
Visualizing Information Flow

Graph-Based Approach to Tracing Data Dependencies for Binary Analysis

by

Bailey Capuano

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved April 2022 by the
Graduate Supervisory Committee:

Yan Shoshitaishvili, Co-Chair
Ruoyu Wang, Co-Chair

Adam Doupé

ARIZONA STATE UNIVERSITY

May 2022

ABSTRACT

Binary analysis and software debugging are critical tools in the modern software

security ecosystem. With the security arms race between attackers discovering and

exploiting vulnerabilities and the development teams patching bugs ever-tightening,

there is an immense need for more tooling to streamline the binary analysis and

debugging processes. Whether attempting to find the root cause for a buffer overflow

or a segmentation fault, the analysis process often involves manually tracing the

movement of data throughout a program’s life cycle. Up until this point, there has

not been a viable solution to the human limitation of maintaining a cohesive mental

image of the intricacies of a program’s data flow.

This thesis proposes a novel data dependency graph (DDG) analysis as an addi-

tion to angr’s analyses suite. This new analysis ingests a symbolic execution trace

in order to generate a directed acyclic graph of the program’s data dependencies. In

addition to the development of the backend logic needed to generate this graph, an

angr management view to visualize the DDG was implemented. This user interface

provides functionality for ancestor and descendant dependency tracing and sub-graph

creation. To evaluate the analysis, a user study was conducted to measure the view’s

efficacy in regards to binary analysis and software debugging. The study consisted

of a control group and experimental group attempting to solve a series of 3 chal-

lenges and subsequently providing feedback concerning perceived functionality and

comprehensibility pertaining to the view.

The results show that the view had a positive trend in relation to challenge-solving

accuracy in its target domain, as participants solved 32% more challenges 21% faster

when using the analysis than when using vanilla angr management.

i

DEDICATION

Thank you to my girlfriend McKenna for her unwavering support and unique ability

to ground me when the tasks and deadlines seemed insurmountable. Thank you for

being my rock. I am so incredibly lucky to have you by my side, Forvie.

ii

ACKNOWLEDGEMENTS

Thank you to Adam for his invaluable support throughout this process and for

sparking within me an initial passion for cybersecurity. His undergraduate

information assurance course was my first real introduction to the field and, from

the first assignment that had us finding ways to crash other students’ programs, I

was absolutely hooked.

I would like to thank Fish for his guidance and for putting up with my incessant

Discord and Slack pings asking for programming advice as I attempted to navigate

angr’s codebase. No matter the question, he would somehow always have the answer.

Lastly, I would like to thank Yan for taking me under his guidance for this thesis

and for providing me a wealth of opportunities to further hone my passion for binary

analysis through his fantastic courses in computer systems security and applied

vulnerability research. I can confidently say that I have never learned as much in

such a short period of time as I did in his courses.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . vii

CHAPTER

1 INTRODUCTION . 1

2 BACKGROUND . 3

2.1 angr . 3

2.2 Symbolic Execution . 4

2.3 Data Dependency . 4

2.4 Data Dependency Graph (DDG) . 5

2.5 Intermediate Representation . 7

3 RELATED WORK . 8

4 DESIGN . 10

4.1 Input Filter . 10

4.2 Parsing Unit . 11

4.3 Hardware Interface . 13

4.4 Visualization Engine . 14

5 IMPLEMENTATION . 15

5.1 Dependency Nodes . 16

5.1.1 Base Dependency Nodes . 16

5.1.2 Constant Dependency Nodes . 17

5.1.3 Memory Dependency Nodes . 17

5.1.4 Variable Dependency Nodes . 18

5.1.5 Temporary Dependency Nodes . 18

5.1.6 Register Dependency Nodes . 18

iv

CHAPTER Page

5.2 Generating and Tracking Nodes . 18

5.3 Linking Nodes . 19

5.4 Visualizing Nodes . 20

6 EVALUATION . 22

6.1 Control vs Experimental Groups . 22

6.2 Challenges . 23

6.3 Framework . 24

6.4 Custom Angr Wrapper . 25

6.5 Survey . 26

6.6 Collected Data . 27

7 RESULTS . 28

7.1 Participants . 28

7.2 Challenge Correctness . 29

7.3 Completion Time . 31

7.4 User Perception . 32

8 DISCUSSION . 35

8.1 Lessons Learned . 35

8.2 Future Work . 38

9 CONCLUSION . 41

REFERENCES . 43

APPENDIX

A RECRUITMENT ADVERTISEMENT . 47

B SURVEY QUESTIONS . 49

C IRB APPROVAL . 59

LIST OF TABLES

Table Page

5.1 Supported Action Types . 15

6.1 Permitted Views . 25

7.1 Aggregated Challenge Results . 29

7.2 Significance of Challenge Correctness . 29

vi

LIST OF FIGURES

Figure Page

2.1 Motivating Example of Data Dependency . 5

2.2 DDG of Motivating Example . 6

4.1 Design Diagram . 10

4.2 Context Free Grammar of the Analysis’ Language . 11

4.3 Example of Temporary Operands in Angr . 13

5.1 UML Diagram of Dependency Node Class Inheritance 17

5.2 Register File and Graph State Before and After Executing Instruction 4 19

5.3 Visualization of a Simple Data Dependency Graph 20

7.1 Completion Time Results . 31

7.2 Aggregated Participant Agreement with (a) Functionality and (b) Com-

prehension Related Statements . 33

B.1 Control Group Hypothetical Data Dependency View Screenshot 53

vii

Chapter 1

INTRODUCTION

Despite decades of advancements in the fields of software security and binary

hardening, the problem of exploitation is not one of antiquity [14, 31]. One can ap-

preciate the gravity of this situation after considering the omnipresence of low-level

binary code with limited security mitigations in applications such as compilers, op-

erating systems, and embedded systems that are driving forces in modern life [36].

Where there are binaries produced by low-level languages, there are vulnerabilities.

The exposure of CVE-2021-3156, in which attackers could exploit a heap-based buffer

overflow in the sudo program to gain privilege escalation to the root user, serves as

the perfect reminder of the real, persistent threat of binary exploitation [15]. The

threats posed by the exploitation of vulnerabilities have consequences that transcend

the realm of technology. In an analysis of the impact of security breach disclosures on

market value, affected firms saw an average loss of $1.65 billion in market capitaliza-

tion [11]. Since low-level code saturates every level of modern life and is susceptible to

vulnerabilities, the necessity for effective detection and mitigation techniques cannot

be overstated.

With the ever-increasing complexity of software, the need for tools that aid in

the software debugging process is becoming more and more apparent. In fact, it is

common for the software testing and debugging phase to consume anywhere from half

to three quarters of the total development cost [6]. Thus, the creation of debugging

tools that aid in resolving the root cause of software faults would serve to reduce

programmer man hours and development costs.

In an attempt to contribute to the detection and mitigation of vulnerabilities, and

1

thus ease the burden inherent in debugging software, a novel angr analysis for data

dependency generation that enables users with the ability to explore and interact

with a visualized data dependency graph for a given binary and execution trace

is presented. This analysis parses an ingested binary and accompanying execution

trace to create a representative data dependency graph containing nodes for all of the

relevant memory locations and edges representing their inter-dependencies.

While researchers have applied data dependency graphs to binary analysis [35, 43],

the literature has yet to see their application to visualizing dependency flows for user-

driven binary analysis. This paper seeks to contribute to the scientific discourse by

outlining the design of a tool that addresses this gap. As the proposed tool is focused

on the end-user, whether they be a software debugger or binary analyst, I sought

to explore the impact of the presented analysis on the speed and accuracy of binary

analysis through a user study.

I solicited participants from various online cybersecurity communities and tasked

with working through a series of software debugging and CTF-like challenges, an-

swering challenge questions, and providing general survey feedback in order to quan-

titatively and qualitatively assess the effectiveness of the proposed analysis.

After analyzing the user study results, I concluded that the proposed data de-

pendency analysis had a positive effect on both challenge-solving accuracy and time.

The analysis had an educationally significant effect upon overall challenge-solving ac-

curacy and time, with practical significance for challenges that required tracing data

dependencies. The participant pool solved the challenges 171 seconds faster with 32%

more accuracy.

2

Chapter 2

BACKGROUND

In order to contextualize and understand the analysis proposed in this thesis,

some background terminology must first be defined. As the proposed analysis is not

a standalone tool, it relies upon an existing framework and leverages various concepts

it provides. The terminology defined in this section are all imperative to the design

of the proposed analysis. The relevance of each term to this thesis will be explicitly

defined.

2.1 angr

Shoshitaishvili et al. [36] described angr as “a binary analysis framework that

integrates many of the state-of-the-art binary analysis techniques in the literature”.

The framework has found great success in the cybersecurity community, with it being

utilized to solve a variety of problems plaguing binary analysts [17, 37–41]. Within

the framework are a multitude of static and dynamic analyses. Static techniques

are those that derive meaning from a program without execution [32, 33, 44], while

dynamic techniques derive meaning from an actual or emulated execution of the

program [10, 21, 23, 36]. Both paradigms of analyses are incredibly invaluable to

the field of binary analysis as they each provide unique insights into the structure,

flow, and potential vulnerabilities of a binary. The proposed data dependency graph

generation analysis is an example of a dynamic analysis, as it is reliant upon an

ingested symbolic execution trace.

In addition to angr, I designed a graphical user interface (GUI) to facilitate easier

interaction with the backend and to provide comparable features to leading binary

3

analysis framework interfaces [1, 3, 4]. This GUI is referred to as angr management.

The analysis proposed in this paper is implemented as an angr analysis and visualized

using a view integrated into angr management.

2.2 Symbolic Execution

Symbolic execution is concerned with the emulation of a program [8, 25, 36].

Rather than performing an actual execution of the program, symbolic execution is

concerned with systematically exploring all of the path permutations that an exe-

cution could take. Whenever the symbolic execution engine encounters a branching

decision, it places symbolic constraints on the values in the register file and system

memory involved in the control flow decision. While the symbolic execution engine

must provide a wealth of functionality, such as a boolean expression representing the

conditions satisfied along a given execution path, this analysis will only leverage one

aspect tracked by the engine [8]. For the sake of data dependency, the fact that the

emulation tracks the state of the register file and memory throughout the program’s

lifetime is crucial, as the analysis uses the concretized values in the memory store as

the source of information for building out a data dependency graph [36].

2.3 Data Dependency

Data dependency maps the dependency relations between memory locations, in

either the register file or within system memory, based on the data each location

contains. Although, the memory location in question cannot be the sole consideration

in determining a data dependency. As elucidated in the simple x86 code snippet

(Figure 2.1), it would be incorrect to treat the eax in the fifth and seventh instructions

as the same data point when determining data dependencies. While their data regions

are the same, both concerning the lower 32 bits of the rax register, they exist in

4

1 endbr64

2 push rbp

3 mov rbp, rsp

4 mov dword ptr [rbp-0x4], 0x1d6

5 mov eax, dword ptr [rbp-0x4]

6 mov dword ptr [rbp-0x8], eax

7 mov eax, dword ptr [rbp-0x8]

8 pop rbp

9 ret

Figure 2.1. Motivating example of data dependency. For example, the value of [rbp

- 0x8] at instruction 6 is dependent upon the value of eax in instruction 6.

different contexts during the program’s life cycle. Therefore, the point at which an

instruction occurs must also be considered when determining which data points should

be tracked. In this example, these memory locations can easily be differentiated by

their instruction addresses.

With an understanding of the factors that must be considered in determining

the data points established, the relationships between them can now be explored. A

data point D1 is considered dependent upon D2 if the value of D1 is derived from D2.

Primarily, this derivation is the result of a read from D2 followed by a write of its value

to D1 (perhaps with some intermediary calculations). In the case of the motivating

example (Figure 2.1), the value of [rbp - 0x8] at instruction 6 is dependent upon

the value of eax in instruction 6.

2.4 Data Dependency Graph (DDG)

A data dependency graph is a directed acyclic graph (DAG) that tracks all the

data dependencies in a given execution trace. The data points, identified by their

5

Figure 2.2. DDG of motivating example, node names in form of location@address.

Dependencies can be traced by following a node’s edges backwards to view ancestors

and forwards to view descendants.

memory location and point of execution, serve as the graph’s nodes. The graph’s

edges originate from a source node and terminate at a dependent node. From any

given node, one can follow the directed edges backwards to find the origin of a node’s

value. By contrast, the edges leaving a node can be followed to find all dependent

descendants in the data dependency graph. In the full dependency graph (Figure 2.2)

of the code snippet provided in Figure 2.1, the return value can be observed to have

derived from a memory address ([rbp - 0x8]) which yielded its value from another

address ([rbp - 0x4]) that had the constant written into it initially (with eax@4 being

used to facilitate a memory to memory move in a RISC instruction set). While a

toy example, it is evident that having a graphical representation of the flow of data

within a more complicated program can prove invaluable to the binary analyst or

software debugger.

6

2.5 Intermediate Representation

In compiler design, a source language can be translated into an arbitrary number

of instruction sets. Thus, rather than developing optimizations for every unique target

architecture, compilers utilize a middle-level, architecture-agnostic data structure in-

stead [7, 19, 27]. This data structure is referred to as the intermediate representation

(IR). The compiler translates source code into IR before applying optimizations and

later converts it into the target architecture instruction set. Just as compilers require

an intermediary language to apply universal optimizations to source code, so too do

decompilers such as angr’s. Although, in the case of decompilers, the process entails

converting an arbitrary number of instruction sets back into a higher-level universal

language. angr borrows the intermediate representation it uses from Valgrind, a lan-

guage called VEX [5]. Rather than operating on machine code, which would require a

tremendous amount of architecture-aware code to handle the many cross-architecture

idiosyncrasies, the proposed analysis operates on VEX IR.

7

Chapter 3

RELATED WORK

Research has seen the application of data dependency graphs spanning the field

of computer science, namely code refactoring. The application of DDGs to the prob-

lem of code sequence function extraction has proven incredibly effective due to the

correlation between strong data dependencies and independent functionality [24]. As

source code was readily available in the problem space, the researchers were able to

generate data dependency graphs utilizing source code semantics.

DDGs have even been applied to problems faced by computer architects. By ap-

plying transformations to directed, acyclic data dependency graphs, Heffernan et al.

[20] was able to minimize data dependencies in instruction streams. The use of these

transformations resulted in a significant improvement in branch prediction perfor-

mance.

DDGs have proved effective in various strata of computer science. For this rea-

son, this paper seeks to gauge the efficacy of data dependency graph generation and

visualization in the realm of binary analysis. More work needs to be done to provide

the level of detail required for successful binary analysis. For example, Kanemitsu

et al. [24] visualized data dependency graphs with the code line number as the node

name. While this proved effective for code extraction, this would be of little to no

value to the binary analyst as source code access is rare and one line of source code

can be compiled into multiple lines of assembly.

Code slicers can also generate program dependency graphs (PDGs) to visualize

the dependencies between instructions [6, 16, 18, 22]. Although, these face similar

limitations to [24] in that they are source-code dependent and operate at too high

8

of a level to be usable by the binary analyst. The use of data dependency graphs

as used by compilers most closely envisions the level of detail the analysis proposed

in this paper sought to produce [2, 26]. While they still map dependencies between

instructions, the nodes represent the individual IR instructions as opposed to a line

of source code.

Limited research has seen the application of data dependency graphs to binary

analysis [35, 43]. DepGraph, an IDA plugin developed by Serpilliere [35], is capable of

generating the constraints that a variable could take based off a data dependency and

control dependency graph. Although, this plugin only operates on a single argument

at a time and does not render the data dependency graph for the user to view. Thus,

this plugin serves more as a dependency-aware constraints solver than a true data

dependency graph visualization.

With a lack of existing tooling focused on generating data dependency graphs

for the purpose of user-driven binary analysis, I seek to contribute to the scientific

discourse through proposing a solution that learns from the many applications of

DDG generation in order to deliver an effective analysis.

9

Chapter 4

DESIGN

Figure 4.1. Design diagram of proposed analysis.

The design goal of the proposed analysis is to ingest an arbitrary binary and execu-

tion trace and efficiently parse a representative data dependency graph for visualiza-

tion. In order to develop this functionality, the design was split into the independent

modules seen in Figure 4.1.

4.1 Input Filter

This module is responsible for ingesting two critical files for data dependency

graph generation: the program binary and the execution trace. The binary can be

any executable file that the user would like to analyze while the execution trace must

correspond to that binary. While execution trace generation was outside the scope

10

of this thesis, the user could perform symbolic execution in angr upon the binary

to generate it. This would typically involve the user creating the initial state at the

first line of code they would like represented in the graph and having the symbolic

execution stop upon reaching the final line of code of interest. The resulting SimState

must then be JSON encoded.

The input filter would then be responsible for decoding the execution trace to

recover the underlying SimState. The only property of concern to this analysis within

the SimState is its history, which contains an array of the read and write actions

undertaken during symbolic execution. This array contains a series of SimAction

instances, which may not all necessarily be concerned with the flow of data throughout

the program’s execution. The instances that belong to the SimActionData class are

the only elements that concern data movement. Thus, this module will filter out

all of the irrelevant elements from the history and output an array of the program’s

SimActionDatas in ascending order of the time in which the program took them.

4.2 Parsing Unit

Figure 4.2. Context free grammar of the analysis’ language. Designed to tightly

mirror the aspects of VEX IR relevant to this analysis.

The parsing unit is the main module of the proposed analysis. I designed a context

free grammar (Figure 4.2) to capture the structure of the linear sequence of reads and

11

writes ingested by the analysis. A recursive descent parser processes this sequence.

This grammar follows the same structure of describing the structure of data reads

and writes as the VEX language. This design decision was driven by the fact that

the grammar in question is relatively concise, and the code required to implement

a recursive descent parser tightly mirrors the grammar [34]. Furthermore, the code

that drives this analysis will need continued maintenance beyond the time frame of

this thesis. Moreover, keeping the parser simpler and more readable, will make future

contributions and improvements easier.

The analysis uses the terminals in the proposed context-free grammar to represent

the different categories of SimActionData it processes. As can be seen in the naming

scheme of the terminals, a SimActionData is categorized based upon its action and

type. The supported actions are WRITE and READ while the supported types are

TMP, MEM, and REG. Although the MEM and REG types are straightforward,

representing any operations that involve a memory address or register, the TMP type

is not as readily apparent. TMP, short for temporary, operands can be viewed as

variables as they are used to hold the result of intermediary steps in an operation.

As an example, the SimActionDatas presented in 4.3 could represent the AMD64

instruction mov dword ptr [rbp { 0x4], 0x1d6 which moves the decimal value 470

into a memory offset from the base pointer. In this example, two temporary variables

are used to hold the value of the base pointer register and the calculated offset from

rbp to facilitate the memory write.

The largest unit that the analysis is concerned with is the block, with a program

being a sequence of blocks. In VEX, a block is a collection of instructions with a single

entrance and an unbounded number of exits. The end of a block is simply delineated

by the SimActionData currently being parsed having a different block address from

the next.

12

Figure 4.3. Example of temporary operands in angr.

An instruction, while not being part of the VEX language, is incorporated into

the analysis’ parser simply for readability. Rather than parsing the many statements

that belong to a single block at a time, the statements belonging to a given instruc-

tion address are logically grouped. The end of an instruction is depicted by the

SimActionData currently being parsed having a different instruction address from its

successor.

A statement is the smallest and most important unit of analysis, as VEX statements

are what change state in the symbolic execution. A statement is parsed according

to its type and action. It is during this portion of parsing where nodes in the data

dependency graph are created and linked together.

The analysis uses the recursive descent parser to convert the provided sequence

of SimActionData elements into a data dependency graph. The data dependency

graph is then forwarded to the visualization engine for rendering a visualization to

the screen.

4.3 Hardware Interface

This module serves as a supplementary module to the parsing unit, providing it

with a memory of the read and write actions parsed thus far. This is imperative

to have as, without tracking the reads and writes, it isn’t possible to create edges

between the nodes generated by the parser. The hardware interface facilitates the

13

interactions between the parsing unit and the simulated register file, simulated system

memory, and temporary tracker. The parsing unit can request to read from or write

to a given register, variable, or memory address through the functionality it exposes.

In order to track the current state of all registers that the program moves data

into and out of, an emulated register file is utilized to associate the register’s current

value with its associated node in the graph. On a write to a register, the register

file updates the value and associated node. On a read from a register, the current

associated node is used as the value’s source for linking purposes.

In order to track the current state of all memory addresses that the program

reads and writes to, an emulated memory is also maintained. This works in the same

manner as the register file.

The temporary variable tracker is a per-block association of values with the current

temporary node. This is reset at the end of a parsed block.

4.4 Visualization Engine

This module is responsible for ingesting the generated data dependency graph and

visualizing it in an effective user interface for the binary analyst to peruse. This was

accomplished through the creation of an angr management view.

14

Chapter 5

IMPLEMENTATION

I implemented data dependency generation as an angr analysis and registered it

under the name ‘DataDep’. This allows the angr library user to access and utilize

DDG functionalities through project.analyses.DataDep(). To maintain interop-

erability between DataDep and other angr analyses, the analysis outputs an instance

of a NetworkX Digraph representing the generated DDG [28]. The generated graph

can then be further operated upon by the user or visualized using standard NetworkX

visualization techniques [29]

In order to generate a DDG, the user must provide the analysis with a symbolic

execution state which acts as a source of data moves performed by the program. This

state is referred to as an “end-state”, as it provides a history containing all the reads

and writes taken by the program up until a given endpoint. In angr, SimActionDatas

encapsulate these simulated read and write actions. As far as angr is concerned, an

action can be one of the types seen in Table 5.1.

As naively ingesting an end state that captures all the reads and writes performed

by a large program would result in a tremendous and unwieldy number of nodes for the

Table 5.1

Supported Action Types.
Type of Action AMD64 Example

A read from a ‘variable’ mov rdx, rdi (in terms of rdi)
A write to a ‘variable’ mov rdx, rdi (in terms of rdx)

A read from a memory address mov r9, [rax]

A write to a memory address mov dword ptr [rax], 0xdeadbeef)

15

user to parse through, the analysis supports a finer-grained approach by tailoring the

graph to a portion of code of interest. This is accomplished by providing a symbolic

execution state that begins its execution at the earliest point in time of concern and

ends its execution on the instruction one beyond the latest point in time of concern.

This “end-state” serves as the execution trace that the user must provide alongside

the binary in question. The user may also optionally specify the block instructions

or range of instruction addresses to include in the graph.

5.1 Dependency Nodes

The analysis operates on four distinct classes of nodes: memory, register, tempo-

rary, and constant. It uses the first three types of nodes to represent a MEM, REG,

and TMP SimActionData, respectively. The final nodal type, constant, is used to

represent any untracked, literal value written or read from a SimActionData. As

constants cannot, by definition, be dependent upon any other node. In other words,

one cannot write to the decimal value 470. Thus, constants will always appear as

the highest-level ancestors in a DDG. A corresponding class of nodes used by the

analysis represents each of these node types. The inheritance relationships between

these classes, as seen in Figure 5.1 is explained in greater detail below.

5.1.1 Base Dependency Nodes

The base dependency node class is abstract and serves as a template for what

attributes its descendant classes must have. This class defines that, at a minimum, a

node possesses a class type, instruction address, statement index, and action identi-

fier. While the instruction address and statement index is straightforward, being the

instruction of the address in which the dependency node resides and the index of the

statement in that address respectively, the action warrants explanation. The action

16

Figure 5.1. UML diagram of dependency node class inheritance. The leaf classes in

this figure represent all nodes in a generated data dependency graph, with all other

classes being abstract.

identifier is sourced directly from the node’s corresponding SimActionData and is a

unique counter marking the occurrence of the given action in the entire program’s

execution.

5.1.2 Constant Dependency Nodes

The constant dependency nodes class is concrete and represented in a generated

DDG. It is solely identified by its value.

5.1.3 Memory Dependency Nodes

The memory dependence nodes class is also concrete and represented in a gen-

erated DDG. In addition to the attributes that identify a base dependency node, a

memory dependency node is further identified by its memory address.

17

5.1.4 Variable Dependency Nodes

The variable dependency nodes class is abstract, serving as a common ancestor to

temporary and register dependency nodes. While temporary and register nodes are

different types of SimActions, both are identified by a register number and can be

parsed without needing to be differentiated.

5.1.5 Temporary Dependency Nodes

The temprorary dependency nodes class is concrete and represented in a generated

DDG. While it adds no additional functionality to its base class, it is included in order

to differentiate between register and temporary nodes for ease of filtering the graph

for display. As the number of temporary nodes will be high for a given program, it is

often beneficial to hide them in a generated DDG.

5.1.6 Register Dependency Nodes

The register dependency nodes class is concrete and represented in a generated

DDG. It exists to differentiate between register and temporary nodes for the reasons

proposed in Section 5.1.5

5.2 Generating and Tracking Nodes

Based on the type and action of the SimActionData currently being parsed, dif-

ferent fields are pulled out of the action to create the respective dependency node.

Upon creating a node for an action, the parser pops the action from the queue and

the node is added to the graph. The node is originally unconnected, as it has yet to

be linked to the DDG.

18

Figure 5.2. Register file and graph state before and after executing instruction 4.

After executing the addition instruction, a new node for the destination operand

is created and linked to the source operands. The register file for the destination

operand is also updated to point to this new node.

5.3 Linking Nodes

The program in Figure 5.2 will be used as a motivating example to explain the

linking process. The leftmost diagram gives an overview of the state of the register

file, memory, and graph prior to the execution of instruction 4 and will serve as the

state that is used to determine dependencies. As an add requires the CPU to read

the value from the source operand and target operand, nodes 2 and 5, which are

currently associated with rbx and rcx, respectively, will be located in the register file

and tracked as data sources. Once the addition is calculated by the ALU, the value is

then written back to the target operand (rcx). To facilitate this in the analysis, node

6 is created for rcx at this state and is linked to its two tracked source nodes as a

19

Figure 5.3. Visualization of a simple data dependency graph. This screenshot is of a

subgraph that traces two subsequent additions.

dependency. As the next operation that utilizes rcx as an operand should be reliant

upon the value of rcx post-addition, the register file for rcx is updated to point to

node 6.

5.4 Visualizing Nodes

In addition to implementing the backend analysis for generating a data-dependency

graph, its visualization was also within the scope of this thesis. I accomplished this

through contribution to angr management, the official frontend for angr. An example

visualization of a simple data dependency graph is depicted in Figure 5.3.

20

To improve the user experience, I implemented various features to aid the user in

more quickly resolving the dependency of instructions with which they are concerned.

For example, search functionality is available to jump through all nodes that match

a provided name, instruction address, and/or value. The user can omit any of these

fields in the search, resulting in them not being considered in node filtering. In

addition to this feature, the user can toggle temporary nodes on and off to prevent

the screen from being cluttered with useless information when they are not relevant

to the analysis. More importantly, however, is the concept of subgraph generation.

The user can generate a subgraph from any given node in the data dependency

graph. That is, the user can specify to trace the dependency of node X “forwards” and

view all nodes that are ancestors of X or trace “backwards” and view all descendants

of X. This feature is especially helpful in decreasing screen clutter, as the majority of

nodes on a graph will not be relevant to a given dependency trace.

21

Chapter 6

EVALUATION

The goal of the user study is to determine the effectiveness of the data dependency

graph analysis and its angr management visualization with respect to software de-

bugging and binary analysis. In order to quantitatively and qualitatively determine

its effectiveness, I designed a user study in which participants had to solve a series

of software debugging and binary analysis challenges. The experiment was split into

three phases: introduction, challenge-solving, and survey. During the introduction

phase, participants were given an overview of angr management and the views they

were allowed to utilize during the experiment. The challenge-solving phase entailed

the participants working through the challenges and answering a series of questions

concerning each challenge. After the participant completed all challenges, they would

then enter the survey phase where a series of survey questions were administered that

captured their relevant background and overall perceptions of the experiment.

6.1 Control vs Experimental Groups

Participants were randomly divided into a control and experimental group as

determined by a random session key that was used to de-identify user data. A control

group was introduced as a means of measuring baseline performance in the challenge-

solving phase in comparison to the results of the experiment group in order to gauge

effectiveness. Those participants who were assigned to the control group were only

provided an overview of angr management, while those who were assigned to the

experimental group were provided an additional overview of the functionality of the

data dependency graph view. During the challenge-solving phase, the experiment

22

group was allowed to utilize the data dependency view as an aid in analyzing the

challenge binary. This feature was disabled for the control group.

6.2 Challenges

In regards to experiment duration, I designed three challenges for this experiment:

two focused on software debugging and one similar to traditional CTF challenges

which focused on binary analysis more generally. I describe the challenges in further

detail below.

• Median: This software-debugging challenge finds the median of nine numbers

by means of four successive calls to a median function. The first three calls were

responsible for finding the median of the trisected sub-arrays, with the final call

finding the median of the previous three results. Although, a logical comparison

error in the median implementation causes the second call to the function to

return an incorrect median, cascading to an incorrect result from the final call

as well. The user was tasked with determining which call to median resulted in

the bug and the nature of the bug.

• Follow: I designed this challenge to emulate a traditional CTF challenge, with

the correct input printing a flag. In order to determine the correct input, the

participant would have to follow a data dependency maze, following the value

0x1337 as it moves from register rbx to register rax through a complicated

series of register shuffling with many dead-ends. If the user-specified path was

correct, the program would print the flag to standard output. The questions

asked the user to provide details about what they attempted during the solving

time, if they were able to solve the challenge, and what their inputs to the

program were.

23

• Notes: This software-debugging challenge asked the user to resolve a mock user

bug report in a note-taking application. This binary allows the user to create,

read, edit, and delete notes. However, a failure to check for the existence of

a note before dereferencing it in the read functionality would cause a null-

dereference and segmentation fault. The questions asked the user to identify

the source of the bug and detail its nature.

6.3 Framework

In order to ease the burden inherent in installing angr and recording their own

data, participants were provided a cloud-based system which enables interaction with

a pre-configured virtual machine. After being provided a session key, the user would

be able to navigate to the experiment’s domain and begin the experiment at the time

of their choice. The framework would walk the participant through a sequence of

pages that served as a guide for the user’s session. After getting consent from the

user, the framework would present them with a general introduction to the study.

After navigating to the next page, a pre-configured virtual machine accessible via

RDP would be cloned and powered on for the user to solve the challenges on. This

framework provided a reliable means of recording the user’s progress on the virtual

machine and precise timestamps of how long each challenge took each user. While the

system pre-dates the experiment, I made various customizations in order to protect

user data and introduce randomization.

Randomness was key to eliminating bias and uncontrolled variables in this exper-

iment. First, participants were randomly assigned to the control group, unable to use

the DDG, or experiment group. The former enabled the experiment to have a mea-

surable baseline. Secondly, the order of challenges was randomized per participant

to eliminate the impact of progressive learning and fatigue on the later challenges.

24

Table 6.1

Permitted Views.
Control Experimental
Functions Functions

Disassembly Disassembly
Hex Hex

Strings Strings
Interaction Interaction
Console Console
Log Log

Data Dependency

To achieve this randomness, the user’s unique session key was used as the seed to a

random number generator that decided these factors. Once the sequence was shuffled,

the survey pages associated with each challenge were dynamically shuffled to match

the new order. While the participation website was easily randomized, the challenge

of syncing angr management on the virtual machine to utilize the same randomness

proved more complex.

6.4 Custom Angr Wrapper

The design of the experiment required modifications to angr management, namely

support for restricting access to views and loading binaries in a pre-determined se-

quence. For the sake of this experiment, the views in Table 6.1 were permitted.

Noticeable omissions include decompilation and symbolic execution. These were re-

moved to address the inherent challenge of designing challenges for a ten-minute time

frame. They must be simple enough to be solved within the time frame but compli-

cated enough to warrant analysis. These challenges would be trivial with access to

decompilation and symbolic execution. If included, the experiment would be invali-

dated. Rather, pitting data dependency against disassembly view, which it seeks to

25

complement, makes more sense for the scope of this project.

The greater challenge occurred when syncing the order of loaded binaries and

trace files with the web server. As some form of communication of the randomly

generated group membership and challenge order needed to be transmitted from the

server to the virtual machine, a binary-encoded JSON file was written to the virtual

machine upon creation utilizing the VirtualBox command execution functionality.

When the customized angr wrapper was launched by the participant, it would first

check for this file and reorient the order in which it loads binaries to sync with the

server.

6.5 Survey

After completion of each challenge and its associated questionnaire, the user was

asked to provide more general feedback by means of a final survey. The participants

were asked questions pertaining to their experience in software debugging and vulner-

ability analysis, their comfort with angr management, and their overall understand-

ing of the challenges provided. While these questions were asked of all participants,

further questions were asked dependent upon group membership. For those users

in the control group, an example data dependency graph screenshot was provided.

Questions about the perceived usefulness and clarity of the ‘hypothetical’ view ac-

companied the screenshot. Contrarily, users in the experiment group were asked to

rate data dependency graph view in terms of its usefulness and clarity. Addition-

ally, a free-form further feedback field was provided to ascertain the user’s thoughts

regarding future improvements that could be made to the view.

26

6.6 Collected Data

In addition to the user’s responses to the challenge questionnaires and survey, the

time a user took to complete each challenge was recorded. This data will be used

to quantify a performance delta between control and experiment groups in terms of

challenge-solving speed. Lastly, the user’s virtual machine session was video recorded

as a means of verifying user’s participation and to resolve any possible bugs or crashes

should they have occurred. The server s database did not track or store any personally

identifiable information. Instead of utilizing a name or email, the random, unique

session key provided to each user tethered data to a session.

27

Chapter 7

RESULTS

7.1 Participants

Participants were sourced primarily from a variety of cybersecurity-oriented Dis-

cord servers, as members in these groups would have a higher chance of having the req-

uisite skills to complete the experiment. Initially, members were primarily recruited

from Discord servers created for various undergraduate and graduate cybersecurity

courses offered at Arizona State University. Once this pool was depleted, recruitment

messages were sent to various reverse-engineering oriented Discord servers with mem-

bers from around the globe. These servers provided a sufficient pool of enthusiastic

participants.

A total of 78 session keys were sent out to individuals who had expressed interest

in participation, whether through email or by responding to the Discord recruitment

messages. To incentivize participation, participants were awarded $50 for completion

of the entire study. As a result, there was a turnout of 42 participants who fully

completed the study. An additional 13 participants had their data thrown out, as

they either partially completed the experiment or were unable to participate due to

RDP latency or other technical difficulties.

Of the participants who fully completed the experiment, 19 had less than 2 years of

experience in software debugging and 23 had 2+ years. As for vulnerability analysis

experience, 30 had less than 2 years of experience and 12 had 2+ years. Partici-

pants with less than 2 years of experience in a subject will be referred to as being

‘inexperienced’ while those with 2+ years will be referred to as ‘experienced’.

28

7.2 Challenge Correctness

Table 7.1

Aggregated Challenge Results.

Control Experimental
Challenge Pass Fail Pass Fail

Median 7 14 5 16
Follow 7 14 14 7
Notes 11 14 14 7

Table 7.2

Significance of Challenge Correctness.

Challenge P-value Cohen’s d Effect Size1

Median 0.753 0.207 Small & Somewhat Educationally Significant

Follow 0.015 0.69 Moderate & Practically Significant

Notes 0.173 0.287 Small & Educationally Significant

1 Using effect size descriptors by Cohen [13] & Wolf [42].

Each participant’s challenge questionnaire was scored on a binary scoring system,

with 1 point being awarded for the correct answer and 0 for the incorrect answer.

As the same grading criteria was applied to control and experimental submissions,

the opportunity for biased grading was eliminated. Table 7.1 summarizes the re-

sults of the challenge-solving portion of the experiment. The experimental group saw

better performance when solving the follow and notes challenges. In fact, a 100%

improvement was seen in solve percentage between the control and experiment group

in the follow challenge. This was determined to be a statistically significant differ-

ence, showing that data dependency view is a contributor to improved performance

in regards to this challenge. However, there were not enough samples or variance to

29

determine statistical significance for the notes and median challenges. Due to the

marginal differences between notes and median solves, the P-value of correctness be-

tween the groups is 0.076. If the standard 95% confidence interval is used, this is just

barely outside the range required to reject the null hypothesis. Within this specific

participant pool, the control group was more likely to solve the median challenge.

This unexpected result could be due to the wording of the median questionnaire, as

it proved confusing to participants. Thus, this marginal difference could be explained

by a poorly designed challenge with poor questions. The fact that follow, a challenge

based on making sense of a complicated chain of data dependencies, saw a signifi-

cantly higher solve-rate amongst the experiment group while notes and median saw

marginal improvements and degressions speaks to the reality that data dependency

graph analysis is a specialized tool. While it is provably effective in the specific do-

main of resolving data dependencies, improvement gains are less dramatic in other

realms of binary analysis. Due to both the ten minute attempt suggestion given to

challenges and the need to keep challenges feasibly solvable within that time frame,

it is difficult to capture an element of data dependency in every challenge.

Unsurprisingly, users with more experience in software debugging performed bet-

ter on the software debugging challenges: median and notes. Of the 5 solves for

median in the experimental group, 4 came from experienced software debuggers. As

for notes, 8 of the 14 solves came from participants with a strong debugging back-

ground. This shows that data dependency graph analysis is an effective software

debugging tool that can be judiciously applied by the experienced software debugger.

To further support this notion, follow, a challenge without elements of software de-

bugging, saw the same performance among inexperienced and experienced software

debuggers. Similarly, experience with vulnerability analysis had no discernible im-

pact on challenge correctness. This shows that data dependency graph should not be

30

advertised as a vulnerability analysis tool.

7.3 Completion Time

Median Follow Notes

600

800

1,000

1,200

C
om

p
le
ti
on

ti
m
e
(s
ec
s)

Control Group
Experiment

Figure 7.1. Completion time results.

The average completion time of each challenge was computed for the experiment

and control groups. Only participants who were able to get the correct answer were

incorporated into these calculations, as the speed it takes a participant to derive an

incorrect answer is irrelevant. As many participants were unable to get the correct

answer, fewer data points were able to be considered. The only conclusive statistical

result was, again, in the follow challenge. When using a 95% confidence interval,

the null hypothesis stating that data dependency view resulted in faster solves on

average, could not be rejected with a P-value of P=0.132. Although, with a Cohen’s

d of 0.309, data dependency view had a small and educationally significant impact

on solve times. Furthermore, the results within the participant pool show a trend

31

for solving challenges faster using data dependency graph. The only challenge that

saw poorer performance with data dependency graph was median, which could be

attributed to the extremely small sample size of participants who were able to solve

the challenge. Despite the experiment group solving challenges 171 seconds faster

on average, no statistical significance can be determined with the data. This could

possibly be attributed to the user’s being provided a ten minute timer for challenge-

solving, which eliminates the majority of the possible variance.

Experienced software debuggers in the experimental group saw over a 200% speedup

in completion time for solving median, cementing the importance of software debug-

ging knowledge in solving this challenge. The two groups had a Cohen’s d of 0.753

for this challenge, meaning data dependency view had a medium and practically sig-

nificant effect for this challenge. No correlation between software debugging expertise

and completion time was exhibited by the other two challenges. As for experience

with vulnerability analysis, those with experience saw a 185% speedup in completion

time for solving notes. This may be attributed to the fact that the challenge was

modeled after a common CTF challenge format, which was commented on in many

participant’s feedback for that challenge.

7.4 User Perception

In addition to the quantitative data that was gathered, participants were also

asked to provide their general feedback at the end of the experiment. The full list of

survey questions can be seen in Appendix B. Figures 7.2a and 7.2b provide a summary

of the user’s perception. Questions were aggregated into two groups: comprehension

related (questions 7&8 for control and 7&13-14 for experiment) and functionality

related (9 for control and 8-12 for experiment). User feedback communicates that

the experimental group generally viewed the functionality of the view favorably, but

32

(a)

(b)

Figure 7.2. Aggregated participant agreement with (a) functionality and (b) compre-

hension related statements.

viewed its comprehensibility negatively. This communicates that the analysis itself is

a useful addition to the suite of angr analyses, but the user interface requires rework

to be more in line with user expectations.

In addition to asking the experimental group for feedback on the data dependency

view, users in the control group were asked two questions about a ”hypothetical” data

dependency view in the post-participation survey. The control group was given an

example screenshot of a simple data dependency graph, depicted in Figure 2.2, and

asked if they thought that the hypothetical view would be helpful. They were then

33

subsequently asked if they thought the view would be confusing and unnecessary. Of

the control-group participants who chose to respond to these survey questions, 62%

considered the proposed view as helpful and 24% unhelpful. 43% of users thought

that the data dependency graph depicted in the photo was clear while 29% found

the view confusing. This demonstrates a desire for more tooling in angr among the

control group and that disassembly view was not sufficient in solving the challenges.

34

Chapter 8

DISCUSSION

8.1 Lessons Learned

Throughout the course of this thesis, I learned an abundance of lessons with

respect to designing a user interface tailored to the user’s experience and a user study

able to capture the efficacy of the DDG. The lessons outlined in this section will serve

as the motivation for potential future work.

The results of the survey reveal that a sizable portion of the study-base found

the user interface confusing or lacking in desired functionality. Largely, the suggested

functional additions and improvements promote better interaction between the user

and the generated data dependency graph. Asking the user for a trace file and

displaying the entire data dependency graph is not in line with the user’s expectations

or interests. Rather than displaying the entire graph at once, with all the nodes in the

provided trace file’s history and expecting the user to utilize the search functionality

to navigate, it would be better to allow the user to filter down the graph prior to

displaying it. The analysis’ backend currently supports more fine-grained approaches

to DDG generation but are not reflected by endpoints in the user interface. I will

describe possible improvements in the future work section.

As for the design of the user study, the use of randomization had its drawbacks.

While instrumental in eliminating the effects of fatigue and progressive learning, the

randomization of challenge order without respect to challenge difficulty proved prob-

lematic. While the effect of progressive learning was eliminated, this proved counter-

intuitive when the user was randomly assigned one of the more difficult challenges

35

first. In their feedback, some participants noted that they would have appreciated

starting with one of the later challenges first to better learn data dependency view

prior to applying it to a more difficult challenge. A possible solution that would still

eliminate the effect of progressive learning but also resolve the issue of users facing

more difficult challenges first would be to have each challenge scale its difficulty to

correlate to its randomized order in order to maintain an easy −→ medium −→ hard

progression.

In addition to the effects inherent in randomization, whichever challenge the user

was initially assigned would have a completion time swayed by factors excluding

difficulty. As many participants did not have prior experience with angr management,

asking them to learn the basics of interacting with the framework, the novel view, and

solving a challenge all at once had a definite sway on the time it takes to complete

the first task.

After analyzing the results, the importance of wording in questions and objectivity

were understood to be paramount. Questions concerning the user’s self-perceived skill

level was not statistically tied to results, and thus those types of questions proved

useless. Furthermore, the wording of the median questions proved confusing to some

participants. This required more lenient grading that took into account the user’s

free-form feedback as opposed to grading their multiple choice answers exclusively.

As evidenced by feedback asking for functionality that was already explained on

the introductory page, the medium by which the introductory lesson was delivered

was not effective. Research has shown that product manuals are not an effective

means of conveying information to users. Most people do not read instruction manu-

als and will utilize a fraction of a product’s features and functionality [9]. Rather than

presenting the introduction as a static webpage, a video would have been more engag-

ing and provided users with a clearer demonstration of the features at their disposal.

36

The decision to convey feature implementation had a serious negative effect on user

perception of the data dependency view, with users requesting zoom functionality,

subgraph functionality, search functionality, and node highlighting. The introduction

clearly explained all of these features.

The largest lesson learned was the downsides of deploying this experiment on a

cloud-based framework. While the use of a cloud-based solution allowed for par-

ticipants from the wider cybersecurity community as well as more flexibility with

the participant’s schedules, many users reported latency as a discomfort during the

challenge-solving phase. While already being a network-intensive protocol, RDP be-

comes far more unusable with distance. Many interested participants from Europe

and Asia were unable to complete the experiment due to the unbearable latency. The

latency inherent to RDP even had a negative impact on user feedback in regards to

the views comprehensibility. As evident from the free-form feedback, two participants

found the view confusing due to the lag they encountered while using data depen-

dency view. This will have had an effect on the data, despite being an independent

variable. Future studies would have to weigh this consideration into account when

considering experiment deployment methods. In addition to relying on a server to

conduct this experiment, participation was very much at the mercy of the server’s

uptime and performance. Early in the user study, the server suffered from thrashing

and would shut down under high load. Prior to this error being resolved, various

participants would either have to have their results thrown out or were discouraged

from continuing. Thus, if a future study were to utilize a cloud-based solution, more

servers would need to be deployed globally, clustered by participant locality. Having

multiple servers would also serve as fault-tolerance, with one malfunctioning server

offloading its work onto its peers to prevent interruption of participation.

37

8.2 Future Work

As evidenced by the feedback received and discussed in the lessons learned, work

must be done to improve the user interface. I will now describe possible improvements

and reworks, as aggregated from participant feedback, in greater detail.

About 1/5 of users reported a desire for a more cohesive experience when using

data dependency graph. Rather than loading a trace file for the current binary, these

users stated they would prefer the option to right-click the constants or instructions

in the disassembly view that they would like to generate a data dependency graph of.

The current implementation could easily be pivoted to accommodate this modality

of interaction. The program could initialize a symbolic execution state at the earliest

instruction in the user-specified selection and allowed to run, with a find target of the

end instruction. Should there be a path that exists, the state at the end of symbolic

execution could be passed to the data dependency analysis.

While the aforementioned solution will work, symbolic execution is an expensive

operation. If the user were to only use data dependency on one or two instruction

subsets during their analysis, then no further optimizations are necessary. Although,

should the user wish to generate many DDGs, the lag between the start of the task and

the generation of the view would be an annoyance. A possible solution would be to

move the data dependency generation to a background thread that, upon completion

of the underlying analysis, emits a Qt signal to inform the main thread that it can

now generate the view. While the same amount of time would be required to generate

the view, the UI would not be locked until completion and the user would be free to

continue their analysis elsewhere.

Another possible optimization could see the generation of a DDG being queued

upon the user’s first request to see one. Regardless of the instruction subset re-

38

quested, an initial request could see the data dependency analysis being dispatched

in a background thread for the entire program-space. While the first data depen-

dency graph requested would be slower, all subsequent calls could just utilize the

subgraph functionality and be near instantaneous. Although, this solution has many

trade-offs: increased computation that may go unutilized, more utilization of RAM

to store the larger Digraph, and some binaries being far too large to warrant a DDG

being generated for the entire program-space.

User feedback suggested that the current user interface provides a jarring experi-

ence when attempting to manually follow a dependency in the graph. For one, the

scrolling speed resulted in users losing their place in the graph. Additionally, users

reported a desire for color-coding certain paths branching out of a node to make

manual tracing more feasible. This problem is compounded by the clutter produced

by the arrows in the graph which should also be addressed.

The last category of improvements suggested by the users was improvements to

searching. The search panel should allow users to specify if they would like to search

within the current sub-graph or within the entire data dependency graph, as a few

users voiced their desire for this functionality. Users also requested the ability to

search for instructions using regex.

Future work on data dependency graph should be focused on bridging the divide

between data dependency graph and disassembly view / decompilation view. The

ability to more quickly switch between the control flow graph and the data dependency

would address the majority of feature requests from the participant pool.

Another promising vein of research for inclusion in data dependency graph is the

application of taint analysis in deciding how graphs should be generated [12, 30, 45].

The application of taint analysis could make data dependency graph more relevant in

the realm of vulnerability analysis, as this study could not establish a correlation for

39

the proposed view. With the ability to specify sources (user-controllable origins of

data) and sinks (potentially vulnerable instructions or functions) a data dependency

graph could be generated that shows any existing connections between the source and

the sinks. With the ability to trace forwards from the source to a sink or backwards

from a sink to the source, the user would be presented with the series of checks and

input restrictions required to exploit the vulnerable code in question. Furthermore,

breadth-first search could be employed to find the shortest path from a given source

to a given sink if multiple dependency paths exist (to make exploitation easier).

Presenting the shortest path as opposed to the entire data dependency graph would

also help prevent overloading the user with a massive dependency tree.

40

Chapter 9

CONCLUSION

I made two contributions through this paper. First, I introduced a data depen-

dency graph analysis as a new means of analyzing binaries in the angr ecosystem.

By employing a recursive-descent parser and a simulated register file and dedicated

memory, the analysis is able to track dependencies between data regions through-

out a program’s execution. The user could alter the subset of instructions analyzed

through fine-grained controls that allow them to specify a subset of executed instruc-

tions for graph generation. The user can also utilize a custom angr management data

dependency view to visualize this data dependency graph.

Secondly, a user study that utilized a customized angr wrapper and a cloud-based

deployment framework tested the efficacy of this view. In the experiment, users were

split into a control and experimental group and were asked to solve a series of software-

debugging and more generalized binary analysis challenges. The results showed an

overall increase in the number of challenges correctly solved amongst the experimental

group, with a statistically significant increase involving the challenge concerning data

dependencies. As for time to solve, participants in the experimental group were able

to solve the challenges much faster than their peers in the control group. I was able to

attribute educational significance to this observation. Users perceived the view to be

incredibly functional, but found its comprehensibility challenging. Based off of user

feedback, I proposed numerous lessons learned and detailed possible future work.

The implementation of data dependency graph in its current state, while showing

promising results in its niche, is just the beginning of the possible impact this view

could have on binary analysis speed and accuracy. Should future researchers or angr

41

contributors adopt the suggestions posed in the future work, the view could see much

more impressive results in future user studies. I hope that the user study design

proposed in this paper should serve as a template for any future studies in this vein

in order to continue to enrich the suite of tools available to the software debugger

and binary analyst of the future.

42

CHAPTER Page

REFERENCES

[1] “Binary ninja”, https://binary.ninja/, accessed: 2022-04-18 (2022).

[2] “Dependence graphs in llvm”, https://llvm.org/docs/DependenceGraphs/
index.html, accessed: 2022-04-18 (2022).

[3] “Ghidra”, https://ghidra-sre.org/, accessed: 2022-04-18 (2022).

[4] “Ida pro”, https://hex-rays.com/ida-pro/, accessed: 2022-04-18 (2022).

[5] “Intermediate representation”, https://docs.angr.io/advanced-topics/ir,
accessed: 2022-04-18 (2022).

[6] “Slicing”, https://www.frama-c.com/fc-plugins/slicing.html, accessed:
2022-04-18 (2022).

[7] Aho, A. V., Compilers: principles, techniques and tools (for Anna University),
2/e (Pearson Education India, 2003).

[8] Baldoni, R., E. Coppa, D. C. D’elia, C. Demetrescu and I. Finocchi, “A survey of
symbolic execution techniques”, ACM Computing Surveys (CSUR) 51, 3, 1–39
(2018).

[9] Blackler, A. L., R. Gomez, V. Popovic and M. H. Thompson, “Life is too short
to rtfm: how users relate to documentation and excess features in consumer
products”, Interacting with Computers 28, 1, 27–46 (2016).

[10] Buhov, D., R. Thron and S. Schrittwieser, “Catch me if you can! Transpar-
ent detection of shellcode”, in “Software Security and Assurance (ICSSA), 2016
International Conference on”, pp. 60–63 (IEEE, 2016).

[11] Cavusoglu, H., B. Mishra and S. Raghunathan, “The effect of internet security
breach announcements on market value: Capital market reactions for breached
firms and internet security developers”, International Journal of Electronic Com-
merce 9, 1, 70–104 (2004).

[12] Clause, J., W. Li and A. Orso, “Dytan: a generic dynamic taint analysis frame-
work”, in “Proceedings of the 2007 international symposium on Software testing
and analysis”, pp. 196–206 (2007).

[13] Cohen, J., “Statistical power analysis for the behavioral sciences (revised ed.)”,
(1977).

[14] Cowan, C., C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier, P. Wagle,
Q. Zhang and H. Hinton, “Stackguard: automatic adaptive detection and pre-
vention of buffer-overflow attacks.”, in “USENIX security symposium”, vol. 98,
pp. 63–78 (San Antonio, TX, 1998).

https://binary.ninja/
https://llvm.org/docs/DependenceGraphs/index.html
https://llvm.org/docs/DependenceGraphs/index.html
https://ghidra-sre.org/
https://hex-rays.com/ida-pro/
https://docs.angr.io/advanced-topics/ir
https://www.frama-c.com/fc-plugins/slicing.html

CHAPTER Page

[15] CVE-2021-3156, “CVE-2021-3156.”, Available from MITRE CVE database,
CVE-2021-3156., URL https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2021-3156 (2021).

[16] Ferrante, J., K. J. Ottenstein and J. D. Warren, “The program dependence graph
and its use in optimization”, ACM Transactions on Programming Languages and
Systems (TOPLAS) 9, 3, 319–349 (1987).

[17] Flack, M., R. Foster and S. Xu, “Graph convolutional network for classifying
binaries with control flow graph data”, (????).

[18] Gallagher, K. B., Using program slicing in software maintenance, Ph.D. thesis,
University of Maryland, Baltimore County (1990).

[19] Grune, D., K. Van Reeuwijk, H. E. Bal, C. J. Jacobs and K. Langendoen, Modern
compiler design (Springer Science & Business Media, 2012).

[20] Heffernan, M., K. Wilken and G. Shobaki, “Data-dependency graph transforma-
tions for superblock scheduling”, in “2006 39th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO’06)”, pp. 77–88 (IEEE, 2006).

[21] Hernandez, G., F. Fowze, T. Yavuz, K. R. Butler et al., “Firmusb: Vetting usb
device firmware using domain informed symbolic execution”, ACM Conference
on Computer and Communications Security (2017).

[22] Higo, Y. and S. Kusumoto, “Enhancing quality of code clone detection with
program dependency graph”, in “2009 16th Working Conference on Reverse En-
gineering”, pp. 315–316 (IEEE, 2009).

[23] Honig, J., “Autonomous exploitation of system binaries using symbolic analysis”,
(2017).

[24] Kanemitsu, T., Y. Higo and S. Kusumoto, “A visualization method of program
dependency graph for identifying extract method opportunity”, in “Proceedings
of the 4th Workshop on Refactoring Tools”, pp. 8–14 (2011).

[25] King, J. C., “Symbolic execution and program testing”, Communications of the
ACM 19, 7, 385–394 (1976).

[26] Kuck, D. J., R. H. Kuhn, D. A. Padua, B. Leasure and M. Wolfe, “Dependence
graphs and compiler optimizations”, in “Proceedings of the 8th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages”, pp. 207–218
(1981).

[27] Muchnick, S. et al., Advanced compiler design implementation (Morgan kauf-
mann, 1997).

[28] NetworkX, “NetworkX digraph – directed graphs with self loops”, https://
networkx.org/documentation/stable/reference/classes/digraph.html,
accessed: 2022-04-01 (2022).

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-3156
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-3156
https://networkx.org/documentation/stable/reference/classes/digraph.html
https://networkx.org/documentation/stable/reference/classes/digraph.html

CHAPTER Page

[29] NetworkX, “NetworkX drawing”, https://networkx.org/documentation/
stable/reference/drawing.html, accessed: 2022-04-01 (2022).

[30] Newsome, J. and D. X. Song, “Dynamic taint analysis for automatic detec-
tion, analysis, and signaturegeneration of exploits on commodity software.”, in
“NDSS”, vol. 5, pp. 3–4 (Citeseer, 2005).

[31] Pappas, V., M. Polychronakis and A. D. Keromytis, “Transparent {ROP} exploit
mitigation using indirect branch tracing”, in “22nd USENIX Security Sympo-
sium (USENIX Security 13)”, pp. 447–462 (2013).

[32] Parvez, M. R., Combining static analysis and targeted symbolic execution for scal-
able bug-finding in application binaries, Master’s thesis, University of Waterloo
(2016).

[33] Redini, N., A. Machiry, D. Das, Y. Fratantonio, A. Bianchi, E. Gustafson,
Y. Shoshitaishvili, C. Kruegel and G. Vigna, “BootStomp: On the security of
bootloaders in mobile devices”, (2017).

[34] Redziejowski, R. R., “Parsing expression grammar as a primitive recursive-
descent parser with backtracking”, Fundamenta Informaticae 79, 3-4, 513–524
(2007).

[35] Serpilliere, “Data flow analysis: Depgraph”, https://miasm.re/blog/2017/
02/03/data_flow_analysis_depgraph.html (2017).

[36] Shoshitaishvili, Y., R. Wang, C. Salls, N. Stephens, M. Polino, A. Dutcher,
J. Grosen, S. Feng, C. Hauser, C. Kruegel et al., “Sok:(state of) the art of war:
Offensive techniques in binary analysis”, in “2016 IEEE Symposium on Security
and Privacy (SP)”, pp. 138–157 (IEEE, 2016).

[37] Stephens, N., J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta, Y. Shoshi-
taishvili, C. Kruegel and G. Vigna, “Driller: Augmenting fuzzing through selec-
tive symbolic execution.”, in “NDSS”, vol. 16, pp. 1–16 (2016).

[38] Taylor, C. and C. Colberg, “A tool for teaching reverse engineering.”, in “ASE@
USENIX Security Symposium”, (2016).

[39] Wang, F. and Y. Shoshitaishvili, “Angr - the next generation of binary analysis”,
in “2017 IEEE Cybersecurity Development (SecDev)”, pp. 8–9 (2017).

[40] Wang, R., Y. Shoshitaishvili, A. Bianchi, A. Machiry, J. Grosen, P. Grosen,
C. Kruegel and G. Vigna, “Ramblr: Making reassembly great again”, (2017).

[41] Wang, S.-C., C.-L. Liu, Y. Li and W.-Y. Xu, “Semdiff: Finding semtic differences
in binary programs based on angr”, in “ITM Web of Conferences”, vol. 12, p.
03029 (EDP Sciences, 2017).

[42] Wolf, F. M. et al., Meta-analysis: Quantitative methods for research synthesis,
vol. 59 (Sage, 1986).

https://networkx.org/documentation/stable/reference/drawing.html
https://networkx.org/documentation/stable/reference/drawing.html
https://miasm.re/blog/2017/02/03/data_flow_analysis_depgraph.html
https://miasm.re/blog/2017/02/03/data_flow_analysis_depgraph.html

[43] Zhang, Z., W. You, G. Tao, G. Wei, Y. Kwon and X. Zhang, “Bda: practi-
cal dependence analysis for binary executables by unbiased whole-program path
sampling and per-path abstract interpretation”, Proceedings of the ACM on
Programming Languages 3, OOPSLA, 1–31 (2019).

[44] Zheng, Y., K. Cheng, Z. Li, S. Pan, H. Zhu and L. Sun, “A lightweight method
for accelerating discovery of taint-style vulnerabilities in embedded systems”, in
“Information and Communications Security”, pp. 27–36 (Springer, 2016).

[45] Zhu, E., F. Liu, Z. Wang, A. Liang, Y. Zhang, X. Li and X. Li, “Dytaint: The
implementation of a novel lightweight 3-state dynamic taint analysis framework
for x86 binary programs”, Computers & Security 52, 51–69 (2015).

46

APPENDIX A

RECRUITMENT ADVERTISEMENT

47

In order to recruit participants from the various academic and cybersecurity Dis-
cord servers, the following message was sent out: Have you taken ASU’s CSE 365,
CSE 466, or CSE 545 or do you have a background in reverse engineering, debug-
ging, and exploiting binaries? If you answered “yes” to either of these questions, you
are invited to participate in a research study conducted by Arizona State University!
You will be asked to solve various challenges using a tool called angr management in
order to research the effectiveness of new features on the platform. Prior experience
with angr management is not necessary. The research study is approximately 1.75
hours (100 minutes) and can be taken at your time of choice. Your participation will
be rewarded with a $50 Amazon gift card upon completion. For more information,
contact ¡contact details¿. Participation in this study is voluntary.

48

APPENDIX B

SURVEY QUESTIONS

49

B.1 Median

1. Have you seen this challenge before?

• Yes

• No

• I prefer not to answer

2. Briefly describe what you did during this challenge (bullet point explanation is
acceptable):

• Free form response

3. Were you able to identify the source of the bug?

• Yes

• No

• I prefer not to answer

4. After which function call to middle does the error originate?

• First

• Second

• Third

• Fourth

• I do not know

• I prefer not to answer

5. Which of the following best describes the nature of the bug?

• Memory corruption

• Signed comparison bug

• Logical error

• Integer overflow

• I do not know

• I prefer not to answer

6. If possible, briefly describe the cause of the bug.

• Free form response

50

B.2 Follow

1. Have you seen this challenge before?

• Yes

• No

• I prefer not to answer

2. Briefly describe what you did during this challenge (bullet point explanation is
acceptable):

• Free form response

3. Were you able to solve the challenge?

• Yes

• No

• I prefer not to answer

4. What input(s) did you provide to solve this challenge?.

• Free form response

B.3 Notes

1. Have you seen this challenge before?

• Yes

• No

• I prefer not to answer

2. Briefly describe what you did during this challenge (bullet point explanation is
acceptable):

• Free form response

3. Were you able to identify the source of the bug?

• Yes

• No

• I prefer not to answer

4. In which function call does the bug emerge?

• delete note

• read note

• edit note

51

• create note

• I do not know

• I prefer not to answer

5. Which of the following best describes the nature of the bug?

• Uninitialized variable

• Signed comparison bug

• Syntax error

• Null dereference

• I do not know

• I prefer not to answer

6. If possible, briefly describe the cause of the bug.

• Free form response

B.4 End Survey

B.4.1 Control

1. How many years experience do you have in software debugging?

• None

• Less than 1 year

• 1 year

• 2 years

• 2+ years

• I prefer not to answer

2. How many years experience do you have in vulnerability analysis?

• None

• Less than 1 year

• 1 year

• 2 years

• 2+ years

• I prefer not to answer

3. What is your perceived software debugging skill level?

• Novice

• Beginner

52

• Competent

• Proficient

• Expert

• I prefer not to answer

4. What is your perceived vulnerability analysis skill level?

• Novice

• Beginner

• Competent

• Proficient

• Expert

• I prefer not to answer

5. Have you used angr management before your participation today?

• Yes

Figure B.1. Control group hypothetical data dependency view screenshot

53

• No

• I prefer not to answer

6. What is your perceived comfort level with angr management?

• Novice

• Beginner

• Competent

• Proficient

• Expert

• I prefer not to answer

7. I am sure that I correctly understood what the code of each challenge does

• Strongly Disagree

• Disagree

• Neutral

• Agree

• Strongly Agree

• I prefer not to answer

8. I found it difficult to understand these challenges

• Strongly Disagree

• Disagree

• Neutral

• Agree

• Strongly Agree

• I prefer not to answer

9. Disassembly view provided adequate information to solve these challenges

• Strongly Disagree

• Disagree

• Neutral

• Agree

• Strongly Agree

• I prefer not to answer

10. A data dependency graph view like in the image below (Figure B.1) would have
been helpful

54

• Strongly Disagree

• Disagree

• Neutral

• Agree

• Strongly Agree

• I prefer not to answer

11. This view in the image below (Figure B.1) seems confusing and unnecessary

• Strongly Disagree

• Disagree

• Neutral

• Agree

• Strongly Agree

• I prefer not to answer

B.4.2 Experiment

1. How many years experience do you have in software debugging?

• None

• Less than 1 year

• 1 year

• 2 years

• 2+ years

• I prefer not to answer

2. How many years experience do you have in vulnerability analysis?

• None

• Less than 1 year

• 1 year

• 2 years

• 2+ years

• I prefer not to answer

3. What is your perceived software debugging skill level?

• Novice

• Beginner

• Competent

55

• Proficient

• Expert

• I prefer not to answer

4. What is your perceived vulnerability analysis skill level?

• Novice

• Beginner

• Competent

• Proficient

• Expert

• I prefer not to answer

5. Have you used angr management before your participation today?

• Yes

• No

• I prefer not to answer

6. What is your perceived comfort level with angr management?

• Novice

• Beginner

• Competent

• Proficient

• Expert

• I prefer not to answer

7. I am sure that I correctly understood what the code of each challenge does

• Strongly Disagree

• Disagree

• Neutral

• Agree

• Strongly Agree

• I prefer not to answer

8. I saw no need to use data dependency view to solve these challenges

• Strongly Disagree

• Disagree

• Neutral

56

• Agree

• Strongly Agree

• I prefer not to answer

9. Data dependency view aided in understanding the challenges

• Strongly Disagree

• Disagree

• Neutral

• Agree

• Strongly Agree

• I prefer not to answer

10. Data dependency view is lacking in valuable information

• Strongly Disagree

• Disagree

• Neutral

• Agree

• Strongly Agree

• I prefer not to answer

11. I find data dependency view useful

• Strongly Disagree

• Disagree

• Neutral

• Agree

• Strongly Agree

• I prefer not to answer

12. Data dependency view is redundant and unnecessary

• Strongly Disagree

• Disagree

• Neutral

• Agree

• Strongly Agree

• I prefer not to answer

13. Data dependency view was clear and easy to understand

57

• Strongly Disagree

• Disagree

• Neutral

• Agree

• Strongly Agree

• I prefer not to answer

14. Data dependency view confused me

• Strongly Disagree

• Disagree

• Neutral

• Agree

• Strongly Agree

• I prefer not to answer

15. If any, what improvements could be made to make data dependency view more
user friendly?

• Free form response

58

APPENDIX C

IRB APPROVAL

59

EXEMPTION GRANTED

Adam Doupe
SCAI: Computing and Augmented Intelligence, School of
-
doupe@asu.edu

Dear Adam Doupe:

On 2/21/2022 the ASU IRB reviewed the following protocol:

Type of Review: Initial Study
Title: Expediting Binary Analysis Through Data

Dependency Graphs and Proximity Control Flow
Graphs

Investigator: Adam Doupe
IRB ID: STUDY00015332

Funding: Name: DOD: Defense Advanced Research Projects
Agency (DARPA), Funding Source ID: FP00017167

Grant Title: CHECRS: Cognitive Human Enhancements for Cyber
Reasoning Systems

Grant ID: FP00017167
Documents Reviewed: • Consent_Form, Category: Consent Form;

• DARPA Proposal, Category: Sponsor Attachment;
• Debugging and Vulnerability Challenge Questions,
Category: Measures (Survey questions/Interview
questions /interview guides/focus group questions);
• Debugging_and_Vulnerability_Survey, Category:
Measures (Survey questions/Interview questions
/interview guides/focus group questions);
• Entire Experiment Text Outline, Category:
Participant materials (specific directions for them);
• Instructions / Greeting, Category: Recruitment
Materials;
• IRB Form, Category: IRB Protocol;
• Recruitment Message, Category: Recruitment
Materials;
• Reverse Engineering Challenge Questions,

Category: Measures (Survey questions/Interview
questions /interview guides/focus group questions);
• Reverse_Engineering_Survey, Category: Measures
(Survey questions/Interview questions /interview
guides/focus group questions);

The IRB determined that the protocol is considered exempt pursuant to Federal
Regulations 45CFR46 (2) Tests, surveys, interviews, or observation, (3)(i)(A) - benign
behavioral interventions on 2/21/2022. As a part of IRB review, scientific merit was
considered.

In conducting this protocol you are required to follow the requirements listed in the
INVESTIGATOR MANUAL (HRP-103).

If any changes are made to the study, the IRB must be notified at
research.integrity@asu.edu to determine if additional reviews/approvals are required.
Changes may include but not limited to revisions to data collection, survey and/or
interview questions, and vulnerable populations, etc.

REMINDER - Effective January 12, 2022, in-person interactions with human subjects
require adherence to all current policies for ASU faculty, staff, students and visitors. Up-
to-date information regarding ASU’s COVID-19 Management Strategy can be found
here. IRB approval is related to the research activity involving human subjects, all other
protocols related to COVID-19 management including face coverings, health checks,
facility access, etc. are governed by current ASU policy.

Sincerely,

IRB Administrator

cc: Sean Smits
Sean Smits
Zeming Yu
Adam Doupe
Ruoyu Wang
Bailey Capuano

	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	BACKGROUND
	RELATED WORK
	DESIGN
	IMPLEMENTATION
	EVALUATION
	RESULTS
	DISCUSSION
	CONCLUSION
	REFERENCES
	RECRUITMENT ADVERTISEMENT
	SURVEY QUESTIONS
	IRB APPROVAL

