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ABSTRACT 

   

Extreme weather events, such as hurricanes, continue to disrupt critical 

infrastructure like energy grids that provide lifeline services for urban systems, thus 

making resilience imperative for stakeholders, infrastructure managers, and community 

leaders to strategize in the face of 21st-century challenges. In Puerto Rico after Hurricane 

Maria, for example, the energy system took over nine months to recover in parts of the 

island, thousands of lives were lost, and livelihoods were severely impacted. Urban 

systems consist of interconnected human networks and physical infrastructure, and the 

subsequent complexity that is increasingly difficult to make sense of toward resilience 

enhancing efforts. While the resilience paradigm has continued to progress among and 

between several disciplinary fields, such as social science and engineering, an ongoing 

challenge is integrating social and technical approaches for resilience research. 

Misaligned or siloed perspectives can lead to misinformative and inadequate strategies 

that undercut inherent capacities or ultimately result in maladaptive infrastructure, social 

hardship, and sunken investments. This dissertation contributes toward integrating the 

social and technical resilience domains and transitioning established disaster resilience 

assessments into complexity perspectives by asking the overarching question: How can a 

multiplicity of resilience assessments be integrated by geographic and network mapping 

approaches to better capture the complexity of urban systems, using Hurricane Maria in 

Puerto Rico as a case study? The first chapter demonstrates how social metrics can be 

used in a socio-technical network modeling framework for a large-scale electrical system, 

presents a novel framing of social hardship due to disasters, and proposes a method for 

developing a social hardship metric using a treatment-effect approach. A second chapter 
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presents a conceptual analysis of disaster resilience indicators from a complexity 

perspective and links socio-ecological systems resilience principles to tenets of 

complexity. A third chapter presents a novel methodology for integrating social 

complexity with performance-based metrics by leveraging distributed ethnographies and 

a thick mapping approach. Lastly, a concluding chapter synthesizes the previous chapters 

to discuss a broad framing for socio-technical resilience assessments, the role of space 

and place as anchors for multiple framings of a complex system, caveats given ongoing 

developments in Puerto Rico, and implications for collaborative resilience research.   
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CHAPTER 1 

BACKGROUND AND INTRODUCTION 

1.1 Problem Statement 

Resilience, the adaptability and flexibility of systems to recover, learn, and adapt to 

maintain essential urban functions, has become an imperative theme for research and 

urban planning (e.g., National Academies, 2012; Meerow et al., 2016). In the twenty-first 

century, climatic disasters like heat waves and hurricanes present increasingly difficult 

challenges for urban systems, defined as the interconnected human networks and physical 

infrastructure that support essential urban functions. Infrastructure is expected to bear the 

brunt of impacts from disasters, but at the same time, efforts have also acknowledged the 

need to enhance the resilience of communities and individuals in the face of 

infrastructure failures and social vulnerabilities (Abramson et al., 2015). The inevitability 

of impacts (i.e., vulnerability) to urban systems from disasters is becoming increasingly 

acknowledged (Anderies et al., 2016; Engle, 2011). 

In the Anthropocene, the age where technology and social systems have evolved to a 

scale where humans and technology have a disproportionate impact on and terraform the 

Earth System, the dynamics triggered by climatic disasters occur in an age of accelerating 

change, complexity, and unpredictability (Allenby, 2013; Crutzen, 2006; Milly et al., 

2008). Such a future is characterized by complex adaptive systems (CAS), which are 

systems made up of interconnected networks with many interacting heterogeneous 

components that produce synergistic effects and emergent phenomena that are difficult 

(or impossible) to predict (Turner & Baker, 2019). The complexity paradigm often takes 

on contrasting assumptions to traditionally embraced Newtonian assumptions for 
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scientific research, which are still practiced (Cilliers et al., 2002; Heylighen et al., 2006). 

Complexity sciences tend to focus on unearthing the dynamics between variables and 

leveraging ways to “nudge” systems toward desirable states, rather than primarily 

developing predictive models and solutions that reduce risks or harden infrastructure 

against known and foreseen stressors and shocks. 

The objective of this dissertation is to address the remaining challenges toward 

integrating complexity perspectives into established disaster research and transitioning 

into systems thinking strategies for resilience assessments. In turn, such an effort can aid 

in activating and enhancing resilience capacities in the face of future disasters. Resilience 

assessment methodologies still do not acknowledge the growing complexity of urban 

systems, and when they do, they tend to annex additional variables of urban sub-systems 

rather than focus on key properties and dynamics between sub-systems. Current 

approaches to resilience research and practice rely largely on traditional approaches that 

assume stationarity (i.e., future parameters will vary within a historical envelope), or 

otherwise rely on approaches that reduce complexity to simple sets of variables and 

predictive models based on historical data (Chester & Allenby, 2019; Milly et al., 2008). 

On the other hand, some methods such as composite resilience indices are adopting 

increasingly larger sets of variables while missing the relationships between them and 

between the sub-subsystems they are a part of (e.g., interactions between institutions, and 

between social systems and ecological systems). 

Resilience emerges from CAS, yet cities are not yet equipped with concepts, 

frameworks, and tools that sufficiently match-up this complexity, which can lead to 

maladaptation, mounting social and economic costs, and reduce the flexibility and agility 
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of urban systems to adapt (i.e., lock-in) to unforeseen events (Allenby, 2012; Cilliers et 

al., 2013; Naughton, 2017). Strategies based on insufficient conceptualization and 

operationalization of resilience measures can trade-off flexibility in coupled 

infrastructure systems (coupled physical systems like power and water, and the 

institutions that design and govern them) in an era of increasing socio-technical 

complexity and unpredictability. In turn, investments toward enhancing resilience and 

adaptive capacities of urban systems can result in maladaptive strategies and investments 

in assets that do not payoff, ultimately undercutting the resilience of cities and well-being 

of communities. However, methods that embody the analysis of deep and constantly 

evolving information regarding such systems, which are characterized by constant flux 

and include sociocultural dynamics that are beyond objective observation and 

measurement (i.e., “thingness”), are still needed. 

Essential dynamics and trade-offs between the domains of urban systems (i.e., social, 

ecological, technical) need to be understood, and key processes can be leveraged to 

mitigate vulnerability and enhance resilience. Although any characterization of a 

complex system is inherently incomplete, toward sufficiently illuminating urban 

dynamics, it is necessary to incorporate multiple perspectives and transdisciplinary 

approaches (Allenby, 2012; Cilliers, 2002). For instance, understanding the behavior of 

technical systems along with their manifestations in the lived experience of disaster 

survivors, or how social and ecological capital can cover the lack of or delayed recovery 

of infrastructure services can help infrastructure managers and urban planners better 

design and deploy mitigative technologies (e.g., distributed energy generation) or 

coordinate with communities when supporting community resilience initiatives (e.g., 
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preparedness programs). Complexity-oriented resilience assessments can help identify 

where existing adaptive capacities can be leveraged, which trade-offs may be at play for 

specific resilience strategies, and lead to enhanced flexibility of urban systems to cope 

with an accelerating future. 

1.2 Urban Infrastructure and Disaster Resilience Assessment Approaches 

As extreme events like heat waves and hurricanes continue to occur, the need to develop 

and implement resilience strategies for urban systems remains imperative (Goldsmith & 

Crawford, 2014; Meerow & Mitchell, 2017; Preston et al., 2011; National Academies 

Press, 2012). Cities are urban systems, of which infrastructure are a part of. Infrastructure 

plays a key role in bearing the brunt of impacts, and adapting urban systems during and 

after disruptions. For example, after Hurricane Maria hit Puerto Rico, critical infrastructure 

were decimated, and excess deaths estimated to be 4,600 due to, at least in part, to the loss 

of infrastructure services like energy, which took over 8 months to recover in parts of the 

island (Kishore et al., 2018; Roman et al, 2019). Currently unfolding global changes, 

including climate change, are expected to accelerate the unpredictability and cascading 

extent of future disasters (Arbesman, 2016; Biggs et al., 2015). It is thus important for 

urban systems to develop the knowledge and infrastructure capacities necessary to adapt 

against rapid changes in demand, supply, and unforeseen disruptive events. 

Urban systems can be generally conceptualized as the interconnected institutions (i.e., 

governance), networked material and energy flows, urban infrastructure and form (e.g., 

utilities, buildings, transportation), and socioeconomic dynamics that interact 

spatiotemporally (Dicken, 2011; Meerow et al., 2016). Infrastructure are the socio-
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technical networks of urban systems that provide essential services to cities and 

communities, such as water, energy, and communications, but also lay the foundation for 

the evolution of cities as a complex system, and therefore, play a significant part in their 

ability to be flexible and agile in the face of future disasters and unexpected shocks 

(Allenby & Chester, 2018; Anderies, 2014; Bettencourt, 2010; 2013). Coupled 

Infrastructure systems (CIS) are interacting combinations of multiple classes of 

infrastructure (e.g., institutions, natural and built infrastructure) that produce emergent 

outcomes over time and space (Anderies et al., 2016). In other words, CIS are composed 

of both networks of physical components (i.e., hard infrastructure) and the organizational 

arrangements and institutions that design, govern, and maintain physical systems (i.e., soft 

infrastructure). 

Although the role of infrastructure failures and improvements are often highlighted 

after disasters, it has been recognized that it is also important to account for social, 

economic, political, and ecological dimensions that contribute to the overall resilience of 

urban systems (Eakin, 2017; NAP, 2012). The complexity in the coupling of these 

interrelated domains, let alone the complexity of social systems in as-of themselves, have 

presented challenges for comprehensive resilience assessments (Koliou et al., 2019). 

Domains that rely on either subjective data, methods, or take descriptive approaches to 

complex human dynamics have been the most challenging to incorporate into resilience 

assessments that leverage performance-based methods, such as geospatial analysis, 

engineering approaches, and mathematical models. Still, there is a need to develop 

theoretical frameworks and methods to assess the resilience of urban systems toward 
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informing urban planners, infrastructure managers and engineers, stakeholders, and 

communities toward preparing for future challenges. 

Resilience assessments, such as those based on indicators associated with resilience 

capacities, enable the research and tools that can be leveraged to invest, design, and manage 

infrastructure facing such rapidly changing conditions and unexpected disasters (NAP, 

2012). Framing and reducing the complexity of urban systems to a set of comparative 

metrics are attractive to urban science researchers and planners by providing clear, 

actionable insights toward identifying enhancements for resilience capacities (Cutter, 

2016a; Preston et al, 2011). Resilience assessments have largely taken shape in the form of 

subjective (e.g., structure-based indicators like Cutter et al., 2010) and performance-based 

approaches that rely on computational models (Reddy, 2020). Assessments can focus on 

technical, institutional, socioeconomic, ecological, or combinations of resilience 

dimensions as it relates to infrastructure systems, and leverage both quantitative and 

qualitative methods to incorporate social considerations. 

Qualitative resilience assessments involve largely subjective methods or experiential 

data. This can include mapping the individual narratives of different types of actors, 

communities, or stakeholders to resilience capacities (Borie et al., 2019; Kawano et al., 

2016; Peek et al., 2020), expert elicitation (USAID), surveys and ethnographic methods 

(e.g., Kawano et al, 2006; Gotham & Campanella, 2013), and workshop-based approaches 

like the Delphi method (Bozza et al., 2015). Such methods can take advantage of local 

knowledge of systems and contexts can be effective toward elucidating local dynamics that 

are difficult to measure, such as those in the human domain like perceptions of risk and 

cultural histories that can be at play before, during, and after disasters. 
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Quantitative assessments can involve performance-based methods (such as those used 

via statistical or mathematical models) or metrics derived from publicly available data used 

as indicators. Computational models can take network approaches to determine points of 

criticality (i.e., critically vulnerable nodes; e.g., Vugrin & Turnquist, 2012). Dynamical 

approaches can model interactions that tip the system toward transition to a different state 

that can be either a desired or an undesired one (Miller & Page, 2007; Thurner et al., 2018). 

Macro-level network metrics can also be developed, such as a high-level metric for self-

organization (e.g., King & Peterson, 2018). Such sophisticated modeling approaches 

require extensive knowledge, technical capacities and resources, and rigor, which can make 

them less accessible or appealing to multi-stakeholder projects (Schianetz & Kavanagh, 

2008). Indicators and index approaches, however, are more accessible and offer clear 

measures that pertain to variables and resources relevant to planners and stakeholders 

(Butler, 1999; Zandt et al., 2012). 

Development of resilience indicators, such as those that are geospatially explicit and 

composited into indices, remains a very popular resilience assessment methodology 

because such methods are readily reproduced, leverage publicly available data, and are 

amenable to be incorporated into computational models and planning tools (Beccari , 2016; 

Bozza et al., 2015;  Karakoc et al., 2019; NAP, 2012). For example, the Baseline Resilience 

Index for Communities (BRIC) and Climate Disaster Resilience Index (CDRI), which 

largely evolved from preceding disaster risk approaches for developing a Social 

Vulnerability Index (SoVI), have been adopted or adapted for several use-cases (e.g., Yoon 

et al., 2016). Bozza et al (2015) propose a Hybrid Physical-Social Network model (HPSN) 

that integrates a social vulnerability index into a neighborhood-level network that includes 
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buildings and transportation networks. Indices can also be coupled with qualitative 

methods, such as ethnographies, which can add nuance and illustrate how indicators 

manifest in the experiences of community members, which can either confirm, deny, or 

add nuance to quantitative assumptions (e.g., Gotham and Campanella 2013; Kawano et 

al. 2016; Rickless et al. 2020). 

While indicator-based methods and demand for actionable metrics remain widespread, 

there are several limitations and contested assumptions that need to be addressed. One of 

the most persistent and common critiques is the lack of sufficient validation of 

methodologies (e.g., internal and external validation; confirmation with alternative 

methods; testing and ground truthing) and resilience outcomes based on indicator methods 

(Beccari, 2016). Another issue with resilience assessments are the absent or insufficiently 

captured dynamics between system components (i.e., self-organization between affected 

communities) or between subsystems within urban systems (e.g., social and technical; 

Eakin et al., 2018; Koliou et al., 2019). Most indicator approaches provide a momentary 

snapshot of a continuously evolving urban system, while systems thinking assumes 

unpredictability and a system under continuous flux (Cilliers et al., 2013). That is, the 

nature of urban systems from a CAS perspective challenges the generalization and 

application of index methods (Rus et al., 2018). As disaster research has continued to 

emphasize the need to observe the interdependencies and dynamics among subsystems 

(i.e., social, ecological, and technological dimensions of an urban system), resilience 

indicator methods have become increasingly comprehensive. The range of approaches and 

variety of variables across domains suggests that index development faces overwhelming 
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complexity toward assessing urban systems, but not necessarily a thorough understanding 

and integration of fundamental CAS concepts and principles. 

An effective index should focus on a well-selected set of key variables that indicate 

changes and key capacities in urban resilience (Rus et al., 2018), but prevailing 

methodologies have been annexing dimensions of urban systems (e.g., ecological and 

institutional) largely by way of traditional sociological (Olsson et al., 2015) and data-driven 

approaches, leading to evermore variables within resilience dimensions emerge as relevant. 

In turn, indicator development is becoming increasingly complicated by adding more 

variables and sophisticated methods in attempting to capture complexity. This is 

problematic for two reasons. A greater number of variables increases the potential degree 

of uncertainty, inherent assumptions for a greater number of potential dynamics, and makes 

validation of composite indices more difficult. More importantly, it is problematic because 

complexity in urban systems then appears to be interpreted and operationalized as simply 

many components in many different domains. 

Complexity sciences tend to focus on unearthing system dynamics, while indicator-

based resilience assessments aim to reduce urban resilience to a set of capitals and 

capacities for an overall measurement of resilience. It can be argued that composite indices 

are categorically misaligned with CAS theory due to the framing of resilience in an urban 

system as representable by a sum of its quantified parts, whereas complexity assumes 

synergistic effects between many autonomous interacting parts, which can be 

unpredictable. Composite index methodologies implicitly assume a “simple” system in that 

a selection of quantifiable subsystems corresponds meaningfully to how an urban system 

behaves. This misalignment occurs methodologically when indicators are added up and 
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assumed to indicate some ordinal level of resilience, but also conceptually when variables 

are assumed to be meaningful, consistent, and generalizable from one event to another, and 

among different urban systems. 

If complexity principles are not properly captured or implemented, research and 

development toward resilience assessments can be misguided toward increasingly 

sophisticated methods while conceptually missing the mark, resulting in inaccurate 

assumptions about what makes urban systems resilient. Practices such as adaptation 

strategies based on such assessments may not pay off and the case for investing in resilience 

may be undermined if resilience capacities are ill-understood, undercut, or if unintended 

trade-offs create new threats or vulnerabilities for communities that are a part of urban 

systems. Despite the practicality of resilience indices, the reduction of an urban system to 

a set of quantitative indicators runs the risk of sunken investments and maladaptation that 

can compromise the resilience of future cities (Barnett et al., 2008; Magnan et al., 2016). 

This misalignment is especially important because Earth systems, such as technology 

and climate, are continuing to evolve, while becoming increasingly interdependent 

(Heylighen et al., 2006). From a CAS perspective, urban systems are characterized by 

interactive networks where a change in one component can affect changes in other 

components such that structures, organization, and other phenomena like resilience emerge 

in ways that cannot be explained by analyzing individual components (i.e., the sum is 

greater than its parts). However, while there are arguments that the use of composite 

indicators, resilience maps, and other types of quantitative resilience assessments are 

problematic, there is still demand for comparative metrics to steer adaptive strategies for 

urban systems (Butler, 1999; Eakin et al., 2018). Whether these metrics are useful comes 
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down to not just the theoretical grounds and state of the art, but how they are in-turn 

understood and applied. Therefore, it is important for modelers and practitioners alike to 

understand the assumptions and limitations for the use of resilience indices. 

Validating variables and methodologies, and integrating urban dynamics into resilience 

assessments remain key challenges, but there may be solutions by way of explicitly 

defining complexity concepts and frameworks with disaster resilience research, converging 

resilience literature between disparate disciplines, and collaborative interdisciplinary 

research. Efforts to push resilience assessment research and development forward can 

consider validation and/or confirmation of frameworks, methods, and variables from 

multiple perspectives. This can be done by way of stakeholder engagement and co-

production, cross-referenced case studies (e.g., Rickless et al, 2020), and coupling 

interdisciplinary and transdisciplinary approaches. Further research can clarify the validity 

and usefulness of proxies for systemic properties, such as the overall ability of an urban 

system to self-organize, toward indicating some type of general resilience. Methods like 

thick mapping, spatial ethnographies, and other mixed methods that combine quantitative 

and qualitative data show potential avenues for furthering innovative approaches for 

resilience assessment. Research and development in these areas, as well as network-based 

computational approaches, can add nuance to established assessment approaches, 

recognize important exceptions and limitations to indicators, and enable novel tools for 

practitioners to determine how to harness adaptive capacities in the face of future disasters 



  12 

1.3 Definitions and Current Status of Urban Resilience Theory 

Resilience is a term that has many definitions ranging in disciplines from the physical 

sciences to psychology (Alexander, 2013), but in the domain of urban disaster resilience, 

the term has come to generally mean the ability to anticipate, withstand, and adapt to 

maintain systems functions and essential characteristics, or to transform if necessary 

(Meerow et al., 2016). Resilience differs from vulnerability in that it is focused on the 

ability to bounce back and learn from inevitable disaster impacts, which a city, community, 

or infrastructure system is inherently, despite differentially, vulnerable to. From a CAS 

perspective, resilience is an emergent property (outcomes borne from the interaction of 

many agents or components) and is observed upon perturbations, where the properties of 

complexity come into play in describing the qualities that sustain adaptation (e.g., self-

organization). There are many parallel and sometimes linked branches in the evolution of 

complex systems theories (Castellani, 2014), and subsequently, many definitions and 

framings of CAS. Generally, CAS are networks of interacting components that individually 

do not produce greater understanding of the behavior of the “whole system”, but interact 

to produce synergistic outcomes and observable properties over time and space (e.g., such 

as resilience) (Miller, 2007; Miller & Page, 2007). While differences occur between 

disciplines at the theoretical level, there are some common and generally accepted 

properties of complex adaptive systems. For example, Turner and Baker (2019) highlight 

a set of essential “tenets” based on a review of complexity theory (path dependence, non-

linearity, emergence, irreducibility, adaptivity, systems have a history, systems operate 

between order and chaos, and self-organizing behavior). 
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A turn toward complexity has been observed in several research fields concerned with 

urban resilience to climatic disasters, such as disaster risk reduction, urban geography, and 

resilience engineering, and in turn, remolding the framing urban systems like cities 

(Allenby & Chester, 2018; Castellani, 2014; Cutter, 2016a; Folke, 2006; Holnagel, Woods, 

and Leveson, 2006; Meerow & Newell, 2016; Reddy, 2020). For the disaster resilience 

research domain, seminal publications in the field of ecology were a major influence. 

Namely, the resilience of ecological systems framework by Holling (1973; 2001) guided 

many of complexity-related concepts and frameworks adopted and developed in the 

disaster resilience field. Resilience in ecological systems is framed as an emergent property 

of socio-ecological systems (SES) composed of many interacting biophysical individuals, 

communities, institutions, and resource systems, which as an interconnected whole, absorb 

change and reorganize to maintain essential functions and an essential identity (Anderies, 

2014; Walker et al., 2004). Commonly referenced principles associated with resilience of 

SESs include diversity and redundancy, connectivity, polycentricity, slow variables and 

feedbacks, understanding of CAS, learning and participation (Biggs et al., 2012, 2015; 

Folke et al., 2016; Wiese, 2016). 

SES perspectives are traditionally more focused on ecosystems and society, but the 

field has extended toward the built environment, integrating coupled infrastructure systems 

with socio-ecological systems (Anderies, 2014; Markolf et al., 2018; Suarez et al., 2019). 

Urban systems then share many qualities (despite in different proportions or 

manifestations) as ecological systems composed of interconnected, complex and 

heterogeneous structures and substructures, which evolve through cycles of disturbance 

and adaptation (Janssen, 2001; Pandit et al., 2017). These perspectives enable the 
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interrelation between urban infrastructure, social dynamics, ecological interactions, and 

technological evolution as entangled in a complex system. 

Concepts related to absorbing change and coping with inevitable stresses and 

perturbations to maintain an essential system identity has been adapted from ecological 

contexts to the built environment and subsequent frameworks that are more technically 

oriented (Anderies, 2014; Markolf et al., 2018; Pelling & High, 2005). For engineering, 

resilience has represented an on-going paradigmatic turn from risk-based perspectives 

aiming to reduce system errors and assuming stability when disasters are absent (i.e., 

system safety), toward a paradigm of adaptation in coping with complexity and imperfect 

system knowledge (Hollnagel, Woods, and Leveson, 2006). Resilience has generally been 

characterized as (1) the flexibility and agility to adapt in the face of non-stationarity 

(Chester & Allenby, 2018), (2) the ability of critical systems to cope with and quickly 

recover (i.e., robustness and rebounding) from short-lived external shocks (Comes & de 

Walle, 2014; Hollnagel, Woods, and Leveson, 2006; Reddy, 2020; Woods, 2015), and the 

ability to “gracefully” extend services and functions or sustain adaptability over time 

(Woods, 2015). From a techno-centric point of view, Reddy (2020) suggested that 

resilience can be assessed in terms of five sub-attributes (Table 1.1), some of which, like 

robustness, relate conceptually to vulnerability and sensitivity (i.e., the inverse of 

robustness). Meanwhile, other engineering perspectives have recently been highlighting 

the need for infrastructure competencies that support the flexibility, agility, and persistence 

of a CAS (i.e., more closely related to the last three of Reddy’s sub-attributes; 

restructurability, adaptivity, rebounding), assuming that urban systems are inherently 
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vulnerable to disruptions, in the Anthropocene (Allenby and Chester, 2019; Anderies, 

2014; Chester and Allenby, 2019). 

 

Table 1.1.  Reddy’s (2020) sub-attributes of resilience from a techno-centric perspective. 

Resilience Sub-Attribute Definition 
Preparedness The ability to anticipate and proactively 

invest in adaptation strategies. 
Robustness The ability to withstand sudden shocks and 

provide the service it has been designed 

for. 
Restructurability 
 

The flexibility to reorganize to maintain at 

least partial functioning. 
Restorativity (rebounding) The ability to recover functions in a timely 

manner and without excessive losses. 
Adaptivity The ability to learn from failure and 

adversity and to incorporate changes that 

improve the ability of systems to handle 

similar events in the future. 

 

Since many theoretical frameworks for CAS arise out of non-agent or socially 

agnostic systems, the role of human elements are often overlooked or downplayed (e.g., 

institutional structure, leadership). Conversely, the social Sciences and socio-technical 

research have recently been emphasizing the asymmetrical complexity of coupled 

infrastructure systems toward human systems in light of human capacities for cognition, 

social complexity, and driving Earth Systems (Allenby & Sarewitz, 2012; Manuel-

Navarrete, 2015; Olsson, 2015). Human capacities make coupled systems 

disproportionately influenced (or dominated) by the collective choices and sociopolitical 

forces that govern how urban systems evolve (Allenby & Sarewitz, 2012; Manuel-

Navarrete, 2015). Human agency, conscience, and societal values introduce subjective 

interactions into urban systems that effect emergent outcomes and system evolution. 
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Sociocultural systems are driven by the subjective meanings, identities, beliefs, and values 

that drive social and political dynamics that govern urban systems, where governance refers 

to, “all processes of governing whether undertaken by a government or market, or network, 

whether over a family, tribe, formal or informal organization, or territory, and whether 

through laws, norms, power, or language” (Bevir, 2012). Eakin and colleagues (2017) 

argue for the complexities of sociopolitical infrastructure such as formal and informal rules 

as necessary for urban resilience thinking. The influence of networked social factors like 

roles, institutions, and mental models (i.e., sociopolitical infrastructure) are at least 

proportional to that of physical infrastructure in affecting resilience and vulnerability 

dynamics (Eakin et al., 2017). 

This asymmetrical weight of human systems generally seems to align with 

Anthropocene perspectives that increasingly underscore the irreducible complexity of 

social dynamics in respect to ecological and technical systems. The role of engineered 

systems (i.e., technology) as intricately tied to social dynamics has been described by 

Allenby and Sarewitz (2011), where technology has three levels of complexity (systemic, 

system of systems, and transformative Earth Systems) as technical components become 

increasingly integrated and interconnected into socio-technical (i.e., techno-human) 

networks of information and sociocultural systems. Infrastructure are embedded in rapidly 

coevolving human-technical systems due for accelerating change and high levels of 

unpredictability (Allenby & Chester, 2018; Chester & Allenby, 2019; Markolf et al., 2018). 

Engineered systems in the Anthropocene face deep uncertainty and wicked challenges, 

where the likelihood of various possible futures are too difficult to predict, and unexampled 

events require fundamentally new approaches to how we function ( Allenby & Chester, 
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2018; Chester & Allenby, 2019; Haasnoot et al., 2013; Hallegatte, 2012; Walker et al., 

2013). In turn, any conceptualization of an urban system (as a CAS) is necessarily 

incomplete and highly uncertain in the long-term (Allenby, 2012; Cilliers, 2013). 

The challenge for disaster resilience is conceptualizing and integrating what was 

traditionally thought of as natural disasters into a highly interconnected and unpredictable, 

yet human-driven Earth system. Historically focused on emergency response and recovery, 

disaster research turned to a focus on risk and vulnerability, and then transitioned toward 

interdisciplinary approaches and resilience thinking that are beginning to cross over into 

the complexity sciences (NAP, 2006; 2012). In doing so, the respective research domain is 

moving toward increasingly comprehensive social considerations, and complexity in 

general. In evaluating the contribution of social sciences and to disaster research, The 

National Academies (2006) highlights four human dimensions for disasters including 

psychological, demographic, economic, and political dimensions. Currently, disaster 

research largely incorporates social science and the social dimension in terms of resilience 

capacities, such as social capital (resources and capacities enables by social networks), self-

organization (often in terms of collective action), and adaptive capacity. In any case, the 

call for the inclusion of highly complex social considerations characterizes the “cutting 

edge” in how urban resilience theory and practice is developing. 

While the interdependence between systems in multiple resilience dimensions has 

been suggesting a convergence between disciplines, there are several challenges for 

integrative research. Critical assumptions and methodological approaches between disaster 

risk approaches and CAS-oriented methods may be fundamentally different, although it is 

possible that indicator-based methods can be leveraged as a way to transition between 
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dynamic models and linear indicator approaches (Schianetz & Kavanagh, 2008). Olsson 

and colleagues (2015) challenge the commensurability of ecological resilience frameworks 

with social domains, largely due to ontological differences in defining systems and the now 

controversial basis for social dimensions of SES frameworks coming from relatively early 

sociological perspectives inspired by natural sciences. Modern social science, and to a 

lesser degree, SES perspectives critique technical resilience approaches (such as those in 

the engineering domain) for narrowly focusing on the stability and recovery of technical 

systems, while overlooking the importance of sociopolitical dynamics, hampering 

transformative change or equitable transitions, and introducing trade-offs that can induce 

new vulnerabilities (Barrett & Swallow, 2006; Béné et al., 2014; Eakin et al., 2016; Folke 

et al., 2010; Tellman et al., 2018; Xu, Marinova, & Guo, 2015). These challenges, along 

with the trend toward integrating multiple dimensions of systems between the various 

disciplines participating in resilience research, are indicative of the increasingly high 

degree of complexity to be observed and made sense of in terms of urban systems and 

infrastructure going into the future, making resilience to disasters difficult to measure, 

manage, and predict (Jabareen, 2013). 

Urban resilience seems to be converging around complexity, but established 

theoretical frameworks and methods for understanding urban system challenges to prepare 

for a future that includes pressing challenges like climate change remain insufficient 

(Ahern, 2011; Biggs et al., 2015; Cote & Nightingale, 2012; Folke et al., 2010; Walker & 

Salt, 2012; Xu et al., 2015). Interdisciplinary research, specifically, those integrating 

engineering and social science approaches for disaster resilience, are relevant to tackle this 

problem. A continued challenge is to synthesize and converge disparate disciplinary 
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perspectives into cohesive and impactful developments of knowledge and practices to 

improve the capacities of cities to face future disasters in the Anthropocene – the epoch 

characterized by accelerating change and uncertainty predicated on the dominance of 

human systems. In particular, the comprehensive integration of subjective (i.e., experiential 

data) and performance-based approaches for resilience assessment remains an objective 

that is yet to be demonstrated sufficiently, while at the same time, some researchers find 

futile (Reddy, 2020). 

1.4 Research Questions & Objectives 

Given the state of resilience theory and assessments described, there are two main 

research gaps concerning current methods for assessing resilience towards providing 

actionable tools to guide effective resilience strategies for cities (NAP, 2019): 

 

1. Outside of subjective scorecard-based metrics and qualitative case studies, 

resilience assessment strategies still rely largely on simplistic methods such as 

vulnerability and resilience indicator approaches that do not capture the 

complexity of urban systems subject to disturbances and interactions between the 

built and natural environment. 

2. A second gap involves integrating social and technical domains for resilience 

assessments, which remains a challenge due to disciplinary and epistemological 

differences between social and technical domains. 
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A subset of the second gap is that more nuanced variables in the human dimension 

such as risk perceptions and community narratives surrounding disasters are difficult to 

quantify and integrate with measurement or performance-based resilience assessment 

methods, yet have consequential dynamics with commonly chosen quantitative resilience 

indicators (e.g., demographics, civic participation, disaster centers) in social, ecological, 

and technological domains. Another subset, which links the two major gaps, is that 

hybrid socio-technical network models that simulate resilience to climatic disasters have 

been called for, but remain largely conceptual and still rely on ad hoc or global structure-

based approaches for social metrics toward incorporating the social domain of urban 

systems (e.g., Bozza et al., 2015; Karakoc et al., 2020). 

This dissertation aims to tackle these subset gaps by asking the following overarching 

research question and related sub-questions that guide the dissertation: 

Using Hurricane Maria and Puerto Rico as a case study, how can a multiplicity of 

resilience assessments be integrated by geographic and network mapping approaches 

toward better capturing the complexity of urban systems? 

The research question above is guided by a series of sub-questions: 

1.1. What is the relationship between the resilience of coupled infrastructure systems 

–  essential or critical systems such as energy generation and transmission 

networks that are coupled with other physical systems like water and 

communications – and community resilience (e.g., social capital, community 

bonding, institutional adaptive capacities) for integrated socio-technical systems 

exposed to climatic disasters like hurricanes? 
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1.2. How can social vulnerability and impacts to human wellbeing due to climatic 

disasters like hurricanes be incorporated into a statistical socio-technical model 

of infrastructure networks toward human-centric recovery efforts? 

1.3. What do current disaster resilience indicators capture or ignore in terms of urban 

social, ecological, and technical complexity, and what are potential pathways 

toward improving such approaches? 

1.4. How can the resilience of complex socio-technical infrastructure systems be 

understood and assessed from a place-based perspective that includes both 

subjective experiences and comparative metrics toward resilience-enhancing 

strategies? 

The remaining chapters answer the research questions proposed in this dissertation as 

follows: 

Chapter 2: Developing an Integrated Socio-technical Power Network Failure 

Simulation to Mitigate Social Hardships. This chapter has been adapted from parts of 

three manuscripts. The first, “A Simulation Framework for Service Loss of Power 

Networks under Extreme Weather Events: A Case of Puerto Rico,” by Carvalhaes, T., 

Inanlouganji, A., Boyle, E., Jevtić, P., Pedrielli, G., and Reddy, T.A., has been published 

in the peer-reviewed Proceedings of the IEEE 16th International Conference on 

Automation Science and Engineering (CASE), in 2020. The second, “Social Vulnerability 

and Power Loss Mitigation: A Case Study of Puerto Rico,” by Boyle, E., Inanlouganji, 

A., Carvalhaes, T., Jevtic, P., Pedrielli, G., and Reddy, T.A., has been submitted to the 

International Journal of Disaster Risk Reduction (IJDRR) and is published as a preprint 

in the Social Science Research Network (SSRN Scholarly Paper ID 3838896). The third, 
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“A Human Impacts-driven Framework for Quantifying Disaster-dependent Social 

Vulnerability: A case study of Hurricane Maria in Puerto Rico,” by Martinez, W., 

Carvalhaes, T., Jevtic, P., and Reddy, T.A., ready for submission to IJDRR. The chapter 

answers the first two sub-questions and presents a novel method for developing social 

metrics for energy infrastructure failure simulations by leveraging treatment-effect 

approach for Hurricane Maria in Puerto Rico. This chapter contributes to the literature by 

presenting an index that attributes human hardships to specific disasters events, and a 

method for weighting predicting factors. The framework demonstrates how a social 

metric can be framed explicitly in terms of outcomes within the dimensions of human 

burdens, including psychological, demographic, and economic, to develop a modular 

simulation toward energy network mitigation toward reducing human suffering. 

Chapter 3: Social Vulnerability and Community Resilience Indicators in the Face of 

Complexity. This chapter is based on the article, “An Overview & Synthesis of Disaster 

Resilience Indices from a Complexity Perspective,” by Carvalhaes, T., Chester, M., 

Reddy, T.A., and Allenby, B.R., published in the peer-reviewed journal IJDRR, 2021. 

This chapter answers the third sub-question with a critical literature review and 

conceptual analysis using a complexity lens. The contribution of this chapter includes 

outlining the significance of indicators in terms of complexity (or lack thereof), 

identifying counterexamples that illustrate how a concept or variable is overly simplistic, 

and alternative framings or methods toward indicators that more pointedly capture 

resilience principles and dynamics of complex adaptive systems. This chapter aids 

interdisciplinary research toward metrics that are more clearly differentiated between 

resilience and vulnerability metrics, and sets the ground for novel indices based on 
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resilience principles and complexity tenets to inform resilience-related policy and 

decision making in identifying, implementing, and tracking resilience enhancing 

capacities through a future of uncertainty and continuous hazards.  

Chapter 4: Integrating Spatial and Ethnographic Methods for Resilience Research: A 

Thick Mapping Approach for Hurricane Maria in Puerto Rico. The chapter is based on 

the manuscript, “Integrating Spatial and Ethnographic Methods for Resilience Research: 

A Thick Mapping Approach for Hurricane Maria in Puerto Rico,” by Carvalhaes, T., 

Rinaldi, V., Goh, Z., Azad, S., Uribe, J., Chester, A., & Ghandehari, M., which is 

currently under review in the peer-reviewed Annals of American Association of 

Geographers, and published as a preprint in the Social Science Research Network, 2021 

(SSRN Scholarly Paper ID 3863657). This chapter answers the last sub-question and 

helps link the other chapters toward answering the larger research question in this 

dissertation. The main contribution of this chapter is a novel framework and methodology 

for integrating social complexity with performance-based metrics by leveraging 

distributed ethnographies and a thick mapping approach. Advantages of this approach 

include built-in flexibility and reflexivity to integrate multiple disciplinary perspectives 

of a complex adaptive system, which would otherwise be at odds, toward insights 

emergent from multiple types of resilience assessments, and the identification of weak 

signals – bits of information about previously unknown dynamics or which indicate low 

probability but high uncertainty and consequence events. A dynamic and interactive map 

of Puerto Rico and Maria that can be used as an analytical tool is publicly available.  

A final manuscript aids toward a holistic synthesis in the conclusion chapter, 

“COVID-19 as a Harbinger of Transforming Infrastructure Resilience,” by Carvalhaes, 
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T., Markolf, S., Helmrich, A., Kim, Y., Li, R., Natarajan, M., Bondank, E., Ahmad, N., & 

Chester, M., published in the Frontiers in Built Environment, 2020. The contribution of 

this article is to identify emerging urban system dynamics and patterns for infrastructure 

resilience capacities during the pandemic. While the conclusion sections go beyond this 

article alone, parts of the article have been adapted toward highlighting the complexity 

associated with resilience in Puerto Rico and the limitations to the systems framings the 

research in this dissertation is bound by. 
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CHAPTER 2 

DEVELOPING AN INTEGRATED SOCIO-TECHNICAL POWER NETWORK 

FAILURE SIMULATION TO MITIGATE SOCIAL HARDSHIPS 

2.1 The Case for Reduction of Human Hardships in Large-scale Power Network Models 

2.1.1 Motivation 

Extreme weather hazards, which are geophysical events with the potential to 

induce extensive physical damage and great social hardships, affect millions of people 

worldwide (Guha-Sapir, 2020). When vulnerable communities and critical infrastructure 

are exposed to these hazards, such as the flooding and extreme wind speeds that come 

with hurricanes, the outcomes are often termed climate-related disasters and cost billions 

of dollars. For example, the 2005 Hurricane Katrina in the United States cost $125 

billion, the 2008 Sichuan Earthquake in China ($85 billion), the 2011 Great East Japan 

Tsunami ($210 billion), and the 2011 Flood in Thailand ($40 billion). The number of 

reported climate-related disaster events is increasing worldwide and has tripled in the past 

three decades (Hillier & Nightingale, 2013). In 2020, over 389 recorded climate-related 

disaster events resulted in 15,080 deaths and left injured, homeless, or affected 98.4 

million people in some way (Guha-Sapir, 2020). Total human loss and monetary costs are 

commonly reported, but the range of impacts from hazards like hurricanes can span from 

indirect effects with a slow onset to vicious cycles of vulnerability that hinder sustainable 

development. For stakeholders and decision-makers in humanitarian agencies, emergency 

response organizations, and infrastructure management, it is important to have science-

driven tools that can isolate the impacts on humans due to disasters so as to guide 
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investments and strategies that reduce social hardship. Social hardship refers to the 

several types of disaster impacts people must cope with. 

Indirect impacts on individuals can be lifelong and chronic. Climate-related losses 

that cannot be replaced, rebuilt, or valued in monetary terms include the disruption of 

cultural rituals, communal lifestyles, and the subsequent mental stress and fears of 

heritage loss (McNamara et al., 2021). Disasters bury or inundate land and damage 

buildings necessary for cultural practices that support social cohesion, a sense of place 

and belonging, and spiritual bonds in a community. For children, displacement during 

critical years of development can result in life-long trauma, inadequate access to 

healthcare and education and deprive them of long-term security, socialization, and 

assurance (Dannenberg et al., 2019). The compounding dynamics between 

socioeconomic status and disasters can lead to increased disparities in income, life 

chances, gender and ethnic equality, and social status. Over time, the effects of these 

dynamics can deepen social inequalities or even be transmitted over generations (GAR, 

2019). 

Distress and trauma from disasters can result in short-term and long-term 

psychological effects. In the short term, disasters have been associated with an increased 

prevalence of severe psychiatric symptoms, somatic complaints (psycho-physiological 

symptoms), and nightmares (see Peek and Mileti (2002)). Long-term effects are 

especially complicated because there may be a latency before onset and intermittent 

symptoms, but significant post-disaster psychiatric symptoms can remain for as long as 

14 years (Bland et al., 1996). Long after a disaster, individuals and communities can 

endure ongoing mental health impacts, including anxiety, depression, post-traumatic 
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stress (PTSD), and grief that can affect their quality of life (Asugeni et al., 2015; Sattler 

et al., 2018). 

Disasters can aggravate existing social and economic challenges and degrade the 

sustainability of livelihoods and economic development trajectories for neighborhoods, 

cities, states, and regions (Adger, 2020; Griffith, 2020; Hillier & Nightingale, 2013; 

Mochizuki et al., 2014). For example, communities that depend on climate-sensitive 

resources like fisheries and crops may find their primary way of life devastated and be 

left without alternatives when faced with extreme environmental disruptions (Adger, 

2020; Shahzad et al., 2021). Existing vulnerabilities can result in livelihoods that are 

subject to a vicious cycle where low socioeconomic opportunities coupled with disasters 

further drive poverty and environmental degradation, thus making sustainable 

development goals untenable (see Shahzad et al. (2021)). Families may end up without a 

home and entire ways of life that provide shelter, sustenance, and economic development 

(Hillier and Nightingale, 2013). When recovery efforts can no longer be sustained, 

migration may be the best, if not the only, way to deal with unexpected disruptions 

(Griffith, 2020), and entire regions may have to rely on external aid to cope with 

widespread displacement and poverty. 

For these reasons, disasters have been a focus of national and international 

emergency and humanitarian agencies. The United Nations (UN) has identified disasters 

as an integral part of social and economic development and identified them as essential if 

development is to be sustainable for the future (USAID-DRR, 2019). The UN 2030 

Agenda for Sustainable Development reaffirms the urgent need for disaster risk reduction 

to achieve Sustainable Development Goals (SDG) by reducing exposure and vulnerability 
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of the poor, or building resilient infrastructure that is better prepared and adaptable 

(Maskrey et al., 2020). Every year, the United States Agency for International 

Development (USAID) responds to an average of 65 disasters worldwide from hurricanes 

to violent political conflicts, saving lives, alleviating human suffering, and reducing the 

socioeconomic impacts (OFDA, 2019). The USAID U.S. Foreign Disaster Assistance 

(OFDA) has highlighted the role of national and local entities, such as local leaders and 

utilities, in managing disasters and accelerating recovery through sustaining basic 

services that support life safety and livelihoods. 

In the U.S., the Federal Emergency Management Agency (FEMA) has developed 

an emergency response framework based on Community Lifelines (e.g., electrical energy 

access) to, “. . . enable all other aspects of society to function.” (Community Lifelines, 

2020). The Community Lifelines Framework is an example of the role of critical 

infrastructure like energy systems as networks of assets and capabilities in protecting 

vulnerable communities during disasters, and supporting the overall resilience and 

sustainable development of the nation. Even places closer to home in respect to the U.S., 

such as Puerto Rico (PR), can suffer from insufficiencies in infrastructure management 

and recovery practices by critical utilities that result in significant human suffering. 

In the case of Hurricane Maria in 2017, the centralized power system managed by 

the Puerto Rico Electric Power Authority (PREPA) took over nine months to recover 

(Kwasinski et al., 2019).  Some estimates account for 3,000 to 4,000 deaths due to Maria, 

along with massive migrations and displacement (Kishore et al., 2018; Lugo, 2019). At 

the regional level of the island, electrical infrastructure recovery was driven mainly by 

storm exposure, remoteness from urban areas, and proximity to power stations, while 
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some of the most vulnerable communities were left behind (Román et al., 2019). Slow 

electrical recovery extended to interdependent infrastructure, such as communications 

towers without power, causing sustained anxiety for those wondering about the fate of 

their loved ones (Lugo, 2019). There was widespread anxiety, depression, crime, civic 

unrest, public health crises, and a massive migration as the lack of essential lifeline 

services due to disrupted critical infrastructure systems extended (Lugo, 2019). 

As an unincorporated island territory, Puerto Rico is isolated in both geographic 

and sociopolitical terms. This isolation leads to limited representation, access, and 

support from mainland institutions with recovery and mitigation capabilities. Such 

isolated communities are present worldwide and can have limited resources for data 

acquisition and management, making the providence of decision tools and analysis 

difficult yet imperative (Beccari, 2016; T. Carvalhaes, Markolf, et al., 2020; Chi et al., 

2018). It is of interest to policymakers, infrastructure managers, and other stakeholders 

that support these communities to have the proper decision tools that help target 

resilience and mitigation efforts toward reducing human hardships and suffering. 

 

2.1.2 Objectives 

Social vulnerability indices are widely accepted and utilized in the literature, are 

often not the most appropriate metrics to couple with simulations that aim to inform 

infrastructure preparedness and mitigation toward reducing human hardships. Toward 

contributing toward the integration of social and technical frameworks for disaster 

resilience assessments, this chapter addresses the question, 
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How can social vulnerability and impacts to human wellbeing upon climatic 

disasters like hurricanes be incorporated into simulations of integrated socio-technical 

infrastructure networks toward informing human-centric disaster mitigation? 

 

To improve the robustness of indicators for social impacts for infrastructure network 

models, a treatment-effect statistical approach will be leveraged to develop a metric that 

explicitly links response variables based on disaster outcomes that present hardships to 

communities. The treatment-effect methodology is leveraged for identifying and 

quantifying factors of social hardships when a population in an isolated community is 

impacted by specific hazards. This methodology is a template that can be adapted in the 

context of other isolated or vulnerable regions and infrastructure networks, and can be 

integrated with technical simulations of engineered infrastructure systems and other 

impacts (e.g., economic loss and physical and ecological damage) to optimize the 

allocation of limited resources so as to result in maximum mitigation of human suffering 

(i.e., social hardships). In turn, the contribution of this framework is to identify the social 

drivers of human suffering based on objective data (i.e., non-self-reported) while 

providing a social index that is empirically attributed to a specific hazardous event. Using 

Hurricane Maria in Puerto Rico as a case study, the specific objectives are to: 
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1. Estimate the statistical relationships between socioeconomic factors and social 

hardships in terms of human dimensions of disaster impacts, such as 

psychological, demographic, and economic effects. 

2. Develop a broadly applicable framework based on publicly available data for 

quantifying social hardship due to disasters at the level of the administrative unit, 

such as a municipality, using the impact of Hurricane Maria on Puerto Rico as a 

case study. 

After a brief review of power networks, the following sections describe the 

development of a modular framework for simulating a power network service loss due to 

climatic stressors, in this case, hurricane winds. The framework is then extended by 

coupling an established social vulnerability index (SoVI) to demonstrate the implications 

of accounting for social impacts as a factor for determining the criticality of infrastructure 

components. Next, an improved approach for social metrics that can substitute for the 

SoVI is presented. Lastly, a brief argument is made toward the development of social 

functions as future work.  
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2.2 Developing a Baseline Socio-technical Model for Power Network Service Loss 

2.2.1 Review of Pertinent Literature on Resilience of Power Networks 

Power systems can be damaged and disrupted during extreme weather events like 

hurricanes due to intense winds, flooding, fallen vegetation, and landslides that damage 

critical components. In the case of Hurricane Maria in Puerto Rico, one of the main 

factors for power system failures were damaged transmission lines and the poles and 

towers that support them (Kwasinski et al., 2019). Wind, in particular, is often a primary 

cause of critical component failures in power networks. For example, Reed et al. (2010) 

analyzed weather and power outage data after hurricane Rita and concluded that wind 

speed was the primary determinant of power system damage over heavy flooding. 

The disruption and recovery of power networks serve the impetus for power 

system resilience, which has been characterized by various attributes (e.g., robustness, 

restructurability), but generally refers to the ability for systems to cope with sudden 

perturbations and readily return to normal functioning (Bozza et al., 2015; Bruneau et al., 

2003; Hosseini et al., 2016; Reddy, 2020. From an engineering systems perspective, 

power system resilience can be characterized by several temporal stages, often 

represented by a performance curve (Bruneau et al., 2003; Hosseini et al., 2016; Reddy, 

2020)(Figure 2.1). During the disruption phase, the system loses a portion of its function, 

with the portion remaining speaking to the robustness or vulnerability of the system. The 

system then follows a delay and recovery phase, followed by a longer-term recovery 

phase that can include novel adaptations and learning that improves the resilience of the 

system.  
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Figure 2.1. Typical resilience curve (also called performance curves) for infrastructure 

systems disrupted by extreme weather (adapted from Bruneau et al., 2003; Hosseini e al., 

2016; Reddy, 2020). 

 

Power network literature has focused greatly on resilience analysis (the ability for 

systems to respond and recover from disruptions), component vulnerability (the loss or 

reduction of network performance due to component failures), and modeling mitigation 

strategies for power systems such as hardening and under-grounding of transmission 

lines. Generally, relevant approaches can be classified as data-driven methods where non-

parametric models for weather hazards and power network responses are leveraged and 

model-driven where the physical properties of hazards and power systems are leveraged 

to simulate stochastic processes. 

Examples of data-driven approaches include probabilistic windstorm models that 

train classifiers for the severity of several extreme weather events. For instance, Li et al. 

(2014) propose such a model using 160 years of historical data to identify six categories 

of severity according to different wind intensity distributions to analyze network 

performance and compare mitigation scenarios. Data-driven approaches can also include 
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risk assessment frameworks that leverage Monte Carlo simulations to generate storm 

conditions (e.g., extreme wind, lightning) that distributed power networks are subject to 

(e.g., Rocchetta et al., 2015). 

Model-driven approaches largely focus on spatio-temporal stochastic models and 

fragility curves for network components toward capturing the propagation of hurricanes 

across space and time. Using linear fragility curves, for example, Muhs and Parvana 

(2019) leverage historical data to generate spatio-temporal hurricane scenarios and map 

power network failures. In the specific case of extreme winds, Pantelli et al. (2017) 

develop fragility models for individuals components and the power network as a whole to 

conduct experiments on a reduced version of the Great Britain transmission network. 

Such studies often aim to determine the criticality of network links and nodes as a 

function of wind speed to inform and model targeted mitigation strategies toward reduced 

network vulnerability (e.g., Ouyang & Dueñas-Osorio, 2014). 

A power network comprises several interconnected classes of components, 

including generators, substations, transmission, and distribution lines. Given the 

networked nature of energy infrastructure, it is vital to incorporate the interconnected 

structure of the system to capture the dynamics of power flows from generation to 

distribution (i.e., endpoints) (Pobočíková et al., 2017). Topological models thus help 

capture the geographic heterogeneity of disaster impacts, changes in the topology of 

power networks, and changes in simulated disturbances like hurricanes (Boyle et al., 

2021). Whereas such models generate topological metrics that analyze network 

performance, component-based topological models further incorporate the physical 
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processes of power flows for more accurate simulations (e.g., generation capacity, 

voltage capacity, demand at end nodes). 

Currently, established approaches for models of large scale power systems that 

integrate infrastructure and social considerations (e.g., social impacts or vulnerability to 

disasters) leverage composite social vulnerability indices as a method for social metrics 

that indicate human burdens, impacts, and abilities to recover from infrastructure service 

losses due to disasters. Such methods aim to address the fact that traditional methods for 

network models tend to take only financial costs or social burden as a monetized measure 

or total population affected, and therefore ignore other dimensions of human hardships, 

such as the impacts that manifest in the experiences of communities along psychological, 

demographic, and sociopolitical dimensions. 

Composite indices are attractive because they largely rely on data that is already 

publicly available, along with relatively simple calculations (e.g., a simple additive 

composite of normalized or standardized variables), if not already publicly available as a 

precalculated metric. One popular method is the Social Vulnerability Index (SoVI) which 

leverages Census data to map relative vulnerability based on state, county, or Census 

tracts (Cutter et al., 2003; Flanagan et al., 2011). The SoVI is of the most practical and 

traditional approaches because it readily relates to components of technical models due to 

its spatial nature, is based on publicly available data, and can easily be adapted for 

particular contexts and relevant data (Bozza et al., 2015; Fernandez et al., 2016; Holand 

& Lujala, 2013). Lo Prete et al. (2012) have leveraged the SoVI directly in a microgrid 

simulation to assess the reliability and sustainability of regional grids. Recently, Karakoc 

et al. (2020) used a reduced version of the SoVI to integrate social vulnerability into an 



  36 

interdependent infrastructure network simulation subject to disruptions. These 

approaches show the additional advantages due to the spatial nature of these widely 

accepted indices, making them amenable to connecting to network components, such as 

transmission and distribution lines. 

 

2.2.2 Overview of Modular Component-based Methodology for Power Network Failure 

Simulation 

Carvalhaes et al. (2020) introduced a probabilistic approach for Component-based 

Event Simulation (CBES) that generates sets of stochastic hurricane events and 

component failures to simulate service levels per municipality in PR. The approach is 

composed of key modules (wind speed generator, network breakage generator, and power 

flow model) outlined in Figure 2.2. 

 

Figure 2.2. Main components (i.e., modules) of the CBES simulation framework. 
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Historical hurricane data for maximum wind speeds (a) are used to generate 

weather event scenarios (i.e., maximum hurricane wind speeds) in module (b). See 

section 2.2.4 for details on hurricane wind data estimations for Puerto Rico. Generated 

stochastic maximum wind speeds correspond to failure probabilities for each 

transmission line segment in the network topology (e) to generate realizations of 

breakages for each transmission line via the Network Failure Generator (c). The power 

network model (d) leverages the topology, generated breakage data, and power flow 

properties to balance the supply and demand of power. Lastly, the statistical analysis 

module (f) generates numerical experiments to analyze the effects of weather hazards, in 

this case, extreme wind due to hurricanes, to output estimated average service levels (g) 

for each municipality. In this way, the CBES framework enables the analysis of 

component failures on the performance of the network, and the modeling improvements 

to specific components to inform infrastructure policy, design, and management toward 

making the most of constrained resources (e.g., alternative topological designs and line 

hardening strategies).  
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2.2.3 Application to PR: Defining a Topology for the PREPA Centralized Power 

Transmission Network 

Since transmission lines were the leading cause of network failure for the 

centralized Puerto Rico Electrical Power Authority (PREPA) system due to Hurricane 

Maria, these components were of focus for the topological model. While geospatial data 

for the Puerto Rico power network are publicly available1, they were derived primarily 

via remote sensing techniques and appeared not to be up to date or topologically 

validated in respect to the conditions during Maria. To develop a valid and workable 

topology, two reports were used to determine the PREPA network topology in Puerto 

Rico: The Fortieth Annual Report (PREPA, 2013) and the Puerto Rico Integrated 

Resource Plan (IRP) 2018-2019 (2019). Both reports provide maps that illustrate the 

locations and interconnections of power system components. The Fortieth Annual Report 

shows the planned transmission system for 2018 and thus includes legacy components 

along with planned installations (Fig. 2.3). The 2019 IRP report shows the current 

generation map as of the writing of the report (2019), which includes transformers and 

transmission lines (Fig. 2.4). 

Both maps are limited, so assumptions are required. The exact geographic 

location of generation stations and the respective connections to the transmission system 

in the Consultant Report is not always clear. The IRP map does not include a legend, and 

the transmission lines appear to be simplified. Additionally, parts of the IRP map are 

covered by large labels, which may obscure system components and connections. While 

 
1 Available: https://hifld-geoplatform.opendata.arcgis.com/datasets/electric-power-transmission-

lines/data?geometry=-68.682,17.734,-63.45,18.647  
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the IRP map was given preference based on the data being more recently published, the 

Consultant Report map is more precise and detailed. Therefore, both maps were 

considered to cross-reference information. Nonetheless, some assumptions still had to be 

made. 

Images of each map were georeferenced in a GIS to determine their approximate 

coordinates and develop a topology for modeling system behavior and outcomes due to 

perturbations and failures. Where connections between generators and transmission units 

were unclear, the nearest unit to the respective generator was assumed to be connected. 

This assumption was especially necessary for the San Juan plant in the Northeast, which 

is surrounded by a greater density of components. Pseudo nodes (line vertices that cross 

without a connecting power unit) and proposed underground lines were not included in 

the topology. Switchyards were also not considered due to the modeling scope and since 

they are not present in the IRP map. 

The resulting topology includes eight generators, 13 230kV transformers, and 47 

115kV transformers (Fig. 2.5). Transmission lines represent simplified versions of the 

IRP map and thus are a “semi-geographic” version of the topology. Therefore, where 

connections between generators and transmission units were unclear, the nearest units 

were assumed to be connected. Pseudo nodes (line vertices that cross without a 

connecting power unit), switchyards, and underground lines were not included in the 

topology. Lastly, end points for power service were generalized as aggregate nodes based 

on municipality centroids that connect to the nearest 38kv substation. The links between  
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these end points and substations can be assumed as an abstract of the distribution level of 

the network, which is otherwise outside of the scale of the CBES simulations in this 

chapter. 

 

 

Figure 2.3. PREPA planned transmission system for 2018 from Fortieth Annual Report 

(2013) Source: https://aeepr.com/en-us/qui%C3%A9nes-somos/portal-

inversionistas/financial-information. 

 

https://aeepr.com/en-us/qui%C3%A9nes-somos/portal-inversionistas/financial-information
https://aeepr.com/en-us/qui%C3%A9nes-somos/portal-inversionistas/financial-information
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Figure 2.4 Current generating map from IRP 2018-2019 report (Source: aeepr.com). 

 

 

Figure 2.5. Geographic representation of the modeled topology. Generators are indexed 

with the prefix “G” and sequential numbers clockwise starting from Mayaguez (e.g., G1). 

Transformers at the 230kV level are indexed with the prefix “T” and sequential numbers 

clockwise starting from Mayaguez (e.g., T1). Transformers at the 115kV level are 

indexed with the prefix “D” and sequential numbers from West to East (e.g., D1). 



  42 

2.2.4 Estimating Hurricane Wind Speeds with Limited Data 

The availability of applicable climatological metrics and statistics is one of the 

main barriers for simulations of power network reliability under environmental stressors 

(e.g., Cadini et al., 2017). In terms of wind data, such metrics are usually captured by 

radar systems (e.g., NOAA NEXRAD) or measured locally by instrumentation at specific 

weather stations. While radar is available for several events in many parts of the United 

States, it becomes challenging when many events over several decades are needed 

because data types and instrumentation change as radar programs evolve over time. This 

limitation is especially challenging in Puerto Rico, where there are few radar stations, 

which sometimes break during intense storms such as Maria (Samenow, 2017). 

To overcome this hurdle and obtain a reasonable number of storm events, data 

from NOAA’s Global Summary of the Day (GSOD) based weather stations in Puerto 

Rico were leveraged. Maximum sustained wind speed (knots) for all available weather 

stations in Puerto Rico between 1943 and 2020 were queried so that 45 tropical storm 

events could be subset using respective date ranges. As weather stations are installed or 

go out of commission over time, the total number of observing stations can vary. Thus, 

D=28 of the 45 subsets were selected based on a total number of ≥4 stations, a relatively 

even distribution of the stations across the island (e.g., avoiding four stations all located 

between the Western and Northern coasts), and the availability of hurricane track data to 

supplement the weather station values. Each subset date range for each event was then 

queried for maximum sustained wind speed (MSWS), resulting in georeferenced data 

points for 28 tropical storm events (i.e., shapefiles). In an automated batch process, the 

shapefiles were split by event and interpolated into 1km grids (i.e., GeoTIFF rasters) via 
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inverse distance weighted interpolation (IDW) with a standard squared weighting 

coefficient for the spatial extent of the main island of Puerto Rico. This method was 

chosen based on the relatively low number of observed data points so that all points can 

be used as samples and so that the influence of a given observed point on nearby 

unknown points is limited. Lastly, the maximum MSWS value within each municipal 

boundary was extracted using a Census TIGER/Line shapefile and exported as a table 

with maximum MSWS values for 28 events per municipality. There are 78 municipalities 

in Puerto Rico, which are analogous to counties in Census databases. Two municipalities 

are the small islands of Culebra and Vieques located off the main island’s East coast, 

which are not connected to the centralized electrical power network, so they are not 

included in this study or respective data processing. 

The resulting MSWS values tended to be significantly lower than expected or 

those reported by other data sources, especially for events making landfall in Puerto Rico. 

These low estimates are potentially due to local effects regarding topography, land use, or 

because MSWS metrics are obtained through the daily mean of hourly observations. 

Therefore, MSWS values were scaled to the maximum wind intensity (knots) of the 

closest data point along the storm track2. The National Hurricane Center’s (NHC) 

International Best Track Archive for Climate Stewardship (IBTrACS) for each of the 28 

events was leveraged to scale maximum MSWS values for each weather station to the 

 
2 Storm track data was not used as the primary source of data because it offers only vector points along the 

path of the hurricane, which does not capture the spatial distribution of wind speeds along the entire surface 

of Puerto Rico. 
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nearest data point along the IBTrACS path3, and subsequently, the distribution of MSWS 

values for each municipality. The last step is linking the MSWS data to transmission lines 

to simulate component failures.  

The maximum wind speed values (MSWS) were linked to transmission based on 

which municipalities a transmission line edge intersects (assuming that the maximum 

wind speed is uniform within each municipality) using a GIS workflow where 

transmission line and municipality boundary data were transformed into polylines and 

intersected4. The table from the resulting shapefile is a list of municipalities that each link 

crosses, which is then used to reference the MSWS values that stress transmission line 

edges. 

 

2.2.5 Coupling a Social Vulnerability Index (SoVI) with a Stochastic Power Network 

Failure Model 

Leveraging the CBES framework from Carvalhaes et a. (2020), a social 

vulnerability dimension to the network model by leveraging SoVI (Boyle et al., 2021). 

The SoVI previously described could readily provide a metric that helps power network 

simulations go beyond fiscal-based social variables (e.g., Vugrin et al., 2014) and 

automate the process of index-based decision-making. In this way, the complexity of 

infrastructure network failures from a socio-technical perspective can be analyzed and 

 
3 This was batch processed using the “Distance to Nearest Hub Tool” in Quantum GIS. 

4 Using the “Line Intersect” tool in QGIS to create a point layer that assigns an XY point for each 

intersection between municipality boundaries and transmission lines. 
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simplified, allowing stakeholders to take more comprehensive and socially aware 

considerations toward investing in resilience-enhancing strategies for energy 

infrastructure. 

A socio-technical indicator was developed as an integrated impact metric for each 

power network component (i.e., transmission line segment in the power network 

topology). At the municipal level, the indicator is a function of service level loss and the 

SoVI so that each Megawatt-hour of service loss is weighted by its relative impact on the 

system on social vulnerability by way of the SoVI. The social vulnerability-weighted 

service level loss, svi, is calculated simply for each municipality as,  

svi
(1)= (si – si

*) vi 

where si and si
* are the power supply service levels before and after the hurricane 

event, respectively, and vi is the SoVI as a weight that is scaled such that ∑ 𝑣𝑖 = 1
𝑛𝑚
𝑖=1 . 

Alternatively, following the exponential approach by Karakoc et al. (2020), the svi can be 

calculated as: 

svi
(2) = (si – si

*) 𝑒𝑎𝑣𝑖 

The latter method enables the relative weighting between service loss alone 

versus social vulnerability impacts. In other words, when a = 0, only the level of service 

loss is considered, while the greater the value of a, the greater priority is given to social 

vulnerability. While a downside of this method is that there may be no straightforward or 

objective way to determine the value of a, this choice can be leveraged by stakeholders 

and decision-makers as they best see fit.  

Figure 2.6 shows results considering service loss only, and Figure 2.7 shows 

results according to svi
(1) and svi

(2) averaged across 10, 000 simulations, where a = 10 for 
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the latter to illustrate the effect of considering SoVI as a weight for service loss. These 

results demonstrate how high levels of service loss alone do not always correspond to 

high levels of social vulnerability. That is, although two adjacent municipalities may 

suffer similar impacts to service losses, the impacts of these losses on social vulnerability 

may differ significantly. 

 

 

Figure 2.6. Percentage of service level loss in each municipality averaged across 10,000 

simulations in CBES. 
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Figure 2.7. Social Vulnerability Impact modeled according to svi
(1) (top) and svi

(2) , 

assuming a = 10 (bottom) for each municipality averaged across 10,000 simulations. 

 

This model can be further leveraged to test line hardening schemes, such as 

undergrounding cables, toward mitigation policies aimed at reducing social vulnerability. 

As an illustration, two transmission lines were selected based on their relative impact on 

total service loss. Namely, the fragility distributions for Line A and Line B in Figure 2.8 

were shifted such that these lines essentially do not break under the modeling 

assumptions and hurricane scenarios of this study. Figure 2.9 shows results for an 

additional 10,000 simulations assuming each scenario of hardening one of these two 

lines. While the spatial patterns are not starkly different across the island between each 
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line hardening scenario, hardening Line A produces altogether lower vulnerability 

impacts as a fraction of total vulnerability-weighted total power loss. 

 

 

 

Figure 2.8. Transmission line hardening scenarios are represented by Line A in blue and 

Line B in orange. 
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Figure 2.9. Social vulnerability after hardening Line A (top) results in an average overall 

vulnerability impact of 40.5%. Social Vulnerability after hardening Line B (bottom) 

results in an average overall vulnerability impact of 43.5%. 

 

The CBES and coupled SoVI-CBES frameworks described in this section 

represent a modular pipeline for identifying critical network components (i.e., 

transmission lines) toward reducing social vulnerability and human suffering. The next 

section describes an alternative framing oriented around social hardship as realized 

vulnerability and a more advanced method for developing a metric that can be substituted 

for the SoVI toward reducing social hardships. 
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2.3 A Treatment-Effect Social Social Hardship Index (TESHI) Framework 

2.3.1 Limitations of Static Social Vulnerability Indices 

When exposed to an environmental hazard, individuals and communities do not 

all have the same opportunity to properly anticipate hazards, sufficiently prepare, and 

recover after an event. Social hardships emerge from the present historical, cultural, and 

socioeconomic circumstances of a hazard-affected location (Cutter et al., 2003; Wisner et 

al., 2004). However, quantifying disaster-related social hardships and the associated 

drivers behind them is challenging due to the complex nature of social vulnerability and 

the challenges of measuring human suffering. 

In the disaster risk domain, (Cutter et al., 2003) introduced a composite index 

method based on Census data that rank orders U.S. counties using indicators of structural 

qualities of social vulnerability (e.g., household composition and language as proxies for 

sensitivity to disruptions, ability to evacuate, and access to resources). Indices are usually 

composed of various indicators that are combined into a single aggregated metric. 

Several formulas exist for aggregation methods, including a straightforward summation 

of normalized values, averaging, or factor analysis, and can be weighted and non-

weighted (Beccari et al., 2016). Such indices have been attractive for both researchers 

and practitioners because they reduce the complexity of multidimensional issues (like 

social vulnerability and resilience) into relatively communicable, straightforward, and 

adaptable metrics (e.g., vulnerability maps)(OECD, 2008; Vincent, 2004). For example, a 

composite index framework was adapted and ultimately used to develop the U.S. Centers 

for Disease Control (CDC) Social Vulnerability Index (SoVI), which is a publicly 

available map-based online tool (Flanagan et al., 2011). More comprehensive indicator 
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frameworks have since emerged, such as the Baseline Resilience Index for Communities, 

which incorporates dimensions of social resilience or the ability to recover and adapt 

(Cutter et al., 2010). 

Important shortcomings have been identified in the methodology used to 

determine these indices, however. The most common approaches are composite indices 

that are constructed ad hoc and lack formal validation of variables and models (Beccari et 

al., 2016). There is an ongoing challenge for indices to be validated with dependent 

variables that proxy realizations of vulnerability (Fekete, 2019). For example, the number 

of people suffering flood damage after an event, the number of people seeking shelter, or 

individuals’ satisfaction with damage compensation can be deemed responses for 

validation of proposed vulnerability indicators.  Carvalhaes et al. (2021) have further 

identified the sustained insufficiencies in grounding social metrics with clear disaster 

outcomes (external validity) and improved quantitative methods toward selecting and 

weighting key variables. Fekete (2019) has outlined external validity challenges in terms 

of capturing “revealed vulnerability” to define validation criteria, including varying 

interpretations of vulnerability and uncertainty in attributing validation criteria to a recent 

disaster since demographics and societal dynamics may have evolved. Furthermore, there 

is still a need for disaster-level benchmarks that capture revealed vulnerability toward a 

global database of disaster cases. 

Both qualitative and quantitative techniques have been explored to address these 

shortcomings (FEMA, 2021). Some studies rely on interviewing experts in the field, such 

as emergency responders, local leaders, and infrastructure managers, to validate 

indicators using tacit although subjective knowledge (e.g., (Tate, 2013). In such cases, 
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researchers and practitioners may provide a visual inspection of a map, or experts may 

filter, rank, or weigh a selection of indicators that make up an aggregate measure. 

Quantitative approaches have leveraged the SoVI and related frameworks alongside 

statistical techniques to tie sociological drivers (e.g., income, age, household 

composition) to disaster outcomes. For example, Yoon et al., 2016) leveraged well-

established indicators for composite indices using factor analysis, Ordinary Least Squares 

Regression (OLS), and Geographically Weighted Regression to develop a Community 

Disaster Resilience Index (CDRI). The method relied on total human loss and property 

damage as response variables for a linear model. The response variables are relevant to 

social hardships but do not adequately capture the multiple dimensions of human-

centered disaster impacts, such as loss of livelihoods and psychological distress. 

Non-monetary social impacts (i.e., outside of economic valuation) remain 

underacknowledged, and research with loss and damage associated with slow-onset 

effects (e.g., post-traumatic stress, cultural heritage loss) is nascent (McNamara et al., 

2021). A research gap remains regarding the statistical investigation of the relationships 

between disasters and societal impacts. Research has been overly focused on GDP and 

institutional capacities (e.g., foreign aid) while overlooking the suffering that people 

experience during and after disasters (Mochizuki et al., 2014). A remaining challenge is 

to design and validate a non-economic social metric using publicly available data to 

guide mitigation efforts and infrastructure robustness in the face of future disasters. 
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2.3.2 Framing Human Dimensions of Social Hardship and Related Data 

The potential for human hardship given socioeconomic and demographic 

structures that determine the sensitivity of a household or community at risk can be 

thought of as social vulnerability to environmental hazards (Cutter et al., 2003; Engle, 

2011). Vulnerability is then the likely predisposition of a community to hardships due to 

climate-related or human-induced disasters, while community resilience can be 

interpreted as the capacity for a community to recover and adapt during the disruption of 

critical urban functions (Aldrich, 2012). However, social vulnerability and resilience 

metrics represent baseline conditions or are based on societal predispositions to potential 

risks rather than definitive human-centered impacts of disastrous events. 

The problem is that one needs a distinct measure of the hardship experienced by a 

community, either in the form of a direct measure or a surrogate. However, current 

approaches are either qualitative, do not have a clear association with the hardship due to 

a calamity, or use consolidated groups of metrics with only a tangential association to 

manifestations of social hardship. For example, the conflation of social vulnerability, 

resilience, and burden can compromise the intended uses of social metrics for planning 

and modeling frameworks (Carvalhaes et al., 2021). While quantitative indicators have 

been established for social vulnerability and community resilience, there are two major 

shortfalls: (1) There is a need for social indices that are validated with a response variable 

(Beccari, 2016; Yoon et al., 2016), (2) social vulnerability and resilience indicators do 

not account for the manifested hardships that are a direct result of a disastrous event 

(Béné et al., 2014; Eakin et al., 2016). 
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To focus on the direct human hardships endured by communities due to Maria, an 

alternate framework is proposed based on the dimensions of social impacts of disasters as 

summarized by the National Academies (NAS, 2006). In this synthesis report on social 

science contributions to disaster risk, outcomes of human suffering and loss are outlined 

in terms of four key dimensions: psychological, demographic, economic, political. 

Representing the major axes along which human beings experience hardships induced by 

disasters, these are leveraged dimensions to frame our model specification and 

interpretation. Table 2.1 presents common disaster impacts along each of the four human 

dimensions as an example of our conceptual framing of social hardship. Using Hurricane 

Maria in Puerto Rico as an example of a larger approach, a modeling framework is 

proposed toward quantifying social hardship due to disasters that is grounded in objective 

responses to a hazardous event that clearly relates to human dimensions of disaster 

impacts. 

 

Table 2.1: Human dimensions of disaster impacts with examples of common impacts as 

working response variables (see NAS, 2006). 

Dimensions of Human 

Impacts 

Common Post-disaster Outcomes 

Psychological Increases in suicide and substance abuse 

rates 

Demographic Excess mortality, migration 

Economic Public aid requests, higher unemployment 

Political School closures, civil unrest 
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2.3.3 A Treatment-Effect Approach for Estimating Realized Social Vulnerability 

Treatment-effect speaks to the effect of a binary variable (0-1) on an outcome of 

interest (Angrist, 2016). The binary variable is thought of as a “yes” or “no” in terms of 

whether a given subject has been exposed to a specific treatment. The treatment-effect 

framework originated in medicine to determine the effects of treatments such as 

experimental drugs and new surgical procedures (). In such cases, there is a group of 

patients that receive the new treatment (i.e., the experimental group, or “1”) and a group 

that does not (i.e., the control group, or “0”). Treatment-effect methodologies, which can 

range from regression-based techniques to instrumental and social experiments, are now 

widely used in econometrics to determine the effect of government policies, social 

programs, subsidies, and personal choices like college attendance (Heckman & Vytlacil, 

2007). 

Toward the development of social metrics for disasters, a treatment-effect 

framework can be used by leveraging panel data (a time series of observations before and 

after an event) to measure the effect of Hurricane Maria on social outcomes. In this case, 

the treatment is Hurricane Maria as an environmental intervention that changes the living 

conditions of exposed communities (i.e., the people of Puerto Rico), which in turn, 

manifests as outcomes of social hardship. Such outcomes include those along human 

dimensions of disaster impacts outlined in Table 2.1, which can be captured by 

observational data to proxy the socioeconomic and living conditions before and after 

Maria. However, the problem is that the occurrence of Maria and its exposure to Puerto 

Rico’s population precludes the ability for outcomes to be observed had the event not 
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occurred. That is, we cannot observe the counterfactual condition, which is a well-known 

limitation for such cases (Dehejia & Wahba, 1999). 

Martinez et al. (2021) addressed this issue specifically for the context here 

outlined (i.e., constructing a treatment-effect model for Hurricane Maria in Puerto Rico) 

by leveraged the proposed social hardship framework (Table 2.1) and panel data 

techniques to estimate the counterfactual condition (i.e., backcasting trends in variables 

including mortality, suicides, median house prices, and employment for 2016-2017. 

Table 2.2 outlines the response and predictors used by Martinez et al. (2021) within the 

social hardship framework described in section 2.3.2. 

 

Table 2.2. Treatment affect model specifications using the social hardship framework 

from Table 2.1. Predictor sets listed in the third column are detailed in the following 

Table 2.3. 

Human 

Dimension 
Response 

Set of Predictors  

(Table 2.3) 
Data Source 

Psychological Suicides (S) 

Substance Abuse (SA) 

I – VI 

I – VI 

Substance 

Abuse and 

Mental Health 

Data Archive 

(SAMHDA).  

Demographic Excess Mortality (EM) I, IV – VIII Milken 

Institute 

School of 

Public Health 

Economic Median Home Price (MHP) 

Employment Rate (ER) 

I, III – VII 

I, III – VII 

U.S. Census 
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Table 2.3. Predictors for treatment-effect model that correspond to Table 2.2. 

Predictor 

Set 
Description 

Time 

Series 

I Age groups: 5 – 17, 18 – 34, 35 – 64, and 65 – 74 years 2012 – 

2018 

II Cognitive Disability 

(% population per municipality with any cognitive disability) 

2012 – 

2018 

III Health Insurance  

(% population per municipality with health insurance 

coverage) 

2012 – 

2018 

IV Unemployment rate 2010 – 

2018 

V Gender 2010 – 

2018 

VI Income per capita 2010 – 

2018 

VII Ratio of large vs. small businesses 2012 – 

2018 

VIII Stratus (% population in lowest, mid, highest socioeconomic 

development level. See Santos-Burgoa et al., 2018) 

NA 

 

Martinez et al. (2021) further use the results of this model to develop an index for 

each response using a linear combination of the set of significant predictors. Results of 

these indices based on the treatment effect model include versions for the intervention 

and counterfactual, and are summarized in Figure 2.10. By comparing the counterfactual 

estimates (the forecasted trends, had Maria not occurred) with observed responses after 

Maria as the treatment, it is possible to model the effect of Maria on social hardship. 
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Figure 2.10. Sub- Index (SHI) results for each social hardship response: suicides (SHIt
S), 

excess mortality (SHIt
EM), median home prices (SHIt

MHP), and employment rate (SHIt
ER). 

The red lines show the indices with the Hurricane Maria effect (intervention) and the 

black lines without considering the Hurricane Maria effect (forecasted counterfactual). 
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2.3.4 Developing a Composite Social Hardship Index with Treatment-Effect Estimates 

To develop a composite Treatment-Effect based Social Hardship Index (TESHI), 

it is here proposed to first construct a sub-index (SHI) for each response used in Martinez 

et al. (2021) by taking the difference between the indices for the intervention and 

counterfactual conditions (i.e., the “jumps”; or vertical spaces between the red and black 

lines in Fig. 2.10). These differences thus represent the marginal effect of Maria on each 

response variable. Because these marginal effects have a significantly different range of 

values for each response, a min-max scaling method is first applied to each sub-index so 

that values range from 0 – 1: equation. 

Lastly, a composite is proposed as a summative aggregate of the sub-indices that 

correspond to each response (i.e., social hardship outcome), such that:  

TE𝑆𝐻𝐼𝑡 (𝜔1,𝜔2,𝜔3,𝜔4) = 𝜔1𝑆𝐻𝐼𝑆𝑡 + 𝜔2𝑆𝐻𝐼𝐸𝑀𝑡 + 𝜔3𝑆𝐻𝐼𝑀𝐻𝑃𝑡 + 𝜔4𝑆𝐻𝐼𝐸𝑅t 

Where TE𝑆𝐻𝐼𝑡 is the composite index for a given intervention (hurricane or 

disastrous event) that occurs at time step, t, and the weights 𝜔𝑚 with 𝑚 = 1, ..., 4 are 

determined ad-hoc according to the relevance of each response.  

 To illustrate the approach, a TESHI was calculated for Hurricane Maria, assuming 

the marginal effects of the intervention for the year 2017. Since response variables can 

have either a positive or negative relationship with vulnerability, the sub-indices 𝑆𝐻𝐼𝑀𝐻𝑃 

and 𝑆𝐻𝐼𝐸𝑅 were multiplied by -1 since an increase in these sub-indices are considered an 

indication of lesser hardship (Cutter et al., 2010; Flanagan et al., 2011). 
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2.3.5 Results of Applying TESHI Methodology to Hurricane Maria in Puerto Rico 

 

Figure 2.11 shows the composite 𝑇𝐸𝑆𝐻𝐼2017
𝑃𝑅  assuming a series of differing 

assumptions for weighting schemes to show how the index varies based on stakeholder 

preferences rather than equal weighting. Visual inspection of the maps shows that the 

spatial distributions and clustering of hardship can differ depending on how responses are 

weighted. Additionally, decomposing the index by response shows that index values may 

cluster differently in space between responses. Such dynamics that emerge between the 

composite and sub-indices can be helpful for the interpretation and future development of 

TE𝑆𝐻𝐼-based planning tools geared toward stakeholder needs. 
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Figure 2.11. Composite Social Hardship Index for Hurricane Maria in Puerto Rico, 2017 

(𝑇𝐸𝑆𝐻𝐼2017
𝑃𝑅 ). The darker the orange, the greater social hardship is implied. The top map 

assumes equally weighted responses (𝑤1…,4 = 0.25, or Suicides, Excess Mortality, 

Median House Prices, and Employment, respectively); the middle map assumes death-

related responses as equally weighted (𝑤1,2 = 0.5, 𝑤3,4 = 0); and the lower map assumes 

that 𝑤1,2 = 0.4 and 𝑤3,4 = 0.1 to illustrate the implications of value-based weighting 

schemes, and how the distributions of the TESHI can subsequently vary. 

 

 

Leveraging data developed by a treatment-effect model, a novel and adaptable 

method was proposed to develop a Social Hardship Index based on geographic units 

exposed to an intervention. In this case, the geographic units are municipalities that proxy 

the people in Puerto Rico who are exposed to the intervention, Hurricane Maria in 2017. 

Several limitations were incurred due to data availability and quality. For instance, some 
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of the index values were based on backcasting techniques to fit a significant model 

because of the scarcity of time point observations for some variables (i.e., datasets with 

sparse vintages). In the future, the performance of the model can be improved, and 

subsequently, the accuracy of the TESHI. For example, the number of observations can 

be expanded to include a more comprehensive set of predictors, or instrumental variables 

can be identified.  

A potential extension of the methodology was demonstrated to develop a 

Treatment-Effect composite Social Hardship Index (TESHI). The TESHI was built 

according to each of the response variables for each of the 78 municipalities in Puerto 

Rico. These four subsequent sub-indices illuminate the landscape of vulnerability in 

Puerto Rico in terms of three human dimensions of disaster hardships (psychological, 

demographic, and economic), the social drivers behind these hardships, and how the 

vulnerability landscape may change over time. Moreover, the TESHI explicitly ties the 

role of climatic hazards like Hurricane Maria to the emergence of vulnerability and 

human suffering. These results reinforce the importance of human-centered impacts that 

go beyond economic outcomes, such as the psychological and demographic outcomes 

shown here.  

In terms of the proposed framework for social hardship, future work can leverage 

the TESHI approach for novel cases or refine the choice of scale and unit of analysis.  

The TESHI methodology is adaptable to alternative spatial or administrative units for 

analysis at scales that fit the needs of researchers and stakeholders. For example, the 

index may be calculated per county or neighborhood district. Given data availability, the 

TESHI can include a more comprehensive set of response variables among the four 
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dimensions used to frame human impacts due to disasters (psychological, demographic, 

economic, political). Impacts manifesting in the psychological and political dimensions, 

for example, are particularly challenging to include due to limitations in data collection 

and availability. 

Future work can address the challenge of developing a social hardship metric as a 

composite of response variables for a broad view of vulnerability and the subsequent 

question of how to weigh the response variables. Weighting schemes at the level of 

outcomes are difficult because the components to be weighted are value-based outcomes, 

such as mortality, mental health, and employment. For these reasons, weighting is often 

addressed by way of expert opinion and policymaker choices.  One potential pathway 

would be to group outcomes by intensity, such as suicides and excess mortality, in a 

dynamic framework that allows decision-makers to observe SHI outputs based on 

different sets of outcomes. Furthermore, social hardship can have many manifestations 

along human dimensions that go beyond the set introduced here, and those outcomes of 

value can be identified by stakeholders and policymakers aiming to reduce disaster 

impacts.  

Regardless of the choice in weightings, some factors may have a consistent 

impact across social hardship outcomes, and quantitative methods exist to explore these 

trends. In terms of composite indices, OECD (2017) highlights the use of Monte Carlo 

techniques for sensitivity analysis of different sub-index weighting options. Xun and 

Yuan (2021) leveraged Monte Carlo methods to assess the sensitivity of different 

weightings for a set of urban resilience indices on specific outcomes. Using such methods 

for weighting responses could illuminate which weights for which responses have the 
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greatest effect on bottom-line results. In turn, Monte Carlo methods can help analysts and 

decision-makers alleviate the dependence of resilience assessment on assessor 

preferences and yield less subjective weights for each outcome (i.e., index response 

variable). Alternatively, multi-criteria decision analysis (MCDA) has been leveraged to 

quantitatively weight aggregate indicators. For example, McIntosh and Becker (2020) 

worked together with in-practice experts and used an MCDA method to generate weights 

for a subset of expert-selected indicators of seaport exposure and sensitivity to climate 

and extreme weather. The advantages of MCDA include its transparency in terms of 

valuing outcomes, insights into different judgments of value, and capability for 

comparison of trade-offs between different choices during the decision-making process. 

It is important to note that the TESHI framework aims to isolate the outcomes or 

realizations of vulnerability, here termed social hardship, due to a specific disaster. This 

framing differs conceptually from other quantitative frameworks for disaster indices that 

focus more on the precedent sociological structures of vulnerability or seek a hazard-

agnostic index (Johansen et al., 2017). On the one hand, the advantage of the TESHI is 

the direct account for the burdens that people have faced as an outcome of a past disaster 

using objective responses. On the other, the TESHI is less applicable in terms of general 

hazards vulnerability. Social vulnerability, especially in general respect to environmental 

hazards, is a complex and continuously evolving property of communities that is difficult 

to capture in a single metric (Carvalhaes et al., 2021). In this sense, the TESHI is a proper 

metric when interpreted specifically to adverse human outcomes of Hurricane Maria, and 

can be further generalized in interpretation by combining observations of several 

hurricane events in a locality. 
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The disaster-level specificity and adaptability of the proposed methodology are 

central to the broader research implications of this work. The Treatment-Effect models 

and the SHI composites can be applied to other contexts using human-oriented response 

variables identified by local researchers and stakeholders, thus enabling isolated 

communities to better address and mitigate the human hardships that come with disasters.  

The TESHI produced should be interpreted in terms of vulnerability to Hurricane Maria, 

or in terms of future hurricanes of similar magnitude. Maria was a category 5 hurricane 

with winds up to 155mph (Pasch et al., 2019), representing an extreme event with a 

certain and relatively high level of impact. Considering the historical hurricane risks of 

the Caribbean region along with climate change, it can be expected that Puerto Rico will 

likely cope with hazards of similar intensity as Maria in the future. The TESHI can also 

be applied to infrastructure models that couple social and technical considerations to 

include social outcomes as objectives for optimal infrastructure recovery and robustness 

when resources are scarce (Boyle et al., 2021; Karakoc et al., 2019). Integrating social 

considerations in the form of objective metrics can support the development of planning 

tools and infrastructure simulations that help identify effective strategies to reduce human 

hardships in the face of oncoming future climate hazards. 

In terms of the broader societal meaning of this study, the proposed Treatment-

Effect methodology and indices can enable science-driven tools that support disaster risk 

reduction and sustainable development. Toward achieving sustainable development goals 

(SDG), including eradicating poverty, supporting good health and wellbeing, reducing 

inequality, and taking climate action to combat climate-related impacts, it is essential to 

have methods available to tackle social hardships directly. Our framework can be used to 
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address climate-related hazards to the sustainability of livelihoods, or go beyond 

monetary and economic considerations to capture aspects of human suffering, such as 

depression and anxiety. Focusing on human outcomes of social hardships can enable 

decision-makers to prioritize and allocate critical resources that mitigate the factors that 

cause distress and degrade the sustainability of livelihoods for the most vulnerable. For 

isolated places like Puerto Rico, infrastructure recovery and emergency response can be 

driven by social vulnerability and the reduction of human hardships. 

 

2.4 Toward Social Functions for Power Network Simulations 

The TESHI method above addresses the limitations of static indices that represent 

a snapshot of the social structures assumed to make populations vulnerable. By 

leveraging panel data and computing a series of annual sub-indices, TESHI makes it 

possible to observe social vulnerability as dynamic through time. Secondly, the TESHI 

ties realized vulnerability to specific disastrous events. In the case presented here, Maria 

represents a specific hazard, and at the same time, it marks a type of hazard of a relative 

intensity (i.e., a category 5 hurricane in Puerto Rico). 

However, the method is not directly tied to service losses due to power network 

failure. Furthermore, it is important to note that power outages are not momentous events 

but rather persist for a length of time as infrastructure is recovering. At the aggregate 

level, such as a municipality, communities must endure both the proportion of services 

loss and the time to full recovery. For example, there is a difference in social hardship if 

the power network service for a municipality is reduced to 30% functioning versus 50% 



  67 

functioning in respect to the normal operating performance of the power system. 

Likewise, the longer it takes for services to return, the greater communities will have to 

cope and adapt without infrastructure services.  

Geospatially oriented indices like SoVI address the spatial heterogeneity of social 

vulnerability, and TESHI helps address the vulnerability changes over time and is 

realized upon a hazard. However, the temporal dimension is yet to be captured in terms 

of vulnerability dynamics relative to the duration of infrastructure disruption and 

recovery. To further advance models that capture the dynamics of social vulnerability, it 

is, therefore, necessary to move toward social functions rather than social metrics toward 

socio-technical infrastructure resilience simulations. A social function outputs a measure 

of social hardship as a function of the level of infrastructure service loss due to a 

disruption like a hurricane, and the service levels of service over time as infrastructure 

recovers. 

A recent example of emerging social functions for infrastructure resilience and 

reliability has been presented by Esmalian et al. (2020). Using an alternative statistical 

framework (e.g., Kaplan-Meier Curves), the study developed an empirical approach 

toward identifying logistic functions for household tolerance to sustained lack of critical 

infrastructure services like power (termed “susceptibility”).  The study relies on 

subjective field data by polling groups of people (with known demographics and other 

social-economic variable data) who have recently experienced hardship from climatic 

hazards leading to service disruptions. The individuals rate their experienced hardship on 

a categorical scale (i.e., categorical response variables), responses are coded, and a model 
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is fit to the data. However, the reliance on self-reported data is a common and inherent 

limitation in capturing the human dimensions of disaster impacts.  

Whereas social indices may be more appropriate as “yard stick” tools for planning 

purposes or identification of communities and types of resources that may need attention 

to improve resilience or reduce vulnerability, social functions can better capture the 

cumulative hardship that is endured by communities relying on critical infrastructure 

services that take time to recover. Several benefits are available with social functions.  

First, infrastructure failure and recovery models can better capture the time-

dependent nature of social dynamics in respect to the duration of infrastructure service 

loss or the intensity of natural hazards. In this way, the cumulative social hardship in 

respect to the level and duration of service disruption or hazard intensity and 

identification of thresholds for human tolerance in terms of negative outcomes can be 

quantified (e.g., suicides, economic collapse). Furthermore, critical thresholds can be 

identified in terms of human tolerances for infrastructure service loss, such as the 

duration at which outcomes of social hardship are realized (e.g., loss of critical functions 

like refrigeration of medicines, heat stress, mental health outcomes). Secondly, more 

accurate estimates of social hardships can be developed based on the properties of the 

socio-technical network (e.g., electrical system topology, the spatial distribution of social 

vulnerability). Leveraging the various properties of socio-technical networks from an 

infrastructure service perspective, future hazards can be modeled in accordance with 

hazard and infrastructure design scenarios, and various mitigation policies can be 

explored (e.g., changes in topology, strategic redundancies). 
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CHAPTER 3 

SOCIAL VULNERABILITY AND COMMUNITY RESILIENCE INDICATORS IN 

THE FACE OF COMPLEXITY 

3.1 Introduction 

As society continues to evolve, interacting networks of people, objects, and 

systems within economic, technological, social, and ecological dimensions are becoming 

increasingly interdependent (Heylighen et al., 2006). Urban systems, the interconnected 

combinations of infrastructure like power, water and waste systems, along with the social 

organization and institutions that altogether make up and govern an urban area like a city 

or region, are likewise interdependent, dynamic, and constantly evolving (Gershenson, 

2014; McPhearson et al., 2016). Complex Adaptive Systems (CAS) are characterized by 

interactive heterogenous networks where a change in one component can affect changes 

in other components such that structures, processes, and organization emerge from their 

interactions (e.g., the ability of community to recover and adapt to future disasters arising 

from strong and weak social ties among diverse actors in response to a flood). Such 

emergent phenomena include resilience, the structural flexibility to adapt and learn when 

the unforeseen happens. An urban system as a CAS is further characterized by being very 

difficult to predict or understand its inner workings by dissection of individual system 

components (i.e., the sum is greater than the parts). Theoretical perspectives of the urban 

space that embrace this view are becoming more widely recognized among resilience-

related fields (Coetzee et al., 2016; Folke, 2006; Martin-Breen & Anderies, 2011; 

Meerow et al., 2016). 
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As the interrelationships among social, ecological, and technological systems (i.e., 

urban dimensions) are becoming recognized, disaster resilience index (DRI) methods are 

becoming increasingly comprehensive, yet are not necessarily based on CAS concepts 

(see sections 3.3-5). The variety of approaches and variables across urban dimensions 

suggests that index development faces overwhelming challenges and may be 

inadvertently substituting for an understanding of urban systems as CAS. While efforts to 

develop DRI aim to justify and guide resilience investments, it has been argued that the 

complexity inherent in urban systems is not being captured by these methods (Eakin et 

al., 2018; Koliou et al., 2018a). If key complexity concepts are overlooked, and research 

and development of indices are misguided toward increasingly sophisticated but 

tangential methodologies, attempts to make communities resilient would be futile. In 

turn, adaptation efforts may not pay off and the case for investing in resilience may be 

undermined. Resulting interventions can either neglect or undermine resilience 

capacities, and unintended trade-offs can further compromise communities.  Despite the 

popularity and practicality of DRI, the reduction of an urban system to a set of 

quantitative indicators runs the risk of sunken investments and maladaptation that can 

compromise the resilience of future cities (Barnett et al., 2008; Magnan et al., 2016).    

Given the concurrent trends of growing recognition of complexity and the 

prominence of composite indices, an understanding of how current methodologies and 

variable selection fail to capture the complex properties of an urban system would result 

in more effective decision-making. Complexity-oriented development and application of 

resilience indices can provide a way to profile resilience capacities, augment DRI with 

complexity-related methods, and develop system-oriented enhancements (e.g., social 
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connectivity) in dealing with future urban and climatic uncertainties. In order to enhance 

urban resilience to reduce human and economic losses in the face of climate change, 

socio-technological evolution, and a non-stationary future due to surprise events, it is 

imperative to provide city planners and managers  a way of determining actionable yet 

pragmatic  indicators, such as those that can be leveraged from data, in maps, engineering 

and decision models (Biggs et al., 2011;  Reddy & Allenby, 2020). 

 

3.2 Objectives and Scope 

Several publications provide literature reviews of the current landscape of resilience 

indicators, respective methodologies, and major concepts for composite index design 

(e.g., Asadzadeh et al., 2017; Beccari, 2016; Reddy 2020). However, these works stem 

from disparate perspectives, and although complexity is sometimes mentioned, they do 

not systematically apply a CAS lens.  The overarching aim in this paper is twofold (Fig. 

3.1): to first synthesize established literature on CAS and resilience of urban systems 

(sections 3.3-5), and secondly, to draw subsequent connections between commonly used 

DRI indicators and generally accepted properties or tenets of resilience and CAS 

(sections 3.6-7). The specific objectives listed below are meant to aid researchers, 

planners, and decision-makers to acquire a different perspective into resilience of urban 

systems in terms of conceptualizing and integrating complexity into well-known tools 

(i.e., DRI): 

(i) Provide a background and synthesis of the literature at the nexus of disaster 

risk, urban systems, socio-ecological resilience, and complexity. 
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(ii) Characterize major trends in indicator selection for composite index 

development based on a meta-review of established review articles that 

discuss indicator selection for multi-dimensional (i.e., social, institutional, 

infrastructure, etc.) composite disaster resilience indices (DRI). 

(iii) Outline the capabilities of DRI and respective indicators to capture properties 

of CAS, identify deficiencies in this regard, and discuss routes toward 

improving DRI from a complexity perspective. 

 

 

Figure 3.1. Conceptual diagram illustrating the objectives, approach, and contribution of 

this paper towards identifying composite disaster resilience indices (DRI). Complex 

Adaptive Systems (CAS) and Socio-ecological Systems (SES) literature is reviewed to 

identify prevailing tenets and principles that can be used to conceptually analyze typical 

choices for resilience indicators and proxy variables. Numbers in blue correspond to 

which sections of the manuscript each component is covered (e.g., “s.3” means DRI are 

discussed in section 3.3). 
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The analytical framework is first addressed via a brief meta-analysis of the 

literature on resilience indices (section 3.3), followed by contextualizing urban 

infrastructure and resilience in terms of CAS (section 3.4). Sections 3.5 and 3.6 describe 

how the objectives were explored through a selection of core DRI indicators in terms of 

common tenets of CAS and resilience principles. This is followed by a synthesis of 

findings (section 3.7), and concluding with a general discussion and recommendations for 

further work on DRI (section 3.8). 

 

3.3 Review of Common Approaches for Vulnerability and Resilience Indices 

3.3.1 The Case for Disaster Resilience Indices (DRI) 

The discourse on urban resilience has been largely driven by climate change and 

extreme weather, and the subsequent need to identify vulnerabilities, enhance 

preparedness, and develop adaptive strategies (Goldsmith & Crawford, 2014; Meerow & 

Mitchell, 2017; Preston, Westaway, & Yuen, 2011). Many definitions exist, but in 

general resilience is the ability of systems to adequately anticipate, cope with, adapt, and 

learn from sudden shocks like climatic disasters (more detail on resilience in section 3.4). 

Strategies that reduce the complexity of the structure and processes of urban systems to 

objective metrics, such as DRI, are attractive to urban researchers and decision-makers to 

develop clear, actionable insights toward making the “business case” for resilience 

investments and tracking progress of these measures when implemented (Cutter, 2016a; 

Preston, Yuen, & Westaway, 2011). Indices are relatively simple sets of numerical 

metrics (e.g., a value of 0 indicating  very little resilience,  and 1 indicating  very high 
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resilience) or categorical metrics (e.g., low-highly resilient)  that can be used to compare 

the relative resilience status of a place-based system (e.g., community, city, county, or 

state) over time, or to another system (e.g., Community Disaster Resilience Index by 

Texas A&M, see Peacock, 2010; and the City Resilience Index by Arup, see City 

Resilience Framework, 2014). 

Comparative metrics and well-selected indicators (however normative) empower 

decision-makers to take action to implement research-oriented resilience plans, by clearly 

identifying strong and weak areas so that resources can be efficiently allocated (Zandt et 

al., 2012). Community resilience metrics can enable investments toward significant 

economic outcomes such as lower disaster costs), more stable local economies, and 

enable communities, governments, and the public sector to take capacity-building actions 

(Bender & Benson, 2013; Cutter, 2016a; Fung & Helgeson, 2017; Rodin, 2014; Simison, 

2019). As is evident in programs like the late 100 Resilient Cities, DRI enable 

comparisons between cities and supports research and design toward learning from 

disasters, developing strategies, and transferring knowledge. 

 

3.3.2 Identifying an Established Core of DRI Indicators 

To identify a set of common types of indicators, a literature search for reviews of 

DRI and respective indicators was performed using combinations of the key terms (Fig. 

3.2): resilience, metrics, indicators, measurement, composite, indicators, indices, disaster, 

climate, and review5. Google Scholar was used as the search engine because of its wide 

 
5 Keywords like “COVID-19” or “pandemic” were excluded because these events were still too recent and 

underdeveloped. 
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accessibility, links to articles hosted in multiple databases, and does not favor a particular 

group of publishing outlets (Fekete, 2019).  Several articles published after 2015 cite 

previous reviews, so articles older than 2016 were excluded. Results were further filtered 

for peer-reviewed publications with at least a partial focus on quantitative indicators 

specific to resilience of urban systems to natural and general hazards, as opposed to 

vulnerability, risk, or resilience to other phenomena. Reviews considering only a single 

dimension of urban systems were excluded, such as those focusing only on the social 

domain or general social resilience. However, community resilience reviews were 

retained when they considered multiple dimensions of urban systems in respect to a 

community, such as infrastructure assets.  

 

 

Figure 3.2. Summary of the literature search method adopted to identify papers 

reviewing common and established DRI indicators.  
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Table 3.1 lists the ten review articles that were ultimately selected, which 

summarize and evaluate the state of DRI using various approaches including 

bibliometric6  and qualitative literature analysis (Beccari, 2016; Cai et al., 2018; Cariolet 

et al., 2019, Rus et al., 2018), case study compilation and analysis of existing index 

frameworks (Asadzadeh et al., 2017; Cutter, 2016a; Sharifi, 2016; Parsons et al., 2016), 

and conceptual analyses of current research progress that includes DRI (Johansen et al., 

2017; Koliou et al., 2018). Syntheses from these reviews include highlighting theoretical 

perspectives, dominant dimensions of resilience (e.g., economic, institutional), and trends 

regarding methodological choices for DRI. 

 

  

 
6 Bibliometrics is the use of statistical methods to analyze books, articles and other publications. 
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Table 3.1. Selected articles that review literature and compilations of disaster resilience 

indicators and indices.  

Authors Description of the Type of Application and Index framework Proposed 

Asadzadeh 

et al 

(2017) 

• No list of persistent concepts or variables compiled, but rather 

focuses on dimensions and methodological choices. 

• Proposed eight-step procedure for composite indicator building. 

• Recognizes increasing complexity in community resilience and 

distinguishes resilience in terms of socio-ecological and engineering 

perspectives. 

Beccari 

(2016) 
• Comprehensive bibliometric review of vulnerability, resilience, risk 

composite indicator methods. 

• Includes list of dominant variables and concepts from the literature. 

• Concludes that deductive, quantitative and mappable methods are 

dominant. 

Cai et al., 

2018 
• Systematically analyzes 174 scholarly articles related to resilience 

measurement using content analysis and review tables in terms of 

definitions of resilience, approaches to resilience measurement, most 

commonly adopted indicators, and proposed adaptation strategies. 

• Tabulates most frequently used resilience indicators in rank order 

and by the top disaster types found in the systematic analysis. 

Cariolet et 

al (2019) 
• No list of common concepts but includes a detailed discussion of 

variable choices. 

• Critiques resilience indicator methods and composites as too 

simplistic and suggests hybrid methods to better capture complexity 

of resilience. 

Cutter 

(2016) 
• Evaluates 27 DRI and approaches in terms of theory, spatial 

characteristics, methods, and resilience domains (e.g., community, 

economic). 

• Concludes that there is no dominant framework but lists common 

core concepts, measurements, and prevailing proxy variables. 

Johansen 

et al 

(2017) 

• Focused on social resilience, but does include multiple resilience 

dimensions. 

• Classifies metrics as community-based, sociological, or sector-

specific, and reviews methodological choices between these three 

categories. 

Koliou et 

al (2018) 
• Broad overview of the state of research on resilience dimensions 

across disciplines. 

• Reviews community resilience initiatives on international, national, 

regional, and local levels, including infrastructure domains and 

essential lifelines. 
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• Calls for research regarding integration of system of systems, 

characterization of community-built environment, critical 

infrastructure interdependence, social complexity at multiple scales, 

and coupling engineering, economics, and social science models. 

Parsons et 

al (2016) 
• Includes a brief survey of index landscape and presents framework, 

themes, and indicator selection for Australian Natural Disaster 

Resilience Index (ANDRI). 

• ANDRI synthesizes concepts and variables from the survey, with a 

greater focus on capacities and inclusion of less common variables 

such as learning. 

Rus et al 

(2018) 
• Reviews resilience and respective sub-components from complex 

urban system and seismic risk perspective across four dimensions: 

technical, organizational, social, and economic. 

• Integrates physical and social components of an urban system and 

highlights necessity to capture interactions (e.g., such as in a 

network or graph theoretical approach). 

Sharifi 

(2016) 
• Reviews 36 resilience frameworks in terms of resilience dimensions, 

scales, temporal dynamics, methods, and applications. 

• Concludes that ecological dimension is often under-represented and 

a comprehensive model that includes all resilience criteria is lacking. 

 

Regarding the overall capacities that resilience metrics should indicate, Beccari 

(2016), Cai et al. (2018), Cutter (2016a), Parsons et al. (2016)7, and Sharifi (2016) list 

some of the persistent indicators adopted across methodologies. The most widely cited of 

the selected articles, Cutter (2016a) presents a measurement core for disaster resilience 

with proxy variables that are commonly found in publicly available data based on a 

review of established indicators and methods, and categorizes them as assets or capacities 

for resilience (Table 3.2). This core largely aligns with the other review listing persistent 

indicator criteria (particularly Beccari, 2016 and Cai et al., 2018, though the latter does 

not include indicators in the environmental domain).Therefore, the following analysis 

 
7 Presented as a list of indicators chosen for the Australian Natural Disaster Resilience Index based on a 

literature review. 
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leverages this core of indicator concepts and proxy variables for analysis against essential 

tenets of complexity and principles of SES. This set is not intended as an exhaustive list 

of concepts and indicators, but rather as a representative set to demonstrate how common 

approaches for resilience indicator selection aligns with fundamental CAS and SES 

resilience perspectives. However, indicators and proxy variables from the other reviews 

were sometimes noted for comparison or as additional examples. 

Table 3.2. Persistent variables for community disaster resilience (right column; as 

interpreted from Cutter, 2016a) based on assets (resources that can be leveraged upon 

disasters) and capacities (capabilities that emerge upon disasters) (left column). 

Domains and Capacities for 

Resilience Indicators 
Common Types of Proxy Variables 

Community assets and 

functions 

Community services (number) 

Connectivity Feeling of belonging to the community’ proximity to 

urban areas 

Economic Income 

Emergency mgmt. Shelters, evacuation routes 

Environmental Impervious surfaces 

Infrastructure Buildings of various types (emergency, government, 

power, bridges, commercial) 

Information/communication Prior recovery, hazard severity 

Institutional Mitigation plans (% covered) 

Social Educational attainment 

Social Capital Civic organizations; religious 

 

3.3.3 General Takeaways from the Selected Articles 

While there are only partial overlaps between reviews in Table 3.1 due to varying 

scope, methodology, and framings, there is agreement among certain critiques and 

conclusions. Generally, quantitative top-down methods (e.g., relying on aggregate 

datasets rather than than field data) are tremendously popular, especially if amenable to 

geographic visualization (e.g., DRI-enabled decision tools like GeoApps). Indicators can 

be classified into two general domains of resilience, (i) assets or capital, and (ii) 



  80 

capacities and governance. Holistic indices that aim to be hazard-agnostic suffer 

generalization and contextual limitations. Validation (i.e, internal and external validation, 

cross-validation, uncertainty and sensitivity analysis, ground truthing) remains a 

persistent problem and is sometimes entirely ignored in indicator frameworks. The 

prominence of insufficient validation and uncertainty analysis and their importance has 

been noted for social vulnerability indices (SVI) and DRI, with suggestions that leverage 

statistical methods (e.g., using “revealed vulnerability” data like human loss or 

satisfaction with damage compensation) and cross-validation with alternative studies 

(Fekete, 2019; Tate, 2013). Lastly, interactions between urban system components and 

subsystems remain a necessary but difficult area for research, development, and coupled 

methods or interdisciplinary pursuits. 

3.4 Contextualizing CAS and Urban Resilience  

“The complexity turn”8  has influenced several research fields interested in urban 

resilience to climatic disasters, such as disaster risk reduction, urban geography, and 

resilience engineering and management, into framing cities as  complex systems  

(Allenby & Chester, 2018; Castellani, 2014; Cutter, 2016a; Folke, 2006; Meerow & 

Newell, 2016; Reddy, 2020; Urry, 2005). Seminal publications paving the way for this 

turn stem from ecology, particularly the resilience of ecological systems framework by 

Holling (1973; 2001).  Ecological perspectives view CAS as composed of holons 

(hierarchical levels or subsystems with subjective boundaries where information and 

materials are gated and transferred; Kay, 2008) that are nested in a panarchy (holons exist 

 
8 The recognition of complexity as inherent and unavoidable in human and other systems. 
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as hierarchical series of adaptive cycles, and both top-down and bottom-up controls 

between holons drive resilience and evolution) (Gunderson, 2019). Resilience is framed 

as an emergent property of CAS, which as an interconnected whole, can absorb change, 

reorganize, or transform while maintaining major functions and an essential identity 

(Walker et al., 2004). 

Resilience as coping with change and perturbations has since been adapted into 

engineering for critical infrastructure systems (CIS) services (Comes & de Walle, 2014; 

Hollnagel et al., 2006; Woods, 2015; Reddy, 2020), and research on the built 

environment as SES and socio-technical systems (STS) (Anderies, 2014; Markolf et al., 

2018; Pelling & High, 2005; Smith & Sterling, 2010).  In terms of seismic community 

resilience, Bruneau et al (2003) present four key properties of resilience in both physical 

and social systems (“4 R’s” o resilience): Robustness (i.e., strength or hardness against 

degradation or function loss), redundancy (extent of substitutable elements or systems), 

resourcefulness (capacity for identifying problems, prioritizing, and mobilizing 

resources), and rapidity (timeliness in meeting goals after disruption). Reddy (2020) 

proposed five main sub-attributes from a techno-centric viewpoint: (i) Preparedeness, the 

ability to anticipate and proactively invest in adaptation strategies; (ii) Robustness, or the 

ability to withstand sudden shocks and provide the service it has been designed for; (iii) 

restructurability, or the flexibility to reorganize so as to maintain at least partial 

functioning; (iv) restorativity (rebounding), the ability to recover functions in a timely 

manner and without excessive losses; and (v) adaptivity, the ability to learn from failure 

and adversity and to incorporate changes that improve the ability of systems to handle 

similar events in the future.  
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Some engineering-oriented attributes, like robustness, are conceptually the inverse 

of vulnerability (sensitivity to damage or loss upon exposure). While it is reasonable to 

view robustness as a component of resilience, this paper aims to distinguish attributes of 

resilience from vulnerability, taking on the perspective that urban systems are always 

vulnerable in some form, so it is salient to focus on attributes that relate to the flexibility, 

agility, and persistence of a CAS. Resilience centered on flexibility and CAS capacities 

better align with CIS as panarchies in terms of vulnerability paths and “creative 

destruction” (Pescaroli & Alexander, 2016), and with STS perspectives that put 

transformation at the core of resilience of human-technological systems (Amir & Kant, 

2018). In this way, urban systems are like ecological systems that display complex 

interconnections and nested cycles of evolutionary adaptation (Janssen, 2001; Pandit et 

al., 2017).  

SES perspectives traditionally leverage complexity-driven concepts and 

frameworks like adaptive cycles for ecosystems and society as interconnected 

subsystems, but theoretical frameworks have extended them to the built environment and 

urban resilience. Principles of resilience for ecosystem services have been proposed 

which include diversity, redundancy, connectivity, polycentricity, slow variables and 

feedbacks, understanding of CAS, learning and participation (Table 3.3; Biggs et al., 

2012, 2015; Folke et al., 2016; Wiese, 2016). SES perspectives that include coupled 

infrastructure have proposed partially overlapping principles that more directly 

acknowledge the built environment (e.g., Anderies, 2014; Suarez et al., 2019). Such 

principles highlight systemic properties that can be monitored, measured, and leveraged 

to enhance resilience of urban systems. These perspectives highlight CAS properties that 
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enable resilience, while linking urban infrastructure to social dynamics, ecological 

interactions, and technological evolution entangled in a complex system. Therefore, these 

SES resilience principles represent key concepts for CAS (section 3.5), and are the basis 

of our analysis in section 3.6. 

 

Table 3.3. Resilience principles for complex systems from the socio-ecological 

perspective (based on Biggs et al., 2012; 2015; Folke et al., 2016; Wiese, 2016). 

Resilience 

Principle 
Description 

Connectivity The extent to which paths and degrees are present for resource and 

information flows and interactions across socio-ecological 

landscapes.  

Diversity & 

Redundancy 

Diversity refers to the variety of elements, balance in the quantities 

of each element, disparity between elements, and heterogeneous 

distribution. Redundancy refers to the replication of elements or 

functions in a system that can ensure that some elements compensate 

for the loss of others (i.e., opposite of disparity).  

Learning and 

Experimentation 

The processes of developing knowledge, behaviors, skills, values, 

and preferences at individual, group, and societal levels within an 

SES. 

Participation Active engagement of relevant stakeholders in the governance and 

management of SES. 

Polycentricity A governance system composed of multiple centers of decision 

making nested at different scales. 

Slow Variables 

& Feedbacks 

Variables with slow rates of change as to often be considered 

constant, but has the potential for feedback and the surpassing of 

critical thresholds. 

Understanding 

of CAS 

A mental model or cognitive framework characterized by the 

acknowledgement of unpredictability, emergent macroscale 

behaviors, continuous evolution, responsive adaptation, and 

uncertainty pervasive in SES. 

 

The coupling of multiple complex and heterogeneous systems has greatly 

compounded the complexity in urban systems, making resilience to disasters difficult to 

measure, manage, and predict. Challenges have been noted, including those highlighting 

deep uncertainty (where probabilities of possible futures are too difficult or impossible to 
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rank) and wicked complexity that requires fundamentally new approaches to how we 

function ( Allenby & Chester, 2018; Chester & Allenby, 2019; Haasnoot et al., 2013; 

Hallegatte & Engle, 2012; Walker et al., 2013). Part of this wickedness and uncertainty 

has to do with infrastructure as embedded in rapidly coevolving technological and social 

systems in the Anthropocene, the geological age when humans dominantly drive the 

Earth system and accelerating change drives high levels of unpredictability (Allenby & 

Chester, 2018; Chester & Allenby, 2019; Markolf et al., 2018). The challenge for disaster 

resilience and established DRI is merging what was traditionally thought of as natural 

disasters into what is now being conceptualized as a highly interconnected and 

unpredictable, yet human-driven Earth system. 

Anthropocene perspectives increasingly underscore the irreducible complexity of 

social dynamics. Human agency, conscience, and societal values, along with 

technological dominance, introduce subjective interactions into coupled systems that 

effect how these CAS self-organize. Human cognition, relative to technical and 

ecological systems, makes coupled systems asymmetrical – that is, dominated by the 

social domain where collective choices and sociopolitical forces govern how urban 

systems adapt (Manuel-Navarrete, 2015). Eakin and colleagues (2017) argue for the 

complexities of sociopolitical infrastructure such as formal and informal rules are 

necessary for urban resilience thinking. The call for the inclusion of highly complex 

social dynamics also characterizes how urban resilience is being conceptualized, and 

forms the basis of criticism by some social scientists that DRI are too-reductive, 

normative, context-dependent, and static (Béné et al., 2014; Eakin et al, 2018). 
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3.5 Resilience Principles and the Tenets of CAS 

3.5.1 Finding a Core Set of Essential CAS and Resilience Attributes 

As efforts to frame urban resilience are converging around CAS, traditional 

approaches for understanding urban systems and preparing for the future are inadequate , 

and a turn toward systems thinking is necessary (Ahern, 2011; Biggs et al., 2015; Cote & 

Nightingale, 2012; Folke et al., 2010; Walker & Salt, 2012; Xu et al., 2015). There are 

many branches in the history of the complexity sciences that evolved in parallel and 

sometimes interlink (e.g., general systems theory, cybernetics), so an exhaustive 

treatment of this history is beyond the scope of this paper9. However, there are some 

commonly accepted essential tenets of CAS. In a recent review of complexity theory, 

Turner and Baker (2019) outline the many definitions of CAS and respective 

characteristics, and propose a set of “tenets” of CAS (Table 3.4.).  

Some tenets are closely related or interdependent allowing them to be bundled 

together. For instance, since path dependence was explained in terms of sensitivity to 

initial system conditions or history, the three tenets are consolidated into “sensitivity to 

initial conditions”. Other systems characteristics describing the essential tenets can be 

similarly handled. For example, uncertainty in complex systems was incorporated into 

the property of irreducibility because any system representation is necessarily a limited 

and biased manifestation of the “actual” system so that subsequent indicators involving 

“uncertainty” in some manner (Allenby, 2012; Cilliers, 2002).  

 

 
9 See Castellani (2014) for an exceptional review on the historical evolution of the complexity sciences. 
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Table 3.4. The link proposed in this paper between important tenets of complex adaptive 

systems (CAS) and different characteristics of socio-ecological systems (SES) resilience. 

CAS Tenets Description 
Most Closely Related Resilience 

Principle 

Adaptivity Systems respond to and affect 

external environments and 

reconfigure to meet changing 

demands (i.e., systems adapt and 

evolve). 

Diversity & Redundancy 

Emergence Synergistic outcomes from the 

interactions of several 

heterogenous components that 

spontaneously interact to form 

patterns (i.e., self-organize) that 

cannot be deduced by dissecting 

attributes of any one individual 

component (i.e., “The whole is 

greater than the sum of the parts”).  

Connectivity, Polycentricity 

Irreducibility Characterized by inherently partial 

system framings (i.e., “Whole 

system ignorance’), uncertainty 

and unpredictability of system 

outcomes. 

Understanding of CAS, 

Participation 

Operates 

between 

Order and 

Chaos 

Systems can experience 

spontaneous self-organization and 

emergent order (i.e., innovation 

and new structures emerge at “at 

the edge of chaos”). 

Learning & Experimentation 

System 

History 

Systems have non-linear 

relationships among variables in 

time, and future conditions are 

path-dependent (i.e., limited by 

previous paths and conditions). 

Systems exhibit a sensitivity to 

initial conditions so that small 

differences can produce widely 

different outcomes and dynamics 

over time, while slow variables 

can unexpectedly approach critical 

thresholds. 

Slow variables & feedbacks 

 

 

Resilience emerges from systemic interactions occurring before, during, and after 

disturbances, where the tenets of CAS and SES resilience principles come into play to 
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support adaptation, learning, and the “bouncing back” of urban systems. For example, 

connectivity and polycentricity can facilitate the ability for an urban CAS to self-

organize; diversity and redundancy enable adaptivity; slow variables and feedbacks are 

linked to non-linear patterns and the history of the system; the irreducibility of CAS 

require an understanding of CAS and participation; learning and experimentation speak 

to the possibility of re-ordering after unforeseen consequences (Anderies, 2014; Coetzee 

et al., 2016; Levin et al., 2013).  

It is important to note that many CAS discussions arise out of non-agent or 

socially agnostic systems, and in-turn, downplay or overlook the role of human elements 

(e.g., institutional structure, leadership). Equity, for one, is the most difficult resilience 

principle to relate to the tenets as it is normally based on a call for justice (i.e., resilience 

for whom). That equity relates to irreducibility and systems thinking is here justified in 

terms of the “5 W’s” of resilience (resilience for what, whom, where, why and when), 

which stifle the framing of an urban system as generally resilient without potential trade-

offs or winners and losers (Cretney, 2014; Cutter, 2016b; Meerow & Newell, 2016). 

Equity is further related to irreducibility and systems thinking in terms of Edwards’ 

(2009) four “E’s” of resilience which highlight the limited role of centralized planning or 

definitive templates for building resilience in the social domain: Engagement (strategies 

based on dialogue and feedback), education (as embedded in daily lives in any form), 

empowerment (assumes communities have relevant experience and should be given tools 

and resources to act), and encouragement (communities are encouraged to play a role by 

both formal and informal institutions). 
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In this way, CAS tenets and SES resilience principles can be distinct, yet related. 

This paper does not view these tenets and principles as absolute and universal, but rather 

as the outcome of a synthesis of how Anthropocene challenges like urban resilience to 

more frequent and intense climatic shocks are being framed. CAS tenets and SES 

resilience principles are leveraged in for analysis in section 3.4 to guide reflections on 

common types of resilience indicators, and DRI applications. However, it is important to 

note that the nature of urban resilience as a CAS presents major limitations and 

assumptions that challenge the generalization and application of DRI (Rus et al., 2018).  

 

3.5.2 Misalignments Between Established DRI and CAS 

While index methods aim to reduce urban resilience to a set of capitals and 

capacities for an overall measurement of resilience, CAS research tends to focus on 

unearthing the dynamics and spatiotemporal patterns within a system that lead to the 

emergence of resilience. Common examples are process-oriented and multi-agent models 

where networked agents or components interact to produce macro-level trends or 

transitions in state variables (Costanza et al., 1993; Miller & Page, 2007; Tsvetovat & 

Carley, 2004). Such models are meant to map the dynamics of systems and can indicate 

the potential for a system to self-organize and adapt to perturbations. Metrics associated 

with these approaches are often topological or pertain to the potential for interaction, such 

as the number of links that connect to a given node (degree of a node), or network 

density, the ratio between the number of connections to the number of possible 

connections (Thurner et al., 2018). In terms of resilience, computational models seek to 

determine points of criticality where interactions tip the system toward transitioning to a 
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different state that can be either desired or undesired (Miller & Page, 2007; Thurner et al., 

2018). Macro-level metrics are sometimes sought, such as a high-level metric for self-

organization of a CAS by King & Peterson (2018). 

It is important to point out that composite indices may be categorically misaligned 

with CAS theory due to their common framing of resilience as representable by a sum of 

quantified parts, whereas complexity assumes synergistic effects between many 

autonomous interacting parts, which can be unpredictable or novel. Composite index 

methodologies implicitly assume a “simple” system in that a selection of quantifiable 

subsystems corresponds meaningfully to how urban systems behave upon disasters. This 

misalignment occurs methodologically when indicators are added up and assumed to 

indicate some ordinal level of resilience, but also conceptually when variables are 

assumed to be meaningful, consistent, and generalizable from one event to another, and 

among different and continuously evolving urban systems. 

Approaches and epistemological assumptions between DRI and CAS-oriented 

methods may be fundamentally different, but they can still be viewed as either 

complementary to each other, or as a way to transition between dynamic models and 

linear indicator approaches (Cai et al., 2018; Schianetz & Kavanagh, 2008). The 

development of sophisticated modeling of CAS can be time and resource intensive (e.g., 

data, modeling experts), but have been used for scenario-testing, dynamic resilience 

metrics, and organizational learning (Schianetz & Kavanagh, 2008; van den Belt, 2004). 

Indices, however, offer a clear measure and more straightforward insights pertaining to 

variables and resources relevant to planners and stakeholders (Butler, 1999; Zandt et al., 

2012). It is recognized that the manner in which resilient performance of CAS are 
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normally evaluated/quantified differ significantly from how index approaches measure 

resilience. However, to bridge the gap between these approaches this paper will focuses 

on how concepts and metrics used for indices broadly relate to tenets of CAS and SES 

resilience. 

 

3.6 Approach for Conceptual Analysis of Resilience Indicators from a Complexity 

Perspective 

CAS tenets and SES resilience principles are leveraged to analyze the concepts 

and proxy variables (i.e., resilience assets and capacities) that are dominant in DRI (as 

shown in Tables 1 & 2). This was done by framing a set of guiding questions. For 

example, to relate the common disaster resilience concepts and indicators to the self-

organization and emergence tenets, guiding questions include: 

i. Does the indicator capture connectivity in terms of the ability to self-

organize? 

ii. How is governance in terms of the ability to make decisions at multiple 

scales captured (i.e., polycentricity)?   

While the range of methodologies is not discussed in detail in this paper, general 

implications of applying different methodologies are presented when relevant to a 

particular complexity tenet and resilience principle (e.g., choosing additive assumptions 

versus multiplicative or exploring more advanced techniques for a given indicator). 

Discussion points were developed for CAS tenets and SES resilience principles in terms 

of each of the common core of resilience indicators in section 3.2, including short 
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descriptions of potential CAS significance, links to other CAS properties, and 

counterexamples illustrating how an indicator may be somewhat myopic in terms of 

complexity. Once completed, results were reviewed for general trends, significant 

findings, and holistic insights that may otherwise not have been captured by the piece-

wise analysis. These results are described in section 3.7, followed by a broader discussion 

that incorporates insights from the reviewed literature (section 3.8). 

 

3.7 Synthesis of Findings from Analysis of Core Resilience Indicators, SES Principles, 

and CAS Tenets 

Of the indicators analyzed, social capital (bonds that communities can leverage 

for recovery upon disasters; Aldrich, 2010) and connectivity (linkages within and 

between systems; Turner and Baker, 2019) emerged as the most aligned with CAS and 

resilience of SES principles. However, indicators for the emergence of social capital are 

subject to contextual system histories (e.g., meanings or tipping points that vary from 

place to place), intricate trade-offs, and uncertainty toward generalizations amid evolving 

SES (Adger, 2003; Aldrich, 2012). In terms of connectivity, social capital proxied by the 

number of civic or religious organizations and adherents as indicators suggests these 

kinds of institutions as nodal points where individuals and communities can connect and 

organize to redistribute resources toward coping and recovering from a disaster. 

The focus on density for all types of indicators (i.e., units per administrative 

boundary) can indicate the order of potentially interacting parts or the potential for 

functional redundancy, the latter often cited in the Table 3.1 reviews as a driving concept 
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for indicator selection. However, focusing on proportions of a given variable tends to 

leave out modularity (the attribute of having components or groups of rules that act as 

“building blocks” that can be situationally recombined; Holland, 2006) and diversity 

(variety, balance, and disparity among elements; Biggs et al.,2012). While modularity 

may be more elusive to capture with straightforward indicators, diversity can be 

incorporated by methodologically shifting to data attributes that pertain to the number of 

different types and functions, rather than density of discrete units (e.g., number of types 

of religious centers, or religious pluralism rather than number of religious centers). 

Ultimately, each indicator in this analysis could be critiqued for not meaningfully 

capturing complexity tenets in some way. This is to be expected due to the intent of 

resilience indicators as a reduced form or snapshot of system conditions, especially when 

viewed in a piece-wise fashion. Ecological and environmental factors are largely absent, 

which may be because such indices are normally integrated with exposure metrics, 

models, and tools that capture topographical, hydrological, and climatic factors. Several 

indicators align with complexity tenets once reframed or considered as coupled with 

supplementary methods. 

Results describing DRI indicators according to each complexity tenet and linked 

SESs resilience principles (subsections) are below. Selected examples are discussed, and 

relatively simple modifications for better alignment with tenets and principles are noted. 

Higher level critiques and suggested improvements for DRI (e.g., research, development, 

application) are discussed in section 3.8. 
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3.7.1 System history – Non-linearity, slow variables, and feedbacks  

Some common indicators can be framed as capturing system histories, including 

climate mitigation, impervious surface coverage (ISC), and previous exposure to climate 

hazards. Climate mitigation acknowledges emissions as a slow variable that contributes 

to the frequency and intensity of future potential disasters. ISC can be an insidious slow 

variable in terms of urbanization and urban flooding (Arnold Jr. & Gibbons, 1996; 

Napieralski & Carvalhaes, 2016; Shuster et al., 2005). More directly, system history is 

captured as previous exposure to and severity of past disasters (e.g., number of 

presidential disaster declarations). Places that have been resilient after a disaster likely 

have developed human infrastructure (i.e., experience and knowledge) and lines of 

information and communication capacities that can support recover and reorganization. 

However, a central idea of resilience is that surprise events challenge established 

knowledge systems and infrastructure (Aven, 2015). Nonetheless, previous disaster 

experience and hazard probabilities, especially if increasing in intensity and frequency 

through time, could indicate a greater likelihood to develop adaptive systems and prepare 

for the unexpected. 

System history displays a minor presence in top-down composite methods. It is 

difficult to define, operationalize and measure slow variables and feedbacks within and 

between common indicators in a way that can be generalized from case to case. The 

potential for contextual effects can undermine basic assumptions for some indicators that 

assume like histories and tipping points across places. For instance, access is assumed for 

quantities of hospitals and disaster-relevant buildings. Considering insurance coverage 

and transportation connectivity as coupled with health units like hospitals may help 
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indicate how accessible such units may be from a social and infrastructural perspective. 

Path dependencies and lock-ins built into communities and coupled infrastructure 

systems can have an impact on how effective implementations based on such indicators 

may be to either disasters or coming changes (Berkhout, 2002; Chester & Allenby, 2018). 

For instance, a place may have many emergency buildings that are vulnerable due to 

construction age and low investment in maintenance. Such interdependencies between 

indicators are often stressed as a next step for DRI in the literature reviewed (Table 3.1). 

Quantitatively, slow variables can be captured as rates, limits, and thresholds (i.e., 

tipping points) of common indicators. Rather than proportion, the rate of development 

using a series of ISC data can indicate the approach to critical thresholds of development 

that outpace adaptation and coming environmental changes. Likewise, median income as 

a proxy for economic assets assumes incrementally additive units that contribute to 

resilience, whereas the percent below poverty assumes a quantitative leap in critical 

capacities, access, and vulnerabilities in the face of a disaster. 

 

3.7.2 Emergence – Self-organization, connectivity, and polycentricity 

It is difficult to explicitly link emergence to index approaches in light of the 

misalignments outlined in section 3.3, but indicators like the number of religious 

organizations framed as a proxy for the kinds of social capital that can emerge amidst 

disasters shows an attempt to capture the potential for desirable emergent phenomena. As 

related to the emergence of adaptive qualities and resilience, connectivity and 

organizational capacity are presented several times in reviews and index frameworks as 

concepts for variable selection. Connectivity indicators are usually linked to 
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institutional/organizational assets and capacities (e.g., percent of religious adherents), or 

in infrastructural terms like communications (e.g., mobile or telephone access). The 

number of community, civic, or religious centers can be taken as a proxy for connectivity 

and the ability of a community to self-organize as churches and other religious centers 

often serve the public in need and can offer shelter, hope to recover, and guidance 

(Murphy, 2007). Non-profits and locally run community services may indicate social 

capacity for self-organizing to provide functions that are either unexpected, untrusted, or 

absent from other publicly provided sources (Aldrich & Meyer, 2015; Szreter & 

Woolcock, 2004). 

Social capital is a driving concept for community resilience where indicators are 

used to queue for the social resources and linkages that emerge upon disasters. 

Volunteerism, place attachment, and civic engagement are some of the most common 

examples of indicators, and are captured with variables like percent of lifetime residents, 

proportion of voter participation, and quantities of civic engagement organizations. 

Community bonds, a feeling of belonging to a community, or being connected to urban 

infrastructure and institutions are commonly used criteria for connectivity. Other 

indicators of connectivity are framed around benefits of urban density, such as the 

proximity to critical urban services. 

In terms of polycentricity, it is not clear that decision-making at multiple scales is 

present in the way resilience capacities are currently framed. However, since mitigation 

plans and activities may have implications at local, state, national, and international 

levels, the climate-related mitigation indicator at the community or municipal levels 

assume that taking part in mitigation activities along with other communities will make a 
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difference at larger scales (i.e., local to global drivers). While the number of political 

districts within the spatial unit of analysis has been previously seen as political 

fragmentation (Cutter et al., 2010), this indicator can alternatively be framed as 

polycentricity where spatially-derived metrics can proxy multiple levels of decision 

making relative to a population or area. Using currently established indicators, spatially 

relating community service nodes with higher-scale disaster centers or emergency 

services may indicate cross-scale connectivity and polycentricity. Granted, assumptions 

of cooperation versus antagonism and competition may be difficult to overcome.  

 

3.7.3 Irreducible – Understanding of CAS, participation and equity 

Given that composite index schemes inherently reduce a complex situation into an 

operable numerical representation (Freudenberg, 2003), oversimplification and 

uncertainty are inherent risks. Green infrastructure (GI) can indicate multifunctional 

infrastructure and ISC mitigation, but GI distribution may affect equitable access to green 

space and related benefits, or paradoxically induce gentrification (Wolch et al., 2014). 

Where GI can promote resilience in one place, it can create vulnerabilities in another. 

Similar is true for indicators for social capital, a “Janus-faced” concept (Aldrich, 

2012). It has been found that low income communities with high rates of second-

language households (two common indicators for vulnerability and low resilience), can 

leverage other forms social capital and even outpace wealthier communities for recovery 

(Leong et al., 2007). In some cases, communities tied together by a common religious 

organization or other common identities like race and political affiliation may exclude a 
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minority that is left vulnerable or purposefully put in a precarious state (Aldrich & Crook, 

2008). 

Many reducibility issues have to do with relationships between variables that 

depend on space and place. A persistent issue is the effect of different units of spatial 

aggregation (e.g., Census tract versus county or municipalities) on how patterns emerge 

(i.e., the modifiable areal unit problem, Simpson’s paradox). For instance, an area with a 

high DRI may have within it several pockets of very low DRI values that are obscured 

upon aggregation. In such cases, the uncertainty that arises from the choice of analytical 

scale is greater for generalized resilience indices and those developed for specific 

planning circumstances (Tate, 2013). Most index methods also assume that collections of 

indicators and their relationships can be generalized across geographies, such as Census 

tracts across a state. However, it has been shown that relationships and processes between 

the same set of DRI variables can differ from place to place (Chun et al., 2017; Yoon et 

al., 2016). Indicators also assume consistent relationships over time. Prior hazard 

experience assumes preparedness to known disasters.  With a changing climate, disasters 

of unforeseen magnitudes or even types may challenge urban systems that have been 

resilient in the past. Infrastructure and buildings designed based on risk assessments and 

robustness to predicted events do not account for such an uncertain future (Gilrein et al., 

2019). Mitigation plans are common proxies for disaster knowledge and resilience, but 

the presence of adaptive management plans may be a potential variable that can indicate 

CAS understanding. 
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3.7.4 Adaptivity – Diversity and redundancy 

Several DRI indicators reflect redundancy. Examples tend toward infrastructure 

redundancy with indicators like the number of emergency response units (e.g., fire, 

police, shelters), and density of principal arterial road miles (alternative evacuation 

routes). Indicators tend to represent some form of capital that can absorb impacts such as 

economic assets (e.g., median income), rather than capacities for restructuring and 

adaptation like modularity or diversity. Methodological frameworks largely rely on 

quantities per spatial unit (e.g., city, county, tract), so it follows that many indicators can 

be deemed a measure of redundancy for that particular asset, or overall information, 

infrastructural, or organizational capacities. 

A few indicators can be interpreted as capturing a degree of diversity such as the 

proportion employed in the primary industry or the ratio of large to small business. The 

latter, for instance, can potentially suggest that a large proportion of small businesses 

means innovation and a diversity of competitors. Redundancy and diversity of production 

sources, employment opportunities, and multi-skilled workers can offer functional 

alternatives if industries and sectors are disrupted for relatively long periods of time. 

Current indicators can be extended to income diversity in terms of economic markets, 

such as the number of active economic sectors or markets, or the percent employed 

across industries. 

Some indicators can capture diversity or modularity if conceptually reframed and 

relatively simple methodological modifications are made. The number of emergency 

response buildings (e.g., fire, police, shelters) can be interpreted as diversity if reframed 

as a metric based on how many different types of functions or building types are present. 
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Specific measures of diversity like the Gibbs-Martin or Shannon Diversity indices can be 

used to indicate social diversity, or the diversity of resources, employment sectors, 

skillsets, and industries (Gibbs & Martin, 1962; Gotham & Campanella, 2013; Suarez et 

al., 2016). 

 

3.7.5 Operating between order and chaos – Learning & Experimentation 

Indicators relating to learning and experimentation include prior experience with 

hazards (e.g., number of disaster declarations or hazardous events), presence of 

adaptation and mitigation plans, and innovation (e.g., percent population employed in 

creative class occupations). It is assumed that prior experience with hazards proxies 

having learned and established improved information and communication capacities. 

Highly impactful disasters can materialize the unpredictability of climate events and 

performance of infrastructure and resilience mechanisms to a community. However, the 

subsequent response does not necessarily embrace safe-to-fail practices that more 

explicitly recognize the potential for future failures and unexpected conditions (Ahern, 

2011; Chester & Allenby, 2019; Kim et al., 2017). 

Resilience enhancements may be approached by investing in strengthening 

current systems and strategies, or by resilience thinking where more flexible and 

innovative systems are the focus. It is unclear if prior experience and emergency 

management allows for innovation and evolution toward novel and more resilient 

systems rather than recovering traditional and/or otherwise still vulnerable systems. An 

appropriate balance between robustness and flexible systems that assume unpredictability 

are also not described by the presence of mitigation plans/spending alone. Further, 
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mitigation and resilience efforts facing excessively rigid institutional structures can incur 

maladaptive qualities like lack of organizational flexibility and innovation (McChrystal et 

al., 2015). 

While organizational capacities like learning and coping with complexity are 

being recognized (Snowden & Boone, 2007; Uhl-Bien et al., 2007), it is generally 

difficult to find clear indicators that proxy these capacities in terms of urban resilience to 

climate disasters. However, indicators like the presence of adaptation and mitigation 

plans can be extended to the number of editions of hazard plans or adaptive management 

plans that suggest experimentation and rethinking of past strategies. Urban density and 

proximity to urban cores can provide prospects for potential indicators such as those 

based on knowledge spillovers, the creative economy, and innovation hubs (Bettencourt, 

2013; Bettencourt & West, 2010; O’Flaherty, 2009).  

 

3.8 Discussion 

An effective index should focus on a well-selected set of key variables that 

indicate changes in urban system in respect to resilience (Rus et al., 2018). Considering 

the DRI review literature summarized in Table 3.1, it appears that in an attempt to better 

incorporate the complexity of urban systems, DRI approaches have annexed dimensions 

of urban systems (e.g., ecological, institutional) such that complexity is applied in terms 

of many components in many domains (e.g., social plus ecological plus infrastructure, 

etc.; It is important to acknowledge salient variables in all these dimensions). Such a 

perspective leads the process of index development to become increasingly complicated 

with evermore quantities of concepts and variables while overlooking critical systemic 
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variables and dynamics (e.g., Stevenson et al., 2019 lists 66 resilience concepts originally 

considered for the New Zealand Resilience Index). Complexity is about more than just 

having many different kinds of parts, as discussed in sections 3.3-5, and excessive 

variables can add statistical uncertainty and bias (e.g., implicit weighting via correlated 

indicators; Fekete, 2019) and make validation of DRI more difficult. Avenues for 

improving on established research frameworks (8.1), DRI development and application 

(8.2), and broader implications (8.3) are discussed below.  

 

3.8.1 Avenues for Further DRI Research toward Resilience Indices 

For researchers focusing on community resilience assessment, it is important to 

continue distinguishing resilience from risk and vulnerability (Wisner et al, 1992), and 

determining how each concept applies to developing indices. Resilience remains often 

applied as “anti-vulnerability”, with some indicators essentially adapted as the inverse of 

established vulnerability indicators (e.g., Cutter et al., 2010; Marzi et al., 2019). Asset-

oriented indicators like income or environmentally exposed structures like mobile homes 

speak more to sensitivity and exposure as factors for vulnerability (Cariolet et al., 2019; 

Cutter, 2016b; Engle, 2011). This can be problematic since it has been shown that a 

community can be both vulnerable to disruption yet bounce back quickly (e.g., Leong et 

al., 2007), and resilience as the capacity to reorganize and restructure after a disturbance 

can be missed. In complexity-oriented resilience research, however, vulnerability is 

viewed as an integral part or even precondition for resilience (e.g., Ahern’s “safe-to-fail”, 

2011; Anderies et al., 2006; Engle, 2011). A resilience index is less useful if it becomes a 

more comprehensive version of a vulnerability index, with an acknowledgement of 
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complexity via additional dimensions for indicators. For composite resilience metrics, 

perhaps it is more useful a concept when framed as the capacity for reorganization after a 

disturbance. 

Illuminating how more elusive qualities like polycentricity and self-organization 

can be proxied by relatively straightforward indicators is relevant for resilience 

researchers. In their article on disaster resilience and CAS theory, Coetzee and colleagues 

(2016) concluded that using CAS concepts (such as those in this paper) would enable 

disaster researchers to, “...analyze the dynamic changes in societal resilience profiles.” 

There are three implications for DRI here: (1) profiling cities or communities according 

to CAS concepts, (2) profiling communities systematically over time to observe adaptive 

capacity as an ongoing dynamic, and (3) profiling the relative complexity of 

infrastructure, community, and organizational response of urban systems. The third item 

relates to autopoiesis (the self-producing capacity of CAS in terms of organization and 

information) and Ashby’s Law of Requisite Variety (control systems must match the 

complexity of their environment), where autopoiesis is measured as the system’s 

complexity divided by the complexity of its environment (Ashby, 1956; Gershenson, 

2014; see Zhang et al (2006) for an example framed around information entropy of an 

urban ecosystem). A complexity approach to resilience metrics would be more focused 

on governance, interconnections, and capacities, but critical forms of capital are still an 

essential component as critical stocks for adaptive efforts. CAS and SES principles 

already provide a framework to conceptualize systemic resilience indicators for an 

evolving complex urban system, when indices are viewed as an on-going process. 

Further, these principles can drive a rethinking of quantitative assumptions used for index 
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building, such as thresholds for indicators where the proximity to critical limits can 

transition an urban system or its subcomponents into resilience-hindering or undesirable 

states (Luers, 2005). 

Two relevant areas of interdisciplinary research include adapting DRI frameworks 

with network-based methods, or with transdisciplinary methods that rely on multiple 

ways of knowing. Kammouh et al (2020) developed a resilience index for a transportation 

network using Dynamic Bayesian Network (DBN) techniques that enable time-dependent 

relationships between indicators. Bozza et al (2015) propose a Hybrid Physical-Social 

Network model (HPSN) that incorporates a vulnerability index within a built 

environment network at the neighborhood level that includes buildings and roads exposed 

to a natural disaster. Modeling cities at different scales with such methods can illustrate 

how resilience emerges when components of an urban system are made vulnerable at 

different levels of criticality. Complexity science for cities suggests urban systems have 

consistent systemic properties as they grow and are subjected to perturbations, so there 

may be opportunities to observe CAS tenets and resilience principles and develop metrics 

supported by computational methods (Batty, 2009; Bettencourt, 2013; Turner & Baker, 

2019). Alternatively, coupling indices with ethnographic and other qualitative methods 

can illustrate how indicators and CAS concepts manifest in the experiences of community 

members, which can either confirm, deny, or add nuance to quantitative assumptions. 

It is possible to experiment with indicators that more closely relate to CAS 

principles and systemic, process-oriented perspectives. Suarez et al (2019) propose an 

indicator set for assessing socio-ecological resilience in cities that overlap with many of 

the concepts of this paper, which can offer a fulcrum for research and development 
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toward a CAS-oriented index. Geographically sophisticated approaches like multi-scale 

geographic regression (MGWR) assume that a set of indicators has place-dependent 

processes. Yoon et al (2016) used MGWR to develop a Climate Disaster Resilience Index 

(CDRI) and showed how established resilience indicators have different relationships in 

different parts of South Korea. Such methods relate to system histories and irreducibility 

in spatial terms. Places have a unique history, meanings, initial conditions, boundaries, 

and interconnections. Therefore, it is important for DRI to be amenable to continuous 

evaluation, revision, and adaptation to specific applications. 

 

3.8.2 Toward Complexity-driven Development & Application of DRI 

Co-production of DRI among research and practice, can support learning as a 

resilience principle, close the gap between top-down methods and on-the-ground realities 

(i.e., irreducibility of urban systems), and contextual adaptations of DRI (CITE). 

Community participation and engagement among and between communities, researchers, 

stakeholders, and decision makers is important toward ensuring that both the index 

methodology and the resulting resilience enhancing measures are not myopic, unrealistic, 

or likely to cause injustice and conflict. Participation can facilitate context adapted DRI 

by qualifying the applicability of generalized indicators, identifying essential drivers for 

resilience and specific slow (i.e., control) variables that reach critical limits for a given 

city’s systems, and modify methodologies accordingly. In terms of the process of index 

development, Beccari (2016) and Asadzadeh (2017) discuss whether and how index 

methods incorporate participation for monitoring of results and adjustment of indicators, 

which can serve as a learning and experimentation process. 
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The need for adaptive methodologies is a cue for researchers and developers of 

indices toward algorithmic or modular methods that support participation, 

experimentation, and better align with an understanding of CAS. A simple example is an 

established SVI framework that was adapted with an alternative aggregation scheme and 

integrated into an interactive web-tool that decomposes indicators, made possible by 

collaboration with decisionmakers for the City of Knoxville, TN (Cutter et al., 2003; 

Flanagan et al., 2011; Nugent et al., 2017; Omitaomu & Carvalhaes, 2017). Van der 

Merwe et al (2019) developed and implemented a formative resilience assessment that 

leverages the seven SES resilience principles adopted here toward an on-going collective 

evaluation of resilience of an energy system. Formative assessments differ distinctly from 

top-down composite resilience indices (known as summative assessments), but such 

methods can be adapted along with composite methods for more holistic and robust 

outcomes, incorporation of participatory methods, system learning, and collective 

resilience thinking for communities and decision makers. Some emergent DRI 

approaches take on an understanding of CAS in terms of uncertainty regarding index 

outputs (e.g., DBN; Kammouh et al., 2019), and in terms of irreducibility and system 

framings (e.g., contextual exceptions, perceptual differences between stakeholders). 

Recursive methods are also important because composite indices tend to be static 

when complex systems are in continuous evolution (i.e, urban systems are constantly 

changing). Such a process has two potential benefits in the effort toward robust metrics of 

disaster resilience. One, monitoring how variables change over time in respect to 

resilience outcomes can provide novel insights into key indicators for disaster resilience 

(i.e., longitudinal studies; Fekete, 2019). Different variables can emerge as critical 
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between different disaster events due to slow variables that cause changes in urban 

systems over time, or changes in the nature of the event (e.g., hurricane intensity, 

frequency, or unprecedented events). Two, evaluating and re-evaluating the robustness 

and usefulness of indices post-application can address validation and contribute to index 

development. Applying DRI-driven resilience measures while investing in monitoring 

results can enable modification of methodological approaches as needed for different 

disasters or as resilience-related processes evolve, and contribute to urban resilience 

knowledge. 

 

3.8.3 Broader Implications and the Future of Resilience Indices as a Form of 

Measurement 

Resilience to disasters can range categorically from momentary failures to 

extended “Black Swan” events like COVID-19 (arguably a “black elephant”), and 

temporally from disruption to post-recovery periods (Asayama et al., 2020; Reddy, 

2020). While resilience index approaches can range from specific hazards like urban 

flooding, many of the dominant frameworks take an all-hazards approach (at least 

climatic hazards in general; Cai et al., 2018). Literature differentiates between specified 

resilience, which incorporates foreseeable risks in terms of a specific challenge or 

normative aim (“of what, to what”) that can be managed by best practices and 

infrastructure design, and general resilience, pertaining to the overall ability for systems 

to adapt and transform upon all types of shocks, including unprecedented ones (Folke et 

al., 2010; van der Merwe et al., 2018). Trade-offs exist between investments for specified 

versus general resilience (Folke et al. 2010, Carpenter et al., 2012).  
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As COVID-19 emerged during the writing of this paper, variables that emerged as 

critical hardly align with previously established core indicators for DRI, such as safe and 

equitable digital access, the ability to isolate cases of infection, and multi-modal 

transportation (Amekudzi-Kennedy et al., 2020; Beaunoyer et al., 2020; Woods et al., 

2020). Common indicators like emergency shelters and religious organizations promote 

specific resilience to disasters like hurricanes, but become problematic during disasters 

like pandemics. Established DRI methods may be more applicable when framed and 

developed in terms of a well-specified challenge. However, this should come with an 

understanding of potential trade-offs and limits in capturing elements of general 

resilience, such as the irreducible leadership and organizational elements that emerged as 

critical to COVID-19 (Allenby & Chester, 2020; Carvalhaes et al., 2020). Further 

research can clarify the validity and usefulness of proxies for systemic properties, such as 

the overall ability of an urban system to self-organize, toward indicating some type of 

general resilience. 

From a broad complexity perspective, resilience indicators could aim to capture 

how resilience may emerge, rather than interpreting a place as having altogether “more 

resilience” than before, or relative to another place. Indices that can be decomposed 

interactively to pick apart indicators and indicator themes allow for this kind of 

observation, such as those that use GeoApp platforms where different levels of 

aggregations and layers of data can be dynamically viewed by planners and 

decisionmakers. Application-based indices become even more effective when 

applications support multiple layers of data that can qualify and add depth to indices like 

surveys and ethnographic descriptions (e.g., Kawano et al., 2016), or time series of index 
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data. Creativity, reflexive use, and careful consideration of limitations and assumptions 

supports the effectiveness of DRI and enables them to evolve as complexity becomes a 

more prominent paradigm. 

While there are arguments that the use of composite indicators and maps for 

resilience are insufficient, there is demand for such actionable and geographically 

oriented metrics (Eakin et al., 2018; see Butler, 1999 for an argument in context of 

sustainability indicators). The usefulness of these kinds of metrics comes down to not 

only how they are developed, but how they are understood and applied. DRI provide a 

momentary snapshot of how a continuously evolving urban system may cope and recover 

from a disaster. Even a CAS-oriented framework for DRI aims to reduce a system to its 

essential moving parts. Some reduction is necessary to make sense out of the system and 

take resilience-enhancing actions. While composite index methods may eventually prove 

to be too simplistic for complex systems, such methods can be used algorithmically to 

understand urban processes, or coupled in holistic frameworks with other types of 

analysis and transdisciplinary knowledge for a fuller picture of urban resilience. When 

the uncertainty of CAS is properly addressed, there is still value in having a litmus metric 

for resilience capacities and capital to make the case for resilience investments, build 

community and infrastructure capacities, and satisfy the demand for expedient tools to 

cope and prepare for coming disasters. 
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3.9 Conclusions 

This paper outlined trends and connections among urban disaster resilience and 

complexity literature, and a common core of DRI indicators was identified and analyzed 

against CAS tenets and SES resilience principles. It is pointed out that resilience 

indicators could ultimately be categorized into two broad system dimensions: (i) essential 

forms of capital that act as stocks to support adaptation, and (ii) governance and 

community capacities that enable the flow of information and resources, and 

organization. Several review articles point to the necessity and difficulty of incorporating 

interactions between subcomponents and subsystems into index methods (i.e., system-of-

systems).  

An analysis of commonly adopted resilience concepts and indicators in terms of 

CAS tenets and resilience principles found that indicators only sometimes relate to 

systemic variables or proxy for the capacity of an urban system to reorganize after a 

disaster. DRI may be categorically misaligned with CAS by quantifying attributes of 

subsystems at one point in time and space, concatenating them to rank overall resilience 

(e.g., summative aggregation), and attributing meaningfulness to the subsequent index in 

terms of the process of urban response and adaptive capacity amid disasters. This paper 

discussed alternative framings of concepts, indicators, and methods that can serve as 

better proxies to the emergence of resilience. DRI can be interpreted in terms of how 

indicators proxy the ways resilience may emerge, rather than a rank order between places 

and snapshots in time. Resilience as “anti-vulnerability” has been further distinguished 

from resilience as an adaptive process in a complex system.Further work toward 

resilience index research and development should include validation (either statistical or 
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cross-validation via stakeholder engagement, mixed-methods, or short case studies), and 

coupling interdisciplinary methodologies. Methods like thick mapping and spatial 

ethnographies combine quantitative and qualitative data, and show potential avenues for 

furthering innovative approaches for resilience assessment. Along with network-based 

computational approaches, these research foci can enable researchers to understand 

nuances regarding indicators, observe exceptions and limitations to indices, and enable 

novel tools for practitioners to determine how to harness adaptive capacities in the face of 

future disasters. 
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CHAPTER 4 

INTEGRATING SPATIAL AND ETHNOGRAPHIC METHODS FOR RESILIENCE 

RESEARCH: A THICK MAPPING APPROACH FOR HURRICANE MARIA IN 

PUERTO RICO 

4.1 Introduction & Research Questions 

Positioned in the Caribbean Atlantic, PR is geographically exposed to relatively 

frequent and severe tropical storms that can cause damage to critical infrastructure 

systems (Diaz et al., 2018; Evans et al., 2011). While natural hazards like hurricanes are 

recurring events in the Caribbean, Hurricane Maria was unlike any other hurricane for 

Puerto Rico (PR), inducing unprecedented and prolonged impacts on critical 

infrastructure and the lives of the communities that rely on them (Pullen 2018; Zorilla, 

2018). As the climate continues to change, it is expected that the frequency of the most 

intense storms will increase in the North Atlantic region where PR is situated 

(Stephenson and Jones, 2017). Meanwhile, Caribbean islands like PR are susceptible to 

extreme weather due to climatic interdependencies for the sustainability of economic and 

social ways of life, such as tourism and agriculture (Sheller, 2020; Taylor et al., 2012). 

Since Maria, efforts to enhance resilience have become an integral part of recovery and 

future visioning for PR (e.g., DOE, 2018; IRP, 2019; Ortiz, 2019). Plans to transition the 

electrical system toward more resilient configurations and fortify critical infrastructure 

remain in development, along with community and institutional level efforts to prepare 

and adapt to future challenges. However, it is unclear how well quantitative and 

technocentric perspectives (e.g., optimizing the electrical network with novel 

technological approaches) are modulated with institutional and social dynamics, or how 
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individual and community experiences can be integrated as knowledge toward resilience 

and sustainable solutions. 

Allenby and Sarewitz (2011) described technology as having three levels of 

complexity (systemic, system of systems, and transformative systems) and how 

technocentric solutions fail due to a near-sighted perception of technology that ignores 

sociocultural interrelationships. While technological solutions abound after disasters, 

resilience involves complex systems with intertwined cultural and physical phenomena 

(i.e., social, ecological, and technical dimensions). Complex systems cannot be reduced 

to a set of essential components that can be observed and modeled in a predictive way 

and are better understood in terms of relational information concerning many interacting, 

autonomous parts (Heylighen et al., 2006). For example, at the first level (i.e., systemic 

complexity), technology such as an airplane is constructed of the parts that make up the 

airplane so that the machine can fly. The airplane, as a system of mechanical parts, acts in 

knowable ways and with relative predictability. At the second level (i.e., system of 

systems), considering that an airplane requires a network of airports, personnel, and 

transportation infrastructure. Thus, level I technology is embedded in level II, a complex 

socio-technical system of air transport. This network is embedded in a third level 

(transformative systems) that accounts for extended sociocultural dynamics, where 

radical contingency and wicked complexity are at play. For instance, air travel accelerates 

the global effects of greenhouse gases, the rapid global spread of pandemics like COVID-

19, and even cultural and geopolitical dynamics. At this level of technology, we must 

heed to uncertainty, the lack of universally valid goals, and the validity of any single 

perspective. This level of complexity is difficult for academic research because 
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disciplinary structures and frameworks are undermined by context and meanings that are 

constantly shifting (or never fixed at the onset). Considering PR after Maria, it is vital to 

go beyond technocentric assessments to explore interconnected sociocultural dimensions 

that can impact resilience efforts. 

The work described in this paper stems from a multi-pronged project supported by 

the National Science Foundation titled - Enhancing Resilience in Islanded Communities 

(Eric21.org) - with the objective, in part, of developing a data-driven socio-technical 

framework that can assess physical and social interconnections toward enhancing 

resilience in islanded communities. While any framing of a complex system is 

necessarily limited and partial (Cilliers, 2002), this paper attempts to capture multiple 

framings attached to a “space” (i.e., a bounded geographic region) and “place” (i.e., 

layered meanings and values related to a space) toward illuminating how resilience has 

emerged in PR and exploring respective socio-technical interconnections. While 

uncertainty and unpredictability are inherent in a complex adaptive system, multiple 

perspectives are necessary toward forming “complete enough” conceptualizations of 

systems and holistic solutions to adaptively manage future disasters (Allenby, 2012; 

Cilliers et al., 2013). This work describes a method for understanding disaster resilience 

and a platform for which future interdisciplinary outputs (including technical modeling 

approaches) can be integrated (e.g., hydrological modeling, power network simulations, 

and spatial ethnographies of subsequent events like earthquakes and pandemics). In this 

way, we aim to explore thick mapping as a methodology for disaster resilience and 

illustrate how otherwise disparate approaches can be moored to a common analytical 

platform. 
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Quantitative analysis such as engineering and geoscience approaches typically focus 

on highlighting priority areas, finding optimal solutions, and probable vulnerability. 

However, less attention is typically paid to the slow variables, outliers, and weak signals 

(especially in the sociopolitical and qualitative dimensions, such as trust, emerging social 

conflicts, or contested futures that undermine technocentric solutions) that may have 

consequences in the emergence of resilience or lack thereof (Allenby & Chester, 2018; 

Carpenter et al., 2001; Eakin et al., 2017; Miller et al., 2018). Alternatively, one way to 

understand a complex system is by creating detailed portraits of the system to gain 

insights from a particular vantage point (i.e., “a snapshot”) or by creating a series of 

snapshots over time and space. Dynamic geographic mapping, such as web-based 

geospatial applications known as GeoApps (e.g., McCord et al., 2018), can enable such 

portraits from multiple vantage points and support interactive integrations of different 

kinds of information, such as scientifically derived metrics and participant interviews 

(Kawano et al., 2016). We propose further research that explicitly utilizes the idea of 

space to leverage ethnography and quantitative geospatial methods (e.g., mappable 

socioeconomic and physical metrics) in-tandem for resilience projects. In tackling the 

problem of handling socio-technological complexity and the multitudinous frames of 

reference that a complex adaptive system (CAS) such as Puerto Rico may have, the 

following questions guide the research presented here: 

1. What forms of social capital and adaptive capacity emerged during and after 

Maria in PR? 
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2. How do quantifiable and physical variables (e.g., infrastructure performance, 

topography, location of community resources) manifest in community 

experiences across the island before, during, and after Maria? 

3. How can quantitative and qualitative approaches be spatially integrated to 

understand resilience as a complex adaptive phenomenon? 

 

We first situate the anthropological concepts of space and place (Coleman & Collins, 

2006; Tuan, 1977) within resilience theory, adaptive capacity, and social capital 

frameworks (section 4.2). In section 4.3, we expand on the methodology, which 

integrates a method of distributed ethnography – web-administered ethnographies that 

capture geo-tagged personal anecdotes of the disaster - (supported by the SenseMaker® 

tool) with GIS mapping features to create a thick map of Puerto Rico (Tummons et al., 

2015). Thick mapping is a set of concepts and methods developed within the digital 

humanities (described in greater detail in the following section) to create representations 

of place and incorporates the multiplicity of subjective records of a place (Presner et al., 

2014). The process of this mapping is treated as a navigable interdisciplinary arena and is 

spatially and temporally situated. We thicken the map by incorporating layers that 

include geo-social and event-driven elements (Maria). We highlight results in section 4, 

then discuss implications for resilience in PR and how thick mapping can be leveraged 

toward integrated and interdisciplinary frameworks (section 4.5-6). 
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4.2 Literature Review: Space and Place for Disaster Resilience 

Space and place are distinct and fundamental anthropological concepts for 

ethnography. Space is often defined by an abstract scientific, mathematical, or 

measurable conception, while place refers to the elaborated cultural meanings people 

invest in or attach to a specific site or locale (Lawrence-Zuniga, 2017). In other words, 

space speaks to the physical and sensory phenomena of a location, whereas place refers 

to the many layers of contested experiences and narratives connected to a space. Places 

are invariably parts of spaces, and spaces provide the resources and the frames of 

reference in which multiple places are made (Agnew & Livingstone, 2011). Influencing 

factors of “place” do not lend themselves as well to spatial mapping and tend to require 

qualitative data, so it is important to be as attentive to space and nature as to human 

creativity and cultural production for ethnographic approaches to resilience (e.g., Chari & 

Gidwani, 2005). Space lends itself well to abstraction of static maps (i.e., pertaining to 

“object” worlds where situations are constant and tangible, such as with topography), but 

“place” transcends “thingness” and is critical when seeking to make sense of the 

complexities of sociocultural and politico-economic life that contributes to the making of 

a place. 

`Since it is crucial to be as attentive to space and nature as to human creativity and 

cultural production for ethnographic approaches to resilience (e.g., Chari & Gidwani, 

2005), there is room for alternative approaches to geospatial mapping that can better 

capture complexity and influencing factors of place. Since complex systems are in 

constant flux (i.e., ongoing adaptation and evolution through space and time), resilience 

can arise from governance and designed interventions that embed ongoing interaction 
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(mapping, sensing, and hacking the system; Chandler, 2014; 2018), and the range of 

disaster responses based on the effectiveness of individual and collective sensemaking 

(Doyle et al., 2015; Nofi, 2000, Van der Merwe et al., 2018). Karl Weick (2001) likened 

sensemaking to cartography. Mapping becomes a part of the process for ongoing 

sensemaking, where sensemaking is the process of developing a shared understanding of 

the situational dynamics, perspectives, and changes under uncertainty (Kurtz & Snowden, 

2003). When working in uncertain environments or with known unknowns and unknown 

unknowns, we recognize that a map’s utility is not a depiction of accuracy, but part of the 

sensemaking process through which we understand space and place. 

Through analysis of individual and community narratives, ethnographic methods 

can uncover capacities for disaster resilience inherent in a space and place. Such methods 

can be used to map more elusive aspects of resilience like social capital (the many types 

of social networks and cohesion that realizes resources amid disasters; Aldrich & Meyer, 

2015), adaptive capacity (the ability for individuals, communities, and infrastructure to 

adapt to disruptions; Engle, 2011), and governance (all of the processes that govern an 

individual, resources, or territory including social networks and informal institutions; 

Bevir, 2012). Aldrich (2012, 2017) suggests that social capital is a critical contributor to 

community resilience and is linked deeply to community linking value to the “place” of 

their community belonging. Social cohesion keeps people from leaving disaster-struck 

regions, allows for the easy mobilization of groups, and provides informal insurance 

when regular resource providers are not open.  

Conversely, established approaches such as vulnerability and resilience mapping 

are sometimes criticized for lacking dynamism and not capturing complexity, but they do 
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offer measurable indicators that can be visualized from a non-local aggregate (i.e., larger 

scale) perspective (Asadzadeh et al., 2017; Cutter, 2016a; Eakin et al., 2017). 

Geographical aspects (both human and physical) of the landscape such as climate, 

infrastructure networks, and demographic distributions are still at play through the 

resilience process, and manifest technically (e.g., physical vulnerability to floods) and 

subjectively (e.g., risk perception, social connectivity). In this way, resilience can be 

observed from both non-local (i.e., aggregate, quantitative level) and local (e.g., 

ethnographic interviews, participant observation) perspectives. 

Subsequently, there is a challenge regarding how qualitative in-depth data and 

analysis of resilience capacities interface with technical analysis of the natural, human, 

and built environment.  While qualitative methods dominate disaster resilience research, 

relatively few studies have applied mixed methods approaches that map multiple 

perspectives of disaster resilience at different scales (Witt and Lill, 2018). A thick map, 

which incorporates the ability to account for the dynamic interplay between scale and 

layers, can potentially capture how spatial attributes of the natural and built environment 

influence personal and community experiences of disaster and recovery and vice versa. 

That is, how individuals and communities collectively make sense of their realities during 

the process of a disaster event. 
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4.3 Methodology 

This paper presents a thick mapping approach that blends basic geo-visualization 

with scaled ethnographic and quantitative geospatial analysis (Fig. 4.1). The approach 

focuses on representing the complexity inherent in disaster recovery and the systemic 

cultivation of resilience. The map is informed by the contexts and implications of PR as a 

space and place, and leverages the relatively recent concept of thick mapping (Presner, 

2014). Thick mapping embodies temporal and historical dynamics via place-specific and 

geographic data in a multiplicity of layered (and contested) narratives. In the digital age, 

maps are now readily dynamic, networked, and mobile, rather than static and artifactual, 

as in traditional cartographic approaches. Digital dynamism allows GeoApps to become 

analytical tools and interactive outputs that can be embedded into the sensemaking 

process of research. 

 

Figure 4.1. Overview of methodology for integrating different research approaches into a 

thick digital mapping of resilience to Hurricane Maria in PR. 
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Notable studies have leveraged thick mapping-oriented concepts and methods for 

resilience research. Gotham and Campanella (2013) conducted a spatial ethnographic 

exercise to study how resilience manifested in New Orleans after Hurricane Katrina. 

Using census data and GIS, they were able to quantify flood risk and map this to social 

diversity and repopulation rates over neighborhoods over time. They coupled this with 

ethnographic interviews with various stakeholders and community members. Their study 

revealed how quantitative spatial analysis manifested in the daily lives of residents. For 

instance, it was found that attachment to place, a commonly adopted indicator for 

community resilience, emerged as a strong indicator of neighborhood resilience in the 

study. However, their ethnographic results revealed that place attachment takes on 

different meanings for residents and is not a static indicator; it had to be dynamically 

reinforced through place attachment generating activities such as improvement of the 

physical regeneration (enhancing walkability, reducing environmental degradation) and 

connection with the social memory and collective meaning-making around the 

neighborhood. In this way, they triangulated methods and data sources to enhance 

validity, reliability, and insight. Where mixed analyses converge, we can have greater 

confidence in the results (e.g., place attachment is a significant variable for resilience), 

and where they diverge, we may find nuances and contextual effects (e.g., the forms and 

meanings of place attachment vary greatly from place to place). 

Community resilience indicators are also influenced by context. Illustrating this, 

Rickless et al. (2020) uncovered the significant differences in vulnerability perceptions 

across ethno-racial and income divides, which influence place attachment as an indicator. 

These nuances were uncovered through a mixed-method geo-visual approach integrated 
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with a census-based social vulnerability index and a human subject-based survey. 

Researching social vulnerability after the impacts of Hurricanes Matthew and Irma to the 

Georgia Coast, the study found that survey-based findings tended to align less with 

quantitative composite indices (i.e., Social Vulnerability Index) in densely populated 

areas, likely because of greater demographic heterogeneity. Kawano et al. (2016) 

augmented a spatial ethnography with scientific data to study post-tsunami resilience in 

Fukushima, Japan. Using a combination of geovideography (geospatially enabled 

audiovisual techniques and content), scientific analysis of radiation levels, and 

ethnographic interviews, the project mapped post-disaster experiences in terms of spatial-

temporal narratives that incorporate both objective and subjective variables. A dynamic 

web map was produced to analyze data and distribute findings to stakeholders. 

The study presented here builds on these thick mapping approaches. A 

combination of three methods are used to develop a GeoApp that dynamically and 

spatially represents the community experiences of Maria through (i) distributed 

ethnography through the collection, coding, and analysis of community narratives; (ii) 

geospatial analysis of electricity recovery through night lights data, and integrated 

resilience and vulnerability indices based on publicly available data; and (iii)  interactive 

geo-visualization of the natural and built environment (e.g., topography and urban 

density). The three methods are described as separate elements in the following sections 

but are ultimately integrated into the interactive GeoApp10.  

  

 
10 GeoApp available at https://varinaldi.shinyapps.io/triadGeo/ 

https://varinaldi.shinyapps.io/triadGeo/
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4.3.1 Method I: Spatial Ethnography 

One way to understand the complexities and subjectivities of a place is to gather a 

range of personal and community narratives to be analyzed iteratively for key themes, 

slow variables, and contested ideas. For example, Borie and colleagues (2019) mapped 

narratives regarding the role of science in urban resilience from a Science and 

Technology Studies (STS) and critical social science perspective. In this paper, we 

utilized the SenseMaker tool to augment the ethnographic study of the Maria experience 

in PR. The tool allows us to collect narratives as short anecdotes and visualize these hard-

to-map aspects such as social capital and community resilience. The tool features a 

signification system that allows participants to code their own stories at the point of 

capture via signifiers (established concepts to relate and anchor the plotting of narratives 

in space explicitly), collecting both qualitative experiential data and quantitative meta-

data in an integrated way (van der Merwe et al., 2019). Established literature was 

leveraged to design signifiers that capture resilience capacities (Table 4.1), such as the 

ability for communities to link to institutions, other communities, or bond with 

community members to leverage social capital during times of crisis (Aldrich 2010, 

2012). 

The tool was administered by a web-mounted site (available in English and 

Spanish). Each respondent begins by sharing a story about their experience with Maria, 

then assigns pre-designed signifiers to indicate the balance of influencing factors as 

experienced in their narrative. While it was intentional to capture narratives in urban and 

rural areas, data gathering relied mainly on the snowball method applied by local students 

toward their communities and friends (Ghaljaie et al., 2017). Allowing respondents to 
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code their narratives alleviates researcher bias common in other ethnographic approaches, 

such as systematic errors that romanticize reported results (van der Merwe et al., 2019; 

Rohner et al., 1973).  

Table 4.1. Designed signifiers for resilience, vulnerability, and adaptive capacity. 

Signifiers presented as triads (relative ranking between three elements) are denoted with 

the prefix “T” in the first column. Signifiers presented as dyads (a slider between two 

elements) are denoted with the prefix “D”. 

Signifier Description 

T1. Perceived 

impact 

Property - Human life - Infrastructure 

Assesses type of general impact described in specific experiences and 

perceptions of how each type of impact relates to another. 

T2 Resilience 

capacities 

Absorptive - Persistence; buffering capacity to absorb short-term 

disturbances or within thresholds. This is useful during the beginning 

phase of shocks. 

Adaptive - Incremental adjustment; system’s ability to adjust itself to 

maintain functions. Capacity might reveal itself through 

resourcefulness, learning through failure, and ability to mobilize 

resources. 

Transformative - Transformational responses; might involve 

institutional reform, behavioral changes, and technological innovation. 

(Bene et al., 2012; Cutter et al., 2008; Pelling, 2010) 

T3 Social 

Capital 

Bonding - Connects kin and friends. Concept of homophily, 

reinforcing existing relationships and bonds with people of similar 

backgrounds. 

Linking - Providing access to power brokers, or groups, traditionally 

unfamiliar or out of reach. Puts communities “on the map.” 

Bridging - Works through institutions, connecting different groups of 

people. Institutions act as a conduit to dampen intergroup differences 

and level out unequal access to resources and opportunities. (Aldrich, 

2012; 2017) 

T4 

Improvements 

Tools - Communication - Cooperation 

Follow-up, operationally focused question to understand where focus 

can be placed on building more capacities for resilience and where 

efforts can potentially create the most impact. 

T5 Critical 

infrastructure 

Water - Electricity - Communication and access 

Identifies critically resilient infrastructure, dependencies, and 

interdependencies as people experience them. 
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D1 

Community 

culture 

Seek to understand the role of participation, identity, and belonging in 

a community. 

Atomistic - Atomistic communities display high levels of 

individualism, which could be suitable for innovation and 

experimentation, but lacks resilience and scale. 

Communitarian - Highly communitarian groups display more 

uniformity and might have a stronger sense of belonging and mutual 

care. However, they tend to display less creative adaptability and 

ability for innovation and transformation. 

D2 

Innovation 

culture 

Seek to understand where adaptive capacities were developed and 

found from the experiences. 

Tradition - Relying on traditional means - e.g., gathering wild food 

sources (i.e. bread food) that rely on traditional knowledge—an 

absorptive or adaptive capacity. 

Innovation - Relying on innovation and exaptation (creative 

repurposing) to develop coping mechanisms. Transformative or 

adaptive capacity. 

 

 

With respondent tagging, we create a layer of high abstraction meta-data that 

enables quantitative and spatial analysis of large volumes of ethnographic data without 

the need for additional researcher intervention. Quantitative plotting of the narratives is 

done by trivariate indexing of signifiers, or “triads” (Fig. 4.2), and bivariate indexing of 

signifiers along a slider scale from 0-100, or “dyads” (Fig. 4.3). Respondents are 

requested to share demographic information to interpret responses further and enable 

cross-group analysis (e.g., age, gender). Additionally, narratives are geo-tagged (label 

with geographic coordinates). In turn, spatial mapping provides a framework to integrate 

ethnographic data with objective contexts, allowing us to corroborate across different 

data sources (e.g., night lights and electricity distribution across the island). 
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Figure 4.2. Example narrative and respective triad as a heatmap. Grey dots are individual 

data points corresponding to a prompt with signifiers in each of the triangle’s three 

corners (human life and safety, property, critical services). The narrative text shown in 

the lower right is coded by the respondent, who places a point inside the triad indicating 

the balance between each of the signifiers (the red point). The point results in a 

coordinate (x, y, z) that can be quantitatively analyzed and grouped in different ways, 

including socioeconomic status and demographic data (shown in Figure 4.2, top right). 

 

 

 

 

 Figure 4.3. Example of a dyad prompt where respondents may signify how their 

experience as shared through the narrative relates to atomistic behavior (left-most side of 

the slider with a value of 0) and communitarian behavior (right-most extent of the slider 

with a maximum value of 100). 
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4.3.2 Method II: Geospatial Indicators & Analysis 

Layering and Aggregation 

Multiple levels and types of boundaries are possible to aggregate coded triads and 

other data for PR. A series of layers were included that capture aggregation levels, spatial 

ethnographic data, sociological data, and infrastructure data. For political boundaries, 

typical levels of analysis for social variables were carried out at county, sub-county, and 

state levels. Municipalities are the county equivalents for PR. Therefore, municipalities 

were included as one of the geographic boundaries to summarize coded triad data based 

on the size and spatial relationship to other variables. There are 78 municipalities in PR 

(Fig. 4.4), two of which are small islands off the coast. 

 

 

Figure 4.4. Municipalities of PR with geographic coordinates shown in the y-axis 

(latitude) and the x-axis (longitude) (Census TIGER/LINE 2017). 
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PR has mountainous regions, which include rural areas, nature preserves, and 

agricultural land uses. Figures 4.5a and 4.5b show the island’s topography and population 

density. Aside from typically having lower population densities, these mountainous 

regions have been shown to have different ecological and orthographic effects upon 

tropical storms and hurricanes. Therefore, both municipality averages and three isoclines 

were chosen to aggregate elevation values within the application to observe data patterns 

based on physical geography characteristics of the island. Lastly, since this study is 

primarily focused on electrical power networks in terms of infrastructure, PREPA (Puerto 

Rico Power Authority) management regions were included as aggregation boundaries 

within the application. There are currently 8 such regions within the island (Fig. 4.5c). 

Boundary layers such as these (i.e., municipalities, regions) spatially aggregate the geo-

tagged and quantitatively plotted narrative data (e.g., by the geometric mean of a specific 

triad in respect to each bounding municipality). Characterizing each boundary in respect 

to triads and dyads can help profile clustering patterns, potential local trends, and 

variance in terms of responses to disasters, and tie a set of detailed information regarding 

an event and a place (i.e., individual stories of H-Maria, resilience indicators), which 

enables a series of integrated and comparative studies. 
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Figure 4.5a-c. Selected geographic attributes of PR relevant to the thick mapping 

analysis. The first map at the top (a) shows the topography visualized as elevation values 

aggregated at the municipality level within GeoApp. The middle map (b) shows 

population density aggregated by municipality viewed within GeoApp (Census ACS, 

2017). The lower map (c) shows labeled PREPA planning and management regions 

during the Maria hurricane event (Source: https://aeepr.com/es-

pr/Documents/Mapa%20Regiones.pdf). 

 

Nightlights-based recovery index 

Spaceborne detected Nighttime Lights (NTL) imagery from the Visible Infrared 

Imaging Radiometer Suite (VIIRS) sensor is a reliable source to estimate power loss and 

recovery in PR due to Maria (Román et al. 2019). The Satellite sensor can capture the 

light radiance emitting from the ground at 500-m resolution (Fig. 4.6a-b). To reduce 

noise, imagery data was aggregated by month for a more robust estimation of power 

https://aeepr.com/es-pr/Documents/Mapa%20Regiones.pdf
https://aeepr.com/es-pr/Documents/Mapa%20Regiones.pdf
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restoration. Power infrastructure capacity was considered as 100% before Maria, after 

which capacity suddenly drops and ultimately begins to recover. The available power 

capacity for a month (X) can be formalized with the following equation, 

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑃𝑜𝑤𝑒𝑟𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦

=
𝑁𝑇𝐿𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒 ∈ 𝐴𝑢𝑔𝑢𝑠𝑡2017 − 𝑁𝑇𝐿𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒 ∈ (𝑋)

𝑁𝑇𝐿𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒 ∈ 𝐴𝑢𝑔𝑢𝑠𝑡2017
× 100 

Here, the NTL radiance before Maria (August 2017) was considered a baseline to 

estimate available power for a given month after Maria in percentage (compared to 

shortly before the Hurricane). Later, the number of months after the Hurricane needed to 

reach 70% of the NTL capacity was calculated to estimate the recovery speed for each 

census tract. 

 

Figure 4.6a-b: Nighttime lights one week before (a) and one week after (b) Hurricane 

Maria 
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Resilience Indicators 

Methods for developing community resilience indicators are well established in 

community psychology and disaster resilience literature (Berkes & Ross, 2013; Cutter, 

2016a; Rus et al., 2018). Some of the most widely adopted methods rely on publicly 

available demographic and sociological data that can be used to rank relative resilience 

based on spatial boundaries, such as Cutter et al.’s (2010) Baseline Resilience Index 

(Beccari, 2016). However, several standard variables normally available for mainland 

states are unavailable for PR; given it is an unincorporated territory, the island does not 

always participate or is not included in national data programs. Thus, some commonly 

used vulnerability and resilience index systems are available for PR, while others are not 

(e.g., Baseline Resilience Index for Communities or BRIC). 

The Social Vulnerability Index (SoVI) was publicly available and incorporated 

into the GeoApp tool. However, more comprehensive and resilience-oriented indices 

have since been developed for other areas. The SoVI does not include certain variables 

that relate to the scope of the narrative capture, signifiers, and resilience theory, such as 

those that indicate place attachment and social capital. Therefore, a PR-specific version 

of the BRIC was developed by adapting available data and following established methods 

(Cutter et al., 2010; Flanagan et al., 2011) to incorporate resilience themes (e.g., 

community capital) (see supplementary material for details).  
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4.3.3 Method III: Interactive Geovisualization 

The data described in the above methods were integrated into an online mapping 

tool used dynamically to analyze the patterns that emerge with different aggregations and 

combinations of data layers (i.e., GeoApp)11. Over the process of data gathering, analysis, 

and application development, an iterative and reflexive process that leverages concepts 

that can interface between disciplinary approaches (e.g., space, linking local to non-local 

observations) was exercised to enable emergent research outcomes toward both the 

method development and research results (Fig. 4.7). This process was meant as an 

exploration that allows abductive reasoning in tandem with more traditional theoretical 

perspectives. Working toward a framework that synthesizes multiple disciplinary 

perspectives remains a common research goal that guides the broader effort. The 

development of the GeoApp is a tool-based manifestation of the research goal and 

facilitates the cross-domain and multi-level exploration of data, formats, and analysis. 

 

 
11 GeoApp code available on Github repository: https://github.com/varinaldi/ThickMapMaria 

https://urldefense.com/v3/__https:/github.com/varinaldi/ThickMapMaria__;!!IKRxdwAv5BmarQ!LmKRi5Z0DsHbV8mdxCzCA3BYR4Vl2-ifacpjanx8xF2byZYZgxQgSKehrJ1Jw79Y$
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Figure 4.7. Conceptual framework for integration of geospatial and ethnographic 

approaches. Key concepts are used as boundary objects that interface between 

disciplinary approaches and data types. 
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4.4 Results & Summary 

Three hundred sixty-five (365) stories were collected, participant-coded for each 

set of signifiers (i.e., dyads and triads), and geocoded in 67 of the 78 municipalities in 

PR.  Samples were collected across the island, though higher densities of data points were 

observed in urban areas such as San Juan and Ponce, which is likely due to the capture 

method largely relying on social networking between participants (Fig. 4.8). Table 4.2 

summarizes results in terms of each signifier (dyads and triads), which are then discussed 

in the integrated results that follow. 

 

 

Figure 4.8. Distribution of data points for spatial ethnography. 

 

This section will provide a synthesis of results regarding the spatial ethnography 

and geospatial analysis by focusing on a demonstrative set of triads and dyads that 

represent key themes and findings for socio-technical resilience. Approaching the results 

in this way honors the intent of integrated methods toward a socio-technical resilience 

assessment. The results from the integrated methodology can be broadly characterized as 
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two emergent themes: (1) Social capital and community responses, and (2) the role of 

hard and soft infrastructure in socio-technical resilience (for complete and detailed 

results, see https://varinaldi.shinyapps.io/triadGeo/ ). 

 

Table 4.2. Summary of distributed ethnography results by signifier (see also Table 4.1). 

Signifier 

Triads (T) & Dyads 

(D) 

Results Summary 

T1. Perceived general 

impact 

Respondent concerns tend to increase for critical 

infrastructure services and decrease for property as recovery 

proceeds. 

T2 Resilience 

capacities 

Responses trended toward adaptation and transformation over 

persistence, highlighting the ability to make changes and find 

new ways to support necessary community functions as a key 

capacity. 

T3 Social Capital Social capital emerged primarily in the form of reinforcing 

trusted relationships with friends and neighbors (bonding) and 

connecting with others (bridging).  

T4 Improvements Respondents highlighted the need for better tools, equipment, 

and technology, such as improved road access or medical 

equipment. Information on what to do was also a significant 

outcome, suggesting that awareness and preparedness efforts 

may be impactful along with the deployment of technical 

capacities. 

T5 Critical 

infrastructure 

Results point to hardships due to long recovery times for 

power and communications services and the overall 

importance of communications and access to recovery. 

D1 Community 

culture:  

Community culture trended toward collective attitudes rather 

than individualized responses. 

D2 Innovation culture:  Narratives trended toward creative repurposing and 

innovation as key adaptation strategies. Respondents 

recognized Maria as an unprecedented event, suggesting new 

ways of coping may have been necessary. 

 

https://varinaldi.shinyapps.io/triadGeo/


  135 

4.4.1 Social Capital and Community Responses 

Although PR has long experienced periodic hurricanes, results show that Maria 

was “unlike any other hurricane in the past,” if not unlike any other event in ones’ life. 

Respective stories included indications of strength, unity, and even positive outlooks: 

“It was at that moment of crisis that I discovered my value as a person and the 

importance of my emotional health. “I lost everything,” I said, and with each step I took I 

listened to worse experiences, however I began to value my talents and my resources, I 

still had life, I had a family, I had health and I had dreams. Since then, I began to dream 

big not in material matters, but rather in the spiritual one and I used what I learned to 

find again the path that would lead me to fulfill my dreams no matter the circumstances 

you go through.” 

“I would tell the child with a lot of emotion and feeling as a united people rose from the 

ravages of a natural phenomenon not previously seen; Like everyone, regardless of the 

differences, they helped each other and fought for a better tomorrow.” 

Stories such as these indicate a growth mindset, a concept previously associated 

with enhancing resilience (Dweck, 2008; Yeager & Dweck, 2012). While some stories 

mentioned resilient attitudes, others highlighted the burden of uncertainty associated with 

the lack of communications: 

“The greatest sadness was that the help took a long time to arrive.” 

That Maria was unlike any other event aligns with participant responses regarding 

how people responded to the disaster, which more often trended toward adaptation 

(making small changes as needed) and transformation (forming drastically different 

living conditions), as opposed to maintaining normal ways of living, or persistence (Fig. 
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4.9). These results suggest that the ability to absorb changes and carry on routinely was 

less prevalent (or useful). During such a major rupture like Maria, making changes and 

finding new ways to support necessary community functions emerged as more vital. 

 

 

Figure 4.9. Resilience capacities triad represented as a heatmap. The three coordinates 

code for emphasis of the self-coded micro-narrative toward persistence, adaptation, and 

transformation. 

 

While narratives tended to code more heavily toward transformative disaster 

responses, which generally rely on repurposing assets and creating new adaptive 

processes, they also tended to code experiences as more communitarian (collective 

attitudes and values) than atomistic (individual coping), which can sometimes suggest 

limited individual creativity and innovation (Fig. 4.10a-b). Results, however, show how 

community-level innovation can occur in-tandem with processes that enable community 

bonding and bridging when disasters demand entirely new ways of coping and 
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established protocols are unviable (i.e., as observed through figures 4.11 and 4.12 in 

tandem, and discussed later in Theme 2).  

 

Figure 4.10a-b. Dyads coding for (a) the role of participation, identity, and belonging in 

a community where values closer to 0 relate more to atomistic behaviors and those closer 

to 100 relate to communitarian behaviors, and (b) how adaptive capacities were 

developed and found from the experiences where 0 relates to more traditional means and 

100 to more transformative processes. 

 

Further describing the shape of social capital in terms of community responses to 

Maria in PR, narratives trended heavily toward reinforcing trusted relationships with 

friends and neighbors (bonding) and connecting with others (bridging), rather than 

toward linking to organizations and institutions (linking) (Aldrich, 2017) (Fig. 4.11). 

Such results indicating the importance of community bonding and bridging, together with 

communitarian attitudes and transformative responses, show PR communities’ capacity 

to cooperate while undertaking high degrees of change and experimentation. 
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This trend was especially evident in the mountainous regions, which become 

apparent when selecting triads by high-elevation topographies. In Adjuntas, Jayuya, and 

Orocovis, which are among the highest elevation municipalities, triads signifying social 

capital capacities were coded strongly toward reinforcing existing relationships, and 

secondly, connecting with others, rather than linking with organizations and institutions. 

Looking closer at the respective narratives, experiences highlighted the importance of 

local support and strength from having overcome previous experiences (Fig. 4.12). 

Mountainous areas in PR tend to be rural (or agricultural) and have been characterized by 

limited access (island within an island) for residents and repair efforts after Maria 

(Kwasinski et al., 2019). Ethnographic results reflect such qualities of this space and the 

tragedy of self-sufficiency that comes with a place that is frequently waiting for extended 

periods after disasters due to low prioritization, often based on population density and 

road access. 
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Figure 4.11. Emergent patterns for Social Capital triad. Bonding speaks to reinforcing 

trusted relationships with friends and neighbors., bridging to connecting with others, and 

linking to organizations and institutions. 
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Figure 4.12. Relationship between elevation and ethnographic results for social capital 

signifiers of bonding (reinforcing relationships with trusted friends and neighbors), 

bridging (connecting with other people), and linking (linking with organizations and 

institutions). Each point in the triad corresponds to the geometric mean of the triad 

coordinates for each municipality. The three red coordinates highlight municipalities in 

mountainous regions: Adjuntas, Jayuya, and Orocovis. 

 

 

However, some of the narratives suggest that the reason for the imbalance of 

social capital as away from institutions may be due to lack of trust, or at least lack of 

access or faith in the effectiveness of public institutions for providing help, as one 

respondent would tell a child: 
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“I would tell him about the uncertainty that was experienced in the government. It was at 

the point where there were supplies for the entire island, but the lack of communication, 

among other factors, made me a little scared. Since it could create a panic in society and 

communities.” 

“The government did little to help and much was stolen ... it is a shame.” 

 

4.4.2 The Role of Hard and Soft Infrastructure in Socio-technical Resilience 

Considering critical infrastructure impact and recovery, island-wide patterns 

stress the importance of communications and access to recovery over electricity and 

water infrastructure (Fig. 4.13). 

 

Figure 4.13. Emergent patterns for the Critical to Recovery triad. 

Some narratives illustrate the ways that community capital and infrastructure adaptation 

can be used to cope with the lack of centralized infrastructure services: 
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“I saw a guy in the mountains that had a cistern, a washing machine, and a generator in 

the back of his pickup truck. He was driving around offering mobile laundry mat services. 

This is when there was still no power or water service.” 

 

These narratives highlight how local innovation, a growth mindset, and modular 

technological components can be leveraged locally for providing infrastructure services 

when centralized systems are down. Gas, HAM radio, rainwater collection, and access to 

ice are included in the kinds of locally accessible wares that can assist in coping without 

public infrastructure services and maintaining or recovering community services after 

Maria. However, some of these resources are interdependent with other systems that can 

involve complications. For instance, gasoline and diesel enable energy services through 

generators and access to other resources like food and medicine, but many stories 

highlighted difficulties in obtaining fuel when transportation systems and supply chains 

were disrupted (i.e., long lines, road access). 

Grouping critical services triads in a temporal fashion displays patterns similar to 

the energy recovery index. Filtering by narratives related to longer-term recovery, the 

GeoApp highlights a greater emphasis in the Southeast region, where energy 

infrastructure recovery was relatively slow. When data points are grouped into narratives 

pertaining to before, during, immediately after, and longer-term after Maria, aggregated 

triads for municipalities trend toward a greater emphasis on critical infrastructure services 

while property becomes less of a concern as the duration after the event extends and the 

recovery process continues (Fig. 4.14). This is relatively intuitive since property damage 

is usually incurred while the storm is still carrying on. Furthermore, with the increasing 
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duration of the loss of essential services like power, water, and communications, the 

criticality of such infrastructure manifests in the coded results of the narrative collection. 

Such results align with established literature that uses different types of analysis, such as 

survey and focus group-based methods, that find critical points where the duration of 

infrastructure service loss is related to a logistic increase in human burden (e.g., King, 

2012). Power and communications were especially problematic due to a long recovery 

time. 

 

 

Figure 4.14. Patterns for the concerns between safety, property, and critical infrastructure 

services at different stages of H-Maria. 
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Lastly, triad results for improving resilience to future disasters display various 

clusters (Fig. 4.15), but most micro-narratives coded for better tools, equipment, and 

technology. The types of tools and technology varied among different stories, but many 

of them referred to hardships and adaptations necessary amid lack of power, access to 

roads, and medical equipment for the elderly and disabled. Additionally, some of the 

stories described the lack of communications (particularly to hear from loved ones) as 

inducing worry and uncertainty. Information on what to do also represented a large 

cluster, suggesting that technology alone may not generate more resilient outcomes, and 

preparedness efforts may be an impactful strategy. As is discussed later in this paper, 

access and trust for public institutions may be related to communications and processes 

for information that are key socio-technical dynamics that can impact technological 

improvements. 

 

Figure 4.15. Improvement-oriented triad results. 
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4.4.3 Methodological results: capabilities, caveats, and multiple perspectives 

While the spatial ethnographic data collection and analysis is at the core of this 

paper, it was found some noteworthy outcomes and insights regarding how the various 

data types and methods were combined. A primary finding related to inter-scale 

dynamics are the comparative differences in conclusions drawn from either aggregated 

variables or ethnographies and those drawn from an integrated approach. For instance, 

the priority for electricity as a critical service varies with different aggregation levels. 

Among regions with a very slow power network recovery index, the expectation would 

be a high value for improvements to electrical equipment or loss of power network 

services (Fig. 4.16). However, some narratives in these regions highlight composite 

struggles of loss of services, safety, and uncertainty, that aggregate geospatial methods do 

not uncover. 
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Figure 4.16. Screenshots of the geospatial application with critical infrastructure triad 

results. The top triad and map are color-coded with a tricolor scheme where discrete 

composite colors describe the balance between electricity (cyan), water (yellow), and 

communications (fuchsia) as critical to recovery. Points within the top triad represent 

geometric means of the signifier coordinates of data points within each municipality. The 

bottom triad pertains to data points within the selected municipality (i.e., San Lorenzo), 

where individual points pertain to specific responses shown in detail to the right when 

selected. 

 

This multi-scale combination of indices and narratives shows that although an 

area may be ranked as having relatively minor resilience capacities when viewed from 

the top down, these are still areas where valuable capacities emerge that can be leveraged 

for resilience enhancement strategies. The previous examples described above from 

various micro-narratives show how community capital and infrastructure adaptation, 

modularity of local resources and equipment, and growth mindsets in the face of 

adversity occur in municipalities that are otherwise mapped as highly vulnerable and less 

resilient. These findings illustrate the complex and sometimes contested relationship 

between vulnerability and resilience, especially in terms of quantitative and geographic 



  147 

methods (Carvalhaes et al., 2021). For instance, a community may be vulnerable in terms 

of hazard exposure, enabling learning and self-sufficient capacities for resilience. 

However, such forms of resilience may be tragic in terms of poverty traps, for example, 

where vulnerable communities bear the burden of recovery (Bene et al., 2014). 

Integrated analysis shows how quantitative trends can have exceptions and 

complexities. For example, narratives showing electric power as highly critical correlated 

with a slow energy recovery index also highlight the importance of local technical 

capacities such as gasoline and ice, together with critical burdens like safety and 

uncertainty for the safety of others. Overall, the results show how lived experiences 

associated with a place and time, in the form of ethnographic narratives, can be utilized 

together with other geospatial approaches to profile the kinds of dynamics that emerged 

from Maria. 

4.5 Discussion & Emerging Insights 

Generally, spatial ethnographic results and thick mapping align with other studies 

regarding the importance of communications systems regarding Maria in PR (Gay et al., 

2019; Lopez-Cardalda et al., 2018; Pullen, 2018; Zorilla, 2017). However, results 

highlight two additional implications for communications: (1) nuances in the process of 

disaster management protocols can include lack of trust or access for public institutions 

and organizational capabilities, and (2) community impacts include the human burden of 

uncertainty and lack of information regarding the state of other family members, friends, 

and incoming aid.  
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As Puerto Rican authorities invest toward more resilient infrastructure systems, it 

is essential to note the increasing interdependencies of institutional structure and 

communications with other sectors. The efficiency and responsiveness of public 

institutions responsible for disaster aid were sometimes perceived as disorganized and 

chaotic. On one hand, such perceptions indicate the potential undermining of public 

uptake of future initiatives by such institutions due to lack of faith or reputation. On the 

other, it may suggest that organizational structure and leadership for critical services 

should be developed to be adaptable enough to shift between stable and unstable 

conditions and allow decentralized information flows and enough autonomy for 

operational personnel to respond quickly to real-time, on-the-ground conditions 

(McChrystal et al., 2015; Mintzberg, 1981; Ulh-Bien, 2007). For example, centralized 

decision-making and hierarchical organizational structures for power system management 

in PR could have created a critical interdependency and vulnerability to communications 

network failures, hindering information flows and recovery actions during the post-event 

phase. 

Results highlight how natural and built environment variables manifest in 

personal narratives and how a thick mapping approach can be used for holistic analyses 

of disaster resilience toward unraveling the complexity of disasters and illuminating weak 

signals that cue future dynamics. For instance, the relationship between regions showing 

slow night lights-based electrical system recovery, triads highlighting critical services, 

and narrative descriptions show the range of human capabilities that power outages can 

hinder, such as using medical machines, contacting others, or mobility and access to 

backup power. Access to fuel for electrical generators and ice was a common theme for 
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adapting and coping with the loss of critical services. However, getting to gas stations 

was sometimes complicated by long lines (Dorell, 2017; Gay et al., 2019). Ice served as a 

functional alternative to cooling to preserve food and medications. Such redundancies, 

especially when decentralized as stocks of ice and distributed energy generation, provide 

immediate relief while waiting for infrastructure recovery. In this way, the approach also 

identifies inherent capacities that can be further leveraged, such as infrastructure diversity 

and functional redundancy (Ahern, 2011; Biggs et al., 2012).  

Modularity and local innovation were other capacities that emerged in personal 

experiences (e.g., mobile laundromat discussed in section 4.2). The wherewithal to power 

laundry machines locally and carry them in a pick-up truck displays how 

multifunctionality can be leveraged locally and creatively, especially when enabled by 

modular units and creative reuse of local capital (e.g., using idle buses as housing, or a 

pickup truck as a mobile laundry). Additionally, mobile units enable access by 

decentralizing where services are provided and at what times. Creative adaptations of 

local resources can be further understood, facilitated, and developed for future events 

(e.g., power generators in series). Resilience efforts can use such examples to proactively 

enable local innovations by highlighting key competencies like modularity, 

multifunctionality, and learning (e.g., Gilrein et al., 2019). In addition, there is something 

to be said about resilience as a mindset in the face of uncertainty as it relates to self-

organized actions for adaptation and recovery. 

It appears there is a range of attitudes between a growth mindset (i.e., disasters as 

an opportunity for learning, innovation, and improvement) and mental burdens associated 

with hurricane impacts (i.e., mental health and fear due to uncertainty and extended loss 
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of communications). Previous research has highlighted the mental health impacts of 

Maria in PR (Orengo-Aguayo et al., 2019). Resilience literature in community 

psychology and education has highlighted the effects of a growth mindset on promoting 

resilience. In thisanalysis, this emerged primarily as characteristics for personal growth 

and helping others. Further work can explore how such mindsets relate to the capacity for 

innovation and proactive adaptation. 

Results show that trust and uncertainty become a central part of community 

experiences upon disasters, especially when impacts are broadly severe and recovery is 

slow. It is difficult to discern if the lack of appeal to public institutions evident in the 

narratives was due to a lack of trust in government, powerful family and local community 

ties, lack of access, or a combination of these factors. However, some stories suggest a 

lack of faith in the capacity for institutions to effectively provide recovery services. Such 

sociocultural dynamics are significant in terms of Level II and Level III socio-technical 

complexity since technological solutions can be complicated by ineffective governance, 

lack of equitable access, and unintended consequences. For instance, while household 

generators and solar panels can ensure energy services upon disruptions of the centralized 

systems, programs that enable these resources may be untrusted,  inaccessible, misused, 

and potentially dangerous (e.g., deaths have resulted due to carbon monoxide poisoning 

from generators). 
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4.6 Conclusions & Future Research 

In terms of interdisciplinary research practice, it was found two beneficial pathways 

in integrating and maneuvering data that is disparate in quality (depth versus breadth) and 

type (subjective, objective) using the proposed approach: 

1. The generation of more nuanced insights into the socio-technical dynamics for 

resilience enhancements in respect to the second and third levels of technological 

complexity.  

2. The humanization quantitative variables and the development of a base (if not 

preliminary) understanding of what potential limits or unintended consequences 

may emerge from solutions drawn from technocentric or “objective” models. 

It is a complex process to converge disciplines that have seemingly conflicting 

fundamentals and disparate methods, but thick mapping approaches from a complex 

systems perspective may offer a pathway toward accepting and synthesizing multiple 

perspectives to better match the complexity of the intertwined systems we observe upon 

disasters (Ashby, 1956; Naughton, 2017). While not as decisive and elegant as traditional 

approaches, it offers a way to “muddle through” complexity in the face of an 

accelerating, increasingly complex future (Allenby, 2012). 

For resilience efforts in islanded communities like PR, it is essential to understand 

that complex systems are in constant flux (Cilliers, 2006). Since the beginning of post-

Maria recovery and the work this paper is based on, PR has endured a series of 

compounding disasters, including earthquakes, drought, and dust storms during the 

currently developing COVID-19 pandemic. Given PR’s geographic position and 

sociopolitical conditions, such circumstances set the island up for enduring concurrent 
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crises that will require novel and agility-oriented approaches for community and 

infrastructure resilience (Carvalhaes et al., 2020). This study lays the groundwork for 

ongoing narrative collections along with other data that can be integrated over space and 

time to produce a dynamic and evolving picture of resilience in PR. Ongoing (re)analysis 

is then necessary for future resilience of PR as an islanded community (here referring to 

regions which access constraints, whether geographic, economic, or political), as are 

resilience measures that can be responsive to changing information and agile to changing 

socio-technical conditions. 

A thick mapping approach has been applied to study resilience to Maria in PR. 

Further research is needed to continue to provide case studies that illustrate how such an 

approach can inform resilience theory and practice. This study attempted to augment 

spatial ethnographic approaches with more sophisticated geospatial methods, but there 

were quantitative limitations due to the spatial distribution and density of data points. 

Future work can aim to capture geo-statistically sound data for more comprehensive 

quantitative analysis alongside qualitative methods. 

There is potential for thick mapping approaches to be particularly amenable to 

stakeholder and community interaction, co-production, and transdisciplinary research. 

Although it is beyond the scope of this paper, the effectiveness of making thick map 

research outputs like GeoApps available for iterative feedback, validation, and practical 

use by community participants and leaders is significant and should be explored. 

Subsequent case studies can evaluate how results from these types of approaches are 

used, how well outcomes from respective insights contribute to disaster resilience, and 

best practices for using thick mapping approaches in socio-technical resilience domains. 
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CHAPTER 5 

CONCLUSIONS & SYNTHESIS 

5.1 Summary 

The preceding chapters have covered methods for developing social metrics in the 

form of Disaster Resilience Indices (DRI) and Social Hardship Indices (SHI) for 

engineering models of infrastructure reliability and resilience, and the implications for 

such indices in the face of urban complexity. 

Chapter 2 demonstrated how social metrics could be used in a socio-technical 

network modeling framework of an electrical system and presented a novel method for 

developing a TESHI by leveraging the treatment-effect approach for H-Maria in Puerto 

Rico. The framework demonstrates how a social metric can be framed in terms of 

outcomes of human burdens toward reducing human hardships, rather than being framed 

around the ability to recover to normal community functions. The SHI methodology 

presents a way to attribute human hardships to specific disasters, and a method for 

weighting predicting factors of social hardship was presented. Results show that income 

and age are common factors for a series of hardship outcomes, including suicides, 

substance abuse, median house prices, and employment. An argument for social functions 

rather than metrics was presented. 

Chapter 3 presents a critical review of DRI from a complexity perspective. 

Resilience principles were linked to tenets of complexity. It was found that DRI are 

becoming increasingly comprehensive, yet do not capture systemic aspects of urban 

systems such as polycentricity and diversity. Furthermore, DRI may be fundamentally 
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misaligned with complexity paradigms by nature of reducing urban dynamics to a single 

metric. 

Chapter 4 presented a novel methodology for integrating social complexity with 

performance-based metrics by leveraging distributed ethnographies and a thick mapping 

approach for Puerto Rico. It was found that individuals tended to bond with trusted 

friends and family, and sometimes bridge with other communities, rather than appeal to 

public institutions. Local innovation together with communitarian attitudes helped 

support adaptation and the substitution of infrastructure services. For interdisciplinary 

research, the proposed methodology offers a platform for integrating and maneuvering 

data that is disparate in quality (depth versus breadth) and type (subjective, objective), the 

humanization of quantitative variables, and the generation of nuanced insights into socio-

technical resilience toward a base understanding of what potential limits or unintended 

consequences may emerge from solutions drawn from technocentric or “objective” 

models. 

The next section will describe broader conclusions and implications for future 

resilience research in terms of connecting social dynamics to engineering assessments 

and capturing urban complexity. 
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5.2 Synthesis & Major Takeaways 

5.2.1 Themes for Integrating Social Considerations and Technocentric Resilience 

Assessments 

Between the literature and analysis associated with Chapters 2-4, andregarding 

efforts to develop interdisciplinary frameworks, integrated socio-technical models, and 

the ongoing shift toward a complexity paradigm, an emergent theme is that social 

considerations for otherwise techno-centric resilience assessments can take on general 

frames of reference in terms of the objectives, scope, and methods. In this sense, socio-

technical integration for resilience assessments can be defined along the spectrum of 

conceptual frameworks that fall under impact-driven frameworks, complexity-driven 

methods, and community or stakeholder engagement (Fig. 5.1).  

 

 

Figure 5.1. Conceptual approaches for coupled social and technocentric resilience 

assessments categorized as impact-driven, complexity-driven, and engagement. Red 

boxes indicate the conceptual driver for each type of approach, below which general 

attributes and applications are listed. 
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Impact-driven approaches are generally focused on snapshots of vulnerability and 

hardships based on sociodemographic and economic structures toward incorporating 

social elements (i.e., tend to be static temporally static) and can include indicators that 

compare community characteristics or quantify social burdens, such as in Chapter 2. 

These frameworks tend to be map-based snapshots, geographically explicit, and often 

hazard-agnostic, yet static in terms of time, space, and SETS interactions. Hardship-

driven approaches aim to reduce specific disaster outcomes, such as mortality. 

Complexity-driven approaches include community resilience approaches that are 

also based on snapshots but begin to consider indicators for adaptive capacities that have 

the potential to emerge upon a disaster, as discussed in Chapter 3. Approaches oriented 

around the concept of resilience begin to bridge static frameworks toward capturing 

understanding urban dynamics and attributes of urban systems that cue for the emergence 

of resilience. DRI, for example, can cue for key community attributes that indicate 

adaptive capacities (e.g., civic engagement), while still being spatiotemporally static, 

much like social vulnerability indices. However, frameworks explicitly oriented around 

complexity tend to focus on the processes and dynamics of socio-technical systems, and 

fundamentally depart from impact-driven assessments. This can be captured with 

methods like agent-based and dynamic modeling to simulate interactions and the 

behavior of systems over time. Alternatively, complexity-driven assessments can aim for 

qualitative insights that indicate the potential emergence of community resilience, as 

demonstrated in Chapter 3.  

Lastly, engagement represents a “meta” dimension to resilience research, critical 

for community feedback, data pathways and experimentation, maintaining the relevance 
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of use-based research projects, and interfacing science and policy for improved disaster 

outcomes. However, engagement can also be leveraged for expert-driven quantitative 

assessments such as the Delphi and scorecard methods (e.g., Berke et al., 2015; Gimenez 

et al., 2017). 

It is important to define what is meant by social considerations in the 

collaborative resilience assessment of engineered systems. Large scale resilience research 

collaborations should take account of each type of method (impact-driven, complexity-

driven, and engagement approaches) for a complete as possible interdisciplinary front for 

effective research outcomes, if not to at least be explicit in which aspects of social 

considerations are included. Impact-driven frameworks have been widely used to capture 

the “pulse” of a system given a specific system framing, or to measure outcomes and 

respective drivers of social impacts, given a specific event. On their own, however, 

impact-driven frameworks may be too spatiotemporally static and narrow in the face of 

future accelerating change and uncertainty, whereas complexity-driven methods can 

capture key dynamics and weak signals to qualify and add nuance to more reductive, 

impact-driven frameworks. Engagement also is key to maintain researcher knowledge of 

the continuously changing dynamics as systems evolve and should ideally feedback into 

mixed-methods approaches. 

 

5.2.2 Space and Place as Anchors for Multiple System Framings 

Given that there are multiple ways and scopes to frame a system, especially given 

the different disciplinary and sociocultural meanings that may be simultaneously present, 

the geographic and anthropological concepts of space and place can serve as anchors to 
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integrate multiple system framings. There are two major advantages to leveraging these 

concepts: (1) capturing multiple system framings to better capture complexity, and (2) 

capturing contested sociocultural meanings and futures associated with a system.  

Regarding the first, for example, the Thick Mapping approach in Chapter 3 

combines individual experiences and quantifications of coded narratives with aggregate 

sociological views of community resilience via DRI that are similar to the impact-driven 

approach in Chapter 2. In this way, multiple disciplinary perspectives and scales of the 

social domain are captured within a space, such as a municipality or energy network 

management regions (i.e., multiple places within the same spaces). Any framing of a 

complex system is inherently a partial reduction of the “true” system, but integrating 

multiple perspectives are necessary toward “complete enough” system representations 

and can inform more holistic solutions that better match the complexity of urban systems 

(Allenby, 2012; Ashby, 1956; Cilliers et al., 2013). 

Regarding the second advantage, that the dynamics of urban systems work along 

space and time is often implied in resilience assessments. However, given social 

complexity, there is a third and often overlooked plane of urban dynamics: evolving 

sociocultural meanings that drive decisions, actions, and interactions in a system (i.e., 

place). As shown in the case of Puerto Rico and Hurricane Maria, relevant sociocultural 

dynamics for urban system resilience include trust in governance and public institutions, 

as will be further described below. From a SETS perspective, capturing the more elusive 

sociocultural dimension is a key contribution of social and complexity sciences to 

traditional technocentric assessments. The concepts of place and thick mapping can be 
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leveraged toward new interdisciplinary frameworks as a way to “tap in” to eminent 

sociocultural changes that drive urban system dynamics.  

5.3 System Boundaries & Limitations 

5.3.1 System Framing & Concurrent Disasters in the 21st Century 

The scope of the work described in this dissertation, and the larger project this 

research is a part of, bounds Puerto Rico as a system in a limited way. Nonetheless, 

dynamics that are exogenous to the framing of this system can have significant outcomes. 

Namely, sociopolitical and technological dynamics and concurrent disasters in Puerto 

Rico are outside of the scope of this research yet have had relevant implications for the 

energy system since the onset of the project. 

Since the beginning of the effort and initial design of the research outlined in this 

document, critical events have continued to occur in Puerto Rico that introduce further 

complexity and challenge the initial system framing and boundaries in question in the 

preceding chapters. Several disastrous events have inflicted PR, including earthquakes, 

drought, dust storms, infrastructure cyber attacks, and the global COVID-19 pandemic 

(Carvalhaes et al., 2020; Poteet, 2020). Social unrest and political change have also 

developed in reaction to the recovery policies and circumstances that have unfolded since 

H-Maria made landfall on September 20th, 2017. For example, public masses have taken 

to the streets demanding the resignation of Governor Rosello due to his alleged 

corruption and continued ineffectiveness toward the recovery and resilience of Puerto 

Rico in the aftermath of Maria (Robles & Rosa, 2019). Therefore, the ground truth of the 

system as the object of inquiry has not only been in constant flux but has experienced 
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noteworthy disastrous perturbations that have relevance to the general resilience of 

Puerto Rico. 

This dissertation focuses on resilience specific to hurricanes, but it is necessary to 

consider potential trade-offs and caveats regarding more general resilience. Such 

specified resilience gears toward foreseeable risks in terms of a specific challenge (i.e., 

future hurricanes), whereas general resilience refers to the overall capability of systems to 

adapt or transform in response to various types of shocks, including unprecedented events 

(Folke et al., 2010; van der Merwe et al., 2018). Trade-offs can exist when enhancing 

specified resilience, which could mean there are important investments and efforts for 

Puerto Rico. Understanding the general resilience of the island, especially considering a 

future of uncertainty, is a challenging goal to bound and an undertaking of extensive 

scope. However, it is possible to maintain a framework that adheres to the intent of 

specified resilience while acknowledging limitations in the system framing (social, 

ecological, and technological components considered, the respective boundaries, spatial 

and temporal scales, and relationships). Additionally, outlining what some of the broader 

implications may be as they emerge throughout the research process can be beneficial to 

this end. First, it is essential to understand the system framing, insights, and scope of each 

approach taken in this dissertation. 

Chapter 2 offers insights specific to social hardships faced by Maria, thus 

assuming a system framing that excludes the rapidly developing sociopolitical conditions 

and the dynamics of the then soon-to-come global COVID-19 pandemic. The pandemic 

has shown how resilience to disasters can range not only temporally from disruption to 

post-recovery phases (Reddy, 2020), but categorically from momentary disruptions, such 
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as a power component failure due to wind gusts, to extended and “rhythmic” disruptions 

like the COVID-19 crisis, which occurs in successive waves. These dynamics have 

rendered many widely adopted indicators became largely obsolete in indicating assets 

and capacities that emerged as critical during the pandemic, such as tele-access, the 

ability to isolate cases of infection, and multi-modal transportation (Amekudzi-Kennedy 

et al., 2020; Woods et al., 2020).  

The thick mapping approach in Chapter 4 represents a more holistic and broad 

undertaking, though still focused on Maria. However, the framework has potential for 

longitudinal analysis and a multi-hazards perspective since data collection has continued 

through 2020. Two additional deployments of the data collection tool were done: (1) A 

second narrative collection regarding individual experiences that are coded as related to 

H-Maria, the 2020 earthquakes, or both the latter events; and (2) a narrative collection 

effort related to COVID-19, which is currently under development. The latter two 

datasets were not included in the thick mapping analysis due to the scope of the analysis 

and its intent as contributing to a methods paper based on Maria as a case study. 

However, it was intended that the thick mapping, in the form of an online digital 

geographic application, is amenable to being enhanced further with temporal sequences 

and the capability to incorporate additional layers, including model outputs and filterable 

narrative collection datasets. Such capabilities enable a follow-up analysis that can 

address current limitations. 

Rather than particular classes of urban system assets and characteristics (such as 

with DRI and indicators), elements that pertain more closely to general resilience, such as 

leadership capacities and organizational structures, emerged as critical during the 
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COVID-19 crisis (Allenby & Chester, 2020). Carvalhaes et al. (2020) have highlighted 

lessons from COVID-19 that did not or likely will not emerge from the indicator and 

modeling methods in the preceding chapters, such as the potential for concurrent hazards, 

the dynamic nature of criticality, the trade-offs between resilience and efficiency, and the 

role of leadership and the ability to shift organizational modes between stable and 

unstable conditions.  

Concurrent hazards are a clearly relevant theme for Puerto Rico. Long-term 

recovery efforts related to Maria have gone underway amid dust and drought conditions, 

and a recently discovered fault line near the Southwest coast of the island is causing 

frequent and sometimes intense earthquakes (USGS, 2020). Not only must 

municipalities, communities, and infrastructure endure the additional stressors and 

socioeconomic costs to cope with and endure multiple hazards, the pandemic presents 

atypical challenges compared to other types of disasters, like widespread and sustained 

unemployment (Rosa & Robles, 2020). Furthermore, the pandemic has undercut 

community disaster resilience capacities (e.g., income, health insurance), and assets like 

disaster centers and emergency shelters, common indicators of community resilience, 

have become problematic as they contradict limitations for social aggregation (i.e., social 

distancing).  

Days after the transition toward Luma as the primary energy infrastructure 

provider, a cyberattack produced 2 million hits per second in the company’s applications, 

which happened shortly before an explosion at a power station left hundreds of thousands 

of residents without power (Nash & Rundle, 2021). Municipal leaders have had to deploy 

independent recovery efforts, and residents claim dealing with similar conditions 
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Hurricane Maria (Coto, 2021). These ongoing occurrences demonstrate the changing 

landscape of infrastructure vulnerability and resilience with the accelerating integration 

of cyber technologies into physical infrastructure systems (Chester & Allenby, 2020).  

The concurrence of hazards has shown some positive outcomes that cue for 

emerging resilience capacities, however, such as a culture of learning from past failure 

and success. For example, having endured treatment interruptions, limited transportation, 

and scarce equipment and medicine, clinicians in Puerto Rico developed practical 

emergency measures that paid off during COVID-19 to maintain functions and contain 

the virus among vulnerable patients (Gay et al., 2019; Rivera et al., 2020). Facing 

concurrent hazards can present competing demands and resource scarcity among 

disasters, which suggests that rather than hardening infrastructure for improved 

robustness to specific hazards, a multi-hazards approach focusing on agility to unforeseen 

types and combinations of hazards can be beneficial toward building infrastructure 

resilience (Ryan, 2009), as may be the case for Puerto Rico. Capacities like creatively 

leveraging multifunctional assets and flexibility can enable infrastructure to shift 

functions and extend operability in the face of unprecedented disasters (Gilrein et al., 

2019), but are not necessarily captured by the previous chapters. 

In terms of criticality, the term traditionally refers to an industry and defense 

definition of Critical Infrastructure (CI), such as energy and water assets and systems, 

which are deemed vital to economic security and public health and safety (DHS, 2020). 

However, such a framing of criticality does not consider the differences between hazards 

and emerging interdependencies for infrastructure. For example, healthcare infrastructure 

depends on supply chains for personal protective equipment (PPE), and parks, which 
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typically are not considered CI, have emerged as critical by serving as field hospitals, 

alternative sheltering, and public emotional and physical well-being (Fink, 2020; CDC, 

2020; Welsh, 2020). To account for dynamically changing demands for infrastructure 

services and functions among and between hazards, a framing of criticality that reflects 

such changes and ranks criticality based on critical human capabilities (the set of valuable 

functions an individual effectively has access to) may be more appropriate given the 

pandemic and the future threat of concurrent hazards (Clark et al., 2018). Treating 

criticality as dynamic and based on critical human capabilities (e.g., such as those ranked 

by Maslow’s hierarchy of needs), along with infrastructure and institutional flexibility, 

can enable infrastructure resilience against a variety of hazards and their combinations. 

The role of criticality and CI in Puerto Rico given Maria, the 2020 earthquakes, and the 

COVID-19 pandemic is one area of inquiry that can be further outlined toward future 

research. 

Infrastructure systems traditionally emphasize efficiency (i.e., optimizing for 

stable systems and environments to reduce waste, time, effort, and resources) at the cost 

of resilience (i.e., investing in increased “slack” for unstable systems and environments to 

enable redundancy, diversity, and adaptation – otherwise considered waste), a seemingly 

unavoidable tension between goals (Allenby and Chester, 2020; Martin, 2019; Tenner, 

2020). In Puerto Rico, for instance, energy transitions are a key consideration, such as 

aiming for 100% solar energy generation (e.g., Arduengo, 2020, Heard et al., 2017), for 

example, which would reduce greenhouse gases that contribute to future climate hazards 

and provide decentralized energy services. Solar energy as a form of distributed 

generation and point-source consumption offer some resilience-related benefits such as 
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the limitation of cascading network failures, and mobility and modularity (both in 

governance and networked components) associated with the technologies that enable 

flexibility and access to energy services. However, a system relying exclusively on (or 

overwhelming so) one type of energy infrastructure may be inherently vulnerable (e.g., 

economic fragilities) and lacks diversity, a resilience principle (Biggs et al., 2011; Heard 

et al., 2017). Implications of working scenarios for Puerto Rico’s future electrical system 

(and as these scenarios may be modeled in Chapter 2), in terms of resilience and 

efficiency, ought to be considered and highlighted in terms of stakeholder aims toward 

resilience and sustainable development. 

Lastly, the ability to shift organizational modes between times of stability, where 

traditional bureaucratic structures enable quick decisions (i.e., Administrative 

Leadership), and times of instability, where there is a need for flexible decision making 

and creativity in the face of complex and rapidly evolving conditions (i.e., Adaptive 

Leadership), may have salient implications for Puerto Rico as it faces future climatic and 

biophysical threats (Ulh-Bien et al., 2007). Ulh-Bien et al. (2007) have outlined the 

concept of Enabling Leadership as a form of organizational structure that enables the 

shifting from administrative to adaptive leadership modes. For Puerto Rico, it appears 

there may have been an obstinate reliance on a leadership structure centralized in San 

Juan (i.e., administrative), which was disrupted by failed communications systems. Such 

an institutional setup and subsequent failures to adapt can impact the adaptive capacity 

and recovery rates (i.e., resilience) of infrastructure systems as on-the-ground technicians 

lack the communications and authority necessary, despite being proximal to potential 

solutions. A clear protocol for adaptive leadership could have been in place, such that 
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when the traditional administrative structure (hierarchical bureaucratic decision making 

and information sharing) is interrupted, there is a modular, decentralized, or autonomous 

capability (i.e., an institutional micro-grid or “team of teams”) that is enabled (McChystal 

et al., 2015). 

 

5.3.2 Governance, Institutional, & Sociocultural Dynamics 

The public infrastructure providers, formerly the public agency PREPA, have now 

been changed to Luma in a public-private partnership with PREPA. The Puerto Rican 

government has chosen to privatize the energy system and rebuild it in a centralized and 

fossil-fuel-oriented fashion, rather than incorporating renewables and decentralized 

capabilities that can be more advantageous for ST resilience. This change has rendered 

both continuing and new vulnerabilities in terms of the energy system as Luma faces 

heavy criticism since formally taking over the electrical system.  

The energy transition in Puerto Rico has been primarily driven by political and 

financial services and can have profound implications for energy access, ongoing 

corruption, and civil instability (Garcia, 2021). An independent report by the Institute for 

Energy Economics and Financial Analysis (IEEFA) determined that the Luma contract 

will result in increased electricity rates, use companies with insufficient financial 

capabilities, promote the expansion of outdated natural gas plans, pursue unsound labor 

practices, allow less public input, and altogether repeat past mistakes (Sanzillo, 2021). 

The report concludes that, “The LUMA contract is objectionable on a mix of policy and 

procedural grounds that are so extensive that its execution is unlikely to achieve critical 

resiliency, affordability, renewable energy, workforce, and budgetary goals.” Sanzillo 
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(2021) and others also point that the Luma contract lacks oversight and enables further 

costs that go to fossil fuel interests, bondholders, debt service, political patronage, and 

bad contracting (Garcia, 2021; Walton, 2021). Residents and workers unions have been 

protesting and taking direct action against the Luma agreement demanding the contract 

be rescinded, resulting in riot police forcefully dispersing the crowd (Orlando Delgado 

Rivera, 2021). 

Cultural attributes and dynamics that are beyond the scope of this dissertation are 

not limited to distrust and unrest. For example, the so-called Puerto Crypto, a movement 

toward creating a Caribbean crypto-utopia, is said to be capable of transforming Puerto 

Rico into the next Hong Kong by igniting a trillion-dollar market and transforming its 

economy (Klein, 2019). Puerto Rico’s economic policies are already laying heavy 

incentives for the cryptocurrency and blockchain industries, which can have significant 

implications for energy dynamics, cyber vulnerability, extant sociopolitical stresses, and 

socioeconomic change (Crandall, 2019). In this way, Puerto Crypto can be viewed as one 

of the harbingers of eminent Anthropogenic changes in Puerto Rico. Still, there are other 

cultural aspects at play not captured in the scope of this dissertation, which can range 

from place attachment to religions and traditions that bind communities together in times 

of crisis. 

 

5.4 Broad Implications & Pathways for Collaborative Resilience Research 

Interdisciplinary resilience research can link multiple knowledge-based and practice 

institutions (e.g., universities, NGOs, utilities) within a common project that aims to 
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assess resilience and make recommendations for interventions in urban systems. Such 

projects are here referred to as Large-scale Resilience Collaborations (LRC), such as the 

project based on the NSF-CRISP grant toward Enhancing Resilience in Islanded 

Communities (ERIC) that the work in this dissertation is a part of, for example. Given the 

unfolding events and research limitations described in section 3, there are three major 

factors that have significant implications for LRC in providing impactful insights and 

recommendations for decision-makers: 

i. The scope of LRC is necessarily partial. However, overlooking institutional 

dynamics and critical aspects in the sociopolitical dimension can undermine 

subsequent recommendations and decision-making tools. 

ii. The system being analyzed has the capacity to evolve much more rapidly than 

what LRC can respond to. In respect to analyzing Hurricane Maria in Puerto Rico, 

concurrent disasters and sociopolitical dynamics challenge the narrow view of 

focusing on hurricane resilience. 

iii. It is essential for LRC to adequately connect with the institutions and leadership 

that drive adaptations (or lack thereof).  

In respect to the above items, Luma’s efforts to rehabilitate the PREPA electrical 

grid, rather than transition to renewables or partially decentralized options to enhance 

energy resilience like mini-grids, not only undermines the islands previous goals of 

reaching 100% renewable energy generation by 2050, but shows the potential 

misalignment of LRC efforts in having a significant benefit for Puerto Rico. As of yet, 

there appears to be little to no evidence that there is any input from the vast research 

efforts surrounding resilience in Puerto Rico after Maria (Sanzillo, 2020). For example, 
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models that inform the selection of transmission lines to be hardened to reduce human 

hardships (Chapter 1), or studies that suggest creating functional redundancies or 

diversity of capabilities that can be substituted (Chapter 2-3). The sociopolitical changes 

described above will also, in return, affect future resilience research. For instance, the 

privatization of the energy system has the potential to make obtaining research data more 

difficult since the confidentiality and proprietary obligations of Luma as a corporation 

restricts the availability of public information (Sanzillo, 2021). 

In terms of partial system framing and connecting with institutions, there is a 

lingering need to leverage the transformation of infrastructure governance for resilience 

in the Anthropocene (Chester, Miller, Munoz-Erickson, 2020). Institutions and their 

embedded values, norms, and processes can keep infrastructure obdurate, or enable 

transformation. For Puerto Rico, it appears the case is that decision-making institutions 

are in many ways locked-in to “business as usual” for infrastructure investments and 

management. Along with technical assessments, future resilience efforts should then 

focus on identifying leverage points within institutions that manage and design 

infrastructure in the island toward facilitating the necessary transformations toward a 

more resilient future for the island. Connecting to the right institutions and leadership to 

mobilize knowledge effectively toward resilience and sustainability transitions needs to 

be a concerted effort for collaborative resilience research. 

In this context, scientists and engineers are part of the systems they are studying in 

that they have the potential to affect and be affected by SETS dynamics (Allenby, 2012). 

A problem occurs if this is not sufficiently recognized so that research becomes detached 

from the institutions and actors that drive the system. For example, as the ground truth of 
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the system changes while research progresses, scientific efforts can become obsolete 

before they have been completed. One answer to this problem is that research should 

itself be dynamic and reflexive as researchers interact with the system. To this end, 

resilience research should focus on processes rather than definitive end points, and 

tolerate intermediate deliverables and failed attempts to reward experimentation, 

innovation, and reflexivity that enable relevant and impactful outcomes, rather than 

measuring research success by quantity and timeliness of deliverables (Chester et al., 

2021; Davidson et al., 2007; Ferris, 2020; Kerzner, 2017). 

In the Anthropocene, infrastructure will need to be mediate human-environment 

interactions in light of rapidly accelerating cybertechnologies, unstable climates, and 

sociopolitical stresses and disruptions (Chester et al., 2021). Future research should 

reflect these conditions and be adaptive and flexible enough to remain relevant and 

support the necessary infrastructure capacities. Given these eminent future conditions, 

weak signals need to be managed alongside risk analysis and reductive approaches like 

DRI and performance-based metrics. There is usefulness for metrics like indices in that 

they enable pragmatic and easily understandable analysis for practitioners and 

stakeholders. However, on their own, they tend to be narrow in their systems-framing, 

which may result in missed signals of oncoming change and overlooked social dynamics 

that can undercut subsequent strategies. For example, the lack of government appeal 

observed in Chapter 3 can be observed as a weak signal for the protests and unrest that is 

now unfolding, and a lack of trust public-private techno-centric solutions since the Luma 

contract began. 
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Lastly, since infrastructure in the Anthropocene needs to be agile and flexible in the 

face of accelerating change and uncertainty, interdisciplinary research will need to better 

connect this to social dynamics and science-policy engagement strategies. In other words, 

what will adaptive infrastructure mean for communities in places like Puerto Rico, and 

what kind of assets, capacities, and knowledge will be necessary at the local level when 

agile systems are responding to disruptions? These questions can be posed for future 

collaborative resilience projects toward bridging the gap between academic research and 

on-the-ground decision-making, planning, and community resilience. 
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The following is based on a white paper by Thomaz Carvalhaes last revised on June 6th, 

2021. 

 

Objectives 

Climate disasters continue to pose significant challenges to critical infrastructure 

systems. The catastrophic impacts and rapidly cascading infrastructure failures due to 

Hurricane Maria in Puerto Rico demonstrate the increasing necessity to understand 

infrastructure interdependencies. Such islanded communities are particularly vulnerable 

due to intermittent and limited connectivity to external supporting systems. Because 

hurricanes and other disasters will continue to occur, it is important to understand 

infrastructure and social vulnerabilities that contribute to failures, impacts, and recovery, 

and work toward enhancing the resilience of critical infrastructure systems and affected 

communities. 

Based on this motivation, a primary objective of the ERIC project (Enhancing 

Resilience in Communities) is to develop a data-driven modeling framework to 

understand both physical and social vulnerabilities and inter-dependencies in islanded 

communities, with Puerto Rico (PR) acting as a case study. A social-technical power 

network model can aid in assessing existing preparedness (i.e., “inherent resilience”), and 

evaluate and implement resilience-enhancing measures through multistakeholder 

engagement and engineering analysis. Such an approach extends engineering resilience to 

account for other social elements and recognizes that human and technical systems are 

interdependent. 
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Background 

While a climate disaster such as a hurricane may impact an entire region, different 

communities within this region may be impacted differentially. This can be due to either 

a difference in physical vulnerabilities (e.g., exposure of local power lines to destructive 

factors of a hurricane like wind speed and falling trees) or to social vulnerabilities (e.g., 

financial preparedness to cope with the damages). While vulnerability is normally 

described as a function of exposure and sensitivity to a disaster, resilience is more closely 

related to the degrees of adaptive capacity a community or infrastructure system has to 

cope and recover from a disaster (Cutter, Boruff, & Shirley, 2003; Engle, 2011; Holling 

& Gunderson, 2002; Nelson, Adger, & Brown, 2007; Smit & Wandel, 2006).  

In a simulation of a power network, the vulnerability of technical components and 

resilience of the system can be modeled with probability-based fragility functions and 

metrics such as demand, capacities, loads, and repair time/cost (e.g., Vugrin, Turnquist, 

& Brown, 2014). However, metrics that represent social vulnerability and resilience are 

less clear-cut. 

Myriad methods are currently established for assessing vulnerability and 

resilience of communities to climatic and environmental disasters (e.g., Cutter, 2016; 

NIST, 2015; Johansen et al., 2017). The methods vary in terms of breadth, data types, and 

application. For example, some methods can be categorized as community-level resilience 

metrics as they are derived (and often subjectively by way of community-participation) 

specifically for a geographical community context (Johansen et al., 2017). Other methods 

are sector-specific, such as building codes and other structures that directly affect human 

health and well-being upon a disaster. Lastly, sociological methods leverage quantitative 
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data including economic and demographic metrics indicative of the resilience of a 

community (e.g., social connectivity, health coverage, disabilities). 

Two significant advantages of the latter methods are data availability, ease of 

quantification and visualization to a variety of stakeholders, and generalizability to other 

[islanded] communities. Thus, this project focuses on two widely adopted sociological 

methods for resilience metrics to marshal for a power network model: The Social 

Vulnerability Index (SoVI), and the Baseline Resilience Index (BRI). The SoVI is a 

popular product from the Hazards and Vulnerability Research Institute (HVRI) and is 

already available at the Municipio level for PR. Meanwhile, the BRI has only been 

developed for the Southeastern United States. Therefore, the main objective of this report 

is to describe the construction of a BRI for the island of Puerto Rico.  

Whereas the SoVI is useful for assessing the vulnerability of a community and as 

a planning tool, the BRI is more appropriate to measure the resilience of a community 

over time (Cutter, Burton, & Emrich, 2010; Johansen et al, 2017). Hence, it is more 

appropriate for a project aiming to develop measures to enhance the resilience of islanded 

communities by first assessing the current or inherent resilience of the region, which 

facilites the identification of factors that can be improve resilience, and then enabling 

future BRI assessments that can compare to previous resilience baselines. 
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Methodology 

Overview 

The BRI for PR was constructed following the methodology outlined by Cutter, 

Burton, and Emrich (2010) and Flanagan et al (2011). The key element of such indices 

are that they are place-based. Since a technical power network can be represented by 

nodes in a network that correspond to in situ components in known geographic locations 

(e.g., a power plant, a major transformer), social factors can be linked to these nodes 

according to which municipalities they impact. For PR, the BRI will be done by 

Municipio (assigned as “county” in Census databases) due to both data availability, 

compatibility, and relevance to stakeholders and decision-makers.  

While the SoVI and BRI have very similar methods both developed by HVRI, 

there are a few significant differences. The BRI uses more than twice the variables (36 

total) as the SoVI (15 total), which extend beyond solely Census data to several disparate 

sources. Additionally, the BRI is composed of 5 subindices: social resilience, economic 

resilience, institutional resilience, infrastructure resilience, and community capital, each 

with a set of respective variables. The variables of the subindices are averaged together to 

reduce the affect of differing amounts of variables for each subindex. The numbers for 

each subindex are then compounded additively into a resilience index that ranges 

between 0 and 5, where 5 is the most resilient. This is another difference between SoVI 

which is entirely additive and scaled from 0 to 1. 
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Data and Calculations 

Data for the BRI relies heavily on Census county-level data, but includes several 

variables obtained from FEMA databases, North American Industry Classification 

System, city and county databooks, and other sources that provide per-municipality data. 

Some of the variables require short calculations or normalization of the original data, and 

it was found that some sources outlined in the technical document did not have data 

available for PR, in which case data was substituted from other sources (see Appendix for 

a table describing the variables for each subindex, data sources, and respective 

calculations). Once the variables are gathered, the values for each variable xi are scaled to 

range between 0 and 1, where 1 is the most resilient using a Min-Max rescaling: 

 

𝑥𝑖 −𝑚𝑖𝑛

𝑚𝑎𝑥 −𝑚𝑖𝑛
 

 

The rescaled variables for each subindex is then averaged to produce a score for 

each of the five major subcomponents of resilience in the BRI framework. Lastly, the five 

scores are aggregated additively with equal weight to produce the final BRI. Because the 

BRI is geographically explicit, results can then be mapped and overlain by the power 

network to assign metrics to each node of the network model. 
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Table A.1. Data used for BRIC-PR 

Category Variable Data Source in 

Cutter et al., 

2016 

Data 

Source 

Used 

Calculation (if 

applicable) 

Social Resilience 
   

Educational 

equity 

Ratio of the pct. 

population with 

college education to 

the pct. population 

with no high school 

diploma 

US Census 2000 ACS17 - 5 

Year 

(% bachelor's degree or 

higher)/(100 - % high 

school graduate or 

higher) 

Age Percent non-elderly 

population  

US Census 2000 ACS17 - 5 

Year 

None 

Transportation 

access 

Percent population 

with a vehicle 

US Census 2000 ACS17 - 5 

Year 

(Total Households - 

Housholds w/ No vehicle 

available)/Households 

Communication 

capacity 

Percent population 

with a telephone 

US Census 2000 ACS17 - 5 

Year 

(Owner occupied: With 

telephone service 

available + Renter 

occupied: With telephone 

service available)/Total 

Households 

Language 

Competency 

Percent population 

not speaking English 

as a second language 

US Census 2000 ACS17 - 5 

Year 

% speak English only or 

speak English "very 

well"; Estimate; 

Population 5 years and 

over 

Special needs Percent population 

without a sensory, 

physical, or mental 

disability  

US Census 2000 ACS17 - 5 

Year 

100 - % with a disability; 

Estimate; Total civilian 

noninstitutionalized 

population 

Health coverage Percent population 

with health 

insurance coverage  

US Census 2000 ACS17 - 5 

Year 

% Private Coverage; 

Estimate; Civilian 

noninstitutionalized 

population 

Economic Resilience 
   

Housing capital Percent 

homeownership 

US Census 2000 ACS17 - 5 

Year 

Owner occupied/Total 

Population in Housing 

Units 

Employment Percent employed US Census 2000 ACS17 - 5 

Year 

Employment/Population 

Ratio; Estimate; 

Population 16 years and 

over 

Income & 

equality 

GINI coefficient Computed from 

US Census 2000 

American 

FactFinder 

None 

Single sector 

employment 

dependence 

Percent population 

not employed in 

farming, fishing, 

forestry, and 

extractive industries 

US Census 2000 ACS17 - 5 

Year 

Total - Agriculture, 

forestry, fishing and 

hunting, and 

mining/Total Civilian 

employed population 16 

years and over 
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Employment Percent female labor 

force participation 

US Census 2000 ACS17 - 5 

Year 

None: Percent Female; 

Estimate; Civilian 

employed population 16 

years and over 

Business size ratio of large to 

small businesses 

County Business 

Patterns (NAICS) 

2006  

  

Health access Number of 

physicians per 10, 

000 population 

US Census 2000 ACS17 - 5 

Year 

Healthcare support 

occupations/Civilian 

employed population 16 

years and over 

Institutional Resilience 
   

Mitigation Percent population 

covered by a recent 

hazard mitigation 

plan  

Fema.gov 
  

Flood coverage Percent housing 

units covered by 

NFIP policies  

bsa.nfipstat.com  
  

Municipal 

services 

Percent municipal 

expenditures for fire, 

police, and EMS 

USA Counties 

2000 

ACS17 - 5 

Year 

 

Mitigation Percent population 

participating in 

Community Rating 

System for Flood 

(CRS)  

Fema.gov 
  

Political 

fragmentation 

Number of 

governments and 

special districts 

US Census 2002 
  

Previous 

disaster 

experience 

Number of paid 

disaster declarations 

Fema.gov 
  

Mitigation and 

social 

connectivity 

Percent population 

covered by Citizen 

Corps programs  

citizen.corps.gov 
  

Mitigation Percent population 

in Storm Ready 

communities  

stormready.noaa.g

ov 

  

Infrastructure Resilience 
   

Housing type Percent housing 

units that are not 

mobile homes  

US Census 2000 ACS17 - 5 

Year 

Total Housing Units - 

Structure: Mobile Homes 

Shelter capacity Percent vacant rental 

units 

US Census 2000 ACS17 - 5 

Year 

 

Medical 

capacity 

Number of hospital 

beds per 10,000 

population 

American 

Hospital 

Directory 

www.ahd.com  

  

Access/evacuati

on potential 

Principle arterial 

miles per square 

mile  

GIS derived from 

National 

Atlas.gov 
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Housing Age Percent housing 

units not built before 

1970 and after 1994  

City & County 

Databook 2007 

  

Sheltering 

needs 

Number of 

hotels/motels per 

square mile  

County Business 

Patterns (NAICS) 

2006  

  

Recovery Number of public 

schools per square 

mile  

Gnis.usgs.gov 
  

Community Capital 
   

Place 

attachment 

Net international 

migration 

census.gov 
  

Place 

attachment 

Percent population 

born in a state that 

still resides in that 

state  

US Census 2000 ACS17 - 5 

Year 

 

Political 

engagement 

Percent voter 

participation in the 

2004 election  

City & County 

Databook 2007 

  

Social capital-

religion 

Number of religious 

adherents per 10,000 

population  

Assn. of Religion 

Data Archives 

  

Social capital-

civic 

involvement 

Number of civic 

organizations per 

10,000 population  

County Business 

Patterns (NAICS) 

2006  

  

Social capital-

advocacy 

Number of social 

advocacy 

organizations per 

10,000 population  

County Business 

Patterns (NAICS) 

2006  

  

Innovation Percent population 

employed in creative 

class occupations  

USDA Economic 

Research Service 

ers.usda.gov 
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Preliminary Results 

The resulting index was mapped by municipality for mainland Puerto Rico, which 

includes 76 of the 78 municipalities (i.e., excludes the small islands of Culebra and 

Vieques which are not part of the centralized electrical network) (see Fig. 1). Working 

results show that the five municipalities vary at both the sub-index and overall BRI level 

(Table 1), with a 30% difference between San German and Mayaguez for the BRI. It is 

noteworthy that infrastructure resilience was calculated to be significantly higher than 

social and economic resilience for all five municipalities. At the same time, Hormigueros, 

Rincon, and San German scored very high for infrastructure resilience whereas 

Mayaguez scored much less. Such results may reflect current emphasis on resilience for 

infrastructure rather than communities and could be used to suggest which municipalities 

are in greater need of infrastructure improvements or social programs. 

 

Table A.2. Preliminary results for BRI for five selected municipalities in West Puerto 

Rico. 

 Anasco Hormiguer

os 

Mayagu

ez 

Rincon San 

German 

S
u
b

-i
n
d
ex

 

Social Resilience 0.36 0.43 0.41 0.49 0.55 

Economic 

Resilience 

0.46 0.55 0.46 0.57 0.56 

Institutional 

Resilience 

TBD TBD TBD TBD TBD 

Infrastructure 

Resilience 

0.65 0.79 0.55 0.94 0.97 

Community Capital TBD TBD TBD TBD TBD 

         Baseline 

Resilience Index 

1.47 1.78 1.41 2.00 2.09 
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Figure A.1.  Baseline Resilience Index for Puerto Rico (BRI-PR). 

 

 

Interesting metrics are also observable by looking at each resilience subindex. 

Table 2 highlights the variables of the first two categories. It is notable that social 

resilience contains seven variables, while economic resilience contains only 6, so 

averaging the variables does reduce the influence of this disparity. However, the range 

and variability of the variables is overlooked in this way, such as with Rincon which has 

very high scores for many variables, and only a few very low scores that bring the mean 

down substantially. Therefore, as a tool it may be useful to use the BRI as a compound 

metric but also to observe the components of each sub-index in order to better understand 

which factors may be contributing to the enhancement or reduction of resilience. 
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Table A.3. Scaled metrics of selected BRI categories. 

Variable Anasc

o 

Hormiguer

os 

Mayagu

ez 

Rinco

n 

San 

Germa

n 

Social Resilience  0.36 0.43 0.41 0.49 0.55 

Ratio of the pct. population with 

college education to the pct. 

population with no high school 

diploma 

0.14 0.70 0.71 0.43 0.53 

Percent non-elderly population  0.36 0.00 0.05 0.01 0.03 

Percent population with a 

vehicle 

0.81 0.45 0.08 0.32 0.13 

Percent population with a 

telephone 

0.49 0.62 0.39 0.90 0.87 

Percent population not speaking 

English as a second language 

0.43 0.74 0.79 0.97 0.60 

Percent population without a 

sensory, physical, or mental 

disability  

0.18 0.08 0.19 0.05 0.90 

Percent population with health 

insurance coverage  

0.06 0.44 0.64 0.77 0.82 

Economic Resilience 0.46 0.55 0.46 0.57 0.56 

Percent homeownership 0.91 0.60 0.05 0.82 0.40 

Percent employed 0.77 0.62 0.29 0.60 0.39 

GINI coefficient 0.04 0.18 0.99 0.23 0.78 

Percent population not 

employed in farming, fishing, 

forestry, and extractive 

industries 

0.53 0.71 0.68 0.73 0.31 

Percent female labor force 

participation 

0.17 0.97 0.61 0.25 0.51 

Number of physicians per 10, 

000 population 

0.36 0.23 0.14 0.82 0.96 
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Lastly, comparing the BRI results with the SoVI for the five municipalities 

highlights differences in resilience and vulnerability (Table 3). San German, for example, 

is more vulnerable than all remaining municipalities except Mayaguez, while being at the 

same time the most resilient. Mayaguez, on the other hand, was found to be both highly 

vulnerable and the least resilient. 

 

Table A.4. Social Vulnerability Index (SoVI) and Baseline Resilience Index (BRI) for 

five municipalities in West PR. 

 Anasco Hormigueros Mayaguez Rincon 
San 

German 

SoVI 

(0-1) 
0.35 0.26 0.75 0.16 0.52 

BRI 

(0-5) 
1.47 1.78 1.41 2 2.09 

 

Discussion 

One of the major assumptions of this approach is that all variables have equal 

weight in contributing to resilience, as determining weights for each variable is difficult 

at this scale and with lacking evidence, and highly prohibiting with 36 variables. 

However, subjective methods can be leveraged to engage with communities, 

stakeholders, and decision-makers to assign relative weights (e.g., Bozza, Asprone, & 

Manfredi, 2015; Etsy et al., 2005). It should also be noted that the BRI represents the 

resilience of municipalities relative to each other, and not as an objective measure of the 

overall resilience of each community. 
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Alternatively to the BRI, the methodology for the SoVI uses ranking and 

percentiles to normalize each the variables, which are then added together and scaled. 

While this methodology also treats the variables as equally weighted, using a Min-Max 

rescaling only helps preserve the distribution and variance of each variable that is lost in 

rank-percentile calculations. Additionally, the BRI constructed here used American 

Community Survey 2017 (ACS) 5-year estimates instead of Census 2000 data. The ACS 

2017 coincides with the year of Hurricane Maria, relevant to the context of this case 

study. While ACS estimates are less accurate than decennial data, the 5-year estimates 

are more reliable than the one and 2-year ACS estimates, and generally appropriate for 

this level of analysis. 

For the social and economic resilience categories, data relied almost entirely on 

Census data readily found in the American FactFinder database, while the other 

categories use a wider variety of data sources. As mentioned previously, some data 

sources do not offer data for PR, which may be due to its commonwealth status as a 

territory so that it is not counted as part of nationwide databases. To cope with this, 

alternative data may be pursued as proxies to complete the BRI for PR. 
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APPENDIX B 

INSTITUTIONAL REVIEW BOARD STATEMENT 
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In compliance with federal regulations on research involving human subjects, data 

collection processes and analysis were reviewed and exempt by the New York University 

Institutional Review Board (NYU WSQ) prior initiation of the project (Ref#: IRB-

FY2019-2665). 


