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ABSTRACT

Insufficient training data poses significant challenges to training a deep convolutional

neural network (CNN) to solve a target task. One common solution to this problem

is to use transfer learning with pre-trained networks to apply knowledge learned from

one domain with sufficient data to a new domain with limited data and avoid training

a deep network from scratch. However, for such methods to work in a transfer learning

setting, learned features from the source domain need to be generalizable to the target

domain, which is not guaranteed since the feature space and distributions of the source

and target data may be different. This thesis aims to explore and understand the use

of orthogonal convolutional neural networks to improve learning of diverse, generic

features that are transferable to a novel task.

In this thesis, orthogonal regularization is used to pre-train deep CNNs to inves-

tigate if and how orthogonal convolution may improve feature extraction in transfer

learning. Experiments using two limited medical image datasets in this thesis suggests

that orthogonal regularization improves generality and reduces redundancy of learned

features more effectively in certain deep networks for transfer learning. The results on

feature selection and classification demonstrate the improvement in transferred fea-

tures helps select more expressive features that improves generalization performance.

To understand the effectiveness of orthogonal regularization on different architec-

tures, this work studies the effects of residual learning on orthogonal convolution.

Specifically, this work examines the presence of residual connections and its effects

on feature similarities and show residual learning blocks help orthogonal convolution

better preserve feature diversity across convolutional layers of a network and alleviate

the increase in feature similarities caused by depth, demonstrating the importance of

residual learning in making orthogonal convolution more effective.
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Chapter 1

INTRODUCTION

Use of deep convolutional neural networks (CNNs) to solve a target task in a small

data regime remains a challenging problem despite numerous recent advancements

in the field of deep learning related to architecture designs and methods to improve

training and learning. In a supervised learning setting, large labeled datasets are often

required to sufficiently train a deep network to learn the underlying features before the

model is capable of solving a task [23]. For a task such as natural image classification,

the problem is made less difficult given the abundance of labeled data that is openly

available for training e.g. ImageNet [7]. However, for more complex image recognition

tasks such as medical image analysis, the problem is more challenging given the

difficulty in acquiring enough data to sufficiently train a deep CNN to accurately

classify medical images.

1.1 Traditional Approaches to Medical Image Classification

Medical image diagnosis is cost intensive. Images generated from computerized

tomography (CT) scans and magnetic resonance imaging (MRI) are expensive to

produce and require adequate resources such as time and expertise to examine and

interpret the results. Moreover, this process is susceptible to human error. To make

diagnoses more cost effective and improve general patient care by reducing possible

medical errors, diagnostic tasks can be automated by training a model to learn specific

features pertaining to the imaging data and make data-driven predictions, which can

assist with efficiently producing a more accurate diagnosis.

Traditional machine learning approaches focused on using handcrafted features
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to classify medical images. Classifiers built using methods such as random forest

(RF) and support vector machines (SVM) operated on features extracted from a

feature extraction step through methods such as principle component analysis (PCA)

[6, 20] or scale-invariant feature transform (SIFT) [5] before classification can be done.

These classifiers were particularly well-suited for medical image analysis because they

perform well with limited imaging data. While traditional methods have been proven

to do well in a small data setting, they make use of handcrafted features, which may

require prior domain knowledge to generate or may not be robust enough to capture

and make use of inherent information embedded in the data. Furthermore, deep

CNNs have been shown to outperform traditional machine learning methods when

working with larger datasets, making deep networks a more attractive option as they

remove the need for feature engineering and offer greater representational power than

traditional methods provided there is sufficient training data.

1.2 Current Deep Learning Landscape in Medical Image Classification

Deep CNNs have been studied extensively in a wide range of applications such

as image recognition and natural language processing. Various works in literature

have studied different methods such as weight initialization schemes [12, 14, 16], data

augmentation [41], skip connections in network architectures [15], and regularization

techniques [18, 31, 44] to improve learning, convergence, and overall performance of

deep CNNs. However, despite these improvements, the lack of available training data

remains a central problem that limits the applicability of deep CNNs in a very small

data regime.

The challenging nature of recognizing more subtle details in medical images makes

medical image analysis a difficult task. This is further complicated by the lack of

available labeled imaging data, making deep CNNs less than effective in a limited
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data setting as training a network from scratch capable of solving the target task

becomes even more challenging. To address this problem, transfer learning has been

widely proposed as a method to make deep CNNs usable in a small data regime

[28, 34, 50]. In transfer learning, the features captured by the model learned from

one data source is transferred and applied to a new data domain to avoid duplicating

effort of training a deep CNN from scratch. However, for this to work, the learned

features need to be transferable across the source and target domain, which is not

guaranteed as the feature space between the two domains may be different.

More recently, an efficient method for orthogonal convolution was developed and

proposed as a way to improve learning of features in deep CNNs [49]. The authors

of this research demonstrate orthogonality can be imposed on filters of convolutional

layers in a network as a form of regularization loss in the cost function, which can

enhance feature diversity and improve generalization performance of a deep CNN.

The results of their experiments show OCNN achieves performance gains in several

different tasks where the source and target data are in the same domain, but it is

unclear how the improvements translate when the domains are different. Thus far,

there has not been any research in investigating the impact of orthogonal regular-

ization on deep CNNs in a transfer learning context. Therefore, it is important to

take a step towards understanding the impact of orthogonal convolutional in transfer

learning for problems in a small data regime such as medical image classification.

1.3 Summary of Contributions

In this thesis, we examine the application of orthogonal regularization in deep

CNNs under a limited data setting. We present using orthogonal regularization loss

to enhance feature extraction in deep CNNs and investigate the effects on feature

selection and classification from a transfer learning perspective using limited med-
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ical image datasets. We also analyze the effectiveness of orthogonal regularization

on different deep CNN architectures and the impact residual connections have on

the benefits provided by orthogonality convolution. This thesis makes the following

contributions:

• We demonstrate orthogonal regularization loss can be used in the context of

transfer learning to improve learning of generic features in deep CNNs, which

can enhance extraction of diverse, expressive features that are transferable

across domains for vision related tasks such as medical image classification and

improve generalization performance.

• We provide an example approach using orthogonal convolutional neural net-

works as feature extractors for transfer learning that achieved better classifica-

tion performance on two medical image datasets than previous literature.

• We show the effectiveness of orthogonal regularization loss is dependent on resid-

ual learning and demonstrate residual connections help alleviate the negative

effects of depth on orthogonal regularization.
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Chapter 2

LITERATURE REVIEW

Deep CNNs have achieved great success in solving image classification problems and

have become one of the most widely used tools in computer vision research. Their

prevalent use has led to numerous advancements in deep learning in recent years. In

this chapter, we review several recent methods in deep learning and highlight their

contributions and impact on image classification.

In the following sections of this chapter, we first discuss the changes in CNN

architectures through the years (Section 2.1). Next, we describe different data aug-

mentation techniques (Section 2.2) and regularization methods (Section 2.3) used to

improve generalization performance. In the last section, we discuss the problems

of insufficient data and different data distributions and the use of transfer learning

(Section 2.4) to address these problems.

2.1 CNN Architectures

Since the introduction of AlexNet in 2012, which set a new record for classification

in the ImageNet Large-Scale Visual Recognition Challenge 2012 (ILSVRC 2012) and

showed the feasibility of training a deep CNN with many layers to accurately classify

images [23], various architectures have been proposed and achieved state of the art

classification performance on existing and new benchmark datasets.

Inception Network

One example of an architecture that has achieved state of the art classification per-

formance is GoogLeNet or Inception network proposed by Google in 2014. Motivated
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by the straightforward idea that increasing the network size through depth (i.e. the

number of layers) or width (i.e. the number of units in a layer) would yield higher

performance, the Inception network introduces an Inception module used to make a

large CNN more trainable by making the model more computationally efficient and

less susceptible to overfitting due to the increased number of parameters from addi-

tional depth or width [46]. The Inception module (Figure 2.1) works by performing

multiple convolutions and a pooling operation on the input. Specifically, the input

is convolved with a 1 × 1, 3 × 3, and 5 × 5 filter and pooled separately to produce

4 different outputs which are concatenated. Since using 5 × 5 filters is expensive

because there are more parameters, 1 × 1 convolutions are convolved with the input

before applying 3 × 3 and 5 × 5 convolutions to reduce the dimensions of the output

feature maps. By repeatedly stacking these modules on top of each other, this design

effectively allows an increase in the depth of the network to improve discriminative

power without compromising computational complexity from increasing the size of

outputs in each module. This architecture along with similar findings from the Vi-

sual Geometry Group (VGG) network [43] around the same time demonstrated the

benefits of deeper networks on classification performance.

Residual Neural Network

While research has shown an increase in the size of networks tend to improve perfor-

mance, deeper CNNs were found to be more difficult to train and harder to approx-

imate a more optimal solution of the weights in a feasible amount of time [14]. In

particular, the accuracy degrades with more layers added, leading to higher training

and test error. Furthermore, the difficulty of optimizing a system varies and depends

on the problem and not all models are similarly easy to train. Originally proposed

in 2016, the residual network (ResNet) presents the concept of a residual learning
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Figure 2.1: An Inception module depicting the different operations used to construct
an Inception network [46].

block (Figure 2.2) to address this degradation problem in increasingly deeper CNNs.

A residual learning block consists of stacking multiple layers with a connection from

an input of a layer to an output of a subsequent layer. In each connection, the input

of an early layer is passed directly to a later layer without any modifications and

summed with the output of a later layer. This type of skip connection forces the

layers to approximate a residual function between the input and output, i.e.

H(x) = F (x) + x (2.1)

where H(x) is the desired mapping and F (x) is the approximated function, instead

of

H(x) = F (x) (2.2)

when a skip connection is not present. Since the desired mapping is based on a

previous input, it is hypothesized that it would be easier to approximate a function

with reference to a previous input than to approximate a completely new function.
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Figure 2.2: A residual learning block that serves as the building blocks of a ResNet
[14].

In a way, the residual connection could be understood as improving information flow

from early layers to subsequent layers of a network to provide better learning and

make it easier to find a more optimal solution of the weights. This proposed design

reported a boost in classification performance on the ImageNet dataset compared to

plain deep networks without residual connections [14], and has led researchers to new

studies and adopt the use of residual learning in existing and new architectures such

as in a hybrid version of Inception known as InceptionResNet [45].

Densely Connected Convolutional Network

Inspired by the use of skip connections to address the issue of information loss by the

time data has propagated to the end layers of a network, the Dense Convolutional

Network (DenseNet) proposes a more extreme approach of using skip connections to

connect all layers with each other to maximize information flow through a network

[17]. Each dense block (Figure 2.3) is made up of multiple layers with each layer

forwarding its output to all subsequent layers in the block. Unlike ResNet which uses

summation for its skip connection, a dense block uses concatenation to concatenate

all feature maps from preceding layers to form one input for processing. This design

encourages feature reuse throughout the network as different feature maps computed
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Figure 2.3: A dense block with skip connections feeding the outputs of early layers
to subsequent layers [17].

in preceding layers are forwarded and reused in the inputs of subsequent layers, which

increases variation of inputs at every layer and drives the model to learn a more com-

pact representation of the data. DenseNet offers an alternative approach to increasing

depth or width to improve a network’s discriminative power without sacrificing model

complexity and efficiency from adding more layers or units to a layer by encouraging

feature reuse to reduce redundancy in features and improving compactness of the

model.

Improvements in architectures have proved valuable to increasing performance as

demonstrated across different classification benchmark datasets such as ImageNet [7],

Canadian Institute For Advanced Research 10 (CIFAR-10) and its 100 class variant

(CIFAR-100) [22], and Street View House Numbers (SVHN) [30]. However, the im-

provement in performance from architectural changes have largely benefitted tasks

that dealt with large datasets and not those with limited data. In cases where there

is little labeled data available such as medical image classification, training a deep

CNN from scratch to solve the target task remains a challenge despite innovation in

architecture design and the use of state of the art neural networks due to deep CNNs

having many parameters across different layers in a network. With additional depth

and width to increase representational power, the models have more parameters and

become even more complex. When there is a lack of sufficient training data, these
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models may be overparameterized, i.e. the model has more parameters than necessary

to represent the training data. This may lead to overfitting where the model learns

to only predict labels from training data and is incapable of generalizing to unseen

samples. Architectural changes such as dense blocks and replacing fully connected

(FC) layers with a global average pooling layer [27] have been proposed as alterna-

tives to avoid further increasing model complexity to alleviate overparameterization;

however, deep CNNs remain difficult to train from scratch and suffer from overfitting

when dealing with limited training data. In the next sections, we discuss different

techniques used to address the problem of limited data and overfitting.

2.2 Data Augmentation

The performance of deep learning models are heavily reliant on the training

dataset. Without enough data to sufficiently train a deep network, the model may

suffer from overfitting and may not generalize well to new data. One way of dealing

with the problem of limited data is to use data augmentation techniques to artificially

increase the amount of training data available. This solution offers two main benefits:

it expands the size of the dataset available for training and it enhances the quality of

the dataset by increasing variation in the samples of the data.

Simple Image Transformations

The most basic form of data augmentation is to use simple transformations to syn-

thesize additional samples of data that can be used for training. Some of these

transformations include flipping, rotation, cropping, translation, and noise injection

[41]. Flipping can be done by reflecting an image over its x-axis or y-axis, rotation

can be done by turning the image between 1 to 359 degrees, and cropping can be done

by selecting a part of the image to keep and removing the unwanted areas. Similar to
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cropping, translation can be done by shifting the image in any direction so only the

desired part of the image is kept in frame. Noise injection can be done by injecting

an image with values randomly sampled from a distribution. Some examples include

Gaussian, salt, pepper, and salt and pepper noise. Besides these simple geometric

transformations, more complex image processing operations such as applying image

filters to smooth or blur images can be used to further increase the size of the original

dataset for training. All of these augmentation techniques can be combined to pro-

duce an augmented training set that is several times larger than the original dataset

and improve variance in the data which helps with training.

Cutout, Mixup, and CutMix

More recently, researchers have come up with several new augmentation strategies to

address the problem of limited data and further improve generalization and model

performance. Cutout [8] and Mixup [52] are two proposed techniques that have

been shown to yield performance gain in several benchmark datasets. In Cutout,

a random pixel is selected as the centerpoint of a region to place a mask of zero

values over the image. This method augments the training set with partially occluded

versions of the original images and encourages the network to learn to rely more on

surrounding features that are less important when making predictions and become

less reliant on prominent features, which may not always be present. In Mixup,

two samples are randomly selected from the dataset and their inputs and labels are

linearly interpolated to synthesize a new sample. This type of augmentation has been

shown to be a form of regularization that helps with generalization [53]. The creation

of Cutout and Mixup have also inspired CutMix [51] which combines the two methods

by replacing the removed patch of an image in Cutout with a region from another

image with their labels mixed (Figure 2.4). These new data augmentation strategies
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Figure 2.4: From left to right: examples of images transformed using Mixup, Cutout,
and CutMix [51].

can be used to inflate the original dataset and yield new performance improvements

that simpler augmentation methods may not provide.

Generative Modeling

Generative modeling using generative adversarial networks (GANs) [13] is another

approach that has been used for data augmentation [33, 36]. Unlike discriminative

models which model the conditional distribution P (y∣x) and can be used to predict

a target Y given some observation X, generative models model the joint distribution

P (x, y) which can be used to generate a sample (x, y) from the approximated dis-

tribution. As a type of deep generative model, GANs are constructed from neural

networks (a generator and a discriminator). The generator receives a random input to

generate a sample of plausible data and the discriminator distinguishes the generated

data from a sample of real data. The two networks are repeatedly pitted against each

other until training stops, at which point the generator may be able to produce a

sample with characteristics resembling the real data that can fool the discriminator.

With a sufficiently trained GAN, the original dataset can be augmented with new

samples generated from the approximated distribution as if the artifical data came

from the actual distribution that produced the original data. Using a GAN to gen-
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erate new data seemingly from the original data’s distribution, new samples can be

added to the original dataset, making it possible to train a deep network to solve a

target task that previously only had limited data.

Although data augmentation provides a way to synthesize new samples that can be

used with the original dataset to help train deep networks, whether or not the augmen-

tation techniques are applicable to the problem and can help improve classification

performance depends on the original dataset and the task. For instance, simple geo-

metric transformations such as flipping, rotation, cropping, translation may improve

performance of a model that is trying to classify a car or an airplane by synthesizing

additonal images in different orientations and positions, which may help avoid any

possible orientation and positional bias in the dataset. More complex augmentation

methods such as Cutout, Mixup, and Cutmix may be useful in further improving

performance if the dataset contains images of occluded cars or planes. However, ap-

plying these augmentation strategies to a dataset of letters and digits for a letter and

digit recognition task would alter the labels of some images post-transformation and

result in negatively impacting the model’s ability to accurately predict the correct

digit or letter (e.g. rotating or flipping the digit 6 would change it to a 9 or occluding

the letter ”R” would change it to the letter ”P”, resulting in the model learning to

misclassify the two digits and letters). Furthermore, training a GAN to approximate

the real data distribution so that the model can be used to generate new samples for

data augmentation is itself a difficult task as training the deep GAN requires enough

quality data to begin with [19]. Modeling the real data distribution of medical images

compared to natural images is much more difficult due to the intricacies of the data.

While it is possible the generated samples from a GAN is realistic enough to fool

the discriminator, the approximated distribution may remain different enough than

the real distribution such that the deep network trained on the augmented dataset
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would not generalize well and yield inaccurate results. Despite data augmentation

being a standard solution to help overcome the problem of limited data and help

address overfitting, the benefits are domain and task dependent and improvement in

performance is not guaranteed, requiring the need for possible alternative methods.

2.3 Regularization Methods

Regularization is one way of addressing overfitting to improve generalization per-

formance of deep CNNs. The idea behind regularization is that finding a set of

optimal weights for a model through approximation in an unbounded search space

is hard. By constraining the parameter space through the use of some constraints,

it would be less difficult for the weights to converge to a more optimal solution in a

constrained parameter space. In the previous section, data augmentation is discussed

as a way of addressing overfitting by directly inflating the dataset. This can be seen

as doing regularization at the data level. Alternatively, regularization can be applied

to loss functions in an explicit form and to network architectures in an implicit form.

L1 and L2 Regularization

Traditionally, regularization has been applied to loss functions to improve generaliz-

ability of models [31]. A regularization term R(w) is added to a task loss, e.g. cross

entropy loss, to form a regularized loss function that is optimized:

J(w) = −
M

∑
i=1

K

∑
j=0

I{yi = k} ⋅ log(ŷi) + λR(w), (2.3)

where M is the number of samples, K is the number of classes, I is the function

evaluating to 0 or 1, yi is the ground truth label of a sample, ŷi is the corresponding

prediction of a sample, λ is the regularization hyperparameter that controls the sever-

ity of the penalty of the regularization loss, and w is the weights. Two commonly

14



used regularization losses to help address overfitting are L1 and L2 regularization loss.

The L1 regularization loss, also called L1-norm, is defined as

L1(w) = λ
N

∑
i=0
∣wi∣ (2.4)

and the L2 regularization loss, also known as L2-norm or weight decay, is defined as

L2(w) = λ
N

∑
i=0

w2
i . (2.5)

In L1 regularization, the weights are encouraged to be sparse, i.e. more zero values,

as they are optimized because larger weights would yield a higher loss which coun-

teracts the goal of minizing the loss function. Since L1 encourages sparse weights,

the resulting model has reduced complexity as there are fewer weights contributing

to the final prediction, making the model less likely to be overparameterized. In L2

regularization, the weights are encouraged to be small but not necessarily zero be-

cause larger weights are penalized more heavily as they yield a larger loss compared

to smaller weights. This results in the model being more sensitive to outliers in the

data as misclassification would yield a bigger loss due to the loss term being squared,

but in turn, the model has greater flexibility to accommodate for unseen data when

making a new prediction. The sparsity from L1 regularization and smaller weights

from L2 regularization due to misclassification encourages a less complex model with

higher flexiblity and provide a boost to generalization performance.

Dropout

Ensemble methods like random forest have been shown to be more accurate and

outperform their single model counterparts like a single decision tree [3]. However,

applying this idea to neural networks is difficult because training several deep net-

works is computationally expensive if there are many layers, when the dataset is

15



large, and training requires many epochs. Dropout [44] is a regularization method

that builds upon the idea that combining many models can help improve performance

but avoids the actual need to train multiple neural networks. As a form of implicit

regularization, dropout is done at the architecture level without requiring change to

the loss function by randomly deactivating hidden units in a layer and using only the

activated units in the layer to calculate the ouputs and doing backpropagation for

weight updates during training (Figure 2.5). The deactivated units are chosen by a

hyperparameter p representing some probability of retaining an activated unit. Re-

peatedly done in training with each step yielding a network with different deactivated

and activated units, dropout simulates training many different neural networks and

improves variation in the learning of the model by exposing units to different combi-

nations of inputs, which reduces possible correlation among neurons in the network.

This averaging effect induced by dropout has been shown to improve overall perfor-

mance and made it one of the most widely used regularization method for addressing

overfitting in training deep neural networks [13, 15, 23].

Batch Normalization

Batch normalization is a method that has become an integral part of model archi-

tectures to accelerate training and improve overall model performance. While the

method is designed to facilitate training of deep networks and not specifically to ad-

dress the problem of overfitting, batch normalization has been found to be useful in

improving generalization performance, and in some cases make other regularization

methods such as dropout obsolete [18]. Figure 2.6 depicts the algorithm of batch

normalization. Applied as a layer, batch normalization normalizes a batch of inputs

received from its preceeding layer. This normalization procedure has been thought of

having the effect of alleviating gradients from exploding or vanishing, which enable
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Figure 2.5: A neural network (a) without dropout and (b) with dropout. Inactive
units are crossed out and do not contribute to the final prediction [44].

the use of a higher learning rate to accelerate training by taking larger gradient steps

and help the model converge quicker to the optimal solution. Since normalization

is done on batches selected randomly, the variance and mean value computed on a

batch changes at each step during training. This can be seen as having a stochastic

effect similar to stochastic gradient descent (SGD) and can be understood as a form

of implicit regularization that helps improve generalization [29]. Although previous

research has found batch normalization to be an effective regularization method, its

effects are not completely well understood and remain under discussion [2, 29].

Orthogonality

Orthogonality has been extensively explored as a form of regularization in deep CNNs.

Existing research have advocated methods such as orthogonal weight initialization

[39] and applying orthogonal regularization as constraints during training [1] to im-

prove performance and analyzed their effects on deep networks. In a recent work,

17



Figure 2.6: The batch normalization algorithm applied to a mini-batch of inputs
during training [18].

the authors of orthogonal convolutional neural networks (OCNNs) [49] developed a

simpler, efficient way to enforce orthogonality in convolution layers of a deep CNN

by minimizing the total loss

L = Ltask + λLorth (2.6)

, where Ltask is the task loss such as cross entropy, λ is the orthogonal regularization

penalty, and

Lorth = ∣∣Z − Ir0∣∣2 (2.7)

is the orthogonal regularization loss. The authors proved that orthogonal regulariza-

tion loss can be directly computed by calculating the self-convolution

Z = Conv(K,K,padding = P, stride = S) (2.8)

, where K ∈ RM×C×k×k is the kernel at a convolutional layer and P and S are the

padding and stride used in the layer, and Ir0 ∈ RM×M×(2P /S+1)×(2P /S+1) is a simple ten-

sor, where all of its entries are zeros except for the center entry is an identity matrix
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[49]. Their experiments and results found different depth variations of ResNets regu-

larized with orthogonal regularization loss all outperform their baseline counterparts

without orthogonal regularization and other versions of the model with orthogonality.

The ease of implementation and the increase in performance provided by orthogonal

regularization loss make orthogonal convolution a promising regularization method

for improving generalization performance of a deep CNN.

2.4 Transfer Learning

In an ideal scenario, there is a large amount of data for training and the training

data is assumed to share the same features and come from the same data distribution

as the target data that will be tested by the model. However, in many real-world

applications, training data is scarce and the domain of the training and test data

is often different. For medical image analysis, annotating data is resource intensive

and susceptible to human error, making data collection difficult. Furthermore, the

training and test domain may be different because data are collected from various

patients. Under these circumstances, training a deep CNN from scratch to solve the

target task in a limited data setting may yield unsatisfactory results. To address this

problem, transfer learning has been proposed as a way to improve model performance

by transferring knowledge learned from one domain and applying it to a new domain

[32]. Figure 2.7 depicts a comparison between learning in traditional machine learning

and in transfer learning. In a traditional machine learning process, the learning system

is trained from scratch using only the data for the target task, whereas in transfer

learning, the learning system is trained using data for the target task and the distilled

knowledge learned previously from a separate task.
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Figure 2.7: A comparison between the learning process in traditional machine learn-
ing and in transfer learning [32].

Feature Extraction

The approach to transfer learning that has been used to make deep CNNs usable

in a low data regime with the domain of the training and test data possibly being

different is to use pre-trained networks. CNNs have been known to learn low level

features like edges, corners, and colors in early layers and learn higher level features

that are more task specific through the middle and end layers of a network. These

features or knowledge are essentially captured by the weights or learned filters across

different layers after training. If a deep network that was previously trained on

some prior dataset such as ImageNet is able to achieve acceptable performance, the

weights of the network would capture a diverse set of features that may be useful in

other recognition tasks and help avoid duplicating the effort needed to learn low level

features from scratch.

One common way to use pre-trained networks for transfer learning is to use them

as feature extractors [9, 34]. In feature extraction (Figure 2.8), since the output

layer of a network is task specific, the output layer is removed while the rest of
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Figure 2.8: Illustration of the difference between (a) feature extraction and (b)
finetuning for transfer learning. Parameters except for the output layer are frozen in
feature extraction, whereas parameters are permitted to change, with some possibily
being frozen, in finetuning [26].

the parameters of the network are left unmodified. A separate classifier is needed

to output the final predictions for the new task, which may be a new output layer

that is appended to the end of the pre-trained network to derive new predictions or

a separate classifier such as a SVM that accepts extracted features as input and is

trained on the extracted features to make the final prediction.

Finetuning

Unlike feature extraction where the parameters are not modified, finetuning uses the

weights of a pre-trained network for one task as the starting point for training and

modifies the parameters of the network. In finetuning (Figure 2.8), all parameters of

the existing network can be tuned by retraining the network on the new data using

a small learning rate to avoid drastically distorting the parameters. Alternatively,

the weights of some layers of the network can be frozen while the last few layers

are retrained. This tuning process allows the weights to adapt to the new training

data and produce a network capable of solving the new target task. Finetuning has
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been used in various medical image analysis tasks to achieve higher performance than

training a deep CNN from scratch [40, 48].

22



Chapter 3

TRANSFER LEARNING WITH ORTHOGONAL CONVOLUTION

Analyzing medical images is a resource intensive process. Accurately interpreting

CT scans and MRI images requires extensive domain knowledge, not to mention the

process is susceptible to human error. To address these issues, machine learning al-

gorithms have become a popular tool for research to automate the process of medical

image analysis to reduce costs and possible medical errors [6, 10]. Traditional machine

learning approaches used complex feature engineering to create handcrafted features

from images, which required domain specific knowledge, before a classifier is trained

on the extracted features to make a prediction. More recently, deep CNNs have be-

come one of the most widely used tool to build end-to-end models for medical image

analysis as they are able to learn features automatically from the data without com-

plicated feature engineering to create handcrafted features. Furthermore, deep CNNs

have been shown to provide comparable representational and discriminative power to

tradtitional non-neural based models, and in some cases better, as demonstrated by

their performance on different medical image analysis tasks such as detecting lung

nodules [24] and diagnosing diabetic retinopathy [25]. While the performance of deep

CNNs have been impressive, training a deep CNN for a task such as medical image

classification requires a lot of labeled data, which is difficult to obtain due to costs

associated with collecting and labeling medical images. As a way to address this

problem, transfer learning has been used as a method to transfer knowledge learned

from one domain to another domain to overcome challenges of training a deep CNN

without sufficient training data in the original domain.

One common approach to transfer learning for CNNs is to use pre-trained net-
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Figure 3.1: The process for making a prediction using transfer learning with feature
selection: a feature extractor extracts the relevant features from an input, a feature
selection process reduces the dimension of the extracted feature vector, and a trained
classifier receives the selected features and makes the final prediction.

works to extract relevant features from the dataset and train a separate classifier such

as a SVM, random forest, or another CNN on the extracted features to make the fi-

nal prediction. In particular, deep networks pre-trained on ImageNet have been often

used as feature extractors as their learned features have been demonstrated to be

generic and can be repurposed to solve new tasks [9]. Although pre-trained networks

can extract relevant features for solving novel tasks, the usefulness of individual fea-

tures in the entire feature vector varies. For instance, a ResNet50 extracts a 1 × 2048

feature vector; however, there is no guarantee that all 2048 features in the feature

vector are useful for the classifier to learn to make an accurate prediction. In fact, the

presence of many irrelevant and redundant features in the feature vector may hinder

performance and make solving the learning problem more difficult due to the high

dimensionality of the extracted data. One way to address high dimensionality is to

use feature selection to reduce the number of features in the feature vector used for

prediction by selecting a subset of features that are relevant and discarding the irrel-

evant ones. This method of using pre-trained networks to extract features, feature

selection to reduce extracted feature dimensionality, and a separate classifier to make

predictions on the extracted data have been used in literature to detect lymph node

metastasis in prostate cancer patients [38] and bladder cancer tissue [37]. Figure 3.1

shows an overview of the process for transfer learning with feature selection.
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In a recent work on orthogonality, the authors of orthogonal convolutional neural

networks demonstrated imposing orthogonality on convolutional filters through the

use of orthogonal regularization loss helps deep networks learn more diverse and

expressive features and thereby improve overall network performance [49]. Based on

this finding, we investigate the impact of orthogonal convolutional neural networks

on feature extraction for transfer learning and the effects of orthogonal regularization

on subsequent feature selection and classification in a limited data context. In the

end, we analyze and try to understand how orthogonal regularization loss improves

feature learning from a transfer learning perspective.

3.1 Related Work

Using pre-trained networks as feature extractors for transfer learning has been pre-

dominantly used to transfer learned features from one domain to a new domain and

make deep CNNs usable for medical image analysis tasks with limited labeled data.

This feature extraction step has been combined with feature selection to improve over-

all performance. Recently, the introduction of OCNN demonstrated an improvement

in learned features when imposing orthogonality on convolutional filters compared to

its non-orthogonalized counterparts. In this section, we review the research relevant

to our investigation on orthogonality for transfer learning in a limited data setting.

3.1.1 Hybrid Approach for Prostate and Bladder Cancer Detection

A three step process of feature extraction, feature selection, and classification is

used to detect lymph node metastasis in MRI images of prostate cancer patients [38].

The proposed method used ResNet18 pre-trained on ImageNet to perform feature

extraction, a custom feature selection algorithm to reduce the number of features, and

a decision tree classifier to distinguish between normal and metastatic lymph nodes in
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the MRI images. Using this hybrid approach, the authors found using a pre-trained

CNN for feature extraction outperformed traditional methods such as gray level co-

occurrence matrix (GLCM) and Gabor filters used for texture analysis. Furthermore,

the authors found using feature selection to reduce the number of features before

classification improved overall classification performance for all three types of feature

extraction method.

In a similar work, this three step hybrid approach is used to detect normal and

bladder cancer tissue in CT images of bladder cancer patients [37]. The authors

selected five different deep CNNs pre-trained on ImageNet and finetuned the models

using CT scans from the bladder cancer dataset, and used a custom feature selection

algorithm to reduce the number of features before classification. In their work, they

examined five different types of classifiers – k-nearest neighbor (KNN), naive Bayes,

SVM, discriminant analysis, and decision tree – to evaluate the performance of their

hybrid approach. The results of their experiment showed feasibility of using deep

CNN as feature extractors for medical image analysis and the effectiveness of a hybrid

approach.

3.1.2 Orthogonal Convolutional Neural Networks

Orthogonality is a desirable property in deep CNNs. Previous work has shown

orthogonality improves speed and stability of convergence and enhances network per-

formance [1]. More recently, the authors of orthogonal convolutional neural networks

proposed a new method for imposing orthongonality by regularizing the convolutional

layers with orthogonal regularization loss [49] to improve generalization performance

of deep CNNs. The authors implemented an orthogonal convolution version of three

different ResNets with varying depths and compared their performance to baseline

versions without orthogonal regularization and networks with a different implementa-

26



tion of orthogonality. The results of their experiments showed orthogonally regular-

ized networks outperform other versions on classification benchmark datasets such as

CIFAR-10 and ImageNet among other tasks across all three variations of the archi-

tecture. In their analysis, they found learned filters of an OCNN are less correlated,

suggesting OCNN learns more diverse and expressive features that helps improve gen-

eralization performance [49]. However, it is unclear if the improvements to learned

features by orthogonal convolution translates in a transfer learning setting.

3.2 OCNN for Transfer Learning

In this section, we introduce the datasets used in our investigation and use pre-

trained networks to extract features from the data and analyze the extracted features.

We present our methodology for investigating the impact of OCNN for transfer learn-

ing and present our experiments and results.

3.2.1 Datasets

In our investigation, we use the prostate cancer dataset and bladder cancer dataset

previously used in the research for automatically detecting lymph node metastasis in

prostate MRI images [38] and bladder cancer tissue in CT scans [37]. The prostate

cancer dataset contains 126 64 × 64 region of interests (ROI) from different MRI

images, with 84 of them depicting a ROI where no cancer tissue is present (normal or

control class) and the other 42 depicting a ROI where cancer tissue is present (lesion

class). The bladder cancer dataset contains 200 64 × 64 ROIs from different CT scans

with 100 images depicting a normal region and the other 100 containing a cancerous

region. Figure 3.2 and Figure 3.3 show examples of normal and lesion images from

the prostate and bladder cancer datasets.
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Figure 3.2: Examples of MRI images from the prostate cancer dataset depicting
ROIs of (a) normal prostate regions and (b) cancerous prostate regions.

Figure 3.3: Examples of CT scans from the bladder cancer dataset depicting ROIs
of (a) normal bladder regions and (b) cancerous bladder regions.

3.2.2 Preliminary Feature Analysis

We analyze the features extracted from the prostate and bladder cancer datasets

using pre-trained networks without orthogonal convolution to gain some initial un-

derstanding of the distribution of the data. Four different types of architectures –

DenseNet121, InceptionV3 [47], InceptionResNetV2, and ResNet50V2 – pre-trained

on ImageNet are selected from Tensorflow to use as feature extractors. Since the

networks are pre-trained on ImageNet which expect the input size to be 224 × 224 ×

3, the images from the prostate cancer and bladder cancer datasets are resized before
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Model Feature Vector Size

DenseNet121 1 × 1024

InceptionV3 1 × 2048

InceptionResNetV2 1 × 1536

ResNet50V2 1 × 2048

Table 3.1: Size of the extracted feature vector of each of the four selected models.

their features are extracted. Table 3.1 shows the output feature vector size of the

four architectures.

We examine the mean and standard deviation of all extracted features between

the normal and lesion classes in both datasets. We use kernel density estimation [42]

to approximate, visualize, and compare the distributions of the two classes. Figure

3.4 and Figure 3.5 show the distributions of the mean and standard deviation of all

extracted features belonging to the normal and lesion classes in the prostate and

bladder cancer datasets for each selected model. For the prostate cancer dataset, the

distributions of the mean and standard deviation of features between the two classes

largely overlaps and shares a similar location of the peak across all the selected models,

making it difficult to discern any differences between the distributions. However, the

height of the peak differs between the two classes, and in some instances such as

Figure 3.4 (a), (c), and (d) there appears to be a small second peak towards the right

end of the distribution for the lesion class unlike the normal class. Similar findings

are observed in the distributions of the lesion and normal class in the bladder cancer

dataset. There is a large overlap in both class distributions; however, the height of

the peak is different between both class distributions and the location of the peak as

shown in Figure 3.5 (a) and (c) are different. Furthermore, a smaller second peak can

be observed in Figure 3.5 (b) and (d).

In addition to examining the mean and standard deviation of all features, we
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Figure 3.4: Kernel density estimated distributions of the mean and standard
deviation of extracted features belonging to the normal and lesion classes in the
prostate cancer dataset. The features are extracted from the two datasets using (a)
DenseNet121, (b) InceptionV3, (c) InceptionResNetV2, and (d) ResNet50V2.
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Figure 3.5: Kernel density estimated distributions of the mean and standard devia-
tion of extracted features belonging to the normal and lesion class in the bladder can-
cer dataset. The features are extracted from the two datasets using (a) DenseNet121,
(b) InceptionV3, (c) InceptionResNetV2, and (d) ResNet50V2.
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Figure 3.6: Kernel density estimated distributions of the mean and standard de-
viation of individual features belonging to the normal and lesion classes in (a) the
prostate cancer dataset and (b) the bladder cancer dataset for DenseNet121, Incep-
tionV3, InceptionResNetV2, and ResNet50V2. Individual features are selected by
computing the mean and standard deviation per feature in each class and finding the
top five features with the largest difference in value between the two classes.
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also examine the mean and standard deviation of individual features that have the

largest difference in value between the two classes to see if the two distributions are

distinguishable. For each class in the dataset, the mean and standard deviation is

computed for each feature in the extracted feature vector, and the top five features

that have the largest difference in value between the normal and lesion classes are

selected for visualization. Figure 3.6 shows the distributions of individual features

between the two classes in each dataset. We observe more noticeable differences in

the distributions of the two classes for individual features such as different location

of peaks, number of peaks, and concentration of density for both datasets.

3.2.3 Feature Extraction with OCNN for Feature Selection and Classification

In our investigation, we use DenseNet121, InceptionV3, InceptionResNetV2, and

ResNet50V2 as feature extractors to investigate the effects of orthogonal convolution

on transfer learning for medical image classification. We use a version of the pre-

trained models with orthogonal regularization loss and a version without to extract

various features from the datasets, use feature selection to reduce the dimensions of

the extracted feature vectors, and train a separate classifier to classify normal and

lesion images.

Feature Extraction

For feature extraction, we implement orthogonal convolution and calculate the or-

thogonal regularization loss at every convolution layer in a network. The models are

optimized using cross entropy loss and orthogonal regularization loss. Versions of

the models without orthogonal regularization are used as baseline feature extractors

for comparison. Since training a deep CNN on ImageNet is resource intensive and

takes a long time, we opt to use CIFAR-10 for pre-training our models instead of
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using ImageNet to ensure the setup and comparison of the results are equivalent.

The CIFAR-10 dataset is divided into a training set of 45000 images, validation set of

5000 images, and a test set of 10000 images to verify the model is sufficiently trained.

To train the feature extractors, data augmentation with translation, rotation, and

horizontal flip is used to augment the original training set. The model is trained

using a batch size of 256, an initial learning rate of 0.001 decayed by a factor of 0.1

at epochs 80, 100, and 120, and with Adam [21] as the optimizer over 200 epochs.

An orthogonal regularization penalty of λ = 0.01 without weight decay or dropout is

used in the training protocol. We employ early stopping to prevent over training and

select the model with the lowest validation loss as the final model to use for feature

extraction.

Feature Selection

Since the extracted features have high dimensions and not all extracted features may

be relevant for prediction, feature selection is used to reduce the number of irrelevant

extracted features and decrease dimensionality before doing classification to boost

performance. The extracted features from the deep CNNs are normalized by dividing

each feature with the feature standard deviation. Then, a linear kernel SVM with L1

regularization is used for feature selection to select a subset of features. L1-norm is

used for regularization because it encourages weights to be 0, which can be seen as

performing some form of feature selection [54]. The SVM is optimized with squared

hinge loss and L1 regularization defined as

min
w

1

2
w +C

M

∑
i=1

max(0,1 − yiwTxi)2 (3.1)

[11]. We conduct a hyperparameter search over the interval [0.02, 0.10] with steps of

0.005 for the parameter C of the SVM to find the optimal L1 regularized L2-SVM for
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Figure 3.7: Overview of the method for feature extraction, feature selection, and
classification (a) without orthogonal regularization loss and (b) with orthogonal reg-
ularization loss.

reducing the number of extracted features before doing classification.

Classification

For classification, a separate SVM from the feature selection step is used to classify

images as normal or lesion. We use a linear kernel SVM and train the model with

hinge loss and L2 regularization defined as

min
w

1

2
wTw +C

M

∑
i=1

max(0,1 − yiwTxi) (3.2)

[4] to penalize missclassifications more heavily and handle possible outliers in the

data. Similar to the feature selection step, a hyperparameter search over the interval

[0.02, 0.10] with steps of 0.005 is done to find the parameter C and the optimal L2

regularized L1-SVM for classifying normal and lesion images. We measure and evalu-

ate the performances of the classifiers using accuracy and F1-score. The performance

measurements are collected using cross validation with each test set maintaining the

ratio of samples between classes. The same test set is held out from training of the

L1 regularized L2-SVM in the feature selection step and the classifier to not intro-

duce any bias in the classification step. Figure 3.7 shows an overview of the feature

extraction, feature selection, and classification process.
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Architecture Baseline Accuracy (%) OCNN Accuracy (%)

DenseNet121 85.36 86.01

InceptionV3 89.25 89.31

InceptionResNetV2 90.45 90.76

ResNet50V2 82.09 83.55

Table 3.2: Test accuracy on CIFAR-10 of the four selected models trained with and
without orthogonal regularization loss.

3.2.4 Experimental Results

To evaluate the effects of orthogonal regularization loss on transfer learning, we

conduct experiments to evaluate the classification performance of orthogonal regu-

larized networks compared to their baseline versions. We pre-train all networks on

CIFAR-10 and use them as feature extractors to extract features from the prostate

cancer dataset and the bladder cancer dataset and benchmark their classification

performance under two settings: (1) without feature selection and (2) with feature

selection. The performance is measured using accuracy and F1-score and the re-

sults of the baseline without orthogonal regularization loss and the version of the

networks with orthogonal regularization loss are compared for settings (1) and (2).

In addition, classification results of the networks pre-trained on ImageNet without

orthongonal regularization are provided for comparison. All reported accuracies and

F1-scores are averages obtained using 10-fold cross validation on the same test set

with each fold containing a different test set. Table 3.2 shows the test accuracy on

CIFAR-10 by the trained networks.
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Feature Extractor Accuracy(%) F1-Score

Baseline DenseNet121 (C=0.02) 71.35 0.5055

OCNN DenseNet121 (C=0.02) 68.91 0.4739

ImageNet DenseNet121 (C=0.02) 76.22 0.6176

Baseline InceptionV3 (C=0.035) 62.76 0.4136

OCNN InceptionV3 (C=0.035) 59.04 0.4155

ImageNet InceptionV3 (C=0.02) 64.10 0.3668

Baseline InceptionResNetV2 (C=0.02) 60.19 0.3994

OCNN InceptionResNetV2 (C=0.02) 67.24 0.4805

ImageNet InceptionResNetV2 (C=0.07) 73.91 0.5709

Baseline ResNet50V2 (C=0.02) 61.35 0.3516

OCNN ResNet50V2 (C=0.02) 66.73 0.4750

ImageNet ResNet50V2 (C=0.02) 69.49 0.4344

Table 3.3: Prostate cancer data classification results of L2 regularized L1-SVM
corresponding to different feature extractors. Results are obtained using 10-fold cross
validation without feature selection. C is the parameter used for the SVM classifier.

Prostate Cancer Dataset

Table 3.3 shows the classification results on the prostate cancer dataset without fea-

ture selection for setting (1) in our experiment. Under this setting, the baseline out-

performs OCNN in both metrics for DenseNet121 and InceptionV3 while the OCNN

outperforms the baseline for InceptionResNetV2 and ResNet50V2. Across all archi-

tectures, the network pre-trained on ImageNet outperforms both the baseline and the

OCNN. Table 3.4 shows the classification results on the prostate cancer dataset with

feature selection for setting (2). For this setting, the OCNN outperforms the base-

line in both metrics for DenseNet121, InceptionResNetV2, and ResNet50V2 except

InceptionV3. Out of all architectures, OCNN ResNet50V2 is the only architecture
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Feature Extractor # of Features Retained Accuracy(%) F1-Score

Baseline DenseNet121 (CFS=0.04, Cclass=0.02) 33 88.78 0.8111

OCNN DenseNet121 (CFS=0.045, Cclass=0.065) 33 91.22 0.8631

ImageNet DenseNet121 (CFS=0.095, Cclass=0.02) 59 96.09 0.9385

Baseline InceptionV3 (CFS=0.025, Cclass=0.045) 15 78.59 0.5571

OCNN InceptionV3 (CFS=0.025, Cclass=0.02) 12 73.08 0.3438

ImageNet InceptionV3 (CFS=0.065, Cclass=0.02) 81 95.26 0.9159

Baseline InceptionResNetV2 (CFS=0.04, Cclass=0.035) 37 85.64 0.7629

OCNN InceptionResNetV2 (CFS=0.045, Cclass=0.025) 43 91.41 0.8356

ImageNet InceptionResNetV2 (CFS=0.1, Cclass=0.095) 63 96.86 0.9524

Baseline ResNet50V2 (CFS=0.035, Cclass=0.07) 21 78.53 0.5693

OCNN ResNet50V2 (CFS=0.065, Cclass=0.03) 59 94.42 0.9088

ImageNet ResNet50V2 (CFS=0.06, Cclass=0.04) 71 94.42 0.9000

Table 3.4: Prostate cancer data classification results of L2 regularized L1-SVM with feature selection using L1 regularized
L2-SVM. Results are collected using 10-fold cross validation. CFS denotes the parameter used in the SVM for feature
selection and Cclass denotes the parameter used in the SVM for classification.
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Classifier Accuracy (%) F1-Score

ResNet-18 (original) 57.14 0.6625

ResNet-18 (selected) 76.19 0.8171

GLCM (original) 57.94 0.7024

GLCM (selected) 61.90 0.7273

Gabor (original) 59.52 0.7000

Gabor (selected) 65.08 0.7484

Table 3.5: Previous classification results on the prostate cancer dataset in literature
using a custom feature selection method [38].

that achieves similar accuracy and F1-score to its version pre-trained on ImageNet.

Looking at the number of features retained by feature selection, the number of se-

lected features for OCNN is equal to or greater than the number of the baseline for

DenseNet121, InceptionResNetV2, and ResNet50V2 except InceptionV3. In all three

architectures where the number of features for OCNN are equal to or greater than the

baseline, the OCNN version reports higher accuracy and F1-score. For all models, the

number of selected features is higher for the network pre-trained on ImageNet than

the baseline and OCNN version. Our example approach using orthogonal convolution

achieves higher performance than previously recorded results in literature [38] which

are outlined in Table 3.5.

Bladder Cancer Dataset

Table 3.6 shows the classification results on the bladder cancer dataset without fea-

ture selection for setting (1). Under this setting, the OCNN outperforms the baseline

only for InceptionResNetV2 and ResNet50V. OCNN InceptionResNetV2 is the only

architecture to outperform its version pre-trained on ImageNet. Table 3.7 shows the

classification results on the bladder cancer dataset with feature selection for setting
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Feature Extractor Accuracy(%) F1-Score

Baseline DenseNet121 (C=0.02) 67.00 0.6695

OCNN DenseNet121 (C=0.03) 62.00 0.6126

ImageNet DenseNet121 (C=0.02) 67.50 0.6663

Baseline InceptionV3 (C=0.03) 58.50 0.5916

OCNN InceptionV3 (C=0.02) 58.00 0.5639

ImageNet InceptionV3 (C=0.02) 61.50 0.5972

Baseline InceptionResNetV2 (C=0.025) 63.00 0.6215

OCNN InceptionResNetV2 (C=0.02) 74.50 0.7346

ImageNet InceptionResNetV2 (C=0.035) 68.50 0.6953

Baseline ResNet50V2 (C=0.06) 59.50 0.5830

OCNN ResNet50V2 (C=0.02) 64.00 0.6223

ImageNet ResNet50V2 (C=0.02) 65.50 0.6360

Table 3.6: Bladder cancer data classification results of L2 regularized L1-SVM cor-
responding to different feature extractors. Results are obtained using 10-fold cross
validation without feature selection. C is the parameter used for the SVM classifier.
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Feature Extractor # of Features Retained Accuracy(%) F1-Score

Baseline DenseNet121 (CFS=0.065, Cclass=0.075) 75 85.00 0.8507

OCNN DenseNet121 (CFS=0.03, Cclass=0.02) 30 82.00 0.8201

ImageNet DenseNet121 (CFS=0.025, Cclass=0.055) 34 84.00 0.8352

Baseline InceptionV3 (CFS=0.02, Cclass=0.025) 12 70.50 0.7200

OCNN InceptionV3 (CFS=0.02, Cclass=0.05) 17 71.00 0.7107

ImageNet InceptionV3 (CFS=0.02, Cclass=0.02) 28 81.50 0.7963

Baseline InceptionResNetV2 (CFS=0.035, Cclass=0.025) 36 79.50 0.7994

OCNN InceptionResNetV2 (CFS=0.095, Cclass=0.055) 102 93.50 0.9329

ImageNet InceptionResNetV2 (CFS=0.025, Cclass=0.02) 36 84.00 0.8364

Baseline ResNet50V2 (CFS=0.035, Cclass=0.02) 42 73.00 0.7078

OCNN ResNet50V2 (CFS=0.045, Cclass=0.02) 77 87.00 0.8685

ImageNet ResNet50V2 (CFS=0.02, Cclass=0.025) 36 85.00 0.8517

Table 3.7: Bladder cancer data classification results of L2 regularized L1-SVM with feature selection using L1 regularized
L2-SVM. Results are collected using 10-fold cross validation. CFS denotes the parameter used in the SVM for feature
selection and Cclass denotes the parameter used in the SVM for classification.
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(2). Similar to setting (1), the OCNN version outperforms the baseline for Incep-

tionResNet50V2 and ResNet50V2. Moreover, both the OCNN InceptionResNetV2

and ResNet50V2 are the only architectures to outperform its ImageNet version for

setting (2). Out of all the architectures, DenseNet121 is the only network to have

its baseline outperform its OCNN and ImageNet version. Looking at the number of

features retained, the models with a higher number of features selected have a higher

accuracy and F1-score. Comparing our results to previous literature outlined in Table

3.8, our example approach using orthogonal convolution with InceptionResNetV2 is

able to achieve higher performance than previously recorded results in literature.

Our findings support the claim that orthogonality convolutional neural networks

learns more diverse and expressive features. The numerical results of our experiments

show the generality that exist in learned features of deep CNNs, which hold some form

of implicit knowledge that may be better captured with orthogonality and transferred

across domains. With enhanced diversity in transferred features, subsequent feature

selection to remove irrelevant and redundant features is made more difficult, i.e. it is

harder to select features for removal which leads to more retained features. Despite the

increase in the number of features selected which would diminish performance if the

features were irrelevant and redundant, the results showed a boost in classification

performance for the end classifier, demonstrating an improvement in diversity and

transferability of features with orthogonal regularization which helps in improving

generalization performance. In our experiments, we also attempted to use one SVM

for both feature selection and classification. However, a lower performance is observed

so we maintain the use of two separate SVMs for feature selection and classification

in our process.

42



Feature Extractor Classifier Accuracy (%) F1-Score

AlexNet

KNN 70.75 ± 0.90 0.7654 ± 0.0083

NB 80.53 ± 0.29 0.8476 ± 0.0024

SVM 78.35 ± 0.58 0.8335 ± 0.0043

LDA 79.87 ± 0.37 0.8486 ± 0.0026

DT 73.73 ± 1.13 0.7877 ± 0.0089

GoogLeNet

KNN 70.38 ± 0.68 0.7664 ± 0.0056

NB 76.42 ± 0.49 0.8168 ± 0.0039

SVM 76.61 ± 0.53 0.8221 ± 0.0043

LDA 78.99 ± 0.36 0.8439 ± 0.0027

DT 75.62 ± 1.36 0.8001 ± 0.0116

InceptionV3

KNN 73.54 ± 0.63 0.7856 ± 0.0053

NB 79.88 ± 0.31 0.8445 ± 0.0025

SVM 77.40 ± 0.42 0.8290 ± 0.0031

LDA 79.35 ± 0.12 0.8422 ± 0.0009

DT 72.95 ± 1.27 0.7749 ± 0.0110

ResNet50

KNN 79.56 ± 0.71 0.8317 ± 0.0059

NB 82.48 ± 0.39 0.8654 ± 0.0030

SVM 77.71 ± 0.51 0.8317 ± 0.0040

LDA 78.62 ± 0.28 0.8395 ± 0.0022

DT 80.79 ± 1.11 0.8416 ± 0.0089

XceptionNet

KNN 78.37 ± 0.49 0.8312 ± 0.0038

NB 83.95 ± 0.35 0.8701 ± 0.0030

SVM 83.22 ± 0.47 0.8742 ± 0.0033

LDA 86.07 ± 0.38 0.8939 ± 0.0026

DT 81.45 ± 0.99 0.8466 ± 0.0086

Table 3.8: Previous classification results on the bladder cancer dataset in literature
using deep CNNs as feature extractors and a custom feature selection method [37].
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3.3 Analysis of OCNN for Transfer Learning

The results of the experiments on the prostate and bladder cancer datasets show

orthogonal regularization is more effective in increasing performance when applied to

InceptionResNetV2 and ResNet50V2 compared to DenseNet121 and InceptionV3. To

understand why orthogonal regularization is more effective in improving performance

for those networks in a transfer learning setting, we investigate transferred feature

similarities by measuring correlation between feature maps extracted by learned filters

at different layers of a network. In addition to analyzing transferred feature similari-

ties, we provide a brief analysis of the time complexity to understand how orthogonal

convolution may affect training and inference time in the context of transfer learning.

3.3.1 Related Work

One method for depicting similarities between variables is to use a correlation ma-

trix. The authors of orthogonal convolutional neural networks used this method to

investigate filter similarities of OCNN. Specifically, they used guided backpropagation

to generate guided backpropagation patterns at different layers, computed the corre-

lation matrix over the patterns, and plotted a histogram of the off-diagonal elements

[49]. In our analysis to understand why orthogonal regularization is more effective

for improving transferrable features in some deep CNNs, we use a similar idea but in-

stead of using guided backpropagation patterns, we directly use the extracted feature

maps from the prostate and bladder cancer datasets produced at different layers. The

extracted feature maps are used because they are produced by convolving filters in a

convolutional layer with the input, and if the learned filters at a convolutional layer

of a CNN are similar, the generated feature maps would also share more similarities.
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3.3.2 Transferred Feature Analysis

In this analysis, we investigate transferred feature similarities through the use

of extracted feature maps generated by different layers of OCNN DenseNet121, In-

ceptionV3, InceptionResNetV2, and ResNet50V2 and their baseline versions on the

prostate and bladder cancer datasets. A set of feature maps produced at a layer is

a 4-D tensor F ∈ RM×W×H×C , where M is the number of output channels or feature

maps, W is the width of the input, H is the height of the input, and C is the number

of input channels. Each feature map is flatten to transform the feature maps to a 2-D

tensor Fflatten ∈ RM×WHC . The similarities between each feature map can be com-

puted by calculating the correlation matrix corr(Fflatten) ∈ RM×M for Fflatten, where

the positive upper or lower triangluar elements in the correlation matrix corr(Fflatten)

represent pairwise correlation between each feature maps. Similar as before, kernel

density estimation is used to estimate the distribution and visualize the similari-

ties between feature maps of OCNN and baseline networks for all architectures and

datasets.

We estimate the distributions of the feature similarities at different layers of a

network and generate a snapshot of the change in feature similarities through the

layers. Figure 3.8 shows the snapshots of the distributions at different layers of

DenseNet121 and InceptionV3 and Figure 3.9 shows the snapshots of InceptionRes-

NetV2 and ResNet50V2 on the prostate cancer dataset. In Figure 3.8, the distri-

butions show both the OCNN and baseline curves of DenseNet121 and InceptionV3

are aligned to the left in the early layers but begin to widen and shift right as the

view progresses through the middle layers and towards the end, indicating an increase

in feature redundancy for both OCNN and baseline. In particular, the distribution

at layer conv5 block16 2 conv of DenseNet121 shows the OCNN curve shifting fur-
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Figure 3.8: Snapshots of the distributions of pairwise feature similarities at differ-
ent layers of (a) DenseNet121 and (b) InceptionV3 on the prostate cancer dataset
depicting an increase in feature similarities for OCNN and baseline at some layers.
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Figure 3.9: Snapshots of the distributions of pairwise feature similarities at different
layers of (a) InceptionResNetV2 and (b) ResNet50V2 on the prostate cancer dataset
depicting the feature maps of OCNN remaining less correlated without a significant
increase in similarities compared to baseline.
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Figure 3.10: Snapshots of the distributions of pairwise feature similarities at dif-
ferent layers of (a) DenseNet121 and (b) InceptionV3 on the bladder cancer dataset
depicting an increase in feature similarities for OCNN and baseline at some layers.
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Figure 3.11: Snapshots of the distributions of pairwise feature similarities at dif-
ferent layers of (a) InceptionResNetV2 and (b) ResNet50V2 on the bladder cancer
dataset depicting the feature maps of OCNN remaining less correlated without a sig-
nificant increase in similarities compared to baseline.
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ther right than the baseline curve, demonstrating higher feature similarities in the

OCNN compared to baseline. In Figure 3.9, the snapshots show the OCNN curves

of InceptionResNetV2 and ResNet50V2 remain left aligned throughout the layers of

the network while the baseline curves begin to widen and shift right through the

middle layers and towards the end, illustrating fewer redundant features for OCNN

compared to the baseline model. At layer block17 9 conv and layer block8 6 of Incep-

tionResNetV2, the distributions show the baseline curve shifting left and becoming

narrower, which would suggest an improvement in similarities between feature maps

across the two layers. However, feature similarities is only a measure of redundancy

within the layer. Since features computed at a layer is dependent on the features

from the previous layer, i.e. the features are only propagated forward, the decrease in

feature similarities going forward does not imply an improvement in the transferred

features.

Figure 3.10 shows the feature similarity distributions of DenseNet121 and Incep-

tionV3 and Figure 3.11 shows the distributions of InceptionResNetV2 and ResNet50V2

on the bladder cancer dataset. Similar to Figure 3.8 and Figure 3.9, we observe the

OCNN and the baseline curves widen and shift right for DenseNet121 and InceptionV3

in Figure 3.10 and the OCNN curves for InceptionResNetV2 and ResNet50V2 remain

left aligned while the baseline curves widen and shift right in Figure 3.11. The curves

in these snapshots across both datasets illustrate OCNN transferred features remain

diverse in early layers of DenseNet121 and InceptionV3 but become increasingly sim-

ilar as the features progress through the layers of the network, whereas the OCNN

transferred features remain less redundant for InceptionResNetV2 and ResNet50V2.

These observations in feature similarities align with previous classification results on

the prostate cancer and bladder cancer datasets. Since features in the early layers of

a network are known to be general while the features in the end layers are more task
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specific, the results of this analysis along with the classification results in previous

experiments show orthogonal regularization helps extract diverse, generic features

more effectively in InceptionResNetV2 and ResNet50V2 compared to DenseNet121

and InceptionV3.

3.3.3 Time Complexity

Although no experiments were conducted to investigate the training time of the

networks with and without orthogonal regularization, we provide a brief analysis of

the time complexity of OCNN based on the operations involved in computing the reg-

ularization loss to understand how orthogonal convolution may affect training time.

Since orthogonal convolution only applies to convolutions and not other operations in

a network, the training time of an OCNN would increase based on the number of con-

volutions in a network. Furthermore, the orthogonal regularization loss is computed

using self-convolution of the kernels in a convolutional layer; therefore, training time

would only increase based on the configuration of convolutions in a layer such as the

size of the kernels, stride, padding, and number of kernels irrespective of the input

size. Lastly, inference time is unaffected as orthogonal convolution is implemented as

a loss term in the loss function which is only applicable during training and not test

time. For transfer learning, this means pre-training with orthogonal regularization

does not incur much additional overhead relative to the original cost required for

training and the time needed for feature extraction remains unchanged.
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Chapter 4

ANALYSIS OF RESIDUAL LEARNING ON ORTHOGONAL CONVOLUTION

In the last chapter, we demonstrated orthogonal regularization loss helps deep CNNs

extract more diverse, generic features that are transferable across domains using the

prostate cancer and bladder cancer datasets, showing orthogonal regularization can

be an effective tool in improving generalization performance for deep CNNs. In

particular, it was observed orthogonal regularization is more effective in reducing

feature redudancy in transferred features for InceptionResNetV2 and ResNet50V2

compared to DenseNet121 and InceptionV3. In this chapter, we analyze the impact

skip connections and depth have on orthogonal regularization to provide justification

on how those networks are able to be better at improving generality and preserving

feature diversity.

4.1 Experiments

Among the four different architectures selected in the previous experiments in

demonstrating the effectiveness of orthogonal regularization loss on transfer learning,

three of the four selected models are similar in that their architecture includes the

use of skip connections. Specifically, DenseNet121 used concatenation for its dense

skip connections to encourage feature reuse by propagating features from preceed-

ing layers through to subsequent layers while InceptionResNet50V2 and ResNet50V2

used summation for its residual skip connections. In the previous experiments, it was

observed orthogonal regularization appears to be more effective in residual neural net-

works compared to densely connected neural networks and neural networks without

residual connections. This fundamental difference in architecture could be a factor in
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how orthogonal regularization helps improve generality and preserve feature diversity

more effectively at different layers of a network.

To investigate how residual connnections may help maintain lower feature similar-

ities in orthogonal regularization, we evaluate and compare four networks with and

without residual connections and orthogonal regularization loss on CIFAR-10 in terms

of classification performance and feature similarities at different convolutional layers.

For the network with residual connections, we use the same ResNet50V2 model used

in the previous experiments. For the plain network without residual connections, we

use the same ResNet50V2 model but with its residual connections removed. Table

4.1 outlines the convolutional layers of the architecture.

4.1.1 Dataset

In this experiment, CIFAR-10 [22] is used to train all four networks. The CIFAR-

10 dataset contains 32 × 32 natural colored images belonging to 10 different classes.

The training set contains 50000 training images with 6000 images per class and the

test set contains 10000 images with 1000 images per class. We split the training set

into a training and validation set and allocate 10% of training data as validation data

to validate and monitor the training of the two networks. A similar data augmentation

strategy with translation, rotation, and horizontal flip as previous experiments is used

to inflate and vary the training set to facilitate training the deep networks.

4.1.2 Training Protocol

The residual networks with and without orthogonal regularization and the plain

networks with and without orthogonal regularization are trained using a similar train-

ing protocol but slightly different hyperparameters. All networks are trained using

a batch size of 256, using Adam as the optimizer, and with early stopping. For the
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Layer Name Filter

conv1 7 × 7,64

conv2 x

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 × 1,64

3 × 3,64

1 × 1,256

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

× 3

conv3 x

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 × 1,128

3 × 3,256

1 × 1,512

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

× 4

conv4 x

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 × 1,256

3 × 3,256

1 × 1,1024

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

× 6

conv5 x

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 × 1,512

3 × 3,512

1 × 1,2048

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

× 3

Table 4.1: Convolutional layers and filter sizes of the ResNet50V2 and Plain50
models. The group of filters in each bracket corresponds to a block. Other layers such
as pooling, batch normalization, and softmax used in the architecture are omitted in
this table.

residual networks with and without orthogonal regularization, we train both networks

over 200 epochs using an initial learning rate of 0.001 that decays by a factor of 0.1

at epochs 80, 100, and 120. An orthogonal regularization penalty of 0.01 is used for

the residual network with orthogonal regularization. For the plain network without

orthogonal regularization, we use an initial learning rate of 0.0005 and train the net-

work over 1000 epochs without decaying the learning rate. For the plain network

with orthogonal regularization, we use an initial learning rate of 0.003, orthogonal

regularization penalty of 0.01, and train the network over 1800 epochs.
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Model Accuracy (%)

Baseline ResNet50V2 81.73

OCNN ResNet50V2 84.81

Baseline Plain50 64.29

OCNN Plain50 80.30

Table 4.2: Test accuracy on CIFAR-10 of ResNet50V2 and Plain50 with and without
orthogonal regularization.

4.2 Results

Figure 4.2 shows the accuracy on CIFAR-10 test set by the trained ResNet50V2

and Plain50 with and without orthogonal regularization. Without residual connec-

tions, the plain network obtained the worst test accuracy on CIFAR-10 out of the

four models in the experiment followed by the plain network with orthogonal reg-

ularization, ResNet50V2 without orthogonal regularization, and ResNet50V2 with

orthogonal regularization. For the plain network, using orthogonal regularization

provides a increase in test accuracy of 16%. These results align with expectations

as residual connections are known to help with training stability and facilitate opti-

mization which addresses accuracy degradation issues due to depth while orthogonal

regularization enhances feature diversity and expressiveness, both of which help im-

prove network performance.

Figure 4.1 shows the distributions of the feature similarities at the convolutional

layers of (a) block 1 and (b) block 2 in the residual and plain networks. In Figure 4.1

(a), the curves of the convolutional layers in the first block before the first residual

connection show ResNet50V2 and Plain50 with orthogonal regularization are simi-

larly left aligned and narrower compared to their counterparts without orthogonal

regularization. In Figure 4.1 (b), the distributions of the convolutional layers in the
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Figure 4.1: Kernel density estimated distributions of feature similarities at convo-
lution layers of (a) block 1 and (b) block 2 of ResNet50V2 and Plain50 with and
without orthogonal regularization.
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Figure 4.2: Kernel density estimated distributions of feature similarities at convo-
lution layers of (a) block 4 and (b) block 8 of ResNet50V2 and Plain50 with and
without orthogonal regularization.
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second block after the first residual connection depict the curves of the models with

orthogonal regularization remaining left aligned and narrower compared to the curves

of the models without orthogonal regularization. These results demonstrate the fea-

tures in both the residual and plain networks are similarly diverse in the early layers

of the network and residual connections do not provide any significant improvements

to feature similarities.

Figure 4.2 shows the distributions of the feature similarities at the convolutional

layers of (a) block 4 and (b) block 8 in the residual and plain networks. In Fig-

ure 4.2 (a), the curves of Plain50 OCNN at block 4 flatten and shift right while

the curves of ResNet50V2 OCNN remain narrower compared to the curves of the

other models, showing features of Plain50 OCNN become more similarities at block

4 compared to ResNet50V2. Figure 4.2 (b) illustrates similar findings. The curves of

ResNet50V2 OCNN remain the most left aligned and narrow followed ResNet50V2

Baseline, Plain50 OCNN, and Plain50 Baseline. These results demonstrate features

of ResNet50V2 OCNN remain more diverse compared to all other models with in-

creasing depth while the features of Plain50 OCNN become more similar and worse

than ResNet50V2 Baseline, which the feature similarities at earlier layers showed the

contrary. Our findings show residual connections help alleviate negative effects of

depth on orthogonal regularization and the choice of architecture; in particular, the

use of residual connections can make orthogonal regularization more effective.
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Chapter 5

CONCLUSIONS

Real-world supervised learning problems such as medical image classification are often

under less than ideal conditions where there is a lack of labeled data for training and

the distributions of the source and target data domain may be different. These

ill conditions pose significant challenges for deep convolutional neural networks to

work as they may become overparameterized due to insufficient training data and is

incapable of generalizing to unseen samples in the target domain. One solution to

this problem is to use transfer learning to apply learned knowledge from one domain

to a new domain and avoid the effort required to train a network from scratch, which

relies on features from the source data being transferable to the target data.

This thesis explores the use of orthogonal convolutional neural networks as feature

extractors to understand if and how orthogonal convolution may improve the trans-

ferability of features for transfer learning. The results of this thesis suggest orthogonal

regularization can enhance the extraction of more diverse, expressive, and generic fea-

tures that are transferable across domains and improve generalization performance of

the target task. To understand the potential effectiveness of orthogonal convolution

on certain architectures, we demonstrate orthogonal regularization is more effective

in residual based neural networks and show residual connections appear to help or-

thogonal convolution better preserve feature diversity across layers in a network and

alleviate the increase in feature similarities caused by depth. The results of this work

demonstrates the use of residual learning is an important factor in effectively utilizing

orthogonal regularization for deep convolutional neural networks.
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5.1 Future Directions

This thesis only considers the application of orthogonal regularization in pre-

training deep networks for feature extraction and it remains an open question how

orthogonal convolution affects network performance when finetuning parameters of

a network for transfer learning. Moreover, it remains unclear how other types of

skip connections besides residual connections affect diversity and transferability of

features enhanced by orthogonal regularization. The following are several future re-

search directions that may provide a more comprehensive understanding of orthogonal

regularization for transfer learning.

Effects of Orthogonal Convolution on Finetuning

An alternative approach to using pre-trained networks as feature extractors for trans-

fer learning is to finetune parameters of a pre-trained network. In finetuning, param-

eters at the end layers of a network, which correspond to more task specific features,

can be finetuned with a small learning rate to adjust to the target task while all

other parameters are frozen. Since only features at the end layers are modified and

the benefits provided by orthogonal regularization have been observed to be lessen

at higher depth, an interesting research direction would be to study the effects of

orthogonal convolution on feature diversity, transferability, and generalization per-

formance in finetuning and determine if there are any improvements compared to

feature extraction.

Effects of Dense Connections on Orthogonal Convolution

Besides residual connections, dense connections using concatentation is another ex-

ample of skip connections that are commonly used in network architectures. Unlike
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residual connections which have been hypothesized to help improve information and

gradient flow, dense connections help encourage feature reuse and reduce learning

of redundant feature maps [17]. It is unknown whether dense connections can help

better preserve feature diversity through increasing depth like residual connections

for orthogonal convolution.

Applications of Orthogonal Convolution Beyond Image Classification

Applications of orthogonal convolution can be extended to other architectures such

as autoencoders and other tasks beyond image classification such as image segmenta-

tion. For instance, autoencoders are a type of networks that aim to encode an input

into a latent representation and decode the encoded data to reconstruct the input.

One future research direction would be to study whether orthogonal convolution can

improve autoencoders in encoding a more efficient feature representation that allows

for more accurate reconstruction of the input for tasks such as image denoising. An-

other research direction would be to study the effects of orthogonal convolution on

encoder-decoder architectures such as U-Net [35] used for image segmentation.
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