtained from the predictive distributions. 

(2) BDA. A large dataset is established from sparse data using Bayesian data 

augmentation. The probabilistic S-N curve is obtained from the augmented data. 

(3) HBDA 1: HBM+BDA. First, the sparse data are analyzed using a hierarchical 

Bayesian model. Next, the posterior mean and variance information from HBM is applied 

as prior information for Bayesian data augmentation. The probabilistic S-N curve is 

obtained from the augmented data. 

(4) HBDA 2: BDA+HBM. First, a large dataset is established from sparse data 

using Bayesian data augmentation. Next, the augmented data are analyzed using the 

hierarchical model. The probabilistic S-N curve is obtained from the predictive 

distributions. 
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The probabilistic S-N curves obtained using each of the above four strategies are 

compared with that obtained from the conventional method with full data for validation. 

The detailed theories and implementation of the hierarchical Bayesian model and Bayesian 

data augmentation are explained in the context of sparse fatigue data in the following of 

this section.  

2.3.2.2 Hierarchical Bayesian Model 

The simplest type of multilevel data has two levels, in which one level consists of 

groups and the other consists of units within groups. For the case of fatigue data, one level 

is stress level (group), and the other level is fatigue lives of specimens tested at one stress 

level (units within groups). By denoting yi,j as the data on the ith unit within group Yj, i.e. 

Yj  = { y1,j, …, ynj,j }, the two levels hierarchical model can be expressed as [38] 

 
1, ,{ ,..., | } ~ i.i.d. ( | )

jj n j j jy y p y  , (within-

group model) 

(2.14) 

 
1{ ,..., | } ~ i.i.d. ( | )m p     , (across-group 

model) 
(2.15) 

  ~ ( )p  , (prior distribution) (2.16) 

where p (y |θj ) represents variability among measurements within the jth group, p (θ |φ) 

represents variability across groups, p (φ) represents information about a single fixed but 
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unknown quantity. p (y |θj )  and p (θ |φ) are sampling distributions estimated from the data, 

and p (φ) is a prior distribution which is not estimated from the data.  

From the Basquin relation [68] 

  
1 2

2

log( ) log( )

~ i.i.d. normal(0, )

j j j

j j

N S  

 

  
, (2.17) 

where log denotes the logarithmic function with base 10, the subscript j denotes different 

stress levels, β1 and β2 are fatigue curve coefficients which are shared across stress levels. 

Rewrite Eq. (2.17) in the matrix form 

  j j jY X    , (2.18) 

where Yj = log(Nj), Xj = (1, log(Sj)), and β = (β1 , β2) T. 

In this study, the fatigue lives are assumed to follow a lognormal distribution with 

different variances at each stress level. Thus, the logarithms of fatigue lives follow a normal 

distribution. The hierarchical model for describing the heterogeneity of means and 

variances across populations at different stress levels is the hierarchical normal model, in 

which the within- and across-group sampling models are both normal [38]. θj denotes the 

parameters at one stress level ( i.e. the group-specific mean and variance (Xjβ, σj
2)): 

  

2 2
1, ,{ ,..., | , } ~ normal ( , )

jj n j j j j jy y X X   

(within-group model) 

(2.19) 
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2
2 2 0 0 0

1{ ,..., } ~ inverse gamma ( , )
2 2m
   

(across-group model) 

(2.20) 

The full set of unknown quantities includes {(X1β, σ1
2), …, (Xmβ, σm

2)} representing 

group-specific means and variances, and (ν0, σ0
2) representing the across-group 

heterogeneity in group-specific variances. The graphical representation of the hierarchical 

normal model with linear regression can be described by Fig. 2.6 (a). 

2.3.2.2.1 Implementation 

To obtain the posterior distributions of the unknowns, the Gibbs sampler is 

implemented by an iterative sampling of each unknown quantity from its full conditional 

distribution. In the following, the priors and full conditional distributions of the unknowns 

are given, and the Gibbs sampler implementation is introduced. 

 The priors used are in the following forms [38]: 

  0 0~ normal ( , )   , (2.21) 

  0 0 0( ) exp( ) ~ geometric on the set {1,2,...}p     , (2.22) 

  2
0 ~ gamma ( , )a b . (2.23) 

The full conditional distribution is defined as the conditional distribution of one 

particular parameter given every other parameter’s value [69]. A detailed derivation of the 

full conditional distributions and methods for sampling from them can be found in Refs. 
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[70, 71]. With the above priors, the full conditional distributions for the unknown 

parameters are as follows [38]: 

  2 2
1 1 1

1 2 1
0 1

1 2
0 0 1

{ | ,..., , ,..., , ,..., } ~ normal ( , )

( / )

( / )

m m m n n

mT
n jj

mT
n n jj

Y Y X X

mX X

mX Y

   



  

 







   

   




. (2.24) 

where X = [X1; …; Xm], Y = [Y1, …, Ym], 

  2 2
1, , 0 0

2 2
0 0 ,0

{ | ,..., , , , , } ~

( )
inverse gamma ( , )

2 2

j

j

j j n j j

n
i j jj i

y y X

y Xn

   

      , (2.25) 
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
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
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

, (2.26) 

and 

  2
02 2 2 0

0 1 0

1/
{ | ,..., , } ~ gamma ( , )

2 2

m
jj

m
m

a b
 

     


, (2.27) 

Gibbs sampler is used to draw samples from the full conditional distribution to 

approximate the posterior distribution of each unknown parameter [38]. Given the current 

state s of the unknowns {β(s), σ1
(s), …, σm

(s), ν0
(s), σ0

(s)}, a new state s+1 may be generated 

as follows: 

Sample ( 1) 2( ) 2( )
1 1 1~ ( | ,..., , , ..., , , ..., )s s s

m m mp Y Y X X    , 

Sample 2( 1) 2 ( 1) ( ) 2( )
1, , 0 0~ ( | ,..., , , , )

j

s s s s
j j j n j jp y y X      , 
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Sample ( 1) 2( ) 2( 1) 2( 1)
00 0 1~ ( | , , ..., )s s s s

mp       , 

Sample 2( 1) 2 2( 1) 2( 1) ( 1)
00 1 0~ ( | ,..., , )s s s s

mp        . 

2.3.2.2.2 Predictive Distribution 

Bayesian inference makes it possible to obtain the predictive distributions for new 

observations [38, 72]. The predictive distribution is the conditional distribution of jY
 given 

the observed data Y j and can be expressed as 

1, , 1, , 1, ,( | ,..., ) ( | , ,..., ) ( | ,..., )
j j jj j j n j j j j n j j j n j jp Y y y y p y y y p y y d       , (2.28) 

For probabilistic S-N curve estimation purposes, it is useful to have a set of samples 

of jY from its predictive distribution. These samples can be drawn with Gibbs sampler as 

follows:  

Sample (1)
1, ,~ ( | ,..., )

jj j j n jp y y  , sample (1) (1)~ ( | )j j jy p y   , 

Sample (2)
1, ,~ ( | ,..., )

jj j j n jp y y  , sample (2) (2)~ ( | )j j jy p y   , 

… 

Sample ( )
1, ,~ ( | ,..., )

j

mc
j j j n jp y y  , sample ( ) ( )~ ( | )mc mc

j j jy p y   . 

The sequence (1) ( ){ ,..., }mc
j jy y   constitutes a total of mc samples from the marginal 

posterior distribution of Y j, which is the posterior predictive distribution. The probabilistic 

S-N curves can then be obtained from the predictive distributions [50]. 
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2.3.2.3 Bayesian Data Augmentation 

Let Y be the n × m matrix of all the potential data (complete data), observed and 

unobserved. Here n and m denote the total number of specimens and stress levels 

respectively. Let I be the n × m inclusion matrix, which indexes which potential data are 

observed. Iij = 1 if Yij is observed and Iij = 0 if Yij is missing. The matrix Y can then be 

thought of as consisting two parts: Yobs = {Yij | Iij = 1}, the observed data, and Ymiss = {Yij | 

Iij = 0}, the unobserved data. 

When considering data collection, it is useful to break the joint probability model 

into two parts: (1) the model for the underlying complete data, Y, including observed and 

unobserved components, and (2) the model for the inclusion matrix, I. The complete-data 

likelihood is defined as the product of the likelihoods of these two factors; that is, the 

distribution of the complete data, Y, and the inclusion matrix, I, given the parameters in 

the models [4]: 

  ( , | , ) ( | ) ( | , )p p p   Y I Y I Y , (2.29) 

where ϕ and ξ denote the parameter vectors of the distributions of the complete data and 

the inclusion matrix, respectively. In the context of fatigue data analysis, the estimates of 

primary interest are functions of the complete data Y and the parameters ϕ. The parameters 

ξ that index the missingness model are characteristic of data collection but are not generally 

of interest. 
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Since Y is not completely observed and the actual information available is (Yobs，

I), the appropriate likelihood for Bayesian inference is  

  
obs miss( , | , ) ( , | , )p p d    Y I Y I Y , (2.30) 

which is a marginal probability of the observed variables after integrating out the missing 

variables. 

The joint posterior distribution of model parameters ϕ and ξ given the observed 

information (Yobs，I) is  

  obs obs

miss

miss

( , | , ) ( , ) ( , | , )

( , ) ( , | , )

( , ) ( | ) ( | , )

p p p

p p d

p p p d

     

   

   










Y I Y I

Y I Y

Y I Y Y

, (2.31) 

The posterior distribution of ϕ alone is this expression averaged over ξ: 

  
obs miss( | , ) ( ) ( | ) ( | ) ( | , )p p p p p d d       Y I Y I Y Y , (2.32) 

2.3.2.3.1 Ignorability 

When the missing data pattern supplies no information, the data collection 

mechanism is ignorable. In this case, the posterior distribution of ϕ and the posterior 

predictive distribution of Ymiss are entirely determined by the specification of a data model 

and the observed values of Yobs. The Eq. (2.32) can be expressed as 

  
obs obs miss( | , ) ( | ) ( ) ( | )p p p p d     Y I Y Y Y , (2.33) 
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Two conditions are sufficient to ensure the ignorability of the missing data 

mechanism for Bayesian analysis [4]: (1) The condition of missing at random requires that 

the distribution of the missing-data mechanism does not depend on the missing values. 

That is, given ξ, the missingness depends only on Ymiss: p(I | Y, ξ) = p(I | Ymiss, ξ). (2) The 

condition of distinct parameters is satisfied when the parameters of the missing data process 

are independent of the parameters of the data generating process in the prior distribution: 

p(ξ | ϕ) = p(ξ). 

In the case of treating the sparse fatigue data as missing data, both of the conditions 

are satisfied. The reasons are as follows. On one hand, the probability that the fatigue life 

of a specimen is missing at some stress level A depends only on whether the specimen is 

tested to failure at other stress level B but not on the value of fatigue life at stress level A. 

Thus the data are missing at random. On the other hand, the parameters governing the 

missing-data process are distinct from those of the distribution of the fatigue data, which 

is typically the case with standard models [4]. Therefore, it is sufficient for obtaining 

Bayesian inferences without requiring modeling the missing-data mechanism. 

2.3.2.3.2 Data Augmentation 

The data augmentation process is conducted through Bayesian inference with 

missing data [73]. Assume the multivariate normal distribution for the logarithms of fatigue 

life data. For a multivariate normal model with missing data, the unknowns include missing 
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values as well as model parameters (mean μ and covariance matrix Σ). Gibbs sampling is 

used to make inferences on these unknowns. 

To avoid evaluating the integrals in Eq. (2.33), Gibbs sampling is used to draw 

posterior simulations of the joint vector of unknown parameters and unobserved quantities, 

p(μ, Σ, Ymiss | Yobs). Given starting values {Σ(0), Ymiss
(0) }, { μ (s+1), Σ(s+1), Ymiss

(s+1)} can be 

generated from { μ (s), Σ(s), Ymiss
(s) } by 

1. sampling μ (s+1) from p(μ | Yobs, Ymiss
(s) , Σ(s)), the complete-data posterior of μ; 

2. sampling Σ(s+1) from p(Σ | Yobs, Ymiss
(s) , μ(s+1)), the complete-data posterior of Σ; 

3. sampling Ymiss
(s+1)  from p(Ymiss | Yobs, μ(s+1), Σ(s+1)), the conditional predictive 

distribution of Ymiss. 

Steps 1 and 2 are together called the posterior or P-step [73, 74]. In steps 1 and 2, 

the fixed value of Yobs combines with the current value of Ymiss
(s)  to form a current version 

of a complete data matrix Y(s) having no missing data and a value of the model parameter 

(μ and Σ) are drawn from Y(s). Step 3 is referred to as the imputation or I-step and 

corresponds to imputing a value of the missing data Ymiss [73, 74]. Step 3 can be expressed 

in the following: 
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(2.34) 

For each i, the missing elements of the data vector are sampled conditional on the 

observed elements. This is achieved by the following result about multivariate normal 

distributions. Let y ~ multivariate normal (μ, Σ), let a be a subset of variable indices {1, …, 

p} and let b be the complement of a. It can be shown from the inverse of partitioned 

matrices that {y[b] | y[a], μ, Σ} ~ multivariate normal (μb|a, Σb|a), where 

  1
| [ ] [ , ] [ , ] [ ] [ ]( ) ( )b a b b a a a a a      y , (2.35) 

  1
| [ ] [ , ] [ , ] [ , ]( )b a b b a a a a b

       . (2.36) 

For a value of s that is suitably large, μ(s), Σ(s) and Ymiss
(s)  can be regarded as an 

approximate draw from posterior distributions p(μ | Yobs), p(Σ | Yobs) and posterior 

predictive distribution p(Ymiss | Yobs), respectively. 

2.3.2.3.3 Multiple Imputation 

The key idea of the multiple imputation is to create more than one set of 

replacements for the missing values in a dataset [66, 75-81]. In multiple imputation, the 

unknown missing data Ymiss are replaced by simulated values Ymiss
(1) , Ymiss

(2) , …, Ymiss
(mi) . Each 

of the mi completed datasets is analyzed by standard complete-data methods. The 
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variability among the results of the mi analyses provides a measure of the uncertainty due 

to missing data [73]. 

If multiple imputation is to yield valid inferences, the simulated values of μ, Σ and 

Ymiss should be proper Bayesian distributions, that is, the multiple imputations are 

independent realizations of p(μ | Yobs), p(Σ | Yobs), and p(Ymiss | Yobs), respectively. 

Bayesianly proper multiple imputations reflect both the uncertainty about Ymiss given the 

parameters of the complete-data model and the uncertainty about the unknown model 

parameters [73]. 

It is convenient to create multiple imputations using the data augmentation 

algorithm. Because proper multiple imputations must be independent, the successive 

iterates of unknowns cannot be used since they tend to be correlated. Rather, the chain 

needs to be subsampled, e.g. take every kth iterate, where k is chosen large enough so that 

the dependence will be negligible [73]. 

2.3.3 Validation 

The proposed method is validated using aluminum alloy 2524-T3 data [54] and 

laminate panel data [44, 82]. The reference probabilistic S-N curves obtained from the 

conventional method using full data are served as a benchmark. Next, using sparse data, 

the probabilistic S-N curves can be obtained and are compared with the reference one by 

different strategies, i.e., conventional method, hierarchical Bayesian modeling (HBM), 
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Bayesian data augmentation (BDA), posterior information from HBM used as prior 

information for BDA (HBDA 1: HBM+BDA), and augmented data from BDA used by 

HBM (HBDA 2: BDA+HBM). 

The general idea for validation is the following two steps. For both aluminum alloy 

2524-T3 data and laminate panel data, the large-sample data (about 15 data at each stress 

level) are used to obtain the probabilistic S-N curves from different strategies and are 

compared with the reference one. This is to test, in the case of large-sample data, whether 

the probabilistic S-N curves from different methods can yield the same result as the 

conventional method. Next, small-sample data (5 or 3 data at each stress level) are selected 

as sparse data. Using the sparse data, the deviations between the probabilistic S-N curves 

using the proposed methods and the reference probabilistic S-N curve are checked to test 

the performance of each strategy. For laminate panel data, the performances of different 

proposed strategies are studied when the sample size at each stress level changes from 1 to 

15. This is to evaluate the validity of each strategy for probabilistic S-N curve estimation 

with the change of data sparseness.  

2.3.3.1 Aluminum Alloy Data 

About 15 aluminum alloy 2524-T3 specimens are tested at each of 4 stress levels. 

The fatigue life data from Ref. [54] are shown in Table 2.8. The fatigue lives at each stress 

level are ordered in the sequence that the randomly selected specimen’s life data come into 
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being [54]. Thus, the first several fatigue life data at each stress level can be chosen from 

the full dataset to establish a small-sample dataset and are used for validation. 3 scenarios 

are considered: 14-15-15-15, 5-5-5-5, and 3-3-3-3. The test data corresponding to scenario 

14-15-15-15 are all the observations at each of the four stress levels, which are the full data. 

For scenarios 5-5-5-5-5 and 3-3-3-3-3, the test data are first 5 and 3 observations are each 

stress level, respectively, which represents the medium data size and sparse data size, 

respectively.  

Table 2.8 Fatigue Life Data of Aluminum Alloy 2524-T3 [54]. 

Sj Xj = log(Sj) nj Yj = log(Nj) 

400 2.60 14 4.477, 4.400, 4.426, 4.462, 4.592, 4.411, 4.447, 4.402, 
4.665, 4.475, 4.458, 4.551, 4.525, 4.641 

350 2.54 15 4.784, 4.842, 4.776, 4.813, 4.813, 4.860, 4.798, 4.776, 
4.758, 4.770, 4.755, 4.837, 4.736, 4.842, 4.796 

300 2.48 15 5.028, 5.074, 5.016, 4.894, 4.993, 5.071, 5.024, 5.035, 
4.954, 5.039, 5.098, 5.057, 5.092, 5.082, 5.005 

200 2.30 15 5.603, 5.544, 5.528, 5.630, 5.594, 5.540, 5.581, 5.548, 
5.426, 5.567, 5.554, 5.627, 5.630, 5.596, 5.626 

 

The results are plotted in Fig. 2.7. The left three figures of Fig. 2.7 show the 

probabilistic S-N curves with the confidence level of 95% and the survivability of 99% for 

three scenarios 14-15-15-15, 5-5-5-5, and 3-3-3-3 obtained using different strategies: 

conventional, HBM, BDA, HBM+BDA, and BDA+HBM. The right three figures are the 

errors at each stress level as well as the root mean square errors (RMSE) of all the stress 
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levels for different strategies. For errors at each stress level, a positive or negative error 

value means that the percentile point obtained by some strategy is larger or smaller than 

that obtained by a conventional method with full data (benchmark). Root mean square 

errors are all positive.    

For large-sample data scenario 14-15-15-15 (Fig. 2.7(a) and (b)), the probabilistic 

S-N curves obtained from all the methods nearly coincide with the benchmark curve, the 

maximum errors at four stress levels are 0, -1.87%, 1.87%, 1.99%, 2.29%, and the RMSE 

are 0, 1.41%, 1.09%, 1.14%, 1.49% for the conventional method, HBM, BDA, HBM+BDA, 

and BDA+HBM, respectively. The errors of the conventional method are zeros since all 

the test data are used for estimation, which produces the benchmark result. This shows that 

the four strategies proposed in the work for probabilistic S-N curve fitting with sparse data 

are valid in the case of large-sample data. 

Fig. 2.7(c) and (d) show the medium-sample data scenario 5-5-5-5. The maximum 

errors at four stress level are -4.77%,  -4.16%, 1.71%, 1.81%, -2.05% and the RMSE are 

3.13%, 2.45%,1.27%, 1.10%, 1.72% for conventional method, HBM, BDA, HBM+BDA, 

and BDA+HBM, respectively.  As the number of available data decreases from a large size 

to a medium one, the overall results produced by the conventional method tend to deviate 

from the benchmark. However, all four proposed strategies can produce better results than 

the conventional method. Among all the proposed probabilistic S-N estimation strategies, 
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the HBM+BDA method outperforms the others, while the performance of HBM is the 

worst. 

As the dataset shrinks to sparse data (Fig. 2.7(e) and (f)), the maximum errors at 

four stress level are -8.78%, -6.60%, 3.05%, 1.57%, -2.89% and the RMSE are 7.83%, 

4.41%,1.98%, 0.96%, 1.87% for conventional method, HBM, BDA, HBM+BDA, and 

BDA+HBM, respectively.  The probabilistic S-N curve obtained from the conventional 

method is too conservative. For sparse data cases, the hierarchical Bayesian model is 

helpful but will achieve in larger prediction intervals due to more uncertainties caused by 

the insufficient sample size [2]. Again, the strategy HBM+BDA has the lowest RMSE 

among all the four strategies, followed by BDA and BDA+HBM. The HBM performs 

better than the conventional method but is still the worst compared with the other three 

strategies. 

From the results for the aluminum alloy data, it can be concluded that the four 

strategies proposed in this work HBM, BDA, HBM+BDA, and BDA+HBM can produce 

better probabilistic S-N curves compared with the conventional method in the case of sparse 

fatigue life data. However, the performances with sparse data are different. Among all these 

four strategies, the HBM tends to produce over-conservative results, due to the uncertainty 

caused by the small sample size [50]. The HBM+BDA method outperforms the others in 

this example. 
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(a) Scenario 14-15-15-15: probabilistic 

S-N curves. 

(b) Scenario 14-15-15-15: Errors. 

  

(c) Scenario 5-5-5-5: probabilistic S-N 

curves. 

(d) Scenario 5-5-5-5: Errors. 
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(e) Scenario 3-3-3-3: probabilistic S-N 

curves. 

(f) Scenario 3-3-3-3: Errors. 

Fig. 2.7 Aluminum Alloy Data: Probabilistic S-N Curves with the Confidence Level of 

95% and the Survivability of 99% ((a), (c), (e)) and Errors at Each Stress Levels ((b), (d), 

(f)) 

2.3.3.2 Laminate Panel Data 

In this section, the four strategies dealing with probabilistic S-N curve estimation 

with sparse data are validated using laminate panel data  [44, 82]. The specimens are tested 

at 5 stress levels and the failure data are shown in Table 2.9. The data at each stress level 

are given in ascending order. Thus, the subset data need to be randomly chosen from the 

full dataset. The purpose of stating the order of the fatigue life data at each stress level in 

Table 2.8 and Table 2.9 is to illustrate how to randomly select small-size data set from the 

large-size data. The data in Table 2.8 is shown in the same order as those from Ref. [54]. 
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Ref. [54] provides the information of the order of the experimental data. The data in Table 

2.9 are from Ref. [44, 82] which do not provide the information of the order of experimental 

data. Thus, the data in Table 2.9 are listed in ascending order. If the order information is 

given in the literature reference (Table 2.8), the first several experimentally obtained 

fatigue life data at each stress level can be chosen from the full dataset to establish a small-

sample dataset, which is random in nature. Otherwise (Table 2), the small-sample data need 

to be randomly chosen from the full dataset. 

In this validation example, two parts are conducted. First, 3 scenarios are 

considered as the above example, i.e., large, medium, and sparse data size corresponding 

to 15-15-15-15-15, 5-5-5-5-5, and 3-3-3-3-3, respectively. The data used for each scenario 

are randomly picked up. Next, the performance of each strategy as the number of data 

changes is studied. The scenarios with sample size of 1 to 15 at each stress level are 

considered, i.e., 1-1-1-1-1, 2-2-2-2-2, …, 15-15-15-15-15. In each scenario, the validation 

is repeated 50 times, at each of which different subset data are selected. 

Shown in Fig. 2.8 are the probabilistic S-N curves with the confidence level of 95% 

and the survivability of 99% for large, medium, and sparse data. Similarly with the above 

example, in the scenario of 15-15-15-15-15, all the four strategies can produce nearly the 

same results with the benchmark. As the number of samples at each stress level is reduced, 

the errors of the results from the conventional method get unacceptably high, while all the 
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four proposed strategies can perform better than the conventional method. Among all the 

four strategies, in the case of sparse data, the two of the HBDA methods (i.e., HBM+BDA 

and BDA+HBM) have similar best performance followed by BDA, and HBM is worse 

than the others. 

Table 2.9 Laminate Panel Data [44, 82]. 

Sj  Xj = log(Sj) nj Yj = log(Nj) 

380 2.58 25 4.534, 4.576, 4.623, 4.626, 4.683, 4.720, 4.747, 4.766, 
4.790, 4.811, 4.813, 4.816, 4.848, 4.85, 4.860, 4.876, 
4.889, 4.891, 4.943, 4.970, 4.973, 4.988, 4.998, 5.067, 
5.088 

340 2.53 25 5.099, 5.196, 5.240, 5.248, 5.254, 5.275, 5.290, 5.318, 
5.326, 5.350, 5.354, 5.403, 5.407, 5.413, 5.438, 5.465, 
5.478, 5.480, 5.489, 5.609, 5.624, 5.632, 5.823, 5.890, 
5.900 

300 2.48 25 5.980, 5.982, 6.077, 6.094, 6.097, 6.109, 6.149, 6.175, 
6.181, 6.189, 6.191, 6.200, 6.215, 6.226, 6.285, 6.303, 
6.337, 6.379, 6.410, 6.427, 6.466, 6.484, 6.492, 6.547, 
6.635 

280 2.45 23 6.416, 6.417,6.443, 6.490, 6.630, 6.778, 6.810, 6.871, 
6.909, 6.929, 6.934, 6.936, 6.945, 6.945, 6.955, 7.005, 

7.007, 7.047, 7.096, 7.122, 7.140, 7.186, 7.205 

270 2.43 17 6.713, 6.722, 6.896, 6.913, 6.977, 7.007, 7.033, 7.063, 
7.085, 7.124, 7.200, 7.204, 7.237, 7.274, 7.290, 7.295, 
7.309 
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(a) Scenario 15-15-15-15-15: 

probabilistic S-N curves. 

(b) Scenario 15-15-15-15-15: Errors. 

  

(c) Scenario 5-5-5-5-5: probabilistic S-N 

curves. 

(d) Scenario 5-5-5-5-5: Errors. 
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(e) Scenario 3-3-3-3-3: probabilistic S-N 

curves. 

(f) Scenario 3-3-3-3-3: Errors. 

Fig. 2.8 Laminate Panel Data: Probabilistic S-N Curves with the Confidence Level of 

95% and The Survivability of 99% ((a), (c), (e)) and Errors at Each Stress Levels ((b), 

(d), (f)) 

The RMSE’s of different strategies with different sample sizes are plotted in Fig. 

2.9. The lines show the mean values of the 50 RMSE’s. The error bars are the 95% credible 

interval based on the 50 repeats. As the sample size decreases at each stress level, the 

RMSE’s of all the methods increase. When the sample size is large (13 ~ 15 observations 

at each stress level), all the four proposed probabilistic S-N estimation strategies produce 

similar results as the conventional method. With the sample size of 4 ~ 12 observations at 

each stress level, the mean values of RMSE of the four proposed strategies are within 5%. 

The overall performance rank is HBM+BDA ≈ BDA+HBM > BDA > HBM. When the 
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data are sparse with 3 observations at each stress level, the mean RMSE’s of HBM+BDA 

and BDA+HBM are less than 4% followed by BDA (about 5%) and HBM (about 6%). For 

scenario 2-2-2-2-2, HBM+BDA and BDA+HBM can estimate the probabilistic S-N curve 

with less than 5% mean RMSE followed by BDA (about 6%), however, HBM is not valid 

due to its large error. In the case of 1 observation at each stress level, all the strategies fail 

to give reasonable probabilistic S-N curves. 

 

Fig. 2.9 Probabilistic RMSE’s of Different Strategies with Different Sample Size. 

2.3.4 Application  

After being validated by data from literature references, the proposed probabilistic 

S-N estimation strategies HBDA are used for an engineering application in this section. 

2 4 6 8 10 12 14

2
4

6
8

10
12

Number of data at each stress level

R
M

SE
 (%

)

Conventional
HBM
BDA
HBM+BDA
BDA+HBM



 

65 
 

The specimen is manufactured from steel which was a part of the Pearl Harbor Memorial 

Bridge constructed in New Haven back in the 1950s. The old steel was replaced as part of 

the bridge improvement program. Only limited specimens are obtained for testing. 

The geometry of the fatigue specimens is shown in Fig. 2.10. The design and 

manufacture follow ASTM E466-15: Standard Practice for Conducting Force Controlled 

Constant Amplitude Axial Fatigue Tests of Metallic Materials. The specimens are polished 

on one side of the surfaces and are kept in the original corrosion state on the other side. 

 

(a) 

 

(b) 

 

(c) 
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Fig. 2.10 Fatigue Specimens. (a) Geometry and Size (All Dimensions in 

Millimeter). (b) Corroded Surface. (c) Polished Surface. 

The fatigue specimens are tested at the MTS Landmark servo-hydraulic test system 

with constant amplitudes. The frequency is 10 Hz. The stress ratio is set to be 0.1. The tests 

are stopped when the specimens completely break into two pieces. The fatigue life data are 

shown in Table 2.10.  

As shown in the laminate panel data example, one sample at a stress level is not 

enough for probabilistic S-N curve estimation. The data at the stress level of 405 and 360 

MPa are used for estimation, with 5 and 6 data points respectively. The data at other stress 

levels with one sample are used for checking the credibility of the probabilistic S-N curve 

estimation. The probabilistic S-N curves with the confidence level of 95% and the  95% 

credible intervals are shown in Fig. 2.11. It can be seen that the two of the HBDA methods 

(i.e. HBM+BDA and BDA+HBM) produce similar results, while the conventional method 

is over-conservative. 

Table 2.10 Pearl Harbor Memorial Bridge Data. 

Sj Xj = log(Sj) nj Yj = log(Nj) 

427.5 2.631 1 5.274 

405 2.607 5 5.350, 5.363, 5.397, 5.337, 5.246 

382.5 2.583 1 5.547 

369 2.567 1 5.627 

360 2.556 6 5.524, 5.676, 5.466, 5.692, 5.626, 5.630 
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355.5 2.551 1 5.507 

351 2.545 1 5.631 

346.5 2.540 1 5.834 

 

Fig. 2.11 Probabilistic S-N curve Estimation for Pearl Harbor Memorial Bridge Data. 

2.4 Conclusions 

Section 2.2 uses the Bayesian model averaging method for multimodality 

information fusion to estimate the probabilistic vintage pipe strength. The basic theory and 

practical implementation of BMA are introduced. Each model considered to be averaged 

is assigned a weight according to its marginal likelihood and further posterior model 

probability. BMA is implemented through distribution mixing. Occam’s window method 

is used to reduce the number of models considered to improve the feasibility and efficiency 
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of BMA as well as keep the efficacy. The predictive performance of BMA and the single 

model are evaluated and compared according to the logarithmic scoring rule. Based on the 

current study, the following conclusions can be drawn. 

1. From the analysis of full data, the best model YST - YSS = f (Cu, HD) has the 

highest probabilities. The probabilities of coefficients being non-zero show positive 

predictive usefulness for Cu and hardness, weak evidence for Cr, and indecisive evidence 

for P, Si, grain size, and volume fraction. 

2. From the analysis of predictive performance, Bayesian model averaging has the 

advantage of improving the predictive ability by considering model uncertainty, when the 

number of data is insufficient to select a single best model. 

Section 2.3 proposes four strategies: hierarchical Bayesian modeling (HBM), 

Bayesian data augmentation (BDA), posterior information from HBM used as prior 

information for BDA (HBM+BDA), and augmented data from BDA used by HBM 

(BDA+HBM) to obtain the probabilistic S-N curves with sparse data. HBM+BDA and 

BDA+HBM are together called hierarchical Bayesian data augmentation (HBDA). The 

theories and implementations are illustrated. The four strategies are validated using 

aluminum alloy 2524-T3 data, and laminate panel data. After that, the proposed methods 

are applied to estimate the probabilistic S-N curves for the Pearl Harbor Memorial Bridge. 

The following can be drawn from this study. 
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1. In the case of large data (about 15 observations per stress level), the strategies 

HBM, BDA, HBM+BDA, and BDA+HBM can produce similar results to those 

obtained from the conventional method, which shows the validity of the proposed 

methods with large sample size. 

2. With the sparse data, the conventional method is not applicable due to large errors. 

In this case, the two of the HBDA methods (i.e. HBM+BDA and BDA+HBM) can 

estimate the probabilistic S-N curves with root mean square error less than 5%, 

followed by BDA and HBM. BDA is slightly better than HBM. 

3. HBDA shows a large performance gain, especially when the number of the testing 

specimens is low (e.g., 3), and HBM+BDA and BDA+HBM have similar 

performance based on the investigated materials. 
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3 UNCERTAINTY QUANTIFICATION AND PROGNOSTICS BASED ON 

PHYSICS-GUIDED LEARNING 

3.1 Overview 

A Probabilistic Physics-guided Neural Network (PPgNN) is proposed for 

probabilistic fatigue S-N curve estimation. The proposed model overcomes the limitations 

in existing parametric regression models and classical machine learning models for fatigue 

data analysis. Compared with explicit regression-type models (such as power law fitting), 

the PPgNN is flexible and does not impose restrictions on function forms at different stress 

levels, mean stresses, or other factors. One unique benefit is that the proposed method 

includes the known physics/knowledge constraints in the machine learning model; the 

method can produce both accurate and physically consistent results compared with the 

classical machine learning model, such as neural network models. In addition, the PPgNN 

uses both failure and runout data in the training process, which encodes the runout data 

using a new proposed loss function, and is beneficial when compared with some existing 

models using only numerical point value data. A mathematical formulation is derived to 

include different types of physics constraints, which can deal with mean value, variance, 

and derivative/curvature constraints. Several data sets from open literature for fatigue S-N 

curve testing are used for model demonstration and model validation. Next, the proposed 

network architecture is extended to include multi-factor (e.g., mean stress, corrosion, 
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frequency effect, etc.) fatigue data analysis. It is shown that the proposed PPgNN can serve 

as a flexible and robust model for general fitting and uncertainty quantification of fatigue 

data. This model provides a feasible way to incorporate known physics/knowledge in 

neural network-based machine learning. That is achieved by properly designing the 

network topology and constraining the neural network’s biases and weights. The benefits 

of the proposed physics-guided learning for fatigue data analysis are illustrated by 

comparing results from neural network models with and without physics guidance. The 

neural network model, without physics guidance, produces results contradictory to the 

common knowledge, such as a monotonic decrease of S-N curve slope and a monotonic 

increase of fatigue life variance as the stress level decreases. That problem can be avoided 

using the physics-guided learning model with encoded prior physics knowledge [83]. 

The probabilistic fatigue properties of additively manufactured (AM) Ti-6Al-4V 

using selective laser melted (SLM) process is analyzed considering the effects of process 

parameters. The Probabilistic Physics-guided Neural Network (PPgNN) is proposed for the 

modeling. With this developed model, both the mean and variance of the fatigue life can 

be learned. The PPgNN contains constraints on model parameters to obtain the 

probabilistic stress-life relationships (P-S-N curves) with the physics-consistent curvature 

and nonconstant variance. The PPgNN model is also able to be trained using the data set 

with missing data for more reliable predictions. Experimental fatigue data are collected 
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from extensive literature for AM Ti-6Al-4V in as-built and annealed conditions subjected 

to various process parameters (scanning speed, laser power, hatch space, layer thickness, 

heat temperature, heat time). The PPgNN model is validated using the experimental data. 

Following this, the predictive performance is compared between models training using all 

data (both complete and incomplete) and only complete data [84].  

A Physics-guided Mixture Density Network (PgMDN) model is proposed for 

uncertainty quantification of regression-type analysis. It integrates a Mixture Density 

Network for probabilistic modeling and physics knowledge as regularizations. This model 

can handle arbitrary distribution of data (e.g., strongly non-Gaussian, multi-mode, and 

truncated distributions). The physics knowledge from parameters and their partial 

derivatives is used as equality/ inequality constraints. The training of physics-guided 

machine learning is formulated as a constrained optimization problem. To train the neural 

network with the commonly used backpropagation algorithm, the constrained optimization 

problem is transformed to an unconstrained one using a dynamic penalty function 

algorithm. With the physics constraints, the required training data size can be reduced and 

the overfitting problem can be mitigated. The applications of the PgMDN are demonstrated 

using a numerical example and an engineering problem for fatigue stress-life curve 

estimation. Some discussions are given to illustrate the effectiveness of incorporating the 

physics knowledge when data are sparse, the improvement of the dynamic penalty function 
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method compared with the static method, and the benefits achieved from the distribution 

mixture compared with a single Gaussian distribution. 

3.2 Probabilistic Physics-guided Machine Learning for Fatigue Data Analysis 

3.2.1 Introduction 

The relationship between probabilistic fatigue lives of materials and applied 

stresses or strains is critical for the safe-life and damage tolerance design processes 

considering uncertainty [9, 16, 44, 85-88]. A fatigue life prediction under general random 

loadings requires the analysis of the probabilistic fatigue damage accumulation at various 

stress levels. Thus, a reliable fatigue data analysis and uncertainty quantification method 

play a significant role in both structural designs and analyses [89, 90].  

The current attempts to establish the fatigue life–stress relationship can be 

categorized into explicit regression models and machine learning models. For explicit 

regression models, a well-known example is the Basquin relation [68], which states a linear 

relationship between the logarithm of the fatigue life (N) and the logarithm of the stress 

level (S) i.e., log10N = β0 + β1log10S. Only two unknown parameters (slope β1 and intercept 

β0) need to be estimated when using the Basquin relation. However, the Basquin relation 

is only capable of describing the finite-life regime where a linear function is applicable.  

To characterize the effect that the fatigue life tends to be infinity when the stress level is 

below the fatigue limit S0 (a low stress level), a non-linear S-N equation is proposed by 
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Stromeyer [91] log10N = β0 + β1log10(S – S0) for S > S0. Both the Basquin and the Stromeyer 

equation are deterministic models. To describe the fatigue life scatter dependency with 

applied stress levels, some statistical models have been proposed, such as the random 

fatigue limit model [44], the bilinear random fatigue limit model [92], and the 6-parameter 

random fatigue limit model [93]. The explicit regression models have the advantage that 

only a small number of parameters need to be estimated. However, they impose restrictions 

for a certain type of functional relationship between an applied loading and a fatigue life, 

which may or may not be true. 

For the machine learning models, neural networks (NN) [94] are widely used to 

model the fatigue life with stress levels and other influencing factors (e.g. mean stress, 

environmental factors) as inputs. A deterministic relationship can be learned through the 

training process. The neural network is used for predicting the fatigue life of steel in a 

corrosive environment in Ref. [95]. In their work, overtraining and bad extrapolation 

problems are observed and reported.  The combination of four neural networks is applied 

in estimating the finite-life fatigue strength and fatigue limit in Ref. [96] with inputs 

including stress level, notch factor, tensile strength, and yield strength. Ref. [97] models 

the fatigue life of multidirectional composite laminates using a neural network with one 

hidden layer and inputs being stress level, stress ratio, and material properties. In Ref. [98], 

the neural network model is fit to experimental data on the fatigue life of steel under step-
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stress conditions. The constant life diagram for metallic materials is generated using a 

neural network in the work of Ref. [99] for high cycle fatigue. In Ref. [100], a multi-layer 

perceptron neural network is used for residual life prediction. 

The limitations of explicit regression models are simplified representations of the 

reality due to incomplete knowledge, which introduce bias [101]. For the fatigue life 

modeling, it is well known that factors except stress levels also have a dramatic influence 

on the fatigue life, such as the surface roughness, temperature, and corrosion [47, 48, 53, 

55]. Without a thorough understanding of the mechanics of the process, it is not an easy 

task to incorporate those influencing factors in explicit regression models. Due to those 

limitations, machine learning models are considered promising alternatives to regression 

models. However, a direct application of black-box machine learning models to fatigue life 

modeling encounters the following issues: (i) Fatigue lives show a significant scatter range 

even at well-controlled testing conditions. Most existing machine learning models aim to 

find the mean response and are not capable of flexible variance estimation at different 

fatigue loading conditions. (ii) The statistical relations between inputs and outputs are 

solely learned from the data, which may violate some commonly known physics laws or 

knowledge [101]; (iii) In addition, machine learning models may overfit existing data and 

produce unreasonable results for scenarios outside the training data range (e.g., pure 

extrapolation performance)  [95]. 
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To address the above-mentioned difficulties and deficiencies in the existing two 

types of models (explicit regression models and machine learning models), this work 

proposes a novel probabilistic physics-guided machine learning model for the fatigue data 

analysis. It aims to impose known physics/knowledge constraints on the learning process 

of machine learning models. The proposed model is called Probabilistic Physics-guided 

Neural Network (PPgNN) hereafter. Correspond to the limitations existing in both types of 

models in the last paragraph, the novelties of the proposed model are as follows: 1) 

Compared with explicit regression models, influencing factors other than the stress level 

are easier to be incorporated in the model by reconstructing the network architecture and 

the proposed model is not limited to a particular regression function in handling fatigue 

data under different conditions. 2) Compared with classic neural network models: (i) 

Fatigue life variances with respect to different stress levels can be characterized. The 

confidence bounds can be obtained to show the increase of the variance as the applied stress 

decreases. (ii) The trend of the fatigue curves is constrained according to commonly known 

knowledge. By imposing physics-based constraints on parameters and building a physics-

based network architecture, the model can produce both accurate and physically consistent 

results. (iii) The overfitting issue is avoided by controlling the curvature of fitted curves 

from known patterns of fatigue S-N curves. Thus, fatigue life predictions outside the 

training data range are more robust (e.g., better extrapolation performance). (iv) What is 
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more, both failure and runout data can be considered in the training process. That is 

achieved by replacing the commonly used loss metric (e.g., mean square error) with a 

custom loss function. 

3.2.2 Brief Review of Neural Networks 

Neural networks are deep learning models. The goal of a neural network is to 

approximate some function f *. For example, for regression, y = f * (x) maps an input x to a 

numerical y. A neural network defines a mapping y = f (x; θ) and learns the value of the 

parameters θ that result in the best function approximation. The network is called neural 

because it is loosely inspired by neuroscience [5]. 

A typical single hidden layer neural network shown in Fig. 3.1 will be used as a 

demonstration for the basic knowledge of neural networks and to give the preliminary 

before the probability learning and imposing the physics guidance. This example consists 

of three layers, each of which has a particular number of nodes (neurons). The first layer 

is called the input layer and consists of several sensory neurons (neurons that make no 

processing, they just sense incoming signals and pass them to the next layer).  Note that 

this figure is for a two-dimensional input x. The last layer (the one that produces the final 

results of the network) is called the output layer and consists of several computational 

neurons. There is one output in this example. The layer between the input and output layer 

is called the hidden layer with a fixed number of computational neurons [97]. The layers 
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are fully connected in this example. Typically, the number of hidden units is somewhere 

in the range of 5 to 100, with the number increasing as the number of inputs and the number 

of training cases increase. Choices of the number of hidden layers are guided by 

background knowledge and experimentation [6]. This neural network is called feedforward 

because the information flows from the function being evaluated from x, through the 

intermediate computations used to define f, and finally to the output y [5]. 

 

Fig. 3.1 An Example of A Single Hidden Layer Neural Network. 

The mathematical expression for the neuron within each layer for Fig. 3.1 can be 

given in the following equations [102]. 

1x

2x

(2) (2)
2 2z a

(2) (2)
1 1z a

(2) (2)
4 4z a

(2) (2)
3 3z a

(2) (2)
5 5z a

(3) (3)
1 1z a

Layer 1 
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

  


   , (3.1) 

  ( ) ( ) ( ) 1,2,...,l l l
lk k ka g z k p  . (3.2) 

where l from 2 to L is the index of the layer with l = 1 being the input layer and l = L being 

the output layer. pl is the number of neurons at the lth layer. For the input layer, 

 (1)
11,...,kka x k p  . (3.3) 

 ( )l
kg  is the activation function associated with the kth neuron at the lth layer. The activation 

function of a neuron defines the output of that neuron given the inputs from the previous 

layer. The intercepts and the coefficients of Eq. (3.1) are called biases and weights, 

respectively. The biases and weights are obtained by training the network given the data. 

The loss function is minimized during training. It is a quantity that represents a measure of 

success for the task [103]. The stochastic gradient descent method is employed for solving 

the optimization problem. Stochastic gradient descent computes the gradient using subsets 

of the data called minibatches. The weights and biases are updated minibatch by minibatch 

in one cycle until the entire data set is gone through and then followed by another cycle. 

Each cycle is called an epoch. 

Fig. 3.1 shows a standard neural network architecture, which is not necessarily the 

most suitable one for a specific problem. The term neural network architecture refers to the 

arrangement of neurons into layers and the connection patterns between layers, activation 
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functions, and learning methods. The neural network model and the architecture of a neural 

network determine how a network transforms its inputs into outputs [104]. To extend the 

standard neural network for the fatigue data analysis, an appropriate architecture named 

Probabilistic Physics-guided Neural Network (PPgNN) is proposed and illustrated in the 

next sections. Two major characteristics of the proposed architectures for fatigue life data 

modeling are as follows. 1). The proposed architecture is designed to account for not only 

the change of the mean of fatigue life with respect to the influence factors (e.g., the stress 

or strain) but also the change of the scatter at different stress levels. This is achieved by 

assigning two neurons at the output layer rather than one. They are the mean and standard 

deviation of fatigue lives, respectively. Also, a custom loss function is proposed to consider 

both failure data and censored data (runouts). 2). The proposed neural network produces 

physically consistent results to account for the life-stress curvature and nonconstant 

variability. The neural network is trained through a constrained optimization process. The 

constraints are imposed to guide the neural network to follow existing physical knowledge 

during training. The above two main characteristics show the probabilistic and physic-

guidance features of the proposed PPgNN, respectively. The proposed methodology is 

described in detail in the following two sub-sections. Firstly, the fatigue life data are 

modeled as the function of a single factor, i.e., stress or strain. Next, the proposed PPgNN 

is extended to incorporate other fatigue life-influencing factors, e.g., mean stress. 
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3.2.3 Probabilistic Modeling of Fatigue Data in Neural Networks  

The architecture of the probabilistic neural network is shown in Fig. 3.2. Three 

layers are included in this network: the input layer, one hidden layer, and the output layer. 

The input layer consists of stress or strain level (S), logarithmic of fatigue life (log (N)), 

and an index to indicate if a datum is a failure or runout. There are 5 neurons in the hidden 

layer. The number of neurons in the hidden layer can be adjusted and is not necessarily to 

be 5 as shown in Fig. 3.2. This number is chosen to be 5 because of the consideration that 

the fatigue S-N curve is not expected to have complicated curve shapes and only one factor, 

stress (strain), is considered. Thus, the minimum number is chosen according to the 

recommendation (5 – 100 neurons per hidden layer [6]). The probabilistic aspect of the 

neural network is reflected in the output layer. Unlike the regular neural network that only 

learns the mean from the collected distributed data, there are two output neurons in the 

output layer of the proposed network, both the mean and standard deviation. 

 

Fig. 3.2 The Architecture of the Probabilistic Neural Network. 

Index 

S 

log (N) 

σ 

μ 

Activation function: linear 

Activation function: tanh 

Activation function: elu + 1 

Activation function: none 
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Different colors of neurons in Fig. 3.2 indicate specific activation functions. For the 

input layer, no activation functions are used by the definition of the neural network. The 

hyperbolic tangent activation function (named tanh) is used for the neurons at the hidden 

layer. The expression of the tanh activation function is  

 
 

z z

z z

e e
g z

e e









. (3.4) 

 

The tanh activation function is commonly used for the hidden layer neurons and 

gives good results in this work. The mean (μ) in the output layer has the linear (i.e., identity) 

activation function which is usually used for outputs in the regression problem, 

  g z z . (3.5) 

Due to the fact that the standard deviation has a non-negative value, the exponential 

linear unit (elu) activation function is selected and modified by adding 1 as following 

 
 

1 0

0z

z z
g z

e z

  


. (3.6) 

This is named elu+1 in this work and has the property that it can transform an 

arbitrary number to a non-negative value. Other activation functions that have this property 

also work, for example, the absolute value function [105]. Elu+1 seems to work well in 

this work as the validation later in this work shows very good results.  
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In the neural network architecture in Fig. 3.2, the inputs are S, log (N), and Index. 

Only the S input is passed to the next layers. The inputs log (N) and Index are not connected 

with the next layer, and the data for these two inputs are used in the custom loss function 

for measuring the performance of the model. The loss function is customized to be able to 

estimate both the mean and standard deviation using all data including failures and runouts. 

The loss function is defined as the negative logarithm of the likelihood [106]. In other 

words, the neural network is trained to maximize the likelihood. The new loss function in 

this work is proposed as  

      
1

log log( ) | , 1 log 1 log( ) | ,
n

i i
i

L f N F N     


           . (3.7) 

where δi is the index of a failure or runout, and 

1 for failure

0 for runouti


 


. 

f (log (N) | μ, σ) and F (log (N) | μ, σ) are the probability density function and 

cumulative distribution function respectively with the location parameter μ and scale 

parameter σ. The normal distribution or smallest extreme value distribution can be adopted. 

The neural network is used for regression in this work. The probabilistic characteristic is 

reflected in the construction of the loss function. The negative log-likelihood of the data is 

used for the loss function. That is, the likelihood is maximized after training the neural 

network. A form of distribution is presumed (normal distribution in this work) for the loss 
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function. A normal distribution contains two unknown parameters: the mean μ, and the 

standard deviation σ. These two parameters are the outputs. The normal distribution 

adopted is a reasonable distribution for the log fatigue life. However, the distribution form 

can be changed according to applications in different types of data. For example, if 

investigated data follow three-parameter Weibull distribution, the number of outputs will 

be 3: shape, scale, and location parameter. 

The architecture shown in Fig. 3.2 with the custom loss function is feasible to obtain 

the mean curve and confidence bounds of the fatigue life data versus the stress (strain). The 

curves are obtained with the maximum likelihood. However, the best-estimated curves that 

are learned solely from the data may present physically inconsistent curvature within the 

range of observed data and will perform very badly for extrapolation. To overcome these 

drawbacks, physics knowledge is imposed during the training process to guide the neural 

network to produce physically reasonable results. In the case of the fatigue data analysis, 

the desired features of S-N curves are expected to show the increased scatter with the 

decrease of stress level and an infinity or specified large number of cycles at low stress 

levels. The proposed techniques for imposing the physics guidance are described in the 

following subsection. 
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3.2.4 Physics-guided Machine Learning 

There are two main considerations in modeling the fatigue life with the applied 

stress or strain. First, the standard deviation of the fatigue life, in general, increases as the 

stress (strain) decreases. Second, the curvature of the fatigue curve decreases as the stress 

decreases and shows an asymptotic behavior near the fatigue limit or very long life if the 

material does not have an apparent fatigue limit [44]. These two aspects are the physics 

knowledge for guiding the machine learning process to obtain the results with those desired 

characteristics. 

The physics knowledge is incorporated to the neural network using imposing 

appropriate constraints on weights, biases, or both. The derivations of different types of 

constraints are as follows. According to the neural network architecture in Fig. 3.2 and 

mathematical expressions in Eqs. (3.1) – (3.6), with the input stress (strain) level S, the kth 

neurons in the hidden layer (the second layer) have the form of 

(2) (1) (1)
1k k kz b w S    (3.8) 

 (2) (2) (2)
k k ka g z  (3.9) 

with  (2)
kg z  being the tanh activation function shown in Eq. (3.4). The outputs μ and σ in 

the output layer have the forms of  

(3) (2) (2) (2)
1 1 1 jj

j

z b w a    (3.10) 
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 (3) (3)
1 1g z   (3.11) 

with  (3)
1g z  being the linear activation function shown in Eq. (3.5), and 

(3) (2) (2) (2)
2 2 2 jj

j

z b w a    (3.12) 

 (3) (3)
2 2g z   (3.13) 

with  (3)
2g z  being the elu+1 activation function shown in Eq. (3.6).  

The derivations of different types of constraints are as follows. From Eq. (3.8) – 

(3.13), it can be seen that the outputs μ and σ are the functions of the input S. The first and 

second derivatives of μ with respect to S are 
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respectively. The first and second derivatives of σ with respect to S are 
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(3.17) 

respectively. 

For the first desired characteristic that the standard deviation of the fatigue life 

increases as the stress (strain) decreases, it requires that 

0
d

dS


 , (3.18) 

From Eq. (3.16), the first derivative of σ is the summation of several terms. In this 

work, each term is constrained to be non-positive to make sure the sum is non-positive.  
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This is a somewhat stronger constraint than the original requirement, but it is easier to 

implement and ensure the final results are consistent with the known physics. Thus,  

(1) (2)
1 2 0j jw w  , (3.19) 

In other words, 

(1) (2)
1 20, 0j jw w  , (3.20) 

or 

(1) (2)
1 20, 0j jw w  , (3.21) 

For the second desired characteristic that the curvature of the fatigue curve 

decreases as the stress (strain) decreases, it can be satisfied if 

2

2
0

d

dS


 , (3.22) 

Similar to the constraints for the standard deviation, each term of Eq. (3.15) is 

restricted to be non-negative, which gives the following constraints 

(2) (2)
1 0, 0jjw z  , (3.23) 

or 

(2) (2)
1 0, 0jjw z  , (3.24) 

To have non-negative or non-positive values for (2)
jz , from Eq. (3.8), since the 

stress (strain) is always positive, if 
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(1) (1)
10, 0j jb w  , (3.25) 

then  

(2) 0jz  , (3.26) 

can be guaranteed. And similarly, if  

(1) (1)
10, 0j jb w  , (3.27) 

then 

(2) 0jz  , (3.28) 

Thus, for the curvature to be physically consistent, either set of the following 

constraints needs to be satisfied 

(1) (1) (2)
1 10, 0, 0j j jb w w   , (3.29) 

or 

(1) (1) (2)
1 10, 0, 0j j jb w w   , (3.30) 

From Eq. (3.15) and (3.17), if the second derivative of μ is constrained to be non-

negative, the second derivative of σ will also have the non-negative value. Experimental 

data for fatigue curves do not show the evidence for the increase rate of the standard 

deviation with the decrease of the stress (second derivative of σ). To avoid the correlation 

between the second derivatives of μ and σ, the architecture is redesigned to separate the 

neurons that are connected to μ and σ in the hidden layer. The updated architecture is shown 
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in Fig. 3.3. The connection lines are with different colors to show different types of 

constraints corresponding to constraints (3.20) and (3.29) (or constraints (3.21) and (3.30)). 

 

Fig. 3.3 The Architecture of Probabilistic Neural Network with Weight and Bias 

Constraints. 

The proposed neural network with the weight or bias constraints can produce the 

results which satisfy that the curvature decreases as the stress decreases. A typical S-N 

curve shows an asymptotic behavior near the fatigue limit. This means that the second 

derivative of μ tends to be zero as the stress (strain) decreases approaching the fatigue limit. 

However, due to the overly restrictive constraints for constraint (3.22) (i.e., each term is 

constrained to be non-negative to guarantee the sum to be non-negative), the minimum 
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Activation function: linear 

Activation function: tanh 

Activation function: elu + 1 

Activation function: none 
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value of the second derivative of μ is a positive value. To relax the curvature, the 

architecture is modified by adding another layer with a relaxed μr and connecting μ and σ 

to μr. The μr and σ are the final outputs. The modified architecture is shown in Fig. 3.4 and 

is used as the proposed architecture of Probabilistic Physics-guided Neural Network for 

single factor (S). The weights of the third layer are constrained to be non-negative in order 

not to change the constraints at previous layers. The second derivative of μr is the sum of 

the second derivatives of μ and σ. Since the second derivative of σ is unconstrained, it can 

have either a positive or negative value, which provides the relaxation on the second 

derivative of μr.  

 

Fig. 3.4 The Architecture of Probabilistic Neural Network with Stress (Strain) Input. 
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The architecture shown in Fig. 3.4 is for the single factor case, i.e., stress (or strain) 

vs. life. An advantage of the proposed physics-guided machine learning model compared 

with the classical regression type model is the flexibility and scalability to consider the 

influence of other factors. Other inputs can be added to the network according to the known 

physical knowledge.  An example is to consider the mean stress (Sm) effect. For a given 

fatigue load range, a tensile mean stress has a detrimental effect on the fatigue strength, 

whereas, in general, a compressive mean stress has a beneficial effect [107]. The mean 

fatigue life increases with the reduction of mean stresses. The influence of mean stress on 

the scatter is unclear. Thus, the first derivative of μ with respect to the mean stress is non-

positive, which gives constraints analogous to constraints (3.20) and (3.21). Since no 

physics knowledge is given to restrict the mean stress – variance relationship, no constraint 

is added, and the relationship is obtained solely from the data training. The architecture to 

consider the mean stress is given in Fig. 3.5. 

In the next section (Experimental validation), various data sets are used to validate 

the proposed PPgNN architecture in Fig. 3.4 for the single factor experiment and Fig. 3.5 

for the multi-factor experiment. Following the experimental validation, in Section 

Discussions, the necessities for the physics guidance are described, and the comparison 

between results from the neural network without and with physics guidance is discussed. 
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3.2.5 Experimental Validation 

In this section, extensive evaluations of the proposed PPgNN are conducted using 

various fatigue data sets from open literature for both single factor and multi-factor cases.  

The learning algorithm’s parameters are kept the same for all the following 

experiments with different data sets and are shown in Table 3.1. 

Table 3.1 Learning Algorithm’s Parameters. 

Epochs 500 for single-factor experiment; 1000 for multi-factor experiment 

Minibatch size 1 

Learning rate 0.001 

Six different fatigue data sets are collected, which cover a wide range of metallic 

and composite materials. Table 3.2 is a summary of the collected data. 
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Fig. 3.5 The Architecture of Probabilistic Neural Network with Multiple Inputs. 

Table 3.2 Summary of the Data Set Used for Validation. 
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Material Reference Sample size 
No. of 

Runouts  

Carbon eight-harness-satin/epoxy 

laminate 
[44, 82] 125 10  

Nickel-base superalloy [44, 108] 246 4  

Annealed aluminum  [108] 200 NA 

Steel [108] 75 10  

Al 2024-T4 [108] 252 NA 

Al 7075-T651 [109] 131 8 

3.2.5.1 Single Factor PPgNN Validation 

For the single-factor experiment, all probabilistic S-N curves using the Probabilistic 

Physics-guided Neural Network (PPgNN) are shown in Fig. 3.6 for various materials. All 

left column figures are for the mean and 95% confidence bounds plot with experimental 

data. The solid lines and dash lines represent the mean S-N curves and 95% confidence 

intervals (CI), respectively. The x-axis is the fatigue life and the y-axis is the stress/strain. 

“Runout” data are highlighted in the figures. All right column figures are training 

convergence plots using the proposed loss function. The x-axis is the Epoch number and 

the y-axis is the loss value. Very good convergence behavior is observed using the proposed 

loss function.  
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By using the PPgNN model, the desired results (i.e., not violating known physics 

about the fatigue performance of material) can be achieved. With the physics constraints 

in the neural network, the obtained P-S-N curves show consistent physics results. First, the 

standard deviation of fatigue life increases as the stress (strain) decreases. Second, the 

curvature of the fatigue curve decreases as the stress decreases and shows an asymptotic 

behavior near the fatigue limit or very long life if the material does not have an apparent 

fatigue limit. PPgNN model is shown to be a model suitable for the fatigue life data fitting 

for a variety of different materials. Also, the PPgNN is not limited to a particular stress 

(strain) region. For example, the nickel-base superalloy data (Fig. 3.6 (b)) was used for P-

S-N curve fitting in Ref. [44] using the random fatigue limit model which belongs to the 

explicit regression model category. This model did not fit data well in the high-strain region 

(strain above 0.007) [44]. A possible reason is that this type of model has a fixed function 

form which may not be appropriate for all strain regions. This issue does not exist using 

the proposed PPgNN model due to the flexibility of the neural network. Thus, both low-

strain and high-strain data can be used together for the P-S-N curve fitting. In addition, 

both deterministic and probabilistic fatigue properties can be obtained simultaneously 

using the same framework. Not only the mean S-N curves but also confidence bounds can 

be estimated from the data. It can be seen that almost all the data points are located within 

the 95% CI. 
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(a) Carbon eight-harness-satin/epoxy laminate. 

  

(b) Nickel-base superalloy. 
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(c) Annealed aluminum. 

  

(d) Steel. 
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(e) Al 2024-T4. 

Fig. 3.6 Validation of PPgNN Using Single Factor Experimental Data for Various 

Materials. 

3.2.5.2 Multi-factor PPgNN Validation 

One advantage of the Probabilistic Physics-guided Neural Network (PPgNN) 

compared with explicit regression models is that it is easier to incorporate other influencing 

factors other than stress (strain). This experiment is to show the effectiveness of the PPgNN 

shown in Fig. 3.5 with multi-factor inputs.  

The data set used contains strain level, mean stress, and fatigue life [109]. The 

material is 7075-T651 aluminum alloy. The fatigue testing is conducted under uniaxial 

compression-compression, tension-compression, and tension-tension fatigue loading 
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conditions. The mean stress can have a negative value, zero, or positive value. A total of 

131 data are used for fitting among which 8 data are right-censored (runouts).  

The architecture proposed in Fig. 3.5 is used for the curve fitting. The results are 

shown in Fig. 3.7 Validation of PPgNN Using Multi-factor Experimental Data with Mean 

Stress Effect.. Fig. 3.7 Validation of PPgNN Using Multi-factor Experimental Data with 

Mean Stress Effect. (a), (b) and (c) are the probabilistic S-N curves with 95% confidence 

intervals for Sm = -250 MPa, 0 MPa, and 150 MPa, respectively. The testing data 

corresponding to each mean stress case are also plotted. It can be seen that for each of the 

three mean stress cases, almost all data points are located within the 95% confidence 

interval. Again, the results show that the standard deviation of fatigue life increases, and 

the curvature of the fatigue curve decreases as the strain decreases. Fig. 3.7 Validation of 

PPgNN Using Multi-factor Experimental Data with Mean Stress Effect. (d) is the model 

training history, the loss function value vs. the epoch.  

Ref. [110] extended the random fatigue limit model [44] to be able to consider 

influencing factors other than stress (strain) level, i.e., multi-factor fatigue data analysis. 

This is a type of explicit regression model, and the function form needs to be known prior 

to data fitting. Thus, to incorporate multiple factors in the model, data need to be pre-

analyzed to find a reasonable functional form. However, using the PPgNN model, those 

pre-analyses are not mandatory. The neural network in the PPgNN model learns the 
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function from the data, and constraints in PPgNN ensure that the results are not overfitted 

with the guidance of physics knowledge. 

  

(a) (b) 

  

(c) (d) 

Fig. 3.7 Validation of PPgNN Using Multi-factor Experimental Data with Mean Stress 

Effect. 
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3.2.6 Discussions 

The PPgNN architecture is validated using fatigue testing data for single and multi-

factor in Section 3. In his section, we discuss the impacts/benefits of the physics guidance 

in the neural network for fatigue data analysis by comparing results from the neural 

network in Fig. 3.2 (without physics guidance) and Fig. 3.4 and Fig. 3.5 (with physics 

guidance). Also, the effectiveness of the relaxation on the mean prediction by adding 

another output layer is discussed and the results from the neural network architectures in 

Fig. 3.3 (without relaxation on mean) and Fig. 3.4 (with relaxation on mean) are compared. 

3.2.6.1 Impact of the Physics Guidance in PPgNN 

The laminate panel data set is used again for the illustration of the necessities for 

imposing physics knowledge in the neural network. The neural network architecture in Fig. 

3.2 produces results that are learned solely from the training data. Without any physics 

guidance, the results are shown in Fig. 3.8 (a). The improvements of the proposed PPgNN 

compared with the neural network without any physics guidance are reflected in the 

curvature and extrapolation performance below the minimum testing stress. The slope dμ / 

dS in Fig. 3.8 (a) does not change in a monotonic manner. Below some stress level (about 

260 MPa), dμ / dS increases as the stress decreases. This is contradictory to the common 

knowledge as the slope will increase as the stress decreases. If there is a fatigue limit, the 

S-N curve will asymptotically approach infinity for low stress values. The reason for 
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obtaining the physics inconsistent results is due to the overfitting. As can be seen in Fig. 

3.6Fig. 3.6 Validation of PPgNN Using Single Factor Experimental Data for Various 

Materials. 

 (a), fatigue life data are distributed at five stress levels. The overfitted mean S-N 

curve can pass through the mean of collected data at each of the five stress levels. Due to 

the data censoring, the mean fatigue life at the low stress levels calculated from the 

collected failure data cannot reflect the true distribution mean. Thus, by tracking the sample 

mean, the overfitted S-N curve cannot have the desired monotonic slope decrease as stress 

level decreases. This issue is solved by imposing this physics knowledge while training the 

neural network, which is done by solving the optimization problem with bias and weight 

constraints. The improved results obtained from PPgNN are shown in Fig. 3.8 (b). It can 

be seen that dμ / dS decreases monotonically as the stress decreases, and the S-N curves 

tend to be flat when approaching the fatigue limit. 
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(a) (b) 

Fig. 3.8 Comparison of Slope Behavior of (a) Classical NN Without Physics Guidance 

and (b) Proposed PPgNN with Physics Guidance. 

The multi-factor experiment is also refitted using Al 7075-T651 data and the neural 

network with no physics knowledge. The neural network architecture without physics 

guidance is similar to that in Fig. 3.2. The input layer contains S: strain, mean stress, log 

(N), and Index. One hidden layer with 20 neurons which is the same number as that in the 

architecture in Fig. 3.5. The output layer has μ and σ. The results are shown in Fig. 3.9 (a) 

for the variance variation. It is seen that the standard deviation for each of the three mean 

stress cases does not decrease monotonically as the strain level increases. This is also due 

to the overfitting. Without physics knowledge guidance (i.e., bias and weight constraints), 

the neural network is learned solely from the data. Since the sample size is not big enough, 
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the overfitting issue occurs. The prediction with physics guidance is shown in Fig. 3.9 (b) 

and it is clearly seen that the variance shows a monotonic behavior. It is also interesting to 

see that the uncertainty in this material is independent of mean stress with the proposed 

method. 

  

(a) (b) 

Fig. 3.9 Comparison of Variance Variation of (a) Classical NN Without Physics 

Guidance and (b) Proposed PPgNN with Physical Guidance. 

3.2.6.2 Impact of the Relaxation Layer in PPgNN 

The nickel-base superalloy data set is used to illustrate the effectiveness of the 

relaxation on the mean of fatigue life by adding another output layer with the neuron μr and 

connecting μr with μ and σ at the previous layer. The results using the neural network 

architecture in Fig. 3.3 without relaxation on μ are plotted in Fig. 3.10 (a). Compared with 

the results in Fig. 3.10 (b) using the architecture with relaxation on μ, an obvious difference 
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is reflected in the low strain region. In this region, the fatigue life data tend to 

asymptotically approach the fatigue limit and the curvature should be close to zero. For 

Fig. 3.10 (a), the mean S-N curve can hardly capture this trend of the data. This is due to 

the over-restrictive constraints for constraint (3.22). With the over-restricted constraints, 

the second derivative of μ with respect to the strain cannot achieve the value of zero, which 

leads to that the first derivative of μ with respect to the strain cannot achieve an adequate 

small negative value. By adding another output layer with the neuron μr and connecting μr 

with μ and σ at the previous layer, the imposed over-restricted constraints can be relaxed, 

and the fitted S-N curve has more flexibility to follow the trend of the data at the low strain 

level. The values of dμ / dS are shown in Fig. 3.10 (c) and (d) for the two approaches. It is 

clearly seen that the proposed PPgNN with relaxation can successfully predict zero 

curvature at a very low strain region. 
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(a) (b) 

 

(c) 

 

(d) 

Fig. 3.10 Comparison Prediction Results of (a) Strain-life Prediction Without Relaxation 

in NN, (b) Strain-life Prediction with Relaxation in NN, (c) dμ / dS Prediction Without 

Relaxation in NN, and (d) dμ / dS Prediction with Relaxation in NN. 

3.3 Fatigue Property Prediction of Additively Manufactured Ti-6Al-4V Using 

Probabilistic Physics-guided Learning 

3.3.1 Introduction 

Additive Manufacturing (AM) comprises net-shape production technologies that 

build a solid object from the sequential superposition of layers representing the cross-

sections [111, 112]. Compared with conventional manufacturing (for example, casting as 

well as secondary processing steps such as rolling and forging), AM offers advantages of 
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freedoms for complex geometries, minimal tooling, rapid delivery times, and low material 

waste [111, 113, 114]. Selective laser melting (SLM) is one of the commonly used AM 

processes. In SLM, metallic powders are spread into a thin layer, selectively melted by a 

finely focused laser, and fused to the previous layer [115]. Ti-6Al-4V (referred to as Ti-64 

here afterward) is extensively explored for processing via SLM routes owing to its high 

strength, low density, biocompatibility, and excellent corrosion resistance [113, 116-118]. 

In real-life application of Ti-64 such as compressor and turbine blades of aircraft engines, 

the components are subjected to cyclic loadings which may result in fatigue failure [119]. 

Therefore, the fatigue characterization of SLM manufactured Ti-64 plays a vital role in 

ensuring structural safety. 

The major factors causing the fatigue failure of AM components by SLM are 

surface quality, residual stresses, pores, and microstructure [120-122]. Several ways are 

employed to control AM quality individually or collectively using proper control of process 

parameters. Regarding the in-process parameters, laser power, scanning velocity, hatch 

distance, and powder layer thickness are considered as key influencing factors during the 

SLM processing. Post-process heat treatment is considered essential to reduce residual 

stresses, close undesired pores and transform the microstructure to improve mechanical 

properties. Considerable research has been carried out to investigate the influence of these 

in-process and post-process parameters on fatigue properties of SLM manufactured Ti-64 
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[123, 124]. In the experiment of Fousová et al. [125], specimens were fabricated by SLM 

and heat-treated without any further treatment. The fatigue strength was tested to be 240 ± 

24 MPa. Wycisk et al. [116] performed high cycle fatigue tests for as-built, polished, and 

shot-peened samples produced by SLM. As-built samples showed a drastic decrease of 

fatigue limit due to poor surface quality. Khalid Rafi et al. [126] conducted fatigue testing 

with specimens fabricated by SLM and heat-treated for stress relief. Fractography 

observations showed that the fatigue crack initiation occurred deep in the subsurface. 

Fatemi et al. [127] studied the surface roughness effect by considering both as-built and 

machined and polished AM specimens. It was found that AM specimens had significantly 

shorter lives compared to the wrought specimens. Chastand et al. [128] discovered that 

multiple types of defects contribute to crack initiation for fatigue specimens built by SLM 

including surface, internal unmelted zones, and small internal defects. 

Current studies on fatigue properties of SLM fabricated Ti-64 mainly focus on 

experimental investigation. There is a lack of reliable modeling between process 

parameters and fatigue performance, especially considering huge uncertainties in fatigue. 

With the available testing data from reference literature, a data-driven method is 

worthwhile to explore for fatigue characterization of Ti-64 produced by SLM. Machine 

Learning (ML) provides an avenue to gain insight into AM process by learning 

fundamental knowledge from experimental data and is a valid way to perform complex 



 

111 
 

regression analysis. Among ML algorithms, the neural network (NN) is the most widely 

used model due to its flexibility to handle arbitrary nonlinear mapping problems, strong 

computational power, and sophisticated algorithm architecture [129, 130]. Challenges 

remain when applying NN to modeling fatigue properties with process parameters due to: 

(1) A large amount of uncertainties exists in fatigue modeling for AM fabricated 

components. Fatigue lives show a significant scatter range even at well-controlled testing 

conditions [88]. Also, various sources of uncertainty are involved in the AM processes 

from powder bed forming to melting and solidification [131-133]. Thus, a deterministic 

approach using classical NN is inadequate. (2) Fatigue stress-life (S-N) curves show an 

increase of variation as stress level decreases [16]. If the NN is solely trained from the data, 

those physics may be violated due to overfitting. (3) Classical NN requires the data set to 

be complete, i.e., no missing data for each input variable. However, it is very common that 

the data sets available from open literature are incomplete. Some of the process parameters 

are not reported. According to the authors’ collection of data, more than half of the data 

sets contain missing data. Efforts are needed to make use of these incomplete data sets 

instead of brutally abandoning the valuable information from such data sets. (4) NN is a 

stochastic algorithm in practice due to the stochastic process for training, random initial 

weights, etc. Different results are obtained even with the same NN architecture and training 
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data. The influence of randomness using NN needs to be investigated for reliable AM data 

analysis. 

The proposed study aims to estimate the probabilistic S-N (P-S-N) curves and 

investigate the effect of process parameters on fatigue properties of SLM manufactured Ti-

64 through probabilistic physics-based data-driven modeling. A database is formed by 

collecting the experimental fatigue data from extensive literature subjected to various in-

process and post-process parameters. The classical NN is modified to provide a 

probabilistic tool for uncertainty quantification. Both mean and variance of the fatigue life 

can be learned with respect to fatigue parameters (stress amplitude and stress ratio) and 

process parameters (laser power, scanning velocity, hatch distance, powder layer thickness, 

and heat treatment). The proper constraints are imposed on the proposed NN for obtaining 

P-S-N curves with the physics-consistent curvature and nonconstant variance. To make use 

of the data sets with incomplete inputs, a novel NN architecture is applied for SLM 

manufactured Ti-64 figure data analysis. The idea is that the results learned using data set 

with complete inputs are corrected with the information obtained from the data set 

containing missing data. With a larger data size, the data-driven approach can provide more 

reliable predictions. 
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3.3.2 PPgNN for Fatigue of SLM Manufactured Ti-64 with Missing Data 

With the PPgNN introduced in the last section, the architecture is extended to be 

suitable for fatigue property analysis of SLM manufactured Ti-64. The objective is to study 

the influence of process parameters on fatigue life. The in-process parameters considered 

are scanning velocity (v), laser power (P), hatch distance (h), and powder layer thickness 

(t). The post-process parameters considered are heat temperature (HT) and heat time (Ht). 

The data used for NN training are obtained from reference literature. It is observed that 

among all the collected data, more than half of the data are incomplete. That is, the input 

data contain missing data. To fully use all the available data instead of abandoning the 

incomplete data set, the NN architecture is redesigned to consider the missing data. 

The proposed architecture is shown in Fig. 3.11. No constraints are imposed on 

biases and weights between process parameter inputs and outputs. This is based on the 

considerations that the physics knowledge between process parameters and fatigue life 

(mean and standard deviation) is unclear, and this relationship is intended to be learned 

from the data. The neurons in square shape are called selective neurons. They are designed 

to enable NN to be trained with an incomplete data set [134]. The composition of the 

selective neuron is shown below the NN architecture in Fig. 3.11. It comprises a hidden 

neuron with tanh activation function, an input neuron rk indicating if an input is available 

or missing and a multiplier. Each process parameter input neuron is connected to a selective 
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neuron. No selective neuron is connected to fatigue parameters (S and R) since these data 

are usually available from reported data. The mathematical expression for the selective 

neuron is 

 ( ) (1) (1)
1

s
kk k kz b w x  , (3.31) 

  ( ) ( ) ( ) 1, 2, ...,s s s
k sk k ka r g z k p  , (3.32) 

where the superscript (s) represents the layer which contains selective neurons (Layer s), 

and ps is the total number of selective neurons. If the value of xk is available (rk = 1), the 

selective neuron will actively participate in the computation of the network outputs. If xk is 

missing, rk = 0, which behaves as the input xk does not exist. When some input is missing, 

the bias and weight of the selective neuron connected to this input will not be updated. The 

architecture with selective neurons can be viewed as a collective of multiple models. Each 

model contains a certain number of inputs whose values are available (not missing). They 

are bonded to each other and share information [134]. 
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Fig. 3.11  Probabilistic Physics-guided Neural Network for Fatigue Analysis of SLM 

Manufactured Ti-64 Considering Missing Data. 

The method used is an algorithm which has built-in support for missing data. 

Another way to deal with missing data is preprocessing such as data imputation. Data 

imputation is a technique to replace the missing data with data imputed to form a complete 
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data set according to the correlation between variables. Data imputation depends on a 

missing mechanism such as missing at random and not missing at random [9]. The 

algorithm used in this work does not require the knowledge of missing mechanisms since 

only the observed data are used for computation [134]. 

3.3.3 Predictive Performance 

The experimental data are collected for fatigue property analysis of SLM fabricated 

Ti-64 from the literature. The specimens are manufactured with different in-process 

parameters (scanning velocity (v), laser power (P), hatch distance (h), and powder layer 

thickness (t)). After fabrication, the heat treatment is performed with different post-process 

parameters (heat temperature (HT) and heat time (Ht)). All the specimens are in as-built 

and annealed conditions without machining, polishing, or hot isostatic pressing treatment. 

The summary of the collected data is shown in Table 3.3. Each of the data sets has a set of 

specific process parameters from different references. The “NA” represents the data that 

are not reported (missing data) from the references. A total of 15 data sets are collected 

from 11 references. The first 6 data sets are comprised of complete data. The last 9 data 

sets contain missing data for inputs. 
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Table 3.3 Summary of Collected Fatigue Data for SLM Manufactured Ti-64 in 

As-built and Annealed Condition. 

No. Speed 

(mm/s) 

Power 
(W) 

Hatch 

space 

(μm) 

Layer 

thickness 

(μm) 

Heat 

temperature 

(°C) 

Heat 

time 

(h) 

Stress 

ratio 

No. of 

failure 

No. of 

runout 

Ref. 

1 1250 200 80 30 820 1.5 -1 10 3 [125] 

2 1250 170 100 30 650 3 0.1 10 2 [116] 

3 1200 280 140 30 704 1 -1 13 3 [135] 

4 1250 170 100 30 650 4 0.1 8 1 [126] 

5 1000 400 160 50 700 1 -1 5 1 [127] 

6 1200 280 140 30 704 1 -1 13 2 [136] 

7 NA 200 NA 30 800 4 0.1 9 2 [137] 

8 NA 400 NA 60 800 4 0.1 11 2 [137] 

9 NA 400 50 60 740 2 -1 17 5 [138] 

10 NA 400 50 60 1200 2 -1 6 1 [138] 

11 NA 400 50 60 900 2 -1 7 5 [138] 

12 NA NA NA NA 670 5 -3 25 7 [111] 

13 NA NA NA NA 920 2 -3 10 2 [111] 

14 NA 200 NA 30 650 3 0.1 19 2 [139] 

15 1000 350 NA 60 800 5 -1 32 2 [140] 

With the data in Table 3.3 Summary of Collected Fatigue Data for SLM 

Manufactured Ti-64 in As-built and Annealed Condition., the PPgNN model is validated 

by evaluating the predicted probabilistic S-N curves of SLM manufactured Ti-64. Cross-
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validation is conducted. The strategy is that for each validation, one of the 6 complete data 

sets is used for testing, and the remaining 5 complete data set as well as the 9 incomplete 

data sets are used for training. Thus, it is 6-fold cross-validation. Only complete data sets 

are used for testing, and the incomplete data sets are always used for training. This is 

because it is not feasible to obtain the predictions with missing data in model inputs. 

However, with the proposed model, the incomplete data can be used in the training process. 

  

(a) Data set 1. (b) Data set 2. 
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(c) Data set 3. (d) Data set 4. 

  

(e) Data set 5. (f) Data set 6. 

Fig. 3.12  Predicted P-S-N Curves. 

The predictive results are shown in Fig. 3.12. The predicted P-S-N curves as well 

as the experimental data in Fig. 3.12 (a) – (f) correspond to the data set No. 1 – 6. The x-

axis and y-axis represent log fatigue life and stress amplitude, respectively. The mean S-N 

curves are shown in solid lines and the 95% confidence intervals are shown in dash lines. 

The experimental data in dots and triangles are the failure and runout data, respectively. It 

can be seen that with the fatigue physics knowledge imposed in the training of NN, the 

results obtained show desired features for variance and slope change of P-S-N. The 

predicted P-S-N curves can reasonably quantify both mean values and distribution of 

fatigue lives for most validation cases. Almost all the experimental data are located within 

the predicted confidence bounds. 
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The proposed PPgNN model is capable of taking incomplete data into account for 

training. By considering the incomplete data, the data size is larger and more information 

can be learned for NN from the data compared with using only the complete data. In this 

section, the predictive performance of the PPgNN model is compared between results 

obtained by training the model using all the data (both complete and incomplete data) and 

only the complete data. 

The architecture used for all data is as shown in Fig. 3.11 with the selective neurons 

for missing data. Since no missing data exit in the complete data set, the model for the 

complete data has the architecture shown in Fig. 3.11 without the selective neurons. The 

logarithmic scoring rule [8, 88] is used as a metric for comparing the predictive 

performance of both models. The expression of the log score is the same as the loss function 

shown in Eq. (4). The loss function is used in the training process, while the log score is 

obtained using the testing data. A smaller log score shows a better prediction. Due to the 

randomness of the neural network, the log score is calculated 50 times, each of which 

corresponds to a trained model with random initial biases and weights. The log scores for 

models using all data (with missing data) and only complete data (without missing data) 

are presented in Fig. 3.13. Same as the strategy in Section 3.2.1 and 3.2.2, cross-validation 

is conducted. The x-axis indicates the complete data set used for testing. In each testing 

data set, a log score can be calculated for every experimental datum (both failure and 
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runout). The mean value of all the log scores in one testing data set is plotted to show the 

average predictive performance. The “Overall” on the x-axis indicates the overall 

predictive performance for the model trained by all data or only the complete data. The 

mean log scores from all the cross-validations are plotted together for evaluating the overall 

performance. For each testing case, the box plots on the left and right are the results for 

using all data and complete data, respectively. The thick line in the middle part shows the 

median value. The lower and upper bounds of the rectangular are the 25th and 75th 

percentile, respectively. The lower and upper bound of the entire boxplot are the minimum 

and maximum excluding the outliers, respectively. 

For testing data set No. 1 and 2, the median mean log score is lower if training the 

model using all data. For test data sets No. 3, 4, 5, and 6, both modes have comparable 

median mean log scores. The range between minimum and maximum may be shorter or 

longer for the model using all data compared with the model using complete data 

depending on the testing data set. Overall, the median mean log score is smaller and the 

range between minimum and maximum is shorter for the model trained by all data. This 

shows the improvement for prediction if both complete data and incomplete data are used 

as training data with the PPgNN model. 

The histogram distributions of all the mean log scores are plotted in Fig. 3.14 

corresponding to the overall performance in Fig. 3.13. A narrower distribution can be 
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observed for the model trained using all data (with missing data). This shows that by 

considering the incomplete data set for training, the model is more likely to produce good 

predictions since more information is provided compared with only using the complete 

data (without missing data). Thus, it is a good practice for fatigue analysis of SLM 

manufactured Ti-64 to fully use the incomplete data set. 

 

Fig. 3.13 Predictive Performance Comparison Between Model Trained Using All data 

and Model Trained Using Only Complete Data. 
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Fig. 3.14 Histogram Distribution of All Mean Log Scores. 

3.4 Physics-guided Mixture Density Networks for Uncertainty Quantification 

3.4.1 Introduction 

Complex systems require simulation models to represent the underlying scientific 

phenomenon flexibly and accurately [141]. Uncertainty Quantification (UQ) in the 

predicted response of a system model is essential to establish confidence in the 

representation of actual system behavior [142-144]. The choice of data distribution is 

crucial for the UQ. For example, in survival data analysis, the probability of failure estimate 

depends heavily on the tail region of the lifetime distribution [106]. However, with little 

prior knowledge and/or sparse data of a complex system, it is not an easy task to determine 
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an appropriate distribution. Extensive studies have been proposed using classical statistical 

analysis, Bayesian statistics, and neural networks for UQ of engineering systems [67, 85, 

106, 145, 146].  

The current study focuses on one type of model, i.e., Mixture Density Networks (MDN), 

due to their flexibility for UQ. The MDN is a combined structure of a feedforward neural 

network and a mixture model [147]. It can provide a flexible mean estimation due to the 

neural network component. Also, the uncertainty quantification can be made without any 

assumption on the distributions due to the mixture distribution component. Hence, it can 

deal with complex patterns and arbitrary distributions found in real-world data. Recent 

applications of MDNs are summarized as follows. Davis et al. [148] introduced the concept 

of MDNs in the emulation of epidemiological models. Lovell et al. [149] explored the use 

of the MDN to reproduce fission yields and their uncertainties and showed that the MDN 

provides a reliable way to estimate uncertainties for nuclear data. Yang et al. [150] used 

MDNs combined with generative adversarial networks for inverse modeling in materials 

microstructural design. Men et al. [151] applied an ensemble approach based on MDNs to 

the point and probabilistic forecasting of wind speed and wind turbine power. Zhao et al. 

[152] applied MDNs with a deep bidirectional long short-term memory model to predict 

basketball trajectories based on real data and generate new trajectory samples. 
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The flexibility of MDN for any complicated functional and distributional form, however, 

does increase the required data size to train the model. This may introduce difficulties when 

using MDNs for computationally expensive models [148]. Extensive physics knowledge 

developed for years or centuries can be used to mitigate this issue, which has not been 

utilized in the modern machine learning practice [153]. The existing physics knowledge 

may be either classical mathematical models or empirical relationships developed within a 

discipline [154]. Serving as a regularization role, the prior information constrains the space 

of admissible solutions for a machine learning model to explore. Thus, it guides the 

learning algorithm towards the right solution with a small data size [72]. The concept of 

physics-guided neural networks was introduced in [153] for solving forward and inverse 

problems involving partial differential equations. The studies of [154, 155] extend the 

deterministic physics-guided neural networks in [153] through dropout and Bayesian 

methods to quantify the uncertainty. Those methods may suffer from 

undefined/pathological behavior [154, 156] or an inappropriate assumption of prior 

distributions for model parameters [155]. Also, it is a challenging problem if the data 

distribution is non-Gaussian or the data includes incomplete data set (e.g., censored data).  

An algorithm is proposed, named Physics-guided Mixture Density Networks (PgMDN), to 

address the above-mentioned difficulties. It has the following novelties. First, this model 

can quantify uncertainties and no assumption of the data distribution is needed. The 
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distribution type is also flexible to change at different inputs. That allows reliable 

uncertainty quantification in a complex system. Second, the physics knowledge of the 

derivative information can be incorporated into the neural network. With the guidance of 

prior knowledge, the required number of training samples can be reduced, and desired 

physics-consistent results can be obtained. Next, a dynamic penalty function method is 

integrated with the PgMDN for the constrained optimization, which automatically balances 

the data and physics knowledge in the training process. Finally, this model does not impose 

any limitations on the neural network architecture (e.g., number of hidden layers, activation 

functions). A wide range of physics constraints (e.g., value constraints or derivative 

constraints, equality or inequality constraints) can be properly designed to be incorporated 

into the neural network.  

3.4.2 Physics-guided Mixture Density Networks 

 

Fig. 3.15 An Illustration of Mixture Density Network Architecture. 

The architecture of the Mixture Density Network used in this work is illustrated in 

Fig. 3.15. Three layers are included in this network: the input layer, one hidden layer, and 
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the output layer. Unlike the regular neural network that only learns the mean values of the 

outputs from the collected distributed data, there are three output neurons in the output 

layer: mixing coefficients, mean values, and standard deviations. Instead of the 

conventional least-square loss, the loss function is the negative logarithm of the probability 

density of the target data given the inputs, i.e., 

  
1

log |
n

i

L p


  y x , (3.33) 

where n is the number of training data. x and y are a set of input and output variables, 

respectively. p(y | x) denotes the conditional probability density of y given a particular x, 

which is a mixture distribution of the form 
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where m is the number of components in the mixture distribution. αj(x) is the mixing 

coefficient which is the probability that the target vector y is generated from the jth 

component of the mixture. ϕj(y | x) is the kernel distribution. Various types of kernel 

functions can be used. In this work, the kernel functions are chosen to be Gaussian with 

the form of  
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where c is the number of outputs. μj (x) is the mean vector of the jth kernel with c 

components. σj is the standard deviation shared among all the components of the output 

vector in the jth kernel. 

Different colors of neurons in Fig. 3.15 indicate specific activation functions. For 

the input layer, no activation functions are used by the definition of the neural network. 

The hyperbolic tangent activation function (named tanh) is used for the neurons in the 

hidden layer. The expression of the tanh activation function is 

  
z z

z z

e e
g z

e e


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
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

, (3.36) 

where z is the output of the corresponding neuron. Other appropriate activation functions 

can also be applied to the hidden layer. The mean (μ) in the output layer has the linear (i.e., 

identity) activation function which is usually used for outputs in the regression problem, 

  g z z . (3.37) 

Since the sum of the mixing coefficients αj(x) should equal unity, i.e., 
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the softmax activation function is used for α in the output layer with the form of 

 
 

1

z

m
z

j

e
g z

e





. 

(3.39) 



 

129 
 

Since the standard deviation must be non-negative, the exponential activation function is 

used for σ and is expressed as 

   zg z e . (3.40) 

The total number of outputs is m×c mean values, m standard deviations, and m 

mixing coefficients. The distribution parameters (i.e., the outputs of the network: mixing 

coefficients, mean values, and standard deviations) are functions of the input x, which 

provide a general tool to model arbitrary distributions for different inputs. After obtaining 

the distribution parameters, the mean, variance, or any quantile of the mixture distribution 

at any input can be computed. Thus, uncertainty quantification can be performed with this 

mixture distribution. 

To incorporate the physics knowledge, training a neural network is formulated as a 

constrained optimization problem: 
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 (3.41) 

where x and y are input and output variables, respectively. θ is neural network parameters. 

The objective function L(x, y; θ) is the loss function shown in Eq. (3.33). The physics 

knowledge is described by the constraints. There are P inequality and Q equality 

constraints. In this work, the physics constraints are first or higher-order derivatives of 
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outputs with respect to input variables. In this way, the physics knowledge can be partial 

differential equations or empirical relationships between outputs and inputs (e.g., the trends 

or curvatures of the fitted curves).  

To train the physics-guided neural network (i.e., to solve the constrained 

optimization problem in  (3.41), two problems remain. The first problem is how to 

differentiate neural network outputs with respect to the inputs for obtaining the expressions 

of the constraints. The second one is how to solve the above constrained optimization 

problem. Those problems are discussed in the following two subsections, respectively. 

The physics knowledge is expressed as partial derivatives in the constraints in the 

optimization problem stated in (3.41). To calculate the derivatives of the neural network 

model with respect to its inputs, one can manually work out the derivatives and code them. 

That method was used in [83, 84, 157], which is shown to be beneficial for a specific 

problem using a simple NN architecture. However, the disadvantage is that the activation 

functions need to be selected carefully to simplify the calculations. Also, any change to the 

NN architecture (e.g., activation functions or the number of layers) requires a re-derivation 

of the analytical derivatives. Another method is automatic differentiation (AD). A specific 

case of AD in NNs is the backpropagation algorithm. It applies the reverse mode AD to 

the objective function (loss function) with respect to its set of weights and biases and 

computes the partial derivatives for the weight and bias update [158]. The same algorithm 
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is used to differentiate the NN with respect to its inputs instead of weights and biases. In 

this case, the objective function is expressed as 

 ( ) ( )f NNy x , (3.42) 

where NN is the NN model as a function of its inputs x. f (y) is a function of the NN outputs. 

It can be any single output when using NNs for a deterministic analysis. For the 

probabilistic analysis using MDN, f (y) can be the mean or variance of the mixture 

distribution, which is a function of all the outputs α, μ, and σ from the MDN.  

The penalty function method is used to solve the optimization problem in Eq. (3.41). 

Penalty function methods transform the constrained optimization problem to an 

unconstrained one by alternative formulations [159]. The backpropagation algorithm can 

still be applied without the need for adaption using this method [159]. The unconstrained 

optimization problem is expressed as  

    
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 

         x y x x , (3.43) 

where ϕ in the new objective function. Gp and Hq are the functions of gp(x; θ) and hq(x; θ), 

respectively. rp and cq are positive numbers known as penalty parameters. The first term of 

Eq. (3.43) is the objective function in Eq. (3.41). It represents how well a fitted curve can 

describe the data (data fitting loss). The second and third terms, called penalty terms, 
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correspond to the inequality and equality constraints (see Eq. (3.41)), respectively. They 

serve as regularizations due to the physics guidance (physics constraint loss). 

The penalty function formulation can be divided into interior and exterior methods. 

For the interior method, the unconstrained solution is sought from the feasible region. On 

the contrary, the exterior method minima are infeasible and converge to the solution from 

the outside. The main drawback of the interior method is that a feasible starting point is 

needed. However, with many parameters in the NN, a feasible starting point is not readily 

available. This issue can be circumvented in the exterior method. General formulas of Gp 

and Hq for the exterior penalty method are [160] 

    ; max 0, ;p p pG g g


       x x , (3.44) 

and 

    ; ;q q qH h h


    x x , (3.45) 

where β and γ are constants (commonly chosen as 1 or 2 [159, 160]). In this work, 2 is 

chosen for both exponents. If the constraints are satisfied, i.e., gp (x; θ) ≤0 and hq (x; θ) = 

0, the penalty terms will be zero. Otherwise, a large number will be added to ϕ so that the 

solution is forced to move towards the feasible region. 

The penalty parameters rp and cq control the severeness of the penalty. With a large 

penalty, the optimization algorithm converges to a feasible solution quickly although it is 

far from optimal. A small penalty may result in an unfeasible solution. In [153], the loss 
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function is constructed as a simple summation of the data loss and physics loss. The penalty 

parameter is set to be one and is fixed while training the NN. This approach is called the 

static penalty function method. There are several drawbacks for this approach. First, the 

constant value of one may not be appropriate for the trade-off between data fitting and the 

physics penalty for different problems. Second, with the same importance attached to data 

fitting loss and physics constraint loss, both types of loss are minimized simultaneously. 

The backpropagation algorithm tries to find a solution which minimizes the overall losses. 

As a result, the solution may lie in the infeasible regions and the physics constraints are 

violated.  To alleviate the above issues, a dynamic penalty function method is proposed for 

training the physics-guided NN. A summary of the algorithm is shown in Algorithm 3.1. 

More detailed descriptions are given below. 

Algorithm 

3.1 

Physics-guided Neural Network optimization using dynamic penalty 

function method. 

1.  Train the NN with loss function Eq. (3.43). Early stop when the data fitting loss 

converges. 

2.  Check whether all the constraints are satisfied. If the physics constraint loss is equal 

to zero, NN is well trained and hence terminate the procedure. Otherwise, go to Step 

3. 
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3.  Increase the penalty parameters, decrease the learning rate, and set the initial weights 

and biases as the results from the previous iteration.  

4. Train the NN with the loss function Eq. (3.43). Early stop when physics constraint 

loss converges. Go to Step 2.  

Step 1. The NN is trained with an arbitrary set of initial model parameters (weights 

and biases). The loss function is the penalty function in Eq. (3.43). In this work, the penalty 

parameters are 1 for this step. The data fitting loss is monitored. The NN training stops 

when the data fitting loss converges. The purpose of this step is to fit the data under the 

physics constraints with relatively small penalty parameters. The physics constraint loss at 

the end of this step may not be zero. That problem is handled through the following steps. 

Step 2. This step determines whether further iterations of the training are needed. 

The entire procedure terminates when the physics constraints are satisfied. If not, the NN 

is trained again with an adjusted set of parameters. 

Step 3. In this step, a new set of parameters is prepared for the next iteration of 

training in Step 4. The focus is on the physics loss. The updated values of the penalty 

parameters rp and cq are greater than those in the previous iteration. The initial weights and 

biases are assigned to the values at the end of the previous iteration. The learning rate for 

the next iteration is also decreased. The decreased learning rate is to prevent the updated 

NN weights and biases from moving too much from the previously trained results. This is 
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because the results from Step 1 can fit the data reasonably well with some violations of the 

physics constraints. This step is to adjust the NN to satisfy the physics constraints 

incrementally by increasing the penalty parameters while keeping the data fitting loss not 

changing dramatically. With a large learning rate, the NN cannot fit the data well when the 

NN pays much attention to the physics constraint loss. In this work, the parameters are 

increased or decreased by being multiplied or divided by a factor greater than 1, 

respectively.  

Step 4. The next iteration of the NN training starts with the parameters from Step 

3. The physics constraint loss is monitored. The NN training stops when the physics 

constraint loss converges. Then go to Step 2 for continued calculation. 

3.4.3 A Numerical Example 

A numerical example is presented to illustrate the performance of data fitting using 

the PgMDN. The simulated data are generated according to 

    10sin 2 , ~ 3,8,0Ty riangulx ar     , (3.46) 

where the error ε is distributed according to the triangular distribution with the lower limit, 

upper limit, and mode of -3, 8, and 0, respectively.  The triangular distribution is selected 

since it is a strongly non-Gaussian distribution and cannot be approximated properly by a 

single Gaussian distribution. The input x belongs to range [0, 0.5]. 200 and 30 data points 

are randomly generated for range [0, 0.3) and [0.3, 0.5], respectively. This non-uniform 
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generation of data is to mimic some engineering applications, where some certain range of 

data is easier/cheaper to obtain. Fig. 3.16 shows the simulated data points (“+” symbols) 

and ground truth mean (black solid curves) and 5% and 95% quantile curves (black dashed 

curves). The ground truth curves are calculated by sampling 100 million data from the true 

triangular distribution. 

Fig. 3.16 (a) shows the fitted results using the proposed PgMDN model with the 

dynamic penalty function method for the mean and 5% and 95% quantile curves (red 

curves). The physics constraint is that the variance is the same everywhere. That is, the 

first derivative of the variance with respect to the input is zero. This corresponds to the 

equality constraint in Eq. (3.41) and Eq. (3.43). There are no inequality constraints in this 

example. The MDN architecture shown in Fig. 3.15 is used. Adam optimization is 

employed. 1 hidden layer with 10 neurons is used. The activation functions are the same 

as those shown in Fig. 3.15. The penalty parameter c in Eq. (3.43) is 1 initially and 

increased by a factor of 5 for each of the following iterations, i.e., ck+1 = 5 ck, where k is the 

number of the iteration. The initial learning rate lr 0 is 0.01 and lr k+1   = lr k / 2 for the 

subsequent iterations. There are 3 components in the mixture distribution. From Fig. 3.16 

(a), it can be seen that the estimated 5% and 95% quantiles are close to the ground truth. It 

is observed that the variance is unchanged at any input. That is achieved due to the variance 

constraint. The results in Fig. 3.16 (a) are obtained using the dynamic penalty function 
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method. The static penalty function method is also conducted for comparison. The results 

are shown in Fig. 3.16 (b). The penalty parameter c is fixed to be 1, and the neural network 

is trained only once. Other than that, the model parameters are the same as those used for 

Fig. 3.16 (a). It should be noted that this strategy is used in [153].  In Fig. 3.16 (b), the 

purple solid and dashed lines are the fitted results for the mean, and 5% and 95% quantiles, 

respectively. Compared with the ground truths, reasonable results can be obtained with the 

static penalty function method. However, it is observed that the variance is not constant in 

the simulation domain. For example, the distances between the 5% and 95% quantiles in 

the lower right and upper middle windows are different. This is because the data fitting 

loss and physics constraint loss are minimized simultaneously in the static penalty function 

method.  When the NN converges, the physics constraint loss is minimized but is not zero. 

Thus, the prescribed physics constraints are not rigorously satisfied (i.e., variance is not 

constant). This comparison clearly shows that the dynamic penalty function method can 

ensure that the physics constraints are better enforced. Fig. 3.16 (c) shows the results 

obtained using the MDN without any constraint. Due to the data sparsity in the range [0.3, 

0.5], the fitted 95% quantile curve deviates from the ground truth. This observation shows 

the benefits of physics knowledge when the training sample is not sufficient, which is 

known as one of the general advantages of physics-guided learning [9].  



 

138 
 

  

(a) (b) 

 
 

(c)  

Fig. 3.16 Fitted Curves for the Mean and 5% and 95% Quantiles. (a) PgMDN with 

Dynamic Penalty. (b) PgMDN with Static Penalty. (c) MDN Without Constraints. 
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3.4.4 Probabilistic Fatigue Stress-life Curve Estimations 

The fatigue failure analysis is a specific case of the survival analysis [60]. The 

relationship between probabilistic fatigue lives (N) of materials and applied stresses (S) is 

required for the safe-life design processes considering reliability [9, 16, 44, 83-88, 161, 

162]. Those relationships are usually presented in the form of probabilistic S-N (P-S-N) 

curves [89]. The logarithm of the fatigue life at a stress level is usually modeled using a 

Gaussian distribution or weakly non-Gaussian distributions (e.g., Weibull) for the finite 

life regime (high stress levels) [86]. However, when the stress level is low, an infinite or 

an extremely large number of fatigue cycles can be sustained. The data in that regime are 

sometimes right censored (known as runouts in fatigue). In that regime, the fatigue life 

cannot be properly described by a Gaussian distribution. Thus, mixture distribution can be 

used. Another example is that bimodal distribution is observed in fatigue stress-life analysis 

for certain types of materials due to different mechanisms of fatigue failures [46]. The 

mixture distribution is more appropriate under these conditions.  

Numerous experiments show that the fatigue P-S-N curves have some common 

characteristics for different materials. For example, the variability of the fatigue life 

increases as the stress level decrease, and the curvature of the mean S-N curve decreases as 

the stress level decreases. The above characteristics can serve as physics knowledge. Many 

attempts were made to establish the probabilistic fatigue stress-life relationship. They can 
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be categorized into explicit regression models (e.g., the random fatigue limit model [44]) 

and machine learning models (e.g., the Probabilistic Physics-guided NN [83]). For the first 

time, the P-S-N curves are estimated using the Physics-guided Mixture Density Model 

proposed in this work. 

The kernel distribution ϕj(y | x)  in Eq. (3.34) for this problem is expressed as 
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where N is the fatigue life, and the subscripts i and j are the indices for the data point and 

the component in the mixture distribution, respectively. δ is the index of a failure or runout, 

and 

1 for failure data

0 for runout data



 


. 

f (•) and F (•) are the probability density function and cumulative distribution function of 

a Gaussian distribution corresponding to the failure data and runout data, respectively. 1 - 

F (•) is known as the survival function for the right-censored data [106]. Two physics 

constraints are imposed on the MDN. They are, as the stress level decreases, (1) the 

variance of the fatigue life increases, and (2) the curvature of the mean S-N curve decreases. 

Constraint (1) is for the first derivative of the mixture variance with respect to the input 

and is non-positive, and constraint (2) is for the second derivative of the mixture mean with 
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respect to the input and is non-negative. Those are the inequality constraints in Eq. (3.41). 

1 hidden layer with 5 neurons is used. The activation functions are the same as those shown 

in Fig. 3.15. The penalty parameters r in Eq. (3.43) are 1 initially and increased by a factor 

of 5 for each of the following iterations, i.e., rk+1 = 5 rk, for both inequality constraints. The 

initial learning rate lr 0 is 0.01 and lr k+1   = lr k / 10 for the following iterations. There are 3 

components in the mixture distribution. 

The experimental data used for model validation are collected from [44, 108]. The 

material is Inconel 718. The results are shown in Fig. 3.17 (a). There are 242 failure data 

(“+” symbols) and 4 runout data (“ ” symbols). The solid and dashed lines are the fitted 

mean, and 5% and 95% quantile curves, respectively. Good results can be obtained using 

the PgMDN model. Both physics constraints (i.e., slope and curvature constraints) are 

satisfied. It should be noted that a single Gaussian distribution is not appropriate for the 

data at low strain levels where the mean S-N curve tends to be flat. Using the mixture 

distribution, those data can be fitted properly. The results shown in Fig. 3.17 (b) are 

obtained using a single Gaussian distribution. Other than that, the model parameters are 

the same as those used for Fig. 3.17 (a). In Fig. 3.17 (b) the variance is abnormally large at 

low strain levels. This is caused by the improperly fitted low bound of the P-S-N curves 

(i.e., 5% quantile curve). Fitting experimental data at low strain levels requires the flat 

shape of the mean S-N curve and large variance. Due to the symmetry of the Gaussian 
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distribution, using a single Gaussian distribution is difficult for the NN to fit the data well. 

That problem is solved by using the mixture distribution in this work. 

  

(a) (b) 

 

 

Fig. 3.17 Fitted P-S-N Curves. (a) Number of Mixture Components k = 3. (b) k = 1. 

3.5 Conclusions 

Section 3.2 proposed Probabilistic Physics-guided Neural Network (PPgNN) 

provides a flexible and robust tool for probabilistic fatigue S-N estimation. Compared with 

an explicit regression model, the PPgNN is not restricted to a single function format when 

fitting with multiple factors and at different stress/strain regimes. It also avoids the non-
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physical predictions occurring for the machine learning model and produces both accurate 

and physically consistent results.  

Several major conclusions can be obtained from the current study using 

investigated data: 

- Both the mean and variance can be accurately predicted using the proposed PPgNN 

architecture with a wide range of fatigue data from both metallic and composite 

materials. Thus, it appears that the proposed framework is a universal approach not 

limited to a single material system. 

- The proposed new loss function, which integrates both failure and runout data, 

performs well and shows good convergence behavior for all investigated materials.  

- It is shown that the embedded physics guidance is important for fatigue data 

analysis, especially for extrapolation behavior. The proposed study offers a unique 

and flexible way to combine data analytics and prior physics knowledge for fatigue 

data analysis. 

- It appears that the relaxation in NN is necessary to reduce the enforced constraints 

for some materials; it is shown that the relaxation is important for fitting near the 

fatigue limit region. 
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- The proposed PPgNN is scalable and can easily extend to include other factors 

affecting fatigue performance, such as mean stress, frequency, corrosion, etc., by 

adding additional nodes and layers. 

Section 3.3 investigates the modeling for probabilistic fatigue analysis of 

selective laser melted Ti-6Al-4V considering the effects of process parameters. 

The Probabilistic Physics-guided Neural Network (PPgNN) is proposed as a 

modeling tool. With this developed model, both the mean and variance of the 

fatigue life can be learned. The PPgNN contains proper constraints on model 

parameters for obtaining P-S-N curves with the physics consistent curvature and 

nonconstant variance. The PPgNN model is also able to be trained using the data 

set with missing data for more reliable predictions. Experimental fatigue data are 

collected from extensive literature for SLM manufactured Ti-64 subjected to 

various in-process and post-process heat treatment parameters. The PPgNN model 

is validated using the experimental data.  

Section 3.4 presents a model named Physics-guided Mixture Density 

Network (PgMDN). It integrates a Mixture Density Network for probabilistic 

modeling and physics knowledge as regularization. This model has no limitations 

on the distribution types of data. Physics knowledge is used as a constraint. The 

physics-guided machine learning is modeled as a constrained optimization 
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problem. Both equality and inequality constraints are considered. The optimization 

problem is solved by a penalty function method. A dynamic penalty function 

algorithm is proposed for training the NN. With the physics constraints, the needed 

data size can be reduced. The validity and application of the PgMDN have been 

demonstrated using a numerical example and an engineering problem for 

probabilistic fatigue data analysis. Some discussions are given to illustrate the 

effectiveness of incorporating the physics knowledge when data are sparse, the 

improvement of the dynamic penalty function method compared with the static 

method, and the benefits achieved from the distribution mixture compared with a 

single Gaussian distribution. 
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4 PROGNOSTICS BASED ON MULTI-FIDELITY LEARNING 

4.1 Overview 

Multi-fidelity data exist in almost every engineering and science discipline, which 

can be from simulation, experiments, and a hybrid form. High-fidelity data are usually 

associated with higher accuracies and expenses (e.g., high-resolution experimental testing 

or finer scale simulation), while low-fidelity data are exactly the opposite in terms of 

accuracy and cost. Multi-fidelity data aggregation (MDA) in this study refers to the process 

of combining two or multiple sources of different fidelity data to have a high accuracy 

summary and low computational cost. MDA has a wide range of applications in 

engineering and science, such as multiscale simulation, multi-resolution imaging, and 

hybrid simulation-testing. This work presents a novel framework named Multi-fidelity 

Data Aggregation using Convolutional Neural Networks (MDA-CNN) for multi-fidelity 

modeling. The MDA-CNN architecture has three components: multi-fidelity data 

compiling, multi-fidelity perceptive field and convolution, and a deep neural network for 

mapping. This framework captures and utilizes implicit relationships between any high-

fidelity datum and all available low-fidelity data using a defined local perceptive field and 

convolution. Most existing strategies rely on the collocation method and interpolation, 

which focuses on the single point relationship.  The proposed method has several unique 

benefits. First, the proposed framework treats the multi-fidelity data as image data and 
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processes them using CNN, which is very scalable to high dimensional data with more than 

two fidelities. Second, the flexibility of nonlinear mapping in neural networks facilitates 

multi-fidelity aggregation and does not need to assume specific relationships among 

multiple fidelities. Third, the proposed framework does not assume multi-fidelity data are 

in the same order or from the same physical mechanisms (e.g., the assumption is needed 

for some error estimation-based multi-fidelity model). Thus, the proposed method can 

handle data aggregation from multiple sources across different scales, such as different 

order derivatives and other correlated phenomenon data in a single framework. The 

proposed MDA-CNN is validated using extensive numerical examples and experimental 

data with multi-source and multi-fidelity data. Discussions are given to illustrate the 

benefits and limitations of the proposed framework. Conclusions and future work are 

presented based on the observations in the current study. 

4.2 Multi-fidelity Data Aggregation Using Convolutional Neural Networks 

4.2.1 Introduction 

In many domains in science and engineering, multiple computational and 

experimental models are generally available to describe a system of interest. These models 

differ from each other in the level of fidelity and cost. Typically, computationally or 

experimentally expensive high-fidelity (HF) models describe the system with high 

accuracy (e.g., finer scale simulation or high-resolution testing). In contrast, low-fidelity 
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(LF) models take less time to run but are less accurate [163-165]. Examples of the different 

levels of fidelities can be simplified/complex mathematical models, coarser/finer 

discretization of the governing equations, and experimental data with different techniques 

[166]. In recent years, there have been growing interests in utilizing multi-fidelity (MF) 

models which combine the advantages of HF and LF models to achieve a required accuracy 

at a reasonable cost [166]. The approaches to combine fidelities can be categorized into 

three: adaptation, fusion, and filtering [163]. Adaptation strategy uses adaptation to 

enhance LF models with information from HF models while the computation proceeds. 

Fusion approaches evaluate LF models and HF models and then combine information from 

all outputs. Filtering approaches use the HF model only if the LF model is inaccurate, or 

when the candidate point meets some criterion.  

The concept of multi-fidelity has been explored extensively in surrogate modelings, 

such as the Gaussian process (GP) [167]. However, limitations of GP in MF modeling still 

exist, e.g., difficulties during optimization, approximations of discontinuous functions, and 

high-dimensional problems. On the contrary, neural networks (NN) can deal with arbitrary 

nonlinearities in high dimensions [83, 84, 168-170]. Recently, efforts of applying neural 

networks as surrogate models have been made to achieve multi-fidelity. Aydin et al. [171] 

use cheap low-fidelity computational models to start training the NN and switch to higher-

fidelity training data when the overall performance of the NN stops increasing. 
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Computational models with varying levels of accuracy are needed to generate training data 

for the NN. This belongs to the filtering strategy. Other works of applying NNs in multi-

fidelity problems mainly use adaption. Liu et al. [167] use an LF physics-constrained neural 

network as the baseline model and use a limited amount of HF data to train a second neural 

network to predict the difference between the low- and high-fidelity models. Meng et al. 

[168] propose a composite NN comprised of three NNs. The first NN is trained using the 

low-fidelity data and coupled to two high-fidelity NNs to discover and exploit nonlinear 

and linear relationships between low- and high-fidelity data, respectively. Motamed et al. 

[172] construct a two-level neural network, where a large set of low-fidelity data are 

utilized to accelerate the construction of a high-fidelity surrogate model with a small set of 

high-fidelity data. 

An important feature of applying NNs to achieve MF modeling is to learn the 

relationship between low- and high-fidelity models. Current attempts focus on the 

relationship between HF data and LF data having identical inputs [167, 168, 172]. Thus, a 

large portion of LF data is not efficiently utilized in the process of learning the appropriate 

relationships. A novel NN model is proposed named Multi-fidelity Data Aggregation using 

Convolutional Neural Network (MDA-CNN). It has the following novelties. First, all low-

fidelity data are utilized to fully exploit the relationship between low- and high-fidelity 

models. Second, due to the convolutional operation, this model is very scalable to high-
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dimensional data. Third, it is not limited to two levels of fidelity and can be extended to 

cases with data sets at multiple levels of fidelities. Also, the proposed framework does not 

assume multi-fidelity data are in the same order or from the same physical mechanisms 

(e.g., the assumption is needed for some error estimation-based multi-fidelity model). Thus, 

the proposed method can handle data aggregation from multiple sources across different 

scales, such as different order derivatives and other correlated phenomenon data in a single 

framework. Fourth, it is an integrated NN rather than a composite of several NNs. Thus, 

only one-time training is needed, and training time is shortened. 

4.2.2 Multi-fidelity Data Aggregation Using Convolutional Neural Networks 

Suppose an n-dimensional random vector y ∈ ℝn is mapped through a model to 

obtain a desired output quantity Q (y) ∈ ℝ. Let QL (y) and QH (y) denote the approximated 

values of the quantity Q (y) by a low- and high-fidelity computational model, respectively. 

Consider a general relationship between the two models as 

  ( ) , ( )H LQ y F y Q y , (4.1) 

where F (•) is an unknown function that captures the relationship between low- and high-

fidelity quantities. F (•) can be either linear or nonlinear [168, 172]. 

The relationship in Eq. (4.1) can be presented in Fig. 4.1 (a) when y is one 

dimensional. For each high-fidelity data point QH (yH) at yH, there exists a corresponding 

low-fidelity QL (yH) data point. The multi-fidelity strategy is to capture the relationship 
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between QH (yH) and QL (yH). To learn the relationship F (•), a neural network surrogate 

model is constructed. The architecture of the NN model is shown in Fig. 4.2. There are two 

input neurons (shown in blue color) in the input layer. They are yH and QL (yH). The output 

neuron in the output layer (shown in yellow color) is QH (yH). The hidden layers between 

the input and output layer are composed of two parts: linear mapping and nonlinear 

mapping. The linear and nonlinear mapping are learned through a skip connection (the 

upper arrow) and fully connected layers (the lower arrow), respectively. The linear and 

nonlinear mapping are then added together before being connected to the output layer. The 

neurons in the hidden layers with grey and green color use linear and nonlinear activation 

functions, respectively. The decomposition of the hidden layers into linear and nonlinear 

parts is inspired by the concept of ResNet [173] where a direct link is used to learn the 

residual rather than the original function. It is shown that it is easier to optimize the residual 

mapping than to optimize the original one. If there are no more things the nonlinear fully 

connected layers can learn, it just learns the mapping as being zero. It turns out that it is 

easier for the network to learn a mapping closer to zero than a linear mapping [173, 174]. 
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(a) Relationship between HF data and 

corresponding LF data. 

(b) Relationship between HF data and 

neighboring LF data. 

 

(c) Relationship between HF data and every LF datum. 

Fig. 4.1 Relationships Between HF Data and LF Data. 

LF data HF data
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Q (y) HF and LF relationship
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Fig. 4.2 Neural Network Architecture for Capturing the Relationship Between HF Data 

and Corresponding LF Data (Fig. 1(a)) 

The aforementioned multi-fidelity model learns the relationship between low- and 

high-fidelity data at the same inputs, i.e., a point-to-point relationship (see Fig. 4.1 (a)). 

With that multi-fidelity strategy, the utilized low-fidelity data are limited to the data with 

the same inputs as the corresponding high-fidelity data at yH. A large portion of low-fidelity 

data is not effectively used to learn the relationship. In order to take those unused LF data 

into account, A natural (also the proposed) idea is schematically presented in Fig. 4.1 (b). 

The proposed idea is to learn the relationship between high-fidelity data and low-fidelity 

data in the neighborhood of yH (shown in the dashed line box in Fig. 4.1 (b)). In this way, 

the multi-fidelity model can learn the point-to-domain relationship. Thus, more 

information from a low fidelity model can be incorporated to assist the multi-fidelity 

strategy. More generally, we can expand the above idea to learn the relationship between 

a high-fidelity datum and all available low-fidelity data as shown in Fig. 4.1 (c). That is 

( )H HQ y

+
( )L HQ y

Hy
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achieved by moving the local domain (dashed line box in Fig. 4.1 (c)) in the space of low-

fidelity data sequentially. This sliding window operation captures the relationship between 

each high-fidelity data and each local domain of low-fidelity data. It is interesting to see 

that this “sliding window” operation is an analogy to the local receptive field concept and 

convolutional operation. This is the reason why we use CNN to do multi-fidelity data 

analytics. The remains of this section describe the implementation of the idea in Fig. 4.1 

(c) through a proposed neural network model: Multi-fidelity Data Aggregation using 

Convolutional Neural Networks (MDA-CNN). 

The architecture of MDA-CNN is shown in Fig. 4.3. It is composed of three parts: 

multi-fidelity data compiling, convolutional layer, and deep neural network. Compared 

with the architecture in Fig. 4.2, the output data is still QH (yH,i), i = 1,…, NH, where NH is 

the number of high-fidelity data. Instead of just inputting yH,i and QL (yH,i), i = 1,…, NH, all 

the low-fidelity data yL,j and QL (yL,j), j = 1,…, NL are also used as inputs, where NL is the 

number of low-fidelity data. The input data are compiled in the form of a table shown in 

the first dashed line box in Fig. 4.3. In this way, we have a total number of NH input tables. 

In any ith input table, i = 1,…, NH, there are four columns: yL, QL (yL), yH,i and QL (yH,i). 

There are a total number of NL rows. For the first two columns, yL and QL (yL), the table 

values are yL,j, QL (yL,j), j = 1,…, NL, respectively, for the jth row. For the last two columns, 

the table values are yH,i and QL (yH,i), respectively. They are the same for each row. Being 
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complied in the above manner, all the available low-fidelity data are utilized for the NN 

model to learn the relationship between low- and high-fidelity data.  

 

Fig. 4.3 Multi-fidelity Data Aggregation Using Convolutional Neural Networks. 

The input is a matrix in Fig. 4.3 instead of a vector in Fig. 4.2. Analogous to an 

image, the input table is then connected to the convolutional layer. The black rectangular 

window shown in the input table is a local receptive field. As an illustration in Fig. 4.3, it 

is a 3 × 4 region, which can be understood as learning the relationship between QH (yH,i) 

and the integration of QL (yH,i) at yH,i, QL (yL,2) at yL,2, QL (yL,3) at yL,3, and  QL (yL,4) at yL,4. 

This operation corresponds to the connection of a high-fidelity datum with a local domain 

of low-fidelity data shown in Fig. 4.1 (c). Each row of the input table is treated as a unit. 

The local receptive field can be composed of one unit or multiple units. Each local receptive 

field is connected to a hidden neuron in the convolutional layer. Next, a new local receptive 

field is generated by sliding down the previous one by a row. That is the fulfillment of 

yL QL(yL) yH, i QL(yH, i)

yL, 1 QL(yL, 1) yH, i QL(yH, i)

yL, 2 QL(yL, 2) yH, i QL(yH, i)

yL, 3 QL(yL, 3) yH, i QL(yH, i)

yL, 4 QL(yL, 4) yH, i QL(yH, i)

… … … …

… … … …

yL, NL
QLF(yL, NL
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…

Convolutional layer Deep Neural Network

,( )H H iQ y

+
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moving the local domain of low-fidelity data (dashed line box) to the right by one low-

fidelity data shown in Fig. 4.1 (c). Each local receptive field is connected to a different 

hidden neuron in the convolutional layer. This procedure is conducted across the entire 

input table. A feature map (a blue rectangle in the second dashed line box in Fig. 4.3) from 

the input layer to the convolutional layer is constructed. The feature map can detect a single 

type of localized feature of the relationship between low- and high-fidelity data. To learn 

a complete relationship, more than one feature map is needed. Thus, a complete 

convolutional layer consisting of multiple different feature maps [175] is constructed and 

is shown in the second dashed line box in Fig. 4.3. Next, a deep neural network shown in 

the third dashed line box in Fig. 4.3 is used to learn the nonlinear mapping, which is the 

same as the architecture in Fig. 4.2 without the input layer. 

The MDA-CNN in Fig. 4.3 is for the bi-fidelity problem with one-dimensional y. 

It is noted that the proposed framework is not limited to two levels of fidelity and can be 

extended to process data sets at multiple levels of fidelities and to deal with y with any 

dimension. In addition, if other information besides QL (y) from a low-fidelity model is 

useful, such as derivatives, it is also easy to be incorporated into this framework. For those 

scenarios, what one needs to do is just to adapt the multi-fidelity data compiling in the first 

dashed line box in Fig. 4.3 while leaving the MDA-CNN framework unchanged. Fig. 4.4 

shows the design of the input table for scenarios of two-dimension y, two low-fidelity 
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models, and utilizing first derivatives of the low-fidelity model, respectively. The basic 

idea for constructing the input table is that the left half of the table contains all the low-

fidelity information, and the right half indicates the low-fidelity datum corresponding to an 

available high-fidelity datum. Some of these multi-source and multi-fidelity data compiling 

and learning are illustrated later in this section. 

 

(a) Two-dimension y. 

  

(b) Two low-fidelity models. 
(c) Utilizing first derivatives of the low-

fidelity model. 
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Fig. 4.4 The Design of the Input Table for Multi-source and Multi-fidelity Data 

Aggregation. 

4.2.3 Numerical Experiments and Validation 

Seven numerical examples are adopted for validating the MDA-CNN model. They 

are continuous functions with linear relationship [168], discontinuous functions with linear 

relationship [168], continuous functions with nonlinear relationship, continuous oscillation 

functions with nonlinear relationship [168], phase-shifted oscillations [168], different 

periodicities [176], and 50-dimensional functions [168] as shown in Table 4.1 (a) – (g), 

respectively. The results from a neural network using only high-fidelity data are presented 

in Ref. [168] for Example (a), (b), (d), (e), and (g). It was shown that the predictions are 

inaccurate due to the lack of high-fidelity data. 

 The architecture in Fig. 4.3 is used to obtain the multi-fidelity results. For Example 

(a) - (d) the input table is organized as the one shown in Fig. 4.3. For Example (e) and (f), 

the input table shown in Fig. 4.4 (c) is employed. The first derivative is calculated using 

the central difference method with step 10-6. Example (g) uses the input table shown in Fig. 

4.4 (a). The hyperparameters used for training the MDA-CNN model are listed in Table 

4.2. For each numerical example, the Adam optimization is employed to minimize the 

mean squared error. 2 hidden layers with 10 neurons per layer and hyperbolic tangent 
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activation functions are employed for the fully connected layers. Table 4.2 also shows the 

number of low- and high-fidelity data used for training the MDA-CNN model for each 

example. For Example (a) – (f), the low- and high-data points are uniformly selected, and 

for Example (g), they are randomly selected. 

The results of the seven numerical examples are shown in Fig. 4.5 (a) – (g), 

respectively. They are the comparison between the results from the MDA-CNN model and 

ground truth high fidelity models. The smaller blue points and bigger red points are the 

low- and high-fidelity data used for training, respectively. The blue, orange and green lines 

are the plots from the low-, high- and multi-fidelity model. It can be seen that the results 

from the MDA-CNN are almost identical to those from pure high-fidelity models for 

Example (a) – (f). For Example (g), the predictions are made at 10,000 random locations. 

The predicted vs. actual value is plotted in Fig. 4.5 (g). The points are almost located on 

the solid line representing exact predictions. The prediction errors calculated by 

 ( )predicted actual actualError Q Q Q   (4.2) 

are 0.0035, 0.0027, and 0.0179 for mean, standard deviation, and maximum value, 

respectively. Therefore, good accuracy can be achieved for all the numerical examples 

investigated. 

Table 4.1 Low- and High-fidelity Models for Numerical Examples. 

(a) Continuous functions with the linear relationship 
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LF model 
2( ) 0.5(6 2) sin(12 4),

10( 0.5) 5 0 1
LQ y y y

y y

  

    
 (4.3) 

HF model 
2( ) (6 2) sin(12 4),

0 1
HQ y y y

y

  

 
 (4.4) 

(b) 

Discontinuous functions with the linear relationship 

LF model 

2

2

0.5(6 2) sin(12 4) 10( 0.5),

0 0.5
( )

3 0.5(6 2) sin(12 4) 10( 0.5),

0.5 1

L

y y y

y
Q y

y y y

y

    


  
    

  

 (4.5) 

HF model 

2 ( ) 20 20,

0 0.5
( )

4 2 ( ) 20 20,

0.5 1

L

H
L

Q y y

y
Q y

Q y y

y

 
      
  

 (4.6) 

(c) 

Continuous functions with the nonlinear relationship 

LF model 2( ) 0.5(6 2) sin(12 4) 10( 0.5) 5LQ y y y y       (4.7) 

HF model 2 2( ) (6 2) sin(12 4) 10( 1)HQ y y y y      (4.8) 

(d) 

Continuous oscillation functions with the nonlinear relationship 

LF model ( ) sin(8 ), 0 1LQ y y y    (4.9) 

HF model 2( ) ( 2 ) ( ), 0 1H LQ y y Q y y     (4.10) 

(e) 

Phase-shifted oscillations 

LF model ( ) sin(8 )LQ y y  (4.11) 

HF model 2 2( ) ( / 10)H LQ y y Q y     (4.12) 

(f) Different periodicities 
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LF model ( ) sin(6 2 )LQ y y  (4.13) 

HF model ( ) sin(8 /10)HQ y y    (4.14) 

(g) 

50-dimensional functions 

LF model 
49

1
1

( ) 0.8 ( ) 0.4 50, 3 3L H i i i
i

Q y Q y y y y


       (4.15) 

HF model 
50

2 2 2
1 1

2

( ) ( 1) (2 ) , 3 3H i i i
i

Q y y y y y


        (4.16) 
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 Table 4.2 Hyperparameters and Number of Low- and High-fidelity Data 

Used While Training the MDA-CNN for Numerical Examples. 

 (a) (b) (c) (d) (e) (f) (g) 

Number of epochs 5,000 5,000 5,000 5,000 5,000 5,000 1,000 

Batch size 4 5 5 10 10 10 50 

Learning rate 0.001 

Regularization 

rate 
0.01 

Number of feature 

maps 
64 

Kernel width 3 

Number of LF data 21 38 21 51 51 51 1,000 

Number of HF data 4 5 5 15 16 15 100 
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(a) Continuous function with the linear relationship. 

 

(b) Discontinuous function with the linear relationship. 
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(c) Continuous function with the nonlinear relationship. 

 

(d) Continuous oscillation function with the nonlinear relationship. 
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(e) Phase-shifted oscillations. 

 

(f) Different periodicity. 
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(g) 50-dimensional function. 

Fig. 4.5 Approximations from Multi-fidelity Data Aggregation Using Convolutional 

Neural Networks (MDA-CNN) for Numerical Examples in Table 4.1. 

4.2.4 Engineering Application Examples: Finite Element Analysis with Random 

Microstructure  

Consider a two-dimensional (2D) 0.3 mm × 0.3 mm plate consisting of three-phase 

heterogenous materials shown in Fig. 4.6. Different colors indicate different phases of 

materials. The randomness in microstructures can affect the overall performance of small 

devices or components such as microelectromechanical systems (MEMS) [177] due to the 

compatible scale. Thus, stress analysis due to the existence of microstructures is essential 

for either failure analysis or design. The microstructure is generated by using a recently 

developed Mixture Random Field model [178] and is kept unchanged in all simulations. 

The high-fidelity model with a mesh of 300 × 300 is illustrated in Fig. 4.6 (a) which can 

precisely represent the details of the microstructure. Fig. 4.6 (b) is the low-fidelity model 
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which only has a mesh of 50 × 50. Some of the microstructure details are lost due to the 

coarse mesh. The nodes on the left edge are fixed in both the x and y-direction. External 

body forces in either x or y direction with the amplitude of 1 kN/mm2 are distributed in the 

red rectangular areas (see Fig. 4.6). The red arrows in Fig. 4.6 show the directions of the 

applied forces. The structure is assumed to be under plane stress.  

To avoid the high computational costs for probabilistic analysis or design where 

repeated response function calls are needed, the numerically efficient multi-fidelity model 

is trained to learn the mapping from different material properties to responses of critical 

points. Young’s moduli of the three materials are chosen as random variables for 

illustration purposes. Thus, the inputs are three-dimensional. The comparison between the 

von Mises stress fields calculated by the low- and high-fidelity model is presented in Fig. 

4.7 with the input vector of (160, 190, 230) GPa for Young’s modulus of the three-phase 

material. For both fidelity models, the stress concentration occurs at point A at the top left 

corner with the coordinate of (0, 0.3) mm. Point A can be regarded as the most dangerous 

point. Thus, the von Mises stress at that point is selected to be the output of the multi-

fidelity model. It should be noted that any other location outputs can be selected, and the 

proposed method is not limited to the location in the simulation domain. 
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(a) High-fidelity model, 300 × 

300. 
(b) Low-fidelity model, 50 × 50. 

Fig. 4.6 The Microstructure of the 2D Plate, Applied Forces, and Boundary Conditions. 

(a) High-fidelity model, 300 × 300. (b) Low-fidelity model, 50 × 50. 

Fig. 4.7 The Von Mises Stress Field of (a) High-fidelity and (b) Low-fidelity Model with 

(160, 190, 230) GPa for Young’s Modulus of the Three-phase Material. 

The three-dimensional input space for the low-fidelity (LF) model is uniformly 

selected from intervals of [150, 170], [180, 200], and [210, 250] GPa for three materials, 

respectively. The grid length (i.e., the distance between two adjacent points) in each 
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interval is 5 GPa. The total number of LF data is 255. The comparison between low- and 

high-fidelity results is shown in Fig. 4.8. The results are normalized by subtracting the 

minimum of the high-fidelity results and then being divided by the difference between the 

maximum and minimum of the high-fidelity results. It can be seen that the low-fidelity 

results do not agree with the high-fidelity results. The root-mean-square error is 1840.3% 

as shown in Table 4.3. However, the overall trend of the low- and high-fidelity results 

match. That is, in general, the high-fidelity results increase as the low-fidelity results 

increase.  

Next, the multi-fidelity method is utilized for a more accurate prediction. The input 

space for the high-fidelity (HF) model is the grid from input vectors (155, 165), (185, 195), 

and (220, 230, 240) GPa. The total number of HF data is 12. The architecture of Multi-

fidelity Data Aggregation using Convolutional Neural Networks (MDA-CNN) in Fig. 4.3 

is used for the multi-fidelity modeling. Since the input of this problem is three-dimensional, 

the input table is designed according to Fig. 4.4 (a). There are 64 feature maps in the 

convolutional layer. 2 hidden layers with 10 neurons per layer and hyperbolic tangent 

activation functions are employed for the fully connected layers. Predictions are made at 

the 255 LF training data. The results from the MDA-CNN are shown in Fig. 4.9. The green 

circles are the predictions, and the black solid line represents the predictions equal to the 

ground truth (high-fidelity results). The agreement between the green circles and the black 

line shows that good predictions can be obtained using the MDA-CNN. The RMSE is 1.2% 

as shown in Table 4.3. To show the necessity of multi-fidelity modeling, a neural network 

is trained for prediction only using the 12 HF data. That NN is fully connected with 2 
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hidden layers each of which has 10 neurons. The results are shown in blue triangles in Fig. 

4.9 and the RMSE is 38.9% in Table 4.3. Thus, using single-fidelity modeling is 

insufficient due to the insufficiency of HF data. To show the effectiveness of incorporating 

the convolutional layer in the MDA-CNN to learn the relationship between an HF datum 

and all the available LF data, the predictions are also made using the multi-fidelity neural 

network architecture in Fig. 4.2 which only learns the relationship between HF data and 

corresponding LF data. There is no convolutional layer in this architecture. Other than that, 

the architecture is the same as the MDA-CNN used in this problem for a fair comparison. 

The results are shown in pink squares in Fig. 4.9 and the RMSE is 18.6% in Table 4.3. 

Predictive improvement can be achieved compared with single-fidelity modeling. However, 

without incorporating the convolutional layer, the prediction accuracy is still poorer than 

those obtained with the MDA-CNN. 

 

Fig. 4.8 Comparison Between Low- and High-fidelity Results. 
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Table 4.3  RMSE (%) for Different Models. 

 LF  Single-fidelity 

NN 

MFNN MDA-CNN 

RMSE 1840.3 38.9 18.6 1.2 

 

 

Fig. 4.9 Comparison of Predicted Results with High-fidelity Results. 

Next, the computational cost for this problem is discussed. Let WMDA-CNN and WHF 

denote the total computational cost for multi-fidelity modeling and the classical high-

fidelity model, respectively. They can be expressed in the following forms, 

 MDA-CNN L L H H T PW N w N w w w    , (4.17) 

and 

 HF P HW N w , (4.18) 
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where wL and wH are the computational cost for obtaining QL and QH from a low- and high-

computational model, respectively, NL and NH are the numbers of low- and high-fidelity 

data for training, respectively, wT and wP are the computational cost for training and 

evaluating the MDA-CNN, respectively, and NP is the number of evaluations (predictions) 

for the MDA-CNN or HF model. The cost wT for training the NN depends on the size of 

training data and NN architecture (i.e., the number of hidden layers and neurons, etc.). It is 

a one-time cost. The cost wP for evaluating the NN depends on the NN architecture. It 

involves activation function and matrix-operation [172]. It is observed for this problem that 

this cost is almost independent of the number of predictions. For this problem, the 

computational costs and data sizes are shown in Table 4.4. The computational cost vs. the 

number of evaluations is plotted in Fig. 4.10 according to Eqs. (4.17) and (4.18). When the 

number of evaluations exceeds 22, the more evaluations, the more computational saving 

can be achieved by using the MDA-CNN. It should be noted that this overhead suggests 

that for the linear low-dimensional problem, MDA-CNN does not offer computational 

advantages as very few function evaluations of the high-fidelity model is sufficient. 

However, MDA-CNN has superior efficiency for most engineering applications with 

nonlinearity and high-dimensionality.  

Table 4.4 Computational Costs and Data Sizes. 

wL (second) wH (second) wT (second) wP (second) NL NH 

0.096 2.968 5.075 0.054 255 12 
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Fig. 4.10 Comparison of Computational Cost Between the MDA-CNN and HF Model. 

4.2.5 Fatigue Crack Growth Prognosis with Monitoring 

In prognostics for engineering materials and systems, both simulation models and 

experimental measurements are available. Experimental measurements can be used to 

update the simulation model for more accurate remaining life prediction [28, 49, 141, 179]. 

In this application, data from simulation models are relatively easy to obtain as the 

computational complexity is usually not high. Experimental measurements are usually very 

expensive but represent the true response from materials and structures. Thus, we treat the 

simulation data as the low-fidelity data and the experimental measurements as the high-

fidelity data. The proposed multi-fidelity data aggregation can be applied to predict the 

crack growth trajectory under fatigue loadings [28, 180].  

An aluminum 2024-T3 plate with an initial center-through crack is shown in Fig. 

4.11. The plate has dimensions of width w = 152.4 mm, length L = 558.8 mm, and thickness 

t = 2.54 mm. The initial crack size is a0 = 9.0 mm. The cyclic loading is applied with a 
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stress amplitude of 24.14 MPa, frequency of 20 Hz, and stress ratio of 0.2. 68 plates were 

tested with the same specimen and loading configurations. The experimental data of crack 

growth trajectories (crack growth vs. loading cycles) were reported [180]. Those 

trajectories vary from each other due to the material and loading uncertainty. 

 

Fig. 4.11 An Aluminum 2024-T3 Plate with an Initial Center-through Crack Under 

Fatigue Loading. 

The multi-fidelity problem setup is as follows. A simplified mathematical model 

calibrated by historical data is treated as the low-fidelity model. Specifically, 10 out of 68 

trajectory data are used to fit parameters of the Paris model (a simplified mathematical 

model). The fitted model cannot precisely predict the crack growth trajectory of a new 

specimen due to the probabilistic nature of fatigue [9, 16, 83, 88, 162, 181]. However, that 

model can describe the approximate trend of crack growth trajectories under repeated 

testing circumstances. Thus, it is used as the low-fidelity model. From the remaining 

dataset, one trajectory is arbitrarily selected as the result of new testing, which is treated as 

t

2w

L
2a0
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the high-fidelity model to be predicted. Three crack size measurements at earlier stages 

from that trajectory representing the actual inspection data are used as high-fidelity data. 

The complete crack growth trajectory is predicted with the low-fidelity model and sparse 

high-fidelity data. 

The Paris’ model [182] is expressed as 

 
 mda

c K
dN

  , 
(4.19) 

where a is the crack length, N is the number of applied loading cycles, and c and m are 

material parameters. ΔK is stress intensity variation and is calculated by 

 sec( / )K a a w    . 
(4.20) 

Using the 10 trajectory data (historical data), model parameters are fitted as ln c = -26.4723 

and m = 2.9308. One of the remaining crack growth trajectories is randomly selected as the 

target prediction. Three data points from that trajectory are randomly chosen to represent 

the sparse high-fidelity data obtained from field inspection (red solid dots in Fig. 4.12).  

The architecture in Fig. 4.3 is used for the multi-fidelity modeling. The prediction 

results are shown in Fig. 4.12. The blue dash-dotted line is the Paris model calibrated using 

the 10 trajectory data. Four trajectories from the remaining dataset are randomly chosen 

and are shown in orange solid lines. The predictions from the MDA-CNN model are shown 

in green dashed lines. It can be seen that the crack growth curve from the Paris model 

deviates from the individual actual trajectories. However, with 3 high-fidelity data (shown 

in red dots) and the low-fidelity Paris’ model, accurate predictions of crack growth 

trajectories can be obtained using the MDA-CNN. 
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Fig. 4.12 The Results of Fatigue Crack Growth Trajectories Using MDA-CNN. 

4.2.6 Discussions 

Fig. 4.13 (a) and (b) show the comparison between results obtained from a neural 

network with and without the convolutional layer. Those two figures correspond to 

continuous function with linear relationship, and continuous function with nonlinear 

relationship for scenarios (a) and (c) in Table 4.1, respectively. The results with the 

convolutional layer shown in green dashed lines are obtained using the architecture in Fig. 

4.3. The results without the convolutional layer (brown dotted line) are calculated using 

the architecture in Fig. 4.2. It can be seen that, without the convolutional layer, the 

predicted results have poor accuracy compared with the ones obtained with the proposed 

architecture. This is due to the small size of high-fidelity data. With the sparse data, it is 

insufficient to produce an accurate result if only the low-fidelity data with the same input 

y as the available high-fidelity data are used for learning the relationship, i.e., the 

relationship shown in Fig. 4.1 (a). However, by using the proposed architecture with a 
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convolutional layer, satisfactory results can be obtained. That is achieved through utilizing 

all low-fidelity data and capturing the relationship between a high-fidelity datum with 

every low-fidelity data.  

 

(a) Continuous function with the linear relationship. 

 

(b) Continuous function with the nonlinear relationship. 

Fig. 4.13 Result Comparison for Illustration of the Effect of Convolutional Layer in 

MDA-CNN. 
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The multi-fidelity results shown in green dashed lines in Fig. 4.13 are obtained with 

64 feature maps in the convolutional layer. To investigate the effect of the number of 

feature maps on the predicted results, the neural networks are retrained with 3 feature maps. 

The results are shown in purple dotted lines. For the investigated examples, the predictions 

are inaccurate with only 3 feature maps in the convolutional layer. That can be explained 

as follows. Each feature maps function learns a simple localized feature of the relationship 

between low- and high-fidelity. Thus, a sufficient number of feature maps are needed for 

a complete capture of the relationship.  

The MF prediction results of Fig. 4.5 (e) and (f) (i.e., Examples of phase-shifted 

oscillations and different periodicities) are obtained using the input table shown in Fig. 4.4 

(c). The first gradient of the low-fidelity model is utilized in the input table. This section 

discusses the scenarios where the MF modeling is conducted with and without low-fidelity 

gradient information. The results for the above two examples are shown in Fig. 4.14 (a) 

and (b), respectively. The green dashed lines are the results obtained by incorporating the 

first derivative of the low-fidelity model in the input table, and the brown dotted lines are 

for the results without considering gradient information (i.e., only using the input table in 

Fig. 4.3). It can be observed that the predictions without low-fidelity gradient information 

are inaccurate. This can be explained as follows. The high-fidelity model for Eqs. Error! 

Reference source not found.) and Error! Reference source not found.) in Table 4.1 can 

be further expressed as 

 2 (1) 2( ) [ ( ) cos( /10) ( ) sin( /10)/ (8 )]H L LQ y y Q y Q y       , 
(4.21) 
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and 

 (1)

(1)

1
( ) [cos( ) ( ) sin( ) ( )]cos( /10)

1
[sin( ) ( ) cos( ) ( )]sin( /10)

H L L

L L

Q y by Q y by Q y
a

by Q y by Q y
a





  



, 

(4.22) 

respectively, where 6 2a   and 6 2 8b    . The high-fidelity model is a function of 

not only the low-fidelity model itself but also its first derivative. If no low-fidelity gradient 

information is provided for multi-fidelity modeling, the present datasets are insufficient for 

the neural network model to learn the correct relationship [168]. In Ref. [168], this problem 

is solved by incorporating  QL (y - τ) where τ is the delay and viewing that as an implicit 

approximation of the first derivative. The selection of optimal value for the time delay τ is 

critical and problem-dependent [168, 183]. The multi-fidelity modeling fails without an 

optimal τ. However, by explicitly incorporating the first derivative information of the LF 

model in the proposed MDA-CNN, the time delay τ can be avoided. Thus, the proposed 

method can be applied with more flexibility for different problems. 
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(a) Phase-shifted oscillations. 

 

(b) Different periodicity. 

Fig. 4.14 Result Comparison for Input Tables with and Without Low Fidelity Gradient 

Information. 

4.3 Uncertainty Quantification of Multi-fidelity Modeling 

The multi-fidelity model in Section 4.2 is a deterministic method. That is, no 

uncertainty is considered. That model will be further expanded to be able to quantify the 

uncertainty. Bayesian statistics offer a formalism to understand and quantify the 

uncertainty associated with deep neural networks predictions. Thus, the multi-fidelity 

neural network needs to be improved by utilizing the idea from Bayesian neural networks. 

4.4 Conclusions 

This chapter presents a novel methodology named Multi-fidelity Data Aggregation 

using Convolutional Neural Networks (MDA-CNN) for multi-fidelity modeling. The 

MDA-CNN is composed of three components: multi-fidelity data compiling, multi-fidelity 
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perceptive field and convolution, and a deep neural network for mapping. This framework 

fully exploits the relationship between low- and high-fidelity data. That is, it aims to 

capture and utilize the relationship between any high-fidelity data with all available low-

fidelity data, instead of just a point-to-point relationship (i.e., a high-fidelity datum with 

one corresponding low-fidelity datum). That is achieved by incorporating all the low-

fidelity data and sliding the local receptive field connected to hidden neurons in the 

convolutional layer across the entire low-fidelity data.  This framework can be easily 

adapted for the scenarios with multiple low-fidelity models, high-dimensional inputs, 

incorporating additional low-fidelity information, etc. Those can be achieved by properly 

designing the input table. 

The viability of the MDA-CNN has been demonstrated using extensive numerical 

examples including the linear and nonlinear relationship between low- and high-fidelity 

functions, discontinuous functions, oscillation functions with phase shift and different 

periodicities, and high-dimensional models. We also discuss and compare the results 

with/without the convolutional layer, and with/without additional low-fidelity information 

(derivatives). After validation, the MDA-CNN is applied to solve two engineering 

problems with different types of levels of fidelities, stress prediction with coarse vs. fine 

mesh in finite element analysis, and fatigue crack growth with simplified physics model vs. 

experimental data. In both numerical and engineering examples, accurate results can be 

obtained with the proposed framework. 
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5 CONCLUSIONS AND FUTURE WORK 

5.1 Conclusions 

This study works on the prediction and uncertainty quantification of material 

mechanical properties (static and fatigue). Corresponding to the four objectives described 

in Chapter 1, the following conclusions can be drawn. 

1. Bayesian model averaging method is carried out for multimodality information 

fusion to estimate the probabilistic vintage pipe strength. The basic theory and 

practical implementation of BMA are introduced. Each model considered to be 

averaged is assigned a weight according to its marginal likelihood and further 

posterior model probability. BMA is implemented through distribution mixing. 

Occam’s window method is used to reduce the number of models considered to 

improve the feasibility and efficiency of BMA as well as keep the efficacy. The 

predictive performance of BMA and the single model are evaluated and compared 

according to the logarithmic scoring rule. Bayesian model averaging has the 

advantage of improving the predictive ability by considering model uncertainty 

when the number of data is insufficient to select a single best model. 

2. To obtain the probabilistic S-N curves with sparse data, this work proposes four 

strategies: hierarchical Bayesian modeling (HBM), Bayesian data augmentation 

(BDA), posterior information from HBM used as prior information for BDA 

(HBM+BDA), and augmented data from BDA used by HBM (BDA+HBM). 

HBM+BDA and BDA+HBM are together called hierarchical Bayesian data 

augmentation (HBDA). The theories and implementations are illustrated. The four 
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strategies are validated using aluminum alloy 2524-T3 data, and laminate panel 

data. After that, the proposed methods are applied to estimate the probabilistic S-N 

curves for the Pearl Harbor Memorial Bridge. HBDA shows a large performance 

gain, especially when the number of the testing specimens is low (e.g., 3), and 

HBM+BDA and BDA+HBM have similar performance based on the investigated 

materials. 

3. The Probabilistic Physics-guided Neural Network (PPgNN) proposed provides a 

flexible and robust tool for probabilistic fatigue S-N estimation. Compared with an 

explicit regression model, the PPgNN is not restricted to a single function format 

when fitting with multiple factors and at different stress/strain regimes. It also 

avoids the non-physical predictions occurring for the machine learning model and 

produces both accurate and physically consistent results. 

The PPgNN model is also able to be trained using the data set with missing 

data for more reliable predictions. Experimental fatigue data are collected from 

extensive literature for additively manufactured Ti-64 subjected to various in-

process and post-process heat treatment parameters. The PPgNN model is validated 

using the experimental data.  

Mixture Density Network (PgMDN) integrates a Mixture Density Network 

for probabilistic modeling and physics knowledge as regularization. This model has 

no limitations on the distribution types of data. The physics-guided machine 

learning is modeled as a constrained optimization problem. Both equality and 

inequality constraints are considered. A dynamic penalty function algorithm is 
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proposed for training the NN. With the physics constraints, the needed data size can 

be reduced.  

4. A novel methodology named Multi-fidelity Data Aggregation using Convolutional 

Neural Networks (MDA-CNN) is proposed for multi-fidelity modeling. This 

framework fully exploits the relationship between low- and high-fidelity data. That 

is, it aims to capture and utilize the relationship between any high-fidelity data with 

all available low-fidelity data, instead of just a point-to-point relationship (i.e., a 

high-fidelity datum with one corresponding low-fidelity datum). This framework 

can be easily adapted for the scenarios with multiple low-fidelity models, high-

dimensional inputs, incorporating additional low-fidelity information, etc. Those 

can be achieved by properly designing the input table. 

5.2 Future Work 

Future work will concentrate on the following aspects: 

1. Chapter 2 considers model uncertainty due to variable selection by constructing 

linear models. Future work may concentrate on the other forms of model 

uncertainties. BMA may extent to consider model uncertainties from the functional 

forms. Also, the likelihood for the data is assumed to be Gaussian distribution. The 

influence of different likelihood distributions can be further studied. 

2. The PgMDN presented in Chapter 3 focuses on the methodology illustration and 

does not address the scalability issue for high-dimensional data analysis. 

Dimension reduction technique and reduced-order modeling can be coupled with 

the proposed methodology for uncertainty quantification and needs further study. 
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In many engineering analyses, multiscale modeling is commonly used and 

uncertainties from different scales need to be quantified. The proposed 

methodology needs to be extended to handle multiscale UQ problems. A possible 

direction is to construct multiple MDNs with correlations between them embedded 

as constraints. Finally, the current study has an implicit hypothesis that the encoded 

physics constraints are correct and has no errors. If physics knowledge is not perfect 

or might be changed due to a change of environments (such as those in the transfer 

learning problems), automatic adaptation between new data and prior physics 

constraints is desired. 

3. The MDA-CNN proposed in Chapter 4 is a fundamental model that introduces 

convolutional neural network (CNN) in multi-fidelity (and multi-source) modeling 

for the first time. Several future research directions are presented based on the 

current study. First, the MDA-CNN presented in this work uses only one 

convolutional layer and no pooling layers. This is due to the relatively low 

dimension of data investigated in this work. For higher-dimensional and more 

complicated data, more convolutional and pooling layers can be utilized. Second, 

the local receptive field sliding across the compiled input table helps to learn the 

relationship between high- and low-fidelity data locally and sequentially. Other 

manners of moving the local receptive field can be explored for a more effective 

relationship capturing, for example, noncontinuous sliding. 
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