
Trapped in Transparency: Analyzing the Effectiveness of Security Defenses in

Real-World Scenarios

by

Purv Rakeshkumar Chauhan

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved April 2022 by the
Graduate Supervisory Committee:

Adam Doupé, Chair
Youzhi Bao

Ruoyu Wang

ARIZONA STATE UNIVERSITY

May 2022

© 2022 Purv Chauhan
All Rights Reserved

ABSTRACT

Honeypots – cyber deception technique used to lure attackers into a trap. They

contain fake confidential information to make an attacker believe that their attack

has been successful. One of the prerequisites for a honeypot to be effective is that

it needs to be undetectable. Deploying sniffing and event logging tools alongside the

honeypot also helps understand the mindset of the attacker after successful attacks.

Is there any data that backs up the claim that honeypots are effective in real life

scenarios? The answer is no.

Game-theoretic models have been helpful to approximate attacker and defender

actions in cyber security. However, in the past these models have relied on expert-

created data. The goal of this research project is to determine the effectiveness of

honeypots using real-world data. So, how to deploy effective honeypots? This is

where honey-patches come into play. Honey-patches are software patches designed to

hinder the attacker’s ability to determine whether an attack has been successful or

not. When an attacker launches a successful attack on a software, the honey-patch

transparently redirects the attacker into a honeypot. The honeypot contains fake

information which makes the attacker believe they were successful while in reality

they were not.

After conducting a series of experiments and analyzing the results, there is a clear

indication that honey-patches are not the perfect application security solution having

both pros and cons.

i

DEDICATION

My heartfelt thank you to Adam, for giving me the opportunity to work with him,

without whom this project/thesis would not exist. It all started when I took his

undergraduate cybersecurity course, which made me interested in the field of

cybersecurity. Then gave me an opportunity to be his undergraduate teaching

assistant, finally letting me work at the SEFCOM lab as a research assistant to

further pursue my passion.

Thank you to Fish for always being available to help or answer any questions even

at the middle of the night.

Thank you to Tiffany and Yan for supporting me during my entire journey at the

lab.

Along the journey, I faced many hardships, but all the professors at SEFCOM made

sure those hardships did not bring me down. Moreover, opened doors to

opportunities which I could not have imagined otherwise.

ii

TABLE OF CONTENTS

Page

LIST OF TABLES . v

LIST OF FIGURES . vi

CHAPTER

1 INTRODUCTION . 1

2 BACKGROUND . 3

2.1 ICTF-Framework . 3

2.2 Application Security Vulnerabilities . 3

2.2.1 Command Injection . 4

2.2.2 Buffer Overflow . 4

2.3 Application Security Mitigations . 4

2.3.1 Snort . 4

2.3.2 Insider . 5

2.4 Data Collection Tools . 6

2.4.1 Tcpdump . 6

2.4.2 SysFlow . 7

3 INFRASTRUCTURE . 8

3.1 Adapting ICTF-Framework . 8

3.2 Vulnerable Services . 9

3.2.1 Backup. 10

3.2.2 Sampleak. 11

3.2.3 Exploit-Market . 12

3.3 Defense Mechanisms . 13

3.3.1 Deploying Snort . 13

3.3.2 Deploying Insider For Honey-patching . 14

iii

CHAPTER Page

4 EXPERIMENTAL DESIGN . 19

5 RESULTS . 21

6 DISCUSSION . 23

7 RELATED WORK . 25

7.1 Studies On Game-Theoretic Approaches In Cybersecurity 25

7.2 Previous Work On Conducting Cyber Security Experiments. 26

8 CONCLUSION . 27

REFERENCES . 28

LIST OF TABLES

Table Page

5.1 Summary Of ICTF Experiments. 22

v

LIST OF FIGURES

Figure Page

2.1 System Design For Working Of Insider [4]. 6

3.1 Infrastructure Setup For Experiments. 9

3.2 Code Snippet Of The Makefile Used For Compiling. 10

3.3 Output Of Running checksec On A Compiled Service Binary. 10

3.4 Snippet of backup’s Source Code. 11

3.5 Snippet of sampleak ’s Source Code. 12

3.6 Snippet of exploit-market ’s Source Code. 13

3.7 Snippet of exploit-market ’s Source Code Of An Intentionally Placed

Bug. 14

3.8 Snippet of Honey-Patching readline(). 17

3.9 Snippet of Honey-Patching is easy password(). 18

3.10 Snippet of Honey-Patching is bad(). 18

5.1 Average Exploitation Time Per Challenge. 22

vi

Chapter 1

INTRODUCTION

Computer systems and networks are vulnerable to a wide range of cyber threats from

malicious actors and various attack vectors. Data needed to detect these threats is

spread across multiple systems and devices. Malicious agents use different techniques

to carry out these kinds of attacks and also to conceal their actions. Current methods

are not able to detect these attacks in a reliable manner. Relevant data which is valu-

able to detect these kinds of attacks consistently outnumbers total storage, bandwidth

and processing capability greatly. Due to such a huge difference, cyber defenders are

looking for tools to strategically allocate resources to target data which is actually

valuable. Furthermore, current tools are unable to detect innovative techniques and

vectors in a proactive manner. Here, the challenge is to analyse data that is spread

across different systems and networked devices in an effective manner.

In the past, game-theoretic models have been proposed to generate attacker and

defender scenarios. Yet these models have relied upon “expert-created” data [17] or

made assumptions [5, 13] about the data. However, this work aims at gathering data

rather than creating it, specifically through Capture The Flag (CTF) environments.

CTF’s are exercises performed individually or in groups to learn or test a variety

of cyber security skills. The CTF environments in this work are created to simu-

late security implications in real life wherein the participants act as attackers and

intentionally vulnerable programs work as defenders.

The goal is to be able to create prototype components to run CTF style ex-

periments and integrate them into an existing framework known as iCTF [31, 32]

developed by researchers at University of California - Santa Barbara (UCSB) and

1

Arizona State University (ASU). Then, this would allow experiments to be run with

a sizable number of people to gather enough data. This data can be used to create

game-theoretic models which may in turn be used to create secure systems. These

systems can leverage those data-driven models to go beyond traditional security meth-

ods and venture into the realm of building proactive defense systems that can foresee

attacks and respond in a game-theoretic fashion, thereby establishing data-driven

decision-making and decision-driven data gathering as the backbone of proactive de-

fense mechanisms.

After successfully conducting several experiments over a period of 11 months,

meanwhile also making changes to the infrastructure, honey-patches outperfomed

the other security defense by a huge margin. But this does not give a solid conclusion

that honey-patches are the perfect solution to solve cyber security issues. A solid

conclusion can only be derived after providing this gathered data to formulate a game-

theoretic model to find the most effective defense mitigation. Although, an intuitive

discussion and analysis is done to come up with a preliminary conclusion considering

the upsides and downsides of honey-patching. Despite having several advantages of

honey-patching as a deception technique for defenders, it has more downside which

outweighs the advantages like being detectable if carefully crafted payloads are used

for exploitation. Additionally, they require more resource overhead which make the

honey-patched process slower, setting off an alarm in the attacker’s mind.

2

Chapter 2

BACKGROUND

Many technologies and frameworks developed by various organizations have been used

in this work. Some of them are discussed below:

2.1 ICTF-Framework

Simulating real-life scenarios is a core ideology for this work. One way to do this is

by using Capture The Flag (CTF) environments. The framework that has been used

for simulating these scenarios is known as the ictf-framework. The ictf-framework is

primarily used to host the iCTF competition every year by team Shellphish.

The iCTF is an attack-and-defense style CTF wherein participants are each given

access to a server on a network that is running a set of vulnerable programs that shall

henceforth be referred to as services. The participants then launch attacks against

each others servers to exploit the vulnerabilities they have found. Also, their duty

is to properly patch their own services so that they are protected against exploits

coming from the other teams and while still functioning normally.

2.2 Application Security Vulnerabilities

Selecting vulnerabilities is the next step. Since the goal is to simulate real-life

scenarios, vulnerabilities were to chosen which were still very prominent in current

software applications. These vulnerabilities should also be exploitable in a decent

amount of time and be able to wreck havoc on the victim machines, since that is

what usually happens during large scale cyber-attacks.

3

2.2.1 Command Injection

Command injection is an attack wherein an attacker can send arbitrary commands

which get executed on a host operating system. They are possible due to improper

input validation in a vulnerable application.

2.2.2 Buffer Overflow

Buffer overflow vulnerability can occur when a program attempts to put more

data in a buffer than it can hold, this data can overwrite memory which could result

in corrupt data, crash the program or cause the execution of malicious code.

2.3 Application Security Mitigations

Defense mitigations need to be chosen to test their effectiveness. Various cyber

defense technologies are available and are commonly used, those include Antiviruses,

Intrusion Detection Systems (IDS), Intrusion Prevention Systems (IPS), Firewalls

and many more. Snort is chosen to compete with Honey-patching, due to the reasons

discussed below.

2.3.1 Snort

Snort is a popular network intrusion detection and prevention system. It uses

rule-based filters to detect different types of attacks like buffer overflows, Denial of

Service (DoS) attacks, OS fingerprinting prevention and many more.

It works as a packet sniffer, which allows monitoring of all incoming packets and

identification of those that could be potentially dangerous. It uses rules which are

quite easy to create and implement. It is also compatible with most operating systems

and network environments.

4

The reason to choose Snort is it is highly configurable and easy to deploy on Linux

distributions (iCTF-Framework runs on Linux distributions)..

2.3.2 Insider

Currently, software security updates result in fixing security vulnerabilities and

bugs. This puts attackers at an advantage because now they know that the vulnerabil-

ities in the software have been fixed. This information results in attackers dedicating

time to finding new vulnerabilities and subsequently using them for successful attacks,

which ultimately boosts their confidence in stolen secrets and potential sabotage as

a result of their attacks[3].

A unique approach has been developed by security researchers at IBM to ad-

dress this problem. It is a methodology for reformulating a large category of security

patches into honey-patches that provide equal security, but make it extremely diffi-

cult for attackers to tell whether their attacks were successful or not[3]. When an

attempt to exploit a known vulnerability is detected, the honey-patch effectively and

transparently sends the attacker to a sandbox environment, allowing the attack to

succeed. This leads the attacker to believe their attempt was a sucess. The sandbox

environment could contain software monitors to capture critical attack information

and bogus files that mislead attackers.

A patch management model is implemented to allow for swift injection of soft-

ware patches into live programs without disrupting production workflows, as well as

transparent sandboxing of suspicious processes for counterintelligence and threat in-

formation collecting. This solution is practical and easy to deploy. It is implemented

as just-in-time (JIT) patching for efficient security fixes[4].

The JIT implementation for honey-patching is called insider [4]. Figure 2.1 shows

the process of injecting a patch into a running application (step 1-3) and the response

5

Figure 2.1: System Design For Working Of Insider [4].

triggered by that patch (steps 4-5). In step 1, a patched function (or functions)

is developed to replace a vulnerable application’s original function (or functions).

The patch is synthesized into bitcode, and symbols are retrieved from a copy of the

application binary. The patch is injected into the target program’s memory space after

it has been synthesized (step 2). The patch is subsequently compiled into native code

on a separate execution thread inside the process, and linked against the application’s

global symbols using the symbol mappings from step 1. The execution of the program

is momentarily paused to introduce a trampoline from the vulnerable function, which

is then replaced with the patch as shown in step 3. When an attack payload is

detected in the patched function (step 4), it triggers a user-defined action, in this

case, sandboxing in a chroot jail (step 5) [4].

2.4 Data Collection Tools

One of very important tasks is to choose good quality data collection tools, which

would be used to collect valuable information/data on the attacker and defender

machines.

2.4.1 Tcpdump

tcpdump is a network packet analyzer tool. It can capture network traffic by

reading packets flowing through network cards. It also has the capability to write

6

these captured packets into standard output or into files for further analysis.

tcpdump is chosen because attacker and defender virtual machines are connected

on a network. It has the ability to capture and store network traffic flowing between

separate machines on a network, and this network traffic can then be used for network

packet analysis post experiment.

2.4.2 SysFlow

According to IBM researchers who developed SysFlow, it is “a new system teleme-

try format and tool suite for monitoring system behavior for scalable security, com-

pliance, and performance analytics. SysFlow encodes the representation of system

activities into a compact format that records how applications interact with their

environment. It connects process behaviors to network and file access activities, pro-

viding a richer context for analysis” [28]. SysFlow is deployed on ictf-framework to

capture attack data during the experiments.

SysFlow is chosen because it also has the ability to capture both host and con-

tainer based application workflows. This provides a rich context for post exploitation

analysis.

7

Chapter 3

INFRASTRUCTURE

The majority of the infrastructure has been developed and integrated into the ictf-

framework. The infrastructure developed for this work include vulnerable services to

be used during experiments, also how defense mechanisms are setup and deployed,

which is discussed below:

3.1 Adapting ICTF-Framework

Several modifications have been made to the current implementation of the ictf-

framework, most of which include the removal of unused resources and the addition

of implementation for setting up defenses and gathering data which are discussed

later.The goal of a participant is to read a pre-generated string known as the flag. In

this work, it is assumed that there is only one attacker, and the vulnerable services

are deployed on different machines with varying defenses (Figure 3.1). There is only

one flag which is placed in the root (/) directory of the host operating system in /flag.

It can only be read by the root user, thus the vulnerable services also have the SUID

bit set to 1.

Figure 3.1 shows the implementation used for conducting the experiments. The

router acts as a gateway between all the teamvms. The participant who acts as an

attacker is given access to the teamvm1 machine via SSH. They can interact with the

vulnerable services only via the teamvm1 machine. All the teamvms run a similar

environment (Ubuntu 18.04) along with having copies of docker images for all the

vulnerable services. Hence, the attacker has access to copies of all the services being

used in the experiment to analyze and develop exploits for the services.

8

Figure 3.1: Infrastructure Setup For Experiments.

3.2 Vulnerable Services

To be able to analyze the effectiveness of different defense mechanisms with greater

accuracy, selecting vulnerabilities to be tested in the experiments is critical. The

vulnerabilities being tested are specifically command injection and buffer overflow,

which are still prominent in modern security.

All the services discussed have been implemented in C and dockerized to isolate

the services from other services and the host. Figure 3.2 is a snippet of the makefile

9

1 CFLAGS += −Wall −O0 −fno−omit−frame−po in t e r −Wno−deprecated−

d e c l a r a t i o n s −D FORTIFY SOURCE=0 −no−p i e −Wno−format −Wno−format−

s e c u r i t y −z no r e l r o −z exec s tack −fno−stack−pro t e c t o r

2 a l l : service

3

Figure 3.2: Code Snippet Of The Makefile Used For Compiling.

1 Arch : amd64−64− l i t t l e

2 RELRO: No RELRO

3 Stack : No canary found

4 NX: NX disabled

5 PIE : No PIE (0x400000)

6 RWX: Has RWX segments

7

Figure 3.3: Output Of Running checksec On A Compiled Service Binary.

used for compiling the services.

Figure 3.3 shows the output of checksec when ran on a compiled binary.

The 64-bit binary is compiled with all the modern security mitigations turned off.

The reason to do this is that it provides a better insight into how effective the defense

mechanisms being tested are.

3.2.1 Backup

backup is the service deployed on teamvm2, which allows users to store and retrieve

data that is stored as files on the host system. The intended vulnerability is placed

in retrieve backup() (Figure 3.4).

The name and password buffers are read into from the user in get info(). These are

then concatenated into a string and passed to system(). This results in a command

injection vulnerability, since the user input is never sanitized before passing it to

10

1 void r e t r i ev e backup () {

2 char cmd [2 0 0] ;

3 g e t i n f o () ;

4 . . .

5 s np r i n t f (cmd , 200 , ” cat %s %s . s e cure . bak” , name , password) ;

6 system (cmd) ;

7 }

8

Figure 3.4: Snippet of backup’s Source Code.

system(). Hence, the user can execute arbitrary commands on the host operating

system and read the flag.

3.2.2 Sampleak

sampleak is the service deployed on teamvm3, which allows users store and re-

trieve notes which are also stored as files, but unlike backup, the password is also

stored in the note, so the user is required to provide a password when creating the

note and needs to supply the correct password when retrieving them. The intended

vulnerability is placed in read note() (Figure 3.5).

The password buffer is read into by the user with read(). The length of password

is 60 bytes but read() allows one to read in 200 bytes. This causes the password buffer

to overflow and corrupt memory outside the buffer. If a carefully crafted payload is

sent to the program, it can allow remote code execution on the host operating system

and let the user read the flag.

11

1 s t a t i c i n t read note () {

2 char password [6 0] ;

3 . . .

4 p r i n t f (” Please send : password\n”) ;

5 . . .

6 l ength = read (0 , & password , 200) ;

7 . . .

8 re turn 0 ;

9 }

10

Figure 3.5: Snippet of sampleak ’s Source Code.

3.2.3 Exploit-Market

exploit-market is the service deployed on teamvm4, which allows users to store,

retrieve and list payload in the form of data which is stored in the memory of the

program. The intended vulnerability is in find exploit() (Figure 3.6).

The payload buffer is declared to be 500 bytes in new exploit(), but in find exploit(),

it is declared to be only 200 bytes. So, when strcpy() executes on line 46, it can over-

flow the payload buffer in find exploit().

There is also an intentional bug placed in the service (Figure 3.7). This bug leaks

memory addresses of name, price, and payload buffers for all the exploits objects

created in new exploit(). This bug makes it even easier for the user to exploit the

service.

If a carefully crafted payload is sent in new exploit(), it can overflow the payload

buffer in find exploit(), and allow remote code execution on the host operating system

and let the user read the flag.

12

1 void new exp lo i t () {

2 char name [5 0 0] ;

3 char payload [5 0 0] ;

4 . . .

5 s can f (”%499s ” , name) ;

6 s can f (”%499s ” , payload) ;

7 }

8

9 void f i n d e x p l o i t () {

10 char name [2 0 0] ;

11 char payload [2 0 0] ;

12 . . .

13 s t r cpy (name , e x p l o i t s [e x p l o i t i d] . name) ;

14 s t r cpy (payload , e x p l o i t s [e x p l o i t i d] . payload) ;

15 }

16

Figure 3.6: Snippet of exploit-market ’s Source Code.

3.3 Defense Mechanisms

Defense mechanisms are developed and deployed to protect the services from be-

ing exploited by the attacker. The two defense mechanisms being discussed are an

intrusion detection system, specifically snort and the other one is honeypatching.

3.3.1 Deploying Snort

On the ictf-framework, snort has been deployed on the router machine. It sniffs

the packets incoming from teamvm1, which is the machine used by the participant to

exploit services running on the other teamvms. The rules filter used to setup snort

is known as indicator-shellcode.rules, the reason for choosing this specific rules filter

13

1 #de f i n e DEBUG 1

2 void l i s t e x p l o i t s () {

3 i f (DEBUG) {

4 p r i n t f (”%p\n” , e x p l o i t s [i] . name) ;

5 }

6 i f (DEBUG) {

7 p r i n t f (”%p\n” , & e xp l o i t s [i] . p r i c e) ;

8 }

9 i f (DEBUG) {

10 p r i n t f (”%p\n” , e x p l o i t s [i] . payload) ;

11 }

12 }

13

Figure 3.7: Snippet of exploit-market ’s Source Code Of An Intentionally Placed
Bug.

is because two out of the three services can be exploited by sending a shellcode as a

payload when exploiting the buffer overflow vulnerability. On the other hand, it is

extremely difficult to detect command injection accurately. Any kind of rules filter to

detect exploitation of a command injection vulnerability would result in more false

negatives than expected.

Snort is configured to block the connection from teamvm1 to the teamvm which

has snort setup as a defense mechanism for the service. It will block the connection for

180 seconds if a shellcode is detected in the payload, if it is also present in indicator-

shellcode.rules.

3.3.2 Deploying Insider For Honey-patching

insider has been deployed inside the docker container running the vulnerable ser-

vices. When the participant interacts with a vulnerable service via a tcp connection,

14

socat is listening for connections on the service host machine, which then executes

a spawn python script, which is responsible for spawning a copy of the vulnerable

service, pausing the execution of the program, and setting up the trampoline for the

honey-patch to work as intended, as shown in steps 1-3 in Figure 2.1.

3.3.2.1 Honeypatch For Backup

backup has a command line injection vulnerability in read backup(). The con-

catenated string cmd passed to system(), calls get info(), which in turn calls another

function readline() to read into the name and password buffers. This function can be

used to setup the trampoline for the honey-patch.

Figure 3.8 shows a snippet of honey-patching readline().

The patched readline() function acts as a command line injection filter while

reading input, which essentially checks whether each character that is provided as

input by the user can be considered dangerous (characters which can be potentially

used to exploit a command line injection vulnerability). If it detects a dangerous

character, the process sandboxes itself in a chroot environment.

3.3.2.2 Honeypatch For Sampleak

sampleak has a buffer overflow vulnerability in read note(). The password buffer

can be overflowed, so a trampoline function has to be setup after reading into the

password buffer. This function is named is easy password() in the original program

and placed before returning from the read note().

Figure 3.9 shows a snippet of honey-patching is easy password().

The patched is easy password() function checks if the length of the payload is

greater than 60 bytes, which is the original size of the password buffer. If the check

fails, the process sandboxes itself in a chroot environment.

15

3.3.2.3 Honeypatch For Exploit-Market

exploit-market has a buffer overflow vulnerability in find exploit(). The name and

password buffers can be overflowed, so a trampoline function has to be setup between

reading into the vulnerable buffers and the strcpy() which causes the overflow. This

function is named is bad() in the original program.

Figure 3.10 shows a snippet of honey-patching is bad().

The patch for is bad() works similarly to the honey-patch for is easy password()

from sampleak. The subtle difference here is that there are more than one vulnerable

buffers in exploit-market, and also 200 bytes in size.

16

1 i n t p r e a d l i n e (char ∗ buf , i n t s i z e) {

2 f o r (. . .) {

3 i f (read (0 , buf , 1) <= 0) {

4 e x i t (1) ;

5 }

6

7 i f ((buf [i] == ’ ‘ ’) | |

8 (buf [i] == ’ ! ’) | |

9 (buf [i] == ’ $ ’) | |

10 (buf [i] == ’%’) | |

11 (buf [i] == ’&’) | |

12 (buf [i] == ’ (’) | |

13 (buf [i] == ’) ’) | |

14 (buf [i] == ’ | ’) | |

15 (buf [i] == ’ ; ’) | |

16 (buf [i] == ’< ’) | |

17 (buf [i] == ’> ’) | |

18 (buf [i] == ’ ? ’) | |

19 (buf [i] == ’ / ’)) {

20 // sandbox the proce s s us ing chroot

21 }

22 . . .

23 }

24

Figure 3.8: Snippet of Honey-Patching readline().

17

1 i n t l ength ;

2 i n t p i s e a sy pa s swo rd (char ∗ password) {

3 i f (l ength > 60) {

4 // sandbox the proce s s us ing chroot

5 }

6 . . .

7 }

8

Figure 3.9: Snippet of Honey-Patching is easy password().

1 i n t p i s b ad (char ∗ s h e l l c o d e) {

2 i n t l ength = s t r l e n (s h e l l c o d e) ;

3 i f (l ength > 200) {

4 // sandbox the proce s s us ing chroot

5 }

6 . . .

7 }

8

Figure 3.10: Snippet of Honey-Patching is bad().

18

Chapter 4

EXPERIMENTAL DESIGN

Once the infrastructure is setup, a standard procedure has to be decided to conduct

experiments involving human participants. The standard procedure involves several

steps to make sure the experiments are in a stardized manner. Starting off with,

before every experiment starts, the setup of defense mitigations is randomly selected

for each service. The possible mitigations include, snort, honey-patch or even no

mitigation at all. The service-mitigation relationship is one-to-one. Next step is to

find a willing participant and a time is prescheduled to meet for the experiment on

an online meeting platform, Zoom. Then, the participant goes through the consent

document and if they agree, the goal of the experiment is explained to them, which

is to exploit the service and read the contents of /flag and send it over in Zoom

chat before time runs out. Each challenge has a fixed alloted time to exploit. After

that, participant’s SSH public key is added to the teamvm1 ’s authorized keys file, and

they are given access to teamvm1 by providing them the public IP of the machine

to SSH into. Once they SSH into the teamvm1 machine, the directory structure

of the services is explained to them and right after they can start hacking! The

timer is started and they move from one challenge to the other, in the order backup,

sampleak, exploit-market, until they successfully exploit the service (read and send

/flag in Zoom chat) or the time runs out, whichever occurs first. Once the experiment

concludes, participant is debriefed about the defenses, and their feedback is taken for

each challenge and also if their questions are answered, if they have any. This helps

with making changes to the infrastructure and tweaking things a bit in the procedures

of the experiments which are discussed in the next chapter. The last step is to gather

19

data from all the teamvms which is collected using various tools like tcpdump and

SysFlow. tcpdump is deployed on the router machine and captures all the network

traffic sent and received between teamvm1 and other teamvm machines. Next, all the

data collected by SysFlow which is deployed on all the teamvms is fetched. Finally,

collect the syslog data which is deployed on teamvms running the vulnerable services.

syslog is setup to collect debug and error messages on the teamvms for further analysis,

in case something goes wrong during the experiments.

20

Chapter 5

RESULTS

The experimentation started with a pilot study. In the pilot study, the participant

is able to exploit only one service successfully. In this experiment, the honey-patch

is visible to the participant as it is deployed inside the binary of the service. An

unintended format string vulnerability is also found in sampleak. The participant,

thus, tries to exploit the unintended vulnerability to bypass the honey-patch deployed

on sampleak. Changes are implemented for the upcoming experiment.

This time the unintended vulnerability is removed and a transparent honey-patch

(not visible to the participant directly) is deployed. But the honey-patch has been

made intentionally bypassable using a null byte in the exploit payload. A couple more

experiments are conducted, with more changes like giving the participants access to

the source code of the services and letting them know about where the vulnerabilities

are present in the source code, since most of their time is spent on vulnerability

analysis instead which is not the goal of this work.

In one of the experiments, the participant is able to unknowingly bypass the

honey-patch for sampleak, this results into implementing a non-bypassable honey-

patch. Due to so many changes being made in the experiments, the above experiments

are neglected when coming up with the final conclusion. In response to the feedback

given by the participants, appropriate changes are made.

Until this point, all the major changes and implementations have been completed,

so all the experiments conducted afterwards are taken into account when coming up

with the final conclusion.

Figure 5.1 shows the average time taken by the participants to exploit each chal-

21

Figure 5.1: Average Exploitation Time Per Challenge.

Exploitation with Defense Mechanisms

Challenge Successful Exploitation None Snort Honeypatch Gave Honeypot Flag

backup 18/18 6/6 6/6 6/6 6/6

sampleak 9/18 4/6 2/5 3/7 3/3

exploit-market 9/15 3/5 3/5 3/5 3/3

Table 5.1: Summary Of ICTF Experiments.

lenge. This statistic excludes the participants who timed out on a challenge. For

95% confidence, the error amount percentage is set to 5%. This figure signifies that

participants found it most difficult to exploit sampleak, followed by exploit-market,

then backup.

Table 5.1 shows the summary of the experiments conducted. Here, the number

of successful attempts for each experiment has been represented as a fraction of the

total number of experiments. Each row corresponds to a different service and columns

represent the various exploitation scenarios.

22

Chapter 6

DISCUSSION

Looking at the results, total 24 experiments were conducted over a time period of

11 months. They kept evolving so things had to be changed as they progressed.

Towards the end, 6 different experiments were neglected since several major changes

were implemented due to the feedback received from the participants.

Several interesting observations were noted after analyzing the results, the most

important observation was whenever honey-patch was deployed as a mitigation and

the participant was able to successfully exploit that service with the mitigation, they

always gave the honeypot flag. A solid conclusion cannot be inferred from this, but

an assumption could be made that the particiapant, due to having a time constraint,

always gave away the first flag they saw. It can also be assumed that given enough

time they could have escaped the honeypot and found out the real flag. Some unique

instances of special circumstances that occured are discussed ahead.

During some of the experiments, after the participants got to know about the

honey-patches, they were able to successfully escape the chroot sandbox and read the

real /flag. In one instance, the participant was clearly able to know that they were

in a sandbox environment, but due to a lack of time, they gave the fake honeypot

flag so they could move onto the next challenge. But this is due to the way the

chroot sandboxes are designed, they are vulnerable to sandbox escape exploits if

certain conditions are met. One way to make honeypots more resilient is to use more

advanced sandboxing tools like SELinux Sandbox [24] or Virtual machines [22]. But

even then, zero-day vulnerabilities are very common nowadays for those tools which

can still make it possible for attackers to escape sandboxes setup using honey-patches.

23

It has also been observed during analysis of honey-patched programs, that if an

attacker has achieved arbitrary code execution in the program, they can use return

oriented programming (ROP) techniques to detect the presence of a honey-patch by

dumping the program instructions and then, analying them by reversing machine

code.

Another observation is that when honey-patches are deployed on vulnerable pro-

grams, they affect the execution time due to more instructions (code) needing to be

executed. Attackers can notice this timing difference and get more vigilant when

performing attacks.

24

Chapter 7

RELATED WORK

7.1 Studies On Game-Theoretic Approaches In Cybersecurity

Several studies have been done before which involves game-theoretic approaches

to study or solve various problems faced in the field of cyber security [2, 6–10, 12, 15,

18, 19, 23, 29, 30, 33, 34].

An interesting survey, Game Theory for Cyber Security and Privacy [8] explores

known game-theoretic techniques for cyber security and privacy issues. It highlights

the advantages and limitations from the design to implemenation of defense systems

along with game models, features and solutions for the selected works. It not only

exhibits how to use game theory to address security and privacy issues, but also

motivates researchers to utilize game theory to gain a solid understanding of evolving

security and privacy issues in cyberspace, along with viable solutions.

For more than two decades, the field of network defense mechanism has gotten a lot

of interest from the research community, but due to the complexity and the difficulty

of network security, this issue is far from being solved. A Survey of Game Theory

as Applied to Network Security [19] examines existing game theoretic approaches

aimed at improving network security and proposes a taxonomy for categorizing the

solutions to have a better insight into these approaches to solve a variety of cyber

security concerns.

25

7.2 Previous Work On Conducting Cyber Security Experiments

Cyber security exercises have several uses, they can be used as a platform to teach

cyber security concepts or also to conduct experiments to study, analyze and solve

issues related to cyber security [1, 11, 14, 16, 20, 21, 25–27].

One very interesting work, Cyber Security Exercises and Competitions as a Plat-

form for Cyber Security Experiments [26] discusses the use of cyber security exercises

and competitions to obtain data vital for security research. Generally, cyber security

exercises and competitions are organized to train and/or test proficiency of partici-

pants with a passion in security. This paper explores how exercises and competitions

in the field of security can be utilized as a foundation for experimentation.

26

Chapter 8

CONCLUSION

Upon analyzing the results it is a clear indication honey-patching a vulnerable pro-

gram always results in an attacker getting trapped into the chroot sandbox and giving

the fake honeypot flag. But it seems too good to be true. On further analysis of unique

scenarios which occured in certain experiments, it seems that honey-patches are not

a perfect security solution.

The experiments conducted gives a good amount of data to analyze which can have

statisctical signifance, when running game-theoretic models to prove the effectiveness

of various cyber defense strategies like honey-patches. These game theoretic models

could provide a solid conclusion to find the most effective security mitigation.

Although a preliminary conclusion can be made after analyzing the results, taking

into account the special cases in certain experiments and interesting observations

that honey-patching is a viable security mitigation due to it being easy to setup and

when deployed alongside modern mitigations like Data Execution Prevention (DEP),

Address Space Layer Randomization (ASLR), and many more, it can turn out to

be beneficial. But it also has its downsides such as, increased overhead and being

potentially detected by an attacker.

27

REFERENCES

[1] Aljohani, A. and J. Jones, “Conducting malicious cybersecurity experiments on
crowdsourcing platforms”, in “The 2021 3rd International Conference on Big
Data Engineering”, pp. 150–161 (2021).

[2] Alpcan, T. and T. Başar, Network security: A decision and game-theoretic ap-
proach (Cambridge University Press, 2010).

[3] Araujo, F., K. W. Hamlen, S. Biedermann and S. Katzenbeisser, “From patches
to honey-patches: Lightweight attacker misdirection, deception, and disinforma-
tion”, in “21st ACM Conference on Computer and Communications Security
(CCS’14)”, (ACM, 2014).

[4] Araujo, F. and T. Taylor, “Improving cybersecurity hygiene through jit patch-
ing”, in “Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engi-
neering”, pp. 1421–1432 (2020).

[5] Attiah, A., M. Chatterjee and C. C. Zou, “A game theoretic approach to model
cyber attack and defense strategies”, in “2018 IEEE International Conference on
Communications (ICC)”, pp. 1–7 (2018).

[6] Attiah, A., M. Chatterjee and C. C. Zou, “A game theoretic approach to model
cyber attack and defense strategies”, in “2018 IEEE International Conference on
Communications (ICC)”, pp. 1–7 (IEEE, 2018).

[7] Dasgupta, P. and J. Collins, “A survey of game theoretic approaches for ad-
versarial machine learning in cybersecurity tasks”, AI Magazine 40, 2, 31–43
(2019).

[8] Do, C. T., N. H. Tran, C. Hong, C. A. Kamhoua, K. A. Kwiat, E. Blasch, S. Ren,
N. Pissinou and S. S. Iyengar, “Game theory for cyber security and privacy”,
ACM Computing Surveys (CSUR) 50, 2, 1–37 (2017).

[9] Hasan, S., A. Dubey, G. Karsai and X. Koutsoukos, “A game-theoretic approach
for power systems defense against dynamic cyber-attacks”, International Journal
of Electrical Power & Energy Systems 115, 105432 (2020).

[10] Kamhoua, C., A. Martin, D. K. Tosh, K. A. Kwiat, C. Heitzenrater and S. Sen-
gupta, “Cyber-threats information sharing in cloud computing: A game theoretic
approach”, in “2015 IEEE 2nd International Conference on Cyber Security and
Cloud Computing”, pp. 382–389 (IEEE, 2015).

[11] Kavak, H., J. J. Padilla, D. Vernon-Bido, R. Gore and S. Diallo, “A charac-
terization of cybersecurity simulation scenarios.”, in “SpringSim (CNS)”, p. 3
(2016).

28

[12] Kiennert, C., Z. Ismail, H. Debar and J. Leneutre, “A survey on game-theoretic
approaches for intrusion detection and response optimization”, ACM Computing
Surveys (CSUR) 51, 5, 1–31 (2018).

[13] Luo, Y., F. Szidarovszky, Y. Al-Nashif and S. Hariri, “Game theory based net-
work security”, J. Information Security 1, 41–44 (2010).

[14] Mäses, S., K. Kikerpill, K. Jüristo and O. Maennel, “Mixed methods research
approach and experimental procedure for measuring human factors in cyberse-
curity using phishing simulations”, in “18th European Conference on Research
Methodology for Business and Management Studies”, p. 218 (2019).

[15] Merrick, K., M. Hardhienata, K. Shafi and J. Hu, “A survey of game theoretic
approaches to modelling decision-making in information warfare scenarios”, Fu-
ture Internet 8, 3, 34 (2016).

[16] Mirkovic, J. and T. Benzel, “Teaching cybersecurity with deterlab”, IEEE Secu-
rity & Privacy 10, 1, 73–76 (2012).

[17] Mitchell, R. and B. Healy, “A game theoretic model of computer network ex-
ploitation campaigns”, in “2018 IEEE 8th Annual Computing and Communica-
tion Workshop and Conference (CCWC)”, pp. 431–438 (2018).

[18] Musman, S. and A. Turner, “A game theoretic approach to cyber security risk
management”, The Journal of Defense Modeling and Simulation 15, 2, 127–146
(2018).

[19] Roy, S., C. Ellis, S. Shiva, D. Dasgupta, V. Shandilya and Q. Wu, “A survey of
game theory as applied to network security”, in “2010 43rd Hawaii International
Conference on System Sciences”, pp. 1–10 (2010).

[20] Salah, K., M. Hammoud and S. Zeadally, “Teaching cybersecurity using the
cloud”, IEEE Transactions on Learning Technologies 8, 4, 383–392 (2015).

[21] Salem, M. B. and S. J. Stolfo, “On the design and execution of {Cyber-Security}
user studies: Methodology, challenges, and lessons learned”, in “4th Workshop
on Cyber Security Experimentation and Test (CSET 11)”, (2011).

[22] Santhanam, S., P. Elango, A. Arpaci-Dusseau and M. Livny, “Deploying virtual
machines as sandboxes for the grid”, pp. 7–12 (2005).

[23] Schlenker, A., O. Thakoor, H. Xu, M. Tambe, P. Vayanos, F. Fang, L. Tran-
Thanh and Y. Vorobeychik, “Deceiving cyber adversaries: A game theoretic
approach”, in “International Conference on Autonomous Agents and Multiagent
Systems”, (2018).

[24] Schreuders, Z. C., T. J. McGill and C. N. Payne, “The state of the art of applica-
tion restrictions and sandboxes: A survey of application-oriented access controls
and their shortfalls”, Comput. Secur. 32, 219–241 (2013).

29

[25] Schwab, S. and E. Kline, “Cybersecurity experimentation at program scale:
Guidelines and principles for future testbeds”, in “2019 IEEE European Sym-
posium on Security and Privacy Workshops (EuroS&PW)”, pp. 94–102 (IEEE,
2019).

[26] Sommestad, T. and J. Hallberg, “Cyber security exercises and competitions as
a platform for cyber security experiments”, in “Nordic conference on secure IT
systems”, pp. 47–60 (Springer, 2012).

[27] Stransky, C., Y. Acar, D. C. Nguyen, D. Wermke, D. Kim, E. M. Redmiles,
M. Backes, S. Garfinkel, M. L. Mazurek and S. Fahl, “Lessons learned from
using an online platform to conduct {Large-Scale}, online controlled security
experiments with software developers”, in “10th USENIX Workshop on Cyber
Security Experimentation and Test (CSET 17)”, (2017).

[28] Taylor, T., F. Araujo and X. Shu, “Towards an open format for scal-
able system telemetry”, in “2020 IEEE International Conference on Big
Data (Big Data)”, pp. 1031–1040 (IEEE Computer Society, Los Alami-
tos, CA, USA, 2020), URL https://doi.ieeecomputersociety.org/10.1109/
BigData50022.2020.9378294.

[29] Thakkar, A., S. Badsha and S. Sengupta, “Game theoretic approach applied
in cybersecurity information exchange framework”, in “2020 IEEE 17th Annual
Consumer Communications & Networking Conference (CCNC)”, pp. 1–7 (IEEE,
2020).

[30] Tom, L., “Game-theoretic approach towards network security: A review”, in
“2015 International Conference on Circuits, Power and Computing Technologies
[ICCPCT-2015]”, pp. 1–4 (IEEE, 2015).

[31] Trickel, E., F. Disperati, E. Gustafson, F. Kalantari, M. Mabey, N. Ti-
wari, Y. Safaei, A. Doupé and G. Vigna, “Shell we play a game? CTF-as-
a-service for security education”, in “2017 USENIX Workshop on Advances
in Security Education (ASE 17)”, (USENIX Association, Vancouver, BC,
2017), URL https://www.usenix.org/conference/ase17/workshop-program/
presentation/trickel.

[32] Vigna, G., K. Borgolte, J. Corbetta, A. Doupe, Y. Fratantonio, L. Invernizzi,
D. Kirat and Y. Shoshitaishvili, “Ten years of ictf: The good, the bad, and
the ugly”, (2014), funding Information: This work was supported by the Na-
tional Science Foundation, through grants CNS-0820907, CNS-0716753, and
CNS-0939188, and by the ARO through MURI grant W911NF-09-1-0553. We
want to especially thank Carl Landwehr, Jeremy Epstein, and Karl Levitt at the
National Science Foundation for their support to cyber-competitions. Publisher
Copyright: © 2014 USENIX Summit on Gaming, Games, and Gamification in
Security Education, 3GSE 2014. All rights reserved.; 2014 USENIX Summit on
Gaming, Games, and Gamification in Security Education, 3GSE 2014 ; Confer-
ence date: 18-08-2014.

30

https://doi.ieeecomputersociety.org/10.1109/BigData50022.2020.9378294
https://doi.ieeecomputersociety.org/10.1109/BigData50022.2020.9378294
https://www.usenix.org/conference/ase17/workshop-program/presentation/trickel
https://www.usenix.org/conference/ase17/workshop-program/presentation/trickel

[33] Wang, Y., Y. Wang, J. Liu, Z. Huang and P. Xie, “A survey of game theoretic
methods for cyber security”, in “2016 IEEE First International Conference on
Data Science in Cyberspace (DSC)”, pp. 631–636 (IEEE, 2016).

[34] Zhao, Y., L. Huang, C. Smidts and Q. Zhu, “A game theoretic approach for
responding to cyber-attacks on nuclear power plants”, Nuclear Science and En-
gineering (2021).

31

	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	BACKGROUND
	ICTF-Framework
	Application Security Vulnerabilities
	Command Injection
	Buffer Overflow

	Application Security Mitigations
	Snort
	Insider

	Data Collection Tools
	Tcpdump
	SysFlow

	INFRASTRUCTURE
	Adapting ICTF-Framework
	Vulnerable Services
	Backup
	Sampleak
	Exploit-Market

	Defense Mechanisms
	Deploying Snort
	Deploying Insider For Honey-patching

	EXPERIMENTAL DESIGN
	RESULTS
	DISCUSSION
	RELATED WORK
	Studies On Game-Theoretic Approaches In Cybersecurity
	Previous Work On Conducting Cyber Security Experiments

	CONCLUSION

	REFERENCES

