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ABSTRACT

Automated driving systems (ADS) have come a long way since their inception. It

is clear that these systems rely heavily on stochastic deep learning techniques for

perception, planning and prediction, as it is impossible to construct every possible

driving scenario to generate driving policies. Moreover, these systems need to be

trained and validated extensively on typical and abnormal driving situations before

they can be trusted with a human life. However, most publicly available driving

datasets only consist of typical driving behaviors. On the other hand, there is a

plethora of videos available on the internet that capture abnormal driving scenarios,

but they are unusable for ADS training or testing as they lack important information

such as camera calibration parameters, and annotated vehicle trajectories.

This thesis proposes a new toolbox, DeepCrashTest-V2, that is capable of

reconstructing high quality simulations from monocular dashcam videos found on

the internet. The toolbox not only estimates the crucial parameters such as camera

calibration, ego motion, surrounding road user trajectories, but also creates a virtual

world in Car Learning to Act (CARLA) using data from OpenStreetMaps to simulate

the estimated trajectories. The toolbox is open-source and is made available in the

form of a python package on GitHub 1.

1https://github.com/C-Aniruddh/deepcrashtest_v2
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Chapter 1

INTRODUCTION

Transportation is one of the critical pillars of mobility in society, as it allows

the basic access and development needs of individuals, companies, and society to

be met safely and in a manner consistent with human and ecosystem health [1].

Among the known transportation modes available in today’s world - air, sea, and

land, land transportation is the most available and preferred mode of transport [2].

The landscape of land transportation has changed substantially over the last few

centuries, especially after the introduction of the Automobile, as it provides a faster,

better, and more convenient way of moving from one place to the other [3].

Automobiles have been around for nearly a century. In the early days, an automo-

bile was a luxury only a few could afford. Still, with growing automation, it became

increasingly easier for manufacturers to mass produce cars, and in turn, make the

automobile a household item [4]. It is estimated that in the US, for every 10 people,

there are 7 cars [5]. While it became significantly easier for humans to buy and use

cars, it had a downside - with more cars on the road, the probability of being involved

in a car crash started trending upward, making automobiles unsafe.

Over the last few decades, there has been an enormous amount of work to make

the automobile safer, such as the introduction of passive safety features like crumple

zones, airbags, and seat-belts along with active safety features such as Automatic

Emergency Braking (AEB), Forward Collision Warning, Adaptive Cruise Control,

Lane Departure Warning, Blind Spot monitoring and more. Figure 1.1 represents

the trends in traffic casualty in the US from 1913 to 2020. It is clear that with

the introduction of passive and active safety features, the rate of a car crash for
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every 10,000 vehicles has decreased by 30 folds, even though the absolute number of

fatalities has increased over the years.
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Figure 1.1: Trends in Traffic Casualty in the US (1913–2020). Data from [3]

As active safety technology evolves, the million-dollar question is, where do we go

from here?

”Self-driving cars are the natural extension of active safety and obviously

something we should do.”

-Elon Musk

The race for self-driving cars began back in 1939 when General Motors envisaged

that cars can drive themselves in the Futurama exhibit. In the following years, the
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domain of automated driving has seen substantial research and developments [6, 7, 8].

The DARPA Grand and Urban Challenge competitions [9] changed the playing field

by offering a uniform and modern testing environment for automated cars.

With the availability of computing resources in the AI boom over the last decade,

the field of automated driving has seen exponential growth, where we went from the

Stanley [10], the 2005 DARPA Grand Challenge winner, which could drive itself 132

miles in a controlled environment to level 4 automated cars being tested publicly on

roads, in the span of just 15 years. It is estimated that there are currently nearly

1,400 level 4 cars being tested by 80 different organizations on public US roads [11].

It is also estimated that nearly 92% of currently available new cars have at least level

2 automation capabilities [12]. To precisely classify and evaluate self-driving cars,

the Society of Automotive Engineers (SAE) standardized the level of active safety in

terms of the need for a human to intervene in the task of driving [13] as summarised

in Table 1.1. The standards introduce the term Automated Driving System (ADS)

to indicate the active safety controller and also take into consideration the domain in

which the ADS will operate in, known as the Operational Design Domain (ODD).

Table 1.1: SAE Levels of Automation (H: Human; A: ADS) [13]

Task Level
L0 L1 L2 L3 L4 L5

Basic control 1 H H/A A A A A
Monitoring environment H H H A A A

Fallback H H H H A A
ODD Limited Limited Limited Limited Limited Unlimited

1.1 Motivation

It is impractical and implausible to model every possible driving scenario and

simulate it for creating driving policies that would be safer than a human [14]. For

1Basic control includes steering, accelerating and braking.
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this reason, Automated Driving Systems heavily rely on stochastic deep learning

techniques for perception, planning, and prediction. Deep learning techniques require

an enormous amount of data. However, most openly available ADS datasets only

provide typical driving data. Due to this, organizations working on ADS have fleets

of cars roaming around cities collecting data that is used for training the deep learning

models used in the system. The data required by ADS for training often includes a

combination of data from a lot of sensors in order to be usable. This creates a

limitation that the car should actually be near a traffic incident while it is happening

for it to be able to collect any meaningful data in atypical situations. Furthermore,

this puts the test driver in a risky situation.

There is a plethora of videos on the Internet that show minor and major crashes,

sometimes due to the fault of a driver and sometimes due to road conditions. However,

the majority of these videos were captured with a monocular dashcam with unknown

camera parameters, rendering them unsuitable for training automated vehicles. The

goal of this thesis is to generate high-fidelity simulations using the dashcam videos

found on the internet so that we can utilize them to extract valuable collision data

and use them to train the ADS. Figure 1.2 demonstrates the end result of the toolbox

on a randomly chosen video from YouTube.

1.2 Contribution

This work introduces an end-to-end framework that

1. Extracts temporal ego vehicle motion

2. Extracts 3D temporal trajectories for other road users (vehicles, pedestrians,

and cyclists)

3. Generates a 3D map in Car Learning to Act (CARLA) [15] that includes road

4



networks, nearby buildings, sidewalks, and road objects

4. Replays the scenario in CARLA for further testing and data collection.

The tool introduced in this thesis mainly relies on monocular dashcam videos

for all the tasks listed above. Even though the system can work when we do not

have the camera calibration parameters or the associated Global Positioning System

(GPS) trace, it greatly helps in performance and accuracy when these parameters

are made available. The tool is distributed as a standalone python package, and all

the Application Programming Interfaces (APIs) are well-documented for ease of use

and further development. In order for users to be able to use the tool, the users will

need to build CARLA from the source and enable the map generation pipeline, as

described in the tool documentation.

1.3 Structure

The manuscript is divided into the following sections:

• Chapter 2 discusses related work and existing methods.

• Chapter 3 describes the problem formulation, constraints, and assumptions

• Chapter 4 describes the trajectory extraction framework including methods

used for vehicle detection, tracking, ego-motion estimation, lane detection, and

online camera calibration.

• Chapter 5 describes the map generation framework including methods used for

extracting information from OpenStreetMaps [16], mesh generation, satellite

imagery extraction, and choosing relevant CARLA assets when constructing

the world.
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• Chapter 6 describes the replay framework where the extracted trajectories are

replayed in the constructed world.

• Chapter 7 discusses the qualitative results of the framework

• Chapter 8 concludes the work with ideas for future work.

6



(a) Frame = 83

(b) Frame = 143

(c) Frame = 180

(d) Frame = 256

Figure 1.2: Side-by-Side Comparison of Input Video Frames From a YouTube Video
and the Resulting Simulation at 4 Different Frames. Input Frame on the Left, Re-
sulting Simulation in CARLA on the Right.
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Chapter 2

RELATED WORK

There is a baseline established for the task of extracting vehicle trajectories and

replaying them in a vehicle simulator in [17]. However, the problem is constrained

to scenarios that are short (typically 10-20 seconds), the roads do not contain any

intersections, the roads are relatively straight, and the vehicles are not occluded from

the ego vehicle point of view at any given time. Additionally, the map has to be

created by hand and thus creates a limitation for generating simulations on a large

scale.

The proposed solution processes a video in four stages - (1) Estimation of camera

calibration parameters (2) Extraction of ego-motion, (3) Detection, tracking, and

trajectory extraction of other road users, (4) Procedural map generation. Each of

these stages makes use of a combination of state-of-the-art Convolutional Neural

Networks (CNNs) and post-processing techniques. The next sections discuss the

related works for each of the five processing stages.

2.1 Estimating Camera Calibration

Geometric camera calibration is the process of estimating the parameters of a lens

and image sensor of an image or a video. These parameters are used for the correction

of lens distortion, estimating the size of an object in world units, or determining the

location of a camera in the scene. It is important to correctly estimate camera

calibration parameters for accurate scene representation in 3D world units. Zhang

et al. [18] introduce a Pinhole camera model along with a flexible technique to

easily calibrate a camera. The technique requires the camera to observe the same

8



planar pattern in at least two different orientations. [19] introduces a new algorithm

for pinhole camera calibration. However, these approaches require a planar pattern

(generally a chessboard) for calibration and are thus reliant on man-made scenes.

This might not be the case in many practical applications.

Yan et al. [20] introduce a large-scale dataset, FocaLens, which is designed for

single-image focal length estimation. [20] also proposes a new focal length estimation

model, which exploits multi-scale detection architecture to encode object distribu-

tions in images to assist focal length estimation. It is then demonstrated that a

model trained on FocaLens achieves state-of-the-art results without distinct geomet-

ric cues. Workman et al. [21] introduce a novel architecture using a deep CNN,

trained on natural images collected from the Internet to directly estimate the focal

length by using raw pixel intensities as input features. Fung et al. [22] demonstrated

a more simple and straightforward approach that reformulates the perspective camera

equations using lane line annotations to estimate camera parameters.

2.2 Ego Motion Estimation

Accurate localization of a vehicle is a fundamental challenge and one of the most

important tasks for autonomous driving [23]. Visual Odometry (VO), and Simulta-

neous Localization and Mapping (SLAM) are robust techniques used for this process.

VO and SLAM techniques can be used in signal-denied areas, and thus they are able

to overcome the limitations imposed by GNSS-based techniques, whilst maintaining

a superior accuracy [24]. The process of estimating an agent’s ego-motion using only

the input of a single or multiple cameras attached to it is known as VO. SLAM,

on the other hand, is a process in which a robot is required to localize itself in an

unknown environment while also building a map of that environment using single or

multiple sensors. The primary distinction between VO and SLAM is that VO focuses

9



on local consistency and aims to incrementally estimate the agent’s path, pose by

pose. SLAM seeks a globally consistent estimate of the agent’s trajectory [25]. This

section covers a review of the current state-of-the-art VO and SLAM methods.

2.2.1 Visual Odometry (VO)

VO methods can be classified into two types - (1) Knowledge-based, and (2)

Learning based [26]. Knowledge-based methods exploit geometrical relations between

frames to assess motion, and Learning based methods rely on Machine Learning (ML)

techniques.

Knowledge-Based Techniques

Knowledge-based techniques can be further classified into three categories - (1) Appearance-

based, (2) Feature-based, and (3) Hybrid. These classifications are created based on

how visual components are used to generate odometry estimates [27]. Appearance-

based techniques operate on the intensity values of the pixels directly and match

the template of sub-images over the optical flow values to estimate motion. Feature-

based techniques extract interest points that can be tracked with the help of vectors

that describe the local region around the key points. Hybrid methods make use of

techniques used both, in appearance-based and feature-based methods.

Feature-based methods work under the assumption that prominent points or re-

gions in each frame can be used to determine camera movement. These key points

include lines, edges, corners and other image patterns that can be distinguished from

their surroundings in terms of intensity, color, or texture and are thus likely to match

well across multiple images [28, 29, 30]. One might argue that this is a two-headed ar-

row – while this approach works well in cases where image features are prominent, the

approach fails to provide meaningful results when that is not the case, for example,
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asphalt, sandy soil, etc [27]. For feature detection, it is important to determine which

feature should be used. The most common feature descriptors are SIFT [31], SURF

[32], ORB [33], BRISK [34] and A-KAZE [35]. [36] provides an in-depth comparison

between the feature descriptors listed above by evaluating them on the KITTI [37]

benchmark. It is found that both geometric distortions and inconsistent lighting are

well handled by feature-based VO [38].

There are three methods for estimating motion: (1) 2D-2D, (2) 3D-2D, and (3)

3D-3D. The most common approach is feature-to-feature matching (2D-2D), which

takes advantage of the constraints imposed by Epipolar geometry. 3D-2D techniques

reduce re-projection errors from 3D-tracked landmarks to the current image frame.

Finally, 3D-3D techniques directly compare two sets of 3D points but are generally

less accurate than 2D-2D and 3D-2D [24].

Learning-Based Techniques

ML-based VO methods are one of the emerging techniques for motion estimation

because they do not require the camera calibration parameters to be explicitly known.

Once an input image sequence is provided, a large dataset is used to train a regression

or classification model that can estimate ego motion. These methods can estimate

translation to the correct scale and are resistant to the noises on which they are

trained [27].

Engel, et al. [39] proposes, Direct Sparse Odometry (DSO), a novel visual odome-

try method based on a highly accurate sparse and direct structure motion formulation,

by combining a fully direct probabilistic model with consistent, joint optimization of

all model parameters including geometry, represented as inverse depth in a reference

frame and camera motion. Yang et al. [40] propose Deep Visual Stereo Odometry

(DVSO), a new Deep Learning (DL) based framework that complements DSO, by ex-
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tending the capabilities of DSO with a neural network that produces accurate depth

estimates. [41] builds on the work in DVSO, by introducing a new CNN, DepthNet,

which predicts the uncertainty associated with estimates. Camera poses are then

estimated using another CNN, PoseNet. The introduction of DepthNet and PoseNet

show an improvement of roughly 10% in select KITTI sequences for trajectory esti-

mation accuracy.

Wang et al. [42] propose an end-to-end supervised method, DeepVO, which fo-

cuses on learning feature extraction with proper geometric significance and implicitly

modeling motion dynamics over a sequence of frames. However, the results are found

to be somewhat unsatisfactory [24]. [43] proposes a DL technique based on optical

flow, DeepAVO. The proposed method in [43] relies on a learning-based optical flow

extractor, PWCNet. The optical flow is predicted to compute the relative trans-

formation of the camera pose and reconstruct the 3D structures of the scene using

triangulation. The optical flow is predicted to compute the relative transformation of

the camera pose and reconstruct the 3D structures of the scene using triangulation.

These structures are then used to align depth predictions in order to address the issue

of scale inconsistency between pose and depth predictions. This, however, impedes

the learning process. Huang et al. [44] proposes a new dynamics-aware visual odom-

etry technique, ClusterVO, that can segment dynamic objects while retrieving the

trajectory of the camera, and the trajectory of the detected objects. This technique

was further extended in [45].

With the adoption of using CNNs for depth estimation in [40], there has been

immense progress in the domain of supervised monocular depth estimation [46, 47,

48, 49, 50, 51]. [51] inherits all loss functions in the self-supervised monocular depth

method proposed in [52, 50] and leverages velocity whenever possible to achieve scale

awareness. The proposed self-supervised depth estimation network outperforms all
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existing depth prediction networks to date.

2.2.2 Simultaneous Localization and Mapping (SLAM)

Lu et al. [53] propose a basic graph-structured model for SLAM, Graph-SLAM

which finds the agent pose in an area based on agent motion and observation data.

Graph-SLAM also proposes a loop closure system for further optimization and rec-

ognizing previously visited locations. Another SLAM technique that uses Extended

Kalman Filter (EKF) for nonlinear filtering is introduced in [54]. Montemerlo et al.

[55] proposes another approach for localization and uses the Monte Carlo algorithm,

however, the algorithm does not work well in modern environments with a higher

number of objects [56].

ORB-SLAM2 [57] is a well-known algorithm in the VO and Simultaneous Local-

ization And Mapping (SLAM) communities. It is an extension of ORB-SLAM [58] for

monocular, stereo, and RGB-D cameras. This open-source method is widely regarded

as a gold standard in visual odometry. As a SLAM technique, this algorithm is made

up of three threads: tracking, local mapping, and loop-closing. Motion estimation is

computed using ORB features tracked over keyframes and a local map, with a focus

on multi-step Bundle Adjustment. Other popular methods for SLAM include VISO2

[37], LSD-SLAM [59], CubeSLAM [60], and SLAM++ [61]. [37] introduces the con-

struction of 3D maps using stereo cameras by applying stereo-matching to a sparse

set of features in conjunction with an odometry method that uses Kalman Filter.

Engel et al. [59] propose a direct monocular SLAM called Large-Scale Direct (LSD)

monocular SLAM. The model takes into consideration the depth estimate for each

pixel and then uses the image pixels in the dense map instead of extracted features.

CubeSLAM builds on top of the work in [44] and [58] by tracking higher-level objects

rather than key points alone. This is achieved by integrating the size and location of
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a detected cuboid in graph optimization constrained by a motion model.

2.3 Vehicle Detection & Tracking

Object pose detection and tracking have recently gained popularity due to their

widespread application in a variety of fields, most notably autonomous driving and

robotics. DL is the most promising technique for object pose detection and tracking,

with promising results. The majority of early efforts in this domain relied on expensive

LIDAR systems like Velodyne. Because of the input constraints imposed in this

manuscript, it is not possible to retrieve high-quality LIDAR data, so the proposed

solution must rely on single-camera techniques for vehicle detection and tracking.

This section covers techniques used for monocular vehicle detection and tracking.

For vehicle detection and tracking, there are mainly two approaches, the first

approach relies on generating 3D bounding boxes directly (using DL), using known

geometry of shapes, or computing distances via 2D/3D constraints. The second

approach applies a representation transform such that we obtain a Birds-Eye-View

(BEV) of the scene and DL techniques can be applied for object detection or segmen-

tation.

First Approach: Estimating 3D Bounding Boxes

Detecting 3D objects directly from 2D images is a difficult task, as depth information

is suppressed during the creation of the 2D image. Mousavian et al. [62] proposed a

new method for 3D bounding box estimation using DL and geometry, Deep3DBox,

that uses discrete continuous loss, which has become a standard for regression of a

large range of multi-modal regression problems. Following this approach, there have

been various works that utilize the 2D/3D geometry constraints for 3D bounding box

estimation [63, 64, 65, 66, 67, 68].
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Li et al. [63] proposes an approach that regresses the 2D bounding box and

orientation using conventional 2D object detection frameworks and then refines it to

get a 3D position. Lu et al. [69] extends this approach and uses the height of the

car for depth estimates. Liu et al. [64] build on the approach in [62] by adding a

refinement stage that densely samples around the 3D seed location, and then scores

the 2D patches with 3D wire-frames. The 3D proposal stage has a refinement model

where-in the depth is calculated using intrinsics and the estimated bounding box.

The location is then computed by re-projecting the center of the 2D bounding box to

the computed depth. Naiden et al. [66] further extend the work in [62] by proposing a

method to regress residual center positions. Ku et al. [65] propose another approach,

MonoPSR, which generates the 3D proposal first and then reconstructs the local

point cloud of the object. Choi et al. [68] extend [62] by building 2D-3D constraint

optimization into the neural network and using an iterative method to refine the

corner cases.

Chen et al. [70] proposed the first framework, Mono3D, that directly estimated

bounding boxes from a single monocular image. Mono3D made use of Faster RCNN

[71] backbone for detection and required a 2D segmentation mask generated by SegNet

[72] to generate 3D proposals. The 3D proposals are generated based on the premise

that cars are on the ground plane. Following this approach, there have been a lot of

improvements in other works [73, 74, 75, 76, 77, 78, 79, 80].

Xu et al. [73] proposed the idea of multi-level fusion, the approach concatenates

the depth estimation from RGB to RGBD and then performs object detection on the

generated image. [73] also investigates using stereo camera images as input and shows

that the precision, in that case, is better than mono, showing that the limitation still

stands at depth estimation, as shown in [81].

Hou et al. [74] build on previous work done in Deep3DBox [62] by regressing
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inverse distance and training the model with RoIAligned [82] features instead of

image patches as in [62]. This approach first performs monocular 3D object detection

and then applies tracking on it, for an end-to-end monocular 3D object detection and

tracking framework. However, it requires the availability of an Inertial Measurement

Unit (IMU) or GPS for extrinsic parameter calculation.

Zhou et al. [75] propose a new object detection framework, CenterNet, that builds

on the premise of object detection of the center point of an object and regression of the

associated properties. It is the first real-time anchor-free object detection framework.

Jorgensen et al. [77] builds on CenterNet and parameterizes 2D and 3D bounding

boxes in 26 attributes per object. These attributes are then regressed for 2D and

3D bounding boxes. However, this approach requires really accurate intrinsics for

meaningful results. The same authors propose a new framework, QD-3DT [80], that

tracks moving objects over time and estimates their full 3D bounding box information

from a sequence of 3D images from a moving agent. The proposed framework utilizes

quasi-dense similarity learning to identify objects from visual cues and associates them

in 2D. Furthermore, an LSTM-based object velocity learning module aggregates the

long-term trajectory for more accurate motion exploration. The 3D tracking pipeline

achieves an improvement of nearly 500%. The method proposed in [80] stands as the

current State of the Art (SOTA) for 3D object detection and tracking for vision-only

methods.

Qin et al. [78] apply a different approach for monocular 3D object detection. The

approach proposes using 3D anchors to explicitly construct object-level correspon-

dences between regions of interest in stereo images and then training a Deep Neural

Network (DNN) that learns to detect and triangulate the object in 3D space. Brazil

et al. [79] uses yet another approach, where 3D and 3D bounding box parameters

are regressed simultaneously by pre-computing 3D mean stats for each 2D anchor.
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The proposed method achieves a 5% increase in accuracy among methods until 2019,

however, takes a longer time to process rendering it unsuitable for real-time applica-

tion.

Second Approach: Estimating Birds-Eye-View (BEV) of the Scene

The main challenge of estimating the BEV of the scene is view transformation. The

most popular approach for this task is Inverse Perspective Mapping (IPM) [83]. How-

ever, IPM assumes that the ground is flat, and as a result, it does not work well in

the case of surfaces that are not flat. DL has proved to be a go-to solution for the

task of BEV scene understanding, and there has been a lot of work in this area

[84, 85, 86, 87, 88, 89, 90, 91, 92].

Pan et al. [84] propose the first network for BEV semantic segmentation. The

approach uses a transformer module to model the view transformation and is imple-

mented as a multi-layer perceptron. Hendy et al. [85] builds on the work in [84] and

proposes another approach that converts sensor information from LIDAR, RADAR,

and camera to a unified representation in BEV. The approach uses a similar view

transformation network as in [84] and considers the previous 5 frames from all the

sensors to predict 5 frames into the future.

Lu et al. [86] propose a new approach for view transformation, where-in a Varia-

tional Auto Encoder (VAE) is used with sampling for view transform. However, the

approach is unable to generate sharp edges in the segmentation result.

Some works also tackle the problem of occlusion - Schulter et al. [87] use a pixel-

wise depth prediction network for view transformation. The approach additionally

learns to predict occluded portions in the image, and it learns general road structure

by aligning geo-tagged images to data from OpenStreetMaps while training. Reiher

et al. [88] uses IPM for view transformation and relies on a surround camera system
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for generating a 360-degree BEV. The approach described in [88] uses synthetic data

generated in CARLA for training, pre-processes the training data to introduce the

effect of occlusion, and then is trained on the augmented data.

There has been a lot of work that utilizes a surround camera system for BEV.

Roddick et al. [89] uses a dense transformation layer for view transformation, and

proposes an end-to-end framework that estimates ground plane, and performs road

segmentation, lane detection, and 3D object detection. Philion et al. [90] builds on

work from [89, 81] and proposes a probabilistic pixel-wise depth prediction network.

The proposed method works in three stages, Lift, Splat and Shoot.

2.4 Map Generation

Automatic map generation in the context of this manuscript refers to the process

of creating a 3D map of the area in which the scenario takes place. This includes

the corresponding road network, road objects, and buildings. This is a crucial task

in the domain of automated driving. There are mainly two methods of automatically

generating maps.

The first method relies on the onboard vision sensors of the agent for semantic

scene understanding. The result can be then stitched together for a complete map

[87, 89, 93, 94, 95, 96]. Mani et al. [93] propose an approach, MonoLayout, that uses

VAE view transformation, and uses one encoder, and two decoder network architec-

ture. The network also learns road geometries extracted from the OSM database.

Li et al. [96] focus on the prediction of vectorized map elements in BEV for scene

understanding. Li et al. [96] make use of neural feature transformation and geometric

projection for view transformation. Most approaches for scene understanding rely on

well-calibrated surround camera systems for meaningful results, and thus cannot be

used under the constraints imposed by this manuscript.
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The second method relies on the availability of open-source map databases such

as OpenStreetMaps (OSM). Mondal et al. [97] propose some ideas for constructing

virtual worlds in CARLA using the OSM database. The proposed approach uses

Blender to generate world mesh, however, details of implementation are not provided.

Maierhofer et al. [98] introduce a toolbox, CommonRoad, that provides converters

for different formats of road networks, including OSM, Lanelet, OpenDRIVE, and

SUMO. Cai et al. [99] propose extensions to [15] to utilize OSM data to develop

and test crowd-driving algorithms. Additionally, CARLA [15] provides a method of

generating road networks defined in the OpenDRIVE standard.
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Chapter 3

PROBLEM DESCRIPTION

The primary focus of this thesis is to create an end-to-end video processing pipeline

that can generate high-fidelity simulation scenarios using monocular dashcam videos

with known or unknown camera parameters and trajectories. The scenarios can then

be used to test Automated Driving Systems and to collect valuable collision data that

can be used to train the ADS. Figure 3.1 shows a single frame from a randomly chosen

YouTube video and the resulting simulation in CARLA. The proposed solution works

under a set of constraints and assumptions as listed in the following sections.

Figure 3.1: Side-by-Side Comparison of a Frame From Video and Its Corresponding
Result in the Simulator

3.1 Constraints

• Constraint 1: If the camera parameters are not specified, the video should

consist of lane markings, as they are used to estimate the necessary parameters.

• Constraint 2: If no reference GPS trajectory is provided, the user must specify

a starting GPS coordinate (latitude, longitude, and bearing) in order to create

meaningful replays.
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• Constraint 3: If the user chooses to extract GPS trajectory using the video

stamp, the coordinates must either be in float point values or in NMEA format.

• Constraint 4: The video should have good visibility and the camera placement

should capture the road adequately.

• Constraint 5: Videos captured at night time should not have any screen re-

flections.

3.2 Assumptions

• Assumption 1: The camera is approximately at the center of the dashboard.

• Assumption 2: OpenStreetMaps data is accurate and reflects the latest road

conditions.

• Assumption 3: Make and model of other cars are ignored, and cars with

similar shapes and sizes are spawned.

• Assumption 4: In the generated map, the lane width is 4 meters, and the

sidewalk is present along the entire route.

• Assumption 5: The ego vehicle is a standard-size sedan (similar to Tesla

Model 3).

• Assumption 6: The ego vehicle stays on the road throughout the duration of

the scenario.

3.3 Line of Approach

To generate high-fidelity simulations, the proposed pipeline follows a modular

architecture, where-in, each module is responsible for an independent task such as
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ego-motion estimation, trajectory extraction, road user detection, road user tracking,

and replay. The estimated trajectories are then simulated in CARLA within a high-

definition map generated using data from OSM. The following chapters discuss the

internal methodology for each of these tasks.
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Chapter 4

TRAJECTORY EXTRACTION

The main function of the trajectory extraction pipeline is to be able to capture the

trajectories of the ego vehicle and the surrounding road users. Surrounding road users

consist of other vehicles, pedestrians, and cyclists. This functionality is implemented

using a combination of current State-of-the-Art deep CNNs and post-processing tech-

niques.

For clean implementation and ease of modification, the pipeline is broken down

into 5 stages, wherein the first stage is setting up the system using required inputs,

and the following 4 stages are processing stages - (1) Camera Calibration, (2) Ego

motion extraction, (3) Vehicle detection & tracking (4) Asset selection & scene setup.

Each processing stage relies on the result from the previous processing stages. In the

end, the pipeline produces (1) trajectories for ego vehicle and road users in global

frame coordinates, (2) an asset map that determines which CARLA asset should be

utilized for a road user and the corresponding color, and (3) a scene setup, which

contains information regarding the time of day, weather, and more.

All processing stages can be independently thought of as a separate sub-problem.

The next sections describe the problem statement, functionalities, requirements, and

techniques used to solve the sub-problem. Figure 4.1 represents the high-level process-

ing architecture for the trajectory extraction pipeline. The system accepts video or

image frames along with an options structure as input. The setup stage is responsible

for reading and parsing GPS trajectories from different formats. The first processing

stage computes the camera calibration parameters that are used in the later stages.

The second processing stage takes the image frames and camera calibration parame-

23



Image Frames

DeepCalib

Camera Calibration

Odometry

Ego Motion

2D Detection 2D Tracking

3D Detection & 
Tracking

3D Vehicle Trajectories

Motion offset

Asset Selection Asset Mapping

Weather 
Estimation

Weather conditions

Map Generation CARLA Map

Figure 4.1: Trajectory Extraction: High-Level Architecture

ters to estimate the ego-motion trajectory using VO or SLAM. The third processing

stage uses the estimated ego-motion trajectories and computes surrounding road user

trajectories in global frame coordinates. The final processing stage creates an asset

map that is used by the trajectory simulation stage to determine which CARLA asset

should be used for a particular road user. Additionally, the final processing stage also

estimates the weather conditions for a more accurate scenario replay.

4.1 Setup

The toolbox is designed in a manner that allows users to choose from different

techniques to solve a certain sub-problem. This functionality is introduced for multi-

ple reasons. First, it enables the user to choose techniques that work best with data

they are working on. Second, it allows for further extension of the toolbox where-in
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a 3rd party developer can easily add techniques for a certain stage in the process.

The toolbox accepts video files or a sequence of images, sorted in alphabetical

order as the primary input for trajectory extraction. In the case that the user opts

for a video to be the input to the system, the setup stage reads the EXIF information

to extract metadata such as total length, frame rate, start time, etc. Additionally,

the first step in the pipeline is to extract all the frames from the video and assign

a timestamp to all the images. If the timestamp for the video is not present in the

EXIF data, then the setup stages use system time to assign a timestamp to the first

frame, and then the time difference is interpolated based on frame rate. In the case

that the user opts for a sequence of images to be the input to the system, the user also

has to specify the frame rate at which they were captured. This is later on used by

the ego-motion extraction stage for the computing time difference and speed profiles

for each vehicle.

Additionally, the system accepts an Options object that allows users to specify

the GPS trajectory source, camera calibration parameters (if available), and choice

of technique for ego-motion estimation if the GPS trajectory should not be used as a

reference for ego-motion.

The toolbox allows for ego-motion trajectory to be provided during setup or to

be computed later during the processing stages. Figure ?? represents the internal

architecture of the setup stage. In essence, the user has four options to choose from

when providing the relevant GPS trajectory. The provided GPS trajectory can be of

two types - (1) Full (frame-by-frame), (2) Sparse. If a frame-by-frame GPS trajectory

is provided by the user, then that is used as a complete reference for ego-motion. If

the user provides a sparse GPS trajectory, then points in between are interpolated

with the road geometry in consideration. This brings a limitation that the ego vehicle

has to be on the road throughout the scenario as described in Assumption 6 of section
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3.2. The GPS trajectory plays a major role in the map generation pipeline as the

real-world coordinates are used to fetch information such as buildings, road geometry,

road type, satellite imagery, and more.

As explained above, the user has four options to choose from for providing the

GPS trajectory.

1. Embedded: Most dashcams with GPS capabilities store the GPS information

inside the video file. In traditional methods, this information is read by their

proprietary tools for video display with the real-time location. A few manu-

facturers offer the option to export this information to a different format such

as CSV or JSON. This toolbox has the capability of reading embedded GPS

information right from the video file. The file is read as a byte buffer. Each byte

array is then matched with a pre-defined signature for GPS information. Once

a byte buffer matches the signature, it can be parsed using a pre-defined format

for reading relevant information. Most dashcams store GPS coordinates, speed,

bearing, and accelerometer values at the rate of 1 point per second.

2. Stamped: In a few cases, it may not be feasible to have raw videos from

dashcams such that embedded information can be accessed. However, a lot of

videos have the coordinates stamped on the video in a particular format (NMEA

/ Float). The stamp is generally found to be in the same position throughout

the video. If the user opts to use the stamped formation, the user has to select

a region of interest for latitude and longitude respectively. These regions are

then read using Optical Character Recognition (OCR) techniques to extract

the required coordinates. There are many techniques and state-of-the-art tools

available for the task of OCR. However, in this context, the stamps are generally

in a cleanly typed font and thus tesseract provides sufficiently good results. If
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required, tesseract can be swapped with another model in the future.

3. External Files: The system supports reading GPS trajectories from external

files, such as GPX trace files, CSV files, or JSON files. The input CSV or JSON

has to follow a certain structure, and it can be found in the documentation of

the tool. The setup stage automatically determines if the provided file contains

full or sparse trajectories, and proceeds further.

4. None: While the overall performance can be affected, the toolbox does offer a

method to run without providing corresponding GPS trajectories. In the case

that no GPS trace is provided, then the user has to input a starting latitude,

longitude, and bearing for the simulation to proceed. The GPS trajectory

computed by SLAM or odometry methods in the next processing stage is then

fit to the provided starting location for replay. If the user does not know where

exactly the simulation is taking place, they can feed the input for a location

with similar road structures, however, the mesh, and imagery around the place

will be significantly different while trajectory simulation.

4.2 Stage 1: Camera Calibration

Camera calibration is a necessary step in 3D computer vision in order to ex-

tract metric information from 2D images. 3D vehicle detection and tracking require

proper camera calibration and fine-tuning for the best results. In situations when

the camera calibration parameters are available, the toolbox offers support to use

the pre-calibrated parameters instead of computing the parameters during process-

ing. Figure 4.2 represents the overall architecture of the camera calibration stage.

If the user does not have access to the camera calibration parameters, they can be

estimated using one of the two supported techniques.
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Figure 4.2: Trajectory Extraction: Camera Calibration Stage

1. Geometric: A simple and light-weight approach as shown in [22] is used to

reformulate the perspective camera equations. Lane line annotations are then

used to estimate the camera parameters. For this method to provide sufficiently

good results, the lane lines should be predicted very accurately. For ensuring

that the geometric camera calibration system is using accurately predicted lane

lines, the toolbox launches a visual window during the processing stage giving

the user a choice in terms of which frame should be used for focal length esti-

mation. Additionally, the toolbox also provides the user to manually select four

points on the image such that a quadrilateral formed with those four points is

a perfect rectangle when seen from a top-down perspective.

2. DeepCalib [100]: A deep CNN trained on the SUN360 [101] dataset using the

SingleNet classification architecture. This approach computes the focal length

on 30 random frames from the video and takes the average focal length. This

method also assumes that the principal point is at the center of the provided
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image and then constructs an intrinsic camera matrix from the estimated focal

length.

As explained above, for the geometric technique of estimating the camera parame-

ters, it is essential that the lane lines are predicted accurately. The camera calibration

stage uses LaneNet [102] due to its simplistic architecture and high generalization ca-

pabilities. Furthermore, if the user does not make a selection for the preferred method

while setting up the toolbox, DeepCalib [100] is used for camera calibration.

4.3 Stage 2: Ego Motion Estimation
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Ego vehicle trajectory

Camera Calibration
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Figure 4.3: Trajectory Extraction: Ego Motion Estimation Stage

Accurate ego-motion estimation is one of the most important aspects of the tool-

box, as it is extensively used by the further processing stages to align road user
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trajectories with respect to the ego frame and then with the global frame. If the user

provides the ego-motion trajectory during the setup stage of the pipeline, then those

trajectories are interpolated and used by the system as ego-motion. However, if the

user does not provide ego-motion trajectories, then they can be computed using one

of the two techniques supported by the toolbox. Figure 4.3 represents a high-level

overview of the ego-motion stage.

1. SLAM: If the user chooses to use the SLAM technique for ego-motion es-

timation, then the toolbox uses ORB-SLAM 2 [57] internally in the RGBD

configuration. ORB-SLAM 2 is chosen as the method performs frame-by-frame

feature matching and supports matching to a local map to identify the real-time

location of the agent. It also supports bundle adjustment for minimizing error

when estimating motion trajectories. Additionally, ORB-SLAM2 uses pose-

graph optimization to minimize drift and supports loop closure, where-in the

algorithm can detect when the agent returns to a previous location and uses

this information to reduce uncertainty in map estimates.

Figure 4.4 represents the overall processing pipeline for ORB-SLAM2. The

pipeline consists of three parallel threads for tracking, local mapping, and loop

closure. The tracking thread pre-processes the image input so that the rest of

the system can operate independently of the input sensor.

2. Visual Odometry: If the user opts for the VO backbone for ego-motion esti-

mation, then the toolbox uses DF-VO [103] internally to estimate ego-motion.

DF-VO is chosen as the method samples high-quality correspondences from deep

optical flows and recovers accurate camera poses with geometric constraints.

DF-VO also addresses the scale drift issue by geometrically triangulated depths

in dynamic scenes.
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Figure 4.4: ORB-SLAM2: Processing Pipeline [57]

Figure 4.5: DF-VO: Processing Pipeline [103]

Figure 4.5 represents the overall processing pipeline for DF-VO [103]. The

pipeline considers an image pair that consists of the frame at time t and a frame

at time t− 1 and then predicts the optical flow and single view depths for each

image. It then computes a forward-backward flow consistency to identify and

filter good 2D-2D and 3D-2D correspondences. Generally, the top-N flows with

the least inconsistency are used for estimation. In the further processing stages,

31



there are two trackers (1) E-tracker and (2) PnP-tracker. E tracker is used as

the primary tracker to track general motion using 2D-2D correspondences. The

second tracker uses single-view depth estimates to estimate motion when the

E-tracker fails.

If the user does not specify a certain backbone, then the Visual Odometry pipeline

is used as it performs on par with ORB-SLAM2 and works in real-time.

4.4 Stage 3: Vehicle Detection & Tracking

The problem statement of extracting trajectories for surrounding road users can

be reformulated as 3D object detection and tracking. The end goal is to be able to

generate 3D trajectories of each road user such that they can be replayed in CARLA.
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Camera Calibration

2D Object Detection & Tracking

2D Object 
Detector

DLA-34-up

2D Object 
Tracker

QD-Track

3D Vehicle Detection & Tracking

3D-Deepbox

Motion offset

Associations

3D Bounding box w.r.t
ego frame of reference

Ego Vehicle Motion

From Stage 1

From Stage 2 Raw trajectories

Smoothing (Cubic-Spline)3D Vehicle Trajectories

Figure 4.6: Trajectory Extraction: Vehicle Detection & Tracking Stage

As represented in figure 4.6, the toolbox follows the approach presented by quasi-

dense 3D detection and tracking [80] to estimate 3D bounding boxes with respect

to the ego frame. This method follows an online approach that proposes regions

of interest in 2D, from which a 3D layout is estimated. The 3D layout does not
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directly project a 2D center into 3D space and also takes into consideration the

depth, dimensions, and orientations of the detected object. This greatly improves

performance when road users are truncated. The method also uses an LSTM-based

tracker that leverages occlusion-aware association and depth-ordering matching, for

the refinement of the 3D bounding box. Additionally, the method scores SOTA results

on the Agroverse and KITTI 3D tracking benchmarks.

Figure 4.7: Monocular 3D Detection & Tracking: Processing Pipeline [80]

Figure 4.7 represents the internal processing pipeline for quasi-dense detection

and tracking. The first stage makes use of a Faster R-CNN [71] to generate 2D object

proposals in the form of a bounding box. These bounding boxes are used by the

pipeline to extract appearance features but are not used for projecting a 3D center.

The 3D center is estimated by using an ROI head with the regression process. The

network is able to regress bounding boxes along with the 3D project of the box center.

Once the 3D center is available, a 3D box is estimated by extending [62]. The pipeline

is capable of regressing inverse depth and is trained with ROI Aligned features instead

of image patches as in [62]. Instance associations are generated by depth ordering

of trackers before matching using the Hungarian algorithm. Finally, a deep motion

model based on two LSTMs is used for predicting vehicle motion and then refining
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the 3D bounding box.

After all the 3D bounding boxes are estimated, the next step is to project the

location of each bounding box in global frame coordinate using ego vehicle trajectory

and apply tracking association such that there is one global trajectory for each object

instance. Ideally, the 3D bounding box estimations should work out of the box

in terms of creating trajectories, however, due to disparities in depth estimation

and imperfections in camera calibration parameters, the resulting trajectories are

imperfect and need to be smoothened before simulation. Furthermore, speed profiles

need to be computed such that the simulation controller can replay the scenario at

the same pace with respect to the input video when using the physics engine.

4.4.1 Global Frame Trajectory

To compute global frame trajectories for all the road users, the pipeline starts with

a simple assumption that the ego vehicle trajectory begins at (0, 0). Interpolated ego-

motion trajectory is then used as a reference when determining the global trajectory

for each road user. The pipeline estimates all the annotations per frame and assigns

an instance ID to each unique road user within the video. Additionally, the pipeline

has knowledge about where the ego vehicle is in each frame. Now, local coordinates

(with respect to the ego frame) can be computed for each 3D bounding box by using

the forward and right direction vectors, where-in the forward vector represents how

far the road user is from the ego vehicle and the right vector represents the lateral

offset from the center of the ego vehicle. After the local coordinates are computed,

the ego vehicle location in the global is used to offset the local coordinates for each

road user.
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4.4.2 Trajectory Smoothing

After extracting global frame coordinates for each road user, the trajectories need

to be smoothened such that the generated simulations do not have jerky behavior

for road users. The pipeline first filters out trajectories for vehicles that appear and

disappear constantly throughout the video, and for vehicles whose, time to live is

less than 1-2 seconds (generally around 20-60 frames, depending on the input video).

When a vehicle keeps appearing and disappearing, the vehicle cannot be removed

from the scene for the frames it is not visible in the front view, and instead, the

trajectories for that duration have to be interpolated. This can pose an issue to

the system in case the spline function generates trajectories that crash with the ego

vehicle if the vehicle is too close. It is important to note that there can be some crash

scenarios that will involve the vehicle that keeps appearing and disappearing. For

those scenarios, the toolbox offers a method to disable this sort of filtering. After the

filtering process, each trajectory is smoothened using a natural cubic spline function.

4.5 Stage 4: Asset Selection & Scene Setup

Asset selection in the context of the work refers to the task of choosing the correct

vehicle or model for each object instance. It is an important aspect of trajectory sim-

ulation as randomly choosing assets might cause unexpected behaviors. For example,

choosing a trailer truck asset instead of a mid-sized vehicle in a congested traffic sce-

nario might cause crashes that do not exist in the original video and thereby affect

the overall dynamics of the replay. Along with a module to identify which vehicle

should be used for a certain object instance, the toolbox also supports identifying the

colors for vehicles. Figure 4.8 represents the overall pipeline for asset selection and

scene setup. The next sub-sections cover each aspect briefly.
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Figure 4.8: Trajectory Extraction: Asset Selection & Scene Setup

4.5.1 Vehicle Color Estimation

The toolbox supports estimating the color of each surrounding vehicle such that

it can be used during replay. This is achieved by extracting the 2D bounding box for

each vehicle instance and applying k-means clustering to the pixel values within the

region of interest to identify the dominant colors. The most dominant color is assumed

to be the color of the vehicle in consideration. This approach is not state-of-the-art

but is found to perform sufficiently in well-lit scenarios.

4.5.2 CARLA Asset Selection

During the vehicle detection & tracking stage, dimensions for each road user are

estimated, and as the car is observed over multiple frames, the estimated dimensions

change. The car asset selection stage takes into consideration all the dimension es-

timates for each vehicle instance and computes the average length and width of the

vehicle. To determine which CARLA asset should be used for a particular vehicle in-

stance, an embedding consisting of dimensions for all CARLA assets is pre-computed.
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During the selection stage, the nearest (L2 norm) data point in the embedding is

queried and the asset corresponding to that point is used during the trajectory sim-

ulation stage.
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Figure 4.9: Pre-computed Embedding for All CARLA Vehicle Blueprints

Figure 4.9 shows the pre-computed embedding consisting of dimensions for all

CARLA vehicle blueprints. There are only 21 vehicle blueprints available, and thus

a simple brute-force approach is used for computing the nearest data point. In the

situation where the number of assets increases or the number of object instances

becomes too large, the nearest neighbor search can be extended to use KD-tree or

other fast nearest neighbor algorithm approaches.
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4.5.3 Weather Estimation

The toolbox supports estimating the weather conditions using a deep CNN trained

on scene tagging dataset from BDD100K [104]. The trained CNN consists of a 34-layer

Deep Layer Aggregation (DLA) [105] backbone and can classify as rainy, snowy, clear,

overcast, partly cloudy, cloudy, and foggy. To avoid wrongly classifying a scene, the

weather estimation stage randomly samples an odd number of frames and classifies

the weather in all of them. The most frequent result is then used for scene setup

during trajectory replay.
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Chapter 5

MAP GENERATION

The primary purpose of the toolbox is to reconstruct scenarios that happen in

the real world. To accurately replay the estimated trajectories in a simulation, it is

essential that the virtual world within the simulator closely matches the real-world.

The map generation stage allows the toolbox to capture any geographical location

and automatically generate a corresponding CARLA virtual world by constructing

road networks and nearby static objects. Authoring a map manually is a time-taking

process and requires a considerable amount of effort. Without an automatic map

generation pipeline, the user will have to manually create virtual maps for CARLA

to be able to accurately replay trajectories.

GPS Trajectories Geofence

Road Network

OSM

Nearby Buildings

Netconvert

Road graph

CARLA Road

Asset mapping

Positioning offset

CARLA dynamic 
mesh

ARCGis Imagery

CARLA Map

From Stage 2

Figure 5.1: Map Generation Pipeline Overview

Figure 5.1 represents the overall pipeline for generating maps that can be used
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for trajectory simulation. The pipeline starts off by estimating a geographical region

of interest based on a starting GPS coordinate or the entire GPS trajectory. The

extracted region of interest is then converted to a CARLA map in three stages -

(1) Road reconstruction, (2) Static object reconstruction, (3) Satellite imagery. The

sections below describe each of these stages in brief.

5.1 Generating Road Networks

Constructing road networks that accurately follow the geometry of real roads is

the most important aspect of the map generation stage. Moreover, it is essential that

the generated road network allows the sampling of waypoints such that a controller

can be used to follow a specific route.

The toolbox relies on data from the free and open-source map database Open-

StreetMaps (OSM) [15] to fetch road and building geometries for a geographical region

of interest. The toolbox then internally uses netconvert to convert road geometries

from OSM to SUMO networks. A SUMO network defines the traffic-related part of a

map in the form of a directed graph, wherein each node represents an intersection and

each edge represents a lane or a street. The roads are represented as SUMO networks

due to the simplicity of representation and availability of an extensive suite of tools

that allow editing of the road geometry and structure if required. Additionally, using

SUMO network representation allows the toolbox to internally use waypoint sampling

algorithms [99]. Using the SUMO network representation, each edge (lane or street)

is converted to a polygon in the CARLA world coordinate frame. During simulation,

a generic CARLA road mesh texture is applied to each generated polygon. Figure

5.2 shows an example road network generated from KITTI tracking test sequence 4

trajectories.
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Figure 5.2: Example: Generated Road Network for KITTI Tracking Test Sequence 4

5.2 Generating Buildings

Constructing nearby buildings is not required by the trajectory simulation stage,

but adds a finishing touch to the generated maps. Similar to the road generation stage,

building geometries are first fetched from OSM, and then converted to polygons in

the CARLA world coordinate frames. During simulation, if the building material

is available in CARLA, then the corresponding texture is applied to the building.

Otherwise, a default black color texture is applied to each building. Additionally, the

map generation pipeline also makes use of satellite imagery so that the buildings and

the road networks look like a continuous body instead of small assets spread out in
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the environment. Figure 5.3 shows an example of a complete CARLA map generated

using OpenStreetMaps data and SUMO road networks.

Figure 5.3: Example: Complete Map Consisting of Buildings and Roads for Arizona
State University, Tempe, AZ, USA
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Chapter 6

TRAJECTORY SIMULATION

The final stage of the toolbox is replaying the estimated trajectories within CARLA

to collect crucial traffic analysis information and to create a baseline for further ADS

testing. The trajectory extraction stage produces information such as ego vehicle mo-

tion and speed profile along with road user trajectories, asset mapping, and weather

estimates. Furthermore, the map generation stage uses GPS information to estimate

a geographical region of interest, which is then utilized to create a virtual world within

CARLA. The trajectory simulation stage utilizes all of the estimated information and

creates a scenario that is replayed within CARLA.

The toolbox introduces a Simulation Manager, which is tasked with controlling

each and every aspect of the simulation - from scene setup to trajectory replay. The

SimulationManager has three main modules - (1) SceneManager, (2) EgoManager,

and (3) ActorManager.

6.1 Scene Manager

The toolbox internally uses a scene manager to load and set up the CARLA world

for simulation. The scene manager mainly performs three tasks.

1. Loading the generated map in CARLA: The first task is to load the

generated map into CARLA. This requires the road network geometry, building

geometry, and satellite imagery computed in the map generation stage. The

scene manager starts off by spawning each section of the road network within

CARLA and applying generic road texture. Furthermore, lane divider texture is

applied to the road mesh to create lane boundaries. It is assumed that all lanes
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are 4 meters in width. After the road network is in place, the scene manager

generates each building one by one, by creating a static mesh and applying an

appropriate texture (if available) to it. Lastly, to create an effect of continuity

between the generated roads and buildings, satellite imagery is placed on ground

level within CARLA.

2. Setup time of simulation: During the trajectory simulation step, the toolbox

allows the user to set a specific time of day for simulation. This is especially

useful when recreating scenarios at night-time or during sunsets when the sun

is directly facing the onboard cameras.

3. Setup weather conditions: The scene manager then utilizes the CARLA

weather API to recreate weather conditions as estimated during the asset se-

lection stage in the trajectory extraction pipeline.

6.2 Ego Manager & Actor Manager

The toolbox internally uses ego manager and actor-manager to simulate ego vehicle

and surrounding road user trajectories respectively. After the scene manager sets up

the CARLA world with required road networks, an ego vehicle (Tesla Model 3) is

spawned at a location that is offset slightly corresponding to the interpolated GPS

trajectory. The ego manager consists of four main modules that are used to simulate

ego vehicle trajectories:

1. EgoInitializer: The trajectory simulation stage utilizes the CARLA physics

engine for simulating the ego vehicle trajectory. The ego initializer requires the

estimated ego-motion trajectory along with the ego speed profile. After the ego

vehicle is spawned at the offset location, a PID controller is used to initialize

the ego vehicle to its required speed.

44



EgoManager

EgoInitializer

PID controller

Sensor interface

Data Collection

ActorManager

ActorFactory

ActorLifecycleManager

SceneManager

World Mesh

Clock sync

CARLA

Ego Motion Surrounding Vehicle 
Motion Generated Map

From Stage 2 From Stage 3 From Stage 4

Figure 6.1: Trajectory Simulation: Ego and Actor Manager

2. PID Controller: The toolbox makes use of waypoint sampling methods on

the SUMO road network to estimate a set of waypoints that the ego vehicle

has to follow throughout the simulation. A PID controller is used to estimate

vehicle controls such that the ego vehicle follows the pre-determined path.

3. Sensor Interface: Multiple sensors such as LIDAR, RADAR, and cameras

are attached to the ego vehicle for the collection of meaningful crash and traffic

analysis metrics. Additionally, a camera sensor is attached behind the ego

vehicle at a certain angle for visualization purposes.

4. Data collection pipeline: Data from all the sensors is recorded and exported

for further analysis of the scenario.
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As the ego manager controls the ego vehicle within the simulation, the actor-

manager controls the surrounding road user trajectories. The actor-manager has two

main modules:

1. Actor Factory: The toolbox uses the actor factory to spawn surrounding road

users within the scenario. The module requires asset mapping as estimated

during the trajectory extraction stage to determine the correct CARLA asset

for each road user. Additionally, the actor factory also paints the vehicles in

correspondence with the estimated color.

2. Actor Lifecycle Manager: The scenario takes place in steps, and is indexed

with respect to each frame from the video. The actor lifecycle manager is

responsible for creating, deleting, and updating actors in the simulation with

respect to the progress of the simulation.

To summarize, the toolbox internally uses the scene manager to set up the CARLA

world using the generated map, estimated weather conditions, and the time of day

provided by the user. The toolbox then makes use of ego manager and actor-manager

to control the ego vehicle and all surrounding road users respectively.
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Chapter 7

RESULTS

The primary purpose of the toolbox is to reconstruct traffic scenarios from videos

found on the internet. Generally, these videos do not have ground truth data asso-

ciated with them, and hence quantitative evaluation is not a straightforward task.

Additionally, according to [17], it is important to note that since the primary ap-

plication of these methods is to create simulations that are being tested in virtual

environments that are going to be further modified, there is no need to accurately

reproduce quantitatively accurate driving scenarios, and that visual inspection for

qualitative correctness is sufficient for the application.

The following sections provide quantitative (wherever possible) and qualitative

evaluations for individual processing stages including camera calibration, ego-motion

estimation, vehicle detection, vehicle tracking, asset selection, and scene setup.

7.1 Toolbox Performance

This section evaluates the computing performance of the toolbox in terms of pro-

cessing time based on the number of frames, and the number of vehicles. Table

7.1 summarizes the time taken for the vehicle detection, vehicle tracking and asset

selection for 29 test sequences from the KITTI [37] tracking test benchmark. The

processing time is computed on a workstation with 20 core Intel(R) Core(TM) i9-

10900X CPU @ 3.70GHz, 64 GB RAM, and an NVIDIA Geforce GTX 1080 Ti GPU.

From the table, it can be estimated that the processing pipeline requires 1.04 and

3.15 seconds per frame for the vehicle detection & tracking, and asset selection stages

respectively. Overall, the entire processing pipeline takes roughly 0.78 seconds per
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frame for processing.

Table 7.1: Toolbox Processing Time on 29 KITTI [37] Sequences

Sequence FC 1 VC2 Processing time (s)

D & T3 AS4 Total

0000 465 173 504.4 203.6 710.7
0001 147 9 102.6 10.1 114.8
0002 243 53 200.9 94.1 296.6
0003 257 57 205.2 60.0 266.3
0004 421 25 292.6 28.0 322.2
0005 809 61 527.2 67.9 597.1
0006 114 11 86.6 12.6 100.2
0007 215 41 179.6 44.9 228.0
0008 165 58 154.8 85.8 241.9
0009 349 15 240.6 16.4 259.8
0010 1176 94 874.2 105.6 982.5
0011 774 154 690.9 175.8 869.9
0012 694 185 650.8 216.7 870.8
0013 152 51 152.3 58.9 212.6
0014 850 332 822.6 383.3 1210.4
0015 701 129 639.2 145.8 788.6
0016 510 247 458.7 261.8 723.2
0017 305 52 257.0 59.4 318.0
0018 180 98 199.1 102.3 302.9
0019 404 257 593.2 301.2 896.3
0020 173 75 221.1 76.5 298.8
0021 203 81 263.6 84.5 349.5
0022 436 170 561.7 175.3 739.2
0023 430 150 505.1 151.6 658.7
0024 316 141 466.0 145.8 613.6
0025 176 92 264.0 95.4 360.7
0026 170 96 195.6 96.2 295.6
0027 85 113 106.0 123.0 231.4
0028 175 139 238.8 145.7 385.9

1Frame count: Number of frames in each sequence
2Vehicle count: Number of vehicles detected in each sequence
3Detection and tracking
4Asset selection

48



7.2 Camera Calibration

Camera calibration estimation is one of the most important tasks of the toolbox.

Incorrect camera calibration parameters can lead to inaccurate surrounding road user

trajectories. The processing pipeline offers the users two backbones for camera cal-

ibration estimation - (1) Geometric method using lane line annotations [22] and (2)

DeepCalib [100], a deep CNN that is capable of estimating camera calibration param-

eters accurately using just a single RGB image. The toolbox by default uses a deep

CNN trained on the SUN360 [101] dataset using the Single-Net classification archi-

tecture. DeepCalib introduces two architectures for estimating the focal length and

distortion parameters - (1) Single-Net, and (2) SeqNet. Each of these architectures

can be trained for the task of classification or regression.

(a) (b)

Figure 7.1: Camera Calibration: Error Distribution of Estimated Distortion (Left),
and Focal Length (Right) Using DeepCalib [100].

Figures 7.1a and 7.1b summarises the cumulative error distribution for distortion

and focal length parameter estimations respectively. From the figures, it is clear

that the classification architectures for both Single-Net and Seq-Net outperform the

regression models, and Single-Net marginally outperforms the Seq-Net architecture.
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7.3 Ego Motion

Accurate ego-motion estimation is crucial as it is used to re-project 3D bound-

ing boxes from the ego perspective onto the global frame in order to compute the

surrounding road user trajectories. Within ego-motion estimation, the toolbox deals

with two main elements - (1) Pose estimation, and (2) Speed profiles. Pose estima-

tion refers to the camera pose trajectory in the global frame, wherein the ego vehicle

is assumed to start at (0, 0). The speed profile is then computed using the rate of

camera pose change in metric units.

7.3.1 Pose Estimation

Pose estimation in the context of ego-motion estimation refers to the process of

computing the camera pose trajectory throughout the input video. When GPS tra-

jectory for the ego vehicle is unavailable, the toolbox offers users to choose from two

backbones for ego-motion estimation - (1) ORB-SLAM 2 [57] and (2) DF-VO [103].

This describes the metrics used to evaluate the performance of both the approaches

and summarizes their performance on the KITTI [37] Odometry benchmark. The

ego-motion estimation backbones are evaluated on common criteria including aver-

age translation error (terr), average rotation error every 100m (rerr), Absolute Tra-

jectory Error (ATE), and Relative Pose Error (RPE). The ATE measures the root

mean square error between the estimated pose and the ground truth, while the RPE

measures frame-by-frame relative pose error.

Table 7.2 summarizes the performance of ORB-SLAM 2 [57] and DF-VO [103]

on the set metrics. From the table, it is clear that the DF-VO outperforms the

ORB-SLAM 2 in translation drift metrics. On the other hand, it is important to

note ORB-SLAM 2 has less rotational drift, even though it has a higher translation
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Table 7.2: Quantitative Evaluation of ORB-SLAM 2 [57] and DF-VO [103] on KITTI
[37] Odometry Sequences 00–10

Sequence ORB-SLAM 2 [57] DF-VO [103]

terr (%) rerr (◦/100m) ATE RPE (m) RPE (◦) terr (%) rerr (◦/100m) ATE RPE (m) RPE (◦)
00 2.35 0.35 6.03 0.206 0.090 2.33 0.63 14.45 0.039 0.056
01 109.10 0.45 508.34 3.042 0.087 39.46 0.5 117.40 1.554 0.049
02 3.32 0.31 14.76 0.221 0.079 3.24 0.49 19.69 0.057 0.045
03 0.91 0.19 1.02 0.038 0.055 2.21 0.38 1.00 0.029 0.038
04 1.56 0.27 1.57 0.081 0.076 0.74 0.25 0.70 0.026 0.029
05 1.84 0.20 4.04 0.294 0.059 1.30 0.30 4.94 0.018 0.035
06 4.99 0.23 11.16 0.834 0.053 1.42 0.32 3.73 0.025 0.030
07 1.91 0.28 2.19 0.510 0.050 0.72 0.35 1.06 0.015 0.031
08 9.41 0.30 38.85 0.162 0.065 1.66 0.33 6.96 0.030 0.036
09 2.88 0.25 8.39 0.343 0.063 2.07 0.23 7.59 0.044 0.037
10 3.30 0.30 6.63 0.047 0.066 2.06 0.36 4.21 0.040 0.043

Avg 3.24 0.26 9.46 0.26 0.06 1.65 0.35 6.09 0.02 0.03

drift. This can often be resolved to an extent by employing loop closure techniques,

which are inherently supported by ORB-SLAM 2. It is also clear that both methods

out perform each other in certain metrics over individual sequences. However, ORB-

SLAM 2, being a geometric estimation method, may generalize better on unseen data.

Due to this reason, the toolbox provides the user to choose the backbone that works

best with their data.

7.3.2 Speed Profile Estimation

The ego vehicle speed profile is mainly used by the trajectory simulation frame-

work to estimate ego vehicle control. Computing accurate speed profiles is a crucial

task, without which, the ego vehicle might crash into surrounding road users during

simulation. The speed profile ensures that the PID controller estimates the correct

control inputs, such that the ego vehicle follows an accurate trajectory. Table 7.3

summarizes the evaluation of speed profile estimation on 8 randomly sampled KITTI

tracking sequences. The evaluation takes into account the root mean square error

(RMSE) and the absolute error between the ground truth and the estimated speed

for the ego vehicle. Figure 7.2 shows the comparison of ground truth and estimated

speed profiles for the sequences in table 7.3.
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Table 7.3: Quantitative Evaluation of Speed Profile Estimation on 8 KITTI [37]
Tracking Sequences

Sequence RMSE Absolute Error

0001 0.304 0.262
0004 0.443 0.420
0011 0.243 0.204
0012 0.004 0.003
0013 0.210 0.197
0014 0.181 0.157
0015 0.184 0.091
0018 0.330 0.292

7.4 3D Vehicle Detection & Tracking

The problem statement of estimating road user trajectories is reformulated as

a 3D object detection and tracking problem. The toolbox internally uses quasi-

dense 3D detection and tracking [80] for estimating 2D region proposals and 3D

bounding box estimates. The toolbox then utilizes the estimated 3D bounding boxes

and the ego vehicle motion to estimate a trajectory for each road user in the global

frame. Additionally, trajectory smoothing is applied which greatly impacts the 3D

tracking performance, beating the current SOTA in vision-only methods. The vehicle

detection & tracking processing stage is evaluated on two main metric families - (1)

3D detection metrics, and (2) 3D tracking metrics. This section first lays down the

evaluation metrics and then summarizes the performance of the vehicle detection &

tracking stage on the set metrics.

The performance of 3D detection is evaluated using the formal evaluation metrics

of 3D mean Average Precision (mAP) from KITTI and COCO. mAP in the context of

object detection is generally estimated by computing the Average Precision (AP) over

different thresholds of Intersection-over-Union (IoU), as shown in equation 7.2. AP is

a metric that represents the weighted sum of precision values at each threshold where

the weight is the increase in corresponding recall and is computed using equation 7.1.
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Figure 7.2: Comparison of Estimated and Ground Truth Speed Profiles on 8 KITTI
Tracking Sequences

IoU is computed by estimating the intersection and union areas between the predicted

and the ground truth values and then taking a ratio of the same. The higher the IoU,

the better the prediction.

AP =
i=n−1∑
i=0

(recallsi − recallsi+1)× precisionsi (7.1)
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mAP =
1

n

i=n∑
i=0

APi (7.2)

The performance of 3D tracking is evaluated using official KITTI tracking bench-

mark metrics. These metrics include Multiple Object Tracking Accuracy (MOTA),

Multiple Object Tracking Precision (MOTP), Mostly-Tracked (MT ), and Mostly

Lost (ML). According to CLEAR [106], 3 errors should be taken into account when

evaluating a tracker. They can be described as:

1. Miss Detection (FN): This type of error occurs when the object is not detected

by the tracker at all.

2. False Positives (FP ): This type of error occurs when an object that does not

exist is detected by the tracker.

3. Mismatch errors (MM): This type of error occurs when an object is detected,

and is present in the ground truth, but switches identity in the tracking lifespan.

MOTA measures the overall accuracy of the tracker by dealing with all three

errors as listed above and can be computed as shown in the equation. The toolbox

measures the MOTA3D [80], which is denoted as MOTPc, and is based on object

centroid distance.

MOTA = 1−
∑

(FN + FP +MM)∑
gt

(7.3)

After the 3D bounding box for each road user is computed, the toolbox computes

the trajectory of each road user across different frames. Due to the inaccuracies in

depth estimation, it is often observed that the trajectory computed using raw 3D

bounding box projections is not smooth, and this causes jerky motion during the
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trajectory simulation stage. To resolve the jerky motion in simulations, the tool-

box applies trajectory smoothing to each individual road user trajectory. Table 7.4

summarizes the evaluation of the performance of two different trajectory smooth-

ing algorithms, (1) Cubic Spline, and (2) Savitzky-Golay filter by re-projecting 3D

bounding box locations from the smoothened trajectory. The evaluation in table 7.4

considers three KITTI tracking sequences that are not used for training the under-

lying quasi-dense detection and tracking framework. From table 7.4 it is clear that

trajectory smoothing using Cubic-Spline and Savitzky-Golay filter greatly increases

the MOTA performance of the tracker. Further evaluation, as summarized in ta-

ble 7.5 shows the overall performance of vehicle detection and tracking stage over 8

KITTI tracking sequences that are not used for training, and compares it with the

underlying quasi-dense object detection and tracking framework. From the table, it

can be noted that the approach presented in this manuscript outperforms the current

SOTA [80] by a small margin in the overall results.

7.5 Asset Selection & Scene Setup

Asset selection and scene setup mainly consist of three tasks - (1) CARLA asset

selection, (2) Vehicle color detection, and (3) Weather conditions estimation. For the

CARLA asset selection stage, the toolbox internally adopts a brute-force approach

for CARLA asset selection where-in the estimated dimensions of each road user are

compared with the dimensions of all available assets. Table 7.1 summarizes the com-

pute time for the asset selection step for 29 KITTI test sequences. From the table, it

can be noted that the toolbox requires 3.15 seconds per road user for asset selection.

The second task of the asset selection and scene setup stage is estimating the

vehicle color. There is no ground truth data available for this task, so the toolbox

internally uses k-means clustering to estimate the most dominant colors within the
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Table 7.4: Quantitative Evaluation of 3D Tracking Stage With Trajectory Smoothing
Re-projection on 3 KITTI [107] Sequences

Sequence Num frames Range(m) Smoothing MOTA ↑ MOTPc ↓ MT ML

0004 314

0-30 Raw 92.4 0.63 0.97 0
Cubic Spline 95.96 0.64 1 0
Savitzky-Golay 96.27 0.64 1 0

0-50 Raw 85.5 0.94 0.92 0
Cubic Spline 89.05 0.98 0.93 0.02
Savitzky-Golay 89.05 0.98 0.93 0.02

0-100 Raw 74.59 0.98 0.87 0
Cubic Spline 76.92 1.03 0.83 0.1
Savitzky-Golay 76.92 1.02 0.78 0.14

0011 373

0-30 Raw 91.22 0.56 0.87 0.02
Cubic Spline 92.32 0.55 0.9 0.03
Savitzky-Golay 92.14 0.55 0.88 0.03

0-50 Raw 84.6 0.79 0.71 0
Cubic Spline 86.54 0.79 0.71 0.12
Savitzky-Golay 86.33 0.78 0.71 0.1

0-100 Raw 68.35 0.89 0.6 0.03
Cubic Spline 69.03 0.89 0.5 0.34
Savitzky-Golay 68.97 0.89 0.5 0.32

0015 376

0-30 Raw 84.69 0.5 0.75 0
Cubic Spline 96.07 0.31 0.71 0
Savitzky-Golay 95.45 0.31 0.71 0

0-50 Raw 82.75 0.63 0.76 0
Cubic Spline 89.19 0.6 0.75 0.08
Savitzky-Golay 89.56 0.6 0.75 0.08

0-100 Raw 77.06 0.67 0.68 0
Cubic Spline 81.98 0.68 0.72 0.11
Savitzky-Golay 82.65 0.68 0.72 0.11

Table 7.5: Overall Quantitative Evaluation of 3D Tracking Stage and Comparison
With SOTA [80]

Range (m) Method MOTA ↑ MOTPC ↓ MT ML

0-30 QD-3DT[80] 93.4 0.3 0.95 0
Ours 93.44 0.29 0.94 0

0-50 QD-3DT[80] 89.71 0.39 0.9 0
Ours 89.74 0.38 0.9 0

0-100 QD-3DT[80] 84.64 0.43 0.88 0
Ours 84.83 0.42 0.87 0
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bounding box for a road user. After qualitative evaluation and analysis, it was found

that the actual color of the car only makes up 10-20% of the overall color composition

within each bounding box and that the most dominant color is generally black (due

to the windows on the car). Figures 7.3a and 7.3b represent a qualitative evaluation

of the car color estimation framework on randomly sampled frames from the KITTI

tracking sequences. The figures show the most dominant colors as the color of the

bounding box around the vehicle.

(a)

(b)

Figure 7.3: Qualitative Evaluation of Car Color Estimation on Randomly Sampled
Frames From KITTI Tracking Sequences

The third task is estimating the weather conditions such that they can be emulated

during the trajectory simulation stage. The toolbox internally uses a pre-trained

deep CNN that is trained on the BDD100K image tagging dataset [104] using a Deep

Layer Aggregation backbone with 34-layers. The deep CNN classifies among 8 classes
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including rainy, snowy, clear, overcast, partly cloudy, foggy, and undefined. The table

7.6 summarizes the performance of the deep CNN.

Table 7.6: Quantitative Evaluation of Weather Estimation Deep CNN Using DLA-34
[105] Backbone on BDD-100K [104] Dataset

Method Val accuracy Top-1 accuracy Top-5 accuracy Precision Recall F1-score

DLA-34 81.35 81.35 99.8 79.45 62.67 65.08

7.6 Scenario Replay

This section performs a qualitative evaluation of scenarios generated using a ran-

dom video found on YouTube5 and 2 randomly selected KITTI tracking sequences.

Figure 7.4 shows the side-by-side comparison between 4 original video frames sam-

pled at different times and their corresponding scenarios generated using the toolbox.

Figure 7.5 shows the side-by-side comparison of 4 consecutive original video frames

from the KITTI tracking test sequence 04 and the generated simulation in CARLA.

This particular example demonstrates a vehicle passing by in the opposite direction.

Similarly, Figure 7.6 shows the comparison of 4 consecutive original video frames from

the KITTI tracking test sequence 02. This example shows the ability of the trajectory

simulation pipeline to sample correct road waypoints and move to the lane that just

forked out.

5https://www.youtube.com/watch?v=FHc4od0-if8
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(a) Frame = 113

(b) Frame = 144

(c) Frame = 179

(d) Frame = 257

Figure 7.4: Qualitative Evaluation of Trajectory Simulation a Random Video Ob-
tained From YouTube 5
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(a) Frame = 68

(b) Frame = 69

(c) Frame = 70

(d) Frame = 71

Figure 7.5: Qualitative Evaluation of Trajectory Simulation on KITTI [107] Tracking
Test Sequence 0004. Left: Frame From Original Video, Right: Corresponding Frame
From CARLA
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(a) Frame = 146

(b) Frame = 147

(c) Frame = 148

(d) Frame = 149

Figure 7.6: Qualitative Evaluation of Trajectory Simulation on KITTI [107] Tracking
Test Sequence 0002. Left: Frame From Original Video, Right: Corresponding Frame
From CARLA
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Chapter 8

CONCLUSIONS & FUTURE WORK

This thesis introduces a new toolbox named, DeepCrashTest-V2 that is ca-

pable of reconstructing high-quality virtual simulations using monocular dashcam

videos found on the internet. The toolbox is able to achieve this by employing a

multi-stage processing architecture to estimate camera calibration parameters, ego

motion, and surrounding road user trajectories on the go. Additionally, the tool-

box is able to reconstruct a virtual world in CARLA [15] using the open source

map database, OpenStreetMaps [16], where the estimated trajectories are replayed

for crucial data collection and analysis. The proposed vehicle detection and tracking

framework incorporates the idea of smooth motion for 3D object tracking and outper-

forms the current state-of-the-art vision-based method on the KITTI [107] multiple

object tracking (MOT) benchmark. This thesis also performs the qualitative evalu-

ation of the proposed method on random videos from YouTube to demonstrate its

effectiveness.

Even though the proposed toolbox is able to generate usable simulations from user-

provided data, there are a few limitations imposed by the adopted methodology. The

following limitations can be resolved as part of future enhancements to the toolbox.

1. The toolbox assumes that the data obtained from OpenStreetMaps is accurate

and reflects what is seen in the video. This may not always be the case. One

way to resolve this issue is to implement a method that creates HD maps on

the go.

2. The toolbox assumes that the camera placement is exactly at the center of the
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dashboard and neglects any calibration parameters associated with the tilt/pan

angle of the camera. This causes the trajectories to be inaccurately estimated

when the camera placement is not ideal. Estimating these parameters could

greatly improve performance when working with random videos on the internet.

3. The toolbox constructs a basic model of the world by computing road and

building geometry from OpenStreetMaps. This can be further extended by the

inclusion of GIS and photogrammetry data when available using tools such as

CityEngine.

4. The toolbox assumes that the ego vehicle stays on the road throughout the

duration of the simulation so that road waypoints can be computed. This

causes inaccuracies in generated trajectories when the ego vehicle is involved in

a crash and goes off-road.

5. The aspect ratio and resolution of the video greatly affect the calibration param-

eters. This introduces a problem as most videos found on the internet undergo

post-processing, which may cause changes in these properties.
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