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ABSTRACT

An ontology is a vocabulary that provides a formal description of entities within

a domain and their relationships with other entities. Along with basic schema

information, it also captures information in the form of metadata about cardinality,

restrictions, hierarchy, and semantic meaning. With the rapid growth of semantic

(RDF) data on the web, many organizations like DBpedia, Earth Science Information

Partners (ESIP) are publishing more and more data in RDF format. The ontology

alignment task aims at linking two or more different ontologies from the same domain

or different domains. It is a process of finding the semantic relationship between two or

more ontological entities and/or instances. Information/data sharing among different

systems is quite limited because of differences in data based on syntax, structures,

and semantics. Ontology alignment is used to overcome the limitation of semantic

interoperability of current vast distributed systems available on the Web.

In spite of the availability of large hierarchical domain-specific datasets, automated

ontology mapping is still a complex problem. Over the years, many techniques have

been proposed for ontology instance alignment, schema alignment, and link discovery.

Most of the available approaches require human intervention or work within a specific

domain. The challenge involves representing an entity as a vector that encodes

all context information of the entity such as hierarchical information, properties,

constraints, etc. The ontological representation is rich in comparison with the regular

data schema because of metadata about various properties, constraints, relationship

to other entities within the domain, etc. While finding similarities between entities

this metadata is often overlooked. The second challenge is that the comparison of

two ontologies is an intense operation and highly depends on the domain and the

language that the ontologies are expressed in. Most current methods require human
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intervention that leads to a time-consuming and cumbersome process and the output

is prone to human errors.

The proposed unsupervised recursive neural network technique achieves an F-

measure of 80.3% on the Anatomy dataset and the proposed graph neural network

technique achieves an F-measure of 81.0% on the Anatomy dataset.
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Chapter 1

INTRODUCTION

Due to the widespread usage of the World Wide Web, social media, devices,

and shared applications, digital data is getting bigger and bigger. Because of the

heterogeneous nature of data, it is difficult to annotate data. With the increase in

the amount of data on the web, it is getting harder to make it machine-readable

and machine-understandable. The main goal of the semantic web is to provide a

uniform machine-readable format to all web resources and create a web of linked data.

Ontologies are used to provide a representation for concepts and relationships between

concepts thereby providing a semantic structure to data that is machine-readable and

machine-understandable. The semantic web is an extension of the web which helps

to represent information in a more meaningful way by providing a description of the

content and meta-information. It enables information on the web more accessible

and understandable by both humans and machines. Ontology is one the knowledge

representations which provide a formal description of knowledge set which can be

easily shared among human and machines. An ontology can be defined as a formal

description of knowledge as a set of concepts within a domain and the relationships

that hold between them. There are mainly four components in an ontology. (i)

Class/Concept: It represents a group or collection of objects. (ii) Instance: It

represents a specific object or element of a class/concept. (iii) Relation: It is the

relationship between class/concepts in a given domain. (iv) Restriction: It is used to

impose constraints on the values of classes/concepts and instances. Figure 1 shows an

example of the ontology in a university domain. In the following ontology, “Course”,
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“Student”, “Professor” are classes/concepts. “takesCourse” is a relation between class

“Student” and “Course” which depicts that the students are enrolled in a course. Figure

1 also includes the instances like “Brian Rice”, “GCP: Fundamentals”. Here, “Brian

Rice” is an instance of class/concept “Professor” and “GCP: Fundamentals” is an

instance of the class/concept “Course”. The upper part of the figure shows the schema

(RDFS) of the university domain and the lower part shows a single instance of data

from the domain.

Figure 1: University Ontology

There are a number of processes to achieve semantic interoperability and ontology

alignment is one of them. It is a process that can be used to establish semantic

relationships and links between entities from different ontologies. In the next section,

ontology alignment is discussed in detail.

2



1.1 Problem Description

Information or data sharing among different systems is very limited due to the

heterogeneous nature of data in terms of syntax, structure, and semantic. Nowadays

many applications, including bioinformatics, e-commerce, e-learning, information

extraction, and web services use ontology instead of a traditional database. An

ontology is a formal description of knowledge as a set of concepts and relationships

between them representing a specific domain. It enables the database or knowledge

source interoperability and is easy to reuse and can easily be used to capture domain

knowledge, however, different applications use different ontologies to represent data

from the same domain. There is a requirement for a reusable component to establish

a semantic mapping between multiple ontologies. Ontology alignment is a process of

finding the semantic relationships between two or more different ontological entities.

Ontology alignment is an integral part of creating Linked Data that involves a process of

publishing and linking structured data on the web. It is used to overcome the limitation

of semantic interoperability between current vast distributed systems available on the

internet. Despite the advancement in Linked Data, the ontology alignment is still

mostly done manually by domain experts which is labor-intensive and error-prone. In

this dissertation, we will discuss a novel method that applies unsupervised machine

learning techniques to find mappings between concepts of different ontologies which

require no domain-expert intervention.

Ontology alignment or linking between source and target ontology is generally

done on two different levels. The first one is schema-level and the second one is

instance-level. Schema level alignment is the alignment between concepts/classes

of the source and target ontology and on the other hand, instance-level linking is

3



mapping/alignment between instances/individuals of the source and target ontology.

There is another type of alignment which is mixed of schema level and instance level

of linking. In our approach, we will focus on schema level linking.

Figure 2 depicts a matching task between instances and schema of the Knowledge

Graph Track in OAEI-2019 Shvaiko and Euzenat 2011. It contains the isolated knowl-

edge graphs with instance and schema data. The goal of this task is to match both

the instances and the schema. Schema alignments are shown in blue, while instance

alignments are shown in red. In the figure, “Movie” and “Film” are class/concept,

“starring” and “starred” are properties/relations, and “Chris_Evans” and “Christo-

pher_Robert_Evans” are instances of the source and target ontologies respectively.

Figure 2: Schema Alignment and Instance Alignment.

To describe the problem, let′s take an example of an anatomy data set published

in Ontology Alignment Evaluation Initiative “OAEI” 2020. The anatomy data set has

two ontologies, one is the adult mouse anatomy ontology and another is the human

4



anatomy ontology. The task is to find an alignment between concepts of mouse and

human ontology.

In Figure 3 the left-side represents a set of body parts of mouse and the right-side

represents a set of body parts of human. As we can see both left and right side

encoded domains at different levels of details as they are designed independently and

designed for different purposes like mouse anatomy versus human anatomy.

Figure 3: Adult mouse anatomy and human anatomy comparison

In this dissertation, we aim to link the classes/concepts, i.e., body parts mentioned
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in both human and mouse anatomy ontology so that we can create a linked dataset

that can be useful for information extraction, querying, or Extract, Transform, and

Load (ETL) pipelines.

1.2 Challenges

Data heterogeneity is the main challenge in creating linked data. The main

purpose of ontology alignment is to remove heterogeneity between different data sets

or data schemas. There could be different types or ranges of heterogeneity in data sets.

Syntactic heterogeneity, Terminological heterogeneity, Conceptual heterogeneity, are

among the main reasons which make alignment a cumbersome and erroneous process.

Decentralization is the key idea behind the Semantic Web. Given this nature,

there is an exponential explosion in the number of ontologies. Although ontologies

describe the same/similar domains, it is impossible to query over all the ontologies as

they are not linked. Publishing a linked data system on large scale comprises a number

of issues. Ontology Alignment Evaluation Initiative (“OAEI” 2020) is an initiative

that organizes and addresses some of these issues. For example, Large BioMed

Track (“LargeBIO” 2020) consists of three different ontologies: Foundational Model of

Anatomy (“FMA” 2020), SNOMED CT (“SNOMED” 2020), and the National Cancer

Institute Thesaurus (“NCI” 2020). Here, FMA contains 78,989 classes, NCI contains

66,724 classes, and SNOMED contains 30,6160 classes. All these three ontologies

contain different concepts/classes from the same Bio-medical domain. Ontology

alignment includes reading and parsing large ontology files, data pruning, creating

training and testing data, encapsulating different information like syntactic, semantic,

terminological, structural, etc, and evaluation. These processes require stable tools
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and techniques. In Ontology Alignment Evaluation Initiative (“OAEI” 2020), it is

evident that such stable, mature, and reliable tools or process architecture are still

not available.

The performance of Ontology alignment techniques is a big issue in the real-world

semantic web. In Ontology Alignment Evaluation Initiative - Large BioMed Track -

2018 (“LargeBIO” 2020), it was reported that only seven systems were able to complete

all six tasks and ten out of eighteen participating systems have been able to complete

at least one of the tasks. These statistics prove that creating dynamic real-world

semantic web applications requires a vast knowledge of coding which can be performed

with limited memory.

Although there is the availability of a large number of ontologies, most of the

time the background knowledge is missing. The ontologies are created by domain

experts based on certain background knowledge as context but unfortunately, that

background knowledge can not be part of the ontology. Most of the time lexical

and structural information of an entity is not enough to find the linking between

classes/concepts of different ontologies. It is very important to incorporate some

amount of background knowledge to get good results with a higher confidence score.

Ontology alignment is unpredictable. There are a number of matches available

and each produces different results and there is no explanation or logical reasoning

of the result of the alignment techniques. As there is no explanation or logic of the

behavior of matches, it is very difficult to select a proper matcher or combination

of matches. The performance of a matcher depends on many criteria such as the

domain of the data, expressiveness of the data, memory usage, choice of matcher

parameters such as weights, threshold, etc. The process of selecting and combining

matches based on multiple criteria in dynamic semantic web applications can not be
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automated fully. So the performance of a matcher can not be predictable or fixed as

the matcher parameters need to be fine-tuned or changed for the different data sets.

Lack of ground truth is a massive problem to evaluate different alignment

systems. Though there are different approaches available, their completeness and

accuracy calculation are not reliable. To evaluate any ontology alignment system,

the involvement of domain experts is necessary, however, user involvement always

introduces human error and ambiguity and is more time-consuming.

Apart from the above difficulties, the differences in literal expressions of

the ontological entities make the ontology alignment unpredictable. String-based

approaches fail to calculate correct similarity in ontology alignment.

– Entity names which are syntactically similar but have different naming conven-

tions are used. e.g., “E-mail” vs. “email”, “url” vs “U.R.L.”, etc.

– Entity names which are synonyms. e.g., “Participant” vs. “Attendee”.

– Entity names which are similar in meaning in a specific domain, e.g., “contribu-

tion” vs. “paper” in the conference organization domain, etc.

– Entity names which are represented in abbreviated forms. e.g., “PC Member”

vs.“ProgramCommitteeMember”, or acronym, e.g., “WWW” vs “World Wide

Web”, etc.

– Entity names which are tokenizable and their tokens (or only a part of tokens)

are syntactic or meaning similar. e.g., “hasSurname” vs. “has the last name”,

“Camera-ready contribution” vs “Final manuscript”, etc.

– Entity names which are partially syntactically similar. e.g., “email” vs “hasEmail”,

“Regular author” vs. “author”, etc.

Table 1 shows different challenges in the ontology alignment process with the

examples from the Anatomy dataset (Bodenreider et al. 2005). From the table, we
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can observe that the first case, i.e., Case-A contains human and mouse anatomy

classes/concepts which are partially different. For example, “lunate” from mouse

ontology and “Lunate_Bone” from the human ontology is presenting the same body

part but their label is partially different syntactically. Another example is “lumbar

vertebra 3” and “L3_Vertebra”. In this example “L” is an abbreviation of “lumbar”.

In the second case, i.e., Case-B, the ontological classes/concepts are completely

different syntactically. Here “cranium” and “skull” are semantically synonymous but

syntactically completely different.

Table 1: Difficulties in Ontology Alignment

Mouse Ontology Human Ontology
Case-A Partially Different

lunate Lunate_Bone
spleen periarteriolar
lymphatic sheath

Periarteriolar_Lymphoid
_Sheath

lumbar vertebra 3 L3_Vertebra
trochlear IV nerve Trochlear_Nerve
hair shaft Shaft_of_the_Hair

Case-B Completely Different
cranium Skull
external naris Nostril

1.3 Motivation

Most of the ontology alignment systems depend on domain knowledge, which

makes the alignment process domain-specific and labor-intensive. To address this

challenge, we aim at developing an unsupervised ontology alignment approach that is

independent of domain knowledge and does not need domain expert intervention. Our

proposed approach explores the use of machine learning techniques in ontology linking
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in an unsupervised manner with no or minimum background knowledge and compares

the results with state-of-the-art tools. Our goal is to perform ontology mapping

without any domain expert intervention using an unsupervised neural approach

utilizing metadata of ontological entities and evaluate the performance of the system

in comparison with state-of-the-art systems.

1.4 Research Objective

In our proposed approach, we are trying to address the following research questions.

(i) Can ontology alignment be achieved using unsupervised machine learning instead

of the traditional rule-based approaches?

(ii) Can ontology alignment be done independently of domain information and

without the need for domain expert intervention?

(iii) Can ontology alignment be improved using the meta-information and structural

information of ontologies?
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Chapter 2

LITERATURE REVIEW & RELATED WORK

2.1 Ontology Matching Systems

Traditional data integration approaches are mainly applicable to relational data

models. There are mainly two approaches used in traditional schema mapping. The

first approach is called global-as-view which requires that the global schema must be

expressed in terms of the data sources. The second approach is called local-as-view

which requires the global schema has to be specified independently from the sources,

and the relationships between the global schema and the sources are established

by defining every source as a view over the global schema (Doan, Halevy, and Ives

2012)(Lenzerini 2002)(Xin 2015). As relational data models do not have semantic

information, the traditional data integration techniques often fail.

The matching process in ontology becomes much more simple compare to traditional

data. There has been a lot of researches in the area of ontology matching. Ontology

Alignment Evaluation Initiative, i.e., OAEI (“OAEI” 2020) is one such initiative. It is a

coordinated international initiative that organizes the evaluation of different ontology

matching systems. It is an annual competition that provides a benchmark evaluation

for ontology alignment systems. There is a number of different proposed approaches

available with very impressive results. Despite the good result each initiative or

approach has advantages and disadvantages. In this section, we review the different

approaches to ontology alignment. Figure 4 shows the classification of the ontology
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alignment techniques. All these techniques are complementary to each other, various

matching systems use a combination of these techniques.

Figure 4: Classification of Ontology Alignment techniques

Syntactic-based approach: The syntactic approach includes a comparison of

the names, descriptions, and terms of entities of the source and target ontology. It

uses mainly two types of approaches, the first one is the String-based approach and

the second one is a Language-based approach. String-based approaches are often

used to match names and descriptions of ontology entities. It considers ontological

class/concept names as a bag of characters or words. The more similar the strings,

the more likely they denote the same entities. It uses different distance metrics to

calculate similarity values, such as Hamming Distance, Levenshtein distance, Jaro-

Winkler distance, etc. On the other hand, Language-based approaches are generally
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used as class/concept word pre-processing techniques, such as Normalization, Stem-

ming/Lemmatization, Stop words, Tokenization, etc. Though a number of ontology

alignment tools use Syntactic-based approaches, they fail to calculate correct simi-

larity, for example, class/concept names which are synonyms. e.g., “Participant” vs.

“Attendee” and class/concept names which are represented in abbreviated forms, i.e.,

“WWW” vs “World Wide Web”, etc. Limes (Ngomo and Auer 2011) AgreementMak-

erLight (Faria et al. 2013) and COMA++ (Aumueller et al. 2005) are such tools which

use different type of distance metrics for the ontology alignment process.

Structural-based approach: The structural-based approach considers the struc-

tural information of the ontology of external linguistic resources like WordNet (Oram

2001) (a machine-readable dictionary) for finding similarity between entities. It applies

different metrics on the graph properties of the thesaurus or the ontology, such as wu-

palmer metric (Wu and Palmer 1994), Resnik similarity (Resnik 1995), lin similarity

(Lin et al. 1998), Jiang-Conrath distance (Jiang and Conrath 1997). Structural-based

approaches highly depend on an external Linguistic Resource like WordNet which

is not applicable for cross-lingual ontology alignment or domain-specific ontology

alignment like biomedical domain.

Semantic-based approach: Logical models, such as propositional satisfiability

(SAT) modal or description logic are generally used in Semantic methods. Deduction

Techniques of description logic, such as the subsumption, can be used to verify the

semantic relations between entities, such as equivalence (similarity is equal to 1), the

subsumption (similarity is between 0 and 1), or exclusion (similarity is equal to 0), and

therefore used to deduce the similarity between the entities. There are number of tools

using semantic-based approaches like SAT, Description Logic, Rule-based inference,

Propositional Horn satisfiability etc, such as S-Match (Giunchiglia, Shvaiko, and
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Yatskevich 2004), CtxMatch/CtxMatch2 (Serafini et al. 2003), BLOOMS/BLOOMS+

(Pesquita et al. 2010), LogMap/LogMap2 (Jiménez-Ruiz and Grau 2011), Paris

(Suchanek, Abiteboul, and Senellart 2011).

Extensional-based approach: These methods utilize individual representations

(or instances) of the classes. When two ontologies share the same set of individuals,

entity mapping is easier. The easiest way to compare classes when they share instances

is to test the intersection of their instance sets A and B. For example, A and B are

equal if they contain the same instances, A and B are disjoint if they do not contain

any similar instances, B is a hyponym of A if A contains all the instances of B and

more, A is a hyponym of B if B contains all the instances of A and more. GLUE

(Doan et al. 2003), RiMOM (Li et al. 2008), and ObjectCoref (Hu, Chen, and Qu

2011) are such tools that use methods that infer the similarity between two entities,

especially concepts or classes, by analyzing their extensions, i.e., their instances.

Learning-based approach: Some ontology matching systems exploit different

supervised machine learning algorithms. Approaches like Context and Inference-based

alignER (CIDER) (Gracia, Bernad, and Mena 2011), GLUE (Doan et al. 2003),

Yet Another Matcher (YAM++) (Ngo and Bellahsene 2012), DL-Learner (Bühmann

et al. 2018) systems use heuristic learning methods. For instance, CIDER uses an

artificial neural network for ontology alignment/linking. It is based on a schema-based

ontology alignment system that compares each pair of ontology terms through their

context and combines them using an artificial neural network. On the other hand,

GLUE applies different machine learning techniques on every pair of concepts of

source and target ontology to calculate the joint probability distribution of each pair

of concepts. YAM++ calculates the similarity metric between the ontological entities.

The similarity metric is calculated by machine learning-based combination methods
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such as Decision Tree, Support Vector Machine, Naive Bayes, and so on. Table 2

shows the comparison between approaches of the state-of-the-art tools. From the

table, we can observe that most of the state-of-the-art tools use a combination of

multiple approaches.

Table 2: Comparison of Ontology Alignment Tools approaches

Approach Syntactic
Based

Structural
Based

Semantic
Based

Extensional
Based

Learning
Based

AgreementMaker
-Light •

COMA++ • •
Limes •
S-Match •
CtxMatch/
CtxMatch2 •

BLOOMS/
BLOOMS+ •

Paris •
GLUE • • •
RiMOM •
ObjectCoref •
YAM++ •
DL-Learner •
CIDER •
LogMap/
LogMap2 •

KARMA • •

Followings are some ontology mapping tools and their approaches.

1. PARIS, i.e., Probabilistic Alignment of Relations, Instances, and Schema

(Suchanek, Abiteboul, and Senellart 2011) is a probabilistic model to find

ontology alignment. It measures the degree of matching based on probability

estimates. The probabilistic model proposed by PARIS includes instances, sub
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relations, and Subclasses of classes in source and target ontologies. Say x and

y are instances of source ontology and x′ and y′ are instances of the target

ontology. If x and x′ are the same or similar instances. The similarity score

between y and y′ depends on relation r. PARIS works on the idea that if r(x,

y) and r(x′, y′) produce the same value or similar value then y and y′ will be

the same or similar instance. The probability of y and y′ is defined as following

equation 2.1.

Pr(y ≡ y′) =
∏
r(x,y)

1− fun(r)
∏

r(x′,y′)

(1− Pr(x ≡ x′))

 (2.1)

2. CIDER, i.e., Context and Inference baseD alignER (Gracia, Bernad, and Mena

2011) uses artificial neural network for ontology matcher. It is based on a

schema-based ontology alignment system that compares each pair of ontology

terms by their contexts and combines them using an artificial neural network. It

has mainly four steps. The first one is ontological context extraction. In this step,

the context of each ontology such as synonyms, textual descriptions, hypernyms,

hyponyms, properties, domains, roles, associated concepts, etc is extracted. The

second part is similarity computation. In this step, the similarities are calculated

based on the lexical, taxonomies, and relationships among terms. In the third

step, these individual similarities are combined using an artificial neural network.

The network is a simple fully connected multi-layer perceptron. It composed of

three layers: input, hidden, and output layer. The input layer is the value of

an elementary similarity measure. The hidden layer uses a sigmoid function to

combine inputs. In the output layer, the resultant similarity will be given.

3. GLUE (Doan et al. 2003) uses taxonomic information for ontology alignment.

GLUE system uses machine learning techniques to create a semantic mapping.
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It consists of three main modules, Distribution Estimator, Similarity Estimator,

and Relaxation Labeler. The first module Distribution Estimator takes input

both source and target ontology along with their instances. This module also

applies different machine learning techniques to every pair of concepts of source

and target ontology. Then it calculates the joint probability distribution of

each pair of concepts. Say, the source ontology or taxonomy is S and the target

ontology or taxonomy is T. C1 and C2 are two different concepts of source

and target ontology or taxonomy respectively (C1 ⊆ S and C2 ⊆ T ). Here, it

calculates four different parameters P(C1, C2), P(C1, C2), P(C1, C2), and P(C1,

C2). P(C1, C2) is the probability that a randomly chosen instance from the

universe belongs to both S and T, P(C1, C2) is the probability that a randomly

chosen instance from the universe belongs to S but not to T, P(C1, C2) is the

probability that a randomly chosen instance from the universe belongs to T but

not to S, and P(C1, C2) is the probability that a randomly chosen instance from

the universe that does not belong to S and T. After this the second module

is Similarity Estimator uses user-defined similarity function such as Jaccard

similarity on each pair of concepts from source and target ontology. At the

end of the second module, it creates a similarity matrix between all the pairs

of concepts. The last module, Relaxation Labeler uses a similarity matrix,

domain-specific knowledge to find the best mapping.

4. RiMOM (Li et al. 2008) A Dynamic Multistrategy Ontology Alignment Frame-

work. It uses Wordnet (a machine processible dictionary) (Oram 2001) to discover

semantic similarities in textual descriptions to find out ontology similarity. The

process of RiMOM includes Preprocessing, Linguistic-based ontology alignment,

Similarity combination, Similarity propagation, Alignment generation and refine-
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ment. The first part Preprocessing takes the source and target ontology as input

and create description for each entity. In the next Linguistic-based ontology

alignment process, multiple linguistic-based strategies such as Edit-Distance-

Based Strategy, Vector-Distance (VD)-Based Strategy are executed to obtain a

similarity result for each entity pair. The Similarity combination part combines

the similarity results. The next Similarity propagation uses three similarity

propagation strategies, namely, Concept-to-Concept, Property-to-Property, and

Concept-to-Property. The last step is Alignment generation and refinement

which fine tunes and outputs the alignment result.

5. COMA++ (Aumueller et al. 2005) is an ontology matching tool which uses

string-based similarity. It has mainly three modules Storage, Match Execution,

and Mapping Processing. The storage used for importing ontologies, schemas,

mappings, and meta information. The next part Match Execution which is

the core of COMA++. It runs different matching algorithms and calculates

matching results between source and target ontology. It has a large collection of

schema matching strategies based on string-based techniques, such as n-gram,

edit distance. This module runs the matches, i.e., matching algorithms parallelly

and combines the result. The Mapping Processing module is used for enriching

mappings and merging ontologies. Apart from these modules, COMA++ has

also an efficient graphical user interface which enables the user to upload the

source and target ontology and get a pictorial representation of matched entities

of source and target ontologies.

6. YAM++, i.e., Yet Another Matcher (Ngo and Bellahsene 2012) combines both

semantic and structure-based approach. It discovers mappings between two input

ontologies by two matches, the first one is element level matcher and the second is
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structural level matcher. Element level matcher extracts annotation information

for every entity and computes a similarity score between entities. The similarity

metric is calculated by machine learning-based combination methods such as

Decision Tree, Support Vector Machine, Naive Bayes, etc. Structural level

matcher parsed and transformed the source and target ontology into a graph

data structure. Structural level matcher module takes result obtained from the

Element level matcher module and runs a similarity propagation process, i.e.,

Similarity Flooding algorithm. YAM++ also provides a graphical user interface

that shows the resulting mappings of two ontologies’ alignment.

7. AML or AgreementMaker (Faria et al. 2013) used lexicon-based approach for

ontology mapping. It is the most efficient and flexible tool which uses a parallel

mechanism to make the entire matching very fast. It consists of three layers.

The first module is for similarity computation. In this module, inputs are source

and target ontologies and similarity matrices are calculated. The second module

is mappings selection. In the second module, the similarity matrix is scanned to

find the best mappings having a threshold value. The third layer combines the

result of multiple matches from previous layers and produces the final matching

or alignment. AML or AgreementMaker uses syntactic, structural, and lexical

comparison algorithms along with lexicon like WordNet.

8. LogMap (Jiménez-Ruiz and Grau 2011) is a highly scalable ontology matching

system with ‘built-in’ reasoning and diagnosis capabilities. It can handle both

lexically and structurally indexed ontologies. For lexical indexing, it uses

WordNet as a knowledge base. On the other hand, for structural index, uses

hierarchical structures of the classes/concepts. The main advantage of LogMap

or LogMap-2 is its scalability. LogMap is faster on large ontologies in the
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biomedical domain. In OAEI largeBio track, it handles Foundational Model of

Anatomy (“FMA” 2020), SNOMED CT (“SNOMED” 2020), and the National

Cancer Institute Thesaurus (“NCI” 2020) efficiently and scores high accuracy

value.

9. LIMES (Ngomo and Auer 2011), the Link Discovery Framework for Metric

Spaces, is a framework for discovering links between entities contained in Linked

Data sources. It has main eight modules. The main module is the controller

module. It orchestrates the entire matching process. It first calls the config-

uration module which reads the configuration file and takes the source and

target ontology as input. The next module is the query module which retrieves

instances and properties from the source and target ontology. The Cache module

is responsible for storing the information in the cache which will be used in later

modules. The rewriter, planner, and engine modules are responsible for Link

Specification between source and target ontology. Limes use different machine

learning algorithms to identify an appropriate Link Specification between source

and target ontology and populate final results.

10. DL-Learner (Bühmann et al. 2018), is a software framework for ontology learning

and enrichment. It contains five different modules. The first module is Knowledge

sources which contain a different types of data sources. The data sources can

be loaded locally or remotely. The second module is Reasoners which performs

inference over knowledge sources. It uses OWL API (Horridge and Bechhofer

2011), OWLlink. The next module is Learning problems which is used by

different learning algorithms for hypothesis testing. The Learning algorithms

are responsible for the core learning strategy. The last module is Refinement

Operators which is used by Learning algorithms. DL-Learner uses a supervised
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machine learning algorithm. Here domain expert first creates positive and

negative data from the knowledge sources which is used to train the machine

learning algorithm. Based on the learning, it predicts all the possible similar

classes pair with a confidence score.

Although the above-mentioned tools achieved high accuracy, they also have disad-

vantages. Each of the tools tried to address different challenges in ontology matching

but because of so many restrictions they still have many disadvantages. For exam-

ple, PARIS (Suchanek, Abiteboul, and Senellart 2011) cannot deal with structural

heterogeneity. Say, if one ontology is more fine-grained than the another one e.g. in

one ontology cities are mentioned as birthplaces and in another ontology, countries

are mentioned as birthplace. It is really difficult to come up with a single approach

to address all kinds of heterogeneity. We can observe some type of difficulties in

other state-of-the-art tools also. To tackle this, many tools tried to compute the

different similarities parallelly and combined them to a single similarity value. Tools

like GLUE (Doan et al. 2003), AgreementMaker (Faria et al. 2013), YAM++ (Ngo

and Bellahsene 2012) are using static mechanism to combine different similarities. On

the other hand, tools like RiMOM (Li et al. 2008) uses dynamic strategies to calculate

the weights of different similarities. Despite using dynamic strategy, it relies on a

number of threshold values. To overcome this challenge, a number of tools are using

different machine learning techniques. CIDER (Gracia, Bernad, and Mena 2011),

DL-Learner (Bühmann et al. 2018), GLUE (Doan et al. 2003) are such examples of

tools which use machine learning techniques. The problem with these approaches is

it highly dependent on the labeled training examples. It needs experienced domain

experts to generate labeled examples and depending on the nature of the example, the

accuracy of the tool changes. Apart from this, many tools like COMA++ (Aumueller
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et al. 2005) considers user involvement should be part of ontology matching but

the user involvement introduces human error, inaccuracies. The output of tools like

COMA++ depends on the knowledge of the user. Same as user involvement, the use of

the knowledge base is also questionable. AgreementMaker (Faria et al. 2013), RiMOM

(Li et al. 2008), LogMap (Jiménez-Ruiz and Grau 2011) use different knowledge base

such as wordnet (Oram 2001). WordNet is a lexical database for the English language.

It only contains commonly used English words. In OAEI most of the ontologies are

from a bio-medical domain that contains specific medical domain words which are

not commonly used in day-to-day life. It is also difficult for matching multilingual

ontologies. For ontologies in different languages, one needs to use different types of

converters to convert entity words from another language to English to understand

the semantic meaning of the entity. Choosing these converters and a rich knowledge

base has also a significant impact on the final result.

All these above-mentioned tools or approaches dependent on user interaction, re-

stricted to metric spaces, labeled training examples, user’s decision e.g. threshold

value and weightage distribution, etc. For this reason, we are proposing an approach

that will consider the entities and their meta-information at the same time and will

predict the similarity value without any domain expert supervision. Our aim is to

build a generalized approach that can be used by anyone with no or very little domain

knowledge on a different type of ontologies.

2.2 Machine Learning Techniques

Currently, a number of ontology matching frameworks or tools are using machine

learning techniques in mapping between ontologies. Based on the available data,
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machine learning techniques or algorithms can be divided into four categories. The

first one has supervised machine learning algorithms. Supervised machine learning

algorithms use only labeled data. It generates functions that map a relationship

between the input data and their label or output. The most widely use supervised

machine learning algorithms are Decision Tree, Naive Bayes, Support Vector Machine,

and Neural Network. On the other hand, Unsupervised learning algorithms use

unlabelled data. The main objective of Unsupervised learning algorithms is to

learn features or patterns from the data. It is mainly used for clustering or feature

reduction. K-Means Clustering, Principal Component Analysis is such examples

of Unsupervised learning algorithms. The third one is Semi-Supervised learning

algorithms. The Semi-Supervised learning algorithms combine both Supervised and

unsupervised techniques. Semi-Supervised learning algorithms use both labeled and

unlabeled examples to generate mapping functions. Generative models are examples

of such a Semi-Supervised algorithm. The fourth one is Reinforcement learning.

Reinforcement learning algorithms learn all possible ways to achieve a goal in any

particular environment. It takes the decision or learns a policy based on its environment

and awards the action which achieves the goal with less cost. Reinforcement learning

algorithms keep on learning based on the award or feedback.

The neural network is a special type of machine learning technique that is a

biologically-inspired approach that enables learning from observed data. Neural

networks can be used as supervised and unsupervised in both ways. Neural Network

is composed of different layers and each layer is composed of nodes. Nodes are the

component where linear or nonlinear functions are fired or executed. A basic neural

network has three different layers. The first one is the input layer where data is feed.

The second layer is called the hidden layer where the computation happens. The third
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Figure 5: Basic Architecture of Neural Network

layer is the output layer where the output is predicted. Like Perceptron, the data is

moved forward in the neural network but additionally, it does the backpropagation

which calculates the error at the output layer and does the same computation again

and again to minimize the error. There are different types of architectures available

in a neural network. Figure 5 shows a basic structure of neural network.

There are many tools and frameworks mentioned in section 2.1 are using different

kinds of machine learning techniques. For example, CIDER, i.e., Context and Inference

baseD alignER (Gracia, Bernad, and Mena 2011) is using an artificial neural network

for mapping/matching between ontologies. The artificial neural network is a network

that is a simple fully connected multi-layer perceptron. It takes the value of an

elementary similarity measure as input. After that, it uses a sigmoid function to

combine all the inputs in the hidden layer and predict the resultant similarity value

in the output layer. YAM++, i.e., Yet Another Matcher (Ngo and Bellahsene 2012)

is another tool that uses different supervised machine learning methods like Decision

Tree, Support Vector Machine, Naive Bayes, etc. DL-Learner (Bühmann et al. 2018) is
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also a software framework that uses a supervised machine learning algorithm. In this

software tool, a domain expert creates positive and negative data from the knowledge

base. As this data is labeled, DL-Learner can use it to generate possible mapping

pairs with confidence scores. Recently, LogMap and AML both tools proposed an

extension to traditional ontology alignment systems that utilize semi-supervised ML

solutions which rely on labeled mappings (samples) to learn features and train models

to predict mappings. (Chen et al. 2021) is using distant supervision for training,

ontology embedding, and Siamese Neural Networks for incorporating richer semantics

of the ontology entities.

In our proposed approach, we have proposed a Recursive Neural Network as an

unsupervised machine learning technique in Ontology Matching. The main reason we

are proposing this neural network structure is to find out whether a software tool can

predict the similar entities between two different ontologies without any knowledge

base or any domain expert or any labeled data.

The Recursive Neural Network is an extension of a Recurrent Neural Network. In

the recurrent Neural Network, only sequential input is considered. Here, the output

of the previous step is fed as input to the next step and along with time, it can learn

weights and biases. The traditional Recurrent Neural Network uses tanh activation

function. The Equation 2.2 shows the traditional Recurrent Neural Network cell

equation where W and U are weights applied to the cell at each time step. xt is

the input at time t. ht−1 is the output of the previous step. ht is the output of the

previous step.

ht = f(Wxt + Uht−1), where f ∈ {tanh} (2.2)

The recurrent Neural Network is sequential input that can grow long and during
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back-propagation, the early words will have very little or no impact on the output.

This is known as the vanishing gradient problem Hochreiter (1998) (Hochreiter 1998).

Hochreiter and Schmidhuber (1997) proposed Long short-term memory, i.e., LSTM as

a Recurrent Neural Network cell which can remember long sequences.

On the other hand, the recursive neural network is a non-linear model which can

learn more deeply. The main advantage of this neural network structure is the input

can be of arbitrary length and there is no need to do masking or padding. Each

training/testing data can be of any length.

Figure 6 shows a very basic structure of the recurrent neural network. This network

model can be used for one to one, one to many, many to one, and many to many

learning but the data should be linear because the learned weights and biases are

propagated with time in a linear fashion. Because of its architecture, it can not

allow any other type of data like tree or graph data which is non-linear. For our

problem, we need such a neural architecture that can support tree or graph data. It

is also useful as in our problem statement each data can hive a different number of

meta-information, so the network should be designed in such a way that can accept the

variable length of inputs without padding or trimming. Figure 7 shows a very basic

architecture of Recursive Neural Network where we will input the meta information

of each class/concept.
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Figure 6: Basic Architecture of Recurrent Neural Network

Figure 7: Basic Architecture of Recursive Neural Network

Apart from the Recursive Neural network, we have also explored the graph encoding
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system. There are many models developed to construct embedding from graph

architecture are described below.

(Perozzi, Al-Rfou, and Skiena 2014) proposed DeepWalk, an Unsupervised learning

approach, inspired from word2vec in NLP. It learns latent representations of vertices in

a network with a random walk approach which encodes social relations in a continuous

vector space. Graph autoencoders (GAEs) (Thomas N Kipf and Welling 2016) are

unsupervised learning frameworks that encode nodes/graphs into a latent vector space

and reconstruct graph data from the encoded information. GAEs are used to learn

network embeddings and graph generative distributions. For network embedding,

GAEs learn latent node representations through reconstructing graph structural

information such as the graph adjacency matrix. For graph generation, some methods

generate nodes and edges of a graph step by step while other methods output a graph

all at once. Graph Convolutional Network, i.e., GCN (T N Kipf and Welling 2016) is

based on the Convolution Neural Networks on non-euclidean data. The most recent

one is Graph Attention Network, i.e., GAT (Veličković et al. 2017) is using masked

self-attentional layers to address the shortcomings of prior methods based on graph

convolutions.

In our experiment, we have used PyTorch-BigGraph (PBG) (Lerer et al. 2019). It

borrows several insights from the above mentioned graph embedding techniques. It

uses negative sampling and scoring techniques to embed graph nodes or entites. It

uses graph partitioning to train arbitrarily large embeddings on either a single machine

or in a distributed environment. The main components of PBG are as follows. The

first one is block decomposition of the adjacency matrix into number of buckets and

training on the edges from one bucket at a time. It swaps the embeddings from each

partition to reduce memory usage. The second component is the distributed execution
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model that leverages on block decomposition for the large parameter matrices. The

third component is the efficient negative sampling for nodes uniformly. The fourth

component is PBG allows multi entity, multi-relation graphs with parameters such as

edge weight and relational operator. I our approach, we have used PBG to generate

embedding for each node/entity which encapsulates it’s neighbor nodes. In our

experiment, the neighbor nodes of any node/entity are the meta-information of the

node/entity.

2.3 Datasets

To test our approach, two different datasets are used. The first one is the Anatomy

dataset which consists of human and mouse anatomy information. The second one is

the Library dataset which consists of vocabulary for the economic repository.

2.3.1 Anatomy

The anatomy data set (Bodenreider et al. 2005) published by OAEI. Three different

files are provided in the OAEI system: source ontology, target ontology, and result or

alignment file1.

(1) The source ontology (S ) is NCIt (National Cancer Institute Thesaurus), which

is a reference terminology covering areas of basic and clinical science, built with the

goal of facilitating translational research in cancer. It contains 3304 classes.

(2) The target ontology (T ) is Adult Mouse Anatomy which contains 2744 classes.

1The reference file is available on OAEI: http://oaei.ontologymatching.org/2019/anatomy/index.
html
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1 . . .
2 <Cel l>
3 <Entity1 RDF: r e s ou r c e="http ://mouse . owl#MA_0002401"/>
4 <Entity2 RDF: r e s ou r c e="http ://human . owl#NCI_C52561"/>
5 <Measure RDF: datatype="xsd : f l o a t ">1.0</Measure>
6 <Relat ion>=</Relat ion>
7 </Cel l>
8 . . .

Listing 2.1: A portion of anatomy data set alignment provided by OAEI

(3) The resulting file contains the alignments between the source and target

ontology. It consists of all the same or similar concept pairs. Listing 2.1 shows a

small portion of anatomy data set alignment, where “MA_0002401” is a class of Adult

Mouse Anatomy and “NCI_C52561” is a class of NCIt. The tag “measure” represents

the similarity score between these classes. The tag “relation” denotes the relationship

between the target ontology class and the source ontology class.

2.3.2 Library

Library (“LIBRARY” 2013) dataset consists two vocabularies, the first one is STW

(“STW” 2013) and the second one is TheSoz (“TheSoz” 2013). Both the vocabularies

provide a knowledge base of the economic repository.

(1) The STW Thesaurus for Economics provides vocabulary on any economic

subject. It contains more than 6000 standardized subject headings and 19000 additional

keywords. The vocabulary was developed for indexing purposes in libraries and

economic research institutions and includes technical terms used in law, sociology,

or politics, and geographic names. It is maintained on a regular basis by the ZBW

German National Library of Economics - Leibniz Centre for Economics and published

under a CC-by-sa-nc license. It contains labels both in English and German.
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1 . . .
2 <Cel l>
3 <Entity1 RDF: r e s ou r c e="http :// stw . owl#26103.4"/>
4 <Entity2 RDF: r e s ou r c e="http :// thesoz . owl#10036756"/>
5 <Measure RDF: datatype="xsd : f l o a t ">1.0</Measure>
6 <Relat ion>=</Relat ion>
7 </Cel l>
8 . . .

Listing 2.2: A portion of library data set alignment provided by OAEI

(2) The Thesaurus for the Social Sciences (TheSoz) is a vocabulary that indexes

documents and research information in the social sciences. It contains 12000 keywords,

from which 8000 are standardized subject headings and 4000 additional keywords.

TheSoz also contains labels both in English and German.

In library dataset, the output 2 structure is same as the anatomy dataset. In the

following Listing 2.2 the concept “26103.4” from the “STW” ontology is similar as the

concept “10036756” from the “TheSoz” ontology.

2The reference file is available on OAEI: http://oaei.ontologymatching.org/2013/library/index.
html
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Chapter 3

ONTOLOGY ALIGNMENT WITH RECURSIVE NEURAL NETWORK

In the following section, the recursive neural network approach in the OntoConnect

system is described. The recursive neural network is an extension of a recurrent neural

network. The main reason behind choosing the recursive neural network is it can

accept graph or tree-based non-linear input instead of a sequential input. As the

ontology class/concept meta-information is of arbitrary length, the recursive neural

network can process the variable length input sequence via the recursive application.

3.1 Proposed Recursive Neural Network Methodology

The overall OntoConnect alignment process with recursive neural approach can be

divided into two main processes. The first is training the OntoConnect model with

source ontology classes/concepts. The second is predicting similar source classes/con-

cepts for each target class/concept.

The learning/training of OntoConnect model is described in Algorithm 1. Our

strategy is to train the recursive neural model in a stochastic manner with each meta-

information of source classes/concepts. The first step is to collect the meta-information

for each source class/concept. The function “getMetaInformation” is responsible for

collecting the meta-information for a class from the ontology. The function “getVector”

retrieves the word-vector for each source class/concept from the pre-trained FastText

(Bojanowski et al. 2017). The function “trainModel” trains the recursive model and

updates the weights and biases in a stochastic manner.
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Algorithm 2 shows the algorithm for the prediction of the target classes/con-

cepts. The “getMetaInformation” and “getVector” retrieve the meta-information and

word-vector for a class/concept for both source and target ontology. For a target

class/concept, we calculate similarity for each source ontology class/concept. The

word similarity (Wordsimi,j
) is the cosine similarity between the target and source

ontology class/concept word-vectors retrieved from the pre-trained FastText model.

On the other hand, meta-similarity (Metasimi,j
) is the cosine similarity between source

ontology class/concept word-vector and the predicted vector from the OntoConnect

model for a target ontology class/concept. Next, a weighted combined similarity of the

word-similarity (Wordsimi,j
) and meta-similarity (Metasimi,j

) is calculated for each

pair of the target and source ontology classes/concepts. We are considering the source

ontology class/concept as a similar class/concept with the maximum combined similar-
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ity (Cmbsimi
). The correspondence list is updated with the most similar class/concept

pair having the highest similarity score. In the end, it returns the correspondence list.
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In the following section, we discuss each step in detail for both the training/learning
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of the OntoConnect model and predicting similar class/concept by using the trained

OntoConnect model.

Our proposed Ontology Alignment system consists of two main tasks: the first

task is unsupervised learning of the model followed by the prediction of similar

classes/concepts using the trained model.

Figure 8 represents a workflow of the proposed OntoConnect ontology alignment

system. The left side of Figure 8 shows the learning/training of the OntoConnect -

Recursive Neural Network. It starts with the source ontology. The first step is data

preparation. In this step, OWL API (Horridge and Bechhofer 2011) is used to extract

the meta-information of each class/concept from the source ontology. In the next step

of Data Preprocessing, different techniques like lemmatization, stop-word removal are

applied to the labels of the extracted class/concept. After the Data Preprocessing

step, pre-trained model fastText is used to generate a vector from each class/concept

which will be fed to the proposed Recursive Neural Network. After the training phase,

the trained model is saved for the prediction of correspondences.

The right side of Figure 8 shows the prediction phase of the OntoConnect - Recursive

Neural Network. Same as the Training phase, the target ontology classes/concepts

are preprocessed and the vectors are generated for each target ontology class/concept.

In this phase, we have calculated both word-similarity and meta-similarity for each

pair of classes/concepts of source and target ontologies. The correspondence result

list is created based on the calculated similarity value.
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Figure 8: Project Flow of OntoConnect - Recursive Neural Network

3.2 Data Preparation

In the first step, the source and target ontology are parsed and converted into

an Ontology Matching model. For parsing the source ontology, a Java API named

OWL API (Horridge and Bechhofer 2011) and HermiT Reasoner (Motik, Shearer,
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and Horrocks 2007) are used to extract meta information of a class, such as IRI of

the class (e_iri), label of the class (e_lbl), restriction of the class (rc), parent (pc),

child (cc), equivalent (ec), and disjoint classes (dc) of each class/concept of the source

ontology. OWL API is a high-level API to work with OWL ontology, it supports

parsing, reading, reasoning, manipulating, validating, and rendering of OWL ontology

files. HermiT is a reasoning engine integrated into OWL API which can determine or

identify the subsumption relationships between classes/concepts.

Figure 9: Meta information of a Source/Target Ontology Class/Concept

Next in the second step, different pre-processing techniques are applied on

the class/concept labels such as Normalization, Lemmatization, Stop word removal,

Tokenization, etc. Following are the pre-processing techniques that are used in the

OntoConnect system.

• Normalization

Normalization is to eliminate stylistic differences between strings as much as

possible. This generally involves putting all characters into either upper or

lower case, replacing punctuation characters with space, and standardizing word
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order, often by alphabetizing the words within the string. Normalization might

also involve transliterating characters, not in the Latin alphabet to their closest

equivalent.

• Lemmatization

Lemmatization is used to eliminate grammatical differences between words due

to verb tense, plurals, and other word forms by finding the root of each word

in the string. However, the two words differ in their flavor. Stemming usually

refers to a crude heuristic process that chops off the ends of words in the hope of

achieving this goal correctly most of the time, and often includes the removal of

derivational affixes. Lemmatization usually refers to doing things properly with

the use of a vocabulary and morphological analysis of words, normally aiming

to remove inflectional endings only and to return the base or dictionary form

of a word, which is known as the lemma. If confronted with the token “saw”,

stemming might return just “s”, whereas lemmatization would attempt to return

either see or saw depending on whether the use of the token was as a verb or a

noun.

• Stop words

Stop words are the most commonly used words in a language. The idea behind

removing stop words from strings prior to computing their similarity is that very

common words add little useful information. There are many lists of stop words

available for different languages.

• Tokenization

Tokenization involves splitting strings into their component words. Word bound-

aries vary based on implementation, but often some combination of whitespace,

underscores, hyphens, slashes, and lower-to-uppercase changes (to detect camel-

39



Case) is used. Tokenization is useful when comparing ontologies with different

naming conventions, such as underscores versus hyphens to delineate words.

This is particularly important for set-based string similarity metrics.

In the last step, A vector form of each class/concept is generated. In the OntoConnect

system, a number of pre-trained models are used. The first word embedding technique

is Word2vec is a family of (Mikolov et al. 2013). Word2vec is a family of model

architectures and optimizations that used to learn word embeddings from large

datasets. In Word2vec, there are two novel model architectures that use to compute

continuous vector representations of words from a very large corpus. The two model

architectures are the continuous bag-of-words model (CBOW) and the continuous

skip-gram model. In the continuous bag-of-words model, the current word is predicted

from a window of surrounding context words on the other hand, in the continuous

skip-gram model, the model predicts the surrounding window of context words for the

current word. Apart from Word2vec, GloVe (Pennington, Socher, and Manning 2014)

is another technique to obtain the word embedding. GloVe or Global Vectors for Word

Representation uses training on aggregated global word-word co-occurrence statistics

from a corpus. It encodes the co-occurrence probability ratio between two words. In

our experiment, we have also explored BERT or Bidirectional Encoder Representations

from Transformer (Devlin et al. 2018). BERT is based on Transformers, a deep learning

model in which every output element is connected to every input element, and the

weights between them are dynamically calculated based upon their connection. It is

designed to read or encode sentences from both directions left-to-right and right-to-left.

The main difference between BERT and Word2vec is BERT can produce different

word representations for the same word in different sentences. For example, given

two sentences: “The man was accused of robbing a bank.” and “The man went
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fishing by the bank of the river.” In both sentences, the Word2vec produces the same

word embedding for the word “bank” while BERT generates different embeddings as

the context is different for the word “bank” in those two sentences. Compared to

these pre-trained embedding models, another pre-trained embedding model fastText

(Bojanowski et al. 2017) is used in the OntoConnect system. fastText is developed by

Facebook’s AI Research (FAIR) lab is used. This embedding model uses the skip-gram

technique, where each word is considered as a bag of n-gram characters. It learns

the representations for character n-grams and represents the words as the sum of the

n-gram vectors. The main advantage of the model provided by fastText is that it

can generate a meaningful vector for a word that is not present in its dictionary. In

particular, we used a model trained on Wikipedia 2017, UMBC WebBase corpus, and

statmt.org news data set, which generates a 300-dimension vector for each word. The

main reason behind using fastText is that it can generate meaningful vectors of the

ontology class/concept even when the word is not present in the model. The Figure

10 shows three-dimension representation of the ontological entities.
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Figure 10: Vector (mean) visual representation of all Ontological Entities

3.3 Recursive Neural Network Learning

In this step, different contexts of classes/concepts will be used to make its vector

representation semantically richer. From the Ontology Matching model, we know

that a class/concept can have meta-information/attributes like Parent Classes, Child

Classes, Equivalent Classes, Disjoint Classes, Restrictions.

The left side of the Figure 11 shows an example of a training data which will be

used later in training Recursive Neural Network. Let’s assume the concept/class is “h1”.

“h1” has meta information “parent class”, “child class”, “equivalent class”, “disjoint class”

and “restriction class”. The parent class of “h1” is pc1h1. cc1h1, cc2h1, ec1h1, dc1h1,

rc′1h1, rc′′1h1 are child classes, equivalent class, disjoint class and restriction classes of

h1 respectively. The right side of the Figure 11 shows the high level representation of
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the learning process where the input is the meta-information of the source ontology

class h1 and the loss is calculated against the source ontology class h1 itself.

Figure 11: Meta information of a sample source ontology class and High level repre-
sentation of Model learning process in Recursive Neural Approach

In our experiment, the recursive neural network (Chinea 2009) is used as an

unsupervised machine learning framework for the proposed ontology alignment. The

recursive neural network is an extension of a recurrent neural network that supports

a non-linear neural network model. The drawback of the recurrent neural network’s

architecture is that it does not work well with non-linear data structures such as trees

or graphs. Since ontology is structured as a tree, it is required for us to use a neural

architecture that can support non-linear data. In addition to that, the recursive neural

network input can be of arbitrary length and there is no need to mask or pad the

input data.

In our proposed approach, long short-term memory (LSTM) is used as recursive

neural network cell. Hochreiter and Schmidhuber (Hochreiter 1998) proposed long

short term memory (LSTM) which can remember long sequences. Equation 3.1 shows

the weight and bias calculation of an LSTM cell (Hochreiter and Schmidhuber 1997)
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which has three main gates: the first one is input gate it, the second one is forget gate

ft and the third one is output gate ot. Apart from the gates, it has cell state ct and

hidden state ht. In this equation, xt is the vector input to cell at current time-step t.

W (i), U (i), b(i) are the weights and biases for input gate. In the same way, W (f), U (f),

b(f) are the weights and biases for forget gate and W (o), U (o), b(o) are the weights and

biases for output gate. In our case, we used the sigmoid (σ) and tanh functions as

activation functions. In the following equations, � signifies the multiplication or the

dot product.

it = σ(W (i)xt + U (i)ht−1 + b(i));

ft = σ(W (f)xt + U (f)ht−1 + b(f));

ot = σ(W (o)xt + U (o)ht−1 + b(o));

ut = σ(W (u)xt + U (u)ht−1 + b(u));

ct = it � ut + ft � ct−1;

ht = ot � tanh(ct)

(3.1)

A class/concept in the ontology can have an arbitrary number of meta information.

For example, it is not necessary for a class/concept, to have a single-parent class.

It may have multiple parent classes or no parent class at all. The same is true

for other meta information such as child class, equivalent class, disjoint class, and

restrictions. To support this arbitrary and uncertain number of child nodes for a tree

node (class/concept), the system dynamically creates an LSTM cell depending on

the number of child nodes. On every level, the output vectors from each LSTM cell

are averaged and fed to the upper level. In the last level, the output vectors from all

meta information are also averaged and used for loss calculation and back-propagation.
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This dynamically generated LSTM tree model is termed a dynamic-array tree-LSTM

model.

Figure 12 shows the general architecture of the Recursive neural network

(dynamic-array tree-LSTM model) in the ontology alignment system. In the fig-

ure, pc1...pcm denote the parent classes of a class/concept. Similarly, cc1...ccn, ec1,

dc1, rc′1...rc′s...rc′′1...rc′′t are child classes, equivalent class, disjoint class and restriction

classes of a class/concept. X(pc1) is the vector representation of pc1 obtained from

pre-trained model fastText. c(pc1) is the cell state and h(pc1) is the hidden state of

the LSTM cell for parent meta information. At the output level, the model generates

a class/concept vector with same dimension of the input meta information vector

dimension.
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Figure 12: Ontology Matching training of Recursive Neural Network

3.4 Correspondence Prediction

The source (S ) and the target (T ) ontologies, both are used as inputs in model

prediction. Similar to the training process, the ontologies are parsed, pre-processed

and the corresponding class/concept vectors are generated.
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The left part of the Figure 13 shows an example of a testing data. Let’s assume

the concept/class is “m1”. “m1” has meta information “parent class”, “child class”,

“equivalent class”, “disjoint class” and “restriction class”. The parent class of “m1”

is pc1m1. cc1m1, cc2m1, ec1m1, dc1m1, rc′1m1 is child class, equivalent class, disjoint

class and restriction classes of m1 respectively. The right part of the Figure 13

shows the high level representation of the predicting process where the input is the

meta-information of the target ontology class m1.

Figure 13: Meta information of a sample target ontology class and High level repre-
sentation of Model predicting process in Recursive Neural Approach

The steps for the calculation of the combined similarity between the source and

target ontology classes/concepts are as follows. (1) After populating the source

and target class/concept vectors, the word similarity is calculated. The word similarity

(Wordsim) is the cosine distance between the source and target class/concept vectors.

Equation 3.2 shows the cosine similarity measurement between two vectors −→s and
−→
t , which is the cosine of the angle projected in a multi-dimensional (d) space. In
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our experiment, the time complexity of this step is O(mn), where m is the number of

source ontology classes and n is the number of target ontology classes.

cos(−→s ,−→t ) =
−→s · −→t
‖−→s ‖‖−→t ‖

=

∑d
i=1 siti√∑d

i=1 (si)
2

√∑d
i=1 (ti)

2

(3.2)

(2) In the next step, the trained ontology alignment model is used to calculate

the meta similarity (Metasim). The input to the model is the meta-information of

a target ontology class and it predicts a vector that is similar to one of the source

classes. We have used the cosine similarity to measure the meta similarity as well.

(3) A combined similarity is derived from the word similarity (Wordsim) and

meta similarity (Metasim). The combined similarity value (Cmbsim) is calculated by

obtaining the weighted harmonic mean of these two similarity values as shown in

Equation 3.3, where α and β represent weights of word and meta similarity values

respectively. In our study, a value (0.5) is fixed for both α and β to give equal weight

to both word and meta similarity.

Cmbsim =
α + β

(
α

Wordsim
+

β

Metasim
)

(3.3)

At the end of this process, we have an output with a set of alignments between

source and target ontological classes/concepts with respective combined similarity

values which range from 0 to 1. A threshold is considered, referred to as ‘similarity

threshold’, to filter out predictions with significant similarity values only.
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3.5 Experimental Study

3.5.1 Evaluation Methodology

For evaluation, we have done intrinsic evaluation. In intrinsic evaluation, automat-

ically computed similar concepts will be compared with gold standards.

In order to evaluate the performance of the ontology matching system, we have

used standard precision and recall measurement mentioned in (Crestani and Rijsbergen

1995). Given two ontologies where O is the source ontology and O′ is the target

ontology, an alignment between these two ontologies is a set of correspondences, i.e.,

< e, e′, r, n >. Here, e is an entity from source ontology, i.e., e ⊆ O and e′ is an entity

from target ontology, i.e., e ⊆ O′. r is the relationship between e and e′. In our project

relationship will be equivalence, i.e., =. n the similarity value or confidence value [0..1]

of the relationship r between e and e′. The output alignment of the ontology matching

process is denoted by A. The gold copy of the reference alignment is denoted by R.

Given the reference alignment R, the precision of alignment A is given by equation

3.4. Here |R∩A| is the number of returned correct correspondences from the ontology

matching system and |A| is the number of returned correspondences from the ontology

matching system.

P (A,R) =
|R ∩ A|
|A|

(3.4)

The recall of alignment R and A is given by equation 3.5. Here |R ∩ A| is the

number of returned correct correspondences from the ontology matching system and

|R| is the number of existing correspondences in the reference alignment.
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R(A,R) =
|R ∩ A|
|R|

(3.5)

We will also evaluate the performance of the ontology system by calculating the

F-measure which is the harmonic mean of the precision and recall mentioned in the

equation 3.4 and 3.5. F-measure is denoted by equation 3.6 where P(A,R), R(A,R)

are the precision and recall of the ontology matching system respectively.

F (A,R) =
2 ∗ P (A,R) ∗R(A,R)
P (A,R) +R(A,R)

(3.6)

3.5.2 Results & Findings on Anatomy Dataset

The proposed recursive neural network was tested on Anatomy dataset (“Anatomy”

2013) with various parameters ,i.e., similarity threshold value and class/concept word

vector dimension. The precision, recall, and F-measure values for each combination of

parameters are reported in the following Tables 3, 4, 5 for top-k predictions of target

class/concept where k=1,3,5 with 100, 200, 300 dimension class/concept word-vector

respectively.

Table 3 shows the precision increases and the recall decreases with the increase of

the similarity threshold. We can observe in the Table 3 with 200 dimension and 300

dimension class/concept vector the best result produced by the OntoConnect system

is 80.36% for top-1 prediction with similarity threshold 0.96. We can observe that the

OntoConnect system with Recursive Neural Network exhibits the same result pattern

for 100, 200, and 300 dimension entity word-vector.
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Table 3: Experimental results of OntoConnect Ontology Alignment system - Recursive
Neural Network for varying similarity thresholds: Precision, Recall, and F-measure
values for class/concept vector dimensions = 100 and number of predictions k = 1,3,5
on Anatomy dataset

100-dimension
Number of Prediction Similarity Threshold Precision Recall F-measure

Top-1

0.99 98.14 66.87 79.54
0.98 97.96 67.33 79.81
0.97 96.85 67.87 79.81
0.96 95.66 69.14 80.26
0.95 94.05 69.74 80.09
0.94 91.11 70.54 79.52
0.93 88.72 72.01 79.50
0.92 85.90 72.41 78.58
0.91 83.19 73.08 77.81
0.90 81.12 73.75 77.26

Top-3

0.99 98.43 67.07 79.78
0.98 98.06 67.40 79.78
0.97 97.14 68.07 80.05
0.96 95.93 69.34 80.50
0.95 94.59 70.14 80.49
0.94 91.72 71.01 80.05
0.93 89.38 72.55 80.09
0.92 86.85 73.21 79.45
0.91 84.18 73.95 78.73
0.90 82.44 74.95 78.52

Top-5

0.99 98.43 67.07 79.78
0.98 98.06 67.40 79.89
0.97 97.14 68.07 80.05
0.96 95.93 69.34 80.50
0.95 94.59 70.14 80.49
0.94 91.72 71.01 80.05
0.93 89.38 72.55 80.09
0.92 86.93 73.28 79.52
0.91 84.33 74.08 78.88
0.90 82.59 75.08 78.66
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Table 4: Experimental results of OntoConnect Ontology Alignment system - Recursive
Neural Network for varying similarity thresholds: Precision, Recall, and F-measure
values for class/concept vector dimensions = 200 and number of predictions k = 1,3,5
on Anatomy dataset

200-dimension
Number of Prediction Similarity Threshold Precision Recall F-measure

Top-1

0.99 98.33 66.93 79.65
0.98 98.15 67.20 79.78
0.97 97.87 67.60 79.97
0.96 96.70 68.47 80.17
0.95 96.00 68.47 80.20
0.94 95.15 69.41 80.36
0.93 92.90 69.94 79.80
0.92 90.75 71.41 79.93
0.91 88.39 72.21 79.49
0.90 86.83 73.08 79.36

Top-3

0.99 98.43 67.00 79.73
0.98 98.24 67.27 79.86
0.97 97.97 67.67 80.05
0.96 96.79 68.54 80.25
0.95 96.18 69.00 80.36
0.94 95.42 69.61 80.55
0.93 93.17 70.14 80.03
0.92 91.00 71.61 80.15
0.91 88.80 72.55 79.85
0.90 87.38 73.55 79.87

Top-5

0.99 98.43 67.00 79.73
0.98 98.24 67.27 79.86
0.97 97.97 67.67 80.05
0.96 96.79 68.54 80.25
0.95 96.18 69.00 80.36
0.94 95.42 69.61 80.55
0.93 93.17 70.14 80.03
0.92 91.00 71.61 80.15
0.91 88.80 72.55 79.85
0.90 87.38 73.55 79.87
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Table 5: Experimental results of OntoConnect Ontology Alignment system - Recursive
Neural Network for varying similarity thresholds: Precision, Recall, and F-measure
values for class/concept vector dimensions = 300 and number of predictions k = 1,3,5
on Anatomy dataset

300-dimension
Number of Prediction Similarity Threshold Precision Recall F-measure

Top-1

0.99 98.33 66.93 79.65
0.98 98.24 66.93 79.62
0.97 98.16 67.67 80.11
0.96 97.71 68.27 80.36
0.95 96.44 68.74 80.27
0.94 95.51 69.61 80.53
0.93 94.17 70.07 80.35
0.92 92.93 71.14 80.59
0.91 90.22 72.08 80.13
0.90 88.10 72.68 79.65

Top-3

0.99 98.43 67.00 79.73
0.98 98.33 67.00 79.70
0.97 98.26 67.74 80.19
0.96 97.80 68.34 80.46
0.95 96.53 68.80 80.34
0.94 95.69 69.74 80.68
0.93 94.34 70.21 80.51
0.92 93.11 71.28 80.74
0.91 90.47 72.28 80.36
0.90 88.50 73.01 80.01

Top-5

0.99 98.43 67.00 79.73
0.98 98.33 67.00 79.70
0.97 98.26 67.74 80.19
0.96 97.80 68.34 80.46
0.95 96.53 68.80 80.34
0.94 95.69 69.74 80.68
0.93 94.34 70.21 80.51
0.92 93.11 71.28 80.74
0.91 90.47 72.28 80.36
0.90 88.50 73.01 79.86
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3.5.3 Result Analysis on Anatomy Dataset

The average precision, recall, and F-measure across all the class/concept vector

dimensions (100, 200, 300) and the number of target class/concept predictions (k=1,3,5)

are presented in Figure 14. It shows the change in precision, recall, and F-measure of

the ontology alignment system with different similarity values. It can be observed that

the precision increases whereas the recall decrease with the increase in the similarity

threshold value. This is expected as with a higher similarity threshold, the ontology

alignment system returns a lower number of correspondences compared to the number

of existing correspondences in the reference alignment. From the result analysis, it can

be noted that with a 0.96 similarity threshold value, the proposed ontology alignment

system - Recursive Neural Approach performs best with the highest average F-measure

value of 80.36.
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Figure 14: Change in evaluation metric values (precision, recall, F-measure) of
Ontology alignment system - Recursive Neural Network with increasing similarity
threshold values on Anatomy dataset

Similarly, Figure 15 shows the change in the average precision, recall, and F-

measure values with different lengths of class/concept vector dimensions across all the

similarity threshold values and the top-k (=1,2,3) predicted target classes/concepts.

It can be observed that only a minuscule change in the performance of the ontology

alignment system occurs with the increase of the class/concept vector dimensions.

Thus, it can be noted that the performance of the proposed system stays almost

invariant towards the change in class/concept vector length. We can also observe the

change of performance (F-measure) of the OntoConnect system is very small. The

highest F-measure with 100 dimension class/concept word vector is 80.26% and the

highest F-measure with 200 and 300 dimension class/concept word vector is 80.36%.

The difference is the only 0.1%.
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Figure 15: Performance of ontology alignment system - Recursive Neural Network for
different class/concept vector dimensions (100d, 200d, 300d) on Anatomy dataset

The average precision, recall, and F-measure of the ontology alignment system

with different values of k in the top-k predicted target class/concept across all the

class/concept vector dimensions and the similarity threshold values are presented in

Figure 16. The figure shows that there is only a minuscule change in the performance of

the ontology alignment system with the increase of the number of target class/concept

predictions. Therefore, our tool may be used as both an autonomous tool (i.e., without

any human intervention) and as an assistive tool to help a domain expert by reducing

the search space for ontology alignment in any domain.
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Figure 16: Performance of ontology alignment system - Recursive Neural Approach
for top-k predictions with k = 1, 3, 5 on Anatomy dataset

3.5.4 Results & Findings on Library Dataset

The proposed Recursive Neural Network is also tested on Library dataset (“LI-

BRARY” 2013) with similar parameters i.e. similarity threshold value and class/con-

cept word-vector dimension. Table 6, 7, 8 represent the precision, recall and F-measure

of the OntoConnect Alignment System - recursive neural network for top-k predictions

of target class/concept where k=1,3,5 with 100, 200, and 300 dimension class/concept

word-vector respectively.

The Table 6 shows the precision increases and the recall decreases with the increase

of the similarity threshold. We can observe in the Table 6 with 100 dimension

class/concept vector the best result produced by the OntoConnect system is 74.8%
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for top-1 prediction with similarity threshold 0.96. From the result posted by OAEI 3

we can observe that the proposed OntoConnect approach exhibits better result and

comparable to the state-of-the-art tools. We can observer the same result pattern

for 200 dimension entity word-vector in Table 7 and for the 300 dimension entity

word-vector in Table 8.

3http://oaei.ontologymatching.org/2013/results/library/index.html
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Table 6: Experimental results of OntoConnect Ontology Alignment system - Recursive
Neural Approach for varying similarity thresholds: Precision, Recall, and F-measure
values for class/concept vector dimensions = 100 and number of predictions k = 1,3,5
on Library dataset

100-dimension
Number of Prediction Similarity Threshold Precision Recall F-measure

Top-1

0.99 79.2 67.8 73.1
0.98 79.2 67.9 73.1
0.97 79.0 68.7 73.5
0.96 78.3 71.7 74.8
0.95 71.6 73.0 72.3
0.94 61.7 73.9 67.2
0.93 54.0 74.6 62.7
0.92 48.3 75.4 58.9
0.91 44.9 76.7 56.6
0.90 42.1 77.5 54.5

Top-3

0.99 79.2 67.8 73.1
0.98 79.2 67.9 73.1
0.97 79.0 68.7 73.5
0.96 78.3 71.7 74.8
0.95 71.7 73.1 72.4
0.94 61.9 74.2 67.5
0.93 54.6 75.5 63.4
0.92 49.3 76.9 60.1
0.91 45.7 78.2 57.7
0.90 43.0 79.1 55.7

Top-5

0.99 79.2 67.8 73.1
0.98 79.2 67.9 73.1
0.97 79.0 68.7 73.5
0.96 78.3 71.7 74.8
0.95 71.8 73.1 72.4
0.94 62.0 74.3 67.6
0.93 54.7 75.6 63.5
0.92 49.3 77.0 60.1
0.91 45.8 78.2 57.8
0.90 43.1 79.4 55.9
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Table 7: Experimental results of OntoConnect Ontology Alignment system - Recursive
Neural Network for varying similarity thresholds: Precision, Recall, and F-measure
values for class/concept vector dimensions = 200 and number of predictions k = 1,3,5
on Library dataset

200-dimension
Number of Prediction Similarity Threshold Precision Recall F-measure

Top-1

0.99 79.2 67.6 72.9
0.98 79.2 67.8 73.1
0.97 79.3 67.9 73.2
0.96 79.3 68.2 73.4
0.95 78.9 68.8 73.5
0.94 77.2 69.5 73.1
0.93 75.2 70.1 72.5
0.92 71.2 70.8 71.0
0.91 66.4 71.8 69.0
0.90 61.6 72.7 66.7

Top-3

0.99 79.2 67.6 72.9
0.98 79.2 67.8 73.1
0.97 79.3 67.9 73.1
0.96 79.4 68.3 73.4
0.95 78.9 68.8 73.5
0.94 77.2 69.5 73.1
0.93 75.2 70.1 72.5
0.92 71.2 70.8 71.0
0.91 66.6 72.1 69.3
0.90 61.9 73.1 67.0

Top-5

0.99 79.2 67.6 72.9
0.98 79.2 67.8 73.1
0.97 79.2 67.9 73.1
0.96 79.3 68.2 73.4
0.95 78.9 68.8 73.5
0.94 77.2 69.5 73.1
0.93 75.2 70.1 72.5
0.92 71.2 70.8 71.0
0.91 66.6 72.1 69.3
0.90 61.9 73.1 67.0
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Table 8: Experimental results of OntoConnect Ontology Alignment system - Recursive
Neural Network for varying similarity thresholds: Precision, Recall, and F-measure
values for class/concept vector dimensions = 300 and number of predictions k = 1,3,5
on Library dataset

300-dimension
Number of Prediction Similarity Threshold Precision Recall F-measure

Top-1

0.99 0.794 67.6 73.0
0.98 79.3 67.8 73.1
0.97 79.3 67.9 73.2
0.96 79.3 68.2 73.4
0.95 79.0 68.8 73.5
0.94 77.2 69.5 73.1
0.93 75.4 70.1 72.5
0.92 71.2 70.8 71.0
0.91 66.8 71.8 69.0
0.90 62.0 72.7 66.7

Top-3

0.99 79.4 67.6 72.9
0.98 79.3 67.8 73.1
0.97 79.4 67.9 73.1
0.96 79.3 68.3 73.4
0.95 79.0 68.8 73.5
0.94 77.2 69.5 73.1
0.93 75.4 70.1 72.5
0.92 71.2 70.8 71.0
0.91 66.8 72.1 69.3
0.90 62.5 73.1 67.0

Top-5

0.99 79.6 67.6 72.9
0.98 79.3 67.8 73.1
0.97 79.3 67.9 73.1
0.96 79.3 68.2 73.4
0.95 79.0 68.8 73.5
0.94 77.2 69.5 73.1
0.93 75.4 70.1 72.5
0.92 71.2 70.8 71.0
0.91 66.8 72.1 69.3
0.90 62.0 73.1 67.0
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3.5.5 Result Analysis on Library Dataset

The average precision, recall and F-measure across all the class/concept vector

dimensions (100, 200, 300) and the number of target class/concept predictions (k=1,3,5)

are presented in Figure 17. It shows the change in precision, recall, and F-measure of

the ontology alignment system with different similarity values. It can be observed that

the precision increases whereas the recall decrease with the increase in the similarity

threshold value. From the result analysis, it can be noted that with a 0.96 similarity

threshold value, the proposed ontology alignment system - Recursive Neural Approach

performs best with the highest average F-measure value of 74.8%.

Figure 17: Change in evaluation metric values (precision, recall, F-measure) of
Ontology alignment system - Recursive Neural Network with increasing similarity
threshold values on Library dataset

Similarly, Figure 18 shows the change in the average precision, recall, and F-

measure values with different lengths of class/concept vector dimensions across all the
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similarity threshold values and the top-k (=1,2,3) predicted target classes/concepts. It

can be observed that only a little change in the performance of the ontology alignment

system occurs with the increase of the class/concept vector dimensions. Thus, it can

be noted that the performance of the proposed system stays almost invariant towards

the change in class/concept vector length.

Figure 18: Performance of ontology alignment system - Recursive Neural Network for
different class/concept vector dimensions (100d, 200d, 300d) on Library dataset

The average precision, recall, and F-measure of the ontology alignment system

with different values of k in the top-k predicted target class/concept across all the

class/concept vector dimensions and the similarity threshold values are presented in

Figure 19. The figure shows that there is only a minuscule change in the performance of

the ontology alignment system with the increase of the number of target class/concept

predictions. Therefore, our tool may be used as both an autonomous tool (i.e., without
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any human intervention) or an assistive tool to help a domain expert by reducing the

search space for ontology alignment in any domain.

Figure 19: Performance of ontology alignment system - Recursive Neural Network for
top-k predictions with k = 1, 3, 5 on Library dataset

3.6 Conclusion

In Conclusion, we can say that OntoConnect is a domain-independent ontology

alignment system. With minimum or no change, we are able to train and execute the

OntoConnect system on different datasets like Anatomy (Bodenreider et al. 2005) and

Library (“LIBRARY” 2013). The OntoConnect system is able to do the alignment

between source and target ontologies without any specific domain information and

without any domain expert intervention. OntoConnect System only learned from

the source ontology and predicts the similar source class/concept for each target
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ontology class/concept. OntoConnect also proves that meta-information or structural

information of a class/concept adds more information that enhances the overall

ontology alignment process.
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Chapter 4

ONTOLOGY ALIGNMENT WITH GRAPH NEURAL NETWORK

In our experiment with the OntoConnect system, we have explored three different

graph neural methods. The first graph neural method is graph convolution network

(GCN). The graph neural network uses generalize neural learning concepts to graph-

like data and enhances the embedding of each node by a message-passing scheme. In

the paper (T N Kipf and Welling 2016), the authors describe the scalable approach

for semi-supervised learning on graph-structured data that is based on an efficient

variant of convolutional neural networks which operate directly on graphs. The GCN

layer defined in (T N Kipf and Welling 2016) as below equation 4.1. In equation 4.1,

x
(`+1)
v is the node features of all nodes v ∈ V in a graph G = (V , E). W(`+1) denotes a

trainable weight matrix and cw,v refers to a fixed normalization coefficient for each

edge.

x(`+1)
v = W(`+1)

∑
w∈N (v)∪{v}

1

cw,v

· x(`)
w (4.1)

In graph convolution network (GCN), the weightage of the edges is defined explicitly.

In the second graph neural method, i.e., graph attention network (Veličković et al. 2017)

decides the weightage of the edges of the graph implicitly. It employs self-attention

over the node features. In the case of GAT, the embeddings from the neighbors

are aggregated together and scaled by the attention layer. Figure 20 shows a GAT

layer with multi-head attention. Every neighbor i of node1 sends its own embedding

of attentional coefficients, ~α1i one per each attention head αk
1i. These are used to

compute K separate linear combinations of neighbors’ features ~hi. It aggregates all
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the combinations by concatenation or averaging to obtain the next level features of

node 1, ~h1.

Figure 20: Graph Attention Networks Layer

In the following section, the third neural network method is described. The main

working principle of the third neural network approach, i.e., graph embedding with

negative sampling (Lerer et al. 2019) is to calculate the score of a node in the graph

and maximizes the score difference between positive and negative edges present in the

graph.

4.1 Proposed Graph Neural Network Methodology

The overall OntoConnect alignment process with graph neural network can be

divided into two main processes. The first one is generating the embedding of the

source ontology classes/concepts and the target ontology classes/concepts. The second
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one is calculating the similarity score between source classes/concepts for each target

class/concept to form correspondences.

The generation of embedding of the source and target ontology classes/concepts is

described in Algorithm 3. The strategy is to train a graph neural network model in a

stochastic manner with each meta-information of source and target classes/concepts.

The first step is to collect the meta-information for each source class/concept. The

function “getMetaInformation” is responsible for collecting the meta-information for a

class from the ontology. The function “getVector” retrieves the word-vector for each

source class/concept from the pre-trained FastText (Bojanowski et al. 2017). The

function “getEmbed” trains the graph neural model for each class/concept and encodes

each class/concept into embedding which captures the meta information or structural

information of that particular class/concept.
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Algorithm 4 shows the algorithm for calculating the similarity between the source

and target ontology classes/concepts. The method “getVector” retrieves the word-

vector for a class/concept for both source and target ontology. Now, for a target

class/concept, we are calculating similarity for each source ontology class/concept.

The word similarity (Wordsimi,j
) is the cosine similarity between the target and source

ontology class/concept word-vectors retrieved from the pre-trained FastText model. On

the other hand, meta-similarity (Metasimi,j
) is the cosine similarity between the target

and source ontology class/concept graph-embedding from the graph neural network

model. Next, a weighted combined similarity of the word-similarity (Wordsimi,j
)

and meta-similarity (Metasimi,j
) is calculated for each pair of the target and source

ontology classes/concepts. We are considering the source ontology class/concept

as a similar class/concept with the maximum combined similarity (Cmbsimi
). The

correspondence list is updated with the most similar class/concept pair having the

highest similarity score. In the end, it returns the correspondence list.
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Next, we will present each step in detail for both the training/learning of the

OntoConnect model and predicting similar class/concept by using the graph embedding.

Our proposed Ontology Alignment system consists of two main tasks: the first task is

generating the embedding for each class/concept in the source and target ontology
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and the second task is to calculate the similarity score between the source and target

ontology class/concept from the embedding and generate correspondence list.

Figure 21 represents a workflow of the proposed OntoConnect ontology alignment

system using the Graph Neural Network.

In the Graph Neural Network, in the first step, OWL API is used to extract

the meta-information of each class/concept from the source ontology and target

ontology. In the next step, the same data preprocessing techniques are used on the

labels of the extracted class/concept. After that, we have used a pre-trained model

fastText to generate vectors from each source and target ontological classes/concepts.

Each class/concept of the source and target and its meta-information are fed to

the Graph Neural network which produces entity embedding for each entity. In the

next phase, both word-similarity and meta-similarity are calculated for each pair of

classes/concepts of source and target ontologies. Based on the similarity score, the

list of correspondence is generated. In the following section, the project flow of the

OntoConnect using the Graph Neural Network is explained in detail.
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Figure 21: Project Flow of OntoConnect - Graph Neural Network

4.2 Data Preparation

In the Data Preparation step, the source and target ontology are parsed and

converted into an Ontology Matching model. For parsing the source ontology, we

have used a Java API named OWL API (Horridge and Bechhofer 2011) and HermiT
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Reasoner (Motik, Shearer, and Horrocks 2007) to extract meta information of a class,

such as IRI of the class (e_iri), label of the class (e_lbl), restriction of the class (rc),

parent (pc), child (cc), equivalent (ec), and disjoint classes (dc) of each class/concept

of the source ontology. OWL API is a high-level API to work with OWL ontology,

it supports parsing, reading, reasoning, manipulating, validating, and rendering of

OWL ontology files. HermiT is a reasoning engine integrated into OWL API which

can determine or identify the subsumption relationships between classes/concepts.

Figure 22: Meta information of a Source/Target Ontology Class/Concept

Next, different pre-processing techniques are used on the class/concept labels

such as Normalization, Lemmatization, Stop word removal, Tokenization, etc. We

have followed the same data pre-processing techniques. The details of different data

pre-processing techniques are previously mentioned in section 3.2. After that, a vector

form of each class/concept is generated. A pre-trained embedding model fastText

(Bojanowski et al. 2017) developed by Facebook’s AI Research (FAIR) lab is used.

This embedding model uses the skip-gram technique, where each word is considered

as a bag of n-gram characters. It learns the representations for character n-grams

and represents the words as the sum of the n-gram vectors. The main advantage
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of the model provided by fastText is that it can generate a meaningful vector for a

word that is not present in its dictionary. In particular, we used a model trained

on Wikipedia 2017, UMBC WebBase corpus, and statmt.org news data set, which

generates a 300-dimension vector for each word.

4.3 Entity Embedding

In this step, different contexts of classes/concepts will be used to make its vector

representation semantically richer. From the Ontology Matching model, a class/-

concept can have attributes like Parent Classes, Child Classes, Equivalent Classes,

Disjoint Classes, Restrictions.

Figure 23 shows an example of a training data which will be used in training Graph

Neural Network. Let’s assume the concept/class is “c1”. “c1” has meta information

“parent class”, “child class”, “equivalent class”, “disjoint class” and “restriction class”.

The parent class of “c1” is “pc1c1”. “cc1c1”, “cc2c1”, “ec1c1”, “dc1c1”, “rc′1c1”, “rc′′1c1” are

child classes, equivalent class, disjoint class and restriction classes of “c1” respectively.
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Figure 23: Graph structure of a sample ontology class and High level representation
of Graph Embedding process

PyTorch-BigGraph (PBG) (Lerer et al. 2019) is a distributed system for learning

graph embeddings for large graphs. It operates on graphs with vertices having multiple

edges. Here the vertices are called entities and the edges are the relation between

source and destination entity. A multi-relation graph is a directed graph G = (V,R,E)

where V are the nodes or entities, R is a set of relations, and E is a set of edges. In

the graph, a generic element e = (s, r, d) where s is the source node/entity, d is the

destination node/entity, and r is the relation between s and d. Here, s, d ∈ V and

r ∈ R.

Equation 4.2 is the score function used in the PyTorch-BigGraph (PBG). In the

equation 4.2, θs is the source entity, θd is the destination entity, and θr is the relation

between them. gs(θs, θr) is the “complex-diagonal” operator between θs and θr. On
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the other hand, gd(θd, θr) is the “complex-diagonal” operator between θd and θr. PBG

tries to maximize the score function f(θs, θr, θd) for any (s, r, d) ∈ E and minimizes it

for (s, r, d) 6∈ E.

f(θs, θr, θd) = sim(gs(θs, θr), gd(θd, θr)) (4.2)

The learning principle of the PyTorch-BigGraph (PBG) is to find embeddings

for the entities so the distance between the neighbor nodes and the entity should

be closer. On the other hand, the distance between non-neighbor nodes and the

entity should be longer. The edges of the input graph data given to the PyTorch-

BigGraph (PBG) model are treated as positive edges. It produces a set of negative

edges for each positive edge. It produces negative samples for a given positive edge

by a corrupted version of the entity to one side and keeping the other side intact

(Bordes et al. 2013). PyTorch-BigGraph (PBG) uses different ways to sample negative

edges. For our experiment, “all negative” is used to generate the negative samples.

“all negative” sampling method creates a negative edge/relation between the source

and the destination node. Let’s say r is a positive edge between two entities s and

d. For each such positive edge (s, r, d) there will be a negative edge (s′, r, d) between

s′ and d where s′ is of the same entity type of s. Besides this, there will be another

negative edge (s, r, d′) between s and d′ where d′ is of the same entity type of d.

Equation 4.3 is the loss (L) used in the PyTorch-BigGraph (PBG). The main idea

of PBG is to maximize the scores of positive edges and minimize the scores of negative

edges. Here, G is a list of edges. S ′e is the set of negative edges for every positive edge.

f(e) is the score of a positive edge and f(e′) is the score of a negative edge. λ is the

regularization parameter.
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L =
∑
e∈G

∑
e′∈S′

e

max(f(e)− f(e′) + λ, 0)

S ′e = (s′, r, d)|s′ ∈ V ∪ (s, r, d′)|d′ ∈ V

(4.3)

PBG updates the embeddings and related parameters in minibatch stochastic

gradient descent (SGD). It used an Adagrad optimizer and sum the accumulated

gradient over each embedding vector to reduce the memory usage on large graphs

(Duchi, Hazan, and Singer 2011).

4.4 Correspondence Generation

To generate the correspondence, two similarity values are calculated. The first one

is word similarity (Wordsim) and the second one is the meta similarity (Metasim). In

our experiment, we have calculated a combined similarity (Cmbsim) by the harmonic

mean of the word and meta similarity.

The word similarity (Wordsim) is the cosine distance between the source and target

class/concept vectors. Equation 4.4 shows the cosine similarity measurement between

two vectors −→s and −→t , which is the cosine of the angle projected in a multi-dimensional

(d) space. In our experiment, the time complexity of this step is O(mn), where m is

the number of source ontology classes and n is the number of target ontology classes.

cos(−→s ,−→t ) =
−→s · −→t
‖−→s ‖‖−→t ‖

=

∑d
i=1 siti√∑d

i=1 (si)
2

√∑d
i=1 (ti)

2

(4.4)

The meta similarity (Metasim) is the cosine distance between the source and

target class/concept graph embedding. Equation 4.5 shows the cosine similarity

77



measurement between two vectors −→sg and −→tg , which is the cosine of the angle projected

in a multi-dimensional (d) space. In our experiment, the time complexity of this step

is O(mn), where m is the number of source ontology classes and n is the number of

target ontology classes.

cos(−→sg ,
−→
tg ) =

−→sg ·
−→
tg

‖−→sg‖‖
−→
tg ‖

=

∑d
i=1 sgitgi√∑d

i=1 (sgi)
2

√∑d
i=1 (tgi)

2

(4.5)

4.5 Experimental Study

4.5.1 Evaluation Methodology

For evaluating the graph neural network methodology, we have used the same

intrinsic evaluation method mentioned in section 3.5.1. We have followed the standard

precision and recall measurement mentioned in (Crestani and Rijsbergen 1995). The

result of the OntoConnect graph neural network approach on the Anatomy dataset is

mentioned in the following section.

4.5.2 Results & Findings

We have tested the OntoConnect - Graph Neural Network on Anatomy (“Anatomy”

2013) dataset in the similar way. We have varied parameters, i.e., similarity threshold

and class/concept vector dimension. For each combination of parameters the precision,

recall and F-measure are calculated for top-k predictions of target class/concept where
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k=1,3,5 with 100, 200, 300 dimension word-vector. Table 9, 10, 11 tables show the

outcome for the each combination of parameters.

Table 9: Experimental results of OntoConnect Ontology Alignment system - Graph
Neural Network for varying similarity thresholds: Precision, Recall, and F-measure
values for class/concept vector dimensions = 100 and number of predictions k = 1,3,5
on Anatomy dataset

100-dimension
Number of Prediction Similarity Threshold Precision Recall F-measure

0.99 97.4 67.4 79.6
0.98 93.5 71.0 80.7
0.97 85.3 73.0 78.7
0.96 75.1 75.2 75.1
0.95 67.8 76.6 71.9
0.94 61.9 77.5 68.8
0.93 57.8 78.6 66.6
0.92 55.3 79.2 65.1
0.91 53.2 80.4 64.1

Top-1

0.90 51.2 81.0 62.8
0.99 97.6 67.6 79.9
0.98 94.0 71.4 81.1
0.97 86.2 73.7 79.5
0.96 76.4 76.5 76.6
0.95 69.7 78.7 73.9
0.94 63.7 79.9 70.9
0.93 59.8 81.3 68.9
0.92 57.4 82.2 67.6
0.91 55.4 83.6 66.7

Top-3

0.90 53.4 84.4 65.4
0.99 97.6 67.6 79.9
0.98 94.0 71.4 81.1
0.97 86.3 73.8 79.6
0.96 76.6 76.7 76.7
0.95 69.9 79.0 74.2
0.94 64.0 80.2 71.2
0.93 60.3 82.0 69.5
0.92 57.9 83.0 68.2
0.91 56.2 84.8 67.6

Top-5

0.90 54.2 85.6 66.4
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Table 10: Experimental results of OntoConnect Ontology Alignment system - Graph
Neural Network for varying similarity thresholds: Precision, Recall, and F-measure
values for class/concept vector dimensions = 200 and number of predictions k = 1,3,5
on Anatomy dataset

200-dimension
Number of Prediction Similarity Threshold Precision Recall F-measure

0.99 97.9 67.0 79.5
0.98 96.7 69.2 80.6
0.97 93.0 71.5 80.8
0.96 88.0 73.3 80.0
0.95 80.8 75.0 77.7
0.94 74.6 76.4 75.5
0.93 69.2 77.3 73.0
0.92 64.8 78.6 71.1
0.91 61.2 79.4 69.0

Top-1

0.90 58.1 80.1 67.3
0.99 98.1 67.1 79.7
0.98 96.9 69.3 80.8
0.97 93.4 71.8 81.2
0.96 88.5 73.7 80.5
0.95 81.5 75.7 78.4
0.94 75.8 77.6 76.7
0.93 70.7 79.0 74.6
0.92 66.5 80.7 72.9
0.91 62.8 81.6 70.9

Top-3

0.90 59.8 82.5 69.4
0.99 98.1 67.1 79.7
0.98 96.9 69.3 80.8
0.97 93.4 71.8 81.2
0.96 88.5 73.7 80.5
0.95 81.5 75.7 78.4
0.94 76.0 77.9 76.9
0.93 70.9 79.3 74.9
0.92 66.9 81.2 73.4
0.91 63.2 82.1 71.4

Top-5

0.90 60.4 83.2 70.0
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Table 11: Experimental results of OntoConnect Ontology Alignment system - Graph
Neural Network for varying similarity thresholds: Precision, Recall, and F-measure
values for class/concept vector dimensions = 300 and number of predictions k = 1,3,5
on Anatomy dataset

300-dimension
Number of Prediction Similarity Threshold Precision Recall F-measure

0.99 97.9 66.9 79.5
0.98 97.3 68.3 80.3
0.97 95.3 70.5 81.0
0.96 91.6 72.1 80.7
0.95 86.8 73.6 79.7
0.94 81.5 75.0 78.1
0.93 75.4 76.4 75.9
0.92 71.3 77.4 74.2
0.91 67.1 78.3 72.3

Top-1

0.90 64.1 78.9 70.8
0.99 98.2 67.1 79.7
0.98 97.6 68.5 80.5
0.97 95.6 70.6 81.2
0.96 92.0 72.4 81.0
0.95 87.3 74.0 80.2
0.94 82.1 75.6 78.7
0.93 76.4 77.4 76.9
0.92 72.5 78.7 75.5
0.91 68.7 80.2 74.0

Top-3

0.90 65.8 81.1 72.6
0.99 98.2 67.1 79.7
0.98 97.6 68.5 80.5
0.97 95.5 70.7 81.2
0.96 92.0 72.4 81.0
0.95 87.3 74.0 80.2
0.94 82.2 75.7 78.8
0.93 76.6 77.6 77.1
0.92 72.8 79.0 75.8
0.91 69.0 80.5 74.3

Top-5

0.90 66.2 81.5 73.0
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4.5.3 Result Analysis

The average precision, recall and F-measure across all the class/concept vector

dimensions (100, 200, 300) and the number of target class/concept predictions (k=1,3,5)

are presented in Figure 24. It shows the change in precision, recall, and F-measure of

the ontology alignment system with different similarity values. It can be observed that

the precision increases whereas the recall decrease with the increase in the similarity

threshold value. This is expected as with a higher similarity threshold, the ontology

alignment system returns a lower number of correspondences compared to the number

of existing correspondences in the reference alignment. From the result analysis, it can

be noted that with a 0.97 similarity threshold value, the proposed ontology alignment

system - Graph Neural Approach performs best with the highest average F-measure

value of 81.0%.

Figure 24: Change in evaluation metric values (precision, recall, F-measure) of Ontol-
ogy alignment system - Graph Neural Network with increasing similarity threshold
values on Anatomy dataset
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Similarly, Figure 25 shows the change in the average precision, recall, and F-

measure values with different lengths of class/concept vector dimensions across all the

similarity threshold values and the top-k (=1,2,3) predicted target classes/concepts.

It can be observed that only a minuscule change in the performance of the ontology

alignment system occurs with the increase of the class/concept vector dimensions.

Thus, it can be noted that the performance of the proposed system stays almost

invariant towards the change in class/concept vector length.

Figure 25: Performance of ontology alignment system - Graph Neural Network for
different class/concept vector dimensions (100d, 200d, 300d) on Anatomy dataset

The average precision, recall, and F-measure of the ontology alignment system

with different values of k in the top-k predicted target class/concept across all the

class/concept vector dimensions and the similarity threshold values are presented in

Figure 26. The figure shows that there is only a minuscule change in the performance of
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the ontology alignment system with the increase of the number of target class/concept

predictions. Therefore, our tool may be used as both an autonomous tool (without

any human intervention) or an assistive tool to help a domain expert by reducing the

search space for ontology alignment in any domain.

Figure 26: Performance of ontology alignment system - Graph Neural Network for
top-k predictions with k = 1, 3, 5 on Anatomy dataset

4.6 Result Analysis using BERT

Both proposed recursive neural network and graph neural network is tested on

Anatomy dataset using BERT pre-trained model. Table 12 shows the OntoConnect

system using recursive neural network and BERT pre-trained model exhibits only

73.6% f-measure. It also shows 59.4% f-measure using the graph neural network. From

the table, we can conclude that BERT is not an ideal pre-trained model for ontology
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alignment. As BERT focuses on the sentence and trains embedding for a word based

on its position and its neighboring words. In ontology alignment, the source and

the target ontology data are in an organized format, and position and bidirectional

training do not add any value. For this reason, BERT performs poorly compare to

fastText. We are experimenting with different versions of BERT and in our future

scope, we will explore whether we can use BERT in ontology alignment in a better

way or not.

768-dimension

Approach Similarity
Threshold Precision Recall F-measure

Recursive Neural Network 0.99 77.4 70.1 73.6
Graph Neural Network 0.99 45.9 84.3 59.4

Table 12: Performance of OntoConnect on Anatomy Dataset using BERT pre-trained
model

4.7 Conclusion

In Conclusion, we can say that graph embedding can be used in our proposed

OntoConnect system. From the result, we can observe that graph embedding is

a better choice to encapsulate the structural information or meta-information of a

class/concept of both the source and the target ontology. In the graph neural network,

we can also observe that the OntoConncet system is trained without any domain

knowledge and without any domain expert intervention. From the result analysis, we

can claim that both the recursive neural network and the graph neural network can be

used on any ontology from any domain. It shows the reusability and extensibility of our

proposed OntoConnect system. We can also observe that our proposed OntoConnect
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system can be used as an alternative to the state-of-art rule-based ontology alignment

system.
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Chapter 5

ABLATION STUDY

In this chapter, we present an ablation study of the OntoConnect system. The

following section 5.1 shows the comparison of the word-similarity and the meta-

similarity separately and also shows how the meta-similarity enhances the combined

similarity between the ontological classes/concepts. Section 5.2 shows different test

cases from the anatomy dataset which exhibit the effectiveness of the meta-similarity

or structural information in the ontology alignment.

5.1 Comparison of similarities in OntoConnect System

From the result published by OAEI on Anatomy data 4, we can observe the base

system “StringEquiv” has F-Measure 76.6%. It only considers the syntax similarity. In

our ablation study, we have considered the performance of the “StringEquiv” system as

word similarity. Table 13 shows the different similarities of the OntoConnect System

on the Anatomy dataset. In the OntoConnect system, there are two similarities are

calculated. The first similarity is the “Word Similarity” and the second similarity is the

“Meta Similarity”. The “Word Similarity” is the syntax similarity between class/concept

of the source and target ontology and on the other hand “Meta Similarity” is the

structural similarity between the concepts/classes. The OntoConnect system combines

both the similarities to get combine similarity which is weighted harmonic mean to

generate a correspondence list. From the table 13, we can claim that the OntoConnect

4http://oaei.ontologymatching.org/2020/results/anatomy/index.html
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system is able to increase the 4% - 5% in F-measure of the ontology alignment

process by using the meta-similarity. In table 13, we can observe that the structural

information or the meta-information improves the overall performance of the ontology

alignment. Both recursive neural network and graph neural network can be used to

increase the overall accuracy of the ontology alignment process.

Table 13: Ablation study on results (F-measure) of OntoConnect system on Anatomy
dataset using Recursive Neural Network and Graph Neural Network

F-measure

Approach Dimension Word
Similarity

Meta
Similarity

Combined
Similarity

Recursive Neural
Network with
FastText on
Anatomy dataset

100D 76.6 69.9 80.3

200D 76.6 70.7 80.35

300D 76.6 70.53 80.36

Graph Neural
Network with
FastText on
Anatomy dataset

100D 76.6 77.0 80.7

200D 76.6 80.5 80.8

300D 76.6 81.0 81.0

5.2 Analysis of various testcases from Anatomy dataset

During the prediction process, we analyze different test cases to understand

the effectiveness of the meta-similarity of the ontology alignment system. Table

14 shows the ranking of the actual corresponding source class in word similarity,

meta similarity, and combined similarity against the target class. Word Similarity

denotes how two classes/concepts are syntactically similar, on the other hand, meta

similarity denotes how two classes/concepts have similar meta information such as
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parent class, child class, equivalent class, disjoint class, and restrictions. We present

the following 14 test cases with examples. In Case-1, both the word similarity and

the meta similarity rank of the actual source class/concept is 1. In the given example,

“Pancreatic_Endocrine_Secretion” is most similar to “endocrine pancreas secretion”

both syntactically and structurally which leads to correct prediction in combined

similarity as well. Case-2,3,4 show that though the word similarity rank of the actual

source class/concept is high, however, the meta similarity rank is low thus for Case-3,4,

the ontology alignment system fails to detect the correct similar source class/concept.

Case-8,9,10 show the effectiveness of the ontology system where high meta similarity

rank compensates the low rank of word similarity which results in predicting correct

similar source class/concept. Case-5,6,7 show both the word similarity and the meta

similarity ranks are low which depicts that the ontology alignment system does not

compensate the word similarity low rank with the meta similarity and fails to predict

correctly similar source class/concept. Case-11,12,13,14 show the high meta similarity

rank is not enough to balance the word similarity low rank and results in incorrect

final prediction.
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Table 14: Different case studies in the prediction of the proposed ontology alignment
system with the ranking of the actual source class/concept based on word similarity,
meta similarity, and combined similarity for class/concept vector dimensions 300,
number of predictions k=1, and similarity threshold 0.96

Case-No Class/Concept
Word
Similarity
Rank

Meta
Similarity
Rank

Combined
Similarity
Rank

Case-1
endocrine pancreas secretion
(Target Class/Concept) 1 1 1
Pancreatic_Endocrine_Secretion
(Source Class/Concept)

Case-2
right lung terminal bronchiole
(Target Class/Concept) 1 3 1
Right_Lung_Terminal
_Bronchiole
(Source Class/Concept)

Case-3

intrahepatic part of left
hepatic duct
(Target Class/Concept) 1 5 3

Intrahepatic_Portion_of_the_
Left_Hepatic_Duct
(Source Class/Concept)

Case-4
small intestine muscularis mucosa
(Target Class/Concept) 1 4 2
Small_Intestinal_Muscularis
_Mucosa
(Source Class/Concept)

Case-5
tongue skeletal muscle
(Target Class/Concept) 2 5 2
Tongue_Muscle
(Source Class/Concept)
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Table 15: Continuation of Table 14

Case-No Class/Concept
Word
Similarity
Rank

Meta
Similarity
Rank

Combined
Similarity
Rank

Case-6
caudal auricular vein
(Target Class/Concept) 2 4 3
Posterior_Auricular_Vein
(Source Class/Concept)

Case-7
retina inner nuclear layer
(Target Class/Concept) 2 2 2
Inner_Nuclear_Layer
(Source Class/Concept)

Case-8
foot interosseus muscle
(Target Class/Concept) 2 1 1
Foot_Interosseous_Muscle
(Source Class/Concept)

Case-9
pancreas secretion
(Target Class/Concept) 2 1 1
Pancreatic_Secretion
(Source Class/Concept)

Case-10
esophagus muscularis mucosa
(Target Class/Concept) 2 1 1
Esophageal_Muscularis_Mucosa
(Source Class/Concept)

Case-11
mammary gland epithelium
(Target Class/Concept) 3 2 2
Mammary_Epithelium
(Source Class/Concept)

Case-12
fourth ventricle
(Target Class/Concept) 4 2 2
Fourth_Ventricle_of_the_Brain
(Source Class/Concept)

Case-13
proximal convoluted tubule
(Target Class/Concept) 3 2 3
Proximal_Convoluted_Tube
(Source Class/Concept)

Case-14
mammary gland epithelium
(Target Class/Concept) 3 2 2
Mammary_Epithelium
(Source Class/Concept)
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Chapter 6

COMPARISON WITH STATE-OF-THE-ART ALGORITHMS

The results of OntoConnect, an Ontology alignment system, in the Ontology

Alignment Evaluation Initiative (OAEI) 2020 campaign are reported in this chap-

ter. OntoConnect is a domain-independent schema alignment system that combines

syntactic similarity and structural similarity between classes/concepts to align the

classes/concepts from the source and target ontologies. This chapter describes the

participation of OntoConnect at OAEI 2020 and discusses its methodology and results

on the Anatomy dataset.

Table 16 shows the comparison between OntoConnect system with Other Matcher

systems who participated in OAEI (“OAEI” 2020) Anatomy dataset. OAEI is an

ontology alignment evaluation initiative that campaigns aiming at evaluating ontology

matching technologies.

6.1 Comparative Result analysis of the state-of-the-art systems

We have tested OntoConnect on the Anatomy (anatomy) data set published

by OAEI with different parameters such as input vector dimension and similarity

threshold. Three different files are provided in the OAEI System: source ontology,

target ontology, and result or alignment file. Standard evaluation metrics, i.e., precision,

recall, and F-measure are used. The OntoConnect system yields satisfactory results

with a precision of 99.6%, recall of 66.5%, and F-measure of 79.7% for a similarity

threshold of 0.99 with the 100-dimension input vector.
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Table 16: Performance comparison between OntoConnect with Other Matcher systems
in OAEI-2020 Anatomy dataset

Matcher Precision Recall F-Measure Runtime Size
AML 0.956 0.927 0.941 29 1471
Lily 0.901 0.902 0.901 706 1517
LogMapBio 0.885 0.902 0.893 1005 1544
LogMap 0.918 0.846 0.88 7 1397
Wiktionary 0.956 0.753 0.842 65 1194
ALIN 0.986 0.72 0.832 1182 1107
LogMapLite 0.962 0.728 0.828 2 1147
OntoConnect 0.996 0.665 0.797 248 1012
ATBox 0.987 0.671 0.799 192 1030
ALOD2Vec 0.83 0.768 0.798 236 1403
StringEquiv 0.997 0.622 0.766 - 946
DESKMatcher 0.472 0.623 0.537 391 2002

From the table, we can observe that the state of art tools such as AML (Faria

et al. 2013), LogMap (Jiménez-Ruiz and Grau 2011) are producing high F-measure

on the Anatomy dataset. Most of these state of art tools are rule-based and use

external knowledge sources for the ontology alignment process. On the other hand,

the OntoConnect tool does not use any domain knowledge or any other external

knowledge. The main aim of the OntoConnect system was to eliminate or reduce the

domain expert intervention.

From the table 16, we can claim that though our proposed OntoConnect system did

not surpass the other tools in terms of F-measure the performance of the OntoConnect

system is comparable with the other state-of-the-art tools.

6.2 Analysis of the results

The main goal of OntoConnect is to address questions such as, (i) can ontology

alignment be done independently of domain information? (ii) Can ontology alignment
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be achieved by using only the meta-information and structural information of ontolo-

gies? (iii) Can ontology alignment be achieved using unsupervised machine learning

instead of the traditional rule-based approaches? The OntoConnect tool is able to

address all the above questions and moreover, it performs well compared to some of

the state-of-the-art systems in OAEI 2020. The main strength of the tool is that a

domain-independent approach is performed by achieving the mentioned goals.

Besides the strengths of the tool, there is a number of potential improvements

to be realized for OntoConnect. The main weakness of the OntoConnect tool is the

complex architecture of the system, as it has two different components of different

languages, i.e., java and python. It was difficult to incorporate any OAEI evaluation

wrapper because of the complex architecture of the tool. We have used Docker to

execute the system on the HOBBIT (Röder, Kuchelev, and Ngonga Ngomo 2019)

platform but there is still room for improving the system architecture so that the

tool can be easily executed. The second problem is the size of the project. We have

used the pre-trained model fastText in the system and the default dimension of the

fastText output vector is 300. The high dimension of the vector causes an increase in

the size of the tool. In future work, we would like to explore different procedures such

as the autoencoder approach to reduce the dimension to minimize the size of the tool.

6.3 Conclusion

In this study, the OntoConnect tool is presented with a generic and domain-

independent approach to align multiple ontologies that eliminate cumbersome and

error-prone manual work. A non-linear neural network is used for feature extraction

from the source ontology and is independent of the domain knowledge. Participating
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in this campaign for the first time allowed us to see how the OntoConnect system

was performing compared to the other tools. It was seen that our tool had a high

precision among the tools without any domain knowledge and without depending

on any vocabularies. But both recall and F1 have room to improve. Even though

OntoConnect has a reasonable runtime, we would like to decrease the execution time

for better performance. We have seen that our tool is comparable to the current

state-of-the-art domain-specific approaches and we would like to participate in other

tracks next year to see the results in different domains.
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Chapter 7

ONTOCONNECT ARCHITECTURE

This section describes the architecture of the OntoConnect system. Our approach

follows a microservices architecture, consisting of different components that work

together. The main motivation behind using microservices was to isolate different

tasks and use some of the existing modules within our project. This allowed the use

of different programming languages for different purposes based on their applicability.

We divided our project into two different microservices:

1. A Java microservice, which allowed the use of the OWL API and HermiT

Reasoner.

2. A Python microservice, which allowed us to use the FastText model to perform

complex text analysis, develop the neural network model, and calculate the

similarity between the source and target ontologies.

Each microservice was dockerized, making it modular, portable, as well as isolating

the environments so as to run on any operating system. Figure 27 shows a high-level

system architecture of OntoConnect.
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Figure 27: Ontology Alignment System Architecture

7.1 OntoConnect Components

The first component is the Java microservice, which reads and parses the ontologies

passed to it by the angular microservice. The Java microservice performs many different

tasks, the first of which is information extraction. First, we extract information from

these ontologies using the OWL API and HermiT Reasoner. In this process, we have

considered the following information about a class: Label of the class, IRI of the

class, Parent classes of the class, Child classes of the class, Equivalent classes of the

class, Disjoint classes of the class, and Restriction (such as “part of”). Finally, all the

information is written into JSON files, which are used by the next microservice, i.e.,

the Python microservice for the linking between the source and target ontology.

The second component is the Python microservice, which is responsible for the

network training and alignment process. First, it modifies the labels for each class,

object property, and relations by using simple techniques such as stop words removal,
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stemming and lemmatization, expanding abbreviations, and then, creates a label

dictionary. Using this dictionary, it then generated 300D vectors for each ontological

entity of the source and target ontology using a pre-trained FastText model. It is

used for training the recursive neural network with the source ontology entities. Once

completed, the trained neural network predicts a similar source ontology entity for

each target ontology entity. The output containing a set of alignments is written to

an RDF file. The output contains a set of alignments (< e, e′, r, n >). Here the “e“ is

the class from the source ontology, “e′” is the class from the target ontology, “r“ is the

relation between “e” and “e′“. In this project, we have only considered equivalence

(“=”) relation. n is the similarity score between “e“ and “e′”. Once this process is

finished, the Python microservice generates the RDF file.

7.2 OntoConnect Software Specification

The OntoConnect system was tested on a Unix system with 16 GB RAM and

100GB of disk space. The major constraint here was with memory, as FastText data

is loaded into memory at once before it can be used. Java 1.8, python 3.6, and related

modules/packages were used to develop the entire application. PyTorch v1.7 was used

to develop the neural network, FastText was used for word vector generation, Apache

Jena was used for ontology file parsing, and tools like Apache Tomcat and Maven were

used for compiling, building, and serving parts of the code. Finally, Docker v2.0.0 was

used to isolate and containerize the different services, so as to establish a consistent

running environment regardless of the host operating systems and different existing

versions of programming languages (Java and Python) on the host. Docker-compose

was used to orchestrate the communication and interaction between the different
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microservices, and it also made it easier for end-users to start the application with a

single command, without worrying about the finer details within the application.

7.3 Adaptations made for the evaluation

We have tried to test the OntoConnect system on Semantic Evaluation At Large

Scale (SEALS) (Wrigley, García-Castro, and Nixon 2012) platform, however, were

not able to run the system as SEALS only provides a wrapper for java-specific tools

only. Other frameworks such as MELT (Hertling, Portisch, and Paulheim 2019) was

also tried for the evaluation of the OntoConnect System, however, MELT provides

an evaluation wrapper for either java-only tools or python-only tools. It does not

support tools that have both java and python components in one. OntoConnect

system uses both the java and python components. Hobbit platform (Röder, Kuchelev,

and Ngonga Ngomo 2019) permits dockerized tool which is independent of the type of

the programming language of the tool. For this reason, the dockerized approach is

used to build the OntoConnect System and we could successfully test and evaluate it

on the Hobbit platform.
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Chapter 8

FUTURE WORK

In the future, we aim to complete the following tasks to enhance the OntoConnect

System.

First, the ontology tool OntoConnect will be tested on different ontologies from

different domains. We have planned to test on Large Bio Medical ontology (“LargeBIO”

2020). The main purpose of choosing Large Bio Medical ontology is that it contains a

large number of individuals and the structure of this ontology is complex compared to

other ontologies. The experiment on Large Bio Medical ontology will help analyze

the efficiency and robustness of the OntoConnect tool for both large and complex

datasets.

Second, we will address the complexities due to the existential restric-

tions present in the Large Bio Medical ontology. One such existential re-

striction is shown in Figure 28 which depicts the complex relation of class/-

concept “Rat Benign Basal Cell Tumor” is sub-class-of (ObjectSomeValuesFrom

(“EO_Disease_Has_Associated_EO_Anatomy”, “Rat Forestomach”). To address

this issue, we will follow the process defined by (Chen et al. 2020) to convert the OWL

ontology described O into a graph G in RDF form. where the existential restriction of

a class/concept “Rat Benign Basal Cell Tumor” in Figure 28 will be transformed into

the following four triples:

(i) <nci:Rat Benign Basal Cell Tumor, rdfs:subClassOf, _:x>,

(ii) <_:x, rdf:type, owl:Restriction>,

(iii) <_:x, ObjectSomeValuesFrom, EO_Disease_Has_Associated_EO_Anatomy>,
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and

(iv) <_:x, owl:onProperty, Rat Forestomach>.

A random graph walk will be applied to extract corpus for a class/concept which

includes the structural and lexical information of the class/concept.

Figure 28: Fragments of National Cancer Institute Thesaurus - NCI (Large Bio
Medical Ontology)

Third, refinement of the word-vectors for each entity will be performed. In

our approach, the learned word vectors from the pre-trained FastText and BERT

model reflect the word frequency instead of meaning which is undesirable for the

ontology alignment. To overcome this, the authors exploit the synonyms and antonyms

of a class/concept to learn semantic word representations which are more suitable

candidates for ontology alignment. The authors extract antonym and synonym

relations similar to approach taken by Kolyvakis et al. (Kolyvakis, Kalousis, and

Kiritsis 2018) from different thesaurus such as Wordnet (Oram 2001), PPDB 2.0

(Pavlick et al. 2015), etc. The main idea is if two entities are synonyms then their

vectors should be close in the vector space model and if they are antonyms then they

should be away from each other.
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Chapter 9

CONTRIBUTIONS & CONCLUSION

9.1 Contributions

The research objective of this study is to perform domain-independent ontology

mapping without the need for human intervention by exploiting meta information

of the ontological classes. Existing ontology alignment approaches customize their

techniques using domain knowledge thereby limiting their use only for specific

domains. The novelty of our approach is in the use of an unsupervised neural network

approach with a pre-trained word embedding model that comprises words from the

English language making it generic and can be used with any data sets without

human intervention. Experimental results show that our approach, in spite of being

domain-independent, gets close to current domain-specific approaches in terms of

precision and accuracy. The main contributions of this dissertation can be summarized

as follows:

(i) OntoConnect system that generates a model based on a given source ontology

in any domain and a pre-trained word embedding model that comprises vector

representation for all words in the English language.

(ii) Using the trained model and given a target ontology for alignment with a

specific source ontology, the OntoConnect system predicts the alignments between

ontological concepts by computing the word similarity (syntactic) between all concepts,

meta similarity (structural) between all classes/concepts, and a combined similarity
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that is based on both word and meta similarities.

(iii) A comprehensive evaluation, in terms of precision, recall, and F-measure of

our approach is presented using Anatomy dataset along with a reference ground truth

provided by the Ontology Alignment Evaluation Initiative (OAEI) and comparison

with other state-of-the-art systems.

(iv) Detailed analysis and hyperparameter tuning using different similarity thresh-

olds and vector dimensions are performed in order to obtain the best results that are

close to that of state-of-the-art domain-specific approaches.

9.2 Conclusion

Given the availability of huge hierarchical domain-specific data, automated ontology

mapping is still a complex problem. There are many proposed approaches available,

but most of them require human intervention and are heavily domain-specific. In

this study, we have presented two unsupervised learning techniques. The first one

is a generic and domain-independent approach to align multiple ontologies that

eliminate cumbersome and error-prone manual work. A non-linear neural network

is used for feature extraction from the source ontology and is independent of the

domain knowledge. The implemented novel ontology alignment method is based

on an unsupervised machine learning technique that incorporates a combination of

word similarity and meta similarity thereby taking advantage of both syntactic and

structural information about ontological concepts. The experiments show that it can

produce high precision results without any domain expert intervention. On the other
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hand, we have also explored the graph embedding technique. The experiments also

show that the graph embedding technique can be applied to find entity embedding

which captures its meta-information in an unsupervised way. From our experiment,

we can observe both the techniques are yielding high accuracy which is comparable

with the current state-of-the-art domain-specific approaches.
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APPENDIX A

ONTOCONNECT LINKS
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A.1 Link to the system and parameters file

The OntoConnect code is available on GitHub: https://github.com/dbpedia/
linking.

A.2 Link to the set of provided alignments

The OntoConnect result is published on http://oaei.ontologymatching.org/
2020/results/anatomy/index.html . The result is also available on GitHub:
https://github.com/dbpedia/linking/wiki/Result
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