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ABSTRACT  

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic, 

declared in March 2020 resulted in an unprecedented scientific effort that led to the 

deployment in less than a year of several vaccines to prevent severe disease, 

hospitalizations, and death from coronavirus disease 2019 (COVID-19). Most vaccine 

models focus on the production of neutralizing antibodies against the spike (S) to prevent 

infection. As the virus evolves, new variants emerge that evade neutralizing antibodies 

produced by natural infection and vaccination, while memory T cell responses are long-

lasting and resilient to most of the changes found in variants of concern (VOC).  

Several lines of evidence support the study of T cell-mediated immunity in SARS-CoV-

2 infections. First, T cell reactivity against SARS-CoV-2 is found in both (cluster of 

differentiation) CD4+ and CD8+ T cell compartments in asymptomatic, mild, and severe 

recovered COVID-19 patients. Second, an early and stronger CD8+ T cell response 

correlates with less severe COVID-19 disease [1-4]. Third, both CD4+ and CD8+ T cells that 

are reactive to SARS-CoV-2 viral antigens are found in healthy unexposed individuals 

suggesting that cross-reactive and conserved epitopes may be protective against infection.  

The current study is focused on the T cell-mediated response, with special attention to 

conserved, non-spike-cross-reactive epitopes that may be protective against SARS-CoV-2. 

The first chapter reviews the importance of epitope prediction in understanding the T cell-

mediated responses to a pathogen. The second chapter centers on the validation of SARS-

CoV-2 CD8+ T cell predicted peptides to find conserved, immunodominant, and 

immunoprevalent epitopes that can be incorporated into the next generation of vaccines 

against severe COVID-19 disease. The third chapter explores pre-existing immunity to 

SARS-CoV-2 in a pre-pandemic cohort and finds two highly immunogenic epitopes that 

are conserved among human common cold coronaviruses (HCoVs). To end, the fourth 
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chapter explores the concept of T cell receptor (TCR) cross-reactivity by isolating SARS-

CoV-2-reactive TCRs to elucidate the mechanisms of cross-reactivity to SARS-CoV-2 and 

other human coronaviruses (HCoVs).  
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CHAPTER 1 

CD8+ T Cell Epitope Discovery  

And its Use in The Characterization of The Adaptive T-Cell Response  

To Infectious Disease 

 

T cells interrogate the surface of nucleated or professional antigen-presenting cells for 

antigens derived from pathogens or abnormal proteins expressed by cancer cells. 

Specifically, T cells use their T cell receptor (TCR) to probe antigens in a complex with the 

major histocompatibility complex (MHC) molecule on the surface of the target cell [5] 

(Fig. 1). The antigens are the product of protein degradation by two main pathways, 

depending on the source of the protein. If the source is extracellular, then the antigenic 

peptides are generated by proteolysis of the pathogen in endosomes, phagosomes, or 

lysosomes. The peptides that range between 13-17 residues are then loaded onto MHC-II 

molecules and presented on the cell surface to be probed by CD4+ helper T cells. On the 

other hand, misfolded or viral proteins that originate intracellularly, are degraded in the 

cytosol by the constitutive proteasome or the immunoproteasome and further cleaved in 

the endoplasmic reticulum (ER) to a peptide between 8-10 amino acids long (Fig. 2). The 

shorter peptides are loaded onto the closed peptide binding groove of the MHC-I molecule 

and presented on the cell surface for recognition by CD8+ T cells. In general, peptides that 

are recognized in complex with the MHC molecule via interaction with the TCR, and 

induce an immune response are known as epitopes [6].  

One of the key challenges in the process of defining immunogenic T cell epitopes is the 

high interpersonal variability of peptide recognition owing to many reasons. The first is 

the highly polymorphic nature of the MHC molecule that has more than 13,000 different 

class I alleles (and > 5760 Class II) and determines the personal repertoire of peptides that 
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are loaded and presented on the cell surface for recognition [7]. Most of the 

polymorphisms affect the peptide binding groove and thus determine which peptides are 

accommodated and presented. The second reason is the immunological history of an 

individual that will shape activation of memory or de novo T cell responses, influence 

recognition due to cross-reactivity generated during prior infections with similar 

pathogens, or dampen activation due to similarity of the peptide/s to self-proteins [8, 9]. 

Other factors that influence immunogenicity include the abundance of the peptide:MHC 

complex that in turn is affected by the stability of the complex, the binding affinity of the 

peptide to the MHC, the immune-prevalence of the source protein as well as the efficiency 

of proteasome degradation and ER-mediated peptide cleaving [10-15]. In all, epitope 

recognition is defined by individual genetic and environmental factors that complicate T-

cell epitope mapping efforts.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1. pMHC:TCR complex. The peptide in grey in complex with the MHC in teal and 
the TCR in lime green and light magenta. 3D Model made with Mol, PDB 2VLJ [16].  
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Figure 2. Antigen presentation Pathway. Adapted from ref 1. Antigens derived from 
viruses or misfolded proteins are degraded by the proteasome, or in the case of the 
immune response the immunoproteasome. The resulting peptides are translocated into 
the endoplasmic reticulum (ER) lumen through the transporter associated with antigen 
processing (TAP 1/2). In the ER, peptides may be processed further by the ER 
aminopeptidase-associated antigen processing (ERAAP) and then loaded onto the MHC 
class I molecule. The pMHC complex is then shuttled to the cell surface for interrogation 
by CD8+ T cells.  LMP2: Low molecular weight polypeptide complex. TCR: T cell receptor. 
APC: Antigen Presenting Cell. Figure made with BioRender. 

 

1.1 HLA Class I Supertypes and epitope recognition 

The structural definition of more than 600 pMHC complexes by X-ray crystallography 

has provided insight into the biochemical parameters involved in allele-specific binding 

patterns to a specific peptide [17]. Although, most of the HLA class I allele structures have 

not been resolved, there are common patterns that rule peptide and MHC molecule 
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interaction. For instance, HLA class I alleles have six discrete binding pockets within their 

peptide binding groove (Fig. 3) named with the letters A through F. Each binding pocket 

has an allele-specific biochemical structure that determines which and how each residue 

from the peptide is accommodated. Pockets B and F interact with anchor positions 2 (P2) 

and the C-terminal (PΩ) amino acid of the peptide, respectively [18-21]. Anchor residues 

take their name from the central role they have in binding to the B and F pockets and 

anchoring the peptide within the peptide binding groove [20]. Guided by the nature of the 

P2 and P9 residues, Sidney et al. classified HLA alleles into supertypes or groups of alleles 

that share chemical properties or motifs, at the B and F pockets (Table 1). Using this 

grouping, they defined 9 different HLA supertypes that fully and partially match about 

57% and 23.8% respectively, of most HLA class I alleles [19]. Supertype classification has 

facilitated the mapping of putative MHC class I ligands while identification of overlapping 

peptide repertoires helps to project population coverage.  

 

 

 

 

 

 

 

 

Figure 3. Representation of the peptide binding groove of the HLA class I molecule. Each 
of the binding pockets or clefts is represented with a color. Pocket A: Orange, B: Red, C: 
Light blue, D: green, E: purple, F: brown. The peptide is represented in white. Modified 
from Ref 21. 
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Table 1. B and F pocket amino acid affinity according to HLA class I supertype. Modified 
from reference [20]. 

Supertype B Pocket Residues F pocket Residues 
A01 Small/Aliphatic Aromatic/Large/Hydrophobic 
A01/A03 Small/Aliphatic Aromatic/Basic 
A01/A24 Small/Aliphatic/Aromatic Aromatic/Large/Hydrophobic 
A02 Small/Aliphatic Aliphatic/Small/Hydrophobic 
A03 Small/Aliphatic Basic 
A24 Aromatic/Aliphatic Aromatic/Large/Hydrophobic 
B07 Proline Aromatic/Large/Hydrophobic 
B08 Undefined Aromatic/Large/Hydrophobic 
B27 Basic Aromatic/Large/Hydrophobic/Basic 
B44 Acidic Aromatic/Large/Hydrophobic 
B58 Small Aromatic/Large/Hydrophobic 
B62 Aliphatic Aromatic/Large/Hydrophobic 

 

A few models have tried to predict which residues or combinations of peptides facing 

the TCR, are likely to induce T cell reactivity. Since peptide residues P4-P6 are involved in 

the contact with TCR residues, Calis et al, devised a model that looks at the hydrophobicity 

of non-anchor residues and found that immunogenic epitopes tend to be more 

hydrophobic than non-immunogenic peptides. This model can explain 65% of observed 

immunogenicity and it is available as a free open-access platform at 

http://tools.iedb.org/immunogenicity/ [22]. A similar study confirmed that TCR contact 

residues in both human and murine models have a higher hydrophobicity index and lower 

polarity among 9-mer epitopes restricted to HLA-A*02:01 and MHC H-2Db and H-2Kb 

[23]. More recent platforms like pMTnet, incorporate complementary determining region 

3 (CDR3β) features from the TCR with the peptide and HLA class I sequences, into a deep-

learning network. pMTnet is trained on TCR:pMHC binding/not-binding pairs to identify 

immunogenic interaction [24]. However, the amino acid sequence of the peptide and 

binding affinity to the MHC complex alone are not enough to define immunogenicity. 

Integrating the biochemical character of each amino acid, especially residues P4-P6 and 

http://tools.iedb.org/immunogenicity/
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sometimes P7, and binding elements of the TCR (CDR3) can improve current predictive 

models of reactivity which can be useful for vaccine and immunotherapy design. 

1.2 Immunodominance and immunoprevalence 

An important variable in epitope identification is the abundance of target peptide and 

how it shapes the TCR repertoire during an immune response. Epitope recognition that 

elicits a higher magnitude of response than other epitope-specific responses is known as 

immunodominant [25]. Several factors can contribute to immunodominance: the 

abundance of the source protein, the expression level of the HLA to which the epitope is 

restricted, and the efficiency of processing and presentation of the antigenic protein [14]. 

Differences in cleavage patterns by the immunoproteasome influence the CD8+ T cell 

repertoire, for example favoring cleaving at the PΩ position of hydrophobic residues. 

However, incorporating these factors in a model to predict cleaving and presentation has 

been modestly successful, missing about half of the possible peptides (reviewed in [26]). 

Part of the reason is that not all the rules of the game are clear; mice deficient in all three 

subunits of the immunoproteasome are severely but not completely impaired at antigen 

processing and presentation. When wild-type (WT) splenocytes are transferred into triple 

knock out (TKO) mice, the cells are rejected, indicating that the type of peptides processed 

and presented are different in TKO mice. Only 50% of peptides presented were similar 

between WT and the TKO mice. In addition, T cells from these mice are unable to replicate 

and survive when transferred into wild-type-virus-infected mice, suggesting a possible 

role for the immunoproteasome in T cell survival and proliferation during infection [27].  

In addition to immunodominance, which is defined by the magnitude of response, 

immunoprevalence is also central for learning about T cell reactivity and the breadth of 

the T cell response. Immunoprevalence is the frequency at which an epitope is 

recognized by T cells, regardless of the magnitude. Many times, immunoprevalent 
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epitopes are also immunodominant mainly because abundance influences both. However, 

immunodominance is more dependent on individual history, TCR repertoire, and HLA 

restriction while prevalence is defined by immunogenic areas of an antigen instead of a 

single peptide. These areas can be identified by different individuals with different HLA 

restrictions, as in the case of pox virus open reading frames (ORF) [28]. For smaller 

viruses like HIV and Hepatitis C, immunoprevalence is harder to distinguish from 

immunodominance since the repertoire of processed proteins is smaller and more likely 

to be important throughout their life cycle. In contrast, larger viruses like the herpes virus 

EBV (Epstein Bar Virus) and VV (vaccinia virus) have a CD8+ T cell immunoprevalent 

hierarchy were peptides from larger proteins may be slightly immunogenic or not at all. 

About 50% of VV proteins encode CD8+ T cell epitopes and 10 epitopes originate from the 

same antigenic protein and are also restricted to 7 different HLAs [28]. Oseroff et al. 

propose that immunoprevalence may be more dependent on the abundance of the protein, 

cellular localization, and patterns of expression and degradation.  

Identification of immunodominant epitopes ensures identification of immunogenic 

targets according to abundance and magnitude of response while understanding 

immunoprevalence can help to expand coverage of vaccines and treatments to a wider set 

of HLA restrictions. Incorporating immunodominant and immunoprevalent information 

into predictive algorithms can improve epitope discovery from larger proteins that may 

not be cost/effort-effective to screen in their entirety.  

1.3 MHC ligand and Immunogenicity predictions 

The identification of epitopes, is one of the many steps required to understand an 

immune response against a pathogen or a nascent tumor and it is dependent on the host, 

the source of the antigen (virus, tumor), and whether the source of the reaction is via 

vaccination, natural infection or in vitro/ex vivo stimulation. In general, we can 
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differentiate peptides from epitopes by the combination of three main types of tests. The 

first is by mass spectrometry of eluted MHC-bound ligands (ELs), this method indirectly 

provides information on cleavage and presentation repertoires but not immunogenicity 

[29]. The second assay measures MHC binding in vitro to quantify binding affinity (BA) 

and HLA restriction, however, it does not provide data on natural antigen processing and 

presentation [30]. The third type of assay measures T cell epitope recognition and provides 

information on the magnitude and polarity of the T cell response but it may be biased to 

the HLAs being tested and miss-represent the actual immunopeptidome [31]. Due to the 

complexity and labor-intensive nature of theses assays, computational tools have been 

developed to aid in the effort to determine the immunopeptidome of a specific pathogen 

or tumor.  

The last three decades have demarcated the birth and surge of computational models 

aimed at predicting the peptide repertoire of MHC class I and II alleles. Most algorithms 

provide information on predicted BA as IC50 values between the peptide and the MHC 

molecule. IC50 is defined as the concentration in nM at which 50% of binding of a labeled 

reference peptide is inhibited and it approximates the equilibrium dissociation constant 

(KD) between the peptide and the respective MHC molecule. The lower the IC50 value, the 

higher the binding affinity [32, 33]. Recently, several algorithms have been developed that 

link machine learning (e.g. SMM) [34], advanced neural networks (e.g. NetMHC3.2) [35], 

and optimally connected Hidden Markov Models (ocHMM) with experimentally derived 

datasets on HLA binding affinity, processing and cleaving [6, 36-38]. Models that 

integrate ligand elution and binding affinity data can predict >90% of naturally presented 

peptides with 98% specificity [39]. However, the number of truly immunogenic peptides 

is much lower, between 10-15% when using most predictive algorithms, and even lower 

for neo-antigen epitope discovery (<5%) [40].  
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Epitope discovery using individual predictive algorithms provides results that are 

biased to the method and dataset used to train the algorithm, e.g. limited to certain HLA 

restrictions, viral sequences, representative of a few ethnicities, etc. Pooling multiple 

epitope prediction algorithms and benchmarking with experimentally validated sets of 

eluted peptides (ELs) and binding affinities (BA) has been shown to increase the positive 

predictive value (PPV) of MHCs ligand prediction as well as the percentage of truly 

immunogenic epitopes [35, 40, 41]. For instance, Lundegaard et al, modified the NetMHC 

platform by using a consensus method that combines eluted and binding affinity 

information (NetMHCpan-4), to improve the percentage of discovered immunogenic 

peptides to 54%. On the other hand, the addition of peptide processing by the 

immunoproteasome and presentation on the cell surface have added minor improvements 

to MHC ligand predictions. The reason may be that cleavage by the immunoproteasome 

and TAP transport events are less selective and more conserved than MHC peptide 

binding. For example, the immunoproteasome tends to favor cleaving at hydrophobic 

residues at the C-terminus of the peptide, independent of the HLA to which it will be 

loaded  [26]. Adding processing and presentation probabilities, although minor, does 

improve prediction algorithms and has extended the predicted repertoire length to include 

8, 9, 10, and 11 mer peptides [42]. Overall, predictive algorithms that train on binding 

affinity and eluted peptides, reduce the number of putative ligands to test and streamline 

the process of finding the phenotype and functional profile of epitope-specific responses 

under different contexts, like vaccination, acute infection, convalescence, and cancer.  

EnsembleMHC and the binding capacity of common HLA class I alleles to SARS-CoV-2 

CD8+ T cell predicted peptides 

EnsembleMHC is a consensus platform that integrates predictions of binding affinity, 

processing, and presentation with mass spectrometry of eluted peptides and binding 



10 

affinity data [29, 43]. Specifically, it integrates 7 different algorithms: MHCFlurry-affinity-

1.6.0 [44], MHCFlurry-presentation-1.6.0 [44], netMHC-4. [45], netMHCpan-4.0-EL 

[39], netMHCstabpan-1.0 [46], PickPocket-1.1 [47] and MixMHCpred-2.0.2 [48]. To 

determine allele- and algorithm-specific binding affinity thresholds, each algorithm was 

trained on a data set of mass-spectrometry-confirmed ELs that were naturally presented 

by 92 different stable monoallelic cell lines [29]. A subset of the target ELs was used, 

restricted to 52 of the 95 HLA class I A, B and C alleles supported by all 7 algorithms (Fig. 

4).  

To determine the false discovery rate (FDR), each platform was fed a set of decoy 

peptides (100-fold excess of the allele-specific set) randomly selected from a pool of 

predicted but not detected peptides from the same protein source. Then, the target and 

decoy ELs were ranked according to binding affinity. Allele- and algorithm-specific 

thresholds were defined so that 50% of the total repertoire was selected [43]. The final 

outputs for every algorithm and allele set, are then combined into a composite score that 

allows to select of the final peptide set. To do this, algorithm-specific FDRs are calculated 

as the fraction of target-to-decoy peptides at the specific BA threshold. Then, a composite 

FDR, peptideFDR, is assigned by multiplying the 7 different empirical FDRs of each peptide. 

This composite score is then used to select peptides with a peptideFDR that is equal to or 

less than 5%. Selecting this level of FDR, although it allows for some false positives in the 

output set, prevents false positives from exceeding 5% of the total predicted repertoire 

[49].  

Wilson et al, found that by using a composite peptideFDR, EnsembleMHC can recall 

high-quality predicted peptides with higher precision than individual algorithms. 

Precision and recall were calculated under a combination of permissive or restrictive 

thresholds for each of the 7 algorithms and EnMHC. A permissive limit includes 20% of 
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the highest binders (binding percentile ≤2%, binding affinity ≤500nM, presentation ≤2%, 

FDR ≤50%) while restrictive conditions include only the top 5% (binding percentile 

≤0.5%, binding affinity ≤50nM, presentation ≤0.5%, FDR ≤5%). Although EnMHC had 

lower recall ability both under restrictive and permissive thresholds, the positive 

predictive value (PPV), or precision, was 3.4-fold higher for EnMHC than for individual 

platforms (Fig. 4). 

The setup of this algorithm allows for the identification of high binders with a high 

probability of being processed and presented on the cell surface with a lower FDR by using 

the peptideFDR as a metric for discerning the top binders. In addition, it considers the 

different binding capacities of each HLA, instead of using a single threshold for all the 

algorithms in the consensus platform. EnsembleMHC successfully prioritized peptides 

that were experimentally validated to be immunogenic across the Hepatitis C genome 

polyprotein (P26664), the Dengue virus genome polyprotein (P14340), and the HIV-1 

POL-GAG protein (P03369). Ensemble MHC had 1.5 to 7-fold higher call precision [True-

Positives/(TP+FalsePositives)] for top-ranking viral peptides when compared to 

individual algorithms (e.g. netMHCpan-EL, PickPocket, etc.) [43]. Demonstrating again 

that pooling multiple epitope prediction algorithms improves precision and lowers FDR 

of predicted peptides while increasing the likelihood of finding immunogenic epitopes 

[39].  

Peptide repertoire predictions for multiple alleles are used to represent the HLA 

diversity in a study population. However, different HLA class I alleles have different 

binding capacities or repertoires as well as different epitope binding affinities as shown in 

a study by Sette et al with the Dengue Virus proteome [50]. Likewise, the predicted peptide 

repertoire for the SARS-CoV-2 proteome using EnMHC, revealed the same trend where 

there is a significant difference in the binding capacity of HLA class I alleles to the SARS-
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CoV-2 peptidome. After analysis with EnMHC, 3.49 million peptides were predicted and 

restricted to 52 of the HLA class I A, B, and C alleles supported by the consensus algorithm. 

After filtering out predicted peptides with a peptideFDR higher than 5%, the number of total 

epitopes was refined from 3.49 million to 658 peptides from non-structural (nsp; n=542) 

and structural proteins (n=108) (Table 2) [43].  

 

 

 

 

 

 

 

 

 

Figure 4. Schema and workflow to define high-quality predicted peptides: high binders 
according to IC50 and percentile, top percentile for cleavage and presentation. Peptides 
with a peptideFDR higher than 5% were eliminated. Adapted from Wilson et al. 2022. 
Illustration made with Biorender. 
 
Peptides were distributed among 22 A, 21 B, and 9 C class I HLA alleles. HLA-A alleles 

had the highest binding capacity above B and C. However, one must take into account that 

one, C alleles are characterized by lower transcript and expression levels on the cell 

surface, and two, HLA-C BA and EL data is not as abundant as for the other class I alleles 
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[51]. The alleles with the least number of predicted epitopes were A*02:05 (2 nsp/1 

structural) and B*07:02 (3 nsp/1 structural) while A*24:02, B*57:01 and B*53:01 had the 

highest binding capacities (see Table 3). Although the study does not look at aggregated 

allele-specific binding affinity, it finds that the allele-specific epitope load is significantly 

different when looking at the entire proteome and when comparing non-structural 

proteins (nsp) with structural viral proteins like Spike (S), Nucleocapsid (N), membrane 

(M) and Envelope (E) (Table 3) [43]. Although the inter-allele differences in binding 

capacities are observed both for nsp and structural proteins, the difference is more 

pronounced for structural proteins. The significant deviation from an even distribution of 

peptides among the different HLA class I alleles agrees with several studies that have 

observed the same phenomena when looking into CD4+ and CD8+ T cell predicted peptides 

from SARS-CoV-2 and Dengue Virus [50, 52]. The study by Wilson et al, found that the 

binding capacity of a population is inversely correlated to the mortality rates due to 

COVID-19, even after accounting for socioeconomic and high-risk factors like BMI, and 

cardiovascular and pulmonary disease [43].  

1.4 pMHC predictions and heterologous immunity, sequence 

conservation, and T cell cross-reactivity  

Memory responses to previous infections can alter the kinetics and patterns of the 

immune response to subsequent encounters with the same or different pathogen/s [53]. 

Heterologous immunity can occur against parasites, bacteria, and viruses and may lead to 

immune responses that can be protective or pathological [54]. For example, pre-existing 

T cell immunity to swine-origin H1N1 influenza virus due to Tmem cell recognition of 

conserved regions was associated with protection from severe disease [55, 56]. Similarly, 

the sequence homology of SARS-CoV-2 to common cold coronaviruses (CCCoVs) is about 

65-69% and has been shown to be associated with protection against infection in COVID-
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19 contacts [57, 58]. On the other hand, conserved epitopes can also have lower 

recognition by T cells as it is the case of proteins that share homology to self. T cells that 

recognize conserved epitopes from the human proteome ought to be deleted during T cell 

maturation by negative selection, while T cells that react to proteins from commensal 

organisms are suppressed as part of a protective process called peripheral tolerance [59, 

60]. Both instances are examples of reduced T cell reactivity that can impact recognition 

to viral pathogens and thus should be considered in the design of predictive algorithms 

that look for MHC ligands for vaccine or therapy design.  

The use of HLA binding motifs along with binding affinity and eluted ligand databases 

to aid machine learning simplifies and has improved epitope discovery pipelines. We have 

learned that there are HLA-specific variations in binding capacity and binding affinity 

defined by the biochemical character and spacing of individual amino acids which in turn 

influence affinity to the MHC molecule and determine immunogenicity. The present work 

seeks to validate predictions by EnsembleMHC using SARS-CoV-2 as a model (Chapter 

2).  In Chapter 3, the predicted peptides will be used to describe the dynamics of the CD8+ 

T cell response against SARS-CoV-2 in vitro for 12 months. Also, reactivity will be studied 

after natural infection and/or vaccination. Chapter 4 will present and analyze data about 

pre-existing immunity in up to 50% of individuals to a virus never encountered before that 

produced the first worldwide pandemic since the influenza pandemic of 1921. To end, we’ll 

discuss the biochemical mechanisms of pre-existing immunity and cross-reactivity to 

SARS-CoV-2 by studying a cross-reactive T cell receptor (TCR) isolated from a pre-

pandemic sample reactive to the virus. 
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  Table 2. Structural peptides predicted with EnMHC restricted to 52 common HLA-I 

alleles. Non-structural peptides are reported in reference 24 (Wilson et al. 2021).  

Peptide Sequence HLA Restriction Protein Start  
Position 

End  
Position 

FLAFVVFLL A02:01|A02:11 E 20 28 

LVKPSFYVY A30:02 E 51 59 

YVYSRVKNL C12:03 E 57 65 

RVKNLNSSR A31:01 E 61 69 

SLVKPSFYV A02:11 E 70 58 

EELKKLLEQW B44:02 M 11 21 

KLLEQWNLV A02:11 M 15 23 

FAYANRNRF C12:03 M 37 45 

YANRNRFLY A29:02 M 39 47 

NRFLYIIKL B27:05|C06:02|C07:01 M 43 51 

LYIIKLIFLW A24:02 M 46 55 

IAIAMACLVGLMW B57:01 M 80 92 

MACLVGLMW B57:01 M 84 92 

SYFIASFRL A23:01 M 94 102 

SYFIASFRLF A23:01 M 94 103 

YFIASFRLF A23:01 M 95 103 

ASFRLFARTRSMW B57:01 M 98 110 

RLFARTRSMW A32:01 M 101 110 

RLFARTRSMWSF A32:01 M 101 112 

SELVIGAVIL B40:01 M 136 145 

LVIGAVILR A66:01|A68:01 M 138 146 

AVILRGHLR A31:01 M 142 150 

RIAGHHLGR A31:01 M 150 158 

VATSRTLSY B46:01 M 170 178 

ATSRTLSYY A01:01|A30:02 M 171 179 

ATSRTLSYYK A11:01 M 171 180 

RVAGDSGFAAY A30:02 M 186 196 

SSDNIALLV C05:01 M 213 221 

QRNAPRITF B27:05 N 9 17 

LPNNTASW B53:01 N 42 49 

LPNNTASWF B53:01 N 42 50 

NTASWFTAL A68:02 N 45 53 

FTALTQHGK A68:01 N 50 58 

FPRGQGVPI B07:02|B51:01|B54:01 N 63 71 

KMKDLSPRW A32:01 N 97 105 

LPYGANKDGIIW B53:01 N 118 129 

RQKRTATKAY B15:01 N 256 265 

KAYNVTQAF A32:01|B15:03|B15:17| 
B46:01|B57:01|C12:03 

N 263 271 

AQFAPSASAF B15:01|B15:03 N 302 311 

MEVTPSGTW B44:02|B44:03 N 319 327 

TPSGTWLTY B35:01 N 322 330 

LTYTGAIKL B15:17 N 328 336 

KTFPPTEPKK A03:01|A11:01 N 358 367 

KTFPPTEPK A03:01|A11:01|A30:01 N 358 366 
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Table 2. Contd.  
    

Peptide Sequence HLA Restriction Protein Start  
Position 

End  
Position 

LPLVSSQCV B51:01 S 8 16 

YTNSFTRGV A68:02 S 25 33 

VYYPDKVFR A31:01 S 33 41 

LPFFSNVTW B35:01|B53:01 S 53 61 

LPFFSNVTWF B53:01 S 53 62 

LPFFSNVTWFHA B54:01 S 53 64 

KRFDNPVLPF B27:05 S 72 81 

LPFNDGVYF B35:01|B53:01 S 79 87 

LPFNDGVYFA B54:01 S 79 88 

GVYFASTEK A03:01|A11:01 S 84 92 

CPFGEVFNA B54:01 S 104 112 

TLDSKTQSL C05:01 S 104 112 

NATNVVIKV A68:02 S 117 125 

GVYYHKNNK A03:01 S 142 150 

SEFRVYSSA B45:01 S 150 158 

RVYSSANNCTF A32:01 S 153 163 

VYSSANNCTF A24:02 S 154 163 

SANNCTFEY B35:01 S 157 165 

FVFKNIDGY A25:01|A26:01 S 187 195 

WTAGAAAYY A26:01|A30:02 S 253 261 

YLQPRTFLL A02:01|A02:02|A02:03| 
A02:05|A02:06|A02:07| 

A02:11|B08:01 

S 264 272 

ETKCTLKSF A25:01|A26:01 S 293 301 

QPTESIVRF B35:01|B53:01 S 321 329 

VRFPNITNL B27:05|C06:02|C07:01|C07:02 S 322 330 

FPNITNLCPF B35:01|B53:01 S 324 333 

SVYAWNRKR A31:01 S 344 352 

CVADYSVLY A26:01|A29:02 S 356 364 

LYNSASFSTF A23:01|A24:02 S 368 377 

NSASFSTFK A68:01 S 370 378 

KIADYNYKL A02:02|A02:06|A32:01 S 417 425 

RLFRKSNLK A03:01 S 449 
 

KSNLKPFER A31:01 S 453 461 

CYFPLQSYGF A23:01|A24:02 S 493 492 

KKFLPFQQF B15:03 S 552 560 

TEVPVAIHA B45:01 S 613 621 

HADQLTPTW B53:01 S 620 628 

VYSTGSNVF A23:01|A24:02 S 630 638 

IPIGAGICASY B35:01 S 659 667 

IPIGAGICA B54:01 S 659 667 

VASQSIIAY B35:01 S 682 690 

IPTNFTISV B51:01 S 709 717 

FTISVTTEI A68:02 S 713 721 

STECSNLLLQY A01:01 S 741 751 

NTQEVFAQV A68:02 S 772 780 
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Table 2. Contd. 
    

Peptide Sequence HLA Restriction Protein Start  
Position 

End  
Position 

RSFIEDLLF B15:17|B57:01 S 810 818 

LTDEMIAQY A01:01 S 860 868 

IPFAMQMAY B35:01|B53:01 S 891 899 

FAMQMAYRF B53:01 S 893 901 

VLNDILSRL A02:02|A02:03 S 971 979 

AEIRASANL B40:01 S 1011 1019 

AEIRASANLA B45:01 S 1011 1020 

ASANLAATK A11:01 S 1015 1023 

FPQSAPHGV B54:01 S 1047 1055 

VTYVPAQEK A03:01|A11:01 S 1060 1069 

GTHWFVTQR A11:01|A31:01 S 1094 1102 

VYDPLQPEL A23:01|C04:01|C05:01| 
C14:02 

S 1132 1140 

DISGINASV A68:02 S 1163 1171 

KEIDRLNEV B40:02 S 1176 1184 

QELGKYEQY B44:02|B44:03 S 1196 1204 

QYIKWPWYI A23:01|A24:02 S 1203 1211 

QYIKWPWYIW A24:02 S 1203 1212 

QYIKWPWYIWLGF A24:02 S 1203 1213 

WPWYIWLGF B53:01 S 1207 1215 

FIAGLIAIV A02:02|A68:02 S 1215 1223 
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CHAPTER 2 

CD8+ T Cell Reactivity to SARS-CoV-2 in a Young, Healthy Cohort 

During the Delta and Omicron Waves 

2.1 Introduction 

SARS-CoV-2 has claimed the lives of more than 6.6 million individuals around the 

world since the start of the pandemic over 3 years ago [61]. In addition to the clinical 

consequences of acute SARS-CoV-2 infection, up to 30% of COVID-19 convalescent 

individuals present with long-COVID, also known as PASC (post-acute sequelae), a 

chronic condition that can impair mental and physical health for more than 30 days. Long-

COVID is projected to cost the US government up to 2.6 trillion dollars or about nine 

thousand dollars in treatments per person per year [62]. Although both therapies and 

vaccines against severe COVID-19 are available, the constant evolution of the virus to 

evade humoral immunity, and inequality in vaccine access have kept SARS-CoV-2 

infection a constant threat to global health and economic stability.  

SARS-CoV-2 variants evade both natural and vaccine-induced humoral immunity. 

Vaccine-mediated protection against severe disease and hospitalization is lower for the 

Omicron and Delta VOC (variants of concern) than for variants like alpha or beta that 

dominated earlier in the pandemic [63]. Sera from convalescent and vaccinated patients 

have limited neutralization against the Omicron variant and is attributed to amino acid 

changes at antibody neutralization sites within the spike protein [64-67]. Omicron has 30 

amino acid changes in the spike protein, which explains in part the higher rate of re-

infection after Omicron convalescence and highlights the need to formulate vaccines that 

use conserved non-spike epitopes and enhance T cell-mediated responses that supplement 

a decline in humoral immunity. Variant-independent CD4+ and CD8+ T cell reactivity has 

been described against conserved structural proteins such as the Nucleocapsid and the 
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Membrane, in addition to non-structural proteins (NSP) like nsp12 (RdRp-RNA 

Dependent RNA Polymerase) and nsp3 (Papain protease). Using targets that are 

conserved and essential during early/late viral stages can potentially supplement variant-

independent humoral and innate responses to the virus with CD8+ T cell-mediated 

responses.  

An increasing body of evidence supports adding T-cell targets to a vaccine against 

COVID-19. Non-human primate studies show that CD8+ T cells protect against SARS-

CoV-2 infection and severe disease while mice models show that both CD4+ and CD8+ T 

cell populations protect against coronaviral infections [68-70]. Moreover, IFN-γ secretion 

upon T-cell activation correlates to mild COVID-19 disease [71].  Although T cell reactivity 

to SARS-CoV-2 has been extensively studied using predicted peptide mega pools or 

overlapping peptides from the viral peptidome, most of the peptides are restricted to 

common HLA class I and II alleles. Few studies have deconvoluted the immunogenicity of 

individual predicted peptides to map T cell reactivity longitudinally and conservation 

through VOC.  

Here, we measured the breadth, specificity, and persistence of CD8+ T cell reactivity 

in both vaccinated and naturally infected young adults during the Delta and Omicron 

waves between 2021 and early 2022. In addition, we study the impact of the newer variants 

on T cell responses to predicted peptides restricted over 31 different HLA-I alleles in the 

context of mild or asymptomatic COVID-19 disease. Our lab previously designed a 

consensus predictive algorithm, EnsembleMHC, that can predict HLA class I high-affinity 

ligands with a low false discovery rate (FDR) [43]. Using EnsembleMHC, we found 108 

peptides derived from structural proteins and restricted to 52 of the most common HLA 

Class I alleles. We measured immunogenicity by T cell IFN-γ secretion ELISpot to 93 out 

of the 108 structural peptides restricted to 31 unique HLA class I alleles predicted to cover 
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>99.5% of the global population. We found, that EnsembleMHC predicted correctly the 

binding capacity of individuals and most importantly, 82% (76/93) of screened peptides 

were immunogenic. The breadth and persistence of the CD8+ T cell response include 

epitopes from the spike and other structural proteins, after vaccination reactivity is 

enhanced to all structural proteins and can endure up to 16 months post-vaccination.  

 

2.2 Results 

2.2.1. Description of ASU cohort to assess CD8+ T cell responses to SARS-

CoV-2 predicted peptides  

We collected blood samples from a young (median age 25 y/o) student cohort from 

Arizona State University (ASU) and a heavier representation of males (14/19) (Table 4). 

Samples were collected over 15 months, starting in February 2021 until May 2022. At the 

time of recruitment, 4 donors did not have detectable levels of antibodies against the  spike 

(Access Immunoassay CLIA certified ASU Biodesign Institute) and self-reported as never 

having been infected with SARS-CoV-2. One of the four seronegative students had 

received a vaccination with J&J 8 days before the first blood draw. An additional 5 

individuals self-reported as never had been infected, all of them were vaccinated and 

positive for antibodies against the receptor binding domain (RBD) of spike. The rest of 

the students (n=10) were sero-reactive to the RBD and of those, 3 donors had been 

vaccinated. Most of the infected participants had either asymptomatic or mild outpatient 

COVID-19, and infections most likely represent Delta (Nov 2020-Nov 2021) and Omicron 

BA.1 (Dec 2021-present) variant waves [72].  
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Table 4. Demographics of pre-pandemic and ASU cohort donors. Median age was 25 y/o 
for the ASU cohort and most donors were male. No participants reported COVID-19-
associated comorbidities. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

API: Asian Pacific Islander, A; Asian, W: White, His: Hispanic, RBD: Receptor Binding 
Domain. mRNA-1273: Moderna, BNT16b2: Pfizer, As26.COV2.S: Janssen/Johnson 

 

To determine the dynamics of CD8+ T cell recognition over time, we collected samples 

at 5 different time points: time of recruitment or baseline, 2 weeks, and at 1, 3, 6, and 12 

months after the first sample collection. At the end of sample collection, 16/19 individuals 

were vaccinated with either mRNA-1273 (n=6), BNT162b2 (n=7) or ad26.COV2.S (n=3) 

vaccines and three individuals remained unvaccinated (2 dropped out). For each time 
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point, the days post vaccination/infection are detailed as well as the sero-reactivity (IgG) 

to RBD of SARS-CoV-2 spike and N protein of 7 different human coronaviruses (SARS-

CoV-2, SARS-CoV, MERS-CoV, 229E-CoV, NL-63-CoV, OC-43 CoV and HKU-1 CoV). 

Finally, to characterize pre-existing responses to SAR-CoV-2 we tested pre-pandemic 

samples (n=12) collected between 2017 and early 2019, well before the start of the SARS-

CoV-2 pandemic, declared on the 11th of March of 2020 [73].  

2.2.2 Immunogenicity of SARS-CoV-2 CD8+ T cell peptides predicted by 

EnsembleMHC 

We used a consensus algorithm, EnMHC to feed the entire sequence of the SARS-CoV-

2 proteome and obtained a list of 658 high-confidence structural and non-structural 

peptides predicted to bind to 52 of the most common HLA-I alleles worldwide (Fig. 5). The 

current study prioritized the validation of all predicted structural peptides (n=108) to 

determine immunogenic hotspots that can be targeted with vaccines, especially if they are 

highly conserved among common cold coronaviruses (CCCoVs) and emergent variants of 

concern (VOC).  Analysis of non-structural proteins is equally important given that 

proteins like nsp12 (RdRp) and nsp 3 (endonuclease) are essential for the completion of 

the viral cycle, are highly conserved among HCoVs and VOC, and are known to be 

expressed in high enough quantities to be considered immunoprevalent [74]. However, 

given the amount of PBMCs available for analysis, and that previous SARS-CoV studies 

show that structural proteins co-dominate the response, we decided to prioritize testing of 

structural proteins [75].   

To determine peptide reactivity, ELISpot IFN-γ secretion was quantified as the 

number of spot-forming units (SFU) per 106 PBMCs (peripheral mononuclear cells) – see 

Methods 2.4.7. To be considered reactive or immunogenic, the number of SFU had to: 1) 

be above the 2-fold threshold (sample SFU/background SFU) and 2) be above the 
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background number of SFU plus 3 standard deviations. When used together, these two 

parameters reduce the false discovery rate (FDR) when less than 5 replicates per peptide 

are tested [76, 77]. 

 
 

 
 

 

 
Figure 5. Distribution of EnsembleMHC predicted peptides from the SARS-CoV-2 
proteome among 52 HLA-I alleles. A, Binding capacity to nsp and structural peptides 
predicted with EnMHC. B. Enhancement of structural peptides. C. Peptides tested 
according to cohort HLA restriction. NSP: non-structural. Adapted from (Wilson, et al. 
2022). 

 

Due to the HLA restriction of the pre-pandemic and ASU cohorts, we validated the 

immunogenicity of 93 out of the 108 structural peptides, restricted to 31 different HLA 

class I A, B, and C alleles. The group of tested peptides and HLA combinations 

covers>99.56% of the North American population [78] as expected from the diverse group 

of students that attend the university (Fig. 6). The median number of predicted peptides 

from the entire proteome of SARS-CoV-2 per allele is 17 with a range between 3 and 47 

peptides per allele. HLA-A*23:01 and 24:02 have the highest binding capacity among all 
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class I alleles, while A*02:05, B*07:02, B35:03, B*37:01, and C*12:05 have the lowest. As 

reported previously [43], inter-allele binding capacities have higher variation among 

structural proteins than for the entire proteome, and this is exemplified by the higher 

number (n=6) of HLAs predicted not to bind any structural peptides after analysis with 

EnsembleMHC (e.g. HLA-B*15:02, B35:03). The binding capacity range for structural 

peptides is between 5 and 23 peptides and between 23 and 134 for non-structural proteins. 

As a group, HLA class I-A alleles are predicted to have the highest binding capacity with 

an average of 20.5 structural peptides and as many as 533 peptides for the entire proteome 

(Table 3, 5). After testing for reactivity, the observed binding capacity to structural 

epitopes was not significantly different from the predicted value (Wilcoxon-matched 

ranked pairs P>0.05) (Fig 7). The observed binding capacity may be higher given that not 

all the predicted peptides could be tested in every instance due to a limited number of 

available cells per sample. Of note, the observed binding capacity does not take into 

account promiscuity of HLA binding, peptide presentation by different MHC molecules 

present in the same donor or from HLAs that belong to the same supertype and that in 

theory could present the same peptide. In this respect, careful itemization was done per 

peptide to determine if a peptide was restricted to more than one HLA per donor.  Of the 

93 tested peptides, 17 were tested in individuals who were restricted to two HLAs that 

could present the same individual peptide. For instance, peptide KAYNVTQAFN was tested 

in at least 5 different individuals but one donor was restricted to B*57:01 and C*06:02, 

both MHCs predicted to present this peptide.  To directly determine the HLA restriction 

of the individual peptides, future experiments should include the identification of HLA-

bound peptides by liquid chromatography-tandem mass spectrometry (LC)MS/MS) of 

peptide-pulsed monoallelic cell lines or by peptide titration or limiting dilution analysis 

[79, 80].  
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After testing reactivity with ELISpot IFN-γ secretion assays we found that 83% of 

tested peptides were immunogenic (above 2-fold threshold) (Fig. 8). This suggests, that 

EnMHC can predict immunogenic epitopes with high precision. When estimating 

immunogenicity using the IEDB platform [22] masking P2, P7, and P9 residues, 65/108 

peptides have a positive score predictive of reactivity, or 56.5% of the 108 peptides were 

predicted to be immunogenic. This contrasts with the observed epitopes that we found to 

be immunogenic, 30 of which were missed by the IEDB algorithm. A literature review of 

the tested and immunogenic SARS-CoV-2 structural peptides revealed that of the 108 

epitopes predicted by EnMHC, 65 of the 92 peptides validated in this study were also 

reported in previous studies. About 36/65 were individually validated by ICS (Intracellular 

Cytokine Staining), multimer staining, ELISpot, or AIM (Activation Induced marker) 

assays while the rest (29/65) were tested using peptide pools [81]. The current study 

individually validates the immunogenicity of those 29 SARS-CoV-2 CD8+ T cell epitopes, 

plus 27 additional structural epitopes not reported elsewhere. In total, we show the 

individual immunogenicity of 56 peptides and confirm/expand the reported HLA 

restriction of 75 epitopes. We also provide evidence of the HLA restriction of 6 epitopes 

that were previously validated using a high throughput multiplexed assay designed to 

isolate TCRs after activation with peptide pools but not to define peptide HLA restriction  

(Appendix A)  [82]. 

The predicted and observed personal binding capacities of donors do not differ 

significantly from each other, highlighting the accuracy of EnMHC and opening the 

possibility of using such platforms to map the epitope repertoire of individuals and from 

populations to determine their association, if any, to disease outcome. Specifically to 

SARS-CoV-2, the binding capacity to nsps is different than for structural peptides (Fig. 5, 

7) possibly due to proteomic differences between them and further post-translation 
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modifications (PTMs) in structural proteins like Spike. Although the consensus algorithms 

in EnMHC don’t consider PTMs, intrinsic characteristics of the peptides are reflected in 

the differences in binding capacity. Future studies that include data mining of HLA-typed 

cohorts associated with disease outcomes will clarify the importance of binding capacity 

as a criterion for evaluating the disease susceptibility of individuals or populations instead 

of individual HLA alleles associative studies. In our cohort, the median binding capacity 

per individual was around 95 peptides, both from non-structural and structural peptides, 

84% of donors had a binding capacity higher than the median. The donor with the lowest 

binding capacity, ASC-95, is monoallelic for each of the HLA class I alleles, explaining the 

smaller peptide repertoire.  

2.2.3. Immunodominance and Immunoprevalence of SARS-CoV-2 structural 

proteins  

We screened CD8+ T cell reactivity in vitro by stimulating peripheral blood 

mononuclear cells (PBMCs) for 10 days with individual peptides derived from SARS-CoV-

2 structural proteins. T cell reactivity was tested by IFN-γ ELISpot secretion and 

Activation Induced Marker (AIM) assays. Results from a reactive and an unreactive 

sample are shown in figure 9. A total of 76 peptides were immunogenic (81.7%), and 17 

(18.3%) were not reactive in either pre-pandemic or ASU cohort. T cells from the pre-

pandemic cohort recognized 37.3% (n=22/59) of tested peptides while the student cohort, 

a mix of convalescent, vaccinated, and unvaccinated donors, recognized 86% of tested 

peptides at the time of recruitment (n=73/85). Median reactivity as measured by INF-γ 

secretion SFU (sport forming units) to structural peptides in pre-pandemic samples was 

about 15%. For comparison, 37.3% of SARS-CoV-2 tested peptides were recognized by pre-

pandemic samples, or less than half of those that were recognized by the ASU cohort at 

the start of the study. Although the pre-pandemic and ASU cohorts are unrelated, with 
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Figure 6. (A) Frequency of common HLA alleles in the ASU (n=19) and (B) pre-
pandemic (n=12) cohort compared to the frequencies in the US population (n=3500). 
Allele frequencies obtained from allelefrequencies.net [83]. 
 
 
different donors and HLA restrictions, the median reactivity was lower for the pre-

pandemic samples (about 15%) than for ASU cohort samples at the time of recruitment 

(61%). The percentage of epitopes recognized, and the magnitude of responses was higher 

after 3- and 6-months post-recruitment, when most donors had been infected, vaccinated, 
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or both. Background reactivity was 2 to 7 times higher at the end of the study, 12 months 

post recruitment.  

Each donor recognized an average of 10.2 epitopes with a median of 9.5 and a range 

between 2 and 21 epitopes. The donor with the least recognized epitopes (n=2) was 

restricted to HLAs A*02:01, B*52:01, and C*12:02, and was also considered monoallelic 

for A, B, and C alleles (NULL). As a result, the predicted binding capacity consisted of 5 

structural peptides, of which one was from the envelope and the other 4 from the spike 

protein. None were immunogenic, until after vaccination. The donors that recognized the 

greatest number of peptides were mostly restricted to HLA-A*01:01, A*03:01, -B*57:01, 

and -C*06:02. Although we could not test the entire number of predicted peptides per  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. A. Comparison of the binding capacity per individual (n=31) to non-structural 
and structural proteins. B. The observed binding capacity of tested ASU donors (n=19) is 
significantly similar than the predicted binding capacity (**P=0.1226 Wilcoxon paired test 
of similarity).  
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Figure 8. Heat map depicting the magnitude of response to SARS-CoV-2 CD8+ T cell 
epitopes at the time of recruitment into the ASU cohort study. Epitopes are organized by 
rows according to position in the origin protein, from N- to C-terminal. Each column 
represents a different donor. Reactive epitopes have a reactivity over 2 fold over the 
background. E: Envelope, M: Membrane, N: Nucleocapsid, S: Spike.  
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Table 5. Binding capacity per HLA-I Allele. Binding capacity is higher for nsps and 
those HLA-I alleles that are most common in the global population. Note the low binding 
capacity of HLA-B*35:01, B*37:01 and C*12:02 in contrast to those of A*01:01, A*11:01, 
A*68:01, B*57:01 and C*05:01. NSP: non-structural proteins. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
genotype (donor) due to a limited number of cells per sample, certain donors consistently 

recognized between 65-100% of tested peptides (ASC-12, ASC-59, ASC-8, ASC-7). Overall, 

donor samples became increasingly reactive over time, background reactivity was higher 

at later time points. Time points 3 and 6 months, the percent of peptides recognized 

increased from 61% to >75% when all participants were either convalescent, vaccinated, 

or both. Of note, from the samples at the time of recruitment (61% reactivity), 73% were 

either convalescent, vaccinated, or both, and 17% were self-reported as uninfected and 

unvaccinated.  Since sample collection started 1 year after the start of the pandemic and 

about 9 months after the virus had spread throughout North America, it is possible that 
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self-reported uninfected individuals were either asymptomatic during infections or had 

been exposed to someone with the virus.  

 
Figure 9. CD8+ T cell reactivity to predicted peptides measured by IFN-γ secretion 
ELISpot. A. Representative image after 10-day stimulation with single peptides of reactive 
and unreactive peptides. Each peptide or condition was tested in triplicate wells. Each spot 
represents an IFN-γ secreting cell unit counted as a spot-forming unit. B. Histogram of 
the average number of SFU per 106 PBMCs with the standard deviation. Convalescent 
donor ASC-116, sero-reactive to RBD, 1-month post-vaccination. Negative controls: 
Untreated and PBS/DMSO wells. Positive control: CEF pool. 

 

The number of positive responses is proportional to the size of the protein (Spearman 

correlation r=0.8, P=0.33, Figure 10), this is supported by previous reports that show a 

direct correlation between the number of recognized targets and the size of the protein 

with proportional distribution of epitopes along the SARS-CoV-2 genome [84]. Because 

the selection of epitopes with EnMHC was restrictive, we did not test epitopes alongside 

the entire sequence of each structural protein to differentiate hotspots of immunogenicity. 

However, we can see that the number of immunogenic targets increases with the size of 
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the protein. Much of the response (50%) was represented by spike epitopes, followed by 

membrane (23%), then nucleocapsid (11.5%), and Envelope (3.5%) epitopes. 

 

 

 

 

 

 

 

 

 

 

Figure 10. Spearman correlation of positive responses per SARS-CoV-2 structural 
protein. (r2=0.896). Tested epitopes were evenly distributed across the different proteins 
in proportion to size.   

 

Overall, 30% (26/85) of the peptides tested on the ASU cohort samples, were 

recognized by 2 or more donors and were consistently recognized at each time point. We 

found that a total of 15 epitopes dominated the response and were distributed evenly 

among the structural proteins S, M, and N even after vaccination (Table 6). Epitopes from 

spike (n=7), membrane (n=4), and nucleocapsid (n=4) were highly reactive through all 

time points and were recognized by 3 or more donors. Of note, FLAFVVFLL was the only 

epitope from envelope that was highly reactive (up to 14-fold over background) and was 

recognized consistently between 3-5 different donors at each time point and was reactive 

in one pre-pandemic donor.  
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2.2.4 Conservation of Immunodominant Epitopes Across VOC 

To assess the impact of mutations on the recognition of CD8+ T cell predicted peptides 

from structural proteins, we tested reactivity by ELISpot INF-γ secretion assays of 

individual peptides derived from the ancestral sequence and whenever mutated, the 

variant epitope (Table 7). The ancestral sequence was aligned against Alpha (B.1.1.7), Beta 

(B.1.137), Delta (B.1.617.2), Gamma, and Omicron (B.1.1.529 BA.4 and BA.5) VOC 

(Appendix B). We found that from the 108 structural predicted peptides, 17 peptides had 

at least 1 amino acid change in one or more VOC. Most of the mutated peptides were from 

the spike protein (n=15) while 2 mutations were found in membrane and 1 in nucleocapsid 

proteins.  In some peptides, mutations were found across multiple VOCs, for a total of 23 

mutations of which 20 occurred in the spike protein. Most mutations (15/23) were 

associated with the Omicron subvariants and in one case (VLNDILSRLWT), the mutation 

characteristic of the subvariant BA.1 (VLNDIFSRL-changed residue is in bold letter) 

reverted to the ancestral sequence in the new subvariants BA.4 and BA.5. Due to HLA 

restriction and/or limited number of PBMCs, we tested 10/17 variant peptides and found 

that 9 were immunogenic in at least one donor. In some cases, the variant epitope induced 

a higher reactivity than the ancestral counterpart as in the spike epitope GVYFASTEKWT, 

with a change at anchor residue P7 from threonine to isoleucine (GVYFASIEKO); the 

magnitude of response was up to 4-fold that of the ancestral version. Variant epitopes were 

89% conserved (one amino acid change), for example, IAIAMACLVGLMWWT (M) had a 

substitution at the third amino acid (I82T), and KLLEQWNLV (M) was conserved across 

all variants except for Omicron. A Q19E substitution in all three subvariants did not affect 

reactivity that was >2-fold over background when tested in HLA-A*02:11 and -A*02:01 

restricted donors.  
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In one instance, the variant (VLNDIFSRL) was immunogenic while the ancestral 

peptide (VLNDILSRL) was not. One RBD (receptor binding domain) epitope 

LYNSASFSTFKWT (S), had 3 and 4 amino acid substitutions from the BA.1 and BA.4/5 

Omicron subvariants respectively (Table 7, Figure 11). To end, alignment of the 

immunodominant epitopes with VOC shows high conservation, 87% (13/15) have 100% 

sequence identity. The other two epitopes, GVYYHKNNKWT and NSASFSTFKWT from the 

NTD and the RBD respectively, had changes related to the Omicron variant.  The 

142GVYYHKNNK150
WT peptide had a G to D substitution at the P1 residue and the 

370NSASFSTFK378
WT had three amino acid changes (NLAPFFTFK and NFAPFFAFK) that 

did not decrease the magnitude of response (Table 7). 

Table 6. Immunodominant CD8+ T cell structural epitopes.  

Position, source protein, and HLA predicted restriction. Observed HLA restriction and BA 
(IC50), processing, and presentation scores obtained with MHC Flurry. S: Spike, N: 
Nucleocapsid, M: Membrane, E: Envelope.  BA: Binding affinity in IC50; (*): Epitopes not 
predicted to bind the EnMHC predicted HLAs under MHC Flurry, BA was determined 
using NetHCpan 4.0.  
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Table 7. Peptide sequences from ancestral and VOC structural SARS-CoV-2 peptides. 

 
M: Membrane, N: Nucleocapsid; S: Spike. VOC: Alpha (B.1.1.7), Beta (B.1.351), Delta 
(B.1.617), Iota (B.1.526), P.1 (Gamma), Omicron (BA.1, BA.4, BA.5). (*): only tested once. 
The bold letter represents the changed amino acid. A: ancestral.  
 
2.2.5 Vaccination, Infection, and Reactivity to CD8+ T Cell Epitopes Over 

Time  

Reactivity to SARS-CoV-2 epitopes was significantly higher at the time of recruitment 

than for pre-pandemic samples (Kruskal-Wallis and Dunn’s multiple comparison test 

P<0.0079). However, at the time of recruitment less than half of participants (9/19) self-

reported to have ever been infected with SARS-CoV-2. Of those, 4 were unvaccinated and 

5 had completed the full vaccination schedule that consists of 2 doses of either Moderna 

or Pfizer mRNA platforms or one dose of the J&J vaccine. The rest of the participants, 

10/19 donors had asymptomatic or mild COVID-19 prior to the start of the study (2-6 

weeks prior enrollment) and of those, 3 had been vaccinated (Table 8). Given the 

differences in exposure to the virus, convalescence, and vaccination, samples were 

reorganized along the 5 time points according to infection status, and time of vaccination. 

Participant samples were organized according to time of infection (if unvaccinated), or 
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time of vaccinated (uninfected or convalescent). For most donors (15/19) who were 

convalescent or vaccinated at the start of the study, there was no baseline measurement, 

instead, their first sample was placed according to the number of weeks or months after 

infection or vaccination. For example, a few recruitment samples were placed at the 1-

month time point because they had completed the vaccination schedule, 2 doses of mRNA 

or 1 dose of Ad26.COV2.S vaccine.  

 

 

Figure 11. Alignment of variant epitopes from the Membrane (Top) and Spike (bottom) 
protein. Zappo color scheme showing physicochemical properties at each amino acid 
position. Most variant epitopes had only one amino change, except for LYNSASFSTFWT 

which had 4 amino acid changes mostly associated with the Omicron subvariants. Pink: 
Aliphatic/hydrophobic (ILVAM); Orange: Aromatic (FWY); Blue: Positive (KRH); Red: 
Negative (DE); Green: Hydrophilic (STNQ); Fuscia: conformationally special (PG); 
Yellow: Cysteine (85).  
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Table 8. Fraction of epitopes recognized by time point. 

Donor ID was provided at the time of sample donation, not recruitment. To decrease the 
changes of identification, samples are not identified by the donor at the time of 
recruitment. All time points are arranged according to the approximate time of infection 
or vaccination. R: Recruitment; 2W: 2 weeks; 1M: 1 month; 3M: 3 months; 6M” 6 months; 
12 M: 12 months. UnVx: Unvaccinated; Vx: Vaccinated. Median reactivity is fold change: 
SFU/106 PBMCs sample over the background. 
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Table 9. Vaccination, infection, and reactivity to human CoV status of ASU cohort at the 
time of recruitment. N: Nucleocapsid; R: Reactive.  

 
 

The recruitment time point (R) is now composed of 4 samples from uninfected 

unvaccinated participants, 11 samples were at the 2 weeks (2W) post-vaccination or 

infection time point, 13 samples at 1-2 months (1M), 12 samples at 3 moths (3M), 13 

between 6 and 9 months (>6M) and 7 samples at 12 months (>12M) (Fig.12, Table 8, 9). 

To analyze the changes in CD8+ T cell epitope recognition and magnitude of response over 

time, ELISpot INF-γ secretion to individual peptides was plotted as the number of SFU 

(spot forming units) per 1 million PBMCs over the different time points (Fig. 13, Appendix 

C). Reactivity or median reactivity was reported as the fold change of observed SFU per 

106 PBMCs over the background, either untreated or PBS/DMSO whichever is lowest. For 

each time point, donor samples were grouped according to vaccination and convalescence 

status into 4 categories, uninfected unvaccinated (UU), uninfected vaccinated (UV), 

convalescent unvaccinated (CU) and convalescent vaccinated (CV). Participation 

throughout the year from the 19 donors was not consistent which led to some time points 

having only one donor as in the case of the 1M time point when only 1 individual was 

available for each of the UV and CU groups. Of note, the IFN-γ signal from the background 
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(untreated or PBS/DMSO) is 2-7 times higher at the 6- and 12-month time points which 

decreased the signal magnitude of the tested peptides (that were as reactive) and led to the 

elimination of a few samples.  

Reactivity over time increases by the number of epitopes recognized and the magnitude 

of response. Median reactivity for every time point is significantly higher than pre-

pandemic samples after the 2W time point and is higher than at any other time point at 3 

months post-vaccination/infection. The percentage of recognized epitopes at the time of 

recruitment is 15% for pre-pandemic samples and starts to increase after infection or 

vaccination (Fig.14). At two weeks post-infection/vaccination the number of epitopes 

recognized by donor doubled and increased further after 1 month when all donors had 

finished the complete regiment of vaccines. By 12 months, the median percentage of 

recognized epitopes is about 72%. Due to the uncertainty of the date of infection, and 

mostly to the low number of convalescent-only individuals, it was not possible to discern 

a difference if any, in the magnitude and number of recognized epitopes between 

vaccinated-convalescent or convalescent-only individuals. At the 6-month time point, only 

one individual remained unvaccinated, the other 2 dropped out of the study after the 2W 

time point. In the end, the ASU donors for the 6M and 12M time points were either 

vaccinated with no reported infection or convalescent and vaccinated. The longest time 

interval after vaccination recorded for a donor was 16 months and 75 days post booster. 

Unfortunately, this donor was monoallelic for all three HLA class I alleles, and as a result, 

only 2 peptides could be tested for reactivity, from the 108 predicted by EnMHC. This 

donor was restricted to HLA-A*02:01, B*52:01, and C*12:02, unreactive to the two 

peptides from the E (FLAFVVFLL) and S (YLQPRTFLL) proteins at the earliest time 

points equivalent to 8 days post-vaccination completion with Moderna (mRNA-1273), 2 

weeks post-vaccination (wpv) and 1.5 months post-vaccination (mpv). Peptides became 
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reactive at the 3-month blood collection, which is equivalent to ~4 mpv. Epitope 

recognition persisted during the 12-month follow-up that is 16 mpv.  

Reactivity to Spike epitopes increased after 2 weeks post-infection or vaccination and 

remained elevated above the 2-fold threshold over background after 3 months. Median 

reactivity was highest at 3 months in UV donors which was 5-fold over background (Fig. 

15) and was sustained above the 2-fold threshold 12-15 months after vaccination. CD8+T 

cell reactivity was increased or maintained to epitopes from E, M, N, and Spike regardless 

of vaccination status after 6 months (Fig 16-18). 

Figure 12. Timeline of sample collection and vaccination for ASU cohort. ASC 
identification number was the second number assigned after recruitment to maintain 
anonymity from experimenters. Drop colors: Red-Recruitment; Green-1 2 Weeks; Blue 1 
Month, Orange- 3 Months, Yellow-6 Months; White-12 Months. White syringe: Pfizer; 
Blue: Moderna; Green: Janssen. (+): Sero-reactive for RBD of spike.   
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Figure 13. CD8+ T cell Reactivity to SARS-CoV-2 structural peptides tested by ELISpot 
IFN-γ secretion assay. The reactivity of all tested peptides per individual is graphed as 
the fold change (observed value over background) by the time point of sample collection. 
Median reactivity was significantly different from pre-pandemic samples except for 
samples collected at 1 month. Baseline samples are a mix of convalescent, vaccinated, or 
unvaccinated. By 6 months all individuals are either convalescent or vaccinated and 
convalescent. “n” represents the number of individuals at each time point. Individual dots 
represent the reactivity of each of the peptides tested. 
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Figure 14. Epitope recognition after infection and/or vaccination. The number of epitopes 
recognized, and the magnitude of response is highest at 6 months.  

 

 

 



44 

 

 

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 15. Reactivity to CD8+ T cell Spike epitopes after vaccination and infection as 
measured by ELISpot IFN-γ secretion assay. Reactivity to spike is highest 2 weeks and 
after 3 months post-infection/vaccination. Time points are R (recruitment), 2W (2 weeks), 
1M (1 month), 3M (3 months), 6M (6 months) and 12M (12 months) post-infection or 
vaccination.  Black bars indicate the median. Statistical comparison performed by non-
parametric Kruskal-Wallis using Dunn’s test of Mean rank difference (*P=0.0112, 
**P=0.014, **** P < 0.0001). 
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Figure 16. Reactivity to CD8+ T cell structural epitopes after vaccination and infection as 
measured by ELISpot IFN-γ secretion assay. Reactivity of PP (pre-pandemic) samples 
compared to 5 different time points after vaccination or infection during the Delta and 
early Omicron waves in 2021 and 2022. Time points are R (recruitment), 2W (2 weeks), 
1M (1 month), 3M (3 months), 6M (6 months), and 12M (12 months) post-infection or 
vaccination.  Black bars indicate the median. Statistical comparison was performed by 
non-parametric Kruskal-Wallis using Dunn’s test of Mean rank difference (**** P < 
0.0001). 
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Figure 17. Reactivity to CD8+ T cell Membrane and Envelope peptides after vaccination 
and infection as measured by ELISpot IFN-γ secretion assay. A. Reactivity to membrane 
epitopes. B. Reactivity to envelope epitopes is non-significant between time points. Time 
points are R (recruitment), 2W (2 weeks), 1M (1 month), 3M (3 months), 6M (6 months) 
and 12M (12 months) post-infection or vaccination.  Black bars indicate the median. 
Statistical comparisons were performed by non-parametric Kruskal-Wallis using Dunn’s 
test of Mean rank difference (*P=0.0392), ns=not significant. 
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Figure 18. Reactivity to CD8+ T cell nucleocapsid epitopes after vaccination and infection 
as measured ELISpot IFN-γ secretion assay. Time points are R (recruitment), 2W (2 
weeks), 1M (1 month), 3M (3 months), 6M (6 months) and 12M (12 months) post-infection 
or vaccination.  Black bars indicate the median. Statistical comparisons were performed 
by non-parametric Kruskal-Wallis using Dunn’s test of Mean rank difference (*P=0.0148), 
ns=not significant. 

 

2.2.6 Sero-reactivity to S and N proteins  

To evaluate the relation between sero-reactivity to viral proteins and T cell epitope 

reactivity, we determined sero-reactivity to the nucleocapsid (N) structural protein by 

Rapid Antigenic Protein in Situ Display ELISA (RAPID-ELISA) at each time point of 

sample collection. Glutathione S-Transferase)-tagged proteins are expressed using a 

mammalian expression system based on human HeLa cell lysate IVTT (in vitro 

transcription-translation) system and then captured on a 96-well plate to interrogate sero-

reactivity from donor plasma. Although CD8+ T cells do not enhance antibody recognition 

of their antigens or help in affinity maturation, individuals who recovered from acute 
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SARS-CoV-2 infection with mild or outpatient disease had a response that included CD4+ 

and CD8+ T cells as well as antibody production [85]. We hypothesized that individuals 

with mild or asymptomatic infections should have a strong T-cell response accompanied 

by a good antibody response. We find that most donors were sero-reactive to the N protein 

of all HCoVs except for SARS-CoV and MERS-CoV. When compared to pre-pandemic 

donors, sero-reactivities were higher for SARS-CoV-2 and for SARS-CoV for the ASU 

cohort. Sero-reactivity to the other HCoVs was not significantly different between pre-

pandemic and ASU groups, confirming that most people have been infected with most 

common cold CoVs (Fig. 19). Of interest, pre-pandemic donors do not have antibodies 

against the N protein of SARS-CoV, however, one year after the pandemic most donors are 

sero-reactive and the median reactivity is almost 7 times higher than for unexposed 

donors.  

 

 

 

 

 

 

 

 

 

 
Figure 19. Sero-reactivity to the N protein in pre-pandemic and ASU cohorts. Antibodies 
against N protein were assayed with a RAPID-ELISA test. Samples with reactivity above 
the negative control plus 3 standard deviations are considered reactive. The highest 
MERS-CoV seroreactivity value and standard deviation were used as the threshold value 
for reactivity.  
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2.3 Discussion 

2.3.1 EnsembleMHC predicted peptides are immunogenic 

The current study identifies highly conserved and immunodominant structural SARS-

CoV-2 CD8+ T cell epitopes recognized up to 12- and 15 months post-infection and 

vaccination respectively. To define the targets of CD8+ T cell adaptive responses in vitro, 

we screened a set of peptides obtained from a novel consensus algorithm, EnsembleMHC, 

that predicts peptides based on the molecular and biochemical features of antigen 

processing, presentation and binding to the HLA (human leukocyte antigen) molecule. 

Specifically, EnsembleMHC integrates 7 different algorithms that provide predictions 

based on peptide binding affinity, stability of the pMHC complex, structural 

characteristics of the HLA peptide-binding pocket, proteasomal degradation, and 

presentation on the cell surface [43]. The combination results in a reduction of false 

positives and provides a confidence score or peptideFDR for the top 0.5% of top binders. 

The peptideFDR score is a snapshot of the characteristics that define, in part, an 

immunogenic peptide: high binding affinity and probability of being presented on the cell 

surface by the MHC class I complex and finally, a high probability of being processed by 

the immunoproteasome which has a bias for producing antigenic peptides with C-terminal 

hydrophobic residues perfect for MHC class I binding. Although EnMHC has the same 

faults as the algorithms it is based on, being trained on the most predominant HLA class 

I alleles, underrepresentation of alleles from certain ethnicities, the use of pan-MHC 

binding prediction platforms like NetMHCpan4.0 and PickPocket ameliorates this 

problem. NetMHCpan4.0 uses a neural network to link known HLA class I allele binding 

profiles with amino acid-specific features of the peptide binding groove and extrapolate 

this information to determine binding affinities of uncharacterized HLA class I alleles [35, 

47]. For instance, NetMHCpan-4.0 has a positive predictive value (PPV) of about 54%, 
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when using a data set of ~16,000 mass spectrometry-identified MHC-ligands and more 

than 1,250 validated T cell epitopes from the IEDB (immune epitope database). When 

used as part of a consensus model like EnMHC, on a set of 10 patient-generated tumor 

samples, the PPV under restrictive binding affinity thresholds (BA≤50nM, FDR≤5%) was 

3.4 fold higher than when using the individual components [43].  

In the present study, we find that 82% (76/93) of tested peptides predicted with 

EnMHC are immunogenic, highlighting the strength of using a consensus platform to find 

MHC class I ligands. The ability of EnMHC to find immunogenic peptides may be higher 

if we consider that most of the non-immunogenic peptides in our cohort (14/17) were 

tested only at one-time point and in one donor. In fact, 14/17 epitopes have been 

previously validated as immunogenic in other studies which brings the percentage of 

correctly identified epitopes to 97% (Table 10). We compared the efficacy of EnMHC to 

predict immunogenic epitopes with the class I immunogenicity tool by IEDB [22] and 

found that 65/108 peptides have a positive score predictive of reactivity, missing 10 (13%) 

true epitopes (Appendix D). Studies using a larger number of epitopes and in the context 

of different infectious diseases may provide further insight into the accuracy of this 

platform in finding T-cell targets. Yet, EnMHC has been validated in silico using confirmed 

T cell epitope data sets from the Dengue and Hepatitis B genome polyproteins and the HIV 

POL-GAG protein confirming the ability of EnMHC to make MHC ligand predictions over 

any of the 7 algorithms individually [43]. 

Mass spectrometry (MS) is the only immunopeptidomics method that can confirm cell 

surface presentation and binding between a predicted peptide and an MHC molecule [86]. 

Thus, the current project refers to the observed binding capacity as the number of peptides 

that were reactive when PBMCs were stimulated by a set of peptides predicted to be 

restricted to the donor's MHC genotype [87-89]. Although it is not a confirmatory result 
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of HLA restriction and presentation, it provides evidence that supports the predictions 

made by EnMHC and MHC-Flurry predictive algorithms. When comparing the predicted 

binding capacity with the observed stimulatory capacity of individual HLAs, there was no 

significant difference (Wilcoxon test, P=0.1226).  However, the number of immunogenic 

epitopes was lower than the predicted number, probably due to the low number of 

available cells per donor that in turn, decreased the number of peptides that we could test. 

For instance, in 5 donors (ASC-7, 59, 61, 63, and 121) about half of the predicted peptides 

could not be tested due to an insufficient number of cells. Nevertheless, in 9/19 of the ASU 

donors, all the tested peptides were immunogenic while in three individuals (ASC 121 and 

7), only half of the tested peptides were recognized. Overall, the predicted median number 

of recognized structural peptides per donor is 12, after testing reactivity, a median of 10.2 

epitopes were recognized per donor. Tarke et al report that on average, an individual can 

recognize about 17 CD8+ T cell epitopes from the SARS-CoV-2 ORFeome when 

considering HLA class I A and B alleles [52]. In comparison, our reported value of 10 

epitopes per individual seems high when considering that this number represents only 

structural epitopes. However, our study used 10-day in vitro stimulations known to 

amplify rare T cell populations and have higher sensitivity than multiepitope ex vivo 

stimulations that last 24 hours as in the study by Tarke et al [52]. In addition, we may be 

underestimating the number of possible SARS-CoV-2 epitopes because the pool of 

peptides being considered does not include peptides that can be generated from non-

canonical open reading frames identified in SARS-CoV-2  which are immunogenic and 

have been validated by LC-MS/MS as part of the SARS-CoV-2 ligandome [88, 89].  

It is unclear if in the context of SARS-CoV-2, there is an effective binding capacity size 

at the personal or population level that is protective against severe COVID-19 disease or 

that may be correlated to mild or asymptomatic SARS-CoV-2 infection. To answer that 



52 

question, it would be necessary to have a higher number of donors, screen non-structural 

as well as structural peptides, and have a wide diversity of ethnicities and HLA class I 

genotypes in addition to clinical data like symptom severity. Future studies that include 

data mining of HLA-typed cohorts associated with disease outcomes will clarify the 

importance of binding capacity as a criterion for evaluating the disease susceptibility of 

individuals or populations in addition to individual HLA class I and II allele associative 

studies.  

As a predictive algorithm, EnMHC combines the best features of other consensus 

platforms like NetMHCpan and MHC Flurry, it is trained on BA and EL data and has a 

better PPV when used under restrictive parameters. Although EnMHC was trained and 

benchmarked with decoy peptides, our in vitro validation did not use negative controls 

such as peptides restricted to different HLAs due to the low cell number available for 

testing.  

Table 10. List of peptides that were non-immunogenic in this study but were validated in 
other SARS-CoV-2 CD8+ T cell epitopes studies. 
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2.3.2 Immunodominant epitopes are highly conserved among VOC 

Using EnMHC, we obtained a list of 658 peptides from the entire ORFeome of SARS-

CoV-2 and prioritized structural peptides for testing for two main reasons: 1) variability in 

the number of structural ligands per genotype (per donor) was smaller and the repertoire 

size more manageable (n=108), and 2) previous reports of SARS-CoV immunogenicity 

indicated that non-structural proteins were not as reactive or immunodominant as 

structural proteins [75]. However, in the last three years, a growing body of evidence 

shows that a few nsps (e.g. nsp12 and nsp3) are as immunodominant as structural proteins 

[90]. Still, we find that the breadth of response for the ASU cohort includes S as well as M, 

N, and E epitopes. More comprehensive studies using mega peptide pools of the entire 

SARS-CoV-2 ORFeome, mapped 26% of reactivity to spike, 12% for N, and  22% for M 

[74]. Since we only tested structural proteins, our percentages are higher for the ASU 

cohort, 56% of the response was directed to S, 26.7% to M, 13.3% to N, and 4% to E. Spike 

immunodominance may be explained by the correlation between the number of positive 

responses per protein and the size of the source protein and it highlights the validity of 

using the spike as the main immunogen in most of the current vaccination models. 

However, the spike is the structural protein most susceptible to mutations, and constant 

viral evolution makes it essential to include highly conserved targets from other structural 

and non-structural proteins in the next generation of vaccines to increase resilience to new 

VOC.  

We have found a set of 15 epitopes that are highly immunogenic and conserved among 

VOC including epitopes from the S, E, M, and N proteins all within regions of low mutation 

rates [91, 92]. After mapping immunodominant S epitopes, only two epitopes have 

mutations associated with the Omicron variant, both are located within the RBD of the 

spike and the rest are located at the N-terminal domain and S2 region of the spike, both 
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regions with low non-synonymous mutation rates [92]. The population coverage tool 

predicts a minimum of 1.55 epitopes per HLA combination recognized by 90% of the 

population and an average of 3.4 epitopes per HLA combination recognized by the global 

population, making this group of immunodominant epitopes high-value targets to include 

in next-gen vaccine models [78]. By including epitopes from other structural proteins, 

next-gen immunization platforms have the potential to closely mimic exposure to antigens 

during natural infection.  

From the total 108 structural peptides predicted with EnMHC, 17 peptides had at least 

1 amino acid change in one or more VOC. Although we could not test all variant epitopes 

due mostly to HLA restrictions, from the 10 variant peptides we tested, 9 were 

immunogenic in the same donor. Of those, 3 were mutated at P4-6 positions and were still 

predicted to bind to their predicted HLA. An immunodominant spike epitope 

GVYFASTEKWT had a change at anchor residue P7 from a hydrophilic threonine to an 

aliphatic/hydrophobic isoleucine residue (GVYFASIEKO) increasing the magnitude of 

response 4-fold. This peptide is restricted to the A3 supertype that prefers Arg or Lys 

residues at P7 which could explain the increase in reactivity from  Thr to Ile since Ile is an 

isomer of Leu [93]. Overall, alignment of the immunodominant epitopes with VOC shows 

high biochemical conservation. An epitope from the RBD of S, NSASFSTFKWT had several 

changes found in two different Omicron subvariants (Table 8), we tested both variants 

(only once) and found that compared to the ancestral version (WT), reactivity was 

increased by 5.8- and 9.5-fold for 370NLAPFFTFK378 and 370NFAPFFAFK378 respectively. 

This peptide is restricted to the HLA-A*68:01 that belongs to the A3 HLA superfamily that 

accepts small and aliphatic residues in the B pocket and aromatic and basic amino acids 

in the F pocket. Both variants have a change at the P2 residue from S which is a hydrophilic 

residue (not preferred at P2) to L or F. Leucine is aliphatic but Phenylalanine is quite 



55 

bulky, perhaps displacing or the bulge produced by the P4-P6 residues and making the 

peptide more reactive. The increase in reactivity could be due to the change from an S at 

P4 and P6 into a P and an F residue, making the area of contact with the TCR bulkier. The 

only way to determine if any of these suppositions are correct is to crystalize the pMHC 

complex and a cognate TCR to characterize the actual occupation of the peptide binding 

groove and the interaction with the TCR.  

Due to the small size of our sample set, we are not able to discern if amino acid changes 

present in VOC lead to viral evasion of T cell-mediated immunity. A few studies have found 

that effector and memory T cell compartments from both CD4 and CD8 T cells are 

maintained in convalescent and/or vaccinated individuals but there is a decrease of about 

50% in either effector or memory T cell reactivity when compared to ancestral or Delta 

variants [94]. However, the same study found that individuals with low or no Omicron 

antibody neutralization titers had measurable effector and memory CD8 and CD4 T cell 

responses to Omicron spike peptides. An independent study comparing 10 different VOCs, 

found a decrease in cytokine production upon activation with Omicron peptides when 

using intracellular cytokine staining (ICS) and a decrease in the number of responders 

using an AIM assay [95].  Loss of T cell recognition may be caused by lower binding affinity 

to the cognate HLA, decreased recognition of the pMHC by the TCR, or changes in antigen 

processing and presentation due to the virus itself.  

2.3.3 Vaccination increases reactivity to spike and other structural SARS-

CoV-2 proteins 

Most studies that look at epitope-specific T-cell responses after vaccination focus on 

the spike protein. In addition to the spike, we tested other structural proteins to determine 

spike-centered vaccines like mRNA-1273, BNT162b2, and Ad26.COV2.S changed 

immunogenicity to other structural proteins and characterized differences between 
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convalescent unvaccinated donors and among different vaccine platforms. Although our 

sample set was small, we were able to make a few observations. First, the breadth and 

magnitude of response are increased after vaccination as in the case of UU donors at the 

time of recruitment. After vaccination, reactivity increases by about 25 to 56-fold 2-3 

months post-vaccination (Fig. 16, Table 11) and one donor (AS-25) recognized 10/11 tested 

peptides 3 months post-vaccination. In agreement with the previous observations, a study 

on vaccine efficacy shows a 10-fold increase of spike-reactive IFN-γ secreting cells  2 weeks 

after vaccination  

Table 11. Effect of vaccination on reactivity to CD8+ T cell peptides as measured by 
ELISpot IFN-γ secretion assay. 

R: Recruitment; mpv: months post-vaccination; mpi: months post-infection. UU: 
Uninfected Unvaccinated; UV: Uninfected Vaccinated; CU: Convalescent Unvaccinated; 
CV: Convalescent Vaccinated. S: Spike; M: Membrane; E: Envelope; N: Nucleocapsid. 
 
with an attenuated SARS-CoV-2 virus [96, 97]. Second, after vaccination, the reactivity is 

increased for all structural proteins not only for spike (Fig. 16-18). We find that 

immunogenicity to M, N, and E epitopes is enhanced after vaccination with all three 

vaccine models. For example, reactivity to the immunodominant E epitope FLAFVVFLL 

is highest in a convalescent donor vaccinated with the BNT162b2 vaccine three months 

before sample collection. The previous suggests that vaccination with spike-centered 

formulas enhances immunogenicity to other structural SARS-CoV-2 proteins. Responses 

are also maintained up to a year after vaccination and/or infection. For instance, 
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NRFLYIIKL, an epitope from the membrane protein, was highly reactive in up to 6 

different vaccinated donors (n=5/6). The strongest responses to this epitope came from 

two donors, ASC-118 who received the second dose of mRNA-1273 vaccine 29 days before 

sample collection, and another convalescent donor who had received an Ad26.COV2.S 

(J&J) vaccine 12 months prior (ASC-461). This pattern of enhancement is known as 

antigenic spread, determinant spread, or antigen cascade. In the context of cancer, cell 

death of tumor cells releases tumor-associated antigens (TAAs). Antigen-presenting cells 

(APC) uptake TAAs and, induce a B or T cell response that includes the production of 

cytokines and chemokines that further activate surrounding cells to recognize other 

antigenic targets in neighboring cells. It is likely that vaccination or the combination of 

prior infection and vaccination leads to a response against antigens (epitopes from N and 

E) that are not part of the vaccine, but only in previously infected individuals.  

Reactivity to spike epitopes increased after 2 weeks post-infection or vaccination and 

remained elevated above the 2-fold threshold over background after 3 months and was 

sustained up to 15 months post-vaccination and 8 months post-infection (unvaccinated 

donor). Reactivity was enhanced to all structural proteins except for the M protein which 

had a lower median than the other structural proteins except at three months. It is unclear 

why membrane has a lower median of reactivity. Some peptides have reactivities that are 

over 40-fold over the background while others barely react 1-fold over the background 

during the same time point for the same donor. The current study looks at the impact of 

VOC on immunodominant epitopes, it is not meant to be an exhaustive look at the 

ORFeome of SARS-CoV-2 that is affected by amino acid changes present in VOC. 

However, we find that the immunodominant epitopes we have characterized in this study 

are not likely to be affected in future VOC and show sustained reactivity after >12 months 

post-vaccination. We also observed an increase in background reactivity 6 months after 
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vaccination and after booster application. A similar phenomenon has been described in 

individuals who had an elevated level of CD4+T cell activation due to recent illness and 

background for ELISpot IFN-γ [98]. It is also possible that the increase in reactivity was 

due to higher chances of exposure since the 6- and 12-month samples were collected 

during the Fall of 2021 spike in Delta infections and the spread of the new VOC Omicron 

during the Spring of 2022.  

2.4 Limitations and Future Directions 

Although the current study validates the immunogenicity of peptides restricted to 31 

HLA class I alleles that are predicted to cover >99.56% of the population, our cohort was 

not representative of African American (AFA) or Native American (NA) populations or 

minorities in general. Since minority populations have fared the worst from this 

pandemic, it is of great importance to study T cell ligand repertoires for these populations 

and determine how the current vaccine models may be improved or benefit them. On the 

other hand, one of the strengths of this study was the use of samples from young 

individuals who either did not have any reported SARS-CoV-2 infections or who were 

convalescent from mild or asymptomatic COVID-19. Although all recovered donors had 

outpatient disease that lasted 15-30 days, we did not have follow-up information on re-

infections or exposures that could have explained some of the spikes in reactivity that were 

observed at 3- and 6-months post-infection and/or vaccination. Another drawback of this 

study was the lack of information on the history of common cold or influenza infections 

that could have been useful to further understand pre-existing immunity or cross-

reactivity. Symptomatology related to SARS-CoV-2 infection was not gathered during 

sample collection impeding any efforts to understand trends in asymptomatic vs 

symptomatic COVID-19 disease. The present cohort was mostly male and healthy which 

gives us a peek at what healthy responses look like, however, we don’t have access to 



59 

samples from donors with more severe disease or older populations to make a comparison. 

Finally, data collection may be more productive and save reagents if it is done according 

to a timeline set either by the data of infection or vaccination. Donors that enrolled had to 

donate samples at the same time intervals regardless of how much time had passed after 

infection or vaccination which confused the results and required a complicated tabulation 

that was lengthy and laborious to place each sample in approximately the same time frame 

after infection/vaccination.  

2.5 Materials and Methods 

2.5.1 Isolation of peripheral blood mononuclear cells (PBMCs) and plasma  

2.5.1.1 Healthy Unexposed Pre-pandemic donors 
 
Peripheral blood mononuclear cells (PBMCs) and plasma samples were isolated from 

healthy donors during June 2017 and June 2019 before the start of the SARS-CoV-2 

pandemic. Samples were obtained from Blood Centers of the Pacific from consented 

donors. 12 samples were processed according to the institutional review board (IRB) of 

Arizona State University (ASU), IRB #00006056. The cohort had a sex ratio of and an age 

between years). SARS-CoV-2 seronegativity was determined by Access ELISA as described 

below. Demographic information and HLA phenotype are listed in Table 4. 

2.5.1.2 Healthy and COVID-19 convalescent donors 

Blood from healthy seronegative and COVID-19 convalescent donors was collected 

and processed according to approved protocols from the ASU student study IRB 

(#00011804). Study participants belong to the ASU community (n=19) and may or may 

not be Arizona residents, the range of cohort age is between 19 to 51 years old (median: 25 

y/o), and a sex ratio of females to males of 4 to 15 (Table 4). Seroprevalence at the time of 

enrollment was determined by Access Immunoassay against the SARS-CoV-2 spike 

(described below).   
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2.5.1.3 Collection of Peripheral blood mononuclear cells (PBMCs), plasma, 

and HLA typing  

PBMCs and plasma from whole blood were collected using CPT tubes (BD 

Vacutainer CPT Cat#362753) following the manufacturer’s instructions. Briefly, PBMCs 

are separated from plasma and platelets during 5 consecutive centrifugations done at 15°C 

using different speeds and times. PBMCs are cryopreserved in heat-inactivated FBS (fetal 

bovine serum) containing 10% DMSO (GIBCO) and stored in liquid nitrogen until needed. 

Sera was stored at -80°C in 1.5 mL Eppendorf tubes (3 aliquots of 1 mL each). Samples 

were HLA typed using exome sequencing after isolation of RNA from 1 million PBMCs 

pelleted at 330 RCF for 8 minutes. RNA was isolated using the RNAqueous Kit (AM1912), 

concentrated and buffer exchanged using Zymo RNA clean concentrator (R1018). The 

final sample was submitted to the Genomics Core at Arizona State university (ASU) for 

TapeStation analysis (Agilent D5000 high sensitivity 5067-5592) and peptide library 

construction using KAPA’s mRNA HyperPrep kit (KAPPA KK8580). The mRNA was 

captured with Magnetic oligo-dT beads and sheared down to 250-300 base pairs using 

heat and magnesium. Illumina-compatible adapters (IDT #00989130v2) were ligated and 

excess was removed using KAPA pure beads (KAPA KK8002) then amplified with Kapa’s 

HIFI enzyme (KAPA KK2502). Fragment size and quality were verified with Agilent 

TapeStation and then quantified by qPCR (KAPA KK48835) on a Thermo Fisher Scientific 

QuantStudio 5 before multiplexing and sequencing on an Illumina NovaSeq6000 2x150 

flow cell at the University of Colorado, Anschutz Medical Campus.  

2.5.2 PCR Saliva Test 

Detection of SARS-CoV-2 RNA was performed at the CLIA-certified ASU Biodesign 

Clinical Testing Laboratory. RNA was isolated and purified from saliva samples collected 



61 

from donors at the time of blood collection. About 300 uL of the donor’s sample was mixed 

with proteinase K and RNA was extracted using the Qiagen RNeasy mini kit (Qiagen Cat# 

74106). Samples were spiked with the MS2 phage RNA as an internal control (proprietary 

information from Thermo Fisher Scientific-Cat# A47814). Multiplex RT-qPCR was 

performed following the manufacturer’s instructions. The TaqPath COVID-19 combo kit 

was used to detect ORF1ab, N, and S genes using MS2 as the internal control and a 

TaqPath positive control kit that contains 104 copies of SARS-CoV-2/uL. Ct values for 

SARS-CoV-2 N and S genes were determined using FastFinder software (V.3.300.5).  

2.5.3 Serology 

2.5.3.1 SARS-CoV-2 RBD-ELISA of Pre-pandemic and ASU cohort samples  

HCoV RBD proteins: SARS-CoV-2 RBD from 7 different coronaviruses (HKU-1, OC-

43, SARS-CoV-2, SARS-CoV- MERS, 293E, and NL63) were produced as secreted proteins 

using the Expi293™ expression system kit (ThermoFisher A14635). Briefly, the RBD of 

each HCoV was cloned into the pcDNA3.4 expression vector flanked by a signal peptide 

(MDAMKRGLCCVLLLCGAVFVSP) of the human tissue plasminogen activator at the N-

terminus and a C-terminus (GGGGS)3-Halo-3xFLAG tag. Endonuclease-free plasmid 

DNA was transfected into Expi293F cells using the ExpiFectamine293 Transfection Kit 

(Gibco). Cells were cultured in Opti-MEM-I reduced Serum Medium (Gibco) in an orbital 

shaker at 37°C with 8% CO2. Four and a half days post transection, the cells were pelleted, 

and the supernatant was clarified by centrifugation for 20 minutes at 4,000g and 4°C. The 

supernatant was spin-concentrated and filtered using 0.22 um Stericup, aliquoted, and 

stored at -80°C. Protein expression was verified by in-gel fluorescence assay. RBD 

supernatants were mixed with HaloTag Alexa Fluor 660 Ligand (Promega G8471) and 

allowed to bind for 30 minutes at room temperature. The samples were mixed with XT gel 

loading dye (Bio-Rad) and boiled for 10 minutes at 95°C. The samples were loaded on a 4-
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20% SDS-PAGE gel and a fluorescent signal was detected with a laser scanner platform 

(Typhoon trio).  

2.5.3.2 SARS-CoV-2 specific IgM/IgG Quantitative Detection by Access 

Immunoassay of ASU Study Samples 

Detection and quantification of IgM and IgG antibodies against SARS-CoV2 RBD 

(receptor binding domain) was performed by the CLIA-certified lab from the Biodesign 

Institute at ASU. The serum was separated from whole blood samples collected from the 

ASU Student Study participants as previously described. Serum samples were aliquoted 

and only thawed once to perform the access Immunoassay using the Beckman Coulter 

protocol and analyzer (Cat# C58961 and #C58957). Briefly, the Access assay uses 

paramagnetic particles and a chemiluminescent assay to detect and quantify IgG and IgM 

antibodies against the SARS-CoV-2 RBD. The paramagnetic particles were coated with a 

mouse anti-human IgM or IgG antibody that was incubated with the prediluted donor 

sample. The unbound material was washed away, and the particles incubated with 

recombinant SARS-CoV-2 RBD protein tagged with an alkaline phosphatase tag. After a 

second wash, a chemiluminescent substrate is added for the quantification of light 

produced by the machine’s luminometer. A cut-off value is determined during calibration 

of the instrument (Beckman Coulter UniCel Dxl 800) and results are interpreted as 

negative (<10 AU/mL) or positive (≥10 AU/mL).  

2.5.3.3 Detection of Human CoV N-specific IgG by Rapid-ELISA 

The presence of antibodies against the nucleocapsid protein of Human Coronaviruses 

(NL-63, 229E, OC43, HKU-1, SARS-CoV, SARS-CoV-2, MERS-CoV) was detected by 

chemiluminescence. Briefly, a 96-well plate is coated with a Goat polyclonal anti-GST 

(glutathione S-transferase) at 4°C overnight, washed (0.2% PBST), and blocked for 1.5 

hours at room temperature with a 5% milk PBST solution. After 5 washes the plate is 
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coated with recombinant CoV nucleocapsid tagged with GST (see below) for 1 hour at RT 

(room temperature). After washing, pre-diluted donor sera (1:100 serum to block serum 

buffer-E. Coli lysate) is added for an hour incubation at RT. Plates are then probed with a 

goat anti-human IgG antibody conjugated to HRP (horseradish peroxidase) (Jackson 

ImmunoResearch #5150035-062) for 1 hour at RT. Using a Promega GloMax 

luminometer, peroxidase activity is detected at 425 nm wavelength, 1-5 min after adding 

the substrate solution (Thermo Sci. #37074).  

Cell-free expression of recombinant human CoV nucleocapsids: Nucleocapsids (NC) 

tagged with GST from different human coronaviruses (NL-63, 229E, OC43, HKU-1, SARS-

CoV, SARS-CoV-2, MERS-CoV) are expressed using a cell-free system or IVTT (In vitro 

transcription-translation). A HeLa lysate master mix (Thermo Scientific) was combined 

with the antigen plasmid (e.g. NL-63 NC pANT7_cGST) and the reaction was left in a 30°C 

incubator for 1.5 hours. The resulting antigen is diluted 1:100 in a 5% milk PBST solution. 

All plasmids were purchased from DNASU (Center for personalized diagnostics, ASU) 

[99].  

2.5.4 Epitope prediction and peptide selection 

We used EnsembleMHC (https://github.com/eawilson-CompBio/EnsembleMHC-

Covid), a novel computational tool that integrates peptide binding affinity, and peptide-

pMHC complex stability with peptide-binding pocket structural features and the 

probability of antigen presentation [43]. Using the ancestral variant (MZ_468053) we 

obtained 658 CD8-T cell epitopes from the SARS-CoV-2 proteome restricted to the most 

common HLA alleles in the world and prioritized testing the structural peptides (n=108) 

restricted to the HLA types in our student study cohort.  

2.5.5 Amino-acid Conservation in homologous CoVs and SARS-CoV-2 VOCs 
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Immunogenic epitopes (after ELISPot and AIM analysis) were matched to 

homologous non-pathogenic coronavirus NL63 (NC_005831.2), 229E (KY_684760.1), 

OC43 (AY_391777.1), HKU-1 (AY_884001.1), SARS-CoV (AY_274119.3), and 

MERS(JX_869059.2) and emerging variants B.1.1.7 (MZ_202178), B.1.137 

(MZ_468007), P.1 (MZ_202306) and B.1.617.2 (MZ_468047) and B.1.1.529 (BA.1-BA.5; 

OL_965559). Alignments were done using the Clustal Omega tool from EMBL-EBI 

(www.ebi.ac.uk/services) [100] and visualized using JalView [101]. 

2.5.6 SARS-CoV-2 ancestral and variant peptide synthesis  

We used 108 MHC Class-I -restricted epitopes (ProImmune, UK. >80% purity) and 

tested individual peptides according to the HLA type of the donor and the number of live 

cells after thawing. We used a CEF pool (CMV, EBV, and Flu viral epitopes) (ProImmune, 

UK) as a positive control and two negative controls, untreated cells and PBS with 5% 

DMSO. 

2.5.7 ELISpot assay 

Enzyme-linked immunosorbent assay (ELISpot) was performed as previously 

described [102]. Briefly, a 96-well multi-screen plate (Millipore) was seeded with 5ug/well 

of anti-IFNϒ (Mabtech) capture antibody diluted in PBS overnight at 4ºC. The peptide-

pulsed PBMCs were transferred to the ELISpot plate and incubated at 37ºC for 48 hours. 

The plate was washed with ELISpot buffer (PBS + 0.5% FBS) and 1μg/mL of anti-IFNϒ 

(Mabtech) secondary detection antibody was added and left at room temperature for 2 

hours.  Streptavidin ALP conjugate (1μg/mL, Mabtech) is added and the plate is incubated 

for 1 hour, and washed with ELISpot buffer. The plate was developed with detection buffer 

(33μL NBT, 16.5μL BCIP (Promega), in 100 mM Tris-HCl pH 9, 1 mM MgCl2, 150 mM 

NaCl) for 8-10 minutes and the reaction was stopped by rinsing with water 5 times and 

allowing the plate to dry for up to two days. Spots were read using the AID ELISpot reader 

http://www.ebi.ac.uk/services
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(Autoimmune Diagnostika GmbH). The average number of spot-forming units was 

calculated for each tested pool or individual peptide and subtracted from the background 

(either untreated or PBS-DMSO control). A reactive sample was above a 2-fold threshold 

of SFU (spot forming units) per 106 PBMCs of sample over background (untreated or 

DMSO/PBS, whichever was lower). Each peptide and control were tested in triplicates. 

Samples that did not have more than 5 SFU/106PBMCs for the positive control were not 

considered for analysis. Due to the small sample size and limited number of cells, 

immunogenic peptides were prioritized for testing when not enough cells were available 

at subsequent time points.  

2.5.8 Flow cytometry staining for activated-T cells (AIM).  

Stimulated PBMCs will be stained for activation markers, specifically CD137/CD69 for 

CD8+ T cells and CD134/CD137/CD69 for CD4+ T cell markers to quantify epitope-

specific T cell activation [103]. We used the Attune™ NxT Flow cytometer in conjunction 

with the FlowJo™ software for data acquisition and analysis.  

2.5.9 Quantification and statistical analysis 

All tests are stated in the figure legends. P values are specified by each table or figure. 
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CHAPTER 3 

CD8+ T Cell Pre-Existing Immunity to SARS-CoV-2 

3.1 Introduction 

Respiratory viral infections like influenza virus, adenoviruses, respiratory syncytial 

virus (RSV), and coronaviruses manifest with an array of symptoms that can range from 

asymptomatic, to mild to severe and in some cases lead to death [104]. For most infections, 

viral titers of exposure, genetic background of the infected individual (e.g. HLA genotype), 

or viral-dependent co-morbidities (e.g. heart disease, diabetes) will determine the course 

and severity of the infection [105]. However, pre-existing immunity due to cross-reactive 

responses may affect susceptibility to infection and disease severity.  

Documented cases of pre-existing immunity due to prior infection or exposure to 

related viruses can reduce susceptibility or enhance disease. For instance, secondary 

infections with flaviviruses like Dengue or Zika virus can be cross-protective [106, 107], or 

detrimental as in the case of disease enhancement by influenza T cell cross-reactivity to 

Hepatitis C Virus CD8+ T cell epitopes (HCV) [108]. SARS-CoV-2 shares 65% to 69% of 

sequence homology to common cold coronaviruses, and has a higher similarity to the 

pathogenic SARS-CoV (86%) [109]. This degree of similarity suggests that prior infections 

with CCCoVs generate an adaptive immune response that may cross-react with similar 

viruses like SARS-CoV-2. In fact, antibody and T cell responses are part of the response 

against CCCoVs but antibody levels decrease faster that T cells. A study looking into 

adaptive responses to SARS-CoV found that antibody levels decrease below detectable 

levels two to three years post-infection, while virus-specific T cells can be found up to 17 

years later [110, 111]. 

Here, we explore the degree of cross-reactivity to SARS-CoV-2 in unexposed 

individuals by testing the reactivity of CD8+ T cells to viral structural epitopes and whether 
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that response is due to cross-reactivity to CCCoV like OC-43 and HKU-1.  Since more than 

90% of the adult population have antibodies against HCoVs that cause the common cold 

[112], there are likely Tmem cells that cross-recognize SARS-CoV-2 CD8+ T cell epitopes. 

Understanding cross-reactivity in the context of SARS-CoV-2 may elucidate some of the 

rules that determine the vast disparity in clinical outcomes of COVID-19 disease. In 

addition, identifying discrete regions of structural proteins that are immunogenic in 

unexposed individuals, may provide insight into the cross-reactive nature of the spike 

protein which has implications for vaccine design and the addition of other structural 

targets to generate protective memory T cells against SARS-CoV-2. 

3.2 Results  

3.2.1 Structural Epitope repertoire in SARS-CoV-2 unexposed individuals 

To determine the level of pre-existing immunity to SARS-CoV-2 and the CD8+ T cell 

epitope repertoire in unexposed individuals, we tested recognition and magnitude of 

reactivity by ELISpot IFN-γ secretion assays using peptides derived from the ancestral 

sequence of SARS-CoV-2 (Table 2). To test the immunogenicity of structural peptides, we 

used peripheral blood mononuclear cells (PBMCs) collected from 12 donors between June 

2017 and June 2019 before the declaration of the SARS-CoV-2 pandemic in March 2020 

and well before the initial global spread during the first months of 2020. Our pre-

pandemic (PP) cohort (n=12) is composed mostly of white females with a median age of 

59 y/o (Table 4). Unexpectedly, 42% of donors were sero-reactive to the N protein of 

SARS-CoV-2 as measured by RAPID-ELISA (Fig. 19). PBMCs were stimulated for 10 days 

with individual peptides derived from all four structural proteins and restricted to 21 

unique HLA class I alleles (Fig. 6). Long term in vitro stimulations have been used 

extensively to amplify low-frequency T cell responses to viral antigens and have also been 

used in the detection of bacterial and allergenic antigens recognized by CD4+ and CD8+ T 
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cells [28, 113]. The CD8+ T cell peptides to be tested were selected from a group of 108 

structural peptides predicted with the consensus algorithm EnMHC and restricted to 52 

of the most common HLA class I alleles [43]. Restricted by the HLA genotypes of our 

cohort we tested 59/108 peptides, 3 peptides from the envelope (E), 14 from the 

membrane (M), 7 from the nucleocapsid (N), and 35 from the spike (S) proteins (Fig. 20).  

 

 

 

 

 

 
 
 

 
 
Figure 20. The proportion of structural proteins recognized in unexposed donors. A total 
of 59 peptides were tested, the graph shows the distribution of immunogenic peptides 
only. 22 peptides were immunogenic, S=12; M=8; N=1; E=1.  

 

A total of 31 epitopes were immunogenic, that is the reactivity measured as the number 

of spot-forming units (SFU) normalized to 1 million PBMCs was over 2-fold that of the 

background response from the negative control. Each donor recognized an average of 2.5 

epitopes and a median of 2, with a minimum of cero to a maximum of 6 epitopes 

recognized. About 63% of epitopes (14/22) were recognized by 4 donors and of those, most 

were from the S protein (12/22) and the M proteins (8/22). Epitopes with the highest 

magnitude of response originate from all 4 structural proteins, however, most were 

directed to the spike protein (Table 12). Four epitopes, one from each of the structural 

proteins had the highest magnitudes of response.  
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- Spike immunodominant and immunoprevalent 264YLQPRTFLL272 

 The 264YLQPRTFLL272 epitope from the S protein had a 12-fold over-background 

reactivity and was recognized by 4 different donors. This peptide is highly immunogenic 

in unexposed donors as well as in convalescent and vaccinated individuals (Chapter 2). It 

has been validated in numerous studies, a search on the Immune Epitope Database (IEDB) 

reveals 48 different studies have validated this epitope by immunization of transgenic 

mice, IFN-γ ELISpot, and ELISA [114-116]. Supported by other studies, we find that this 

epitope is restricted to HLA-A*02:01 and B*08:01, and additionally report that it is 

immunogenic in donors restricted HLA-B*11:01, HLA-C*05:01, and C*07:01. 

Unfortunately, this epitope is found neighboring the RBD of spike and it is mutated in 

recent subvariants of the Omicron VOC. Nevertheless, the immunodominance of this 

epitope reported in several studies may still generate cross-reactive responses because 

although it is mutated, we find that it is a conserved identity.  

- Nucleocapsid immunodominant and immunoprevalent 263KAYNVTQAF271 

The 263KAYNVTQAF271 epitope from the N protein had a 28-fold over-background 

reactivity and had the highest magnitude of response among structural peptides. It has 

been reported in four different studies that validate this epitope as part of an 

immunodominant response to SARS-CoV-2 infection as it was found to be immunogenic 

in convalescent samples by IFN-γ ELISpot/ELISA and tested in a mouse model as part of 

a peptide vaccine that spans globally common HLA genotypes [114, 117]. The 

263KAYNVTQAF271 epitope has been validated to bind to HLA-B*35:01 and B*51:01. Here, 

we show that it can be presented in individuals restricted to HLA-B*57:01, C*12:02 and 

C*06:02.  
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- Envelope immunodominant 20FLAFVVFLL28 

This peptide has been validated as immunogenic in vivo after immunization of a 

transgenic mouse model and confirmed to be restricted to HLA-A*02:01 [118]. It 

stimulates the proliferation of CD8+ T cells in vitro as quantified using a 

carboxyfluorescein succinimidyl ester (CFSE) and ICS assays [119] and by tetramer 

binding [116]. The last two studies were done in convalescent individuals and in Chapter 

2, we characterize responses against this epitope in both vaccinated and convalescent 

donors, making 20FLAFVVFLL28 a high-value non-spike target for vaccine or TCR-

mediated therapies. 

 

Table 12. Reactive epitopes in pre-pandemic samples 

 

 

Pep Seq PROTEIN # Donors

Highest Magnitude 

of response

YLQPRTFLL S 4 donors 12.220

VYSTGSNVF S 1 3.755

VYSSANNCTF S 1 2.250

VYDPLQPEL S 1 3.500

TLDSKTQSL S 2 3.250

RLFRKSNLK S 1 2.669

QYIKWPWYI S 1 6.273

QYIKWPWYI S 1 2.980

LYNSASFSTF S 1 4.662

KSNLKPFER S 1 3.062

CYFPLQSYGF S 1 2.633

CVADYSVLY S 2 2.000

AEIRASANL S 1 4.667

KAYNVTQAF N 1 28.749

YANRNRFLY M 1 5.556

SSDNIALLV M 1 2.250

SELVIGAVIL M 1 2.125

RIAGHHLGR M 1 3.375

FAYANRNRF M 1 9.750

EELKKLLEQW M 1 2.299

AVILRGHLR M 1 3.062

ATSRTLSYY M 1 5.318

FLAFVVFLL E 1 16.222
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- Membrane 37FAYNRNRF45 epitope 

This epitope belongs to the M protein and is highly immunogenic, we find that a donor-

restricted to HLA-C*12:03 had a magnitude of response of 9.8-fold over the background. 

However, there are no other studies that show immunogenicity in unexposed, 

convalescent, or immunized individuals.  

3.2.2 Sequence homology of SARS-CoV-2 epitopes to common human 

Coronaviruses 

Reactivity to SARS-CoV-2 structural epitopes was detected in 75% of pre-pandemic 

samples, 9 donors recognized at least one peptide. Only a third recognized more than 4 

epitopes while most only recognized one or two epitopes. Most of the recognized epitopes 

are restricted to HLA class I A alleles with 14 positive responses, followed by C with 7 

responses, and then allele B with 4. Most of the responses were associated with HLA-

A*24:02 (n=4) and C*05:01 (n=4) followed by A*02:01.  

Sequence homology between SARS-CoV-2 and other human coronavirus (HCoV) was 

assessed using multiple alignments with Clustal Omega [120] while visualizing sequence 

identify and biochemical conservation with JalView [101]. We find that recognized 

peptides have a median of 2 residues conserved between beta (OC-43, HKU-1) and alpha 

(NL-63, 229E) common cold coronaviruses. We find that about 45% (n=10) of epitopes 

have 4 or more conserved residues, and the majority (12/22) share less than 3 amino acids 

with either alpha or beta HCoVs. Looking at the biochemical conservation, the results are 

similar, but the conservation occurs at critical anchor residues that may be preserving 

recognition by promiscuous TCRs. For instance, 20FLAFVVFLL28 a peptide from the E 

protein, is conserved biochemically at anchor residues P2, P7, and P9 with OC-43 and 

HKU-1, with a reactivity of 16-fold over background, 8 times as high as the average number 

of SFU for other peptides. In contrast, epitopes like 159VYSSANNCTF167 have 100% 
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conservation of their C terminal residues (P6-P10) with the alpha HCoV NL-63. Of the 22 

reactive peptides, only 2 epitopes had the highest homology to alpha and beta HCoVs, 

269YLQPRTFLL277 and 1208QYIKWPWYI1216 both are from the spike protein but only 

1208QYIKWPWYI1216 maps to a region of the spike protein that is less susceptible to residue 

changes seen in VOC, specifically it is found at the C-terminal end of the S2 region of spike 

between the last heptapeptide repeat and the transmembrane (TM) domain. On the other 

hand, the YLQ residue is found at the N-terminal domain of S1 neighboring the RBD, a 

region highly susceptible to mutations and under strong evolutionary pressure to evade 

humoral immunity.  

3.2.3 Sero-reactivity to human Coronaviruses 

More than two-thirds of the donors in this pre-pandemic cohort, recognize CD8+ T cell 

epitopes from SARS-CoV-2 even though at the time of sample collection, the virus was not 

circulating the world. Therefore, we hypothesized that those individuals with higher 

reactivity and percentage of epitope recognition were previously exposed to non-

pathogenic HCoVs like OC-43 and HKU-1 which may be reflected in higher sero-reactivity 

to structural proteins like the nucleocapsid. We probed the presence of polyclonal 

antibodies against the N protein of seven different HCoVs, using a semi-quantitative Rapid 

Antigenic Protein in Situ Display ELISA (RAPID-ELISA). We used an in vitro system to 

produce the N proteins of beta HCoVs OC-43, HKU-1, MERS, SARS-CoV, and SARS-CoV-

2 and 2 alpha HCoVs, NL63 and 229E. The presence of antibodies against the N protein 

was determined in triplicates by chemiluminescence and measured as relative light units 

(RLUs). Donors were grouped according to the number of CD8+ T cell epitopes recognized, 

and the relative seroreactivity was plotted per HCoV (Fig. 21). Since seroreactivity to 

MERS was consistently lower than 2.5 RLU, we chose the highest RLU value for MERS 

samples plus 3 standard deviations as the cutoff to determine reactivity (threshold 
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RLU=3.7) which is between 4 to 45 times lower than measurements for other HCoVs. 

Using this threshold we ensure that 80% of the samples are considered seronegative for 

SARS-CoV-2 and SARS-CoV N protein and that 100% of samples are negative for MERS, 

a lethal coronavirus endemic to the Middle East that has not circulated in the United States 

where the samples were collected [121].  

 

 

 

 

 

 

 

 

 

 

 

Figure 21. Sero-reactivity to N protein according to the number of CD8+ T cell epitopes 
recognized per donor. Differences are not significant (Kruskal-Wallis test, P>0.999) due 
to the high variability of outliers and small sample size. RLU ratio higher than 3.7-fold 
over background is considered sero-reactive for N protein.  

 
Differences in sero-reactivity levels are not significantly different among HCoVs or 

within the CD8+ T cell reactivity groups. However, there is a trend where the median 

seroreactivity of samples that recognized more than 4 epitopes is higher than those that 

recognized less than two epitopes, and the same trend is observed for all non-pathogenic 

HCoVs. All samples were sero-reactive to the N protein of common cold coronaviruses 

(CCCoV) like HKU-1, OC-43, NL63, and 229-E even though the N protein shares <36% 
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homology among alpha and beta HCoVs (Fig. 22). Specifically, median seroreactivity to 

HKU-1 and OC-43 is about 10 and 2 times higher, respectively, for donors that recognize 

>4 epitopes than for donors that recognize less than 1 peptide.  

3.3 Discussion 

Understanding how pre-existing SARS-CoV-2-reactive T cells influence susceptibility 

to COVID-19 is important for defining correlates of protection, finding effective targets for 

next-gen vaccines, and delineating models of immunity and protection after infection and 

vaccination. In the context of SARS-CoV-2, T cell reactivity in unexposed individuals is 

highest for CD4+ T cells at up to 50%, and lower for CD8+ T Cells at around 20%[74, 110, 

122, 123]. Surprisingly, we find that 75% of individuals in our pre-pandemic cohort 

recognize at least one SARS-CoV-2 epitope, and a third recognized more than 4 epitopes 

from different structural proteins of SARS-CoV-2. This percentage of positive unexposed 

donors is 3 times higher than previously reported [74, 122-124]. In general T cell pre-

existing immunity is higher for CD4+ T cells, up to 50%, likely due to higher peptide 

promiscuity, or the ability of a peptide to bind different HLA class II alleles. Several studies 

have found that 50% of CD4+ T cell responses are dominated by promiscuous peptides 

[125]. In contrast, CD8+ T cell responses are more specific, owing to the closed peptide 

binding groove of HLA class I alleles that limit the size and biochemical character of the 

accommodated peptide [126]. A possible explanation for the high rate of positive 

responses could be related to the long-term in vitro exposure of PBMCs to the tested 

peptide which may induce expansion of naive T cells [113, 127]. However, the frequency of 

naive T cells in circulating peripheral blood is extremely low, about 0.03 to 0.21 cells per 

106 PBMCs/mL. To make sure that responses to peptide stimulation are not due to naive 

T cells, future experiments could deplete these cells using magnetic beads that remove 

CD45RA+ CD8+T cells.  
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On the other hand, reactivity to CD8+ T cell epitopes in unexposed donors may be due 

to the cross-reactivity of memory T cells (Tmem) that originated during prior exposure to a 

CCCoV. However, homology analysis of the studied peptides revealed that most peptides 

(20/22) had less than 67% homology which is equivalent to less than 7 residues conserved 

in 9 or 10 mer epitopes. Still, biochemical conservation was maintained at anchor residues 

or C terminal ends for 11/22 immunogenic peptides. To further elucidate if reactive 

peptides are recognized by naive to Tmem cells, further stimulations should include 

phenotyping IFN-γ expressing CD8+ T cells using cell surface markers like CD45RO, 

CD45RA, CD28, and CCR7.  

Human CoVs are responsible for the common cold circulating in the human 

population and are responsible for symptomatic re-infections every 1-3 years as 

exemplified by the high seroreactivity to at least three of the four CCCoVs. A report in 2010 

on the prevalence of antibodies against HCoVs in a military veteran cohort found that 

100% of individuals had antibodies against the N protein of OC-43, 91% to HKU-1, 98% to 

NL-63, and 99% to 229-E [128]. It is logical to assume that pre-existing responses to 

SARS-CoV-2 in pre-pandemic samples are due to this cross-reactivity. However, sequence 

homology between structural proteins from beta HCoVs (HKU-1 and OC-43) and SARS-

CoV-2 is less than 36% (depending on the protein) and even less for alpha HCoVs (NL-63, 

229-E) (Appendix E, F). On the other hand, patients who recovered from SARS-CoV have 

Tmem cells that are reactive to the N protein 17 years after being infected during the 2003 

epidemic in Asia [110]. These Tmem cells are cross-reactive to peptides from the N protein 

of SARS-CoV-2, the homology between the spike proteins of these two viruses is about 

73.4%, 89.7% for N and 78% for M, more than twice as much as between SARS-CoV-2 and 

structural proteins from OC-43 (<35%) and HKU-1 (<35%) (Fig. 22). Reactivity to 15-20 

mer epitopes from the N protein was dominated by CD4+ Tmem cells and one of the peptides 
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tested, included the CD8+ T cell epitope characterized in this study, 263KAYNVTQAF271. 

Therefore, it is possible that the 28-fold reactivity to 263KAYNVTQAF271 is due to CD4+ T 

cells, however, the 10-day in vitro stimulation done prior to the 24-hour ELISpot plate 

incubation included IL-2 and IL-7 cytokine which should bias expansion to CD8+ T cell 

populations [129].  

 

 

 

 
 
 

 
Figure 22. Heat map showing the sequence conservation among β-HCoVs. Panel A 
compares the complete proteome of SARS-CoV2 against HKU-1, OC-43, MERS-CoV, and 
SARS-CoV. B, Spike. C, Nucleocapsid. D, Membrane. E, Envelope.  
 

Here we show that most individuals have sero-reactivity to all HCoVs except, as 

expected, to pathogenic SARS-CoV and MERS-CoV. We show that some unexposed 

individuals can recognize at least one structural SARS-CoV-2 epitope possibly due to 

cross-reactive TCRs. A study by Kundu et al shows that Tmem cells specific to one of the 

epitopes described in this study, 1208QYIKWPWYI1216, is part of a protective cross-reactive 

response against SARS-CoV-2. 1208QYIKWPWYI1216-specific CD8+ Tmem cells associated 

with protection against SARS-CoV-2 infection among individuals who were exposed to the 

virus but did not have a positive PCR test or symptoms associated with COVID-19 disease 
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[57]. Further characterization of immunogenic epitopes in unexposed individuals may 

provide information about the influence of pre-existing immunity on the severity of 

COVID-19. Individuals with pre-existing memory T cells could start an immune response 

faster and prevent severe disease. In fact, (Show study of CD8 T cells mediating 

asymptomatic infections). 

3.4 Limitations and future directions 

We did not phenotype SARS-CoV-2 reactive CD8+ T cells, further experiments should 

include functional assays like ICS or cytokine screens and isolation of single CD8+ T cells 

sorted by memory phenotype markers to isolate, characterize, clone, and express cross-

reactive TCRs like those reactive to the 1208QYIKWPWYI1216 epitope. In addition, non-

structural proteins that have higher sequence identity to common cold HCoVs and thus a 

higher level of cross-reactivity should be tested and identified. We have defined a set of 20 

immunogenic SARS-CoV-2 CD8+ T cell epitopes that are not highly conserved between 

HCoVs and SARs-CoV-2 but are reactive in unexposed individuals. This may be explained 

by 1) a higher level of cross-reactivity than expected that is generated from exposure from 

other animal coronaviruses (e.g. dogs, cats), 2) experimental error that leads to activation 

of naive T cells, or 3) that at a 30-40% level of conservation, TCR reactivity and 

recruitment of public TCRs is efficiently mounting immune responses that are not specific 

but may be protective when encountering a novel virus.  

3.5 Materials and Methods 

We used ELISpot IFN-γ secretion assays to probe the CD8+ T cell reactivity to 

predicted epitopes and determined sero-reactivity to different HCoV N proteins using 

RAPID-ELISA. We also performed epitope sequence alignments between HCoVs using 

Clustal and JalView applications. For a detailed description of these methodologies please 

refer to Chapter 2.  
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Chapter 4 

Pre-existing Cross-reactive Immunity to SARS-CoV-2 

4.1 Introduction 

Cytotoxic CD8+ T cells are an essential element in the process of viral clearance. CD8+ 

T cells recognize viral peptides presented on the cell surface of infected cells like a little 

flag being hosted up for recognition by the Human Leukocyte Antigen class I (HLA-I) 

molecule. This interaction is mediated by the T cell receptor (TCR), a heterodimeric 

molecule composed of an α and β chain, each with a constant and a variable region that 

confers specificity to the pMHC complex [130]. Each variable chain is generated through 

a process of somatic gene rearrangement that involves nucleotide insertions and deletions 

from a group of four regions: variable (V), and joining (J) for the α chain, plus an 

additional diversity (D) region for the β chain with a constant (C) gene fragment for both 

chains (Fig. 23) [131]. This recombination process confers high variability to the TCR and 

is multiplied by the different α and β pairings, which in theory could generate up to 1018 

different αβ TCR pairs [132]. However, personal diversity is estimated to be less than 108 

TCR pairs due in part to the negative selection (central tolerance) that occurs during T cell 

development in the thymus, which eliminates T cells with a high affinity for self-pMHC 

[132]. T cell diversity is also limited by the carrying capacity of the individual where it is 

estimated that there are less than 108 naive TCRs and a maximum of 1012 T cells in a human 

[133]. The diversity of the TCR is based on six complementarity-determining regions 

(CDRs), three from the α variable region and 3 from the β, that engage with the peptide: 

MHC complex [130]. Still, this high diversity is not enough to be specific to all possible 

pathogens, calculated to be over 1015, not taking into account post-translation 

modifications that generate novel p:MHC complexes [134]. As a result, T cell cross-
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reactivity caused by TCR binding degeneracy may help to respond to the immense number 

of p:MHC complexes generated during a viral infection or tumorigenesis.  

Figure 23. T-cell receptor rearrangement. The top left panel represents the Variable (V), 
Joining (J), and Constant (C) regions of the α chain. The bottom panel shows the V, J, and 
C regions plus a Diversity (D) region of the β chain. Semi-stochastic recombination, 
nucleotide deletions, and addition generate the final TCR αβ pairs. Adapted from ref [135]. 

 

Pre-existing immunity to SARS-CoV-2 has been characterized in 20-50% of unexposed 

individuals likely due to prior exposures to common cold coronaviruses (CCCoVs). 

Understanding the impact of pre-existing responses and cross-reactivity at the individual 

and population levels may provide insight into the differential COVID-19 outcomes that 

range from asymptomatic to severe and lethal. It can also influence epidemiological 

models of herd immunity and affect the performance of vaccines, thus affecting 

vaccination regimens and public health management protocols. Accordingly, the role of 

pre-existing SARS-CoV-2 cross-reactivity will remain a central topic of research. A 

growing number of spike and non-spike T cell responses have been identified, specifically 

against non-structural proteins and the N structural protein in unexposed donors [57, 110, 
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122]. One study identified non-spike cross-reactive CD8+ T cells that are associated with 

protection from infection in exposed individuals. Specifically, IL-2-only secreting CD8+ T 

cells detected 1-6 days after exposure with SARS-CoV-2 were found after stimulation with 

HKU-1, OC-43, and SARS-CoV-2 peptide pools in individuals that were PCR negative and 

not in PCR+ or symptomatic individuals [57].  

Here, we isolated cross-reactive T cells generated after stimulation with two highly 

immunogenic epitopes from the N (KAYNVTQAF or KAYN) and M (FAYANRNRF or 

FAYM) proteins in an unexposed donor. After sequencing, we expressed the reactive TCRs 

using an αβ-/- Jurkat T cell line, J76-NFAT-Luc-RE (Nuclear Factor of Activated T cells), 

that upon activation of the TCR signaling pathway will express luciferase which can be 

used as a semi-quantitative-readout for T cell activation [136]. After expression, the 

engineered T cell lines will be tested for cross-reactivity to KAYN and FAYM peptides that 

are homologous from common cold human Coronaviruses (HCoVs) (Fig. 24).  

4.2. Results 

4.2.1 A pre-pandemic donor is highly reactive to SARS-CoV-2 epitopes from 

the Nucleocapsid and Membrane structural proteins 

To find reactivity to SARS-CoV-2 in pre-pandemic samples, as described in Chapter 3, 

we tested predicted CD8+ T cell peptides using IFN-γ ELISpot secretion and Activation 

Induced Marker assays as a readout of reactivity. One of the 12 pre-pandemic donors, 

BCP15, a 59 y/o white male was highly immunogenic to non-spike structural epitopes. 

Specifically, we found reactivity to the nucleocapsid (N) peptide KAYNVTQAF (KAYN) and 

the membrane (M) peptide FAYNRNRF (FAYM). KAYN increased reactivity 28-fold over 

background as measured by IFN-γ ELISpot and expression of activation markers like 

CD137 was 52 times higher than AIM expression in unstimulated cells or the negative 

control (Fig. 25). The KAYN peptide was predicted by EnsembleMHC (EnMHC) to be 
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restricted to HLA-A*32:01, HLA-B*15:03/ B*15:17/ B*46:01 /B*57:01 and HLA-C*12:03. 

Previous reports show that the KAYN peptide can be presented by HLA-B*57:01 but has 

also been reported by other algorithms (MHC-Flurry and NetMHCpan 4) to be restricted 

to HLA-C*12:03. Since our donor is restricted to HLA-C*12:03 and no other possible 

HLAs, we infer that the KAYN response in this donor is likely restricted to HLA-C*12:03. 

The second epitope FAYM is also restricted to HLA-C*12:03 and had a 10-fold increase in 

reactivity as measured by IFN-γ ELISpot and 6 times higher level of AIMs (Fig. 25).  

 

 

 
 
 

 
 

 

 
 
 
 
 
 
Figure 24.  Workflow to isolate, sequence, clone and express SARS-CoV-2-reactive TCRs 
from a pre-pandemic donor. PBMCs isolated from pre-pandemic donor BCP15 were 
stimulated with KAYN-pulsed autologous APCs. CD137+ CD8+ T cells were single-cell 
sorted into a 96-well plate and processed. After sequencing, KAYN-reactive α/β TCR pairs 
were identified and cloned into the MSGV1 and pLenti-CMV-Puro vectors. mTCR+ cells 
were bulk sorted and expanded to be tested for reactivity and specificity to the 
KAYN:C*12:02 complex.  
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4.2.2 KAYN stimulated PBMCs express 5 different  α/β  novel pairs.   

To isolate KAYN and FAYM-reactive CD8+ TCRs, we single-cell sorted KAYN-reactive 

CD8+ T cells sorted the top brightest CD8+ T cells (top 30%) into a 96 well plate pre-filled 

with lysis buffer and RNAse inhibitor for an RT-PCR reaction using barcoded primers 

from the SMARTer® Human scTCR a/b profiling kit. After RT-PCR, the cDNA sequence 

was amplified and verified for size and quality/quantity (concentration of DNA) for further 

processing, using the Agilent Tapestation (Appendix G). We found that most pooled cDNA 

libraries (12 pooled samples) were the correct size (~250-750 bp) and had enough DNA to 

be used for further processing. After 2 consecutive PCR reactions and a final tapestation 

analysis (Appendix H), samples were sequenced and verified against the TCRβ data from 

the ImmunoSeq T cell receptor database (see methods) and the IMGT/V Quest and VDJdb 

online analysis tools. After verification, we found a total of 20 different α/β TCR pairs, and 

after alignment using the IgBlast tool (ncbi.nlm.nih.gov/igblast/igblast.cgi, see methods) 

we found 11 pairs with productive (not truncated or out of frame) α and β TCR pairs but of 

those, 2 pairs were reported as part of Jurkat repertoire, 4 were previously reported to be 

associated to general immune responses to respiratory viruses and only 5 were novel pairs 

with 1-α and 2-β chains not previously reported (Table 13, Appendix I ). The TCRα and 

TCRβ chains were linked by the furin 2A self-cleaving peptide (P2A) and cloned into the 

MSGV1 retroviral vector using the NcoI and EcoRI restriction sites (Synthesized by 

Genscript, NJ. US) (Fig. 30, Appendix J). To clone into the pLenti-CMV-Puro vector, the 

TCR α/β genes were PCR amplified from the MSGV1 construct as a template, with primers 

that added flanking attB1/attB2 regions for use with the Gateway cloning system into the 

pLenti-CMV-puro vec tor (Fig. 30-Methods section 4.4).  

 

https://www.ncbi.nlm.nih.gov/igblast/igblast.cgi
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Table 13. TCR α and β genes and CDR3 α and β variable sequences. Sequences in bold 
are novel pairs. Genes marked with a star have not been reported in the literature (VDJ or 
NCBI). Controls 1 and 2 are Jurkat TCRs isolated from positive controls.  

 

4.2.3 KAY-reactive TCRs are successfully expressed in Jurkat J76-NFAT-

Luc-RE CD8+ T Cells 

Expression of the 5 different KAY-reactive TCRs was unsuccessful when using the 

retroviral system MSGV1, we experimented with retronectin-coated plates to increase 

transduction efficiency and treating the viral supernatant with polybrene as previously 

described [137]. Transduction efficiencies were never over 11% for mTCR+ J76 cells (Fig. 

26). Nevertheless, we sorted mTCR+ T cell lines for pairs 1 and 2 and expanded for three 

days to make stock for future experiments at a purity of ~92% mTCR+ cells (4.3.4). Also, 

the MSGV1 vector does not allow for the selection of positive clones, so after sorting the 

TCR expression started to decline after the fourth passage. As a result, the α/β pairs were 

cloned into the pLenti-CMV-Puro vector (kind gift from Dr. Rahman, ASU). Transduction 

efficiencies increased to 50-98% depending on the TCR pair (Fig. 26, Appendix K). 
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Figure 25. Structural epitopes KAYNTVQAFN and FAYANRNRFM are highly reactive in 
a pre-pandemic donor. Peptide pulsed autologous APCs were co-incubated with PBMCs 
isolated from donor BCP15. Experiments were done in triplicates. A) ELISpot IFN-γ 
secretion; negative controls: unstimulated and PBS/DMSO wells; positive control: CEF 
peptide pool. Right panel: histogram of reactivity by spot forming units (SFU) per 106 
PBMCs. B) AIM assay, flow cytometry panel gated for CD4+, CD8+ and CD137+ T cells. 
CD137+ CD8+ T cells were single-cell sorted for further processing.  
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Figure 26. A. Bulk sort of mTCR+ J76-CD8+ transduced cells with retroviral supernatant 
expressing the KAYN-reactive TCR Pair #2 (MSGV1 vector). Cells were sorted by staining 
with anti-mTCR-PE and gating for viability with zombie violet. B) Untransduced J76 CD8+ 
T cells, mTCR-,  C) Bulk sorted Pair#2 TCR J76 Cells after 3 expansions, D) mTCR+ 
expression after transduction with the pLenti-CMV-Puro Pair 1 TCR construct. PE: 
Phycoerithrin fluorophore; SSC-A: side scatter-Area, ef780: live dead stain. 
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Figure 27. KAYN-Tetramer-PE stain of Pair 1 (A), 2 (B), 3 (C), and 5 (D) of KAYN-reactive 
TCRs in MSGV1. KAYN-TCR T cell lines (J76-NFAT-Luc-RE). Flow cytometry plots after 
bulk sorting and expansion of mTCR+ T cell lines. Live cells (ef780-) were gated on CD8+ 
versus KAYN-tetramer (PE).   
 
 
4.2.4 KAY-reactive TCR cells may not be KAY-specific 

We produced 2 T cell lines that express pair 1 and 2 (MSGV1 retroviral vector) and 

stained with a KAY-HLA-C*12:03-PE tetramer (NIH Tetramer Core Facility). The mTCR+ 

CD8+ T cells were not stained by the KAY-tetramer. We then tried to stimulate PBMCs 

derived from the same donor with the KAYN peptide for 10 days and again, we were unable 
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to detect any KAY+ T cells with the tetramer (Fig. 27). We tested the newly made Lentiviral 

KAY-reactive T cell lines but the specificity was not improved given that the mTCR+ 

expression level increased by more than 5 fold (Appendix K). It is possible that the 

tetramer is not stable enough to stain at room temperature as a pink precipitate formed 

after staining that was separate from the cell pellet. Also, the tetramer was not freshly 

prepared and may have been degraded at the time of testing. The specificity of PBMCs 

stimulated with peptide-pulsed autologous APCs was not evaluated.  

4.2.5 K562 cells express HLA-A*02:01, B*57:01 and C*12:03 

We transfected 293LX cells, with the pLenti-CMV-Puro vectors expressing either 

HLA-A*02:01, HLA-B*57:01, HLA-C*12:03 to be used as artificial antigen-presenting 

cells. The main purpose of these cell lines will be to present peptides to the KAY-reactive 

TCR cell lines. Each cell line was sorted and expanded under puromycin selection 

(0.75ng/mL) for 15 days, aliquoted in FBS with 10% DMSO at a density of 2 x 106 cells 

/mL, and stored in liquid nitrogen until needed (Appendix L).  

4.3 Discussion 

Sequence conservation of KAYN and FAYM epitopes in comparison to other HCoVs is 

55.56% and 44.5%, respectively (Appendix F). Although neither epitope has a high identity 

to any of the CCCoVs, it shares the highest similarity to OC-43 and HKU-1. The KAYM 

epitope shares higher biochemical conservation where P1, P4, P5, P6, P7, and P9 maintain 

their biochemical identity for 67% of the residues. The FAYM epitope shares homology to 

both OC-43 and HKU-1 (~45%) but shares 78% biochemical characteristics at residues P1, 

P3-P7, and P9. In addition to the high biochemical conservation, the binding motifs for 

HLA-C*12:03 represented by the logo plots in Figure 28, are a match for P2, P3, P7, and 

P9, all reported to be very important for higher binding affinity which is linked to 

immunogenicity [138]. MHC-Flurry predicts a binding affinity for KAYM and C*12:03 of 
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29.9 nM, with a probability of being processed of 0.75 and presented by HLA-C*12:03 of 

0.97567. The FAYM epitope also has a predicted high binding affinity of 38.8 nM, with a 

lower probability of presentation (0.346) but a high probability of being presented by 

C*12:03 of 0.88. Reactivity to both epitopes is consistent with current literature where 

about a third of CD8+ T cell responses are generated against N- and M- derived peptide 

pools that include both epitopes and also elicit CD4+ reactivity of HLA class II alleles [90]. 

We found 5 different α/β  novel pairs isolated from KAY-reactive CD8+ T cells (Table 13). 

None of the pairs have been reported in the literature to be associated with CD8+ T cell 

responses against a virus or a malignant cell. However, only three single chains, 2α  and 

1β, were completely novel. The other 3α and 4β  chains were reported to be associated with 

virally infected cells (HIV, SARS-CoV-2) or tumor antigens (Glioma, Merkel cell 

polyomavirus, Human papillomavirus). After successful expression of 2  pairs (pair 1 and 

2) of KAYN reactive TCRs in J76 CD8+ NFAT-Luc-RE Jurkat cells (J76-CD8+), we bulk 

sorted CD8+ and mTCR+ (constant region of the mouse TCR) cells and rested them 

overnight.   

 

 

 

 

 

 

 

Figure 28. Logo plot of the peptide binding motifs of HLA-C*12:03. Generated with the 
Seq2Logo server. The height of each letter indicates the impact on binding at the specific 
position. Amino acids on the positive side of the y-axis have a positive effect on binding to 
the HLA allele, while the ones on the negative side have the opposite effect [139].  
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Each cell line was expanded three times, from 96 well plates at a density of about 5 x 

104 cells per well, to 2 x 105 cells per 24 well. Population numbers were amplified to about 

16 x106 cells and half of the cells were aliquoted to about 1 million cells per mL and frozen 

in case of contamination during further expansion. The other half was expanded but the 

frequency of mTCR+ cells started to decrease from 96% after sorting, to about 45% after 

the second expansion, down to 8% after the third expansion. Since we could not select the 

cells with antibiotics because the retroviral vector does not include an antibiotic-selective 

marker, we decided to clone the TCR pairs into a lentiviral vector. pLenti-CMV-Puro does 

not require stimulation of PBMCs with anti-CD3 (OKT3) before transduction, it requires 

polybrene in solution but eliminates the need for retronectin-coated plates and has a 

Puromycin selective gene. We performed an antibiotic curve to select the appropriate 

amount of Puromycin to use, and after 7 days, 50% of untransduced J76 cells were dead 

at a concentration of 1.4 ug/mL of Puromycin, so our working concentration was 0.7 

ng/mL of media. With this setup, we increased transduction efficiency from 11% or less to 

65-87% for pairs 3, 4, and 5. Pairs 1 and 2 had lower transduction efficiencies (32-38%) 

and as a result, will not be prioritized for specificity or functional testing. Future 

experiments will test the specificity of all 5 pairs to KAYM-pulsed antigen-presenting cells 

(APCs) generated from dendritic cells, autologous APCs from donor BCP15, or artificial 

APCs restricted to HLA-C*12:03. 

About 12 different TCRβ CDR3 sequences have been identified for the KAYN peptide 

and about 18 for the FAYM epitope, both associated with individuals that were either 

exposed and uninfected or had asymptomatic COVID-19, but from different HLA 

restrictions [82, 90]. Since staining with tetramer was unsuccessful, it is possible that the 

monomer generated is unstable and misfolds during tetramerization or that partial 

unfolding decreases avidity to the TCR. It is also possible that expression of the TCRs on 
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the cell surface is not high enough to be detected by tetramer stain, however, staining in 

parallel with a subset of the T cell lines with anti-mTCR-PE, shows that at the moment of 

tetramer staining, between 70 to 87% of the cells were mTCR+. Since we did not test the 

lentiviral generated T cell lines with KAYN-tetramer, it is not possible to know if improved 

expression prior to sorting, reflects proper folding and α/β dimerization of the TCR.  

It is also possible that the identified TCRs have low binding affinity for the 

KAYN:C*12:03 complex because they are part of a subset of effector responses 

characterized by low-binding affinity to the target, a common occurrence during an 

immune response against viral pathogens and cancer [140]. Specific to SARS-CoV-2, a few 

studies have characterized low avidity and broad-cross reactivity of memory CD4+ T cells 

in unexposed individuals [141, 142]. Further, in vivo, responses to infection show that 

weak TCR:pMHC interactions can activate a naive CD8+ T cell response and be sufficient 

to generate effector and memory CD8+ T cells [143]. Thus, it is possible that the isolated 

TCRs do not have high binding affinity to the KAYN-tetramer, however, we can determine 

if the TCR recognizes KAYN:C*12:03 complexes by challenging the lentiviral-generated T 

cell lines with decreasing concentrations of peptide-pulsed (0.5, 0.25, 0.1, 0.0025, 0.001 

mg/mL) artificial APCs (aAPC) or dendritic cells (DCs) and quantify the levels of activation 

by measuring luciferase expression or by ELISpot IFN-γ secretion ELISpot assay.  

In addition to levels of antigen and TCR expression, CD8 co-receptor expression seems 

to be critical for T cell activation, especially for low-affinity interactions [144]. Thus, I 

tested the levels of CD8 expression in the αβ-/- J76-CD8+ T cell line before transduction 

and found that our stocks were about 40% CD8+. As a result, the J76-CD8+ Jurkat cells 

were selected with hygromycin for one week, the CD8+ T cell expression increased to 85% 

before transduction. The generated T cell lines were bulk sorted and placed in liquid N for 

later experimentation with the expectation that tetramer staining would be improved.  
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To end, the TCR sequences linked to both epitopes are unique and are not associated 

with public TCR responses (TCR clonotypes that are shared by more than one individual) 

which indicates that the TCRs isolated after KAYN stimulation may be specific and be part 

of the cross-reactive repertoire against SARS-CoV-2 in unexposed individuals. Further 

experiments should include testing the lentiviral T cell lines for KAYN-tetramer staining, 

challenged with either DCs or aAPC. In addition, IFN-γ secretion assays and AIM assays 

should be performed to detect activation of PBMCs from the same donor by homologous 

KAYN and FAYM peptides from OC-43, HKU-1, NL-63, 229E, SARS-CoV and MERS (as 

additional negative control).  

4.5 Materials and Methods 
 

First, we isolated peripheral blood mononuclear cells (PBMCs) from a heathy 

unexposed pre-pandemic donor, as summarized in Chapter 2 (see Materials and Methods 

section). The donor is a 59 y/o white male. During PBMC isolation, about one million cells 

were aliquoted to isolate RNA for HLA typing using exome sequencing. Once HLA typed, 

we tested the reactivity of predicted peptides according to HLA restriction.  

4.5.1 SARS-CoV-2 ancestral peptide synthesis  
 

Epitope prediction and selection were done using EnsembleMHC as previously 

described (Chapter 2-materials and methods) and two epitopes with high reactivity were 

selected for further study: KAYNVTQAF for the N protein and FAYNRNRF from the M 

protein (ProImmune, UK. >80% purity). We used a CEF pool (CMV, EBV, and Flu viral 

epitopes) (ProImmune, UK) as a positive control and three negative controls, untreated 

cells, PBS with 5% DMSO, and with the human cytomegalovirus peptide pp65 

(hCMVpp65) NLVPMVATV that is restricted to the HLA-A*02:01.  
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4.5.2 Autologous APC generation from healthy individual PBMCs:  

Autologous CD40L-activated B cell APCs were generated by incubating healthy donor 

PBMCs (peripheral blood mononuclear cells) with irradiated (32Gy) K562-cells 

expressing CD40L (KCD40L) at a ratio of 4:1 (800,000 PBMCs to 200,000 irradiated 

KCD40Ls). Cells were kept in a 24-well plate at 37°C and 5% CO2 in B cell media (BCM) 

consisting of IMDM (Gibco), 10% heat-inactivated human serum (GemCell 100-512), 100 

mM HEPES (Gibco) and 2 mM L-Glutamine (Gibco). BCM is supplemented with 10 

ng/mL of recombinant human IL-4 (R&D Systems), 2 μg/mL Cyclosporin A (Sigma 

Aldrich), and insulin transferrin supplement (ITES, Lonza). On day 7, APCs were washed 

with PBS, expanded into a 24-well plate, and re-stimulated with fresh irradiated 

KCD40Ls. We determined APC purity by CD19+/CD86+ antibody staining and 

quantitation by flow cytometry (CD19+/CD86+ T cells >90% of total PBMCs). APCs can 

be re-stimulated for up to 5 weeks or cryopreserved until needed for new expansions.  

4.5.3 T cell stimulation by autologous APCs: 

Healthy donor B-cell APCs were stimulated with individual peptides and cultured in 

BCM complete and recombinant IL-4 (Gibco-51500-056). BCM complete is made of 

IMDM (Life technologies-12440061), 5% human serum (GemCell-100-512), 1X L-

Glutamine (Gibco025030-081), 1X HEPES (Gibco-15630-080), 1X antimycotic-antibiotic 

(Gibco-15140-122). After 24 hours, the APCs were incubated with whole PBMCs at a ratio 

of 1:3.65 (400,000 APCs: 1,400,000 PBMCs) in a 24-well plate with BCM, 20 U/mL 

recombinant human IL-2 (rhIL-2 Fisher Sci.-202IL05-CF) and 5 ng/mL IL-7 (Fisher Sci.-

207IL005CF). A partial media exchange was done on day 5 and freshly peptide-pulsed 

APCs were added. Each reactive well was split in half to perform ELISpot and AIM assays.  
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4.5.4 ELISpot assay 

Enzyme-linked immunosorbent assay (ELISpot) was performed as previously 

described (Chapter 2) [102]. Each peptide and control were tested in triplicates. Samples 

that did not have more than 5 SFU/106PBMCs for the positive control were not considered 

for analysis.  

4.5.5 Flow cytometry staining for activated-T cells (AIM).  

Stimulated PBMCs were stained for activation markers, specifically CD137 for CD8+ T 

cells and CD134 for CD4+ T cell markers to quantify epitope-specific T cell activation 

[103]. We used the Attune™ NxT Flow cytometer in conjunction with the FlowJo™ 

software for data acquisition and analysis.  

4.5.6 Single cell sorting to isolate the TCR of CD8+-SARS-CoV-2  reactive T 

cells:  

After stimulation of PBMCs by autologous APCs with the immunogenic epitopes 

activated T cells were single-cell sorted into a 96-well plate previously loaded with lysis 

buffer and RNAse inhibitor mix and processed according to the TAKARA kit instructions 

(TAKARA 634431). Single-cell sort was done using the CD137-PE marker using the BD 

FACSAria™ Illu cell sorter (BD Biosciences #643245). Data was analyzed using FlowJo™ 

software.  

4.5.7 SMARTer® Human scTCR a/b profiling 

TCR  α/β  libraries were prepared according to the manufacturer’s instructions. 

Briefly, first-strand DNA synthesis is done using a proprietary reverse primer and a set of 

SMART-Seq Indexed oligos so that each sequenced TCR α and β chain can be traced back 

to a well by indexing to a row (A-H) 6-base identifier or barcode (Fig. 29). In-plate negative 

(n=4) and positive (n=4) controls are used per 96 well plates, they consist of no cells 

(negative control) and a control Jurkat RNA. The eight control wells are placed as 



94 

indicated in Figure 29. This is followed by a cDNA amplification step to increase the 

amount of the template required for 2 subsequent PCR reactions. The cDNAs are then 

pooled by column so that each pool will contain cDNA from 8 different wells. The cDNA 

is purified by using AMPure XP beads to remove primers and primer dimers. Pooled and 

purified cDNA is validated and quantified using the Agilent 2100 Bioanalyzer and High 

sensitive DNA kit (Agilent #5067-4626). Two TCR-specific PCR reactions follow that will 

selectively amplify the TCR sequences from the cDNA generated. The first will add an 

Illumina sequence at the 5’ end of the cDNA and a TCRa/b reverse primer at the 3’ end of 

the constant region. The second PCR will amplify the obtained the full-length sequences 

obtained in the previous PCR and add an Illumina HT sequencing adapter. DNA is then 

purified with AMPure XP beads and the library is quantified and validated again using the 

Agilent 2100 Bioanalyzer. At this point, libraries are pooled to a final concentration of 

4nM. Pooled libraries are diluted to a final concentration of 13.5 pM and spiked with 5-

10% PhiX Control (Illumina FC-110-3001).   

Figure 29. Single-cell sequencing of peptide-reactive TCRs. A) Plate map of barcode 
assignment and placement of positive and negative control wells per plate. B) Single-cell 
TCR processing workflow. From Takarabio.com user manual (Cat#634431). 
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4.5.8. Library sequencing and data analysis 

Libraries were sequenced on Illumina MiSeq v.3 instruments (2x300bp paired-end 

reads) using the 600-cycle MiSeq Reagent Kit v3 (Illumina # MS102-3003) at the 

Genomics Core Facility at Arizona State University (ASU).  Subsequent raw sequence 

analysis used MiXCR (v.3.0.7) and VDJ tools (v.1.2.1) at the Bioinformatics Core (ASU). 

The retrieved TCRβ sequences were analyzed against existing TCRβ data from the 

ImmunoSeq TCR database (https://clients.adaptivebiotech.com/immuneaccess) and 

confirmed using the IMGT/V Quest and VDJdb online analysis tools. To make sure that 

the pairs were productive, an alignment was performed using the IgBlast tool 

(ncbi.nlm.nih.gov/igblast/igblast.cgi) [145].  

4.5.9 Cloning of productive TCRs in retroviral (MSGV1) and lentiviral 

(pLenti-CMV-puro) vectors  

Only pairs with productive α and β TCRs were synthesized and subcloned into the 

MSGV1 retrovirus expression vector (GenScript Biotech NJ, USA) [146] as previously 

described [147]. The TCRα and TCRβ chains were linked by the furin 2A self-cleaving 

peptide (P2A) and cloned into the MSGV1 vector using the NcoI and EcoRI restriction sites 

(Fig. 30). To prevent mispairing with endogenous TCR (if using PBMCs), the human TCR 

constant region was substituted with the mouse TCR (mTCR) constant regions. The 

MSGV1-BFP (Blue fluorescent protein) was used as a positive control for transfection 

efficiency. MSGV1-JM22-TCR (TCR specific for the HLA-A*02:01 restricted FluM1 

epitope) and MSGV1-E6-TCR (TCR specific for the HLA-A*02:01-restricted human 

papillomavirus (HPV) epitope TIHDIILECV from the E6 viral protein were used as 

positive controls.  

https://clients.adaptivebiotech.com/immuneaccess
https://www.ncbi.nlm.nih.gov/igblast/igblast.cgi
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Cloning using lentiviral vectors was done to improve transduction efficiency, TCR 

pairs were cloned into the pLenti-CMV-Puro (Addgene-38481) vectors and GFP-pLenti 

was used as a positive control for both transfection and transduction efficiency [148]. The 

TCR α/β  pairs were PCR amplified to be cloned into the CMV-pLenti-Puro vector. Five 

forward primers for each α and 5 each β variable chains, included an attB1 region, a Shine-

Delgarno and Kozak regions, and a 5’ complementary region to the Variable region of each 

α or β chain (Appendix J). The reverse primer was the same for all chains, it included a 

complementary region to the 3’- end of the mouse constant region, followed by two stop 

codons and an attB2 region.  

To prevent mispairing with endogenous TCR (if using PBMCs), the human TCR 

constant region was substituted with the mouse TCR (mTCR) constant regions. The 

MSGV1-BFP and MSGV1-JM22-TCR/ MSGV1-E6-TCR constructs were used as positive 

controls for transfection and transduction efficiency respectively.  

Figure 30. MSGV1 Retroviral constructs with  α/β TCR pair. Top: The gene for the β TCR 
variable region is followed by the mouse constant β region and is joined to the TCR α 
variable and constant regions by the self-cleaving peptide P2A. The pairs were cloned into 
the MSGV1 vector using the NcoI and EcoRI sites (Genscript). α-mc-TCR: antibody 
against the mouse constant region of the TCR. Map made with Snapgene. Figure created 
with BioRender.  
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4.5.10 Expression of SARS-CoV-2-reactive TCRs in PBMCs and Jurkat-NFAT-

Luc-RE CD8+ T cells 

4.5.10.1 Transfection 

To make SARS-CoV-2-reactive T cell lines, we followed the procedure established by 

Draper et al [147]. Briefly, 293GP cells were plated in 6 well plates at a 0.75-0.8 x 105 

cells/mL 28-20 hours prior to transfection. Cells were co-transfected with MSGV1-

TCRα/β pairs and the envelope RD114 using Fugene HD (Promega 72050) at a ratio of 1:6 

of Fugene to DNA not exceeding 5 ug per well. Cells were spun at 1000g (~2250 rpm) for 

30 minutes and rested overnight. Partial media change was done the next morning and 

again in the afternoon. Viral supernatant is collected 48- and 72 hours post-transfection. 

Viral supernatant is centrifuged at 300 g for 6 minutes to clear the viral supernatant from 

the cellular pellet, aliquoted into 2 mL tubes, and stored until needed at -80°C. 

4.5.10.2 Transduction 

a. Stimulation of PBMCs: Cells were plated with TCM (T cell media: RPMI, 10% 

human serum, antibiotics and antimycotic), IL-2 (300 IU/mL), and OKT3 

(50ng/mL) 24 hours before transduction.  

b. Coating of plates with viral particles: 6 well non-tissue culture plates were coated 

with 1.5 mL of retronectin solution (20ug/mL in PBS) overnight at 4°C, and 

blocked prior to viral incubation with 2 mL of 2% BSA (Bovine serum albumin) in 

PBS (phosphate buffered saline) for 30 minutes at room temperature. Viral 

supernatant was added to the plates (after discarding the blocking solution) and 

centrifuged for 2 hours at 2000 g at 32°C. Discard the viral supernatant and add 

the stimulated PBMCs at a concentration of 0.5-1 x106 cells/well. Spin for 10 

minutes at 1500 rpm, acceleration/brake set at 1. Leave in the incubator overnight 
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and change the media in the morning. Check GFP or BFP expression 72 hours post-

transduction.  

c. Test for successful TCR transduction: Cells were stained with anti-CD8-BV711, 

mTCR-PE, and Zombie Violet for viability. To test for tetramer binding we stained 

with anti-CD8-BV711, and HLA-C*12:03 monomer, tetramerized with 

streptavidin-PE. GFP (for Lentiviral constructs) and BFP (for retroviral 

constructs) were also stained for viability, and GFP+ or BFP+ cells were quantified 

as a control for successful transfection/transduction, respectively. 

4.5.11 Cell culture  

293GP cells are cultured in DMEM, 10% FBS with no antibiotics before transfection. 

Then, half of the media was replaced with antibiotic-free media and replaced after 

overnight incubation with a transfection mix.  

4.5.12 Quantification and Statistical Analysis 

Data was analyzed using Microsoft Excel and all statistical analysis was performed 

with GraphPad Prism 10 (GraphPad). 
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CHAPTER 5 

SUMMARY AND CONCLUSION 

The current study validates the use of a consensus predictive algorithm, EnMHC, to 

find predicted peptides with high binding affinity, and a high probability of being cleaved 

and presented on the cell surface. Most importantly, about 83% of tested ligands are highly 

immunogenic, which underscores the use of consensus platforms to increase the 

probability of finding true epitopes. We provide evidence that the precision of predictive 

algorithms may be higher than expected. Of the 17 non-immunogenic peptides, 14 were 

immunogenic in other studies, most under the same HLAs as the ones predicted by 

EnMHC or with different restrictions that were also predicted by EnMHC (but not tested 

due to the HLA restriction of the cohort) or MHC Flurry. Even under EnMHC restrictive 

thresholds, we find that the binding capacity of most individuals may be enough to protect 

against severe disease. For instance, the donor with the lowest binding capacity (ASC-95) 

of 5 structural proteins and 23 nsp reported mild covid-19 symptoms, which indicates that 

the binding capacity of most individuals may be enough for an efficient CD8+ T cell 

response. For most donors, binding capacity ranges from 5 to 23 different structural 

peptides and can span up to 134 peptides from the entire proteome. Our cohort is too small 

to find any correlations between binding capacity and protection or risk associated with 

COVID-19 and we lack an acute or severe COVID-19 disease cohort to make comparisons. 

However, we validated in vitro the immunogenicity of 76 SARS-CoV-2 CD8+ T cell 

epitopes, including 27 structural epitopes not reported elsewhere and 29 that were part of 

unconvoluted peptide pools. In total, we show the individual immunogenicity of 56 

peptides and confirm/expand the reported HLA restriction of 75 epitopes.  

After individual screening on a cohort of 19 individuals restricted to 31 different HLA 

class I alleles, we found a set of 13 immunodominant, highly conserved epitopes from all 
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structural proteins. The HLA class I and epitope combinations are predicted to cover about 

91.15% of the North American population and about 93.5% of the global population. Their 

use in a multiepitope string of pearl type of vaccine will supplement the use of spike as the 

main immunogen and increase the breadth and resilience of the vaccine to new VOC. Of 

the 13 immunodominant epitopes, 7 are immunoprevalent as they are predicted to be 

presented by at least 3 different HLA class I alleles. Specifically, 11/13 epitopes are reactive 

12 months post-vaccination in individuals who self-reported as never infected and 7 of 

those 11 epitopes are from non-spike structural proteins. We hypothesize that the presence 

of CD8+ reactive T cells to non-structural proteins may be the result of antigenic spread, 

also known as an antigen cascade, where the presence of one immunogen enhances the 

response to neighboring immune cells with different antigenic specificities. The only 

possible explanation for uninfected individuals being reactive to non-spike structural 

proteins is that they were exposed to SARS-CoV-2 and were asymptomatic for COVID-19. 

An extensive body of work provides evidence of the existence of CD8+ Tmem cells in 

individuals who were exposed to SARS-CoV-2 but were not PCR positive, sero-reactive to 

S or RBD nor had COVID-19 symptoms [1, 74, 110, 122].  Although we did not phenotype 

the epitope reactive CD8+ T cells, it is highly likely that recognition of immunodominant 

epitopes in samples from uninfected donors after vaccination is mediated by Tmem cell 

populations generated by asymptomatic infection or continuous exposure to the virus. 

Given that all self-reported uninfected donors are part of the ASU academic community, 

their level of exposure to the virus during the months of sample collection for the 6 months 

(June-ASC-12/ASC-25; August-ASC7, October-ASC-63 of 2021) and 12-month 

(September-ASC-12/ASC-25 of 2021 and February-ASC-7; April-ASC-63 of 2022) time 

points was high, about 21% positivity rate on average during the fall of 2021, more than 



101 

2000 weekly cases per 100,000 Arizona residents during Feb 2022 and the highest rates 

of infection for individuals between 19 and 24 years old during the same periods [149].  

Here, we provide evidence that peptides from the neighboring regions of RBD and the 

S2 region of spike are highly conserved among VOC and other HCoVs, and that 

immunogenicity to these epitopes is sustained over time. Since we did not phenotype the 

CD8+ SARS-CoV-2-reactive T cells, we are not able to determine if the sustained 

immunogenicity is coming from Tmem populations generated from previous infections or 

vaccination. However, the present data shows that vaccination after infection, increases 

reactivity to spike and most importantly, to other structural epitopes with the potential to 

do the same to other non-structural proteins. The implication is that vaccination not only 

enhances responses to the main immunogen, but in populations where most individuals 

have been infected, the use of booster shots may enhance immunogenicity to structural 

and non-structural proteins. Comparison between pre-pandemic reactivity and post-

pandemic ASU samples indicate an increase in the breadth and magnitude of the CD8+ T 

cell response after vaccination and provides evidence that memory against spike in 

previously infected donors, sustains Tmem cells in circulation with different structural 

specificities. Most vaccination efficacy studies test the immunogenicity of spike epitopes 

and do not consider immunogenicity to other SARS-CoV-2 proteins. Future studies on the 

efficacy of booster vaccinations should include conserved M, N, and E targets to determine 

the level of CD8+ T cell reactivity after boosting and assess if maintained responses are 

protective against severe COVID-19 disease.  

Of the 76 reactive peptides, 10 are mutated in VOC and most of those amino acid 

changes are present in the latest Omicron subvariants and affect epitopes close to or within 

the RBD.  We show that reactivity to variant peptides is maintained or increased in 9/10 

variant epitopes which suggests that CD8+ T cell responses against new variants may be 
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sustained especially in vaccinated individuals. Reactivity in convalescent unvaccinated 

individuals was overall higher than in pre-pandemic samples but lower than in 

convalescent vaccinated donors. A study of T cell reactivity changes to VOC epitopes found 

that CD4+ and CD8+ Tmem cell responses to Omicron subvariants induced by prior 

infections or BNT162b2 (Pfizer-BioNTec) vaccination are reactive to epitopes from the 

B.1.1.529 variant [150]. The same study found that the magnitude of CD4+ and CD8+ T cell 

responses was lower in convalescent individuals but not in those who were also vaccinated 

with the Pfizer model [150]. Our data provides evidence that vaccination enhances T cell 

responses that supplement the waning antibody immunity and enhance protection against 

new VOC and that T cell recognition is not impaired in most CD8+ T cell conserved targets, 

even with one or two amino acid changes.  

About 59% of pre-pandemic donors are sero-reactive to the SARS-CoV-2 N protein 

and all of them have antibodies to OC-43 which could explain the high CD8+ T cell 

reactivity to SARS-CoV-2 structural epitopes (75%).  Given the high variability of 

conservation between HCoVs and SARS-CoV-2, it is likely that cross-reactivity is centered 

on specific regions of structural proteins. For instance, none of the pre-pandemic donors 

are reactive to the N protein of pathogenic coronaviruses like MERS and SARS. Sequence 

alignment of the N proteins shows that a section of the C-terminal domain of the protein 

is highly conserved between SARS-CoV-1/2 and MERS but is not shared with the other 

alpha and beta CCCoVs. Given the high level of sero-reactivity to OC-43, NL63, and 229E 

N protein, it is possible that infection with CCCoVs enhances CD8+ T cell reactivity to 

SARS-CoV-2 structural proteins much like the vaccine does in those that are convalescent. 

The possibility of enhanced CD8+ and CD4+ T cell reactivity to SARS-CoV-2 epitopes from 

booster vaccinations as well as infection with common cold CoV should be evaluated, using 
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conserved regions of structural and especially non-structural proteins to determine the 

extent of protection, if any, from cross-reactive interactions.  

To end, we isolated 5 pairs of KAYNVTQAFN reactive TCRs and successfully 

engineered 5 different T cell lines using a lentiviral system that allowed for selection of the 

stable cell lines with puromycin. Although the TCRs were not specific to the KAYN peptide, 

it is possible that the isolated receptors may be specific to the homologous peptides from 

HCoVs. It is also possible that the isolated TCRs have low binding affinity for the 

KAYN:C*12:03 complex characteristic of a general immune response against viral 

pathogens in unexposed individuals. Characterization of other SARS-CoV-2 TCRs isolated 

from spike-reactive CD4+ Tmem cells in naive donors have low binding affinity and high 

cross-reactivity [141, 142]. Further characterization of the engineered T cell lines and their 

TCRs will provide insight into cross-reactive, naive responses known to be protective 

against novel pathogens and even VOC.  

An effective immune response against SARS-CoV-2 characteristic of individuals with 

asymptomatic and mild COVID-19 disease integrates an early humoral response (IgG and 

IgA) with early CD4+ and CD8+ T cell responses. Most of the uncomplicated infections 

were characterized by a Th1 response [151-153]. Unlike other viral infections (influenza and 

flavivirus), structural proteins are immunodominant, with spike being the most 

immunodominant probably due to its large size and high level of expression [90]. 

Vaccination increases recognition of spike epitopes, but it also sustains T cell populations 

reactive to M, N, and E proteins and potentially nsps. Prior infections with CCCoVs 

generate a level of cross-reactivity that may explain why 80% of individuals have 

uncomplicated SARS-CoV-2 infections and recover from COVID-19. CD8+ T cell responses 

are durable in convalescent individuals up to 6 months post-infection while vaccination 

elicits long-lasting recognition of up to 12 months in the current study. This is supported 
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by previous reports that find memory CD4 and CD8 T cells in convalescent individuals up 

to 8 months post-infection with a small decline in the frequency of those populations  [95]. 

Overall, the breadth and persistence of the T cell responses characterized in this study, 

indicate that VOC may not completely evade T cell recognition at the population level and 

underscore the importance of adding additional structural and non-structural targets to 

the next generation of vaccines. 
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APPENDIX A 

PREDICTED HLA RESTRICTION OF PREVIOUSLY VALIDATED SARS-COV-2 

STRUCTURAL EPITOPES 
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Putative HLA restriction of 6 CD8+ T cell epitopes according to the HLA restriction of the 
reactive donors as tested by IFN-γ ELISpot secretion assay.  
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APPENDIX B 

SEQUENCE ALIGNMENT OF VOC SARS-COV-2 STRUCTURAL PROTEINS  
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APPENDIX C 

LONGITUDINAL ASSESSMENT OF CD8+ T CELL EPITOPE REACTIVITY  
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CD8+ T cell peptide reactivity over time. Only peptides that were tested over three different 
time points are plotted. R/2W: Recruitment and 2-week time points were plotted together 
because most individuals did not have an R time point since their first blood donation was 
done several weeks/months post-vaccination or infection. 1M/3M/6M/12M: 1 month, 3 
months, 6 months and 12 months post-infection or vaccination respectively.  
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CD8+ T cell peptide reactivity over time. Only peptides that were tested over three different 
time points are plotted. R/2W: Recruitment and 2-week time points were plotted together 
because most individuals did not have an R time point since their first blood donation was 
done several weeks/months post-vaccination or infection. 1M/3M/6M/12M: 1 month, 3 
months, 6 months, and 12 months post-infection or vaccination respectively.  
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CD8+ T cell peptide reactivity over time. Only peptides that were tested over three different 
time points are plotted. R/2W: Recruitment and 2-week time points were plotted together 
because most individuals did not have an R time point since their first blood donation was 
done several weeks/months post-vaccination or infection. 1M/3M/6M/12M: 1 month, 3 
months, 6 months, and 12 months post infection or vaccination respectively.  
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APPENDIX D 

IEDB IMMUNOGENICITY TOOL PREDICTIONS-I 
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Predicted immunogenicity using the IEDB immunogenicity tool. A negative value 
indicates the epitope is not predicted to be immunogenic. Reactive column: Result from 
this study. 
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Predicted immunogenicity using the IEDB immunogenicity tool. A negative value 
indicates the epitope is not predicted to be immunogenic. Reactive column: Result from 
this study. 
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Predicted immunogenicity using the IEDB immunogenicity tool. A negative value 
indicates the epitope is not predicted to be immunogenic. Reactive column: Result from 
this study. 
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APPENDIX E 

SEQUENCE ALIGNMENT OF SARS-COV-2 AND OTHER HCOVS 
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APPENDIX F 

HUMAN CORONAVIRUS SEQUENCE HOMOLOGY TO SARS-COV-2 

IMMUNOGENIC EPITOPES 
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Part a. Human Coronavirus homologs of SARS-CoV-2 epitopes from S, M, N, and E 
proteins. Conservation score by amino acid identity and biochemical conservation 
according to residue properties. 
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Part b. Continued 
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Part c. Continued. 

 
 
 

 

 



145 

APPENDIX G 

QUALITY CONTROL OF “FIRST STEP” PCR PRODUCTS USING THE  

SINGLE CELL RNA SEQUENCING TAKARA KIT 
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(A) Gel electrophoresis of amplified cDNA libraries. Each column is the product of a 
single pooled column from the 96 well Takara plate. Each well is analyzed with an 
electropherogram profile to determine the profile (size and abundance) of amplified 
TCR sequencing libraries. (B) Positive control-Jurkat DNA from well G2; (C) Negative 
control; from well F2; (D) Sample from well F1, library with peaks from 400 to 3500 
bp.  TCR α-peak is ~900bp and TCR β at ~700 bp.   
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APPENDIX H 

QUALITY CONTROL OF “SECOND STEP” PCR PRODUCTS USING THE  

SINGLE CELL RNA SEQUENCING TAKARA KIT 
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(A) Gel electrophoresis of amplified cDNA libraries with SMART sequence (row 
barcode) and TCR specific forward and reverse primers (column barcodes).  Each 
well is analyzed with an electropherogram profile to determine the profile (size 
and abundance) of amplified TCR sequencing libraries, this amplification should 
amplify the TCR region. (B) Positive control-Jurkat DNA from well F2; (C) 
Negative control; from well E2; (D) Sample from well B1, library with peaks from 
600 to 1000 bp.  TCR α-peak is ~900bp and TCR β at ~700 bp.   
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APPENDIX I 

PRODUCTIVE TCR GENE SEQUENCES 
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TCR αβ pair sequences: 
 
Pair 1: 
 
atgggcaccaggctcctcttctgggtggccttctgtctcctgggggcagatcacacaGGAGCTGGAGTCTCCCAGTC
CCCCAGTAACAAGGTCACAGAGAAGGGAAAGGATGTAGAGCTCAGGTGTGATCCAATT
TCAGGTCATACTGCCCTTTACTGGTACCGACAGAGCCTGGGGCAGGGCCTGGAGTTTT
TGATTTACTTCCAAGGCAACAGTGTACCAGACAAATCAGGGCTGCCCAGTGATCGCTTC
TCTGCAGAGAGGACTGGGGGGTCCGTCTCCACTCTGACGATCCAGCGCACACAGCAGG
AGGACTCGGCCGTGTATCTCTGTGCCAGCAGCTTACTAATTTCCAGGTTTGAAGCTTTC
TTTGGACAAGGCACCAGACTCACAGTTGTAGAGGATCTCCGGAatgtgacaccccctaaggtgtct
ctgttcgagccaagcaaggccgagatcgccaacaagcagaaggccaccctggtgtgcctggccagaggcttctttcccgatcac
gtggagctgtcctggtgggtgaatggcaaggaggtgcactctggcgtgtgcaccgaccctcaggcctataaggagtccaactact
cttattgtctgagctcccggctgagagtgtccgccacattctggcacaatcccagaaaccacttcagatgccaggtgcagtttcacg
gcctgtccgaggaggataagtggcctgagggctctccaaagcccgtgacccagaatatcagcgccgaggcatggggaagggca
gactgtggaatcacctccgcctcttaccagcagggcgtgctgagcgccacaatcctgtatgagatcctgctgggcaaggccaccc
tgtacgccgtgctggtgagcacactggtggtcatggctatggtgaagaggaagaacagccgggccaagcgcagcggctccggc
gcaaccaacttctctctgctgaagcaggcaggcgacgtggaggagaatcctggcccaatgaagaggatattgggagctctgctg
gggctcttgagtgcccaggtttgctgtgtgagaGGAATACAAGTGGAGCAGAGTCCTCCAGACCTGATT
CTCCAGGAGGGAGCCAATTCCACGCTGCGGTGCAATTTTTCTGACTCTGTGAACAATTT
GCAGTGGTTTCATCAAAACCCTTGGGGACAGCTCATCAACCTGTTTTACATTCCCTCAG
GGACAAAACAGAATGGAAGATTAAGCGCCACGACTGTCGCTACGGAACGCTACAGCTT
ATTGTACATTTCCTCTTCCCAGACCACAGACTCAGGCGTTTATTTCTGTGCTGTCGAAC
GGGGCACCGGTAACCAGTTCTATTTTGGGACAGGGACAAGTTTGACGGTCATTCCAAA
TATTCAGAATCCCGAGCCCGCGGtataccagctgaaggacccccggagccaggatagcaccctgtgcctgttcac
agactttgattctcagatcaacgtgcccaagacaatggagagcggcacctttatcacagacaagtgcgtgctggacatgaaggct
atggactctaagagcaatggcgccatcgcctggtccaaccagacctctttcacatgccaggatatctttaaggagacaaatgcca 
cataccccagctccgacgtgccttgtgatgccaccctgacagagaagagcttcgagacagacatgaatctgaactttcagaacct
gctggtcatcgtgctgagaatcctgctgctgaaagtggctggcttcaacctgctgatgaccctgcggctgtggagtagctaatga 
 
Pair 2: 
atgggcaccaggctcctcttctgggtggccttctgtctcctgggggcagatcacacaGGAGCTGGAGTCTCCCAGTC
CCCCAGTAACAAGGTCACAGAGAAGGGAAAGGATGTAGAGCTCAGGTGTGATCCAATT
TCAGGTCATACTGCCCTTTACTGGTACCGACAGAGCCTGGGGCAGGGCCTGAAGTTTTT
AATTTACTTCCAAGGCAACAGTGCACCAGACAAATCAGGGCTGCCCAGTGATCGCTTCT
CTGCAGAGAGGACTGGGGGATCCGTCTCCACTCTGACGATCCAGCGCACACAGCAGGA
GGACTCGGCCGTGTATCTCTGTGCCAGCAGCTTACTAATTTCCAGGTTTGAAGCTTTCT
TTGGACAAGGCACCAGACTCACAGTTGTAGAGGATCTCCGGAatgtgacaccccctaaggtgtctct
gttcgagccaagcaaggccgagatcgccaacaagcagaaggccaccctggtgtgcctggccagaggcttctttcccgatcacgt
ggagctgtcctggtgggtgaatggcaaggaggtgcactctggcgtgtgcaccgaccctcaggcctataaggagtccaactactct
tattgtctgagctcccggctgagagtgtccgccacattctggcacaatcccagaaaccacttcagatgccaggtgcagtttcacgg
cctgtccgaggaggataagtggcctgagggctctccaaagcccgtgacccagaatatcagcgccgaggcatggggaagggcag
actgtggaatcacctccgcctcttaccagcagggcgtgctgagcgccacaatcctgtatgagatcctgctgggcaaggccaccct
gtacgccgtgctggtgagcacactggtggtcatggctatggtgaagaggaagaacagccgggccaagcgcagcggctccggcg 
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Pair 2 cntd: 
caaccaacttctctctgctgaagcaggcaggcgacgtggaggagaatcctggcccaatggagaccctcttgggcctgcttatcctt
tggctgcagctgcaatgggtgagcagcAAACAGGAGGTGACGCAGATTCCTGCAGCTCTGAGTGTC
CCAGAAGGAGAAAACTTGGTTCTCAACTGCAGTTTCACTGATAGCGCTATTTACAACCT
CCAGTGGTTTAGGCAGGACCCTGGGAAAGGTCTCACATCTCTGTTGCTTATTCAGTCAA
GTCAGAGAGAGCAAACAAGTGGAAGACTTAATGCCTCGCTGGATAAATCATCAGGACG
TAGTACTTTATACATTGCAGCTTCTCAGCCTGGTGACTCAGCCACCTACCTCTGTGCTG
GAGAAACCAGTGGCTCTAGGTTGACCTTTGGGGAAGGAACACAGCTCACAGTGAATCC
TAATATTCAGAATCCCGAGCCCGCGGtataccagctgaaggacccccggagccaggatagcaccctgtgcctg
ttcacagactttgattctcagatcaacgtgcccaagacaatggagagcggcacctttatcacagacaagtgcgtgctggacatga
aggctatggactctaagagcaatggcgccatcgcctggtccaaccagacctctttcacatgccaggatatctttaaggagacaaa
tgccacataccccagctccgacgtgccttgtgatgccaccctgacagagaagagcttcgagacagacatgaatctgaactttcag
aacctgctggtcatcgtgctgagaatcctgctgctgaaagtggctggcttcaacctgctgatgaccctgcggctgtggagtagcta
a 
 
Pair 3: 
atgggcccccagctccttggctatgtggtcctttgccttctaggagcaggccccctgGAAGCCCAAGTGACCCAGAA
CCCAAGATACCTCATCACAGTGACTGGAAAGAAGTTAACAGTGACTTGTTCTCAGAATA
TGAACCATGAGTATATGTTCTGGTATCGACAAGACCCAGGGCTGGGCTTAAGGCAGAT
CTACTATTCAATGAATGTTGAGGTGACTGATAAGGGAGATGTTCCTGAAGGGTACAAA
GTCTCTCGAAAAGAGAAGAGGAATTTCCCCCTGATCCTGGAGTCGCCCAGCCCCAACCA
GACCTCTCTGTACTTCTGTGCCAGCAGTCCTGGGACTACTCAAGAGACCCAGTACTTCG
GGCCAGGCACGCGGCTCCTGGTGCTCGAGGATCTCCGGAatgtgacaccccctaaggtgtctctgttc
gagccaagcaaggccgagatcgccaacaagcagaaggccaccctggtgtgcctggccagaggcttctttcccgatcacgtggag
ctgtcctggtgggtgaatggcaaggaggtgcactctggcgtgtgcaccgaccctcaggcctataaggagtccaactactcttattg
tctgagctcccggctgagagtgtccgccacattctggcacaatcccagaaaccacttcagatgccaggtgcagtttcacggcctgt
ccgaggaggataagtggcctgagggctctccaaagcccgtgacccagaatatcagcgccgaggcatggggaagggcagactgt
ggaatcacctccgcctcttaccagcagggcgtgctgagcgccacaatcctgtatgagatcctgctgggcaaggccaccctgtacg
ccgtgctggtgagcacactggtggtcatggctatggtgaagaggaagaacagccgggccaagcgcagcggctccggcgcaacc 
aacttctctctgctgaagcaggcaggcgacgtggaggagaatcctggcccaatgctgactgccagcctgttgagggcagtcatag
cctccatctgtgttgtatccagcatgGCTCAGAAGGTAACTCAAGCGCAGACTGAAATTTCTGTGGT
GGAGAAGGAGGATGTGACCTTGGACTGTGTGTATGAAACCCGTGATACTACTTATTAC
TTATTCTGGTACAAGCAACCACCAAGTGGAGAATTGGTTTTCCTTATTCGTCGGAACTC
TTTTGATGAGCAAAATGAAATAAGTGGTCGGTATTCTTGGAACTTCCAGAAATCCACCA
GTTCCTTCAACTTCACCATCACAGCCTCACAAGTCGTGGACTCAGCAGTATACTTCTGT
GCTCTGAGTCCTGGGGGTAACCAGTTCTATTTTGGGACAGGGACAAGTTTGACGGTCA
TTCCAAATATTCAGAATCCCGAGCCCGCGGtataccagctgaaggacccccggagccaggatagcaccctg
tgcctgttcacagactttgattctcagatcaacgtgcccaagacaatggagagcggcacctttatcacagacaagtgcgtgctgga
catgaaggctatggactctaagagcaatggcgccatcgcctggtccaaccagacctctttcacatgccaggatatctttaaggag
acaaatgccacataccccagctccgacgtgccttgtgatgccaccctgacagagaagagcttcgagacagacatgaatctgaact
ttcagaacctgctggtcatcgtgctgagaatcctgctgctgaaagtggctggcttcaacctgctgatgaccctgcggctgtggagta
gcTAA 
 
 
 
 
 
 
 



152 

Pair 4: 
 
atggactcctggaccttctgctgtgtgtccctttgcatcctggtagcgaagcatacaGATGCTGGAGTTATCCAGTC
ACCCCGCCATGAGGTGACAGAGATGGGACAAGAAGTGACTCTGAGATGTAAACCAATT
TCAGGCCACAACTCCCTTTTCTGGTACAGACAGACCATGATGCGGGGACTGGAGTTGCT
CATTTACTTTAACAACAACGTTCCGATAGATGATTCAGGGATGCCCGAGGATCGATTCT
CAGCTAAGATGCCTAATGCATCATTCTCCACTCTGAAGATCCAGCCCTCAGAACCCAGG
GACTCAGCTGTGTACTTCTGTGCCAGCAGTTTCTCGACCTGTTCGGCTAACTATGGCTA
CACCTTCGGTTCGGGGACCAGGTTAACCGTTGTAGAGGATCTCCGGAatgtgacaccccctaag
gtgtctctgttcgagccaagcaaggccgagatcgccaacaagcagaaggccaccctggtgtgcctggccagaggcttctttcccg
atcacgtggagctgtcctggtgggtgaatggcaaggaggtgcactctggcgtgtgcaccgaccctcaggcctataaggagtccaa
ctactcttattgtctgagctcccggctgagagtgtccgccacattctggcacaatcccagaaaccacttcagatgccaggtgcagtt
tcacggcctgtccgaggaggataagtggcctgagggctctccaaagcccgtgacccagaatatcagcgccgaggcatggggaa
gggcagactgtggaatcacctccgcctcttaccagcagggcgtgctgagcgccacaatcctgtatgagatcctgctgggcaaggc
caccctgtacgccgtgctggtgagcacactggtggtcatggctatggtgaagaggaagaacagccgggccaagcgcagcggct
ccggcgcaaccaacttctctctgctgaagcaggcaggcgacgtggaggagaatcctggcccaatgctgactgccagcctgttga
gggcagtcatagcctccatctgtgttgtatccagcatgGCTCAGAAGGTAACTCAAGCGCAGACTGAAATT
TCTGTGGTGGAGAAGGAGGATGTGACCTTGGACTGTGTGTATGAAACCCGTGATACTA
CTTATTACTTATTCTGGTACAAGCAACCACCAAGTGGAGAATTGGTTTTCCTTATTCGTC
GGAACTCTTTTGATGAGCAAAATGAAATAAGTGGTCGGTATTCTTGGAACTTCCAGAAA
TCCACCAGTTCCTTCAACTTCACCATCACAGCCTCACAAGTCGTGGACTCAGCAGTATA
CTTCTGTGCTCTGAGTCCTGGGGGTAACCAGTTCTATTTTGGGACAGGGACAAGTTTGA
CGGTCATTCCAAATATTCAGAATCCCGAGCCCGCGGtataccagctgaaggacccccggagccaggat
agcaccctgtgcctgttcacagactttgattctcagatcaacgtgcccaagacaatggagagcggcacctttatcacagacaagtg
cgtgctggacatgaaggctatggactctaagagcaatggcgccatcgcctggtccaaccagacctctttcacatgccaggatatct
ttaaggagacaaatgccacataccccagctccgacgtgccttgtgatgccaccctgacagagaagagcttcgagacagacatga
atctgaactttcagaacctgctggtcatcgtgctgagaatcctgctgctgaaagtggctggcttcaacctgctgatgaccctgcggc
tgtggagtagcTAA 
 
 
Pair 5: 
 
atgctgctgcttctgctgcttctggggccaggtataagcctccttctacctgggagcttggcaggctccgggcttGGTGCTGT
CGTCTCTCAACATCCGAGCAGGGTTATCTGTAAGAGTGGAACCTCTGTGAAGATCGAG
TGCCGTTCCCTGGACTTTCAGGCCACAACTATGTTTTGGTATCGTCAGTTCCCGAAACA
GAGTCTCATGCTGATGGCAACTTCCAATGAGGGCTCCAAGGCCACATATGAGCAAGGC
GTCGAGAAGGACAAGTTTCTCATCAACCATGCAAGCCTGACCTTGTCCACTCTGACAGT
GACCAGTGCCCATCCTGAAGACAGCAGCTTCTACATCTGCAGTGCTAGCGAGGGCTGG
GGCAATCAGCCCCAGCATTTTGGTGATGGGACTCGACTCTCCATCCTAGAGGATCTCCG
GAatgtgacaccccctaaggtgtctctgttcgagccaagcaaggccgagatcgccaacaagcagaaggccaccctggtgtgcc
tggccagaggcttctttcccgatcacgtggagctgtcctggtgggtgaatggcaaggaggtgcactctggcgtgtgcaccgaccct
caggcctataaggagtccaactactcttattgtctgagctcccggctgagagtgtccgccacattctggcacaatcccagaaacca
cttcagatgccaggtgcagtttcacggcctgtccgaggaggataagtggcctgagggctctccaaagcccgtgacccagaatatc
agcgccgaggcatggggaagggcagactgtggaatcacctccgcctcttaccagcagggcgtgctgagcgccacaatcctgtat
gagatcctgctgggcaaggccaccctgtacgccgtgctggtgagcacactggtggtcatggctatggtgaagaggaagaacagc 
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Pair 5 cntd: 
cgggccaagcgcagcggctccggcgcaaccaacttctctctgctgaagcaggcaggcgacgtggaggagaatcctggcccaat
gctgactgccagcctgttgagggcagtcatagcctccatctgtgttgtatccagcatgGCTCAGAAGGTAACTCAAG
CGCAGACTGAAATTTCTGTGGTGGAGAAGGAGGATGTGACCTTGGACTGTGTGTATGA
AACCCGTGATACTACTTATTACTTATTCTGGTACAAGCAACCACCAAGTGGAGAATTGG
TTTTCCTTATTCGTCGGAACTCTTTTGATGAGCAAAATGAAATAAGTGGTCGGTATTCT
TGGAACTTCCAGAAATCCACCAGTTCCTTCAACTTCACCATCACAGCCTCACAAGTCGT
GGACTCAGCAGTATACTTCTGTGCTCTGAGTCCTGGGGGTAACCAGTTCTATTTTGGGA
CAGGGACAAGTTTGACGGTCATTCCAAATATTCAGAATCCCGAGCCCGCGGtataccagctg
aaggacccccggagccaggatagcaccctgtgcctgttcacagactttgattctcagatcaacgtgcccaagacaatggagagc
ggcacctttatcacagacaagtgcgtgctggacatgaaggctatggactctaagagcaatggcgccatcgcctggtccaaccaga
cctctttcacatgccaggatatctttaaggagacaaatgccacataccccagctccgacgtgccttgtgatgccaccctgacagag
aagagcttcgagacagacatgaatctgaactttcagaacctgctggtcatcgtgctgagaatcctgctgctgaaagtggctggctt
caacctgctgatgaccctgcggctgtggagtagcTAA 
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APPENDIX J 

PLENTI-CMV-PURO VECTOR AND PRIMERS 
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The pLenti-CMV-Puro vector was used to improve transduction efficiency. TCR αβ pairs 
were cloned using the attR1/R2 sites. Pairs in the MSGV1 vectors were PCR amplified and 
flanked with attB1/B2 sites, cloned into the pDONR221 vector, and sequence verified prior 
to LR reaction into the pLenti-CMV-Puro vector (primer sequences below). Map created 
with Snapgene.  
 
Forward primers: 20 bp of target gene- bold/italic/underlined flanking region, 
italics are the attB1/B2 sites, the bold letter is Shine-Delgarno, the grey highlight is 
the Kozak region, underlined is the gene with the start codon 
 
Pair 1  
5’- G GGG ACA AGT TTG TAC AAA AAA GCA GGC TTC GAA GGA GAT AGA ACC 
ATG GGC ACC AGG CTC CTC TTC -3’ 
Pair 2 
5’-G GGG ACA AGT TTG TAC AAA AAA GCA GGC TTC GAA GGA GAT AGA ACC 
ATG GGC ACC AGG CTC CTC -3’ 
Pair 3  
5’-G GGG ACA AGT TTG TAC AAA AAA GCA GGC TTC GAA GGA GAT AGA ACC 
ATG GGC CCC CAG CTC  CTT -3’  
Pair 4 
5’-G GGG ACA AGT TTG TAC AAA AAA GCA GGC TTC GAA GGA GAT AGA ACC 
ATG GAC TCC TGG ACC TTC -3’  
Pair 5  
5’-G GGG ACA AGT TTG TAC AAA AAA GCA GGC TTC GAA GGA GAT AGA ACC 
ATG GGG ATG CTG CTG C -3’ 
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Reverse primer is the same for all constructs since it complements a constant region that 
is the same for all TCR pairs.  
 
Reverse primer with 20 bp of target gene- bold/italic/underlined is suggested 
flanking region of 5’, italics are the attB1/B2sites, underlined is the gene with two 
stop codons: 
 
5’-GGG GAC CAC TTT GTA CAA GAA AGC TGG GTC CTA TCA TTA GCT ACT CCA CAG 
CCG CAG-3’  
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APPENDIX K 

FLOW CYTOMETRY PANELS OF TCR EXPRESSION IN MSGV1  

AND PLENTI  T CELL LINES  
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(A). mTCR+ expression of J76-CD8+ T cells transduced with Pair #2 of the KAYN-
reactive TCR. The left panel are untransduced J76-CD8+ T cells. The right panel are 
J76-CD8+ T cells 5 days post-transduction. (B). The Left Panel are J76-CD8+ T cells 
transduced with the KAYN-TCR Pair #3 pLenti construct. The center panel are the Tet+ 
CD8+ J76 T cells. Panels on the right correspond to the gated ancestry (All cells, single 
cells FSC-forward scatter and SSC-Side scatter, and live cells).  
 
 
 

92.65% 
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Top left panel (A)J76-CD8+ T cells transduced with the KAYN-TCR Pair #4 pLenti 
construct. Bottom panel (B) Tet+ CD8+ J76 T cells. Panels on the right (C) gated ancestry 
(All cells, single cells FSC-forward scatter and SSC-Side scatter and live cells). 
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Top left panel (A)J76-CD8+ T cells transduced with the KAYN-TCR Pair #5 pLenti 
construct. Bottom panel (B) Tet+ CD8+ J76 T cells. Panels on the right (C) gated ancestry 
(All cells, single cells FSC-forward scatter and SSC-Side scatter and live cells). 
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Untransduced cells. Top left panel (A) J76-CD8+ T cells stained with anti-mTCR-PE. 
Bottom panel (B) Untransduced cells stained with KAYN-Tetramer-PE. Panels on the right 
(C) gated ancestry (All cells, single cells FSC-forward scatter and SSC-Side scatter and live 
cells). 
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APPENDIX L 

FLOW CYTOMETRY PANELS OF HLA EXPRESSION OF K562  

ARTIFICIAL ANTIGEN-PRESENTING STABLE CELL LINES 
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Left panel: (A): Flow cytometry panel of untransduced K562 cells gated forward (FSC) and 
side scatter (SSC). (B): Cell counts by gate. (C): Top and bottom panels are histograms of 
live and HLA+ cells. Right panel: (A): Flow cytometry panel of HLA-A*02:01 pLenti-CMV-
Puro transduced K562 cells gated forward (FSC) and side scatter (SSC). (B): Cell counts 
by gate. (C): Top and bottom panels are histograms of live and HLA+ cells. Cells were bulk 
sorted, selected with puromycin for 5 days, and aliquoted into 1x106 per mL stocks for 
further use.  
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APPENDIX M 

RIGHTS AND PERMISSIONS 
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Chapter 1 
 
Figure 1. Adapted from an open-source template originally published by: Nguyen, A. T; 
Szeto, C. and Gras, S. The pockets guide to HLA class I molecules. Biochem. Soc. Trans. 
2021. 49(5): 2319-2331. 
 
Table 1. Adapted from an open-source template originally published by: Sidney, J., et al., 
HLA class I supertypes: a revised and updated classification. BMC Immunol, 2008. 9: p. 
1 
 
 
Chapter 4 
 
Figure 23. Adapted from an open-source template originally published by: Laydon, D.J., 
C.R. Bangham, and B. Asquith, Estimating T-cell repertoire diversity: limitations of 
classical estimators and a new approach. Philos Trans R Soc Lond B Biol Sci, 2015. 
370(1675). 
 
 


