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ABSTRACT 

Observational evidence is mounting on the reduction of winter precipitation and 

an earlier snowmelt in the southwestern United States. It is unclear, however, how these 

changes, along with forest thinning, will impact water supplies due to complexities in the 

precipitation-streamflow transformation. In this study, I use the Triangulated Irregular 

Network-based Real-time Integrated Basin Simulator (tRIBS) to provide insight into the 

independent and combined effects of climate change and forest cover reduction on the 

hydrologic response in the Beaver Creek (~1100 km2) of central Arizona. Prior to these 

experiments, confidence in the hydrologic model is established using snow observations 

at two stations, two nested streamflow gauges, and estimates of spatially-distributed snow 

water equivalent over a long-term period (water years 2003-2018). Model forcings were 

prepared using station observations and radar rainfall estimates in combination with 

downscaling and bias correction techniques that account for the orographic controls on 

air temperature and precipitation. Model confidence building showed that tRIBS is able 

to capture well the variation in snow cover and streamflow during wet and dry years in 

the 16 year simulation period. The results from this study show that the climate change 

experiments increased average annual streamflow by 1.5% at +1°C of warming. 

However, a 28% decrease in streamflow occurs by +6°C of warming as 

evapotranspiration (ET) increases by 10%. Forest thinning shifted the warming threshold 

where ET increases reduce streamflow yield until +4°C of warming as compared to no 

forest thinning when this threshold occurs at +2°C. An average increase in streamflow of 

12% occurs after forest thinning across all climate scenarios. While the snow covered 

area is unaffected by thinning, the volume of snowmelt increases and is linked to the 
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higher water yield. These findings indicate that water managers can expect decreases in 

streamflow due to climate change but may be able to offset these impacts up to a 

warming threshold by thinning forested areas within the Beaver Creek. 
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1 INTRODUCTION 

Mid-latitude, subtropical regions across the globe are predicted to have the largest 

decrease in water resources due to climate change (IPCC, 2021). Water managers in the 

southwestern United States are confronted with projections indicating increased 

temperatures, declining snowpacks, and increased tree mortality due to wildfires 

(MacDonald, 2010; Xiao, 2021). In addition, the Southwest experiences highly variable 

precipitation from year to year which has historically been managed using reservoirs to 

reduce the variability in water supply for downstream communities (Philips et al., 2009). 

These reservoirs store snowmelt from high elevation mountainous regions and account 

for a large portion of the annual water supply for metropolitan areas like Phoenix, 

Arizona (Gooch et al., 2007). Thus, there is a need for increasing the understanding of 

streamflow response to changes in climate, so water managers such as the Salt River 

Project (SRP) can make improvements to surface water forecasting and management. 

Forest structure and air temperature play an important role in the precipitation-

streamflow transformation in mountainous regions with intermittent snowpacks (Mote et 

al., 2006; Hammond and Kampf, 2020). Studies have shown that warming will accelerate 

snowmelt and shift precipitation phase from solid to liquid (Fritze et al., 2011; Harpold et 

al., 2017). Additionally, extensive research over the last 70 years in ponderosa pine 

forested areas has shown the potential for increasing streamflow and reducing snow 

sublimation through forest thinning (Baker, 1986; Moreno et al., 2016; Svoma, 2017). 

Large forest thinning projects are already underway in Arizona such as the Four Forest 

Restoration Initiative (4FRI) which plans to thin about 10 million acres of ponderosa pine 

forest with the goal of reducing large scale wildfires (U.S Forest Service, 2015). Thus, it 
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is crucial for water managers to understand how the reduction of forest cover impacts 

hydrologic processes such as evapotranspiration and streamflow at the watershed scale. 

Furthermore, it is valuable for water managers to know the hydrologic response 

differences between pre- and post-forest thinning under the effects of climate change for 

the planning of future forest restoration projects. 

This study investigates the hydrologic responses to climate change and forest 

thinning in a watershed of central Arizona. Using a physically-based, distributed 

hydrologic model, I aim to provide insight into how land cover and climate change might 

impact the basin scale water balance. To accomplish this, the model is tested at the point 

and watershed scale for simulating snow water equivalent and streamflow before 

exploring the separate and combined effects of climate change and forest thinning. 

 

1.1 Literature Review 

The Phoenix Metropolitan Area (PMA) is the 5th largest city in the United States 

with the fastest rate of population growth from 2010 to 2020 (U.S. Census Bureau, 2020).  

Like other arid regions in the southwestern US, the PMA obtains its water supply from a 

combination of groundwater, surface water, and reclaimed water (ADWR, 2021). Surface 

water supplies come from two main sources: Salt and Verde watersheds from the Salt 

River Project, and Colorado River water from the Central Arizona Project. The Central 

Arizona Project uses a diversion canal and a series of pumping stations to transport water 

from Lake Havasu to Tucson, Arizona. Since the construction of the project, the CAP has 

been a key provider of water for agricultural and residentials users in central and southern 

Arizona. The recent drought across much of the southwestern US has reduced inflows 
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into reservoirs on the Colorado River such that a federal shortage declaration was made 

for 2022 (MacEachern and Person, 2021). The new Drought Contingency Plan, finalized 

in 2020, states that Arizona, along with Nevada, are the first states to see reduced water 

supplies under shortage (U.S. Bureau of Reclamation, 2020). This reduction of Colorado 

River supply in Arizona will place a higher importance on management of local 

watersheds like the Salt and Verde Rivers. 

Ponderosa pine forests that dominate the high elevations of the Salt and Verde 

watersheds have seen increases in the number and magnitude of severe forest fires along 

with insect-induced die off (Covington and Moore, 1994; Chojnacky et al., 2011). The 

reason for this is attributed to forest management policies implemented in the early 20th 

century to suppress forest fires (Allen et al., 2002). The result of such policies can be 

seen in the C.C. Cragin reservoir area of northern Arizona where tree stand density has 

increase from an estimated 100 to 6000 trees per an acre due to growth of primarily small 

diameter trees (U.S. Forest Service, 2018). Before widespread fire suppression, more 

common but less severe forest fires would remove small trees and ground litter that allow 

high intensity fires to spread rapidly across a landscape (Allen et al., 2002; Stambaugh et 

al., 2011). The regions most impacted by fire suppression are seasonally dry and produce 

an abundance of ground litter, like the ponderosa pine forests (Ryan et al., 2013, Huffman 

et al., 2015). Large forest fires pose significant problems to water resource managers due 

to increases in flooding which results in early releases of water from reservoirs to 

mitigate flood damages and increases in sediment transport into reservoirs that reduce 

storage capacity (Leonard et al., 2017; Sankey et al., 2017). Thus, it is critical for forest 

health to be restored to its natural state before human intervention (Covington and Moore, 
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1994). Forest thinning restoration project, such as 4FRI, aim to reduce the problems 

outlined above but there is also the potential for increased water supply in restored 

watersheds (Simonit et al., 2015). 

The impact of large-scale forest restoration projects on watershed hydrologic 

processes and streamflow in semiarid regions has not yet been observed (Robles et al., 

2017). Past studies on forest thinning typically use a set of smaller, paired watersheds to 

observe changes in runoff amounts (Brown et al., 1974; Baker 1986; Brown et al., 2005). 

The most relevant of these are the Beaver Creek Experimental watershed studies which 

implemented multiple methods of treatment like overstory removal and the creation of 

open clearings (Baker, 1984). Each of these treatment methods had different levels 

ranging from complete to light removal. The paired watershed studies found that removal 

of ponderosa pine led to increased runoff, ranging from 10-45% annually but that these 

reverted to pre-treatment values after 7 years (Baker, 1986). Additionally, it was found 

that north facing slopes retain the benefits of thinning longer than south facing slopes. In 

recent years, similar work in Colorado looked at the removal of vegetation due to bark 

beetle infestations (Biederman et al., 2015). Researchers found that reduction of 

ponderosa pine stand density showed no statistically significant change in streamflow and 

an increase in evapotranspiration, attributed to increased bare soil evaporation 

(Biederman et al., 2014; Biederman et al., 2015). Changes in streamflow at the basin 

scale from forest thinning are inconclusive and current projects are not occurring in a 

stationary climate where additional stressors like climate change serve to further alter 

ecosystem services. 
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The effects of human-induced climate warming through the release of greenhouse 

gases into the atmosphere on snow dominated watersheds in the western United States 

has been research extensively over recent decades (Leung and Wigmosta, 1999; 

Christensen et al., 2004; Adam et al., 2009; Elsner et al., 2010). Studies in the Upper 

Colorado River Basin (UCRB) show a shift in winter precipitation from snow to rain, 

faster winter snow melt, and reduced summer streamflow (Christensen et al., 2004). 

Using five different land surface models, Vano et al. (2012) estimated a 20% decrease of 

average annual streamflow from the UCRB by the middle of the 21st century. Certain 

climate models show increases in annual precipitation which could counteract losses to 

streamflow, but agreement between these models on future precipitation amounts is not 

apparent (Udall and Overpeck, 2017). Studies have focused on the UCRB due to its 

importance on water supply for many western states, but lesser focus has been placed on 

the Lower Colorado River Basin, in particular the Salt and Verde watersheds in Arizona.  

Streamflow declines observed in the UCRB are not consistent across all the 

western United States (Nayak et al., 2010). Watersheds characterized by intermittent, 

shallower snowpacks with warmer temperatures like the Salt and Verde watersheds of the 

LCRB have not seen significant changes in streamflow volume due to the warming that 

has occurred in the 20th century (Robles et al., 2017). The lack of climate change signal 

has been attributed to runoff efficiency peaking during winter months and that the shift 

from snow to rain leads to the majority of runoff production occurring in winter rather 

than spring (Hammond et al., 2020). Comparing the latter to the UCRB where the timing 

of streamflow generated from snowmelt and peak energy demands are more strongly 

coupled than the LCRB suggests one hypothesis as to why losses in the UCRB are not 
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observed in the LCRB (Robles et al., 2021). Low evaporative demand during winter 

months means that although less snow is falling, rainfall is able to generate the same 

amount of annual streamflow. Additionally, atmospheric river events that occur in 

Central Arizona can generate large amounts of winter streamflow have been observed to 

be increasing in frequency since the middle of the 20th century. This indicates that a 

potential exists for increase winter supply under the effects of climate change (Singh et 

al., 2018; Robles et al., 2021). 

Watershed management has becoming increasingly more difficult due stresses 

like climate change and unhealthy forests. Together, these have increased interest from 

local watershed managers in using tools that can help predict the response to these 

stresses. Physically-based, fully distributed hydrologic models are tools that have been 

used extensively in the research community over the last two decades. The adoption of 

these models outside the research community is low due to the lack of testing data and 

difficulties in parameterization (Fatichi et al., 2016). However, improvements in the 

availability of high temporal and spatial resolution remote sensing data from satellites has 

allowed the modelling of regional watersheds that have little to no ground observation 

networks (Ko et al., 2019). Furthermore, improvements in computational power and code 

parallelization allows for high-resolution, long-term modelling (Vivoni et al., 2011). 

While hydrological models are most used for the prediction of flood events, fully 

distributed models that explicitly account for earth system processes provide a virtual 

testbed that enables the testing of experimental hypotheses. This allows the testing of 

hypothesis that are too difficult to test in the real world or can aid in the design of real-

world experiments. Additionally, these models enable prediction of future changes in 
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hydrological processes due to changes in the environment. Distributed models are at a 

pivotal moment after extensive testing and advancements in data availability where they 

are prime to see use outside of the research community.  

While these models have seen widespread use in North America, applications in 

the semiarid regions of the southwester US are limited. Previous application of these 

models in this region focused mainly on warm season processes. Hawkins (2012), for 

example, used a distributed model to predict changes in streamflow response to the North 

American Monsoon (NAM) under a single climate scenario. Application of these models 

in semiarid watersheds of Arizona that experience snowpacks at higher elevations have 

received less attention due to the complexity of mountainous terrain controls on solar 

radiation and meteorological conditions (Young et al., 1999; Rinehart et al., 2008; Livneh 

et al., 2014). Notably, Hussein (2020) applied the National Water Model, a distributed 

hydrologic model, in the Oak Creek watershed of central Arizona which is known for 

large flood events due exposed bedrock and rugged terrain. Forecasting of streamflow 

was improved using a calibration procedure that targeted distinct flood generation 

mechanisms. In the Tonto Creek watershed of central Arizona, a distributed hydrological 

was used to examine the changes in hydrologic processes due to the 4FRI along with the 

effects of soil compaction from thinning (Moreno et al., 2016). The simulations showed 

that annual watershed scale runoff increased after thinning but may be more at risk to 

extreme hydrologic events due to lower subsurface storage and smaller snowpacks. 

With a goal of analyzing the effects of forest thinning, this study follows efforts 

similar to Moreno et al. (2016). However, I do not consider changes to soil properties due 

to forest thinning activities due the difficulty in quantifying the magnitude of those 
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changes (Lopez et al., 2021). Nevertheless, this study uses newly available products like 

vegetation fraction and snow water equivalent and enhancement of model physics to 

improve simulation performance. Building off the model developed in Hawkins (2012), 

this study expands those efforts over the long-term, including snow processes in the cool 

season, and explores a greater number of climate change experiments that account for the 

range of most common future warming potentials. 

In this study, a semiarid watershed in central Arizona, the Beaver Creek 

watershed, is investigated using physically-based distributed model. To do so, model 

confidence was established through simulations at the point scale for two snow 

measurement stations. Furthermore, calibration of the watershed scale model was 

completed over a 16 year period using streamflow observations at two internal stream 

gauges along with estimates of spatially distributed snow water equivalent (SWE). Prior 

to calibration, a set of bias-corrected model forcings were prepared that account for the 

orographic controls on air temperature and precipitation in the watershed. After model 

calibration, a set of 9 additional simulation experiments were completed that account for 

both separate and combined effects of warming due to climate change and forest 

thinning. From these simulation experiments, changes in snow cover, evapotranspiration, 

and streamflow were analyzed using timeseries, spatial maps, and trends analysis. 
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2 STUDY AREA & DATASETS 

2.1 Study Area & Characteristics 

The study basin, Beaver Creek watershed (BCW), is located in the Central 

Arizona Highlands between Flagstaff and Camp Verde (111.61°W, 34.75°N). The 

watershed features a 1,625-meter elevation gradient, due to the Mogollon Rim that 

encompasses the northern most portion of the watershed. Surface water flows generated 

in the watershed aggregate in the Beaver Creek, which later drains into the Verde River 

(1108 km2 above USGS gauge in Camp Verde, AZ 09505400). Beaver Creek is fed by 

Dry Beaver Creek (DBC), an intermittent creek which dominates the northeastern portion 

of the watershed, and Wet Beaver Creek (WBC), a perennial creek which dominates the 

southeastern portion of the watershed (Figure 1). Detailed characteristics of the Beaver 

Creek and the two subwatersheds are shown in Table 1. 

The wide range of elevation in the watershed coincides with a variety of 

vegetation and soil types. The desert shrubland that dominates the lower elevations exists 

atop coarse loamy soils. Above the desert shrublands, soils are volcanic in origin, 

predominantly clay soil textures with bedrock lined stream channels that have little to no 

hydrologic connection to the geologic media below (Baker, 1982). The pinyon-juniper 

forest is predominately located between the desert shrubland and the high elevation 

Mogollon Rim. Table 3 presents a more detailed description of the percent coverage of 

the 13 soil classes in the Beaver Creek watershed. These soil classes are the main control 

on the transformation of precipitation to runoff in the tRIBS model. Similarly, Table 4 

shows the percent coverage of the vegetation classes in the model. The vegetation classes  
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Figure 1. Verde River watershed in the state of Arizona, USA. (a) Beaver Creek 

watershed digital elevation model (DEM) with polygons indicating Wet and Dry Beaver 

Creek subwatersheds along with locations of USGS stream gauges, meteorological 

stations, and precipitation gauges 

 

control processes like the amount of transpiration, intercepted precipitation, and amount 

of solar shading at the soil surface. 

Figure 1 highlights the presence of two SNOw TELemetry (SNOTEL) sites 

within the Beaver Creek. SNOTEL stations are located across the western United States 

and were established by the Natural Resources Conservation Service to provide point-

scale measurements of snow water equivalent, precipitation, and air temperature with 

some stations measuring additional variables (NRCS, 1977). The main site with the  
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Table 1. Study area characteristics for the Beaver Creek and the two subwatersheds. Note 

that the characteristics were calculated using ArcMap 10.3 using a 1/3 arc-second DEM. 

Property Units Beaver Creek 
Wet Beaver 

Creek 

Dry Beaver 

Creek 

ID ~ BC WBC DBC 

USGS Stream Gauge 

ID 
~ 09505400 09505200 09505350 

Total Area km2 1108 286 367 

Length of main 

channel 
km ~ 23.6 22.9 

Slope of main channel m/km ~ 30.6 25.4 

Mean elevation m 1735 1999 1883 

Minimum/maximum 

elevations 
m 974/2600 1225/2600 1128/2390 

Std. elevation m 394 241 321 

Mean slope % 16 14 17 

Std. slope % 20 20 24 

 

longest record of historical data (1998-2021) is Happy Jack SNOTEL, located near the 

watershed boundary in the Wet Beaver Creek. The second SNOTEL, known as Bar-M, 

was installed in 2012 in cooperation with the Salt River Project (SRP) and only measures 

snow water equivalent, precipitation, and air temperature. Figure 2 shows the location of 

the two SNOTEL stations along with images of the station layout in the field. 
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Figure 2. (a) Natural color aerial imagery from NAIP (2019) showing Bar-M and Happy 

Jack SNOTEL locations within the Beaver Creek. (b) Photograph of snow pillow 

measurement instrumentation at Bar-M. (b) Photograph of the measurement station at 

Happy Jack. Photographs obtained from NRCS (1997). 

 

2.2. Datasets 

There are a number of different datasets used in the study, ranging from time-

varying spatially distributed raster data to single weather stations. These datasets are used 

either for comparison to simulation results or for the generation of model forcing. For this 

study, the processing of spatially distributed raster data follows the same procedure: raw 

raster data is obtained and then clipped and reprojected into the UTM Zone 12N, North 

American 1983 datum coordinate system using the Geospatial Data Abstraction Library 

(GDAL). GDAL is a robust and open-source software package that is run from command 

line for process automation and can handle all commonly used file formats (GDAL, 
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2020). After processing the raw raster data into the geoTIFF file format, Matlab is used to 

define the geospatial domain and cell size and convert the raster cell data into ASCII 

grids. As with the geospatial data, processing time series data followed a consistent 

procedure. Time series are imported into Matlab as timetables (links dates/time with each 

point of data). If the dataset is to be used as forcing, Matlab is used to write text files into 

format required by tRIBS. Other datasets were saved into a Matlab file format for quicker 

data processing times. 

 

2.2.1 Precipitation 

Two different forms of precipitation data were used in the study: rain gauges and 

weather radar. A number of rain gauges are present within or near the Beaver Creek 

watershed. The agencies managing these different gauges are the United States 

Geological Survey (USGS), United States Forest Service (USFS), Salt River Project 

(SRP), and Yavapai County Flood Control District (YCFCD). The largest network of 

gauges in the area are from YCFCD which are tipping bucket gauges used for flood 

alerts. However, these observations have missing data during the winter season and were 

not used. Measuring snowfall with tipping bucket style gauges is subject to multiple 

different sources of error such as wind, frozen equipment, and low snowfall rates 

(Rasmussen et al., 2015). The rain gauge data provided by SRP are daily totals of 

precipitation from either USGS or SRP gauges that have been quality controlled by staff 

meteorologists. Detailed information about these stations is found in Table 2.  
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Table 2. Station characteristics for daily and hourly stations. 

Name 
Lat. Long. Elevation  

Period of Record 
[°] [°] [m] 

SNOTEL (Hourly) 

Happy Jack -111.42 34.75 2326 06/01/1999 - Present 

Bar-M -111.6 34.867 1949 09/06/2012 - Present 

Precipitation Gauges (Daily) 

Bar-M -111.61 34.861 1945 03/17/1990 - Present 

Dry Beaver -111.77 34.73 1126 01/01/1986 - Present 

Happy Jack -111.41 34.743 2376 11/06/1987 - Present 

Montezuma -111.84 34.609 972 03/15/1990 - Present 

Wet Beaver -111.67 34.975 1225 01/01/1986 - Present 

Meteorological Stations (Hourly) 

Happy Jack -111.34 34.618 2071 06/01/2010 - Present 

Mormon Lake -111.44 34.911 2256 10/01/1996 - Present 

Oak Creek -111.75 34.943 1501 12/01/1992 - Present 

Verde -111.85 34.554 945 11/01/1993 - Present 

  

The second source of precipitation data is the Next Generation Weather Radar 

(NEXRAD) Stage IV. NEXRAD Stage IV is aggregated, quality controlled, and bias-

corrected dataset distributed by the Colorado River Basin Forecasting Center (CRBFC). 

The Stage IV product is an hourly product with a 4 km grid cell size that is created using 

radar data from stations located throughout the Colorado River Basin (Du, 2011). The 

nearest radar is operated by the Phoenix branch of National Oceanic and Atmospheric 

Administration (NOAA). While the Stage IV product is bias corrected by the CRBFC, 

weather radars are known to have poorer performance in winter months due to orographic 

enhancement of precipitation in mountainous regions (Zhang et al., 2012). An additional 

local bias correction was completed using data from the five rain gauges from SRP to 

generate the precipitation forcing for the model, detailed in section 3.1. 
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2.2.2 Meteorological  

There are five meteorological variables used in the hydrologic simulations: wind 

speed (US), relative humidity (RH), air pressure (PA), incoming solar radiation (IS), and 

air temperature (TA). Three different datasets were combined to generate the 

meteorological forcing. Weather station data from four Remote Automated Weather 

Stations (RAWS) and one SNOw TELelemetry (SNOTEL) station are the primary 

dataset. Hourly gridded weather data from North American Land Data Assimilation 

System (NLDAS) were used for air pressure and for the gap filling of station data. Lastly, 

air temperature data from Parameter-Elevation Regression on Independent Slope Model 

(PRISM) was used for calculating local air temperature lapse rates for the spatial 

interpolation of station data. A detailed description of the methodology for 

meteorological model forcing preparation is described in section 3.2. 

Details of the five weather stations used to prepare model forcing are available in 

Table 2 with spatial locations shown in Figure 1. The RAWS stations are a set of 

interagency managed weather stations that are typically used for monitoring fire hazard 

(WRCC, 2013). Figure 1 shows that all the RAWS are in close proximity to the Beaver 

Creek Watershed boundary, therefore useful for the purposes of downscaling. NLDAS-2 

is a gridded (12 km, hourly) product derived from North American Regional Analysis 

(NARR) through spatial interpolation (Cosgrove, 2003). It was used for model 

initialization due to the lack of station observations before the year 2002 and to gap 

filling of station data. PRISM is a nationwide climate data set developed by Oregon 

State’s PRISM Climate Group and is regarded as a highly accurate spatially distributed 

dataset for air temperature and precipitation in mountainous regions (PRISM Climate 
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Group, 1994). The version of PRISM used in this study is the daily average air 

temperature at 4 km resolution. PRISM is not a direct observation of air temperature but 

is a model output based on a localized regression equations that are parameterized using 

nearby observations and multiple physiographic indicators like elevation. 

 

2.2.3 Soils 

The soil map for the BCW was previously developed in Hawkins (2012) using 

spatially distributed soils data from the Soil Survey Geographic Database (SSURGO) 

provided by the USDA (Soil Survey Staff, 2020). SSURGO data for the Beaver Creek 

has 73 unique soil types which were further aggregated into texture types to reduce model 

complexity. The details of this aggregation can be found in Hawkins (2012). The 

aggregation results in 13 different soil classes with their percent coverage of the 

watershed provided in Table 3. 
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Table 3. Areal coverage of the soil classifications in the Beaver Creek and its 

subwatersheds.  

Soil Texture 

Beaver Creek Wet Beaver Creek Dry Beaver Creek 

Area 
Basin 

Coverage 
Area 

Basin 

Coverage 
Area 

Basin 

Coverage 

(km2) (%) (km2) (%) (km2) (%) 

Silty Loam 138.5 11.4 53.5 18.7 57.3 15.7 

Clay Loam (WBC) 117.0 9.7 68.6 23.9 3.8 1.0 

Unweathered 

Bedrock (WBC) 109.6 9.1 
46.8 16.3 ~ ~ 

Sandy Loam 81.8 6.8 ~ ~ 36.0 9.8 

Clay (WBC) 224.8 18.6 88.9 31.0 7.9 2.2 

Water 0.8 0.1 0.1 0.1 ~ ~ 

Loamy Sand 0.2 0.0 ~ ~ ~ ~ 

Sand 11.0 0.9 ~ ~ 2.7 0.7 

Silty Clay Loam 1.9 0.2 ~ ~ ~ ~ 

Clay Loam (DBC) 117.0 9.7 0.2 0.1 93.4 25.5 

Clay (DBC) 117.8 9.7 ~ ~ 66.3 18.1 

Unweathered 

Bedrock (DBC) 116.2 9.6 
~ ~ 

80.3 21.9 

Loam 174.6 14.4 28.5 9.9 18.4 5.0 

 

 

The spatial distribution of the soil classes in Table 3 is provided in Figure 3. The 

soil classes that spanned both the WBC and DBC subwatersheds were split into unique 

soil classes for each watershed. Doing so enabled the calibration of the soil parameters 

separately for each of the watersheds. The soil map in Figure 3 shows a general pattern of 

bedrock lined channels and clay soils at higher elevations. The low infiltration rates of 

bedrock and clay soil types leads to increased runoff generation and the potential for 

large flood events. Notably, during the winter of 1993 a flood event of 150 m3/s was 

measured at the Wet Beaver Creek streamflow gauge which is the largest event of record. 
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Figure 3. Map of soil texture types in the Beaver Creek watershed from SSURGO. 

 

2.2.4 Land Cover and Vegetation 

Land cover is a model input for the classification of different vegetation types 

within the watershed. There is a set of 12 parameters required by tRIBS that are based on 

vegetation types which play important roles in the modeling of evapotranspiration and 

snow dynamics. tRIBS possess the ability to ingest vegetation parameters in tabular form 

and raster grids. The Beaver Creek model uses a combination of both methods. The land 

cover product utilized in the study is LANDFIRE REMAP, developed by the USDA 

(Picotte et al., 2019). LANDFIRE REMAP is a newly updated (2020) version of the 

LANDFIRE product suite that serves to represent the environmental conditions in 2016. 

LANDFIRE REMAP takes advantage of satellite imagery, Light Detection and Ranging  
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Table 4. Areal coverage for land cover classification in the Beaver Creek and 

subwatersheds. 

 

(LiDAR), and control plots to create a gridded product at 30 m resolution for entire 

United States. LANDFIRE REMAP vegetation types from the raw products includes 

highly detailed vegetation types which were aggregated to eight main vegetation types 

using methods outlined in Hawkins (2012). Table 4 and Figure 4 show the percent 

coverage and spatial distribution of the aggregated vegetation types in the Beaver Creek. 

Land Cover Class 

Beaver Creek Wet Beaver Creek Dry Beaver Creek 

Area 
Basin 

Coverage 
Area 

Basin 

Coverage 
Area 

Basin 

Coverage 

(km2) (%) (km2) (%) (km2) (%) 

Desert Shrub 226.5 20.4 22.3 7.8 23.5 6.4 

Desert Riparian 28.2 2.5 5.8 2.0 16.0 4.4 

Grassland 1.6 0.1 0.3 0.1 0.3 0.1 

Pinyon-Juniper 407.9 36.8 96.5 33.6 119.2 32.4 

Developed 28.0 2.5 1.2 0.4 12.4 3.4 

Ponderosa Pine 394.6 35.6 152.9 53.2 195.2 53.1 

Water  0.2 0.0 0.0 0.0 0.0 0.0 

Desert 20.8 1.9 8.3 2.9 1.0 0.3 
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Figure 4. Map of land cover types with 30 m raster cells in Beaver Creek watershed from 

LANDFIRE REMAP. 

 

 The main improvement of LANDFIRE REMAP over previous versions are 

continuous distributions of vegetation fraction and vegetation height. Previous versions 

of LANDFIRE provided these in ~10 m increments of vegetation height and ~10% 

increments of vegetation fraction as polygons. A new base map derived from LiDAR for 

LANDFIRE REMAP provides raster values at <1 m resolution at increments of 1% for 

vegetation height and fraction, respectively. To take advantage of these improvements, 

these new products were incorporated into the Beaver Creek model. The maps for these 

vegetation parameters are provided in Figure 5. 
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Figure 5. Maps of (a) vegetation fraction and (b) vegetation heights in 30 m raster cells 

in the Beaver Creek watershed from LANDFIRE REMAP. 

 

 There is a section in southeast corner of the watershed within the ponderosa pine 

forest originally classified as a burned area with reduced vegetation height and fraction. 

Imagery from the same time period as the maps did not show this area to be different than 
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the surroundings. Thus, due to the importance of vegetation height on snowpack 

dynamics, vegetation height in this area was adjusted using linear regression. The linear 

regression was created by selecting a region close to the burned area of the same area 

coverage. Then, using vegetation height as the predictand and vegetation fraction as the 

predictor for the regression, the vegetation height in the burned was adjusted to what is 

shown in Figure 5. The land use, vegetation height, and vegetation fraction maps were 

converted into the arcgrid format using MATLAB which can be read by the model. 

 

2.2.5 Bedrock 

Depth to bedrock provides a lower model boundary condition at the bottom of the 

soil column. In the original application of Hawkins (2012), the bedrock information from 

the SSURGO dataset were increased during the model calibration process. A model 

physics update completed in this study allowed for a more realistic use of depth to 

bedrock. Furthermore, a newer version of soil information that combines multiple 

datasets known as gNATSGO has since been released (Soil Survey Staff, 2020). This 

new updated bedrock map was used for the Beaver Creek application as shown in Figure 

6 which represents the depth from the soil surface to bedrock in meters.  

The depth bedrock map in Figure 6 generally corresponds with the soil classes 

shown in Figure 3. Due to the way the depth to bedrock is measured, certain sections of 

the watershed had missing data and are represented as bedrock depths greater than 2 

meters. The data was modified such that depths greater than 2 meters were set to 2 m. 
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Figure 6. Map of depth to bedrock for the Beaver Creek Watershed from gNATSGO. 

 

2.2.6 Streamflow 

There are three active stream gauges within the BCW, with their spatial locations 

shown in Figure 1. The gauges on the WBC and DBC are funded in part by the Salt River 

Project and Arizona Department of Water Resources and maintained by the USGS. These 

two gauges are the main streamflow observations used for model calibration. The data is 

acquired from the USGS National Water Information Service (U.S. Geological Survey, 

2016). The stream gauge at the outlet of the Beaver Creek watershed near Camp Verde, 

Arizona was taken over by the National Park Service (NPS) around 2010. The data 

before this period is sparsely available from Hawkins (2012). The streamflow records for 

after the year 2010 were acquired from an NPS staff member, but a rating curve for the   
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Figure 7. Daily map of SWE from SWANN on February 23, 2008, for the state of 

Arizona based on the Salt River Project private version of SWANN at 1 km resolution. 

 

site has not been properly maintained (personal communication, August 9, 2019). 

Streamflow values above 1 m3/s are considered inaccurate and there are large periods of 

missing data. Thus, the study excluded records from the outlet stream gauge and only 

used the WBC and DBC for calibration of the model. 

 

2.2.7 Snow Water Equivalent  

High temporal resolution and spatially distributed measurements of snow depth or 

snow water equivalent (SWE) in the United States are limited to specific circumstances 

such as field campaigns (Broxton et al., 2016). Snow pillow measurements such as the 
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previously described SNOTEL lack the high spatial resolution that distributed models are 

able to simulate. Remote sensing methods that estimate snow extent or snow-covered 

area are available daily at high spatial resolutions but lack the ability to provide 

information about volume. To address these issues, researchers at the University of 

Arizona combined different observational datasets (SNOTEL and Cooperative Observer 

Network) with precipitation and air temperature forcings from PRISM to construct 

gridded SWE across the entire continental US (Broxton et al., 2016). The result is a daily, 

4 km resolution dataset, available publicly from the National Snow and Ice Data Center 

for water years 1982-2020 (Broxton, 2019b). for specific applications in Arizona, the Salt 

River Project funded these researchers to conduct an extensive snow survey campaign in 

northern Arizona at two 100 km2 sites where ground measurements like snow density 

along with LiDAR and satellite imagery were used to train an artificial neural network 

(Broxton et al., 2017). The artificial neural network was then used to downscale the 

original SWE dataset based on topography and other land surface characteristics to a 1 

km resolution for the state of Arizona, now called Snow Water Artificial Neural Network 

(SWANN). The ANN was able to represent the two study sites well but extending the 

ANN model to the watershed scale led to biases in SWE of up to 30%, due to the high 

spatial variability of snow density (Broxton et al., 2019). An example of the SWANN 

product is shown in Figure 7 on the day of maximum SWE for the Beaver Creek 

watershed in the 2008 water year. This product is a very useful tool for this work due it’s 

continuous record and the high spatial resolution which allows basin scale calibration of 

SWE at temporal and spatial scales. 
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3 METHODOLOGY 

3.1 Precipitation Bias-Correction 

Using the five rain gauges with quality controlled daily data provided by SRP 

staff, bias-correction of NEXRAD Stage IV data was completed using methods from 

Hussein (2020). Climatological monthly average precipitation for water years 2002-2018 

was computed for the five stations and each of the NEXRAD raster cells that fall within 

the BCW boundary. The known station elevations shown in Table 2 along with the 

elevations of the NEXRAD raster cells, found by resampling the 1/3 arc-second digital 

elevation model (DEM) from the USGS were used to compute precipitation lapse rates. 

Lapse rates were estimated using linear regressions for each month of the year with 

precipitation as the predictand and elevation as the predictor. The lapse rates for a month 

during the cold and warm season (January and July) are provided in Figure 8. The gauge 

lapse rates for warm season months are closer to the raw NEXRAD data, while the cold 

season months like January and February showed large differences at higher elevations. 

The latter spurred the implementation of a bias-correction method that account for 

elevation differences in precipitation.  

The bias-correction procedure has two steps: (1) adjust NEXRAD based on 

station lapse rates for the entire BCW, and (2) adjust NEXRAD based on monthly totals 

of areal precipitation at the stations and co-located raster cells. The bias-correction 

procedure is outlined below: 

𝑃𝑦,𝑚(𝑧) = 𝑃𝑁,𝑦,𝑚 ∗ 𝛾𝑚(𝑧) ∗ 𝜔𝑦,𝑚, (1) 
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where 𝑃𝑦 ,𝑚 is the bias-corrected precipitation for year, y, and month, m, at elevation, z. 

𝑃𝑁,𝑦,𝑚 is the raw NEXRAD precipitation for year, y, and month, m, at elevation, z. 𝜔𝑦,𝑚 

is the total monthly precipitation correction factor for year, y, and month, m. The 

correction factor based on precipitation lapse rates, 𝛾𝑚 is the lapse rate weight for month, 

m, at elevation, z. The monthly precipitation weight is calculated as follows: 

𝛾𝑚(𝑧) =
𝑎𝑔,𝑚 + 𝑏𝑔,𝑚𝑧

𝑎𝑁,𝑚 + 𝑏𝑁,𝑚 𝑧̅ 
, (2) 

where 𝑎𝑔/𝑁,𝑚 and 𝑣𝑔/𝑁,𝑚 are the regression coefficients for month, m, from the lapse rate 

regressions for gauges and NEXRAD, respectively, and 𝑧̅ is the mean watershed 

elevation. The second correction factor, based on total monthly precipitation is: 

𝜔𝑦,𝑚 =
1

𝑆
∑

𝑃𝑔,𝑖,𝑦,𝑚

𝑃𝑁,𝑖,𝑦,𝑚

𝑆

𝑖=1
, (3) 

where 𝑃𝑔,𝑖,𝑦,𝑚 is the monthly precipitation for station i in month m of year y, 𝑆 is the total 

number of stations, and 𝑃𝑁,𝑖,𝑦,𝑚 is the NEXRAD precipitation in the co-located raster cell 

for station, i, month, m, and year, y. The bias-corrected monthly precipitation is 

disaggregated to the hourly NEXRAD precipitation based on the number of hours with 

zero precipitation in the month as follows: 

𝑃𝑦,𝑚,𝑑,ℎ(𝑧) = 𝑃𝑁,𝑦,𝑚,𝑑,ℎ(𝑧) +
𝑃𝑦,𝑚(𝑧) − 𝑃𝑁,𝑦,𝑚

𝑁ℎ,𝑦,𝑚
. 

(4) 

where 𝑁ℎ,𝑦,𝑚 is the number of hours in month, m and year, y with nonzero values of 

precipitation. Figure 8c shows the differences in mean total monthly precipitation across 

2003-2018 water years for the raw and bias corrected NEXRAD. 
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Figure 8. Monthly mean precipitation as a function of elevation from stations and 

NEXRAD for (a) January and (b) July over a 16 year period. (c) Monthly mean areal 

precipitation for the Beaver Creek from raw and bias corrected NEXRAD. Dashed and 

solid lines in (a) and (b) are linear regressions for stations and NEXRAD, respectively. 

 

3.2 Meteorological Forcing Preparation 

The meteorological forcing for the model was prepared using the three datasets 

outlined in section 2.2.2. Multiple iterations of the meteorological forcing were prepared 

over the course of the study. The first iteration was raw NLDAS-2 data, but the pixilation 

effects shown in Hawkins (2012) were undesirable. Following Ko et al. (2019), the raw 

NLDAS-2 was downscaled using functional relations outlined in Liston and Elder 

(2006b). After testing the downscaled NLDAS-2, we found air temperature was not 

properly represented across the watershed. The final forcing used for model simulations 

was prepared by downscaling gap filled station data using localized lapse rates. The 

details of the procedure are outlined in the following two sections. 

 

3.2.1 Gap Filling Station Data 

The station data from the five weather stations discussed in section 2.2.2 

contained sections of missing or erroneous data over the 16-year period of interest. 



  29 

Manual quality control of erroneous measurements like values outside of their physical 

limits were removed from the station time series because continuous hourly records were 

required for the downscaling procedure. The missing or removed data were repopulated 

using bias corrected NLDAS-2 data. 

The bias corrected NLDAS-2 data was prepared using a method known as 

quantile mapping. Quantile mapping is a commonly used method of bias correcting when 

downscaling global climate models that uses the statistical distribution of two datasets 

(Cannon et al., 2015). First, hourly time series of the co-located NLDAS-2 raster cells 

were extracted from the raster grids. Any missing data from the station timeseries is also 

removed from NLDAS-2. After the two timeseries are obtained, the bias correction is 

completed using the following equation: 

𝑥𝐵𝐶,ℎ,𝑑,𝑚,𝑦 = 𝐹
−1[𝐹(𝑥𝑁𝐿𝐷𝐴𝑆,ℎ,𝑑,𝑚,𝑦 , 𝑋𝑁𝐿𝐷𝐴𝑆,𝑚), 𝑋𝑂𝑏𝑠,𝑚] (5) 

where 𝑥𝐵𝐶,ℎ,𝑑,𝑚,𝑦  and 𝑥𝑁𝐿𝐷𝐴𝑆,ℎ,𝑑,𝑚,𝑦 are the bias corrected and raw NLDAS variable 

value for hour, h of day, d of month, m of year y, respectively. 𝑋𝑁𝐿𝐷𝐴𝑆,𝑚 and 𝑋𝑂𝑏𝑠,𝑚 are 

the raw NLDAS and station variable values of month m, respectively. F is the empirical 

cumulative distribution function using the Hazen-Williams plotting position and 𝐹−1 is 

the inverse of F. The method outlined in equation 5 fits a distribution to the 

meteorological variable for NLDAS observations for a given month. Then the cumulative 

probability for a NLDAS data point is found from the NLDAS distribution. The 

cumulative probability is used to find the corresponding variable value from the 

observation distribution. In short, quantile mapping transforms the statistical distribution 

of NLDAS to be more similar the observations. After the bias correction was completed, 

missing or erroneous data from stations is populated with bias corrected values. 
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3.2.2 Localized Lapse Rates & Downscaling 

The spatial interpolation methodology used here to interpolate weather station 

data into gridded meteorological data requires air temperature lapse rates. Initially, 

monthly air temperature lapse rates from the literature were used, but after further 

examination the local lapse rates for Beaver Creek in winter months were found to be 

significantly different from published values. Localized lapse rates for the Beaver Creek 

watershed were computed using PRISM. To compute these lapse rates, average monthly 

air temperature for each of the PRISM raster cells that fall within the Beaver Creek 

watershed were extracted for water years 2003 to 2018. In addition, a 1/3 arc-second 

DEM from the USGS was aggregated to the 4 km resolution of PRISM for the raster cell 

elevations. Using simple linear regression, lapse rates were computed for each month of 

the year, with the regression coefficients show in Table 5. Additionally, Figure 9 

illustrates the differences in lapse rates from literature (Liston and Elder, 2006b) and the 

localized rates from PRISM for a winter and summer month. 
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Figure 9. Comparison of air temperature lapse rates for (a) January and (b) July from 

PRISM and Liston and Elder (2006b). Symbols corresponds to average air temperature 

for each raster cell from PRISM that are located within the Beaver Creek watershed. 

 

Table 5. Coefficients of regression derived from linear regression of monthly average air 

temperature and elevation of PRISM raster cells. The regression equation follows the 

form: 𝑇𝐴 = 𝑎𝑍 + 𝑏 where TA is the air temperature and Z is the elevation. 

Month a [oC] b [oC/km] 

Jan 15.6 -7.27 

Feb 17.7 -7.76 

Mar 20.7 -7.90 

Apr 24.5 -8.20 

May 29.4 -8.47 

Jun 34.3 -8.22 

Jul 37.0 -8.25 

Aug 36.2 -8.36 

Sep 33.0 -8.35 

Oct 26.7 -7.97 

Nov 19.8 -7.34 

Dec 14.6 -6.78 

 

 

Following methods outlined in Liston and Elder (2006b), the gap filled weather 

station data was downscaled into hourly raster grids at a 1 km resolution. While the 

methodology allows downscaling to whatever resolution is desired, 1 km was chosen as a 

middle ground between capturing terrain features and avoid portraying detail that does 
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not exist in the base forcing. Detailed information on the equations for the downscaling 

procedure are presented in Liston and Elder (2006b). The procedure contains two general 

steps. First, station data at every step is spatially interpolated across the domain using the 

Barnes objective analysis scheme (Barnes, 1994; Koch et al., 1983) to create gridded 

meteorological data. Second, a set of equations that ingest topological data in the form of 

elevation, slope, and aspect are applied to adjust the gridded data. The second step is 

where the localized air temperature lapse rates are incorporated. Air temperature is also 

used in the adjustment of other variables such as relative humidity. The topological data 

used the second step are based on the 1/3 arc-second DEM resampled to 1 km. The 

resampling and calculation of slope and aspect were completed in ArcGIS. 

 

3.3 Simulation Experiments 

 Model experiments were completed by applying a set of simple climate change 

experiments and adjusted vegetation inputs that represent the change in forest properties 

due to forest thinning. An outline of the model experiments is presented in Table 6. It 

should be noted that the goal of these experiments is not to provide an exact 

representation of future conditions but instead to provide insight into the sensitivity of 

hydrologic processes in the Beaver Creek watershed to these disturbances. 
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Table 6. Summary of model simulation experiments with acronyms and descriptions. 

Scenario Acronym Description 

Base Case BC0 
No forest treatment or warming with 

calibrated parameters 

Base Case + 

Warming 

BC1, BC2, BC4, 

BC6 

No forest treatment and +1, 2, 4, 6oC of 

warming with calibrated parameters 

Post Treatment PT0 
Forest treatment, no warming with 

calibrated parameters 

Post Treatment + 

Warming 

PT1, PT2, PT4, 

PT6 

Forest treatment and +1, 2, 4, 6oC of 

warming with calibrated parameters 

 

3.3.1 Climate Change 

A set of climate change experiments were constructed that represent the general 

increases in global temperature from the range of emission scenarios in Coupled Model 

Intercomparison Project Phase 5 (CMIP5) (IPCC, 2013). Specifically, CMIP is a project 

developed by the World Climate Research Program to look at projections of future 

climate and CMIP5 is the 5th phase of the project. CMIP5 contains four scenarios of 

potential future emissions of greenhouse gases called representative concentration 

pathways (RCP). Each of these scenarios has a standardized set of emissions that are used 

to force general circulation models (GCM). For this study, we used the general range of 

global mean surface temperature increases from long-term simulations up to 2100, +1 to 

+6°C to modify the original model forcing developed for the model calibration. To do so, 

the temperature changes outlined in Table 6 were added to the hourly air temperature 

forcing as a change factor. This method has been used in the past (Nemec and Schaake, 

1982; Xu and Halldin, 1997; Zhang et al., 2013; Liu et al., 2019) and is a simple upward 
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shift in the diurnal cycle of air temperature. Changes in other meteorological variables 

such as relative humidity or precipitation were not considered in this study. 

 

3.3.2 Forest Thinning 

Forest thinning was conducted to examine the aggregated impact of changes in 

forest structure. Research has shown that the patchy distribution and degree of canopy 

closure in ponderosa pine forests play an important role in hydrologic dynamics (Moir et 

al., 1997). However, incorporating these distinct features into the model were outside of 

the study scope. The methodology applied here uses data from multiple sources to derive 

modified vegetation parameter values to the model that mimic the effect of thinning. 

Spatially distributed data of pre- and post-treatment basal area for areas in and 

around Beaver Creek were provided by 4FRI staff as a shapefile (personal 

communication, May 9, 2020). Pre-treatment conditions from the 4FRI dataset are based 

on forest stand estimates from 2010. The post-treatment conditions are a model output 

from the Forest Vegetation Simulator (FVS) using the pre-treatment conditions and 

treatment type as an input (Crookston et al., 2005). The data provided by 4FRI staff only 

covers the ponderosa pine forest within the Dry Beaver Creek as the Beaver Creek lies on 

the boundary of two separate phases of the 4FRI study. The pre- and post-treatment 

distribution of basal area from the 4FRI data is shown as the black and red lines in Figure 

10. A separate dataset from Wilson et al. (2013) provides basal area as rasters at 250 m 

resolution for different tree species, derived using field plot measurements and satellite 

imagery. As the ponderosa pine basal area, shown in Figure 11, from Wilson et al. (2013) 

represents conditions from 2011 the dataset was treated as pre-treatment conditions in the  
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Figure 10. (a) Scatter plot of pre- and post-treatment basal area from 4FRI dataset with a 

dashed line showing the linear regression. (b) Relative frequency distributions of basal 

area from 4FRI and linear regression. 

 

study. In order to acquire post-treatment basal area as a raster, a simple model was 

developed to relate pre- and post-treatment basal area from the 4FRI dataset using linear 

regression, shown in Figure 10. 

Figure 10b highlights the differences between the distribution of basal area in the 

pre- and post-treatment dataset from 4FRI. It also shows the general ability of the linear 

regression to model the post-treatment 4FRI data, but it does not capture the tails of the 

distribution. In addition to linear regression, three methods of curvilinear regression were 

examined (exponential, power law, and 2nd order polynomial). All four regression 

methods produced similar results with Pearson correlation coefficients approximately 

equal to 0.5. Next, the linear regression was applied to the pre-treatment basal area raster 

in order to get a raster of pre-treatment basal area. Following 4FRI standards outlined in 

Hampton et al. (2011), basal area values less that approximately 12 m2/ha (52 ft2/ac) were  
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Figure 11. (a) Pre-treatment basal area for the ponderosa pine forest in the Beaver Creek 

at 30 m resolution. (b) Percent change in ponderosa pine basal area from modeled forest 

thinning using linear regression. 

 

not thinned. For example, Robles et al. (2014) documented a set of constraints to forest 

thinning such as areas with extreme slopes, erodible soils, protected wildlife habitats, and 

wildland-urban interface zones in the Salt-Verde River watershed. The latter constraints 
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were found to have little to no impact on the total amount of thinned forest in regard to 

the Beaver Creek and were not accounted for. The result from this work is shown in 

Figure 11b with the percent change in basal area from the modeled forest thinning. 

Following Moreno et al. (2016), basal area maps along with empirical relations 

were used to calculate vegetation parameters that represent pre- and post-treatment 

conditions. The functional forms of the empirical relationships are outlined below: 

𝑉𝐹 =
𝐵𝐴 + 2.794

2.898
, 

(6) 

where VF is the vegetation fraction (%) and BA is the basal area in ft2/acre. This relation 

was derived in Moreno et al. (2016) from data presented in Hampton et al. (2011). 

Similarly, the empirical relation for leaf area index (LAI) was developed with field 

measurements in Moreno et al. (2016): 

𝐿𝐴𝐼 = | − 0.00003738369𝐵𝐴2 + 0.01683112155𝐵𝐴 −  0.03539819521|, (7) 

where LAI is a unitless parameter that accounts for the area that the canopy leaves cover 

in relation to the ground surface area. Based on LAI, tRIBS model parameters such as 

free throughfall coefficient, canopy storage capacity, and optical transmission coefficient 

were calculated. Free throughfall coefficient is calculated following Pitman (1989): 

𝑝 = exp (−1.5𝐿𝐴𝐼), (8) 

The free throughfall coefficient controls the fraction of liquid precipitation that is not 

captured by vegetation. Canopy storage capacity is calculated following Pitman (1989): 

𝑆 = 0.5𝐿𝐴𝐼, (9) 

The canopy storage capacity controls the maximum amount liquid precipitation that can 

be held within the vegetation canopy. Optical transmission coefficient is calculated 

following the Beer-Lambert Law: 
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𝑘𝑡 = exp (−𝑘𝐿𝐴𝐼), (10) 

where k is the canopy extinction coefficient. The value for k used in this study is 0.45 for 

needle leaf plants (Zhang et al., 2014). Using these equations, 𝑉𝐹, 𝐿𝐴𝐼, 𝑝, 𝑆, and 𝑘𝑡 maps 

were created for both pre- and post-treatment. Although tRIBS accepts spatially 

distributed vegetation inputs, the parameter raster were not directly substituted into the 

model for two main reasons. First, the Beaver Creek model only uses distributed 

vegetation data for h and VF, the other parameters are single values based on land cover 

polygons. To account for this, the parameter rasters were averaged across the land cover 

polygons for ponderosa pine. Second, as described in section 2.2.4, there are key 

vegetation parameters that control the snow model simulations which we wanted to have 

the ability to calibrate. The calibrated vegetation parameters (Table 10) and VF raster 

were treated as pre-treatment conditions as none of the proposed forest thinning has been 

completed by 4FRI. To calculate the post-treatment vegetation parameters, ratios between 

post- and pre-treatment parameter values were calculated. The ratios, referred to as 

change factors, were multiplied by the calibrated parameters to get the post-treatment 

parameters. VF follows a modified procedure in that change factors were computed for 

each raster cell of the vegetation fraction grids computed using equation 6 and multiplied 

against the VF grid displayed in Figure 5. The post-treatment vegetation parameter values 

for 𝐿𝐴𝐼, 𝑝, 𝑆, and 𝑘𝑡 along with the change factors are shown in Table 16 and the post-

treatment raster of VF is displayed in Figure 12. 
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Figure 12. Map of vegetation fraction after thinning in the ponderosa pine forest. 

 

3.4 tRIBS Model Overview 

The TIN-based Real-time Integrated Basin Simulator is a fully-distributed, 

physically-based hydrologic model that was developed at the Ralph M. Parsons 

Laboratory at the Massachusetts Institute of Technology. tRIBS possess capabilities that 

makes the model an attractive alternative to other hydrologic models developed in the 

research community. For example, tRIBS model domains are based on Voronoi polygons 

derived from a Triangulated Irregular Network (TIN) which allows a variable resolution 

across the model domain. In Vivoni et al. (2004), the authors developed an algorithm that 

places focus on areas of importance to hydrologic processes. The latter allows for high 

resolution in and around stream channels, while having a lower resolution in areas of low 

slope, significantly speeding up computational time in watersheds larger than 1000 km2 

(Hawkins, 2012). The formulation of tRIBS allows for simulating channel transmission, 
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plant interception, evapotranspiration, soil moisture dynamics, and runoff production. 

The capabilities of tRIBS were expanded in Rinehart et al. (2008) who implemented a 

single-layer snow model that accounts for topographic effects on snow processes.  

The tRIBS model representing the Beaver Creek was initially developed by 

Hawkins (2012) with the computational domain consisting of approximately 78,000 

voronoi polygons that represent the domain with an average resolution of 120 m2. Due to 

the high resolution and size (1100 km2) of the Beaver Creek model was separated into 52 

different subbasins based on the reach partitioning scheme for parallel simulations 

(Vivoni et al., 2011). Parallel simulations were completed on the Agave High 

Performance Computing Cluster (HPCC) at Arizona State University. The total length of 

real-world time for each 16 year simulation on Agave took approximately 30 hours with 

an additional 18 hours to merge the spatial outputs using Perl and processing the model 

outputs using Matlab all completed on Agave. 

Due to the emphasis of this work a detailed overview of the tRIBS snow model is 

provided along with general overviews of runoff production and infiltration, canopy 

interception of rainfall, evapotranspiration, and the energy balance. For details on the 

groundwater and channel routing models implemented into tRIBS the reader is referred to 

Ivanov et al. (2004) for a detailed description of these components. 

 

3.4.1 Snowpack Model 

The distributed snow model implemented in tRIBS is a single layer, energy and 

mass balance model. The model was developed by assembling components of multiple 

different snow models (Rinehart et al., 2008). Snow simulations begins with the 
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determination of precipitation phase, a portion of snowfall can be intercepted in the 

canopy which follows a mass balance with snow unloading controlled by air temperature. 

Snowfall onto the ground surface will form snowpacks that contain both solid and liquid 

precipitation. Snowpack ablation can occur through melt, sublimation, or evaporation 

based on the energy balance and the amount of liquid water in the snowpack. A detail 

description of these processes is described in the following sections. 

3.4.1.1 Governing Equations 

The snowpack energy balance in the distributed snow model is a combination of 

Wigmosta et al. (1994) and Tarboton and Luce (1996). The state equations that control 

the snowpack mass balance is as follows: 

𝑑𝑊𝑖

𝑑𝑡
= 𝑃𝑖 + 𝐹𝑖 +𝑀𝑗𝑖 , 

(11) 

𝑑𝑊𝑗

𝑑𝑡
= 𝑃𝑗 + 𝐹𝑗 +𝑀𝑖𝑗 − 𝑅𝑙𝑖𝑞 , (12) 

where i and j refer to the phases ice and liquid respectively, 𝑊 is the water equivalent in 

phase i or j, P is the precipitation falling as phase i or j, F is the turbulent flux that is 

either sublimation for phase i or evaporation for phase j, M is the water equivalent that 

transformed from one phase to the other in the snowpack, and 𝑅𝑙𝑖𝑞 is the amount of liquid 

water routed from the snowpack. The state equation that controls the development of 

internal energy in the snowpack is as follows: 

𝑑𝑈

𝑑𝑡
= 𝐿 + 𝐻 + 𝑃 + 𝑅𝑆 + 𝑅𝐿

𝑖𝑛 + 𝑅𝐿
𝑜𝑢𝑡. (13) 

where 𝑈 is the internal energy of the snowpack, 𝐿 is the latent heat flux, 𝐻 is the sensible 

heat flux, 𝑃 is the precipitation heat flux, 𝑅𝑆 is the incoming shortwave radiation, 𝑅𝐿
𝑖𝑛 is 
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the incoming longwave radiation, and 𝑅𝐿
𝑜𝑢𝑡 is the outgoing longwave radiation. The 

calculation of the variables above will be discussed in the following sections. 

 

3.4.1.2 Precipitation and Snow Ablation 

Snow model simulation begins with the determination of the precipitation phase 

falling to the surface. The methods for determining precipitation phase are known as 

phase partitioning methods (PPM). These methods use the meteorological conditions at 

the land surface for determining phase. A variety of PPM exist for snow models, the 

simplest being a single temperature threshold that separates rain and snow. The methods 

increase in complexity from a two-temperature threshold that accounts for a mixture of 

rain and ice (Wigmosta et al., 1994) to methods that use relative humidity and air 

temperature to compute the wet bulb temperature (Wang et al., 2019). The PPM used in 

the model is intermediate in complexity, where precipitation is linearly portioned 

between two temperature thresholds: 

𝑓𝑠 =

{
 

 
1, 𝑖𝑓 𝑇𝑎 < 𝑇𝑠
0, 𝑖𝑓 𝑇𝑎 > 𝑇𝑟
𝑇𝑎 − 𝑇𝑠
𝑇𝑟 − 𝑇𝑠

, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}
 

 
. (14) 

where 𝑓𝑠 is the fraction of precipitation that is snow, 𝑇𝑠 (
oC) is the temperature below 

which all precipitation is snow, and 𝑇𝑟 (oC) is the temperature above which all 

precipitation is liquid. Default values for these thresholds in tRIBS are -1.1 and 3.3 (oC) 

for 𝑇𝑠 and 𝑇𝑟 respectively (Allard, 1957).  

 Water can leave an established snowpack in the form of liquid routed to the 

ground surface, sublimated from snow to vapor, or evaporated from liquid to vapor. 
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Liquid water is routed out of the snowpack if its amount exceeds the liquid water holding 

capacity of the snowpack, following Wigmosta et al. (1994): 

𝑅𝑙𝑖𝑞 = 𝑊𝑙𝑖𝑞 − 𝜑𝑙𝑖𝑞𝑊  𝑖𝑓  𝑊𝑙𝑖𝑞 > 𝜑𝑙𝑖𝑞𝑊. (15) 

where 𝑊𝑙𝑖𝑞 is the depth of liquid water in the snowpack,  𝜑𝑙𝑖𝑞 is the liquid water holding 

capacity, 𝑊 is the snow water equivalent of the snowpack, and 𝑅𝑙𝑖𝑞 is the depth of the 

liquid water being routed to the ground surface. The default value for 𝜑𝑙𝑖𝑞 is 0.06, but 

this value ranges widely based on snowpack characteristics like density (Goto et al., 

2012). Sublimation and evaporation from the snowpack is controlled by the latent heat 

flux, the calculation of which is shown in equation 17. Sublimation of ice occurs if the 

temperature of the snowpack is below 0𝑜𝐶, conversely evaporation occurs if the 

snowpack temperature is above 0𝑜𝐶. This method works because for the snowpack 

temperature to be above 0𝑜𝐶 there must be liquid water present in the snowpack. 

Additionally, deposition of mass into the snowpack is possible if the necessary conditions 

are met. Sublimation/evaporation and deposition is calculated as follows: 

𝐹𝑖 =
𝐿𝑖

𝜌𝑙𝑖𝑞𝜆𝑖
. 

(16) 

where 𝐹𝑖 is the depth of sublimation or deposition for phase 𝑖, 𝐿𝑖 is the latent heat flux for 

phase 𝑖, and 𝜆𝑖 is the latent heat of freezing. Equation 16 is also used for the calculation 

of evaporation using the latent heat of evaporation. 

 

3.4.1.3 Energy Fluxes 

The snowpack energy balance, shown in equation 13, is composed of six different energy 

fluxes. Both the latent and sensible heat fluxes are described in Wigmosta et al. (1994): 
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𝐿 =
0.622𝜆𝑖𝜌𝑎𝑖𝑟(𝑒(𝑇𝑎) − 𝑒𝑠(𝑇𝑎))

𝑃𝑎𝑟𝑎
, 

(17) 

𝐻 =
𝜌𝑎𝑖𝑟𝑐𝑝,𝑎𝑖𝑟 (𝑇𝑎 − 𝑇𝑎)

𝑟𝑎
. 

(18) 

where 𝜌𝑎𝑖𝑟 is the density of air, 𝑒(𝑇𝑎) is the vapor pressure at the snow surface at air 

temperature 𝑇𝑎, 𝑃𝑎 is the air pressure, 𝑟𝑎𝑠 is the aerodynamic resistance with calculations 

outlined in Wigmosta et al., (1994), and 𝑐𝑝,𝑎𝑖𝑟 is the specific heat capacity of air at 

constant pressure. Sensible heat flux, H, plays an important role in the total energy 

balance of the snowpack across a winter season. The latent heat flux, L, plays a less 

important role but controls the amount of sublimation/evaporation occurring in the 

snowpack. The precipitation heat flux, P, in equation 13 is calculated as: 

𝑃 = 𝜌𝑙𝑖𝑞𝑃𝑛𝑒𝑡((1 − 𝑓𝑠)𝜆𝑓 + 𝑓𝑠𝑐𝑝𝑇𝑎), (19) 

where 𝑃𝑛𝑒𝑡 is the net precipitation after canopy interception. The last three components of 

the energy balance deal with incoming radiation. The model contains multiple methods of 

varying complexity that account for sheltering of the ground surface from incoming 

shortwave radiation. The method use in this study accounts for only local sheltering of 

shortwave radiation due to topography and vegetation. Incoming shortwave radiation at 

the snowpack surface is calculated as follows: 

𝑅𝑠 = 𝐼𝑑𝑠𝑣𝑙𝑜𝑐𝑎𝑙(1 − 𝑎𝑠𝑛)(𝐾𝑡𝑉𝐹 + (1 − 𝑉𝐹)), (20) 

where 𝐼𝑑𝑠 is the incoming direct shortwave radiation, 𝑣𝑙𝑜𝑐𝑎𝑙 is the local sheltering factor, 

𝑎𝑠𝑛is the snow albedo, 𝐾𝑡 is the optical transmission coefficient, and VF is the vegetation 

fraction. The local sheltering factor is calculated as a function of the Voronoi polygon 

slope following Dozier and Frew (1990): 
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𝑣𝑙𝑜𝑐𝑎𝑙 = 0.5 ∗ (1 +  𝑐𝑜𝑠(𝑆)), (21) 

where S is the slope of the Voronoi polygon. Snow albedo depends on the age of the 

snowpack surface since the last snowfall event and the presence of liquid water in the 

snowpack (Wigmosta et al., 1994): 

𝑎𝑠𝑛 = {
0.85(0.94)𝑁

0.58
  𝑖𝑓 𝑊𝑙𝑖𝑞 = 0

0.85(0.82)𝑁
0.46

  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}.  (22) 

where N is the number of days since the last snowfall event. Incoming and outgoing 

longwave radiation is based on adjusted black body radiation theory where incoming 

longwave also account for cloud that is approximated using relative humidity (Bras, 

1990). Incoming longwave radiation is calculated using gray-body Stefan-Boltzmann 

equation that includes adjustments that account for cloud cover based on relative 

humidity (Bras, 1989). Outgoing longwave radiation is calculated based on snow 

emissivity and temperature of the snowpack following Tarboton and Luce (1996). 

 

3.4.1.4 Canopy Snow Model 

Vegetation canopy can play an important role in snow dynamics through the 

interception of falling snow. The amount of intercepted snow varies widely between tree 

species with deciduous trees intercepting much less snow due to the loss of leaves in the 

fall compared to evergreen trees, such as ponderosa pines that dominate the upper 

elevations of the Beaver Creek watershed. The canopy mass balance is simpler the 

ground snowpack model, adapted from Liston and Elder (2006a): 

𝐼𝑡 = 𝐼𝑡−1 + 𝐿𝑙𝑜𝑎𝑑𝑖𝑛𝑔 +𝑄𝑐𝑠 + 𝐿𝑚, (23) 
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where 𝐼𝑡 is the mass of snow in the canopy at time t, 𝐿𝑙𝑜𝑎𝑑𝑖𝑛𝑔 is the mass of snow loaded 

into the canopy, 𝑄𝑐𝑠 is the mass of snow sublimated from the canopy, and 𝐿𝑚 is the mass 

of snow unloaded from the canopy. The amount of snow loaded into the canopy is a 

function of snow already in the canopy  𝐼𝑡−1 and canopy snow holding capacity, 𝐼𝑚𝑎𝑥: 

𝐿𝑙𝑜𝑎𝑑𝑖𝑛𝑔 = 0.7(𝐼𝑚𝑎𝑥 − 𝐼
𝑡−1) (1 − exp (−

𝑃

𝐼𝑚𝑎𝑥
)),  (24) 

The canopy holding capacity is a function of the canopy leaf area index, LAI: 

𝐼𝑚𝑎𝑥 = 4.4𝐿𝐴𝐼, (25) 

Leaf area index is a vegetation parameter that is unique to each vegetation class. 

Unloaded snow from the canopy is determined using an air temperature index method: 

𝐿𝑚 = 5.8 ∗ 10−5(𝑇𝑎 − 273.15)Δ𝑡, (26) 

where Δ𝑡 is the snow model timestep (1 hour). The calculation of canopy sublimation is 

more involved than the ground snowpack and is a function of the amount of intercepted 

snow in the canopy, relative humidity, and incoming shortwave radiation: 

𝑄𝑐𝑠 = 𝐶𝑒𝐼
𝑡𝜓𝑠Δ𝑡. (27) 

where 𝐶𝑒 is the canopy exposure coefficient, and 𝜓𝑠 is the sublimation rate loss 

coefficient for an ice sphere. The calculation of these two parameters is described in 

Rinehart et al. (2008). 

 

3.4.2 Runoff Production and Infiltration 

The soil column is characterized as a sloped, layered soil column that extends to 

bedrock. Layering of the soil column is not explicit and is instead characterized using 

anisotropy ratio for both the saturated and unsaturated zones along with a relation that 
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describes the decay of hydraulic conductivity with depth from the surface. Infiltration 

into the soil column leads to the formation of wetting fronts in the soil that can saturate 

the soil leading to runoff production, consumed for evaporation, routed laterally between 

neighboring cells, or recharge to the groundwater table. The most important of these 

processes to this study is the production of runoff and the role saturated hydraulic 

conductivity plays in controlling runoff production. For a detailed description of the other 

processes occurring in the soil column the reader is referred to Ivanov et al. (2004). 

tRIBS simulates four main runoff generation mechanisms: infiltration excess, 

saturation excess, perched return flow, and ground water exfiltration. The most dominant 

of these types in this work are infiltration and saturation excess. Infiltration excess in the 

model will occur under two conditions, first is when the soil surface becomes saturated 

due rainfall intensity is greater than the surface saturated hydraulic conductivity. Under 

this condition ponded infiltration will occur which is calculated using a modified version 

of the Green-Ampt model (Beven, 1984): 

𝑞𝑛(𝑁𝑓) = 𝐾𝑒𝑓𝑓(𝑁𝑓) cos(𝛼) + 𝜓𝑖𝑠(𝑁𝑓), (28) 

where 𝑞𝑛(𝑁𝑓) is the infiltration rate normal to the soil surface, 𝑁𝑓 is the depth to the 

wetting front, 𝐾𝑒𝑓𝑓 is the harmonic mean of conductivity of the saturated depth, 𝛼 is the 

slope of the soil column, and 𝜓𝑖𝑒 accounts for capillary forces in the soil. The dominant 

component behind infiltration is gravity, controlled by the conductivity. 𝐾𝑒𝑓𝑓 decays 

exponentially from the soil surface, calculated as follows: 

𝐾𝑒𝑓𝑓(𝑁𝑓) = 𝐾0𝑛
𝑓𝑁𝑓

𝑒𝑓𝑁𝑓 − 1
, (29) 
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where 𝐾0𝑛 is the surface hydraulic conductivity, and f is the exponential decay rate. As 

the wetting front moves down the soil column under these conditions the rates of 

infiltration will no longer be controlled by the surface conductivity but the conductivity at 

the wetting front. This leads into second way infiltration excess runoff can occur: 

unsaturated infiltration at the soil surface leads to formation of a perched zone due to 

reduced conductivity at the wetting front: 

𝑞𝑛(𝑁𝑓 , 𝑁𝑡) = 𝐾𝑒𝑓𝑓(𝑁𝑓 , 𝑁𝑡) cos(𝛼) + 𝜓𝑖𝑒(𝑁𝑓), (30) 

where 𝑁𝑡 is the depth to the top of the wetting front. Here, 𝐾𝑒𝑓𝑓 represents the harmonic 

mean of conductivity but modified to calculate the mean over wetting front depth: 

𝐾𝑒𝑓𝑓(𝑁𝑓 , 𝑁𝑡) = 𝐾0𝑛
𝑓(𝑁𝑓 −𝑁𝑡)

𝑒𝑓𝑁𝑓 − 𝑒𝑓𝑁𝑡
, (31) 

If the rate of infiltration above the wetting from is large enough then the soil above the 

wetting front will become saturated leading to infiltration excess runoff. 

 Runoff production through saturation excess occurs when the wetting front 

reaches the ground water table and the top of wetting front is at the soil surface, also 

known as the fully saturated state. This runoff mechanism is less prominent in semiarid 

regions like the southwestern US but can still occur in areas with shallow depths to 

bedrock. The final two runoff generation mechanism, perched return flow and ground 

water exfiltration can occur with the formation a perched zone or ground water table that 

is near the soil surface. One case of these mechanism is if the slope is high then water 

will leave the soil column laterally and generated runoff on adjacent cells. 
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3.4.3 Surface Energy Balance 

The surface energy balance plays an important role in determining the amount of 

evaporative moisture losses from the soil after net radiation 𝑅𝑛 is partitioned into sensible 

𝐻, latent 𝜆𝐸, and ground 𝐺 heat fluxes: 

𝑅𝑛 − 𝐺 = 𝜆𝐸 + 𝐻, (32) 

Similar to the snowpack energy balance, net radiation is composed of three components: 

incoming shortwave and longwave radiation, and outgoing longwave radiation. The 

calculation of these three components is nearly identical to how the components are 

calculated in the snowpack energy balance. For more details refer to Ivanov et al., (2004). 

In this study the most important component of the surface energy balance is latent heat 

flux for its role in calculating evapotranspiration. The model has multiple different 

methods for determining the latent heat flux, the method used in this study is the Penman-

Monteith approach (Penman, 1948; Monteith, 1965): 

𝜆𝐸 =
Δ(𝑅𝑛 − 𝐺) + 𝛾

𝜌
𝑚
𝜆𝑣𝛿𝑞𝑎
𝑟𝑎

Δ + 𝛾 (1 +
𝑟𝑎
𝑟𝑠
)

 (33) 

where Δ is the slope of the Clausius-Clayperon relationship, 𝛾 is the psychometric 

constant, 𝑟𝑠 is the stomatal resistance, 𝛿𝑞𝑎 is the specific humidity deficit, and 𝜆𝑣 is the 

latent heat of vaporization. The ground heat flux is calculated using the force-restore 

model, outlined in Hu and Islam (1995). 
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3.4.4 Canopy Interception and Evapotranspiration 

tRIBS contains multiple different options for representing canopy interception 

and evapotranspiration. The method used in this study is the canopy water balance which 

is based on Rutter et al. (1971) and described in the following equation: 

𝑑𝐶

𝑑𝑡
= (1 − 𝑝)𝑃 − 𝐷 −

𝐶

𝑆
𝐸𝑝, (34) 

where C is the canopy storage, p is the free-throughfall coefficient, D is the canopy 

drainage, S is the canopy storage parameter, and 𝐸𝑝 is the potential evapotranspiration. 

Canopy drainage is calculated using an empirical equation that represent dripping from 

leaves or stemflow using an exponential relationship (Shuttleworth et al., 1997). The final 

term in in equation 34 describes the amount of wet canopy evaporation occurring based 

on the potential ET and the relative amount of water stored in the canopy.  

 Potential evapotranspiration along with other components of evapotranspiration 

are calculated following Wigmosta et al, (1994): 

𝐸𝑝 = 𝐸𝑎 (
Δ + 𝛾 (1 +

𝑟𝑎
𝑟𝑠
)

Δ + 𝛾
), (35) 

where 𝐸𝑎 is the actual evapotranspiration computed from the latent heat flux in equation 

33. Using potential evapotranspiration, the soil evaporation and canopy transpiration are 

computed. The soil evaporation, 𝐸𝑠, takes on the following functional form: 

𝐸𝑠 = (1 − 𝑣)𝛽𝑒𝐸𝑝, (36) 

where 𝛽𝑒 is the soil moisture stress. 𝛽𝑒 represent the amount of soil moisture in the upper 

layer of the soil column, calculated using the following relationship: 

𝛽𝑒 = min (1,
𝜃100
0.75𝜃𝑠

), (37) 
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where 𝜃100 is the soil moisture in the top 100 mm of the soil column, and 𝜃𝑠 is the soil 

moisture at saturation. The canopy ET has two components, transpiration, 𝐸𝑑𝑐, and 

evaporation from the wet canopy 𝐸𝑤𝑐. Evaporation rates are controlled by potential ET 

and the amount of water stored in the canopy: 

𝐸𝑤𝑐 = {

𝑣𝐸𝑝  𝑖𝑓 𝐶 ≥ 𝑆

𝑣𝐸𝑝𝐶

𝑆
  𝑖𝑓 0 ≤ 𝐶 ≤ 𝑆

},  (38) 

Transpiration rate from the canopy is calculated as follows: 

𝐸𝑑𝑐 = 𝛽𝑡𝑣(𝐸𝑃 − 𝐸𝑤𝑐) [
Δ + 𝛾

Δ + 𝛾 (1 +
𝑟𝑎𝑠
𝑟𝑠
)
],  (39) 

where 𝛽𝑡 represents the current soil moisture stress in the root zone (top 1 m). 𝛽𝑡 controls 

the amount of transpiration that occurs and is a function of soil properties: 

𝛽𝑒 = min(1,
𝜃𝑡𝑜𝑝 − 𝜃𝑟
0.75𝜃𝑠 − 𝜃𝑟

).  (40) 

where 𝜃𝑡𝑜𝑝 is the soil moisture in the top 1 m of the soil column, and 𝜃𝑟 is the residual 

soil moisture. 
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4 RESULTS AND DISCUSSION 

This chapter begins by outlining the model calibration and validation procedure. 

First, an overview is presented of the calibrated soil and land cover parameters and the 

role that those parameters have in controlling the model results is discussed. Then the 

results from point scale modelling at two SNOTEL stations are presented along with a 

discussion of the snow model parameters and their importance for the basin scale 

modelling. Next, the model calibration and validation results are presented from basin 

scale modelling in the Beaver Creek over the 16 year simulation period and compared to 

estimates of SWE and streamflow observations. Additionally, an examination of model 

performance and the influence of cascading effects that the model forcings have on the 

simulation of hydrologic processes. The calibrated model is then used to assess an 

additional nine simulation experiments encompassing climate change and forest thinning. 

4.1 Model Calibration and Validation 

The calibration procedure starts with long-term point scale simulation at the 

Happy Jack SNOTEL to derive an initial set of snow model parameters which are then 

applied as model verification at Bar-M SNOTEL. Subsequently, calibration in the Beaver 

Creek was broken down into two main components: snowpack and streamflow model 

calibration. As shown in section 3.4.1, the connection between snowpack and streamflow 

processes in tRIBS is the linkage of snowmelt and the soil column surface. In order to 

properly calibrate streamflow, the snowpack model must be calibrated first. Furthermore, 

calibration and validation were broken down into two seasons, cold and warm seasons 

(November to April and May to October, respectively). These seasons are defined by the 

months with consistent snow coverage or lack thereof over the historical record.  
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Table 7. tRIBS soil parameter descriptions. 

Parameter Description Units 

Ks 
Saturated Hydraulic 

Conductivity 
[mm/hr] 

θs Soil Moisture at Saturation [ ] 

θr Residual Soil Moisture [ ] 

λ Pore distribution index [ ] 

ψ Air Entry Bubbling Pressure [mm]  

f Decay parameter [mm-1] 

as Saturated Anisotropy Ratio [ ] 

au Unsaturated Anisotropy Ratio [ ] 

N Porosity [ ] 

ks Volumetric Heat Conductivity [J/msK] 

Cs Soil Heat Capacity [J/m3K] 

 

4.1.1 Soil Parameters 

tRIBS requires a set of 11 soil parameters to describe the soil classes in the 

Beaver Creek (Figure 3). Most importantly, the soil parameters control the amount of 

vertical infiltration into the soil along with lateral fluxes of water in the saturated and 

unsaturated zones. Soil parameters also constrain the amount of evapotranspiration that 

can occur through soil moisture since both soil evaporation and plant transpiration 

depend on the water availability. Soil parameters in tRIBS are shown in Table 7.  

Due to the extensive efforts of establishing the Beaver Creek model by Hawkins 

(2012), the initial parameter values for all soil classes, key parameters that control 

watershed runoff, and dominant soil classes were already established. Nevertheless, 

alterations made to the meteorological forcing, land cover classification, and bedrock 

depth along with the incorporation of cold season processes required that additional 

calibration of soil parameters be completed. The 13 soil classes and their respective 

parameter values are presented in Table 8. 
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Table 8. Soil parameter values for the Beaver Creek watershed. Soil classes that span 

both Wet and Dry Beaver Creek were separated into unique types for each watershed. 

  Soil Parameters 

  
Ks θs θr λ ψ f as au N ks Cs 

Silty Loam 36.3 0.42 0.07 0.3 -15 0.01 300 900 0.49 0.7 1400000 

Clay Loam 

(WBC) 
22.3 0.39 0.08 0.35 -11 0.01 300 900 0.47 0.7 1400000 

Unweathered 

Bedrock (WBC) 
2.5 0.4 0.1 0.3 -7.5 0.01 300 900 0.48 0.7 1400000 

Sandy Loam 65 0.41 0.05 0.4 -15 0.01 300 900 0.46 0.7 1400000 

Clay (WBC) 3 0.4 0.1 0.35 -7.5 0.04 300 900 0.48 0.7 1400000 

Water 3.2 0.51 0.1 0.4 -15 0.01 300 900 0.61 0.7 1400000 

Loamy Sand 45 0.41 0.05 0.4 -15 0 300 900 0.46 0.7 1400000 

Sand 106 0.42 0.02 0.4 -15 0.01 300 900 0.44 0.7 1400000 

Silty Clay Loam 3.2 0.51 0.1 0.4 -15 0.01 300 900 0.61 0.7 1400000 

Clay Loam 

(DBC) 
22.3 0.39 0.08 0.35 -11 0.01 300 900 0.47 0.7 1400000 

Clay (DBC) 3 0.39 0.09 0.4 -7.5 0.02 300 900 0.48 0.7 1400000 

Unweathered 

Bedrock (DBC) 
2 0.39 0.09 0.3 -7.5 0.03 300 900 0.48 0.7 1400000 

Loam 28.2 0.43 0.03 0.3 -8 0 300 900 0.46 0.7 1400000 

 

 The dominant soil classes as provided by Hawkins (2012) are: Clay Loam, 

Unweathered Bedrock, and Clay for both the Wet and Dry Beaver Creek. Little 

calibration of soil classes that are not present in the Wet or Dry Beaver Creek was carried 

out due to the lack of streamflow data at the watershed outlet. After the changes to 
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bedrock depth were implemented, extremely high rates of soil evaporation were 

occurring in all soil classes due to the presence of more water near the soil surface. Using 

parameter sensitivity tests, air entry bubbling pressure was found to be a factor in 

controlling the high rates of soil evaporation. Thus, air entry bubbling pressure was 

reduced proportionally from Hawkins (2012) values based on how much the depth to 

bedrock changed in each soil class. The low values for decay of hydraulic conductivity 

parameters used in Hawkins (2012) led to little or no decay of hydraulic conductivity 

over the shallower depth to bedrock. Thus, the decay parameter was decreased across all 

soil classes and was also a main calibration parameter for the dominant soil classes. 

Saturated hydraulic conductivity is the second main calibration parameter. The largest 

changes in saturated hydraulic conductivity from Hawkins (2012) were in the 

unweathered bedrock soil classes. The bedrock lined channels of the Beaver Creek 

contain sinks and areas for water to accumulate during a precipitation event which are not 

represented with a uniform conductivity. Increasing saturated hydraulic conductivity 

served to represent these natural features and improved model performance. 

 After achieving adequate snowpack model performance and extensive testing of 

the soil parameter space in attempt to find a set of physically realistic parameters that 

represent both warm and cold season streamflow, we found that calibration for one 

season negatively impacted the other. The large amounts of cold season runoff from 

either rain or snowmelt events in the observed streamflow data led us to believe that soil 

properties are not time invariant in northern Arizona. Indeed, the efforts of the National 

Resource Conservation Service indicate that high elevation portions of the Beaver Creek 

can experience frost depths ranging from 18-30 inches (NRCS, 2010).  
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Changes in soil properties due to cold season processes in hydrological models is 

not a new concept. A technical report from the National Weather Service provides a 

literature review of how frozen soil effects can be incorporated into hydrological models 

using physically based or empirical methods (Koren et al., 2014). Additionally, Koren et 

al. (2006) found that soils with high clay fractions are the most sensitive to the impacts of 

frozen soil which coincides with four of the dominant soil classes in the Beaver Creek 

Watershed. The methods outlined in the technical report rely on the simulation of soil 

temperature. Lack of observed soil temperature (only one station in the watershed) and 

the current model version not accounting for exchange of ground heat flux between the 

soil surface and snowpack lead us to take a simpler approach to account for frozen soil 

effects. Specifically, linear relationship between air temperature and saturated hydraulic 

conductivity was implemented into the model as: 

𝐾𝑠𝑎 =

{
 

 
𝐾𝑠,   𝑖𝑓 𝑇𝑎 > 𝑇𝑚𝑎𝑥
𝛼𝐾𝑠,   𝑖𝑓 𝑇𝑎 < 𝑇𝑚𝑖𝑛
𝑇𝑎 − 𝑇𝑚𝑖𝑛
𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛

(𝐾𝑠 − 𝛼𝐾𝑠) + 𝛼𝐾𝑠,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒}
 

 
. (41) 

where 𝐾𝑠𝑎 is the adjust saturated hydraulic conductivity for cold season processes, 𝑇𝑚𝑎𝑥 

is the maximum air temperature at which frozen soil effects occur, 𝑇𝑚𝑖𝑛 is the air 

temperature at which the soil is frozen, and 𝛼 controls the minimum saturated hydraulic 

conductivity of frozen soil. The implementation of the equation above provides three 

calibration parameters for controlling runoff. Through sensitivity testing, we found that 

model is not overly sensitive to the parameter 𝛼 with the value set 0.004. The model was  
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Table 9. tRIBS land cover parameter descriptions. 

Parameter Description Units 

P Free Throughfall Coefficient - Rutter [ ] 

S Canopy Field Capacity - Rutter [mm] 

K Drainage Coefficient - Rutter [mm/hr] 

g Drainage Exponential Parameter - Rutter [mm-1] 

Al Albedo [ ] 

h Vegetation height [m] 

Kt Optical Transmission Coefficient [ ] 

Rs Canopy-average Stomatal Resistance [s/m] 

V Vegetation Fraction [ ] 

LAI Canopy Leaf Area Index [ ] 

Θ𝑠
∗ Stress threshold for Soil Evaporation [ ] 

Θ𝑡
∗ Stress threshold for Plant Transpiration [ ] 

 

found to be more sensitive to the two temperature thresholds which were calibrated to be 

(4oC, 7.5oC) for 𝑇𝑚𝑖𝑛 and 𝑇𝑚𝑎𝑥, respectively. The reduction of cold season saturated 

hydraulic conductivity allowed us to adjust 𝐾𝑠 to reduce runoff during the warm season 

from monsoon storm events while preserving runoff amounts during the cold season.  

 

4.1.2 Land Cover Parameters 

Land cover parameters control the amount of evapotranspiration and canopy 

intercepting that occur. tRIBS allows the user to choose between different methods for 

the simulations of evapotranspiration and canopy interception. The methods used in the 

study are Penman-Monteith and canopy water balance for evapotranspiration and  
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Table 10. Land cover parameter values for Beaver Creek watershed. 

 Land Cover Parameters 

  P S K g Al Kt Rs LAI Θ𝑠
∗ Θ𝑡

∗ 

Desert Shrub 0.75 1.7 0.1 4 0.19 0.55 18.8 1.9 0.32 0.32 

Desert Riparian 0.5 1.2 0.12 3.5 0.15 0.5 52.5 3.31 0.29 0.29 

Grassland 0.9 1 0.12 4.7 0.14 0.8 30 1.65 0.30 0.30 

Pinyon-Juniper 0.55 2 0.1 4 0.18 0.3 18.8 1.8 0.31 0.31 

Developed 0.9 0.5 0.05 3.9 0.23 0.8 15 2 0.30 0.30 

Ponderosa Pine 0.3 2.5 0.12 3 0.3 0.4 25 2 0.38 0.38 

Water  1 1 0.01 3.7 0.07 1 0 0.1 0.31 0.31 

Desert 0.9 0.2 0.05 3.7 0.25 0.9 22.5 0.4 0.32 0.32 

 

interception, respectively. In total, these methods require the input of 11 parameters, the 

names of these are shown in Table 9. 

 Similar to the soil parameters, values from calibration preformed in Hawkins 

(2012) were used to parameterize the model application initially. As outlined in section 

2.2.4, spatially distributed values of vegetation fraction and height were used in place of 

discrete values for each land cover class as performed with the other parameters. The 

parameter values for the eight land cover classes in the Beaver Creek model are shown in 

Table 10. 

 Three land cover classes cover approximately 93% of the entire Beaver Creek 

watershed: desert shrub, pinyon-juniper, and ponderosa pine. Parameter calibration 

focused on these three classes. Parameters that are important to the calibration process in 

the study are stomatal resistance, stress thresholds for plant transpiration/soil evaporation, 

leaf area index, and optical transmission coefficient. Stomatal resistance and the two 

stress thresholds are key parameters in controlling the evapotranspiration and turbulent 

fluxes from land cover. Lower stomatal resistance for vegetation reduces the amount of 



  59 

transpiration that will occur. The two stress thresholds are used in determining the soil 

moisture stress, where higher values mean that the soil column is more easily stressed, 

which limits the water available for evapotranspiration. These three parameters were 

calibrated to reduce total evapotranspiration such that the average annual ratio of ET/P 

was not greater than 1 over the 16 year simulation period, a summary of the annual ET/P 

ratios is shown in Table 15. 

 LAI and optical transmission coefficients are important parameters in calibrating 

the snowpack simulations. LAI is a physical characteristic of vegetation that represent 

that canopy leaf area that is projected over the ground surface. In the snow model, LAI 

controls the snow holding capacity of the canopy. The optical transmission coefficient 

limits how much incoming solar radiation can penetrate the forest canopy and reach the 

snowpack. Decreasing the optical transmission coefficient results in the snowpack 

persisting longer into the spring when solar radiation is increasing after the low winter 

rates.  

 

4.1.3 Model Initialization 

 In physically based models, the groundwater depth is critical in the proper 

simulation of soil dynamics at the start of the simulation period. Past studies using tRIBS 

(Vivoni et al., 2005; Hawkins, 2012) with deeper depths to bedrock than used here were 

based on drainage experiments to create the initial groundwater depth. These experiments 

consist of setting the water table level at the ground surface across the entire watershed 

and running the model with all meteorological and land surface fluxes turned off. The 

model is run until simulated streamflow matches that of the observed at the start of the  
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Figure 13. Map of initial groundwater depth at the start of the calibration period (October 

1st, 2002) after 4 years of model spin-up using raw 12 km resolution forcing from the 

NLDAS-2 dataset. 

 

simulation period of interest. Another common method is to run the model for a certain 

number of years before the simulation period of interest so that the soil moisture and 

groundwater depth reach a quasi-equilibrium at the start of the simulation period. 

 In the Beaver Creek model, a spin up period of 4 years, from October 1st, 1997 to 

September 30th, 2002 was used. An eight year spin up period was tested initially but due 

to the shallow bedrock depths in the watershed longer spin up periods had little to no 

impact on the soil water state at the start of the calibration period. Figure 13 shows a map 

of the initial groundwater depths at the start of the calibration period. tRIBS possesses the 

functionality to write restart files that contain values for all model state variables. From 

these restart files, the model can continue on exactly from where the model last ended. 



  61 

These restart files were used separate the spin up and calibration period in order to start to 

start the model on October 1st, 2002. 

 

4.1.4 Performance Metrics 

Simulated streamflow and snow water equivalent (SWE) are compared to 

independent datasets using both qualitative (visual) and quantitative (metrics) methods. 

Streamflow is compared against observations from the USGS at two internal stream 

gauges in the watershed. Simulated SWE is compared against estimated SWE from the 

Snow Water Artificial Neural Network Modeling System (SWANN). Three performance 

metrics were selected that give a comprehensive overview of model performance. The 

metrics are root mean squared error (RMSE), bias, and correlation coefficient (CC). The 

mathematical definitions of these metrics are shown in the following equations: 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑄𝑜,𝑡 − 𝑄𝑠,𝑡)

2𝑁

𝑡=1
, 

(42) 

𝑏𝑖𝑎𝑠 =
𝑄𝑠̅̅ ̅

𝑄𝑜̅̅̅̅
, 

(43) 

𝐶𝐶 =

1
𝑁 − 1

∑ ((𝑄𝑠,𝑡 − 𝑄𝑠̅̅ ̅) ∗ (𝑄𝑜,𝑡 − 𝑄𝑜̅̅̅̅ )) 
𝑁
𝑡=1

√ 1
𝑁 − 1

∑ ((𝑄𝑠,𝑡 −𝑄𝑠̅̅ ̅)
2) 𝑁

𝑡=1 ∗ √
1

𝑁 − 1
∑ ((𝑄𝑜,𝑡 − 𝑄𝑜̅̅̅̅ )

2) 𝑁
𝑡=1  

. 

(44) 

 

4.1.5 Point Scale Modelling 

tRIBS can simulate scales ranging from regional watersheds (Ko et al., 2019) to 

single weather stations (Rinehart et al., 2008). When located within the watershed of 

interest, single point models are useful for some initial testing of model parameters and  



  62 

Table 11. Distributed snow model parameters adjusted during the calibration process. 

Note that initial parameters are those derived from Rinehart et al., (2008). 

Parameter Units Symbol 
Initial 

Values 

Calibrated 

Values 

Minimum Liquid Prec. 

Temperature 
[°C] Ts -1.1 0 

Maximum Solid Prec. 

Temperature 
[°C] Tr 3.3 4.4 

Liquid Water Holding 

Capacity 
[ ] φliq 0.06 0.08 

Accumulating Snow 

Albedo 
[ ] αa 0.85 0.88 

Melting Snow Albedo [ ] αm 0.85 0.82 

Accumulating Albedo 

Decay Coefficient 
[ ] λa 0.94 0.94 

Melting Snow Albedo 

Decay Coefficient 
[ ] λm 0.82 0.84 

 

develop confidence in the model to expand simulations to the watershed scale. As 

outlined in section 2.1, there are two SNOTEL stations within the Beaver Creek. 

Hawkins (2012) developed a point scale model for Happy Jack SNOTEL and used it to 

compare simulated soil moisture and temperature to observations for one summer. Using 

the same model, I expanded the simulation period to 16 full years including snowpack 

dynamics. 

Due to missing data on soil moisture and temperature at Happy Jack, the purpose 

of the point scale simulation was to the isolate key parameters that control snowpack 

accumulation, ablation, and canopy interception. An overview of the soil and land cover 

parameters for Happy Jack is shown in Table 11. The snow model parameter set  
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Figure 14. Hourly time series of precipitation, air temperature, and modeled versus 

observed snow water equivalent at Happy Jack SNOTEL. 

 

developed at Happy Jack were then incorporated into the single point model for Bar-M 

SNOTEL for an independent validation of the model. These parameter values along with 

the initial values are shown in Table 11. These parameters are the final values from the 

model calibration and validation that were re-incorporated into the SNOTEL models to 

prepare the simulation results for the point scale models. 

Sensitivity testing at Happy Jack yielded a set of parameters that snowpack 

simulations are the most sensitive to: liquid water holding capacity, temperature 

thresholds for precipitation partitioning, and coefficients for snowpack albedo decay. 

Increasing liquid water holding capacity of the snowpack aids in retaining the snowpack 

longer into the spring when increased temperatures result in phase transition from ice to 

liquid during the day. At night, if the temperature drops back below zero, the liquid water 
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can transition back into the ice phase. Similarly, high liquid water holding capacity can 

aid in snowpack retention during mixed phase precipitation events. Liquid water holding 

capacity values that are too large will result in unnaturally high retention of the snowpack 

into the early summer. The temperature thresholds are critical for simulating the amount 

snowfall that reaches the canopy or land surface. I found that the model is more sensitive 

to the maximum temperature at which snow can fall which is in agreement with other 

applications (Sun et al., 2019). The coefficients for decay of snow albedo with time are 

important for controlling how long the snowpack persists into the late spring when solar 

radiation is rapidly increasing. Sun et al. (2019) calibrated albedo coefficients at 

SNOTEL stations across the western United States and aggregated the results into the 

eight ecoregions. The calibrated values for AZ-NM ecoregion provided improved results 

over the default values and were incorporated into the model. Figure 14 displays the time 

series of observed and modeled SWE, along with air temperature and precipitation. 

Happy Jack SNOTEL is located in a forest clearing surrounded by ~16 m tall 

ponderosa pine trees. Canopy interception of snowfall before reaching the snow pillow 

measurement station is predicted to be close to zero. Modelling Happy Jack as an open  
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Figure 15. (a) Monthly mean time series of precipitation, modeled versus observed 

volumetric soil moisture, θsur. (b) Monthly mean modeled versus observed soil 

temperature, Ts. Monthly standard deviations are shown as error bars. 

 

clearing (changing land cover type to grassland), however, would result in no 

shading from solar radiation by the canopy or reduction in sub-canopy windspeed. The 

latter two factors were found to be more important in the simulation of SWE as compared 

to canopy interception of snowfall. Thus, the model treated the station as ponderosa pine 

forest. Overall, the model captures well the timing of snow accumulation and melt when 

compared to the observations. Water years with observed snowpacks below 150 mm of 
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maximum SWE proved difficult for the model to simulate due to the sensitivity of the 

energy balance of small snowpacks to small changes in meteorological conditions like air  

temperature. Adjusting key parameters that affect the snow model to better simulate 

underperforming years would disrupt performance in other years. Thus, a balance was 

struck to not over-simulate years with large snowpacks, but still simulate less active snow 

years reasonably well.  

Figure 15 shows the point scale simulation results of surface soil moisture (θsur) 

and temperature (Ts) versus observations at 50 mm sensor depth. Observations were 

aggregated to monthly mean values due to missing data and erroneous values. Modeled 

surface soil moisture are average values over the top 100 mm of the soil column. The 

model is able to capture the annual trends in soil moisture and temperature. Soil moisture 

conditions reaching values close to saturation during the late winter/early spring were not 

achievable in the model. In addition, model results showed increased deviation from the 

mean values compared to the observed soil moisture. The snowpack soil moisture 

simulations shown above provided confidence in the model and led to the development of 

a second point scale model for the Bar-M SNOTEL. 

As highlighted in section 2.1, Bar-M SNOTEL data collection began in the fall of 

2012. Soil and land cover parameters required for simulations were acquired from the 

watershed scale model, displayed in Table 11. Bar-M is situated ~400 m below Happy 

Jack in elevation and experiences smaller snowpacks compared to corresponding years at 

Happy Jack. Figure 16 shows that the model setup at Bar-M is able to better simulate the 

smaller snowpacks. Like at Happy Jack, the model is able replicate well the timing of 

snow accumulation and melt, as shown with the 0.88 correlation coefficient. In addition,  
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Table 12. Model land cover and soil parameters from calibration at Happy Jack and 

validation at Bar-M SNOTEL stations. Parameter values for Bar-M were retrieved from 

the watershed scale model. 

Station 
Land Cover Parameters 

P S K b Al h Kt Rs VF LAI θs
* θt

* 

Happy 

Jack 
0.3 2.5 0.12 3.5 0.3 16 0.4 25 0.43 2.2 0.38 0.38 

Bar-M 0.3 2.5 0.12 3 0.3 11 0.4 25 0.5 2.2 0.38 0.38 

                          

  
Soil Parameters 

Ks θs θr λ ψ f as au N ks Cs 

Happy 

Jack 
29.3 0.48 0.02 0.44 

-

15.3 
0.126 200 300 0.44 0.7 1400000 

Bar-M 25.3 0.39 0.08 0.35 -3.4 0.008 300 300 0.47 0.7 1400000 

 

 

Table 13. Performance metrics for Happy Jack and Bar-M snowpack simulations.  

Metrics were calculated using daily average SWE for the cold season (NOV. to APR.). 

  Metrics 

  RMSE Bias CC 

  [mm] [ ]   [ ] 

  Calibration 

Happy 

Jack 
76.9 0.71 0.69 

  Validation 

Bar-M 15.8 0.72 0.88 
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Figure 16. Hourly time series of precipitation, air temperature, and modeled versus 

observed snow water equivalent at Bar-M SNOTEL. 

 

Bar-M is able to better represent the maximum SWE, even in years with smaller 

snowpacks. The bias, shown in Table 12 for both stations are similar and indicate ~30% 

under simulation of SWE. Simulating the same maximum SWE at SNOTEL sites proved 

difficult without degrading performance in drier years. This is not surprising because 

SNOTEL sites are known to be in location that accumulate large amounts of snow 

compared to their surrounding areas (Bales et al., 2006). 

 

4.1.6 Basin Scale Modelling 

Data available from NEXRAD ST4 began in 2002 which corresponds with the 

time at which most of the weather stations used to prepare model forcings were 
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established. The complete simulation period for the study was chosen to be water years 

(WY) 2003 to 2018, 16 years of simulations in total. This was separated into two halves, 

WY2003-2010 and WY2011-2018 for the calibration and validation period, respectively. 

Calibration of the snow model parameters took place before streamflow due to the nature 

of needing snowmelt to be correct before streamflow.  

Multiple iterations of precipitation and meteorological forcing were tested during 

the model calibration process. Initial bias correction of NEXRAD followed Robles-

Morua et al. (2012) using annual mean areal precipitation (MAP) across the watershed, 

but this led to a miss characterization of the elevation-precipitation relationship in the 

watershed. Meteorological forcings were originally developed by downscaling raster cell 

values from the NLDAS-2 that fall within the watershed, but this method poorly 

represented air temperature within the watershed which is a key component for snowpack 

simulations. The inclusion of localized air temperature lapse rates, outlined in section 

3.2.1, led to advantageous improvements in the model forcing. 

Figure 17 shows the visual performance of snowpack simulations in the Beaver 

Creek using daily basin average SWE and scatter plots of cold season average SWE 

versus elevation for the calibration and validation periods. Peak SWE magnitude is 

generally lower in the modeled case compared to SWANN (estimated). Nonetheless, the 

model still captures the overall trends in timing of snow accumulation and melt. Water 

years with large, modeled winter snowpacks (WY2005 and 2010) yielded calibration 

difficulties as SWE at high elevation would persist into the late spring and early summer, 

which has cascading effects on streamflow generated from snowmelt. A balance was 

struck that improved melt timing for wet winter years, but did not negatively impact drier  
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Figure 17. (a) Modeled and estimated mean snow water equivalent timeseries from 

calibration (WY2003-2010) and validation (WY2011-2018). Mean winter (NOV.-APR.) 

snow water equivalent from 1km raster cells for (b) calibration and (c) validation.  

 

years in the calibration period. Less than ideal performance in certain years can be due to 

a number of factors, but the main contributors are the air temperature and precipitation 

forcings and their interaction with the phase partitioning method in the model. In order to 

simulate snowfall to the land surface, both hourly forcings have to be in agreement. If the 

timing between P and Ta is out of phase, then no snowfall or mix phased precipitation 

will occur, either of which can result in liquid water passing through the snowpack to the 

soil surface. An example of this is January of WY2008, where several large snow 

accumulation events in the SWANN estimates are missed in the simulations. This results 

in under simulation of SWE for the entire winter, even though events later in the season 

are better modeled. For these accumulation events, the precipitation forcing was checked  
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Table 14. Performance metrics between estimated and modeled basin average SWE for 

the calibration and validation periods. Metrics computed at a daily resolution during only 

months within the cold season. 

RMSE Bias CC 

[mm]  [ ]  [ ] 

Calibration 

14.8 0.7 0.95 

Validation 

7.2 0.58 0.92 

 

and there are indeed large events, but the air temperature is not cold enough for snow to 

fall in the model. 

Table 13 contains the performance metrics outlined in section 4.1.4 between the 

estimated and modeled basin average SWE time series (Figure 17a) for the calibration 

and validations periods during cold seasons months. Values for the metrics are similar to 

other applications of the same model (Mahmood et al., 2014; Moreno et al., 2016). While 

the metrics show good agreement with the SWANN dataset, note that the comparison is  

not to observational data. SWANN itself is a model output and subsequently was not 

taken as the ground truth throughout the calibration process. The larger under simulation 

of SWE in the validation period indicated by the bias is not immediately visually present 

in the time series. Figure 17c indicates that largest under simulation of SWE occurring in 

the 1950 to 2200 m elevation band in the watershed. Under simulation at these mid 

elevations in the model are attributed to the quality of the air temperature forcing to the 

model. The stations used to derive the air temperature forcing (Figure 1) are not located 

near or at the same elevations where the poor performance occurs. Therefore, air 

temperature forcing for these areas are populated using interpolation of the closest 
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stations. If more stations were available in these areas, model metrics such as bias are 

expected to improve for both calibration and validation periods. Figure 17b,c highlight 

the model ability to match average SWE estimations at low to mid elevations. The 

formation of small, shallow snowpacks at low elevations is common in any given year 

but they will quickly melt due to low vegetation fraction and warmer air temperature. For 

the calibration period, the modeled average SWE generally has the same pattern of SWE 

versus elevation but the elevation at which average SWE begins to rapidly increase is at a 

higher elevation in the modeled case. The general pattern of the estimated SWE versus 

elevation for calibration and validation period are considerably different. The reason 

behind the difference is attributed to the three years with larger than average snowpack 

from WY2003 to 2010. Although the model was not able to reproduce the same pattern 

as SWANN for the validation period, the timeseries of mean SWE shows good 

performance. 

Figure 18 displays the mean difference across water years for maximum SWE for 

both the calibration and validation periods. Both calibration and validation show the 

largest difference in maximum SWE occurring at the upper elevations, where most 

snowfall occurs. In addition, the larger difference in maximum SWE for calibration 

period is expected because larger snowpacks during those years. Lower elevations show 

maximum SWE near or slightly above zero. Over simulation of average maximum SWE 

difference during the calibration at low elevations is attributed to a large snow 

accumulation event during WY2002 which rapidly melted. 
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Figure 18. Maps of average difference in SWE between modeled and estimated 

(modeled minus estimated) across water years for (a) calibration and (b) validation 

periods. 

 

Following the snowpack model calibration in the Beaver Creek, efforts shifted 

towards the calibration of streamflow. As highlighted in section 2.2.6, the streamflow 

gauge at the model outlet has large swaths of missing data along with an improper rating 

curve in recent years. Thus, calibration focused on simulating the two nested streamflow 

gauges in the watershed. Observations from the Wet and Dry Beaver Creek streamflow 

gauges were aggregated from 15 minute to hourly averages using Matlab timetables. 

Figure 19 shows the visual performance of modeled hourly streamflow compared 

to observations for the two streamflow gauges. The largest magnitude stream flow events 

in both the Wet and Dry Beaver Creek occur during the cold season. Peak discharges 

from snowmelt and rainfall events are generally much larger in the Dry Beaver Creek. 

Wet Beaver Creek sees a small but sustained baseflow throughout the year due to the  



  74 

Table 15. Model performance metrics for quantifying modeled hourly streamflow 

performance for Wet and Dry Beaver Creek broken down by season of the year. Cold 

season corresponds to November to April while warm season is May to October. 

    Metric 

Season Stream Gauge RMSE Bias CC 

    [m3/s] [ ] [ ] 

Calibration 

Cold Season 
Wet Beaver Creek 3.91 0.84 0.52 

Dry Beaver Creek 5.47 0.73 0.50 

Warm Season 
Wet Beaver Creek 2.82 0.87 0.53 

Dry Beaver Creek 3.90 0.81 0.51 

All 
Wet Beaver Creek 3.36 0.86 0.52 

Dry Beaver Creek 4.68 0.77 0.51 

Validation 

Cold Season 
Wet Beaver Creek 1.96 1.19 0.54 

Dry Beaver Creek 3.60 0.94 0.60 

Warm Season 
Wet Beaver Creek 1.54 1.25 0.52 

Dry Beaver Creek 2.61 1.16 0.60 

All 
Wet Beaver Creek 1.75 1.22 0.53 

Dry Beaver Creek 3.10 1.05 0.60 

 

presence of springs. In its current formulation, this spring-based baseflow is not 

represented in the tRIBS model. Figure 19 highlights that the model is able to simulate 

the large cold season streamflow events from the observations but is unable to match the 

magnitude of these events during specific water years such as 2005. The magnitude of 

simulated cold season streamflow events is close for both the Wet and Dry Beaver Creek, 

but Dry Beaver Creek is farther from the observations due to the larger events present in 

those observations. The timeseries of hourly streamflow were used to calculate the three 

model performance metrics, shown in Table 14. The metrics show that the model 

preforms marginally better during the warm season compared to the cold season but 

overall, there is good performance, with undersimulation and oversimulation of ~15% 

during the calibration and validation periods, respectively.  
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Figure 19. Hourly time series of mean areal precipitation and modeled versus observed 

streamflow for (a) Wet Beaver Creek and (b) Dry Beaver Creek. 

 

In addition to the hourly streamflow, mean monthly streamflow was used for 

visual calibration of streamflow, as shown in Figure 20 with shaded curves representing 

±1 standard deviations. The monthly mean streamflow highlights the variation in 

observed streamflow between the calibration and validation periods. The model is able to 

simulate well the unimodal pattern of streamflow, with peaks generally occurring earlier 

in the cold season for the calibration period. There is also a pattern of larger, early cold 

season streamflow for the simulations due to the simple method by which saturated 

hydraulic conductivity is adjusted based on air temperature. The latter also leads to the 

well simulated average streamflow during the warm season. The monthly averaged 

streamflow observations also highlight the large variation in magnitude and shape of the  



  76 

 

Figure 20. Modeled versus observed streamflow for calibration and validation periods in 

the (a, b) Wet Beaver Creek and (c, d) Dry Beaver Creek. Results are shown as monthly 

totals for precipitation and monthly means for streamflow with shaded curves and error 

bars showing ±1 standard deviations. 

 

annual streamflow hydrograph between calibration and validation periods, both of which 

the model is able to simulate well. 

Figure 21 shows the cumulative hourly streamflow for the simulations and 

observations along with precipitation model forcing in the Wet and Dry Beaver Creek. 

For both subwatersheds, the model is able to capture the rise in cumulative streamflow  
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Figure 21. Hourly cumulative streamflow from observations and modeled for (a) Wet 

and (b) Dry Beaver Creek along with mean areal precipitation. 

 

that occurs in the middle of the cold season, typically starting in January or February. 

During the calibration period, Wet Beaver Creek performs well compared to Dry Beaver 

Creek which under simulates four of the water years. Overall, model performance in 

terms of streamflow volume for both subwatersheds is good considering the drastic 

variance in precipitation regimes that occurs over a 16-year simulation period. Over or 

underestimation of streamflow in the Beaver Creek watershed is not unexpected, the area 

is known for complicated subsurface geology that contributes to the constant baseflow 

observed at Wet Beaver Creek. In addition, certain hydrologic processes such as channel 

losses were not accounted for in the version of tRIBS used in the study. Most of the Wet 

and Dry Beaver Creek has channels that are lined with bedrock, but at upper elevations 
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bedrock lined channels are not as prominent. Under simulation during extremely wet 

years like WY2005 is attributed to the unique precipitation regime that occurred that 

year. WY2005 is the wettest winter in the simulation period but had average snowfall. 

Due to this outlier, the majority of the precipitation that year was added to the subsurface 

which is visible with the change in subsurface storage for that year. 

Table 15 shows the annual water balance for the Beaver Creek watershed model. 

Here, 𝐸𝑇𝑡𝑜𝑡 includes both warm season ET from soil evaporation, dry canopy 

transpiration, and wet canopy evaporation along with canopy (SubC) and ground (SubG) 

sublimation when there is snow present. Due to the robust outputs from tRIBS, we are 

able to directly compute every component of the basin scale water balance. The change in 

subsurface storage, 𝑑𝑆/𝑑𝑡, is the summation of the water stored in the saturated and 

unsaturated zones (below or above the groundwater table). Computing 𝑑𝑆/𝑑𝑡 is 

accomplished using the basin average hydrologic timeseries file (*.mrf) using the 

following equations: 

𝑑𝑠

𝑑𝑡
=
𝑑𝑀𝑢

𝑑𝑡
+
𝑑𝑀𝑠

𝑑𝑡
, (45) 

𝑑𝑀𝑠

𝑑𝑡
= (𝑀𝐺𝑊𝑆 −𝑀𝐺𝑊𝐸)𝑀𝜃𝑠, (46) 

𝑑𝑀𝑢

𝑑𝑡
= (𝑀𝑆𝑀𝑈𝐸𝑀𝐺𝑊𝐸 −𝑀𝑆𝑀𝑈𝑆𝑀𝐺𝑊𝑆)𝑀𝜃𝑠. 

(47) 

where 𝑀𝑢 is the depth of water above the water table, 𝑀𝑠 is the depth of water in the 

water table, 𝑀𝐺𝑊𝑆 and 𝑀𝐺𝑊𝐸 are the mean depth to the groundwater table at the start 

and end of the water year respectively, 𝑀𝜂 is the spatially averaged porosity, 𝑀𝑆𝑀𝑈𝑆  

and 𝑀𝑆𝑀𝑈𝐸 are the mean soil moisture above the groundwater table at the start and end 

of the water year respectively, and 𝑀𝜃𝑠 is the spatially averaged soil moisture at  
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Table 16. Watershed scale water balance for the entire Beaver Creek. Note that Qsim is 

the simulated streamflow at the model outlet. 

Water 

Year 

Qsim P ET SG SC ETtot dS/dt 
Qsim/P ETtot/P 

[mm/yr] 

2003 134 692 409 31 29 469 105 0.19 0.68 

2004 26 406 344 27 26 396 -18 0.06 0.98 

2005 125 888 419 29 29 476 295 0.14 0.54 

2006 10 363 383 14 13 410 -64 0.03 1.13 

2007 19 403 373 29 16 417 -63 0.05 1.03 

2008 76 557 356 52 32 440 19 0.14 0.79 

2009 54 438 341 34 23 397 -26 0.12 0.91 

2010 119 627 321 59 24 403 80 0.19 0.64 

2011 67 529 384 43 23 450 19 0.13 0.85 

2012 49 543 391 36 27 454 50 0.09 0.84 

2013 84 589 398 41 33 472 122 0.14 0.80 

2014 32 433 351 14 9 374 55 0.07 0.86 

2015 60 549 415 5 5 426 68 0.11 0.78 

2016 39 490 444 38 22 504 -112 0.08 1.03 

2017 80 593 451 25 24 500 0 0.14 0.84 

2018 17 277 371 12 8 392 -165 0.06 1.41 

Mean 62 524 385 31 21 436 23 0.11 0.88 

 

saturation. The goal of looking at the basin scale water balance is to ensure closure of the 

water balance. Table 15 shows that indeed the model is closed or very close to with 

closure indicated by the mean values of the water balance (𝑑𝑆/𝑑𝑡 = 𝑃 − 𝐸𝑇𝑡𝑜𝑡 − 𝑄𝑠𝑖𝑚). 

Due to code limitations, the precipitation shown in the table was calculated from the 

precipitation grids fed into the model rather than from the outputs. 

The effect of using subsurface storage to meet evaporative demands in dry years 

is commonly referred to as the carryover effect. Wang and Alimohammadi (2012) found 

that specifically in arid regions of the United States that the carryover effect reduced the 

variability of ET due to variability of the climate. Table 15 highlights the model’s ability 

to simulate the carryover effect through patterns of extremely wet years adding large 
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amounts of water to subsurface storage (WY 2005), while subsequent dry years with low 

precipitation withdraw subsurface storage (WY 2006). Furthermore, from Table 15 one 

can see the difference in variability between P and ET with ET having lower variability 

which is attributed to the subsurface storage added in wet years. While WY2005 shows a 

carryover effect lasting potentially two years up to WY2007, WY2010 is also a wet year 

that does not add as much to the subsurface and has a smaller carry over effect. This is 

attributed to difference in climate between the years, WY2005 was extremely wet and 

warm while WY2010 is wet and cold. Furthermore, WY2005 precipitation during the 

cold season was many smaller events over the cold season which allowed large amounts 

of infiltration to occur. WY2010 precipitation is largely attributed to one atmospheric 

river event that resulted in the formation of a large snowpack rather. Soils are saturated in 

the late cold season when snowmelt begins thus more runoff rather than infiltration 

occurs. 

 

4.2 Simulation Experiments 

The goal of the simulation experiments is to analyze the changes in the basin scale 

water balance due to climate change and forest thinning. To accomplish this, the 

modified model inputs and parameters, described in section 3.3, were used to run the 

Beaver Creek model over the entire 16-year simulation period. In total, the simulation  

experiments add an additional 306 years of simulations or approximately 16,000 hours of 

computational time. Table 6 in summarizes the nine additional simulations experiments 

and the acronyms that will be used to reference them. The forest thinning experiments are  
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Table 17. Summary of pre- and post-treatment differences in 𝐿𝐴𝐼, 𝑝, 𝑆, and 𝑘𝑡 and 

change factors used derive post-treatment values.  

  P [ ] S [mm] Kt [ ] LAI [m2/m2] 

Change Factor 1.54 0.77 1.13 0.77 

Pre-treatment 0.3 2.5 0.4 2.2 

Post-treatment 0.46 1.92 0.45 1.69 

 

represented using a set of five vegetation parameters, four of which are shown in Table 

16, the fifth parameter, vegetation fraction is provided to the model in raster format.  

 

4.2.1 Water Balance Impacts 

Following Vivoni et al. (2005), changes in the basin scale water balance were 

examined as percent changes from the Base Case and as annual totals. Figure 22 shows 

the relative change in components of the water balance using percent change from the 

Base Case. While Figure 23 shows annual totals for fluxes and average SWE. Looking 

only at the Base Case plus warming scenarios, we can see that streamflow increase by a 

small amount at +1°C of warming, approximately 1.5% or 1 mm annually over the base 

case. At +2°C and above of warming, the total ET starts to dominate, reducing annual 

average streamflow in the Base Case. Interestingly, the curve for percent change in 

streamflow is not linear, with little to no changes in Q up to +2oC of warming, but the 

rate of decrease in streamflow increases rapidly at +4oC of warming with a 10% 

reduction compared to the Base Case. The increase in Q at +1oC is attributed to reduction 

in total sublimation with warming which is discussed in a later section. The forest 

thinning experiments in Figures 22 and 23 show that the change in components of the 

water balance follow generally the same pattern but shifted upward or downward  
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Figure 22. Percent change in components of the basin scale water balance for the climate 

change and forest thinning experiments. 

 

depending on the variable. Across all post-treatment experiments, streamflow is 

approximately 12% higher than the Base Case counterpart. Difference between the Base 

Case and Post-treatment increases slightly as warming increases, making thinning more 

valuable at higher levels of warming. Thus, the threshold at which the increase in total ET 

takes over the increased Q occurs at around +4oC of warming. The increase in streamflow 

is largely attributed to the decrease in evapotranspiration after thinning. The thinning 

experiments also reinforce the importance of the ponderosa pine ecosystem on the 

hydrological fluxes in the watershed. Specifically, changes in only the vegetation 

properties of ponderosa pine leads to considerable change in the basin water balance. 

Annual water balance totals for the nine simulation scenarios are available in Tables F.1 

through F.9 in Appendix F. 
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Figure 23. (a – h) Average annual components of the basin scale water balance for Base 

Case and Post-treatment simulation experiments at +0, +1 +2, and +6°C of warming. 

Where P is precipitation, SWE is snow water equivalent, M is snowmelt, 𝑆𝑔 is ground 

sublimation, 𝑆𝑐 is canopy sublimation, ET is total evapotranspiration, 𝐸𝑠𝑜𝑖𝑙 is bare soil 

evaporation, 𝐸𝑇𝑐 is canopy evapotranspiration, Δ𝑆 is change is subsurface storage, and R 

is runoff. 
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 4.2.3 Changes in Snowpack 

The changes in snow accumulation along with ablation due to climate change and 

forest thinning were examined in order to determine their impacts on other hydrologic 

processes. Critically important to the model simulations of snowpack is the partitioning 

of precipitation into ice or liquid. The climate change experiments have a direct effect on 

this partitioning because of the method implemented into the model. Figure 24 highlights 

these impacts of increasing temperatures on the average annual winter snowfall fraction 

using the model forcings and the precipitation phase model. The rapid progression of low 

snowfall fraction only at lower elevations without warming to covering most of the 

watershed at +2°C is interesting. From +0°C to +2°C of warming, the spatial average 

snowfall fraction decreases by 35%, while at +6°C this decrease is 80%. These changes 

in the amount of snowfall are most realized at higher elevations in the ponderosa pine 

forest where the majority of cold season precipitation falls. Ground snowpacks at lower 

elevations experience increased solar radiation due to lower vegetation coverage and air 

temperatures which results in negligible amounts of snow accumulation at these 

elevations even without warming. Snowpacks act as natural reservoirs of precipitation 

that delay the transformation of precipitation into runoff. Therefore, transitioning from 

snowfall to rain is expected to alter the timing and magnitude of streamflow. While 

Figure 24 is based on the model forcings and not outputs from the model, simulations 

show a similar story. 
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Figure 24. Annual mean snowfall fraction during the cold season for +0, 1, 2, 4, and 6°C 

of warming (a, b, c, d, and e respectively). 

 

Figure 25 shows the mean monthly snow covered area and snow melt for climate 

change and forest thinning experiments. Figure 25a shows a large decrease in the 

magnitude and temporal extent of snow covered area as warming increases. Additionally, 

the peak snow covered area without warming occurs in January, but after warming the 

peak is dampened, and is shifted earlier to December. The difference in snow covered 

area between forest thinning experiments is negligible with small differences at +0°C and 

+2°C and no discernable difference at +6°C. Although the large decrease in snow 

covered area with warming the change in snowmelt is not as straightforward. Figure 25b 

highlights the changes in the volume and timing of snowmelt with both climate change 

and forest thinning experiments. Peak snowmelt at +0°C occurs in March, but the peak is 

shifted two months earlier after +2°C of warming, while the shift from +2 to +6°C is only  
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Figure 25. (a) Mean monthly percent snow covered area and (b) mean monthly total 

snowmelt for the Base Case and Post-treatment scenarios at +0, 2, and 6° of warming. 

one month earlier. Interestingly, the magnitude of peak snowmelt is  

 

approximately the same at +0°C and +2°C, but the change in snowmelt volume from 

+0°C to +2°C is a loss of approximately 20 mm annually. Only considering snow 

covered area, one might expect a loss of snowmelt volume greater than 20 mm, but 

snowmelt is not indicator of snowpack formation. After warming, snowfall still occurs 

but is more likely to experience rapid melt shortly after reaching the ground surface. Peak 

winter precipitation in the Beaver Creek occurs in December and January for the cold 

season and the warming scenarios shorten time between peak precipitation and peak 

snowmelt. This shifts peak snowmelt away from the late cold season (March and April) 

when energy-driven evaporative losses are higher. Forest thinning scenarios do show an 

increase in snowmelt, specifically with no warming. As warming increases, the 

differences between the Base Case and Post-treatment snowmelt is reduced. The increase 
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in the post-treatment scenario can be attributed to reductions in canopy and ground 

sublimation and increased exposure to solar radiation after the removal of canopy cover 

which can speed up snowmelt. These changes in snow processes are critical to 

understanding how subsequent hydrologic processes like evapotranspiration and 

streamflow are changing. 

 

4.2.2 Changes in Evapotranspiration 

Figure 22 showed that total evapotranspiration is decreased in the post-treatment 

experiments for all levels of warming but does increase with warming in a fashion similar 

to the Base Case. To understand these changes, I first looked at the relative change in the 

components that make up total evapotranspiration, shown in Figure 26. Figure 26 shows 

that for both forest treatment experiments, the percent change in canopy ET increases at 

faster rate with respect to warming than soil E. Soil E is controlled by the soil moisture in 

the top 100 mm of the soil column and when the soil moisture is low the soil becomes 

stressed reducing evaporation rates, although the potential ET might be high. 

Comparatively, vegetation can withdraw from the top 1000 mm of the soil column, 

allowing for vegetation access water stored within the saturated zone. At higher levels of 

warming this effect is accelerated as the surface soil becomes drier, constraining soil 

evaporation. The reduction in canopy ET in the post-treatment scenario is attributed 

mainly to the reduction of vegetation fraction which reduces the total area over which ET 

from the canopy can occur. In addition, the reduction in the free throughfall coefficient 

and canopy storage reduce the amount of precipitation that can be intercepted in the 

canopy, reducing the amount of wet canopy evaporation.  
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Figure 26. Percent change in components of basin scale total evapotranspiration for the 

climate change and forest thinning experiments. 

 

In addition, Figure 26 shows that the largest relative change of the ET components 

due to warming is total sublimation. This is due to warming decreasing the total amount 

of snowfall into the canopy or onto ground, but also speeding up snowmelt at lower 

levels of warming, reducing time where sublimation can occur. Although the relative 

change is large, total sublimation only accounts for approximately 12% of the average 

annual ET across the watershed but at higher elevations can become a more important 

component of total ET. The reduction in total sublimation in the post-treatment scenario 

is due to two factors. First, the reduced vegetation fraction results in more snowfall 

reaching the ground surface. Ground sublimation rates are much lower than the rates in 

the canopy. Second, lower vegetation fraction and optical transmission coefficient result 
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in less sheltering of the ground snowpack from solar radiation which in turn speeds up 

snow melt, reducing the amount of time when sublimation can occur.  

The effect of reduced snow sublimation is also visible in the time series of 

monthly ET, shown in Figure 27. The difference in the mid-cold season ET (DEC-FEB) 

between the Base Case and Post-treatment does not change significantly as warming 

increases. However, during the warm season, when peak ET rates occur is where the 

largest difference between the Base Case and Post-treatment occurs. Considering only the 

climate change experiments, the lowest monthly ET occurring in November is shifted up 

after warming. December and January ET rates at +2°C are lower than +0°C by a small 

amount while +6°C is an increase over all months. The lower cold season rates at +2°C 

indicate that although less snow is falling, because energy-driven evaporative demands 

are lower during those months the net effect is reduced overall ET. This can explain why 

BC1 shows a small increase in streamflow over BC0 (Figure 22). During the warm 

season, total ET shows larger increases compared to the cold season due to warming 

which enforces the idea that the reduced cold season ET at +1 and +2°C is a consequence 

of reduced snow sublimation. Furthermore, months March, April and May ET rates show 

the largest increase across any months with respect to warming, as shown in Figure 27d. 

Interestingly, this increase only becomes meaningful at +4 and +6°C of warming. At +4 

and +6°C such small amount of snow coverage is happening during these months that 

soil evaporation can now occur when previously at lower levels of warming there was 

snow coverage until late April (Figure 25b).  

Although ET increases with warming not all of the watershed shows increasing 

ET with respect to warming, illustrated by the spatial maps in Figure 28.   
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Figure 27. Total evapotranspiration results for warming and forest thinning experiments 

in the Beaver Creek for 16 years for +0, +2, and +6°C of warming (a, b, and c 

respectively) and (d) Base Case with warming experiments. Results are shown as 

monthly means with shaded curves representing ±1 standard deviation from the mean. 

 

 

Subplots b and c show that from +0 to +1°C total ET at higher elevations actually 

decreases with warming while the areas below increase. The areas that have the greatest 

decreases are primarily ponderosa pine and receive the most snow. At higher levels of 

warming, ET increases across the entire watershed (Subplot d and e) because at these 

levels of warming there is little to no continuous snow covered area (Figure 25). Thus, 

the effect of reduced sublimation is missing at higher levels of warming. Considering 
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only the forest thinning scenarios, Figure 28a shows that total ET decreases in the 

ponderosa pine forest as expected but not uniformly across the watershed. Locations near 

and around channels within and downstream of the ponderosa pine forest show increases 

in total ET. This topographic control on ET can be explained by the additional runoff that 

is reaching the channel post-treatment. Another finding from Figure 28a is the lateral 

connectivity between land cover classes, indicated by the reduction of post-treatment ET 

downstream from the ponderosa pine in the desert shrubland land cover class.  

A commonly used way to look at how hydrologic processes are controlled by 

topography is the Topographic Index (TI) (Beven & Kirkby, 1979). TI is a measure of 

flow accumulation at a point and is a function of upstream catchment area and slope. 

Figure 29 shows the total ET versus the TI along with the relative frequency of TI for the 

ponderosa pine forest. Lower values of TI correspond to higher slope areas that have low 

contributing area (hillslopes near basin boundary), while higher values of TI represent 

flatter areas with large contributing areas near channels. The relative frequency of TI 

shows that within the ponderosa pine, the majority of the area has low contributing area 

and is away from channels, which is expected from the map of elevation (Figure 1). The 

key takeaway from Figure 25 is that as TI increases the difference between the Base Case 

and Post-treatment experiment total ET decreases. This is in agreement with the spatial 

maps shown in Figure 28, subplot a that show an increase in ET in and around channels 

after thinning and large reductions in ET in hillslopes with low contributing area. Not 

shown here but if sublimation is removed from the calculation of total ET Figure 29 

would show higher ET at TI values above 15. Although, overall total ET is reduced 

across the ponderosa pine as more areas have lower TI. 
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Figure 28.  Difference maps of mean annual total evapotranspiration between (a) forest 

thinning experiments and (b, c, d, and e) climate change scenarios. 
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Figure 29. Modeled total evapotranspiration in the ponderosa pine forest compared to 

topographic index along with relative frequency of topographic index. Results shown for 

total evapotranspiration were averaged to integer values of topographic index. 

 

4.2.4 Changes in Streamflow 

Figure 30 shows that annual streamflow decreased with respect to warming and 

increased after forest thinning across all levels of warming when compared to the Base 

Case. A commonly used method of showing differences in streamflow volume due to 

forest thinning is the use of double mass curves (Searcy and Hardison, 1960; Biederman 

et al., 2015). Double mass curves in Figure 30 show how cumulative annual streamflow 

depth from the scenarios change over the 16 year simulation period. Note that each 

marker represents an individual water year streamflow. Interestingly, PT0, PT1, and PT2 

all show very similar values of cumulative streamflow with PT1 have the largest value, 

125mm more streamflow over BC0. The forest thinning experiment with the highest level  
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Figure 30. Double mass curves of cumulative annual streamflow for experiments as 

compared to Base Case. Solid lines are linear regressions for each simulation experiment. 

 

of warming where is no loss in streamflow compared to BC0 is PT4 but initially PT4 had 

lower cumulative streamflow until WY2010. The most significance difference between 

two experiments at the same level of warming is BC6 and PT6 with PT6 experiencing 

135 mm of additional streamflow. 

As noted above increases in annual streamflow are not uniform across all water 

years. To further examine this, annual streamflow is plotted against annual precipitation, 

shown in Figure 31. The relationship between annual streamflow and precipitation shows 

some interesting results. First, water years with low precipitation show little to no 

difference from the base case for climate change and forest thinning experiments. The 

majority of water leaving the watershed during these years is from evapotranspiration. As 
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annual precipitation increases, the difference between the experiments becomes 

noticeable. Water years near the mean annual precipitation of 520 mm show the greatest 

difference in streamflow between the experiments. This can also be seen from the 

regression lines on the plot that are the average across the climate change experiments for 

the Base Case and Post-treatment. As precipitation increases, the differences between 

forest thinning experiments are reduced. Furthermore, the largest annual precipitation of 

the 16 year period, WY2005 shows a decrease in streamflow compared to other years. 

This year was considered an outlier, WY2005 was an extremely wet year but warm thus 

had an average snowpack with a lot of rain. There are two main explanations for this 

behavior. first, the precipitation events during the cold season in WY2005 are smaller in 

magnitude but spread out temporally which results in less infiltration excess runoff being 

generated and more infiltration occurring. Second, due to the warmer temperatures in 

WY2005 and the method for reducing saturated hydraulic conductivity using air 

temperatures allowed large amount of infiltration to occur. Another interesting year is 

WY2010 with 627 mm of precipitation which shows that the lowest streamflow is from 

BC0. Under warming conditions, the atmospheric river event is shifted from snow to rain, 

resulting in overall increased streamflow. Most of the precipitation that fell during 

WY2010 is the result of an atmospheric river event which Robles et al. (2021) highlights 

as able to generate large amounts of streamflow even under climate change. This plot is 

useful for water managers who can use predictions of future climate to estimate the 

amount of streamflow under warming or the potential benefits of forest thinning. 

Another important aspect of streamflow to water managers is the timing of peak 

flows from snowmelt. Figure 32 shows mean monthly streamflow for the climate change 
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Figure 31. Annual modeled streamflow compared against annual precipitation over a 16 

year period for the 10 simulation experiments. Solid lines represent linear regressions 

across the climate change scenarios for the Base Case and Post-treatment experiments. 

Note that WY2005 was not used in the calculation of the regression equations due to the 

large under simulation during that year. 

 

experiments and after forest thinning. Peak streamflow timing during the cold season 

shifts earlier in the season where the majority of cold season precipitation falls in 

December and January as warming increases. Furthermore, the magnitude of peak 

streamflow increases under warming although mean annual streamflow decreases (Figure 

22). The temporal shift of streamflow does not occur during the warm season because 

streamflow production during these seasons is the result of high intensity precipitation 

events from the North American Monsoon. However, the magnitude and variability of 

streamflow during the warm season does decrease with warming which can be attributed  
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Figure 32. Streamflow results for warming and forest thinning experiments in the Beaver 

Creek for 16 years for +0, +2, and +6°C of warming (a, b, and c respectively) and (d) 

Base Case with warming experiments. Results are shown as monthly means with shaded 

curves representing ±1 standard deviation from the mean. 

 

to higher rates of evapotranspiration. Forest thinning has little to no effect on monthly 

streamflow during the warm season across warming scenarios. Surprisingly, the greatest 

difference between the Base Case and Post-treatment experiments occurs at +6°C of 

warming during the cold season. These results indicates that at least for cold season 

streamflow the benefit of forest thinning increases with warming. 
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5 CONCLUSIONS & FUTURE WORK 

This study investigated the impacts of climate change and forest thinning on a 

watershed in Central Arizona. The study consisted of three parts: (1) preparation of a set 

of model forcings that account for the controls of complex terrain on meteorological 

conditions, (2) expansion of an established model to long term simulations of both warm 

and cold seasons with good to excellent model performance in those seasons, and (3) 

employment of the model to simulate warming due to climate change and forest thinning. 

In this study, model forcings were prepared using multiple methods and a 

combination of station observations and raster-based datasets. Precipitation forcing was 

composed of a base dataset, NEXRAD weather radar, that was bias corrected using 

localized lapse rates computed from gauges in the watershed. Meteorological forcings 

were prepared by applying spatial interpolation methods that account for topography 

using weather stations within and near the study area. Special importance was placed on 

the interpolation of air temperature due to its importance to the modelling of snowpack 

dynamics. To accomplish this, localized air temperature lapse rates from the PRISM 

dataset were used in the spatial interpolation algorithm. 

Model calibration and validation in this work began with the simulation of snow 

water equivalent at two SNOTEL stations within the watershed. These simulations 

demonstrated the model ability to simulate the temporal and spatial variability among the 

stations and provided a set of initial snow model parameters for basin scale simulations. 

The model performed well in simulating small snowpacks at Bar-M SNOTEL when 

using the same parameter set derived from Happy Jack SNOTEL. Modelling efforts 

expanded to basin scale simulations of SWE by comparison of modeled results to a an 
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estimated SWE based on remote sensing observations. Comparisons evaluated the model 

ability to simulate the temporal and spatial patterns of SWE. The model demonstrated 

good performance in simulating the unique temporal patterns of snow accumulation and 

ablation during any given water year over a 16 year period. tRIBS also showed the ability 

to model the SWE versus elevation relation in the watershed as compared to SWANN. 

However, model performance of overall SWE magnitude for both the calibration and 

validation periods showed an average undersimulation of SWE by ~30%. The reason for 

this undersimulation is due mainly to the quality of precipitation and air temperature 

forcing. Specifically, a lack of weather stations in the mid-elevations of the watershed. 

Streamflow simulation at the basin scale used two interior streamflow gauges 

within the watershed for calibration and validation. Model results showed good 

performance in capturing the high variability of streamflow at both the intra-annual and 

interannual scales. Specifically, performance for distinct cold and warm season 

streamflow improved after the incorporation of methods to account for the effects of 

frozen soil on runoff. However, the wettest years in the simulation period showed the 

largest undersimulation of streamflow volume due to large amounts of infiltration. 

Nonetheless, the model showed good performance in the volume and timing of 

streamflow for the majority of water years in the 16 year simulation period for both Wet 

and Dry Beaver Creek.  

Simulation experiments were developed that account for the separate and 

combined effects of warming due to climate change and forest thinning. Warming 

experiments used a simple method of adding uniform temperature increases to the forcing 

data without the consideration of other meteorological variables. While forest thinning 
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was accounted for by incorporating a dataset from the 4FRI to calculate adjusted land 

cover parameters for the model. The goal of these experiments was not to provide an 

exact representation of the future conditions but to provide insight into the sensitivity of 

hydrologic processes in the Beaver Creek to these changes. 

Warming experiments showed a large decrease in the annual average snowfall 

fraction across the watershed accompanied by decreases in the watershed average snow 

covered area and snowmelt. Total evapotranspiration increased overall with the largest 

increases occurring during March, April, and May. These increases were not spatially 

uniform, at lower levels of warming total evapotranspiration decreased in the ponderosa 

pine forest due to the reduction of snowfall and faster snowmelt which reduced the 

amount of time in which sublimation could occur. Earlier snowmelt and less snowfall 

also had significant impacts on streamflow volume and timing. At +6°C of warming total 

annual streamflow decreased by 28% annually while the timing of peak streamflow 

shifted from March and February to January.  

Forest thinning showed generally the same pattern of changes with respect to 

climate change. After thinning, the watershed experienced increased snowmelt volume 

accompanied by decreased in evapotranspiration and increased streamflow. Flatter 

regions with low contributing area within the ponderosa pine forest experienced the 

greatest reduction in evapotranspiration, while channels downstream and within the 

ponderosa pine forest showed the increases in annual evapotranspiration. While not 

addressed in this study, these results suggest that the increased presence of water in 

channels could promote vegetation growth in those areas overtime, reducing the net 

effect of thinning. Across all levels of warming, streamflow increased by approximately 
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12% after thinning which shifted the point at which streamflow is reduced below the 

Base Case until +4°C of warming. In years with low annual precipitation the difference 

between scenarios is negligible but as precipitation nears the annual average forest 

thinning shows increased streamflow volumes. 

The limitations to these modeling efforts should be noted. For model calibration 

of SWE the calibration relied on the use of SWANN which in itself is the output from a 

model but was necessary due to the lack of observational datasets. Furthermore, 

streamflow was calibrated using the two interior stream gauges which left a subsection of 

soil parameters near the outlet of the model relatively uncalibrated. The simulation 

experiments while based on predicted (warming) and planned (4FRI) changes to the 

environment, the representation of these in the model used simpler methods that were 

feasible to complete. 

This study showed the ability of the tRIBS model to simulate a semi-arid regional 

watershed in Central Arizona while accounting for both cold and warm season processes 

over the long-term. The novelty lies in the ability for distributed, physically-based models 

to simulate the high temporal and spatial resolution hydrologic processes at the watershed 

scale with relatively short simulation times. Other commonly used hydrologic model like 

WRF-HYDRO or HEC-HMS could be used to complete similar studies but they lack the 

physically-based parameterization that simulate hydrologic processes within tRIBS. 

Furthermore, lumped model like HEC-HMS lack the ability to look at fine spatial scale 

changes that aid in characterizing the response to stressors like warming due to climate 

change and forest thinning 
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 While the Beaver Creek is characteristic of the surrounding Mogollon rim 

transition zone there is value in expanding the work done here to the greater region like 

the Verde River watershed due to its importance to the Phoenix Metro Area’s water 

supply. A similar set of experiments to the work here could be examine that incorporate 

the most recent estimates of future changes in climate from the Couple Model 

Intercomparison Project Phase 6. Applying a fully-distributed, physically based in a 

project of this scope has yet to be done in this region and would require the use of 

spatially distributed datasets for the parameterization of the model like the work in Ko et 

al., (2019). Such work has potential to yield novel results and advance the state of 

knowledge of climatic impacts on the hydrologic response in the southwest. 

 On a similar note, expanding modelling efforts to a larger watershed like the 

Verde River could yield an experimental design of forest thinning that better represents 

how forest thinning would be conducted in the real world. Post-treatment conditions are 

not static in time and forest thinning does not occur at one uniform timestep. Therefore, 

while one area is undergoing thinning the previously thinned areas have begun to regrow, 

potentially reducing the net effect of thinning. Completing large scale projects like 4FRI 

takes decades and couple this with the idea that the transformation of precipitation to 

streamflow is much more complex in a watershed such as the Verde River than in the 

Beaver Creek. Furthermore, work needs to be done on assessing the hydrologic impacts 

of the vegetation types that will replace the removed vegetation after thinning like native 

grasses. These ideas highlight the fact that the results shown here in this study are not 

directly scalable to larger watersheds in the region but due to the importance of the Salt-

Verde system to Phoenix’s water supply they warrant their own study. 
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This appendix describes the observational datasets used in this thesis which is 

located on a Google Drive, “Cederstrom_Thesis_Appendices” in the folder 

“Appendix_A.” Below is a description is of the subfolders of “Appendix_A” and the files 

contained within. 

“USGS Stream Gauges” contains the timeseries of streamflow observations used 

in the study. The raw data is provided as *.txt files with the stream gauge ID shown in 

Table 1 as the file name. The quality-controlled data is stored in *.mat files with the same 

naming format. These *.mat file were used throughout the study and contains the 

observations and the datetimes.  

 “SRP Precip Gauges” contains the timeseries of precipitation observations used in 

the bias-correction of NEXRAD data. These gauges are not all owned by SRP but the 

daily data is manually quality-controlled by SRP Meteorologists. Within the folder there 

are two *.csv files for each gauge, one for 15 minutes data (not quality controlled) and 

daily data both with the units of inches. Note that the daily data is in an unusual format 

where the daily records are 5am to 5 am values ending on the date given. This data was 

loaded into Matlab as the *.csv with no further processing as the data was already 

quality-controlled. The 15 minute data is from tipping bucket rain gauges are prone to 

errors during the winter. 

 “SNOTEL” contains the timeseries of observations at the two SNOTEL stations 

referenced in this study. Within the folder there are three files for each station the first are 

*.csv and *.txt which is the raw data from the NRCS with the station ID shown in Table 1 

as the file name. The raw data was loading into Matlab using the two scripts 

“HJ20022018.m” and “BM200122018.m” which were used to save the SNOTEL datasets 
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as *.mat files for preparation of model forcings. Note that the scripts contain the 

information about the original units and the unit conversions done. 

 “RAWS” contains all of the observational timeseries for the Rural Automated 

Weather Stations used to prepare the model forcings in this study. Within the folder there 

are one file for each station the first are *.csv which is the raw data from the USFS with 

the station name shown in Table 1 as the file name. These observations are hourly with 

the variable names and units shown in the header of each file. The precipitation data is 

from tipping bucket rain gauges are prone to errors during the winter. 

 “YCFCD” contains the precipitation observations from the Yavapai County flood 

Control District. This data was not used in this study but was left for posterity. The 

station meta data is located within the Microsoft Excel file in the folder. The subfolder 

contains the raw data for each of the stations data was acquired for. The datasets is raw 

cumulative tips of 1 mm, There are large amounts of missing data throughout the all of 

the datasets and winter precipitation is not to be trusted. 
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  119 

This appendix describes the data and scripts used in this thesis which is located on 

a Google Drive, “Cederstrom_Thesis_Appendices” in the folder “Appendix_B”. Below is 

a description of the subfolders within “Appendix_B” and the files contained within. Note 

that all GIS data in this project is reprojected into UTM Zone 12N, North American 1983 

datum coordinate system using the gdalwarp function within GDAL. 

“GIS” contains the majority of the GIS project data used to complete this work. 

Within the folder there are subfolders dedicated to specific efforts like the folder 

“BarM_tRIBS_Model_Creation” which contains all the GIS datasets used to create the 

domain for the Bar-M SNOTEL point scale model. Another important folder is the folder 

“Data” which contains a number of shapefiles and rasters like shapefiles for the locations 

of meteorological stations and watershed outlines. 

“NEXRAD” contains the NEXRAD ST4 precipitation dataset in mm/hr used to 

prepare the model forcing in this study. The raw NEXRAD ST4 grib files from NCEP 

were removed after clipping and reprojecting into GeoTiffs. The clipped and reprojected 

data is located in the zip file, “NEXRAD_Clipped_Projected.zip”.  The clipped and 

reprojected data was also stored as *.mat file which was used to complete the bias-

correction within Matlab. The bias-corrected forcing dataset used to run the model is 

located in Appendix C.3 as ASCII files. 

“SWANN” contains the SWANN snow water equivalent dataset in mm 

downloaded from the SRP repository. This dataset is not publicly available but the 

clipped and reprojected rasters for the Beaver Creek watershed are provided as GeoTiffs 

in the zip file “SWANN_SWE_Clipped_Projected.zip”. This data was used for model 

calibration and validation thus the rasters were used within Matlab as *.mat files. The 
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*.mat file that contains all of the rasters is located within the “SWANN” folder. All other 

processing of the data like computing spatial averages was done within Matlab scripts. 

“NLDAS” contains the NLDAS datasets used to prepare the model forcings. The 

raw NLDAS grib files were removed after clipping and reprojecting into GeoTiffs. The 

clipped and reprojected data is located in the zip file, “NLDAS_Clipped_Projected.zip”.  

The clipped and reprojected data was also stored as *.mat file which was used to 

complete the bias-correction and gap filling of station data within Matlab. The names and 

units of the files all correspond to the names of the meteorological variables required by 

tRIBS as shown in the tRIBS User Manual. 

“PRISM” contains the PRISM air temperature dataset in °C used to prepare the 

model forcings. The raw PRISM files were removed after clipping and reprojecting into 

GeoTiffs. The clipped and reprojected data in the zip file, 

“PRISM_TA_Clipped_Projected.zip”.  The clipped and reprojected data was also stored 

as *.mat file which was used to calculate the historical air temperature lapse rates for the 

Beaver Creek within Matlab. 
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C. MODEL SETUPS 
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This appendix describes the model setups and file structures for Happy Jack and 

Bar-M SNOTEL along with the Beaver Creek used in this thesis which is located on a 

Google Drive, “Cederstrom_Thesis_Appendices” in the folder “Appendix_C”. Below is a 

description of the subfolders of “Appendix_C” and the files contained within. 

 

C.1 Happy Jack SNOTEL 

 The tRIBS model setup for the Happy Jack SNOTEL model is located in the 

folder “HappyJack_SNOTEL”. Within this folder there are inputs files and subfolders for 

model forcings (“Weather”), parameter files (“Input”), and output folders (“HJ_2002-

2018_Out”). The input file for the model run over WY2013-2018 shown in this work is 

“HJ_2002-2018.in” which can be ran using the tRIBS model located “Appendix D”. This 

model was executed using Windows Subsystem for Linux (WSL) on a Windows 10 

computer. The folder “Weather” contains the *.sdf and *.mdf files used to complete the 

annual simulations at Happy Jack. The folder “Input” contains all of the necessary model 

parameter and topographic data to run the model. 

 

C.1 Bar-M SNOTEL 

 The tRIBS model setup for the Bar-M SNOTEL model is located in the folder 

“BarM_SNOTEL.” Within this folder there are inputs files and subfolders for model 

forcings (“Weather”), parameter files (“Input”), and output folders (“Output”). The input 

file for the model run over WY2013-2018 shown in this work is “BarM_2012-2018.in” 

which can be ran using the tRIBS model located “Appendix D.” This model was 

executed using Windows Subsystem for Linux (WSL) on a Windows 10 computer. The 
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folder “Weather” contains the *.sdf and *.mdf files used to complete the annual 

simulations at Bar M. The folder “Input” contains all of the necessary model parameter 

and topographic data to run the model. 

 

C.3 Beaver Creek Model 

 The tRIBS model setup for the Beaver Creek watershed is located in the folder 

“BCmodel”. This model setup was originally located on the Agave High Performance 

Computing Cluster at ASU. Additionally, model outputs were originally not written into 

this folder due to storage restrictions, but the setup was adjusted to do so such that the 

model can be run from this folder. Within the “BCmodel” folder there are inputs files and 

subfolders for model forcings (“BCweather” and “BCrain”), parameter files (“BCinput”), 

restart files (“Restart_Files”), and output folders (“Outputs”). 

 Within the subfolder “BCmodel” contains the input files to the model, batch files, 

and a script for merging the tRIBS outputs. There are three main input files, 

“Calibration_WY2003-2010.in”, “Validation_WY2003-2018.in”, and 

Experiments_WY2003-2018.in” each one of these input files has an accompanying batch 

file (*.sh) which is used to initiate the job on Agave. Note that individual inputs files 

were not made for each simulation experiments. Instead, there was one input file and the 

paths within the file would be changed based on the experiment. 

 “BCrain” contains the bias corrected precipitation forcing for the model. Within 

this folder there is a readme file that contains some more general information along with 

the folder “NEXRAD_BC” which contains the precipitation rasters for the entire 

simulation period including the spin up period. The rasters are in ASCII format with units 
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of mm/hr as hourly rasters in the same geographic projection as all other sources of GIS 

data in this work. 

 “BCweather” contains meteorological forcings for the model that were using an 

algorithm to interpolate the gap-filled weather station data. Within “BCweather” there are 

two grid data files (*.gdf) which inform the model of the location of the meteorological 

forcings. These two files are for the calibration/validation simulations and the simulation 

experiments. The subfolder “Station_DS” contains subfolder for each of the 

meteorological forcings with the name corresponding to the variable. Each of these 

subfolders contains all of the hourly rasters entire simulation period including the spin up 

period in ASCII format. 

 “BCinput” contains all of the model inputs and parameter file for running the 

model. The files all use the same file types as listed in the tRIBS user manual for each of 

the files. The specific files are soil map and parameter table (“BCsoil_map.soi” and 

“BCsoil_table.sdt”), land cover map and parameter table (“BCland_map.lan” and 

BCland_table.ldt”), and depth to bedrock map (“BCbedrock_map.brd”). Additionally 

within “BCinput” there are a number of subfolder that contains model inputs. “LU_grids” 

contains the gridded land cover data for both vegetation fraction (“VF”) and height 

(“VH”) with the grid data files (*.gdf) for both base case and post-treatment experiments. 

“Parallel_Partitioning_Files” contains the *.reach files for parallel operations of the 

tRIBS model on Agave with the number of nodes in the file name. “PointFiles” contains 

the *.points file used for defining the topographic domain of the Beaver Creek model 

provided by Hawkins (2012). 
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 “Restart_Files” contains the restart files for the simulations in the Beaver Creek. 

Restart files were necessary for this work as the simulations are long-term and a memory 

leak within the model causes crashes at 5 years of simulation time. Thus, restart files 

were written every four years and at the end of the spin up period. 

 “Outputs” contains all model outputs used to derive the result in this study. The 

spatial outputs have already been merged with the unmerged outputs removed. The 

naming convention is “Experiment_WY2003-2018_0C_NoThin.zip” where “0C” 

represents the level of warming and “NoThin” or “Thin” represent the base case and post-

treatment experiments respectively.  
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The tRIBS model used in this study to conduct simulations at point and watershed 

scales, located on Google Drive, “Cederstrom_Thesis_Appendices” in the folder 

“Appendix_D”. The first section provides a general overview of the tRIBS version and 

how to find the changes made to the code. The second section provides a more detailed 

overview of the various physics improvements and additions made to the code. The final 

section identifies and provides some initial guidance on other issues identified during the 

work but were not addressed. 

 

D.1 tRIBS Model 

 The version of tRIBS used in this study does not include the model improvements 

made in Cázares-Rodríguez et al., (2017), Schreiner‐McGraw et al., (2018), and Ko et al., 

(2019). The parent directory of the tRIBS model used for this study is located in 

“Cederstrom_Thesis_Appendices/Appendix_D/tribs_CJC”. A number of small 

adjustments were made over the course of the project and can be found within the code 

searching “CJC” recursively with more detailed information provided in the following 

sections. Additional changes were made to the model outputs in this version of the code 

to outputs specific variables that were used to analyze model outputs. Specifically, certain 

outputs were replaced with other variables, an overview of the modified outputs is 

provided in the Table D.1. To compile this code on the ASU’s Agave cluster first 

compiler must be loaded (gcc/4.4.7) then compiled using the “makeOCOTILLO_PAR” 

make file within the folder. Changes made to the model outputs are specific to this 

project and should not be implemented.  
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Table D.1. Summary of modifications to tRIBS outputs within the dynamic file. Changes 

to the outputs are highlighted in yellow. 

Dynamic File Outputs 

Column Variable Units 

1 Node Identification, ID [id] 

2 Elevation, Z [m] 

3 Slope, S [|radian|] 

4 Contributing Area, CAr [m2] 

5 Depth to groundwater table, Nwt [mm] 

6 Total moisture above the water table, Mu [mm] 

7 Moisture content in the initialization profile, Mi [mm] 

8 Wetting front depth, Nf [mm] 

9 Top front depth, Nt [mm] 

10 Unsaturated lateral flow out from cell, Qpout [mm/hr] 

11 Unsaturated lateral flow into cell, Qpin [mm/hr] 

12 Cumulative Surface Runoff, Srf [mm] 

13 Rainfall, Rain [mm/hr] 

14 Snow Water Equivalent, SWE [cm] 

15 Snow Temperature, ST [C] 

16 Ice Part of Water Equivalent, IWE [cm] 

17 Liquid part of Water Equivalent, LWE [cm] 

18 Cumulative Snow Sublimation [cm] 

19 Cumulative Snow Evaporation [cm] 

20 Cumulative Melt [cm] 

21 Cumulative hours Snow [cm] 

22 Latent Heat Flux from Snow Cover, sLHF [kJ/m2] 

23 Sensible Heat Flux from Snow Cover, sSHF [kJ/m2] 

24 Ground Heat Flux from Snow Cover, sGHF [kJ/m2] 

25 Precipitation Heat Flux from Snow Cover, sPHF [kJ/m2] 

26 Outgoing Longwave Radiation from Snow Cover, sRLo [kJ/m2] 

27 Incoming Longwave Radation from Snow Cover, sRLi [kJ/m2] 

28 Incoming Shortwave Radiation from Snow Cover, sRSi [kJ/m2] 

29 Error in Energy Balance, Uerr [J/m2] 

30 Intercepted SWE, IntSWE [cm] 

31 Cumulative Sublimated Snow from Canopy, IntSub [cm] 

32 Cumulative Unloaded Snow from Canopy, IntUnl [cm] 

33 Soil Moisture, top 10 cm, SoilMoist [ ] 

34 Root Zone Moisture, top 1 m, RootMoist [ ] 

35 Canopy Storage, CanStorage [mm] 
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36 Actual Evaporation, ActEvp [mm/hr] 

37 Cumulative Evaporation from Bare Soil, EvpSoil [mm/hr] 

38 Cumulative Total Evapotranspiration, ET [mm/hr] 

39 Ground Heat Flux, Gflux [W/m2] 

40 Sensible Heat Flux, Hflux [W/m2] 

41 Latent Heat Flux, Lflux [W/m2] 

42 Discharge, Qstrm [m3/s] 

43 Channel Stage, Hlev [m] 

44 Channel Flow Velocity, FlwVlc [m/s] 

45 Canopy Storage Parameter, CanStorParam [mm] 

46 Interception Coefficient, IntercepCoeff [ ] 

47 Free Throughfall Coeff.- Rutter, ThroughFall [ ] 

48 Canopy Field Capacity – Rutter, CanFieldCap [mm] 

49 Drainage coefficient – Rutter, DrainCoeff [mm/hr] 

50 Drainage Expon. Param. – Rutter, DrainExpPar [mm-1] 

51 Albedo, LandUseAlb [ ] 

52 Vegetation Height, VegHeight [m] 

53 Optical Transmission Coeff., OptTransmCoeff [ ] 

54 Canopy- Average Stomatal Resistance, StomRes [s/m] 

55 Vegetation Fraction, VegFraction [ ] 

56 Canopy Leaf Area Index, LeafAI [ ] 

 

 

D.2 Model Changes 

Unless noted otherwise the changes outline in the following section are general 

physics improvements or additions that allow easier use and should be considered for 

incorporating in the most up to date version of the code.  

The first set improvements are shown in Figure B.1 that accounts for two different 

issues in tHydroModel.cpp. The first, shown in line 820 contains an additional “or” case 

that account for timesteps where the snowpack completely melted. Previous versions of 

the code would not have the melted snow routed to the soil surface if the snowpack 

disappeared in the same timestep. The second improvement, shown in line 821 the 

variable “Ractual” was previously “R”. 
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Figure D.1.  Model physics improvements for the accounting of snowmelt in 

tHydroModel.cpp. 

 

 

Figure D.2. Model physics improvements for proper defining the depth to bedrock 

variable in tHydroModel.cpp. Note that the improvement shown in Figure D.2 also 

occurs in line 779 without any changes. 

 

The previous version of the code did not properly account for the lateral transfers 

between adjacent cells or yield water balance issues when precipitation fell at the same 

timestep as snowmelt. 

 Figure D.2 illustrates the second set of model physics improvements made to the 

model in tHydroModel.cpp. Previous version of the code would not properly redefine the 

depth to bedrock for each Voronoi polygon, resulting in errors in the simulation of the 

groundwater table. Note that this fix does not impact simulations that use a constant 

depth to bedrock or with depths to bedrock that are extremely deep. 

 Figure D.3 shows the third set of model physics improvements made to the model 

in tHydroModel.cpp. There are numerous changes in this section of code, but they all are 

fixes to “Newton” function used in the unsaturated zone code when calculating the depth 

of the water table. Previous version of the code would had certain cases where the depth 

to groundwater table could be lower than the depth to bedrock. An example is shown in  
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Figure D.3. Model physics improvements for properly accounting for ground water 

fluxes and bedrock in tHydroModel.cpp. Note that multiple changes were made, denoted 

by CJC2020. 

 

lines 3886-3888, which removes the “return” that would exit the entire loop and not 

account for the depth to bedrock in lines 3913. Someone should check for the case in line  

3877. Here the original code had a “return” that returned the value of the water table 

depth hidden inside of a verbose labelling if-statement. This return could only ever be  
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Figure D.4. Model physics addition that accounts for changes in saturated hydraulic 

conductivity based on air temperature. 

 

reached if verbose labelling was turned on when initially running the model. Determining 

whether this was a simple mistake or done on purpose was not explored in this work. If 

the latter was indeed a mistake, then a fix is shown in lines 3879 and 3880. 

 The final change in model physics within tHydroModel.cpp accounts for the 

effects of frozen soil on runoff generation is shown in Figure D.4. Importantly, this 

addition should be heavily considered or improved upon before implementation in the 

official release of the code. This method was implemented due to lack of data to quantify 

the real effects of frozen soil on runoff generation. The incorporation of a more advanced 

method that account for the formation of ice crystals within the soil is recommended. The 

latter would lead to a more rigorous implementation that accounts for changes in other 

soil parameters like porosity. 

 The next changes to the model code are no longer contained within 

tHydroModel.cpp, instead these fixes are involved with the simulation of snow. The first 

set of fixes is located tsnowPack.cpp as shown in Figure D.5. These set of fixes added the 

ability for the model to output snowpack sublimation and evaporation. Previous version 

of the code only output sublimation from the canopy snowpack. Here sections of the  
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Figure B.5. Model addition that adds the ability to the model to output snowpack 

sublimation and evaporation. Note that the improvement shown in Figure B.5 also occurs 

in lines 1106-1137 without any changes. 

 

 

Figure B.6. Model physics improvements that properly sets evapotranspiration 

components from tEvapoTrans.cpp. 

 

mass balance that account for snowpack sublimation/evaporation were written to their 

own variable so that they can be output if necessary. This code should be implemented in 

the official version but before it should be considered whether to lump 

sublimation/evaporation into the same variable as most observations do not measure 



  134 

these separately. Furthermore, care should be placed when implementing these into the 

variables into the model outputs. Specifically, which output files to include this in and 

properly updating the documentation to account for these additions. 

 The next set of additions to tSnowPack.cpp is shown in Figure B.6 spanning lines 

1350-1356. These additions properly set the evaporative components that are normally 

computed in tEvapoTrans.cpp to zero when there is snow present on the Voronoi 

polygon. Previous versions of the code would have constant values for these components 

written to the outputs that were equal to the last value written to the variable for that 

node. The results were incorrect values of these components for the entire duration of the 

snowpack. While this addition should immediately be implemented into the final version 

of the code more work needs to be done for the evaporative components in the canopy. 

The current additions set the canopy components equal to zero when there is snow on the 

ground but does not consider snow in the canopy. Efforts need to be placed on both the 

physics and coding side of these changes. The physics side is understanding whether dry 

canopy evapotranspiration can occur if there is snow in the canopy. The coding side is 

also important because the canopy snow model works differently than the ground 

snowpack model and care should be placed when implementing the changes. 

 The next set of additions to the model involve adding the variable that determines 

the liquid water holding capacity of the snowpack to the input file (*.in) as shown in 

Figure D.7. Figure D.7 contains multiple sections of code within tSnowPack.cpp to 

account for the liquid water holding capacity. Previous versions of the code had this 

variable hardcoded into lines 1294 and 1298.  Now the variable is read in from the input 

file using line 76. While this addition is important more work should be placed on doing  
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Figure D.7. Model additions that add the ability to specify the liquid water holding 

capcity of the snowpack in the input file. Note that there are two separate sections of 

code. 

 

the same with other hardcoded snowpack variables like snow density, snow emissivity, 

albedo and albedo decay parameters, and temperature thresholds for phase partitioning. 

Furthermore, these parameters should be placed into their own separate file like the land 

data table (*.ldt) instead of the input file. Implementing this would make calibrating the 

snow model much simpler, rather than recompiling the code for every calibration run and 

would provide a more suer friendly experience. This recommended change would be 

rather simple, but it should be noted that certain parameters appear in both 

tSnowPack.cpp and tSnowIntercept.cpp. 

 

D.3 Additional Recommendations 

 In addition to the recommendations with the code changes outlined in section D.2 

there are other sections of the code that should be addressed. The most important of these 

is the memory leak that occurs during long-term simulations or in models with a large 

number of computational nodes.  During this work, the program “Valgrind” was used to 

identify the presence a memory leak within the code that causes crashes mid-simulation. 

This issue is highly specific due to the amount of memory available across the different 



  136 

computational nodes on Agave. The recommendation is to fix the issue but to properly 

work around the issue it is recommended to use the same computational nodes for each 

simulation to isolate the time at what the model crashes so that restart files can be written 

before the crash. Furthermore, after moving simulations to Agave from the Ocotillo 

cluster during this work the model began to crash at the end of the simulation while the 

simulation objects are being destroyed. Whether this issue is related to the memory leak 

was not explored. This issue cause certain files like the *mrf to be incomplete as this file 

being written when the crash occurs. To circumvent this issue the code was modified to 

write *.mrf files a few hours of simulation time before the model crashed 

 There exists a problem with the code when restarting the model from a restart file 

and using gridded land cover data. This issue was explored but the problem was not 

found. When restarting from a restart file and using gridded land cover the model will set 

incorrect values to node. The issue is most apparent when using the interpolation option 

for interpolating temporally between grids which can result in erroneous values like 

negative values of vegetation fraction, eventually crashing the simulation in certain 

situations. The issue is less apparent when using high temporal resolution grids because 

error is only carried through a small period in time but if using monthly the error can 

persist throughout the month. More work should first be done in narrowing down the 

problem by testing whether the issue occurs with or without the snow model on before 

attempting to fix the issue. 

 A large amount of effort was placed on closing the basin scale water balance 

which was essentially achieved but this was accomplished through the calibration of 

model parameters. Previous parameter sets would result in ET/P ratios greater than 1.5 
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for the majority of water years. While the incorrect behavior was essentially fixed for the 

Base Case, when looking at the water balance for the simulation experiments that water 

balance is not closed as shown in Table F.1-F.9 in the Appendix F. The cause for this 

issue was not able to be explored. Further examination of this issue should start with 

checking the water balance with and without the snow model. Additionally, check that 

the error does not lie within the model outputs rather than the actual code itself. One 

example of this is shown in Figure D.6 where incorrect values of ET components were 

written to the output files. To determine if the model physics are incorrect rather than 

model outputs, run the model at a point scale with a set of artificial inputs like 1 mm/day 

of precipitation. Start with short simulations then expand to  
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APPENDIX E 

E. FIGURES AND SCRIPTS 
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The files used to process data and  generate the figures shown throughout the 

thesis is located on Google Drive, “Cederstrom_Thesis_Appendices” in the folder 

“Appendix_E”. The first section provides an overview of the Matlab and ArcMap files 

used to construct the figures shown in the thesis. The second section is provides the 

Microsoft Excel files used to construct the tables shown in the thesis. The final section 

provides an overview of a number of Matlab scripts used to process model outputs along 

with other efforts in the thesis. 

 

E.1 Figures 

 The majority of the figures in this thesis were generated using Matlab. Initially 

spatial maps were generated using ArcMap but using Matlab resulted in easier 

construction. The only figure generated using ArcMap is Figure 1. Additionally, Figure 1 

was also edited using the vector graphic editor, Inkscape. The only other figures not 

constructed in Matlab are Figures 2 and 31 which generated using Microsoft PowerPoint. 

The figure construction was organized such that referencing them later is fast and simple. 

Within “Appendix_E” the folder “Figures” contains a number of subfolders with the 

name “fig_XX_identifier” where XX is the figure number in this thesis document and 

identifier is a short description that was used by the writer of these scripts to quickly 

reference them without looking at the thesis document. Within each figure folder there is 

a Matlab script (*.m) with the same name as the folder, a subfolder that contains the data 

used to construct the figure, and two final versions of the figure stored as an 800-dpi tiff 

file and a Matlab figure file (*.fig). 
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E.2 Tables 

 The tables in this thesis were all first constructed in Microsoft Excel then brought 

into the thesis document. The tables are stored in “Appendix_E” in the folder “Tables” 

with same naming convention as the figures described in section E.2. The exception is 

that the Excel file are not with individual subfolders and instead all within the folder 

“Tables”. 

 

E.3 Agave Matlab  

For this study basins scale simulations output dynamic files at a daily resolution 

which took up large amounts of storage space. In order to reduce final storage size and 

complete initial data processing Matlab was utilized on the Agave cluster. The folder 

containing these Matlab scripts is found in “Appendix_E” in the folder “Matlab_Agave”. 

Within this folder contains scripts for the processing (*.m) and executing the jobs on the 

cluster (*.sh). The different Matlab scripts are all similar but were used for different 

phase of the project (calibration, validation, and simulation experiments). To explain how 

these scripts work the versions for the simulation experiments is discussed as they 

contain the most improvements out of all the scripts. The first Extract_WYMaps.m, will 

load the dynamic file outputs into Matlab and select the columns of interest. With the 

outputs the data will be stored raw in an array or gridded into rasters using spatial 

interpolation to a specified resolution. Furthermore, within this script the data is 

aggregated to mean annual values. The second script, Create_SWEGrids.m uses the 

dynamics outputs similar to the last script but deals only with SWE by gridding the data 

into rasters the same resolution and spatial extent as the SWANN dataset. Both of these 
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scripts will save the data as .mat files after completion which is then download from the 

cluster into the individual folder for each simulation. Note that these scripts take 

approximately eight hours to run on Agave for each simulation and specific details about 

the scripts is located within the scripts as comments. 
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APPENDIX F 

F. ANNUAL WATER BALANCES FOR SIMULATION EXPERIMENTS 
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 This appendix contains the annual water balance for the nine simulation 

experiments calculated using the the *.mrf files from model outputs for the Beaver Creek 

tRIBS model. 

 

Table F.1. Basin scale annual water balance for BC1. 

Water Year Qsim P ET Sg Sc ETtot dS/dt Qsim/P ETtot/P 

 [mm/yr]   

2003 134 692 409 31 29 469 106 0.19 0.68 

2004 26 406 344 27 26 396 -19 0.06 0.98 

2005 125 888 419 29 29 476 296 0.14 0.54 

2006 10 363 383 14 13 410 -65 0.03 1.13 

2007 19 403 373 29 16 417 -63 0.05 1.03 

2008 76 557 356 52 32 440 19 0.14 0.79 

2009 54 438 341 34 23 397 -26 0.12 0.91 

2010 119 627 321 59 24 403 80 0.19 0.64 

2011 67 529 384 43 23 450 17 0.13 0.85 

2012 49 543 391 36 27 454 50 0.09 0.84 

2013 84 589 398 41 33 472 120 0.14 0.80 

2014 32 433 351 14 9 374 54 0.07 0.86 

2015 60 549 415 5 5 426 69 0.11 0.78 

2016 39 490 444 38 22 504 -113 0.08 1.03 

2017 80 593 451 25 24 500 0 0.14 0.84 

2018 17 277 371 12 8 392 -166 0.06 1.41 

Mean 62 524 385 31 21 436 23 0.11 0.88 
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Table F.2. Basin scale annual water balance for BC2. 

Water Year Qsim P ET Sg Sc ETtot dS/dt Qsim/P ETtot/P 

 [mm/yr]   

2003 124 692 443 15 12 470 130 0.18 0.68 

2004 27 406 368 15 11 395 -14 0.07 0.97 

2005 110 888 490 2 12 504 325 0.12 0.57 

2006 10 363 408 8 7 423 -81 0.03 1.17 

2007 18 403 407 15 7 429 -69 0.04 1.06 

2008 93 557 393 25 14 432 25 0.17 0.78 

2009 62 438 373 16 10 399 -30 0.14 0.91 

2010 147 627 363 22 7 392 78 0.23 0.63 

2011 56 529 435 19 14 468 26 0.11 0.89 

2012 48 543 431 20 12 463 47 0.09 0.85 

2013 80 589 436 25 18 480 119 0.14 0.82 

2014 29 433 377 8 6 391 48 0.07 0.90 

2015 48 549 449 1 2 452 70 0.09 0.82 

2016 46 490 476 21 11 509 -125 0.09 1.04 

2017 71 593 492 14 12 517 2 0.12 0.87 

2018 15 277 395 6 4 406 -177 0.06 1.46 

Mean 61 524 421 15 10 446 23 0.11 0.90 

 

Table F.3. Basin scale annual water balance for BC4. 

Water Year Qsim P ET Sg Sc ETtot dS/dt Qsim/P ETtot/P 

 [mm/yr]   

2003 106 692 478 6 3 487 146 0.15 0.70 

2004 24 406 394 7 4 405 -10 0.06 1.00 

2005 82 888 542 -2 5 544 337 0.09 0.61 

2006 11 363 429 4 3 436 -96 0.03 1.20 

2007 15 403 437 5 2 444 -75 0.04 1.10 

2008 85 557 435 6 4 446 37 0.15 0.80 

2009 59 438 402 6 2 410 -27 0.13 0.94 

2010 161 627 409 -1 1 410 73 0.26 0.65 

2011 46 529 471 9 8 487 28 0.09 0.92 

2012 38 543 473 9 5 487 48 0.07 0.90 

2013 65 589 480 11 9 500 119 0.11 0.85 

2014 23 433 402 3 5 411 37 0.05 0.95 

2015 40 549 471 0 1 471 62 0.07 0.86 

2016 49 490 505 9 6 520 -132 0.10 1.06 

2017 74 593 521 6 4 531 -4 0.13 0.89 

2018 8 277 416 3 2 421 -183 0.03 1.52 

Mean 55 524 454 5 4 463 22 0.10 0.93 
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Table F.4. Basin scale annual water balance for BC6. 

Water Year Qsim P ET Sg Sc ETtot dS/dt Qsim/P ETtot/P 

 [mm/yr]   

2003 87 692 507 1 1 509 156 0.13 0.74 

2004 20 406 416 2 1 419 -14 0.05 1.03 

2005 67 888 571 -1 3 573 328 0.08 0.65 

2006 13 363 444 1 1 446 -109 0.04 1.23 

2007 12 403 456 1 0 457 -78 0.03 1.13 

2008 54 557 469 1 2 472 55 0.10 0.85 

2009 45 438 432 0 0 432 -26 0.10 0.98 

2010 133 627 449 -2 0 446 82 0.21 0.71 

2011 33 529 503 4 3 510 20 0.06 0.96 

2012 28 543 506 1 2 509 42 0.05 0.94 

2013 53 589 511 4 4 519 119 0.09 0.88 

2014 17 433 419 2 4 424 27 0.04 0.98 

2015 34 549 485 0 0 485 56 0.06 0.88 

2016 40 490 529 3 3 535 -132 0.08 1.09 

2017 68 593 547 1 1 549 -9 0.11 0.93 

2018 3 277 431 1 0 433 -193 0.01 1.56 

Mean 44 524 480 1 2 482 20 0.08 0.97 

 

Table F.5. Basin scale annual water balance for PT0. 

Water Year Qsim P ET Sg Sc ETtot dS/dt Qsim/P ETtot/P 

 [mm/yr]   

2003 134 692 380 29 27 436 141 0.19 0.63 

2004 27 406 319 26 24 369 13 0.07 0.91 

2005 128 888 393 27 26 446 332 0.14 0.50 

2006 12 363 367 13 12 392 -42 0.03 1.08 

2007 20 403 358 28 15 400 -48 0.05 0.99 

2008 80 557 348 48 29 425 33 0.14 0.76 

2009 57 438 333 32 20 386 -16 0.13 0.88 

2010 133 627 312 54 21 386 87 0.21 0.62 

2011 73 529 380 38 21 440 26 0.14 0.83 

2012 56 543 383 33 25 441 60 0.10 0.81 

2013 100 589 386 38 30 454 105 0.17 0.77 

2014 39 433 344 12 9 365 72 0.09 0.84 

2015 79 549 408 5 5 418 45 0.14 0.76 

2016 51 490 431 36 20 488 -113 0.10 1.00 

2017 99 593 436 23 22 480 -3 0.17 0.81 

2018 18 277 355 12 7 375 -148 0.06 1.35 

Mean 69 524 371 28 20 419 34 0.12 0.85 
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Table F.6. Basin scale annual water balance for PT1. 

Water Year Qsim P ET Sg Sc ETtot dS/dt Qsim/P ETtot/P 

 [mm/yr]   

2003 133 692 395 21 18 434 154 0.19 0.63 

2004 26 406 331 19 17 367 18 0.06 0.90 

2005 127 888 430 9 17 456 344 0.14 0.51 

2006 11 363 379 10 9 399 -50 0.03 1.10 

2007 19 403 374 21 10 405 -50 0.05 1.00 

2008 90 557 364 36 20 420 33 0.16 0.75 

2009 62 438 350 21 14 385 -19 0.14 0.88 

2010 147 627 332 35 12 380 82 0.23 0.61 

2011 69 529 404 25 16 446 29 0.13 0.84 

2012 54 543 401 25 18 444 61 0.10 0.82 

2013 100 589 404 29 23 457 104 0.17 0.78 

2014 37 433 356 9 7 372 69 0.09 0.86 

2015 75 549 424 2 3 429 46 0.14 0.78 

2016 54 490 447 27 15 489 -118 0.11 1.00 

2017 94 593 455 17 16 489 -2 0.16 0.82 

2018 17 277 366 9 5 381 -152 0.06 1.37 

Mean 70 524 388 20 14 422 34 0.12 0.85 

 

Table F.7. Basin scale annual water balance for PT2. 

Water Year Qsim P ET Sg Sc ETtot dS/dt Qsim/P ETtot/P 

 [mm/yr]  

2003 125 692 412 14 11 437 167 0.18 0.63 

2004 27 406 342 14 10 367 19 0.07 0.90 

2005 114 888 463 1 11 476 354 0.13 0.54 

2006 11 363 391 8 7 406 -58 0.03 1.12 

2007 18 403 391 15 6 412 -53 0.04 1.02 

2008 97 557 385 22 13 419 34 0.17 0.75 

2009 63 438 365 14 9 388 -19 0.14 0.89 

2010 159 627 352 20 6 378 81 0.25 0.60 

2011 64 529 427 17 12 456 31 0.12 0.86 

2012 52 543 421 18 11 450 60 0.10 0.83 

2013 95 589 424 23 17 464 103 0.16 0.79 

2014 34 433 369 6 6 381 66 0.08 0.88 

2015 70 549 438 1 2 440 45 0.13 0.80 

2016 58 490 461 20 10 491 -123 0.12 1.00 

2017 92 593 472 12 11 495 -2 0.15 0.83 

2018 16 277 377 6 4 387 -156 0.06 1.39 

Mean 68 524 406 13 9 428 34 0.12 0.87 
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Table F.8. Basin scale annual water balance for PT4. 

Water Year Qsim P ET Sg Sc ETtot dS/dt Qsim/P ETtot/P 

 [mm/yr]   

2003 106 692 444 6 3 452 185 0.15 0.65 

2004 24 406 366 6 4 376 23 0.06 0.93 

2005 90 888 512 -2 5 514 364 0.10 0.58 

2006 12 363 412 3 3 418 -75 0.03 1.15 

2007 16 403 419 5 2 426 -59 0.04 1.06 

2008 90 557 425 5 4 434 43 0.16 0.78 

2009 59 438 393 5 2 400 -17 0.14 0.91 

2010 168 627 398 -1 1 398 76 0.27 0.63 

2011 53 529 461 8 7 476 34 0.10 0.90 

2012 43 543 460 8 5 472 59 0.08 0.87 

2013 84 589 462 10 8 481 101 0.14 0.82 

2014 28 433 391 3 4 398 56 0.07 0.92 

2015 62 549 457 0 1 457 40 0.11 0.83 

2016 60 490 488 8 6 502 -131 0.12 1.02 

2017 94 593 499 5 4 508 -6 0.16 0.86 

2018 8 277 395 3 2 399 -160 0.03 1.44 

Mean 62 524 436 4 4 444 33 0.11 0.90 

 

Table F.9. Basin scale annual water balance for PT6. 

Water Year Qsim P ET Sg Sc ETtot dS/dt Qsim/P ETtot/P 

 [mm/yr]   

2003 87 692 470 1 1 472 197 0.13 0.68 

2004 21 406 386 2 1 389 21 0.05 0.96 

2005 78 888 539 -1 3 542 353 0.09 0.61 

2006 14 363 426 0 1 427 -86 0.04 1.18 

2007 12 403 437 1 0 438 -62 0.03 1.09 

2008 66 557 454 1 1 457 54 0.12 0.82 

2009 47 438 420 0 0 419 -15 0.11 0.96 

2010 146 627 434 -2 0 432 80 0.23 0.69 

2011 41 529 490 3 3 497 27 0.08 0.94 

2012 33 543 491 1 2 494 55 0.06 0.91 

2013 73 589 491 3 4 499 100 0.12 0.85 

2014 22 433 405 2 3 410 47 0.05 0.95 

2015 56 549 469 0 0 469 38 0.10 0.85 

2016 54 490 509 3 2 514 -133 0.11 1.05 

2017 88 593 522 1 1 524 -9 0.15 0.88 

2018 4 277 408 1 0 410 -167 0.01 1.48 

Mean 53 524 459 1 2 462 31 0.09 0.93 
 


