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ABSTRACT

In videos that contain actions performed unintentionally, agents do not achieve their

desired goals. In such videos, it is challenging for computer vision systems to under-

stand high-level concepts such as goal-directed behavior. On the other hand, from

a very early age, humans are able to understand the relation between an agent and

their ultimate goal even if the action gets disrupted or unintentional effects occur.

Inculcating this ability in artificially intelligent agents would make them better social

learners by not just learning from their own mistakes, i.e., reinforcement learning,

but also learning from other’s mistakes. For example, this could greatly reduce the

search space for artificially intelligent agents for finding the correct action sequence

when trying to achieve a new goal, since they would be able to learn from others what

not to do as well as how/when actions result in undesired outcomes. To validate this

ability of deep learning models to perform this task, the Weakly Augmented Oops

(W-Oops) dataset is proposed, built upon the Oops dataset (Epstein et al., 2019).

W-Oops consists of 2,100 unintentional human action videos, with 44 goal-directed

and 33 unintentional video-level activity labels collected through human annotations.

Inspired by previous methods on tasks such as weakly supervised action localization

which show promise for achieving good localization results without ground truth seg-

ment annotations, this paper proposes a weakly supervised algorithm for localizing

the goal-directed as well as the unintentional temporal region of a video using only

video-level labels. In particular, an attention mechanism based strategy is employed

that predicts the temporal regions which contributes the most to a classification

task, leveraging solely video-level labels. Meanwhile, our designed overlap regular-

ization allows the model to focus on distinct portions of the video for inferring the

goal-directed and unintentional activity, while guaranteeing their temporal ordering.

Extensive quantitative experiments verify the validity of our localization method.
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Chapter 1

INTRODUCTION

1.1 Overview

The word Teleology, coined by the German philosopher Christian Wolff, originates

from two Greek terms 1).telos-which is a term used by philosopher Aristotle to refer

to the full potential or inherent purpose or objective of a person or thing and 2). logia

which refers to ‘study of’ or ‘branch of learning’. Teleology is therefore a reason or

explanation of something as a function of its end, purpose or goal as opposed to as a

function of cause.

Providing a teleological explanation for human action hence involves viewing hu-

man action as goal-directed, i.e., performing an action in order to achieve a goal.

Previous psychology research (Csibra et al., 1999; Csibra, 2003; Gergely et al., 1995;

Csibra, 2008; Brandone and Wellman, 2009; Gergely and Csibra, 2003) provides ex-

tensive evidence that children in their first year form this kind of teleological repre-

sentations of actions. Viewing an action under a teleological lens offer atleast three

advantages which are critical for coordinated social interaction since it helps social

agents to evaluate others behaviours (Malle et al., 2001). One such advantage in-

cludes predicting actions in situations where the environment changes but the goal

does not, since understanding a goal would help predict how an agent would adjust its

action to the modified environment (Csibra and Gergely, 2013). Another important

advantage is that a novel action could be viewed as a means to achieve a goal state.

This is especially useful when these novel actions provide a more efficient means to

achieve a goal-state than the means action we formerly had access to (Csibra and
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Gergely, 2007). And lastly, it provide humans the ability to predict and attribute a

goal to an action even before the outcome is fully realized (the goal being partially

fulfilled or not fulfilled at all) (Brandone and Wellman, 2009; Gergely and Csibra,

2003). One such experiment is also shown in Fig. 1.1.

Unfortunately, current computer vision models are not able to provide these ad-

vantages. Many of them focus on action recognition (Kalfaoglu et al., 2020; Davood-

ikakhki and Yin, 2020; Wang et al., 2016; Zhou et al., 2018a; Lin et al., 2019; Carreira

and Zisserman, 2017; Tran et al., 2018), which focuses on predicting the physical mo-

tion and atomic actions in a video. However, this captures only the means of the

action and not the underlying goal, which requires a deeper penetration of what is

happening in the video. For example viewing Fig. 1.2, we see that the agent is not

able to fulfill his goal-directed action of shooting the ball. Us as humans are able

to infer this goal-directed action due to our commonsense knowledge and teleological

understanding of actions. It is however challenging for a deep learning model to be

able to infer this, as ‘shooting a ball’ is not entailed on the surface appearance of

the video. This would not be possible without penetrating deeper than the surface

appearance of the action.

If we were to inculcate this abilities in artificially intelligent agents it would provide

them with a new lens under which they can view and understand actions, making

them better social learners. (Malle et al., 2001) by not just learning from their own

mistakes, i.e., reinforcement learning, but also learning from other’s mistakes. For

example, this could greatly reduce the search space for AI agents for finding the

correct action sequence when trying to achieve a new goal, since they would be able

to learn from others what not to do as well as how/when actions result in undesired

outcomes.
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Figure 1.1: Experiment Performed in (Brandone and Wellman, 2009). Children Are Ini-

tially Habituation to One of the Two Events in (a), Which Involved a Successful Attempt

of a Man Reaching for a Ball over a Barrier as Well as a Failed Attempt. They Are Then

Exposed to Both the Test Events in (b), Where There Exists No Barrier. The First Test

Event Involves a Man Directly Reaching for the Ball, and the Second Event Involves Him

Taking an Arcing Motion to Reach for the Ball Which Is Not Consistent with the Goal

of Reaching the Ball. Children Habituated to the Failed Action Look Longer at the In-

direct Test Event Which Is Not Consistent with the Goal, Which Concludes That Infants

Understand Goal-directed Behavior in Failed Actions.
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Figure 1.2: In This Video, an Agent’s Ultimate Goal Is to Help His Team Win the

Game. In Order to Do This He Performs a Goal-directed Action of Running Towards

the Basket to Shoot the Ball. However, He Slips and Falls, Not Being Able to Fulfill

His Action.

We also know that in the real world, more severe penalties are assigned to inten-

tional misdeeds rather than unintentional ones, such as intentional fouling in basket-

ball and intentional grounding in football (Malle and Knobe, 1997). There do exist

few works (Epstein et al., 2019; Synakowski et al., 2021) to discriminate between an

intentional and unintentional action. However, in case of an unintentional misdeed

only understanding that it is unintentional is not enough. AI agents should also be

able to extract the goal of the action as well as the temporal region in which it occurs

in order to make it’s decision more justifiable as well as explainable, and as a result

improve human’s trust in artificially intelligent agents.

Due to these numerous advantages offered by being able to understand an action

under the lens of teleology, and the challenges imposed due to understanding the

goal-directedness of actions in situations especially where the goal is partially or

completely not fulfilled, i.e., unintentional actions, teleological action understanding

of unintentional actions in computer vision becomes an interesting topic to delve into.
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1.2 Motivation

Learning socially, by observing other agents in the same environment is crucial

to discover new behaviors that would be difficult to obtain if explored individually

(Laland, 2004; Henrich and McElreath, 2003). Watching other’s mistakes and learning

from them would enable artificially intelligent agents to not make those same mistakes

when trying to achieve the same goal.

Another important practical scenario where teleological action understanding could

be helpful is Law. People attempting to commit a crime but failing to do so can still

be charged with it as long as they had the intent to do so. On the other hand, a

person who commits a crime unintentionally is charged with innocent conduct rather

than criminal conduct. This is known as Criminal Intent (Mens Rea), an element of-

ten used by the Supreme Court to distinguish charges made on a person (Men, 2011;

Martens, 2018). However, since there is rarely any direct evidence of the defendant’s

intent the case is usually argued by the process of reasoning based on the specific sce-

nario and environment in which the incident occurred. Here as well, it is important

for the judge, jury as well as the defendant to attribute a goal to an action even if

performed unintentionally. Hence, in today’s world where we are evolving towards

more human-like AI agents, inculcating these abilities in them is important as well.

There are few previous works which have taken initial steps towards teleological

action understanding. (Epstein et al., 2019) builds a dataset rich in unintentional

human action, as well as single point transition times manually labeled by human an-

notators which helps separate the intentional and unintentional regions of the video.

They also train models to classify an action as intentional or unintentional, as well

localize points where an intentional action transitions into an unintentional action.

However, it does not contain well defined classes for the goal-directed action or why

5



this goal gets disrupted. (Synakowski et al., 2021) too focuses on predicting whether

an activity was intentional or unintentional, but again do not focus on understanding

the underlying goal of an unintentional action. (Fang et al., 2020; Lei et al., 2020;

Zellers et al., 2019) have tried to speculate about all possible effects and intents of ac-

tions, but do not focus on which effects are undesirable. We can see that though these

works focus on detecting the intentionality of an action, or predicting the possible

intents of an action, there is no work yet which focuses on finer-grained understanding

of unintentional actions yet

Hence propose a novel dataset dubbed as Weakly Augmented Oops (W-Oops),

which is built upon the original Oops (Epstein et al., 2019) dataset, and contains un-

intentional action scenes as well high quality video-level annotations which describes

the goal-directed action as well as the unintentional action occurring in the video. We

further propose a weakly supervised framework which is able to infer the goal-directed

and unintentional actions from the video as well as localize their respective temporal

regions using only video-level action labels.

1.3 Challenges

For fine-grained understanding of unintentional actions, it is important to know

1) what is the goal of the action? 2) why was it not fulfilled? 3) when (in time) and

what part of the video did the action start transitioning away from its goal?. This is

a challenging task for deep learning models since it requires the model to understand

high level concepts such as goal-directed behavior which is not directly visible on the

surface appearance of the video. As an example, we can refer to Fig. 1.3 where an

agent is trying to hit the ball but ends up falling and landing on his face. State of the

art action recognition models such as an I3D (Carreira and Zisserman, 2017) trained

on the Kinetics-600 dataset (Carreira et al., 2018) view the whole scene as “faceplant”
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faceplant

Teleological Action RecognitionTraditional Action Recognition

hit ball Transitions faceplant
Goal-Directed UnintentionalAtomic Action

Figure 1.3: State-of-the-art Action Recognition Models Trained on Traditional Video Ac-

tivity Datasets View an Unintentional Action Scene as an Atomic Action. Although This

Scene Involves a Man Falling on His Face, the Man’s Ultimate Goal Was to Hit the Ball.

Green Lines Indicate the Regions of the Video Which Indicate the Man’s Goal, Red Lines

Indicate the Regions Where the Action Deviates from the Goal, and Purple Lines Indicate

the Region the Action Recognition Model Focuses On.

without paying attention to the goal-directed behavior which was to “hit the ball”.

One main reason for this challenge is that existing datasets (Kay et al., 2017;

Carreira et al., 2018; Gu et al., 2018a; Monfort et al., 2019; Schuldt et al., 2004; Blank

et al., 2005; Kuehne et al., 2011; Simonyan and Zisserman, 2014; Wang et al., 2014;

Karpathy et al., 2014; Caba Heilbron et al., 2015; Abu-El-Haija et al., 2016; Nguyen

et al., 2016; Sigurdsson et al., 2016; Goyal et al., 2017; Fouhey et al., 2018; Gu et al.,

2018b) mostly focus on detecting only intentional actions where the goal of the agent

is realized by the action performed, unlike unintentional actions. There does exist

the Oops dataset (Epstein et al., 2019) which contains transition point labels (point

where an action starts deviating from its goal) and human level sentence annotations

of the goal and the unintended actions in unintentional videos. However it contains

redundant sentence representations to address the same goal or unintentional actions
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Figure 1.4: Image Showing the Top Two Results on Youtube When Querying “a

Person Tries to Surf but Falls in the Water”, Which Shows It Is Possible to Easily

Obtain Specific Unintentional Videos, by Inputting the Goal-directed and Uninten-

tional Action in a Template Sentence.

and many of these sentences are ambiguous due to the diverse vocabulary of the

human annotators.

In order to build a model to be able to tackle these questions, a dataset containing

well defined goals and why these goals get disrupted is crucial. Though the results

might contain some noise we can also obtain specific unintentional videos on platforms

like YouTube by querying “person trying to but ends up ”” or “person fails

to ””, and replace the blanks by the specific goal and unintended actions we wish

to query (example shown in Fig. 1.4), and create a dataset from this. Additionally, in

8



order to localize these regions in time, one may manually label the transition point as

in [9] and fully supervise the training. However, these annotations are prohibitively

expensive to collect and suffer from human error and bias.

Previous works such as (Min and Corso, 2020; Shi et al., 2020; Zhai et al., 2020;

Liu et al., 2019; Paul et al., 2018; Lee et al., 2020; Shou et al., 2018; Nguyen et al.,

2018), which focus on segmenting atomic action scenes from untrimmed videos in

a weakly-supervised manner tackle this problem of expensive manual labelling by

training a model in a weakly supervised manner using only video level action la-

bels. Though this task differs from our task, as it involves segmenting an atomic

action from an untrimmed video, whereas our task involves segmenting goal-directed

and unintentional regions from a single unintentional action scene, it still provides

encouragement to solve our task in a weakly supervised manner.

1.4 Contributions

In order to tackle the challenges addressed above, we bring W-Oops, an novel

human activities dataset which contains “fail” videos, building upon Oops (Epstein

et al., 2019) but also contains high quality video-level annotations which describes the

goal-directed as well as the unintentional actions in the video. To approach this chal-

lenge, we develop an algorithm which allows the model to attend to contextualized

visual cues to localize the temporal regions of the goal-directed action, unintentional

action as well as classify these actions in the video. Our weakly supervised frame-

work includes an encoder to encode the joint representation of the goal-directed and

unintentional action from the video as well as temporal attention modules which help

the model focus on the respective regions of interest in the video. We also introduce

a novel optimization target known as Overlap Regularization which allows the model

to pay attention to distinct parts of the video for inferring both types of actions
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while ensuring their temporal ordering. In addition we use Multiple Instance Learn-

ing Loss Zhou (2004) in order to end-to-end train the model for a classification task.

Finally, we use the class-agnostic (bottom-up) as well as class-specific (top-down)

attention mechanisms to localize both types of actions. We believe we are the first to

make a step towards fine-grained understanding of unintentional actions.

Summarizing our contributions,

1. We curate W-Oops, a novel video dataset containing high quality video level

labels for the goal-directed action as well as the unintentional action.

2. We propose a method, which incorporates attention mechanism to focus on

relevant temporal regions of the video important to the classification task, while

enforcing the model to pay attention to distinct parts of the video when inferring

the goal-directed and unintentional action as well as ensuring the temporal

ordering of these actions.

3. Finally, we provide in-depth and comprehensive experimental analysis, and it

shows that our model achieves competitive results compared to several weakly

supervised action localization models.

1.5 Outline

In Chapter 2, we discuss some relevant work which has been done in the domain

of intent recognition and action localization.

Chapter 3 focuses on how we collected the W-Oops dataset. We further provide

detailed statistics and analysis about the dataset.

In Chapter 4 we discuss our weakly supervised framework for solving this chal-

lenge, and discuss all the modules used in the framework in detail. We also discuss

about the loss functions used, especially the novel Overlap Regularization proposed

10



in this work. And finally we discuss the inference procedures.

Chapter 5 focuses on comprehensive and detailed experimental analysis which

validates the effectiveness of our proposed approach. We also provide qualitative

results, to compare our approach with previous competitive weakly supervised action

localization methods.
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Chapter 2

RELATED WORK

2.1 Intent Recognition in Computer Vision

There has been an increase in research focusing on intention recognition of agents

in videos. (Fang and López, 2019) uses 2D pose estimation to predict the cyclist’s

intent of turning or stopping or a pedestrian’s intent of crossing. (Rasouli et al., 2020)

uses a multi-task learning framework to simultaneously predict a pedestrian’s trajec-

tory, action and final location. (Varytimidis et al., 2018) too focuses on pedestrain

behavior estimates uses pedestrian’s motion and head estimates to predict the be-

havior. Our work differs from this as 1) it focuses on predicting the past and not the

future. 2) it is generalized to more diverse environmental settings.

(Wei et al., 2018) proposes a hierarchical model and adopts a multi task learning

approach to predict the intention, the attention of an agent’s eye gaze, as well as

the task being performed by an agent from a RGB-D video. (Vondrick et al., 2016)

focuses on predicting the action, motivation and scenes from an image by leveraging a

commonsense third order factor graph built from text. (Synakowski et al., 2021) dis-

criminate between an intentional and unintentional action in performed by an agent

in realistic videos, using an unsupervised algorithm built using common knowledge

concepts of self-propelled motion, Newtonian motion and their relationship. (Epstein

et al., 2019) too focuses on discriminating between an intentional and unintentional

action, as well as predicting the point in an unintentional video when the action devi-

ates from it’s original goal using a supervised algorithm. Our work differs from these

as we focus on discriminating between the different goal-directed and unintentional
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action categories in unintentional videos, as well as localizing these action regions in

a weakly supervised manner. Action anticipation can also be relevant to predicting

an unintentional action or the onset of it. (Furnari and Farinella, 2019; Sadegh Ali-

akbarian et al., 2017; Miech et al., 2019; Ryoo, 2011; Hoai and De la Torre, 2012)

focus on forecasting an event or action based on a small snippet of a video. (Vondrick

et al., 2015; Tran et al., 2019) focus on self supervised learning approaches to predict

future action representation using unlabeled videos.

2.2 Action Localization

Action localization, unlike action recognition involves segmenting time intervals

in untrimmed videos across the spatio-temporal axis which have a high probability

of containing an action. There exist fully supervised as well as weakly supervised

methods to address this problem. Fully supervised methods contain the ground truth

time intervals for actions during training. Works such as (Zhao et al., 2017; Soomro

et al., 2015; Shou et al., 2016; Gkioxari and Malik, 2015; Yeung et al., 2016) focus on

fully supervised methods for action localization.

However, these time intervals are prohibitively expensive to collect and hence

this data collection cannot scale due to human cost. In order to solve this problem,

researchers started focusing towards weakly supervised methods which involve only

action level labels during training. There also exists a third method which considers

a special case where the availability of temporal ordering of actions during training.

Papers such as (Bojanowski et al., 2014, 2015; Huang et al., 2016; Richard et al.,

2017; Kuehne et al., 2017) localize action regions using information containing the

temporal ordering of activities.

Weakly supervised Action Localization (WSAL) involves localizing action regions

in an untrimmed video by training a model using only video level action labels,
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without considering any temporal ordering of activities. STPN (Nguyen et al., 2018)

trains a classification model using features weighted by a class-agnostic attention

weights, which it learns using a sparsity loss on the attention weights. It then performs

the localization by using both the classification activation as well as these class-

agnostic weights and threshold them to select action locations. WTALC (Paul et al.,

2018) forces the foreground action features from the same action class to be similar

and the background features pertaining to an action class to be dissimilar from its

foreground feature, and finally localizes the action by threshold the classification

activation. A2CL-PT (Min and Corso, 2020) uses foreground and background features

to form triplets and apply the Angular Triplet Center Loss (Li et al., 2019) to separate

the foreground and background features, as well as use an adversarial branch in order

to find supplementary activities from non-localized parts of the video. DGAM (Shi

et al., 2020) propose to separate action frames from context frames by modeling the

frame representation conditioned on the bottom-up attention. TSCN (Zhai et al.,

2020) fuse the attention sequences from the RGB and optical flow stream and use it

as pseudo ground truth to supervise the training.

Our work differs from the above mentioned efforts as we do not focus on extracting

atomic activity sequences from untrimmed videos, but rather focus on extracting goal-

directed and unintentional regions from unintentional action sequences. This, as far as

we know, is the first attempt to identify both goal-directed and unexpected elements

in unintentional human activity videos.
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Chapter 3

W-OOPS DATASET

In this section we talk about how we collected W-Oops, the annotation tool used to

collect it, as well as discuss important statistics of this dataset.

3.1 Collecting the Dataset

The original Oops Dataset (Epstein et al., 2019) consists of 20,338 videos con-

taining human unintentional actions obtained by collating ”fail” videos from different

users on Youtube. Amazon Mechanical Turk workers are then asked to label the time

at which the video starts transitioning from the goal-directed action to the uninten-

tional action, as well as indicate whether a video does not indicate an unintentional

action.

In order to create our dataset, which is built upon the labeled portion of the Oops

dataset, we follow a similar pre-processing step as in (Epstein et al., 2019) by 1).

Removing videos that do not contain an unintentional action 2). Removing videos

more than 30 seconds which are likely to contain multiple scenes, as well as removing

those less than 3 seconds which are not likely to contain one full scene 3). Removing

those videos where the transition time occurs in the initial 1% or ending 1% of the

video, since there would not be enough context to understand the goal-directed action

or unintentional action respectively. Post this process, we were left with a total of

about 7,800 labeled videos.

Oops Dataset (Epstein et al., 2019) also provide the annotations in natural lan-

guage descriptions, which were obtained by asking Amazon Mechanical Turkers to

watch the video and answer: “what was the goal?” and “what went wrong?”. Since
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we want to collect a distinct set of goal-directed and unintentional actions, we fol-

lowed a technique similar to the Epic Kitchens Dataset (Damen et al., 2018), by

extracting the verbs and associated noun using the SpaCy dependency parser and

concatenating them to form an action. We replace all compound nouns by it’s second

noun: e.g., “ride mountain bike” is replaced with “ride bike” and so on. Due to

the diversity of the worker’s vocabulary, we find that the resulting action are of low

quality, with many of them having ambiguous meanings such as “fly bike” as well as

many of them having redundant meanings. In order to overcome this, we manually

go over each of these extracted action and remove those with ambiguous meanings

as well as merge the redundant ones, i.e., “jump over fence” and “jump over chair”

into a more general “jump over obstacle” category.

We finally carry out a human evaluation, going through all the videos manually

and ensuring the correctness of the labels, and correcting them if need be. We also give

the evaluator an option to discard the video if the goal of the actor was ambiguous.

We build an annotation tool in order to make this process easier. The Appendix can

be referred to for more information about this tool. We keep a minimum threshold

of 15 for the number of videos per goal-directed action as well as unintentional class,

and discard the rest of the classes, as well as the videos which were associated with

these classes.

3.2 Statistics and Analysis

The final W-oops dataset contains 1,582 train samples and 526 testing samples,

containing a total of 44 diverse goal-directed and 30 unintentional action classes,

which can be seen in Fig. 3.1. We have also provided the distribution of the goal-

directed and unintentional segment lengths, as well as the total video lengths in

Fig. 3.2. It shows that the goal-directed and unintentional segment lengths are well
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Figure 3.1: Distributions of the Goal-directed and Unintentional Actions Present in

Our Dataset.

diversified over then entire length of the video. The lengths of the video are short in

general, with a majority of them ranging from 6.2 - 7.7 seconds. This makes the task

of identifying these sub-regions in the video challenging. In our benchmark, train

samples contain only video-level labels whereas the test samples contain both the

video-level labels as well as the unintended activity transition points (taken from the
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Figure 3.2: (Top) Distribution over Goal-directed and Unintentional Segment Lengths

(Normalized by the Video Length). (Bottom) Distribution over the Entire Video

Length.

original Oops dataset), in order to conduct evaluation.

Additionally, it is also interesting to know how much information does knowing

about a goal-directed action give us when inferring the unintentional action. In order

to analyse this, we calculate a probability distribution of the unintentional actions

conditioned on the goal-directed actions and calculate their entropy. An entropy of

0 would indicate that the unintentional action can predicted from the goal-directed

action alone. On the other hand, an entropy of 4.91(− log2(30)) indicates that the
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unintentional actions are uncorrelated with the goal-directed action. Fig. 3.3 shows

us that the conditional entropy of unintentional actions lies between these two values,

suggesting that they are correlated but are not completely predictable knowing the

goal-directed action.

Goal-Directed Action

E
nt

ro
py

 o
f U

nI
nt

en
tio

na
l A

ct
io

ns
 (b

its
)

Figure 3.3: Entropy (in Bits) of the Unintentional Actions Conditioned on the Goal-

directed Actions. We Can See That the Unintentional Actions Are Correlated to the

Goal-directed Actions but Are Not Completely Predictable.
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Chapter 4

OUR APPROACH

4.1 Proposed Architecture

We intend to identify the goal-directed and unintended human activities, as well

as their corresponding moment of occurrence from an unintentional video in a weakly-

supervised manner. To be specific, given the video V and its categorical labels rep-

resenting the goal-directed activity, yIA, and the unintended activity, yUA, we expect

the model to predict the triplets 〈sIA, eIA, cIA〉 and 〈sUA, eUA, cUA〉, containing the

starting point, end point and action class associated with this segment by leveraging

only the video-level annotations as weak supervision. We formulate this challenge as a

weakly supervised action localization (WSAL) task, and address it using an attention

mechanism based approach. We start this section by providing an overview of our

model, followed by the details of formulations and our proposed learning objective.

To encode the videos, pre-trained 3D neural networks are exploited to extract a set

of clip-level representations X. We find that in order to encode the goal-directed and

unintentional features from the video, directly using static features is not sufficient.

Hence, we encode the clip embedding by an encoder network F , which outputs a joint

representation for the goal-directed and unintentional action:

O = F(X), (4.1)

where O ∈ Rl×d denotes the representations in d dimensions for l clips. Here, en-

coder network F can either be a bidirectional Gated Recurrent Unit or a Transformer

Encoder (Vaswani et al., 2017). On this basis, we introduce two bottom-up atten-

tion modules, which outputs the temporal attention weights that reflect the temporal
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Figure 4.1: Illustration of Our Overall Architecture. A Backbone Feature Extractor

Is Used to Convert Raw Videos into Features, i.e., X and Is Kept Frozen Throughout

the Training Process. X Is Then Passed to a Video Encoder Which Can Be Either a

GRU (Chung et al., 2014) or a Transformer Encoder (Vaswani et al., 2017), to Extract

High Level Features O. The Two Attention Modules Use O to Predict the Bottom-

up Attention Weights λIA and λUA for the Goal-directed and Unintentional Action

Respectively, Which Are Used for the Overlap Regularization. We Calculate the

Goal-directed, i.e., OIA and Unintentional Feature, i.e., OUA by Computing a Dot

Product Between O and Their Respective Bottom-up Attention Weights. Finally

We Pass the Goal-directed and Unintentional Feature Through Weight-shared Linear

Layers to Extract Their Respective TCAMs CIA and CUA. These TCAMs Are Used

for the MIL Loss.

importance of clip representations for the goal-directed/unintentional activity respec-

tively. This is achieved by training the model with a classification loss, e.g., multiple

instance learning loss. Note that these attention weights are agnostic to the specific

action, and are used to identify generic regions of interest. A stack of 1-D Convolution
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Figure 4.2: Class-agnostic Attention Modules for Capturing the Temporal Attention

Weights for the Goal-directed Region (Left) and Unintentional Region (Right).

layers with RELU activation between layers, followed by a Sigmoid function is used

to obtain the attention weights λIA, λUA ∈ Rl with a scale between 0 and 1.

In order to obtain goal-directed and unintentional features, we compute a dot

product between the joint representation O and each of the bottom-up attention

weights λIA and λUA. These features would represent those parts of the joint represen-

tation O which correspond to the goal-directed and unintentional region respectively.

Formally,

OIA = O · λIA, OUA = O · λUA. (4.2)

We then compute Temporal Class Activation Maps (TCAM) (Nguyen et al., 2018),

CIA ∈ Rl×NIA , CUA ∈ Rl×NUA for the goal-directed as well as unintentional actions,

with NIA and NUA corresponding to the number of goal-directed and unintentional

classes, by employing two weight-sharing linear transformation layer on OIA and OUA

respectively. These are one dimensional class-specific activations that signify classifi-

cation scores over time for both the types of actions for each segment (as illustrated
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in Fig. 4.1). These class-specific distributions, along with the class-agnostic distri-

butions are used to predict the triplets 〈sIA, eIA, cIA〉 and 〈sUA, eUA, cUA〉 associated

with the goal-directed and unintentional activities respectively.

4.1.1 Feature Extraction

4.1.1.1 3D-CNN Architectures

We extract RGB features by creating chunks of 16 consecutive and non-overlapping

frames and using the I3D (Carreira and Zisserman, 2017) as well as R(2+1)D (Tran

et al., 2018) pretrained architectures to extract clip-level features from these chunks.

We follow previous work (Epstein et al., 2019) and down-sample all raw videos at 25

FPS. We then create chunks of 16 consecutive and non-overlapping frames. In order

the extract the I3D and R(2+1)D features, we pass these chunks to the respective

backbone networks and obtain the features as the output of their global pooling layers.

We use the following libraries to extract R(2+1)D1 and I3D2 features from the videos.

I3D: For the I3D (Carreira and Zisserman, 2017) features, we re-scale all frame pixels

between -1 and 1, after which we resize the frames preserving aspect ratio such that

the smallest dimension is 256 pixels. We then apply center crop to obtain 224× 224

frames. Chunks of 16 non-overlapping frames are then passed through the RGB

stream of a I3D (Carreira and Zisserman, 2017) backbone pretrained on the Kinetics

dataset (Kay et al., 2017) to obtain features Xi ∈ R1024×li from the global pooling

layer.

R(2+1)D: For the R(2+1)D (Tran et al., 2018) network, we re-scale frame pixels

between 0 and 1, after which we resize all frames to 128 × 171. We then normalize

these frames and finally apply center crop to obtain 112× 112 frames. We the chunk

1https://pytorch.org/vision/0.8/models.html
2https://github.com/deepmind/kinetics-i3d
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the frames in the same way and pass it through the R(2+1)D (Tran et al., 2018)

backbone pretrained on Kinetics to obtain features Xi ∈ R512×li from the global

pooling layer.

4.1.1.2 Human Skeleton Extraction and Vectorization

Successful attempts at using human skeleton features for activity recognition.(Luvizon

et al., 2018; Wang et al., 2013; Yan et al., 2018), fall prediction (Solbach and Tsotsos,

2017; Hua et al., 2019) and action localization (Miki et al., 2020) provides encourage-

ment to use them for our task as well. However human skeleton features alone would

not be enough as it does not capture the surrounding environment information which

the RGB features do. Hence we concatenate both the RGB features and skeleton

features to use as our backbone features.

In order to test this hypothesis, for each video we extract 2D keypoint coordinates

of human(s) from each observed frame using OpenPose (Cao et al., 2019). Since

OpenPose is able to capture multiple human(s) in a frame, we use DeepSort (Wojke

et al., 2017) to cluster the keypoints of the same person across frames, as shown in

Fig. 4.4. We denote the sequence of observed keypoints from the ith person in the

video as Ki = (ki1,k
i
2, ...,k

i
t), where kij denotes the keypoint coordinates of the ith

person in frame j, with t being the total number of frames.

Using the COCO model of OpenPose, we obtain 18 keypoint coordinates for each

observed person in a frame, which include coordinates for the nose, neck, left and

right shoulders, hips, elbows, wrists, knees, ankles, eyes and ears. More formally,

each kij = (xij,1, y
i
j,1, x

i
j,2, y

i
j,2, ..., x

i
j,18, y

i
j,18). Since these coordinates do not capture

the correlation between different keypoints, we follow the process in (Hua et al.,

2019) to vectorize these coordinates to incorporate these correlations. We ignore the

face keypoints (eyes, ears and nose), since we want to focus only on the body pose.
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Figure 4.3: An Illustration of the Keypoints Vectorization Method Proposed in (Hua

et al., 2019). The Arrows Indicate the 12 Vectors Constructed from the 13 Keypoint

Coordinates of the Human Skeleton Extracted from Openpose (Cao et al., 2019). The

Vectors Are Normalized to Unit Length While Preserving the Direction Information

Which Corresponds to the Correlation Between the Different Body Keypoints.

We then transform the remaining 13 coordinates into vectors connecting the adjacent

keypoints as illustrated in Fig. 4.3. The shoulders are connected to the neck, elbows

are connected to the corresponding shoulders, wrists are connected to corresponding

elbows, hips to the neck, knees to the corresponding hips and finally the ankles to

the corresponding knees. Following this process as followed in (Hua et al., 2019), we

obtain 12 keypoint vectors from the 13 keypoint coordinates, and normalize them

to unit length. For the mth connection pointing from the pth keypoint to the qth

keypoint, the keypoint vector (xij,m, y
i
j,m) for the ith person in frame j is calculated

as:

(xij,m, y
i
j,m) =

(xij,q − xij,p, yij,q − yij,p)√
(xij,q − xij,p)

2
+ (yij,q − yij,p)

2
(4.3)
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OpenPose

DeepSort

Figure 4.4: An Example of Extracting Body Keypoint Coordinates of Multiple Agents

in Videos Using Openpose (Cao et al., 2019), Followed by Deepsort (Wojke et al.,

2017) to Cluster the Keypoints of the Same Person Across the Frames.

We calculate this for each of the 12 connections, and concatenate them to get:

kij = (xij,1, y
i
j,1, x

i
j,2, y

i
j,2, ..., x

i
j,12, y

i
j,12) (4.4)

Videos involving action such as two people colliding with another person, or a person

carrying another person, requires features of multiple people in order to understand

these actions. Hence we concatenate the keypoints of the two most frequently occur-

ring people l and r as detected by DeepSort, and concatenate them to get the final
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feature vector for frame j as kj = klj ⊕ krj .

Note, that there may be partially missing or completely missing keypoint coordi-

nates for a person in a certain frame. In the case of partially missing keypoints we

set a keypoint vector containing a connection to a missing keypoint to (0,0). In the

case of completely missing keypoints we set all the keypoint vectors to (0,0) in the

case the person had not been detected yet, or else set all the keypoint vectors to the

corresponding last observed keypoint vectors of the person.

RGB features are extracted by passing non-overlapping chunks of 16 frames to

a pretrained 3D CNN architecture. Since the skeleton feature are extracted for

each frame, we concatenate skeleton features extracted from consecutive and non-

overlapping chunks of 16 frames. We convert k = (k1,k2, ...,kt) to k̃ = (k̃1, k̃2, ..., k̃t/16),

where k̃h for the hth chunk is given by :

k̃h = k16(h−1)+1 ⊕ k16(h−1)+2 ⊕ ...⊕ k16(h) (4.5)

We finally concatenate the RGB features X and the skeleton features k̃ to obtain

Xcat = (X1⊕ k̃1, X2⊕ k̃2), ..., Xl⊕ k̃l), where l is the total number of 16 frame chunks

(clips) in the video.

4.1.2 Video Embedding Module

4.1.2.1 Bidirectional Gated Recurrent Unit

In order to learn a joint representation for inferring the goal-directed and uninten-

tional actions, we use a Bidirectional Gated Recurrent Unit (Chung et al., 2014)

as the video encoder. 3D-CNN architectures like R(2+1)D (Tran et al., 2018) and

I3D (Carreira and Zisserman, 2017) capture very short clip level information. How-

ever, capturing information which helps discriminate between the goal-directed region

and an unintentional region requires longer temporal context which can be modeled
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Figure 4.5: Example of a Gated Recurrent Unit. xt Is Our Input at Timestep t.

by a GRU. Specifically, our GRU, shown in Fig. 4.5, consists of a reset gate r which

controls how much importance to give the previous hidden state ht−1 in order to cal-

culate the current hidden state ht, and an update gate u which determines how much

of the previous hidden state ht−1 should be carried on to the current hidden state

ht. Given the backbone feature X, we compute the hidden state at each time-step t

using the following equations:

zt = σ(WzXt + Uzht−1)) Update Gate

rt = σ(WrXt + Urht−1) Reset Gate

h̃t = tanh(rt ·Uht−1 + WXt) New Memory

ht = (1− zt) · h̃t + zt · ht−1, Hidden State

(4.6)
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where U and W correspond to learnable parameters of this module. In order to

capture the forward information flow
−→
h(t) as well as backward information flow

←−
h(t)

we use a Bidirectional-GRU and obtain the final representation O by concatenating

these features from the final hidden layer.

4.1.2.2 Transformer Encoder

As opposed to a GRU which learns feature representations at each time step in a

sequential manner by using the hidden state in the previous timestep, a transformer

encoder, shown in Fig. 4.6, uses multiheaded self attention to calculate the depen-

dency of each token in the sequence to encode the token at the current timestep. We

provide a brief explanation of self-attention and multihead self-attention.

The self-attention module of a transformer consists of mapping a set of Queries

(Q), Values (V ) and Keys (K) to an output. In the context of self-attention the

Queries, Values and Keys are the same and correspond, in our cause it corresponds

to the output of our feature extractor, i.e. O. We calculate the output using the

following equation:

Attention(Q,K, V ) = softmax
(QKT

√
dk

)
V (4.7)

where dk is the dimensionality of the query, key and values.

Multi-head self attention allows the transformer encoder to learn different repre-

sentation sub-spaces by computing the scaled dot product multiple times in parallel

over the input. This is done in practice by separating the input into Nheads heads

along its dimensionality axis. Finally we concatenate these outputs from each of these

heads, and compute a dot product with a learnable weight matrix. More formally,

MultiHead(Q,K, V ) = (head1 ⊕ head2....⊕ headNheads
) ·W o

where headi = Attention(QiW
Q
i , KiW

K
i , ViW

V
i )

(4.8)
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Figure 4.6: Architecture of a Transformer Encoder (Vaswani et al., 2017)

The module diagram of scaled-dot product attention and multi-head attention can

be viewed in Fig. 4.7

Since this architecture does not naturally incorporate the sequence of the data

such as a GRU, we need to incorporate the sequence embeddings along with the
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Figure 4.7: (Left) Scaled-dot Product Attention. (Right) Multi-head Attention

embeddings from our feature extractor. We can do is using the following formula:

PE(pos,2i) = sin(pos/100002i/dmodel)

PE(pos,2i+1) = cos(pos/100002i/dmodel)

(4.9)

where pos corresponds to the postion of the token, and i corresponds to the dimension.

dmodel corresponds to the dimension of the input and output.

4.1.3 Temporal Class Activation Maps (Class-Specific)

(Zhou et al., 2016), which used Class Action Maps (CAM) produced using the

global average pooling layer (GAP) in convolutional neural networks (CNN). The

Class Activation Maps signifies the regions in an image which the convolutional neural

network pays attention to when classifying the image into one of the classes. This

is often used in weakly supervised object localization where a CNN is trained for a

classification task, and during inference, a class activation map is generated and used

for localizing the object in the image.
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Taking inspiration from this concept (Nguyen et al., 2018), extends this to videos

by generating a Temporal Class Activation Map (TCAM), which signifies the regions

along the temporal axis which are the most activated when classifying a video into

a specific class. TCAMs are often used in weakly supervised action localization,

where a model is trained for a classification task, such as detecting the activities

present in videos, and then generating a temporal class activation map to localize

these activities.

In our case we train a model to predict the goal-directed action class and unin-

tentional action class present in it. We generate TCAMs specific to both these types

of actions and use them along with the class-agnostic activation weights, i.e. λ, to

localize these respective regions in the video.

More formally, let wcIA(k) and wcUA
(k), be the weight parameter which maps

the k-th element in goal-directed feature OIA and unintentional feature OUA to the

goal-directed class cIA and unintentional class cIA respectively. The Temporal Class

Activation maps for the goal-directed and unintentional action can be computed using

the following formulation:

CIA
t (cIA) =

m∑
k=1

wcIA(k)OIA
t

CUA
t (cUA) =

m∑
k=1

wcUA

(k)OUA
t

(4.10)

where m refers to the latent dimension of the output of the video encoder.

4.2 Loss Formulation

4.2.1 Multiple Instance Learning Loss

Following previous works in weakly supervised action localization (Liu et al., 2019;

Paul et al., 2018; Min and Corso, 2020), we use the k-max Multiple Instance Learning
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(MIL) (Zhou, 2004) loss function for classifying the goal-directed and unintentional

activities in the video. For each video, we average out the top-k elements of the

TCAMs, i.e., CIA and CUA along the temporal axis for each class to obtain the

video-level classification scores AIA ∈ RNIA and AUA ∈ RNUA . Here, k is set by
[
l
s

]
where s is a hyper-parameter that regulates the number of clips to consider when

making the classification. We then apply a softmax function over class scores, in

order to obtain a probability mass function (pmf) over the goal-directed as well as

unintentional classes, i.e., pIA and pUA. Let yIA and yUA be the ground truth label

vectors for a video. We then l1-normalize them to obtain ground-truth pmfs qIA and

qUA. Finally we conduct cross entropy between these two pmfs.

LIA
cls =

1

N

N∑
i=1

NIA∑
j=1

−qIAi (j) log
(
pIAi (j)

)
LUA
cls =

1

N

N∑
i=1

NUA∑
j=1

−qUA
i (j) log

(
pUA
i (j)

)
Lcls = LIA

cls + LUA
cls ,

(4.11)

where N corresponds to the total number of training videos.

4.2.2 Overlap Regularization

Let λIAt , λUA
t ∈ [0, 1] ∀ t ∈ [1, l] be the bottom-up attention weights for the goal-

directed actions and unintentional action respectively, obtained from the respective

attention modules. λt signifies the temporal attention weight for a clip t. During

training, a trivial solution which could be learned by the model is to pay attention

to the entire video when inferring the goal-directed and unintentional action, i.e.,

λIAt , λUAt = 1 ∀ t ∈ [1, l], though these actions take place at two distinct sections

of the video. Simply applying the MIL loss cannot guarantee that such distinctions

can be learnt from the data. We solve this problem by appending an additional
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regularization term on the overlap of these attention weights:

LIA = max
(

0,

∑N
TUA

r λIATUA
r

NTUA

− l

p
)

LUA = max
(

0,

∑N
T IA

r λUA
T IA
r

NT IA

− l

p
)

Loverlap = LIA + LUA,

(4.12)

where T IA and TUA are the set of temporal indices of the bottom-up goal-directed and

unintentional attention weights at which they are more than a predefined threshold.

NT IA and NTUA are the lengths of the sets of activated temporal indices. p is a

design parameter which controls the amount of allowed overlap between these two

attention maps. Lower the value of p, lower the penalization of overlaps. In the

goal-directed as well as unintentional regions of the video, the attention weights should

ideally be low at the borders of their respective ground truth region and high towards

the center of this region. Hence we view λIA, λUA as Gaussian distributions PIA ∼

N (µIA, σ
2
IA) and PUA ∼ N (µUA, σ

2
UA). Every unintentional action begins with an

agent performing a goal-directed action in order to achieve it’s goal, which then gets

disrupted and transitions into an unintentional action. Using this prior that a goal-

directed action transitions into an unintentional action, we need to ensure µIA < µUA.

We approach this by formulating the following regularization:

µIA =

∑l
t=1 PλIA

t · t∑l
t=1 PλIA

t

µUA =

∑l
t=1 PλUA

t · t∑l
t=1 PλUA

t

Lorder = max(0,
µIA − µUA

l
+
l

q
),

(4.13)

where PλIA and PλUA are probability distributions obtained by applying softmax over

the temporal axis of λIA and λUA respectively. q is a design parameter that helps

control the margin by which µUA has to be greater than µIA. Our model is end-to-
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end trained with the overall loss as follows:

L = λLcls + (1− λ)(Loverlap + Lorder), (4.14)

where λ is the weighting hyper-parameter that controls the trade-off between MIL

loss and overlap regularization.

4.3 Classification and Localization

After training our network, we use it to classify goal-directed and unintentional

actions as well as localize the regions in which they occur. For a single video, after

obtaining the pmf pIA and pUA over each of the classes, as mentioned in Section 4.2.1,

we use mean average precision (mAP) to conduct evaluation for the classification

task. For localization of the goal-directed and unintentional regions, we consider only

categories having classification scores i.e., AIA and AUA above 0. For each of these

categories, we first scale the respective TCAM outputs to [0,1] using a Sigmoid func-

tion and weight these using the bottom-up attention weights. This can be formally

expressed by:

ψIA(cIA) = λIA · Sigmoid(CIA(cIA)) cIA ∈ [1, NIA],

ψUA(cUA) = λUA · Sigmoid(CUA(cUA)) cUA ∈ [1, NUA],

(4.15)

where ψIA(cIA), ψUA(cUA) ∈ Rl are the weighted TCAMs, for the respective classes

cIA and cUA. We finally threshold ψIA(cIA) and ψUA(cUA) to obtain the triplets

〈sIA, eIA, cIA〉 and 〈sUA, eUA, cUA〉.
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Chapter 5

EXPERIMENTS AND RESULTS

5.1 Implementation Details

We extract RGB features by creating chunks of 16 consecutive and non-overlapping

frames and using the I3D (Carreira and Zisserman, 2017) as well as R(2+1)D (Tran

et al., 2018) pretrained architectures to extract clip-level features from these chunks

(details provided in Sec. 4.1.1.1). This backbone feature extractor is kept frozen

throughout the entire training process. The kernel-size of all the 1-D convolutional

layers for the bottom-up attention modules are set to 1. The learning rate and loss

weighting function λ is set to 10−3 and 0.8 respectively. We set the MIL loss hyper-

parameter s to 3. The parameters of the Overlap Regularization, p and q, are set

to 1000 and 10 respectively. Finally we set the number of layers of our bidirectional

GRU to 3. for the transformer encoder, we set the number of layers as 3 and number

of heads as 8. Our network is implemented and trained on a machine with a single

Tesla X Pascal GPU for 10,000 iterations using the Adam Optimizer (Kingma and

Ba, 2014) with a batch size of 16.

5.2 Evaluation Metrics

We use interpolated Average Precision (AP) as the evaluation metric for evaluating

the results on each action class. Given a descending score rank of videos for test class

c, the AP (c) is computed as :

AP (c) =

∑n
k=1(P (k)× rel(k))∑n

k=1 rel(k)
(5.1)
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where n is the total number of videos, P (k) is the precision at cut-off k of the list,

rel(k) is an indicator function whose output is 1 if the video ranked at k is a true pos-

itive, and zero otherwise. Hence the denominator becomes the total of true positives

in the list.

In order to get a single performance metric across all the classes, we calculate the

Mean Average Precision (mAP) across all the classes, expressed formally as:

mAP =
1

C

C∑
c=1

AP (c) (5.2)

where C is the total number of classes, which is 44 for the goal-directed classes and

30 for the unintentional classes.

We can use this formula in a straightforward way to calculate the classification

mAP (cMAP) where the class scores for each video can be given by probability

mass functions over the class scores, pIA for the goal-directed classes and pUA for the

unintentional classes.

However for calculating the detection mAP (dMAP), we calculate the mAP@IoU

where IoU is the intersection over union calculated as:

IoU =
Rp ∩Rgt

Rp ∪Rgt

(5.3)

where Rp is the predicted time range and Rgt is the ground truth time range.

Hence, for a IoU of threshold 0.5, this detection would be considered correct if the

IoU ≥ 0.5.

The Mean Average Precision (mAP) is obtained by averaging the Average Pre-

cision (AP) scores across each class (goal-directed and unintentional). The Average

Precision gives us the score that measures how good is our model in sorting video

samples (cMAP) or localized segments (dMAP) for a certain class according to a

score function (Classification scores for the cMAP and Intersection over Union for

the dMAP).
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5.3 Results and Analysis

5.3.1 Localization

Model Feature Segment
mAP @ IoU

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Avg

STPN R(2+1)D
Goal 44.9 41.7 33.0 25.7 18.3 10.0 5.0 3.7 1.2 20.4

UnInt 30.9 26.6 21.8 15.7 9.9 5.2 1.8 1.0 0.1 12.5

WTALC R(2+1)D
Goal 45.1 41.8 36.1 28.9 22.8 15.9 10.4 8.1 2.0 23.5

UnInt 25.5 21.2 15.3 12.6 7.7 4.3 2.3 1.0 0.5 10.1

Ours R(2+1)D
Goal 45.3 45.1 44.0 41.8 39.1 29.5 21.9 13.9 3.5 31.6

UnInt 34.6 33.4 28.4 23.6 19.5 15.0 10.0 3.4 1.0 18.8

STPN I3D
Goal 44.8 42.8 34.9 27.8 19.9 11.1 6.1 4.0 1.6 21.5

UnInt 36.3 31.3 26.1 19.5 13.0 6.8 1.7 0.6 0.02 15.0

WTALC I3D
Goal 38.8 36.4 30.4 26.3 18.6 13.1 7.2 4.5 1.8 19.7

UnInt 22.9 18.4 14.2 11.0 6.8 3.6 1.2 0.5 0.1 8.8

Ours I3D
Goal 51.5 51.3 49.9 44.9 41.1 32.5 24.3 14.4 5.0 35.0

UnInt 39.4 39.0 36.4 32.2 30.0 26.6 17.6 10.2 2.8 26.0

Table 5.1: Performance Comparison of Our Model with Competitive Weakly Su-

pervised Action Localization (WSAL) Models. We Adjust the WSAL Models by

Attaching Two Classification Heads to Compute Two TCAMs (for the Goal-directed

and Unintentional Action). We Then Retrain It on Our Dataset (W-Oops). We Can

See That Our Model Significantly Outperforms the Other Methods.

Our model should be able to focus on the correct regions of the video in order to

infer the goal-directed and unintentional action segments, hence understanding the
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transition between these two.

In order to evaluate our model on the task of localizing goal-directed as well

as unintentional segments, we follow the standard evaluation protocol for temporal

localization tasks by calculating the mean average precision (mAP) over different

intersection over union (IoU) thresholds for both the types of actions. Since there

are no quantitative results reported on our dataset, we use competitive models from

the traditional weakly supervised action localization task as baselines. Since these

models are trained using only one classification head which is used to identify the

atomic actions in the video, we repurpose these models by adding an additional

classification head (for the goal-directed and unintentional action) and bottom-up

attention module (in the case of STPN (Nguyen et al., 2018)) to adapt it to our

task. We then retrain these models on our dataset and report quantitative results for

comparison in Tab. 5.1.

It may be noted that our method performs significantly better than other weakly

supervised methods on this task, when using the same backbone. For example, the

average mAP@IoU score of our method outperforms STPN by 13.5% for the goal-

directed action and 11% for the unintentional action, when using an I3D backbone.

We conjecture that this localization improvement is due to our overlap regularization

on the bottom-up attention weights since it enforces the model to focus on distinct

portions of the action scene while ensuring the temporal order of the actions, which is

a crucial property for solving this task. The qualitative results shown in the Fig. 5.5,

Fig. 5.6 and Fig. 5.7 show how the WSAL models focus on overlapping regions when

inferring the goal-directed/unintentional action which reduces it’s localization perfor-

mance.
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Figure 5.1: Example of a Video Where Openpose Is Giving Missing as Well as Wrong

Results. In This Video, and Agent Is Driving a Car and Is Not Directly Seen in

the Video. Hence, Openpose Is Not Able to Extract the Keypoint Coordinates in the

First Few Frames, and Even in the Latter Frames Where It Is Extracted the Keypoint

Coordinates Are Wrong, as They Do Not Correspond to the Driver.

Feature Segment
mAP@IoU

0.3 0.5 0.9 Avg(0.1:0.9)

RGB (I3D)
Goal 49.9 41.1 5.0 35.0

UnInt 36.4 30.0 2.8 26.0

RGB (I3D) + Skeleton
Goal 45.4 40.2 4.1 32.5

UnInt 31.9 24.8 2.2 22.2

Table 5.2: Analysis of the Effect of Skeleton Features

5.3.1.1 Analysis of Addition of Skeleton Features

We now provide analysis of our model’s performance using skeleton features extracted

in Sec. 4.1.1.2 along with RGB features, compared with only RGB features in Tab. 5.2.

We can see that the performance decreases, from 35.0% to 32.5% for the goal-directed

mAP@IoU and from 26.0% to 22.2% for the unintentional mAP@IoU. We conjecture

that this performance decrease could be due to the noise introduced by the incor-

rect/missing keypoint coordinates at certain frames, as well as due to some of the
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Lcls Lorder Loverlap Segment
mAP @ IoU

0.3 0.5 0.9 Avg(0.1:0.9)

X - -
Goal 34.7 17.6 0.9 21.2

UnInt 31.1 14.4 0.1 17.4

X X -
Goal 46.3 35.2 2.7 30.1

UnInt 31.7 17.9 0.7 19.0

X X X
Goal 49.9 41.1 5.0 35.0

UnInt 36.4 30.0 2.8 26.0

Table 5.3: Ablation Study on Contributions of Different Losses in Our Model.

videos which involve an agent driving a vehicle and hence the agent is partially or

completely not seen in the video, an example shown in Fig. 5.1

5.3.1.2 Analysis of the Contribution of Overlap Regularization

We conduct an ablation study to analyse various components of our model. We

analyse the significance of the overlap regularization introduced in Section 4.2.2. We

observe very clearly in Tab. 5.3 that only using Lcls is not sufficient to localize the

goal-directed and unintentional actions, and our final model performs the best. This

implies that all components are necessary in order to achieve the best performance

and each one is effective.

5.3.1.3 Analysis of Hyper-Parameters of Overlap Regularization

We further analyse the importance of the hyper-parameters p and q used in the overlap

regularization in Fig. 5.2. We can see that increasing p from 1 to 103 results in a

significant increase in the goal-directed as well as unintentional average mAP@IoU.
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Figure 5.2: Effect on Average mAP@IoU for the Goal-directed and Unintentional

Action When Changing p (Top) and q (Bottom).

This shows that the localization performance increases by penalizing the overlap of

the bottom-up attentions more, but plateaus after the 103 mark.

Analysing the q hyper-parameter, we notice that increasing the value of q decreases

the performance. Since increasing the value of q results in a lower margin of separation

between the expectations of the goal-directed and unintentional bottom-up attention

weights, we can conclude that a lower value of q, i.e., higher margins of separation

helps achieve a better localization performance. However, q = 1 signifies the extreme

case when the margin is equal to the length of the clips, forcing the attention maps

to be at two separate ends of the temporal axis, thereby hurting the performance.

Fig. 5.4 shows qualitative examples of localizing the goal-directed and unintentional

segments on our W-Oops dataset. We further provide more qualitative examples

in Fig. 5.5, Fig. 5.6 and Fig. 5.7 which compare our method with previous WSAL
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Figure 5.3: Effect on Average mAP@IoUfor the Goal-directed and Unintentional

Action When Changing Weight Tradeoff Parameter λ.

methods.

5.3.1.4 Analysis of Weight Trade-Off Parameter λ

λ is the scalar parameter used to control the tradeoff between the Multiple Instance

Learning Loss (MIL) and the Overlap Regularization. We study the effects of chang-

ing this parameter in the range of [0,1], where λ=0 corresponds to purely MIL Loss

and λ=1 corresponds to purely Overlap Regularization. As seen in Fig. 5.3, we ob-

serve that for all values of 0.2 ≤ λ ≤ 0.8, the average mAP@IoU, is very similar, but

on closer observation λ = 0.8 achieves the best performance for both the goal-directed

action and unintentional action.

5.3.1.5 Analysis of Video-Embedding Module

We now analyse the effectiveness of our video embedding module, by removing the

module and using only the raw features from the frozen feature extractor. We also

replace the GRU with a transformer encoder, which is another encoding module

for sequential data, originally a sub-component of the original transformer architec-

ture (Vaswani et al., 2017), which has achieved state of the art results on many vision
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(Zhang et al., 2020a; Carion et al., 2020; Zeng et al., 2020; Dosovitskiy et al., 2020;

Zhou et al., 2018b; Zhang et al., 2020b) as well as NLP (Devlin et al., 2018; Yang

et al., 2019; Keskar et al., 2019; Wu et al., 2020) tasks. As seen in table 5.4, we can

see that using static backbone features result in a very poor localization performance.

Additionally it is also interesting to observe that the GRU performs better than the

transformer encoder.

Embedding Module Segment
mAP@IoU

0.3 0.5 0.9 Avg(0.1:0.9)

None
Goal 30.2 16.5 1.3 18.7

UnInt 18.6 9.4 0.02 11.1

Transformer Encoder
Goal 49.1 41.5 2.7 34.9

UnInt 31.7 17.9 0.7 22.7

GRU
Goal 49.9 41.1 5.0 35.0

UnInt 36.4 30.0 2.8 26.0

Table 5.4: Ablation Study of the Contribution of the Video Embedding Module.

5.3.2 Classification

Given any video our model is trained to predict the goal-directed action as well

as the unintentional action it eventually transitions into. Following previous works

(Nguyen et al., 2018; Paul et al., 2018), we use mean average precision (mAP) to

evaluate the classification performance of our model on predicting the goal-directed

action as well as unintentional action. We report our results in Tab. 5.5. It is

interesting to note that our method performs the best on the classification task as
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Architecture Feature GOAL cMAP UNINT. cMAP

Chance - 2.7 3.3

STPN R(2+1)D 44.0 32.6

WTALC R(2+1)D 48.5 37.5

Ours R(2+1)D 50.5 38.4

STPN I3D 45.3 37.5

WTALC I3D 50.2 38.2

Ours I3D 52.6 41.1

Table 5.5: Mean Average Precision of Activity Classification Results Using Different

Methods. First Row Shows the mAP of Random Chance.
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Figure 5.4: Our Method Is Able to Identify the Temporal Regions That Correspond

to Goal-directed/Unintentional Activity via the Produced Weighted TCAMs. Blue

Attention Maps Correspond to the Goal-directed Action. Orange Attention Maps

Correspond to the Unintentional Action.

well. For example, it performs 7.3% higher on the Goal cMAP and 3.6% higher on

the Unintentional cMAP than STPN when using an I3D backbone.
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Truth Segments for Comparison.
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Chapter 6

CONCLUSION

In this thesis, we propose W-Oops, an augmented unintentional human activity

dataset that consists of both goal-directed and unintentional video-level activity an-

notations, built upon Oops (Epstein et al., 2019). We also shed the importance of

fine grained and teleological understanding of unintentional human actions, and how

artificially intelligent agents could benefit while incorporating these abilities.

In order to address the expensive temporal labelling process, we consider a weakly

supervised task to infer the respective classes as well as the temporal regions in which

they occur using only the video-level activity annotations. We further build a neu-

ral network architecture which employs a novel overlap regularization on top of the

bottom-up attention weights outputted by our attention module, which helps the

model focus on distinct parts of the video while maintaining the temporal ordering

of these actions when inferring the temporal regions. We conclude from our exper-

iments that our method significantly outperforms previous WSAL baselines on our

benchmark.

Finally we provide extensive ablation studies to understand the various compo-

nents of our architecture, and also experiment with human skeleton features, which

has shown promise for detecting human actions.
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Csibra, G., G. Gergely, S. Bıró, O. Koos and M. Brockbank, “Goal attribution without
agency cues: the perception of ‘pure reason’in infancy”, Cognition 72, 3, 237–267
(1999).

Damen, D., H. Doughty, G. M. Farinella, S. Fidler, A. Furnari, E. Kazakos, D. Molti-
santi, J. Munro, T. Perrett, W. Price et al., “Scaling egocentric vision: The epic-
kitchens dataset”, in “Proceedings of the European Conference on Computer Vision
(ECCV)”, pp. 720–736 (2018).

Davoodikakhki, M. and K. Yin, “Hierarchical action classification with network prun-
ing”, in “International Symposium on Visual Computing”, pp. 291–305 (Springer,
2020).

Devlin, J., M.-W. Chang, K. Lee and K. Toutanova, “Bert: Pre-training of
deep bidirectional transformers for language understanding”, arXiv preprint
arXiv:1810.04805 (2018).

Dosovitskiy, A., L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner,
M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al., “An image is worth
16x16 words: Transformers for image recognition at scale”, arXiv preprint
arXiv:2010.11929 (2020).

Epstein, D., B. Chen and C. Vondrick, “Oops! predicting unintentional action
in video”, CoRR abs/1911.11206, URL http://arxiv.org/abs/1911.11206
(2019).

Fang, Z., T. Gokhale, P. Banerjee, C. Baral and Y. Yang, “Video2commonsense:
Generating commonsense descriptions to enrich video captioning”, Conference on
Empirical Methods in Natural Language Processing (2020).
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APPENDIX A

ANNOTATION TOOL
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The annotation tool used for the human evaluation and correction process as
described in Chap. 3 is show in Fig. A.1. It is made using the streamlit1 library. We
provide a video to the evaluator along with the actions extracted from the annotations
as mentioned in Chap. 3. The evaluator can then view the videos and mark the goal-
directed actions as well as unintentional action as either ‘Good’ (G) or ‘Poor’ (P),
with reference to the video. ‘Good’ is given to an action which is entailed in the video
and ‘Poor’ otherwise. In case the evaluator marks an action as ‘Poor’, they can then
choose another action from the already present list of total actions, or else add a new
action if not contained in the list. The evaluator also has an option to not keep the
video in the case the goal of the agent in the video was ambiguous. Once they are
done with this process they can then hit submit, which would then load the next
video.

1https://streamlit.io/
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Figure A.1: Interface for W-Oops Annotations, Where We Ask the Annotators to
Rate the Semi-automatically Extracted Goal-directed and Unintentional Actions as
‘good’ or ‘poor’, and If ‘poor’, to Choose from a Fixed List of Already Present Actions
or Create Their Own. They Also Have an Option to Indicate Whether or Not to Keep
They Video in the Case of the Goal in the Video Being Ambiguous.
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