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ABSTRACT

The mechanisms behind the emergence of collective behaviors arising from physics,

biology, economics and many other related fields have drawn a lot of attention among

the applied math community in the last few decades. Broadly speaking, collective

behaviors in natural, life and social sciences are all modelled by interacting particle

systems, in which a bulk of N particles are engaging in some simple binary pair-

wise interactions. In this dissertation, some prototypical interacting particle systems

having applications in econophysics and statistical averaging dynamics are investi-

gated. It is also emphasized that there is an increasing tendency among the applied

math community to apply tools or concepts for studying many particle systems to

the (rigorous) investigation of artificial (deep) neural networks.
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Chapter 1

INTRODUCTION

How does the group of certain animals exhibits collective behaviors? What are

the mechanisms behind several pattern formation phenomena? Why the opinions

among a large community/society can reach a consensus or develop polarization?

How does the echo chamber effect on social media emerge? Why the wealth distri-

butions in many developed countries have a similar shape? How on earth one can

replace training infinitely-width artificial deep neural networks by kernel regression

methods? Mathematically, all of the aforementioned questions can be reformulated

in the framework of interacting particle systems, in which the word particle can be

understood as animal, agent, molecular, and neuron, just to name a few. In general,

one of the main goals for building an interacting particle system is to reproduce certain

phenomenon observed in reality (or at the macroscopic level) based on simple agent-

based interaction rules at the microscopic level. It is definitely possible that different

agent-based interaction rules at the microscopic level may lead to the same macro-

scopic observation, whence (as a rule thumb) one must not convince himself/herself

that the observed macroscopic phenomenon originates from a specific interaction rule

that he/she designs manually. For instance, one can not view the process of generat-

ing a ’Cayley tree’ as the actual mechanism behind the growth/development of a real

tree! Despite of the preceding fact, the possibility of reconstructing certain macro-

scopic phenomena by building individual-based interaction rules still shed some light

on the better understanding of the formation of certain complex patterns in reality.

Another main motivation for investigating agent-based interacting particle sys-

tems is to link agent-based behaviors at the microscopic level to partial differential
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equations at the macroscopic level. The quest for such a linkage resides in the under-

lying philosophical debate as to whether our real world is ’continuous’ or ’discrete’.

One might argue that the continuous space variable in partial differential equations

such as heat equations or porous medium equations is not realistic because the porous

media in reality are ’discrete’. However, it turns out in many cases, once can design an

interacting particle system such that the empirical measure of the particles converges

(in some appropriate sense) to the solution of our target partial differential equation

as the number of particles approaches infinity. This means that many important

partial differential equations of theoretical and practical interests may admit ad-hoc

and clever approximations by agent-based models, thereby enhancing the quest for

further examination of these particle systems.

1.1 Interacting Particle Systems

Interacting particle systems emerge in a vast number of problems in applied

mathematics, ranging from biological sciences, physical sciences, social and life sci-

ences Agueh et al. [2], Aldana et al. [3], Aldana and Huepe [4], Aoki [9], Barbaro

and Degond [19], Belmonte et al. [22], Bertin et al. [25], Bolley et al. [31], Carrillo

et al. [44], Cucker and Smale [64]. A generic model of interacting particle systems

consists of N indistinguishable random variables {Xi}1≤i≤N ∈ Rd (d ∈ N+), among

which interactions based on certain rules take place as time advances. Depending

on the areas of application in one’s mind, the set of random variables {Xi}1≤i≤N

can be identified as (i) the locations of particles/animals, or (ii) the opinions of a

group of agents/individuals, or (iii) the amount of dollars each agent possesses, just

to name a few. The identification of {Xi}1≤i≤N as the locations of particles/animals

is universal in literatures on statistical physics and flocking dynamics, while the iden-

tifications (ii) and (iii) are often used to study opinion dynamics (typically on certain
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graphs) and models arising from econophysics, respectively. We refer to figure 1.1 for

a illustration.

Figure 1.1: Overview of Some Typical Types of Interacting Particle Systems and
Their Interpretations in Different Contexts.

We emphasize here that other interpretations of the aforementioned random vari-

ables {Xi}1≤i≤N are also possible, for instance once might think of {Xi}1≤i≤N as neu-

rons in real or artificial neural networks Mei et al. [117], Rotskoff and Vanden-Eijnden

[138]. We will however restrict our attentions to the three scenarios mentioned at the

very beginning of this report, in order to present some basic and concrete models that

will be analyzed in detail.

1.1.1 Econophysics

Econophysics is an emerging branch of statistical physics that apply concepts

and techniques of traditional physics to economics and finance Savoiu [140], Chatterjee

et al. [57], Dragulescu and Yakovenko [79]. It has attracted considerable attention

in recent years raising challenges on how various economical phenomena could be

3



explained by universal laws in statistical physics, and we refer to Chakraborti et al.

[53, 54], Pereira et al. [125], Kutner et al. [103] for a general review.

The primary motivation for study models arising from econophysics is at least

two-fold: from the perspective of a policy maker, it is important to deal with the

raise of income inequality Dabla-Norris et al. [66], De Haan and Sturm [70] in order

to establish a more egalitarian society. From a mathematical point of view, we have

to understand the fundamental mechanisms, such as money exchange resulting from

individuals, which are usually agent-based models. Given an agent-based model,

one is expected to identify the limit dynamics as the number of individuals tends to

infinity and then its corresponding equilibrium when run the model for a sufficiently

long time (if there is one), and this guiding approach is carried out in numerous works

across different fields among literatures of applied mathematics, see for instance Naldi

et al. [122], Barbaro and Degond [19], Carlen et al. [42].

1.1.2 Self-Organized Dynamics

The collective behavior of various particle systems is a subject of intensive re-

search that has potential applications in biology, physics, economics, and engineering

Naldi et al. [122], Belmonte et al. [22], Chuang et al. [59]. Different models are pro-

posed to study the emergence of flocking of birds, formation of consensus in opinion

dynamics, and phase transitions in network models Motsch and Tadmor [121], Porfiri

and Ariel [131], Chaté et al. [55], Barbaro and Degond [19]. Broadly speaking, all of

the aforementioned models are instances of interacting particle systems, under vari-

ous interaction rules among the particles. We refer the readers to Liggett [112] for a

general introduction into this branch of applied mathematics.
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1.1.3 Opinion Dynamics

Opinion dynamics such as the voter model is of interest to both social scientists

and applied mathematicians Das et al. [68], Proskurnikov et al. [134]. In general,

agents in such dynamics have their opinions which vary in time due to the interaction

of agents with their neighbors. Depending on the model, the evolution of individual’s

option can be deterministic or stochastic Weber et al. [150]. It is also possible to take

into account the spatial structure of the interaction, leading to opinion dynamics

on (random) graphs Lanchier [107], Sood and Redner [142]. The literatures in this

direction is also enormous and hence we refer interested readers to Castellano et al.

[49] and references therein for a detailed review.

1.2 Derivation of Macroscopic Models

1.2.1 Motivation

In some physical relevant situations, gas dynamics for instance, the number of

particles N under consideration is overwhelmingly large (and is in the order of 1023).

Even in the context of sociological and economical models, the number of agents N is

usually in the order of millions. It is therefore almost impossible to keep track of each

individual’s behavior over time, even numerically. In the pioneering work of Ludwig

Boltzmann Boltzmann [32], Boltzmann suggested that we should take advantage of

the fact that N is very large and seek an statistical description instead. That being

said, it is expected that when N is very large, some averaging effect may take place

and a (typically nonlinear) partial differential equation for the one-particle marginal

probability density function can be hoped for. See figure 1.2 for a sketch of the

reasoning along this line.

Under the famous “molecular chaos assumption” proposed by Boltzmann Boltz-
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Figure 1.2: Sketch of a General Approaching for Analyzing Interacting Particle Sys-
tems. Under the Limit N → ∞, We Expect to Have a (Partial) Differential Equation
Governing the Evolution of the (Marginal) Law of X1, This Deterministic Formula-
tion of the Problem Can Then Be Investigated Using Standard PDE Approach in
Order to Understand the Long Time Behavior of the Dynamics.

mann [32], he managed to derive such a partial differential equation (for motion of

(ideal) gases) which bears his name - the Boltzmann equation. The so-called “molec-

ular chaos assumption” has been made rigorous thanks to Mark Kac’s foundation

work Kac [99] and is now known as Kac’s propagation of chaos, this is the central

concept of our the next subsection to which we now turn.

1.2.2 Propagation of Chaos

Definition

We propose to review several methods used to prove the so-called propagation of

chaos. But first we need to carefully define what propagation of chaos means. Roughly

speaking, if {Xi}1≤i≤N are independent identically distributed (i.i.d) initially, this

independency will be lost at later times due to the underlying interaction mechanism.

But as N → ∞, we can often hope for a recovery of such independency property.

We now turn to a rigorous definition of propagation of chaos. With this aim, we

consider a (stochastic) N−particle system denoted (S1, . . . , SN) where particles are

indistinguishable. In other words, the particle system is invariant by permutation,

i.e. for any test function φ and permutation σ ∈ SN :

E[φ(S1, . . . , SN)] = E[φ(Sσ(1), . . . , Sσ(N))].

In particular, all the single processes Si for i = 1, . . . , N have the same law (but they

are in general not independent). Denote by p(N)(s1, . . . , sN) the density distribution
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of the N−process and let p(N)
k be the marginal density, i.e. the law of the process

(S1, ..., Sk) (for 1 ≤ k ≤ N):

p(N)
k (s1, . . . , sk) =

∫
sk+1,...,sN

p(N)(s1, . . . , sN) dsk+1 . . . dsN .

Consider now a limit stochastic process (S1, . . . , Sk) where {Si}i=1,...,k are indepen-

dent and identically distributed. Denote by p1 the law of a single process, thus by

independence assumption the law of all the processes is given by:

pk(s1, . . . , sk) =
k∏

i=1
p1(si).

Definition 1 We say that the stochastic process (S1, . . . , SN) satisfies the propagation

of chaos if for any fixed k:

p(N)
k

N→+∞
⇀ pk (1.1)

which is equivalent to have for any test function φ:

E[φ(S1, . . . , Sk)] N→+∞−→ E[φ(S1, . . . , Sk)]. (1.2)

Remark. For binary collision models Carlen et al. [43, 42], proving propagation of

chaos is equivalent to show that p(N)
2 (s1, s2) ≈ p(N)

1 (s1) p(N)
1 (s2), i.e. collisions come

from two independent particles.

Coupling Method

The coupling method Sznitman [145] consists in generating the two processes

(S1, . . . , SN) and (S1, . . . , Sk) simultaneously in such a way that:

i) (S1, . . . , Sk) and (S1, . . . , Sk) satisfy their respective law,

ii) Si and Si are closed for all 1 ≤ i ≤ k.
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The main difficulty is that {Si}i=1,...,k are independent but {Si}i=1,...,N are not, thus

the two processes cannot be too closed. In practice, we expect to find a bound of the

form:

E[|Si − Si|] ≤ C√
N

N→+∞−→ 0 , for all 1 ≤ i ≤ k. (1.3)

Such result is sufficient1 to prove (2.2) and therefore one deduces propagation of

chaos.

In a more abstract point of view, the inequality (2.3) gives an upper bound for

the Wasserstein distance between p(N)
k and the limit density pk. Since convergence

in Wasserstein distance is equivalent to weak-* convergence for measures, we can

conclude about the propagation of chaos (2.1).

Empirical Distribution - Tightness of Measure

Another approach to prove propagation of chaos is to study the so-called empirical

measure:

p(N)
emp(s) = 1

N

N∑
i=1

δSi
(s) (1.4)

where δ is the Delta distribution, i.e. for a smooth test function φ(s) the duality

bracket is defined as:

⟨p(N)
emp, φ⟩ = 1

N

N∑
i=1

φ(Si). (1.5)

Notice that p(N)
emp is a distribution of a single variable, thus the domain of p(N)

emp remains

the same as N increases which simplifies its study. However, p(N)
emp is also a stochastic

measure, i.e. p(N)
emp is a random variable on the space of measures Billingsley [26]. The

link between propagation of chaos and empirical distribution relies on the following

lemma.

1using as a test function φ(s1, . . . , sk) = φ1(s1) . . . φk(sk)
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Lemma 1.2.1 The stochastic process (S1, . . . , SN) satisfies the propagation of chaos

(2.1) if and only if:

p(N)
emp

N→+∞
⇀ p1, (1.6)

i.e. for any test function φ the random variable ⟨p(N)
emp, φ⟩ converges in law to the

constant value E[φ(S1)].

The proof can be found in Sznitman [145] and is hence skipped.

A Toy Interacting Particle System

In literature, the notion of propagation of chaos is sometimes referred to as the

mean-field limit, the latter terminology is perhaps more illuminating due to the fol-

lowing informal reasoning: Fix i ∈ {1, . . . , N} and suppose there are O(N) particles

in the neighborhood of Xi (1 ≤ i ≤ N), assume further that each of the neighbors of

Xi can only influence the behavior of Xi by a factor of O(1/N), then under the limit

N → ∞, any finitely many particles (say {Xi}1≤i≤k with k being independent of N)

will never interact with each almost surely over a finite time span, and loosely speak-

ing each of them will interact (independently of each other) with a single ‘ghost’

particle which represents the average behavior of the particle system. The phrase

‘mean-field’ emphasizes this averaging effect when the number of particles N tends

to infinity.

We finish this subsection with a toy example taken from and analyzed in Lacker

[104], with the aim of giving the readers a favour of such type of argument. Consider

the toy model

dX i
t = a(X t −X i

t)dt+ σdW i
t ,

where a, σ > 0 and X t = 1
N

∑N
k=1 X

k
t is the empirical mean. Each particle experi-

ences an independent white noise, and the drift term pushes each particle toward the
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empirical mean. Notice that the system (X1, . . . , Xn) is exchangeable. To get a first

vague sense of how a mean-field limit works in a model of this form, simply average

the N particles to find the dynamics for the empirical average:

dX t = σ

n

n∑
k=1

dW k
t .

In integrated form, we also have

X t = 1
N

N∑
k=1

Xk
0 + σ

N

N∑
k=1

W k
t .

If (Xk
0 ) are i.i.d. with mean m, then the law of large numbers tells us that X t → m

almost surely as N → ∞, since of course Brownian motion has mean zero. If we

focus now on a fixed particle i in the N -particle system, we find that as N → ∞ the

behavior of particle i should look like

dX i
t = a(m−X i

t)dt+ σdW i
t .

Since m is constant, the ‘limiting’ evolution consists of i.i.d. particles. In summary,

as N → ∞, the particles become asymptotically i.i.d., and the behavior of each one

is governed by an Ornstein-Uhlenbeck process. As a concluding remark, the N → ∞

limit in this toy model can be studied quite easily by taking advantage of the special

form of the model, but for more sophisticated models such simple computations will

not be possible and one has to resort to more advanced tools.

1.3 Analysis of the Limit Dynamics

After the passage from a stochastic N particle system to a deterministic (par-

tial) differential equation of the form ∂tρ = Q[ρ], where Q : P(R) → R, the next

natural question comes to the understanding of the large time (i.e., t → ∞) behav-

ior of the partial differential equation for the one-particle marginal density function
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ρ(t, x). Typically, we are interested to show that ρ → ρ∞ (in some appropriate

sense) as t → ∞, in which ρ∞ is the unique probability density function satisfying

Q[ρ∞] = 0. See figure 1.3 for a illustration.

Figure 1.3: Sketch of the Dynamics Described by the PDE for ρ(t, x), The Goal is
to Show That ρ → ρ∞ As t → ∞, Where ρ∞ is the Unique Equilibrium Probability
Density.

In this report, we will mainly focus on the convergence of probability density

functions in the sense of relative entropy. We shall review the basic principles in

section 1.3.1, then we end this section with an introduction to a specific technique

used in the context of entropy methods, the so-called Bakry-Emery approach.

1.3.1 Entropy Methods

We intend to briefly discuss about the spirit behind the so-called entropy

methods Jüngel [97], Matthes [114] in the study of many kinetic equations (Boltzmann

type equations and Fokker-Planck type equations, just to name a few). For this

purpose, let us define the relative entropy from ρ to ρ∞ as

H[ρ] :=
∫
ρ(x) log ρ(x)

ρ∞(x) dx,

where we require that ρ∞ > 0 in the domain of our interest. It is a standard fact

that (see for instance Cover [62]) H[ρ] is always non-negative and H[ρ] = if and only

of ρ = ρ∞, hence the quantity H[ρ] may serve as a measure of closeness between
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ρ and ρ∞. Note that relative entropy H[ρ] is also known as the Kullback-Leibler

distance and is often denoted by DKL(ρ || ρ∞). However, in general we do not have

DKL(ρ || ρ∞) = DKL(ρ∞ || ρ), thus the Kullback-Leibler distance is not a true distance

between two (smooth) probability densities.

In many applications, it can be shown that the entropy production, defined by

D[ρ] := − d
dt

∫
ρ(x) log ρ(x)

ρ∞(x) dx,

is non-negative. In the context of the gas dynamics, this fact amounts to the cel-

ebrated second law of thermodynamics, i.e., the entropy of a isolated (ideal) gas

system can not decrease as time moves forward. If we can show a entropy-entropy

production inequality of the form

D[ρ] ≥ κH[ρ], (1.1)

where κ > 0 is some universal constant independent of ρ ∈ P(R), then the classical

Gronwall’s inequality will lead us to H[ρ(t)] ≤ H[ρ(0)] e−κ t. That is, the relative

entropy will decay exponentially fast in time! As a rule of thumb, proving (1.3.1)

for Boltzmann-type evolution equations is in general very challenging (see discussions

in Desvillettes and Villani [76], Rezakhanlou et al. [136], Villani [147]). However,

for Fokker-Planck type equations, one can often establish by employing the so-called

Bakry-Emery approach. We will present (from a PDE point of view) the essential

skeleton of this approach in the upcoming section, together with a baby example

demonstrating one application of this technique.

1.3.2 Bakry-Emery Approach

The original method of Bakry and Emery Bakry and Émery [15] is of proba-

bilistic nature and is very abstract. In its original form, this method is closely related

12



to the so-called Γ-calculus and we refer interested readers to Bakry et al. [14], Matthes

[114] for a comprehensive discussion. Our goal in this section is to present the PDE

perspective of the Bakry-Emery approach, introduced in Arnold et al. [11], along

with a elementary example in order to convince the readers of the usefulness of this

technique.

Let us introduce

R[ρ] := d2

d2t

∫
ρ(x) log ρ(x)

ρ∞(x) dx,

which is just the second time derivative of the (relative) entropy H[ρ]. If we can show

R[ρ] ≥ κD[ρ] (1.2)

for some universal constant κ > 0, then upon integration over (t,∞) we obtain

d
dtH[ρ(t)] − lim

t→∞

d
dtH[ρ(t)] ≤ −κ

(
H[ρ(t)] − lim

t→∞
H[ρ(t)]

)
.

Thanks to Gronwall’s inequality and (1.2), we have limt→∞
d
dt

H[ρ(t)] = 0. Assume

one can manage to show that limt→∞ H[ρ(t)] = 0, then we obtain

d
dtH[ρ(t)] ≤ −κH[ρ(t)],

leading to the exponentially fast in time decay of H[ρ].

Remark. Depending on the context, the crucial inequality (1.2) is referred to as a

curvature dimension condition, or a logarithmic Sobolev inequality.

Finally, we present a simplest example (taken from Matthes [114]) to illustrate in

detail how this technique can be applied in certain initial boundary value problems.

Let us consider the following heat equation with Neumann boundary condition:

∂tρ = ∂xxρ, x ∈ [0, 1], t ≥ 0,

∂xρ(0) = ∂xρ(1) = 0, t ≥ 0,

ρ(x, 0) = ρ0(x), x ∈ [0, 1],

(1.3)
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in which the initial data ρ0 satisfies ρ(x) > 0 for all x ∈ [0, 1] and
∫ 1

0 ρ0(x) dx = 1. It is

not hard to show that (1.3) admits a unique (smooth) solution ρ(t, x) with ρ(t, x) > 0

for all x ∈ [0, 1] and t > 0. Moreover,
∫ 1

0 ρ(t, x) dx = 1 for all t ≥ 0 and ρ∞(x) ≡ 1 is

the unique equilibrium of the problem (1.3). Thus, our (relative) entropy boils down

to H[ρ] =
∫ 1

0 ρ(x) log ρ(x) dx and we deduce that

d
dtH[ρ] =

∫ 1

0
(∂tρ) log ρ =

∫ 1

0
∆ρ log ρ = −

∫ 1

0

|∂xρ|2

ρ
≤ 0.

Thus, the entropy production D[ρ] is given by

D[ρ] = − d
dtH[ρ] =

∫ 1

0

|∂xρ|2

ρ
,

which is just the Fisher information of the probability density ρ. To lower bound

the second time derivative of the entropy in terms of the entropy production D[ρ], a

straightforward computation together with a Poincaré inequality yield

R[ρ] ≥ 2π2 D[ρ]. (1.4)

By standard PDE theory, the solution ρ to (1.3) converges to the homogeneous steady

state ρ∞ in C∞, implying that limt→∞ D[ρ(t)] = 0 and that limt→∞ H[ρ(t)] = 0.

Consequently, we arrive at
d
dtH[ρ] ≤ −2π2 H[ρ],

whence H[ρ(t)] ≤ H[ρ(0)] e−2 π2 t for all t ≥ 0.

Remark. Interestingly, the problem (1.3) admits other entropies as well. For

instance, if we define

H0[ρ] := −
∫ 1

0
log ρ(x) dx,

we can still show that

H0[ρ(t)] ≤ H0[ρ(0)] e−2 π2 t

via a pretty similar argument. We refer interested readers to Day [69] for details.
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Chapter 2

DERIVATION OF WEALTH DISTRIBUTIONS FROM BIASED EXCHANGE OF

MONEY

Chapter 2 is the pre-print [40] submitted to Annals of Applied Probability, in

collaboration with Sebastien Motsch.

2.1 Abstract

In the manuscript, tools from kinetic theory are employed to understand the time

evolution of wealth distribution and their large scale behavior such as the evolution

of inequality (e.g. Gini index). Three types of dynamics denoted unbiased, poor-

biased and rich-biased exchange models are investigated. At the individual level, one

agent is picked randomly based on its wealth and one of its dollar is redistributed

among the population. Proving the so-called propagation of chaos, it is possible to

identify the limit of each dynamics as the number of individual approaches infinity

using both coupling techniques Sznitman [145] and martingale-based approach Merle

and Salez [118]. Equipped with the limit equation, it is possible to identify and

prove the convergence to specific equilibrium for both the unbiased and poor-biased

dynamics. In the rich-biased dynamics however, a more complex behavior where

a dispersive wave emerges is observed. Although the dispersive wave is vanishing

in time, its also accumulates all the wealth leading to a Gini approaching 1 (its

maximum value). Numerical behavior of dispersive wave can be characterized but

further analytic investigation is needed to derive such dispersive wave directly from

the dynamics.
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2.2 Introduction

Econophysics is an emerging branch of statistical physics that apply concepts and

techniques of traditional physics to economics and finance Savoiu [140], Chatterjee

et al. [57], Dragulescu and Yakovenko [79]. It has attracted considerable attention

in recent years raising challenges on how various economical phenomena could be

explained by universal laws in statistical physics, and we refer to Chakraborti et al.

[53, 54], Pereira et al. [125], Kutner et al. [103] for a general review.

The primary motivation for study models arising from econophysics is at least

two-fold: from the perspective of a policy maker, it is important to deal with the

raise of income inequality Dabla-Norris et al. [66], De Haan and Sturm [70] in order

to establish a more egalitarian society. From a mathematical point of view, we have

to understand the fundamental mechanisms, such as money exchange resulting from

individuals, which are usually agent-based models. Given an agent-based model,

one is expected to identify the limit dynamics as the number of individuals tends to

infinity and then its corresponding equilibrium when run the model for a sufficiently

long time (if there is one), and this guiding approach is carried out in numerous works

across different fields among literatures of applied mathematics, see for instance Naldi

et al. [122], Barbaro and Degond [19], Carlen et al. [42].

Although we will only consider three distinct binary exchange models in the

present work, other exchange rules can also be imposed and studied, leading to dif-

ferent models. To name a few, the so-called immediate exchange model introduced in

Heinsalu and Patriarca [90] assumes that pairs of agents are randomly and uniformly

picked at each random time, and each of the agents transfer a random fraction of its

money to the other agents, where these fractions are independent and uniformly dis-

tributed in [0, 1]. The so-called uniform reshuffling model investigated in Dragulescu
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and Yakovenko [79] and Lanchier and Reed [109] suggests that the total amount of

money of two randomly and uniformly picked agents possess before interaction is uni-

formly redistributed among the two agents after interaction. For models with saving

propensity and with debts, we refer the readers to Chakraborti and Chakrabarti [52],

Chatterjee et al. [56] and Lanchier and Reed [110].

2.2.1 Unbiased/Poor-Biased/Rich-Biased Dynamics

In this work, we consider several dynamics for money exchange in a closed eco-

nomical system, meaning that there are a fixed number of agents, denoted by N , with

an (fixed) average number of dollar m. We denote by Si(t) the amount of dollars the

agent i has at time t. Since it is a closed economical system, we have:

S1(t) + · · · + SN(t) = Constant for all t ≥ 0. (2.1)

As a first example of money exchange, we review the model proposed in Dragulescu

and Yakovenko [79]: at random time (exponential law), an agent i is picked at random

(uniformly) and if it has one dollar (i.e. Si ≥ 1) it will give it to another agent j

picked at random (uniformly). If i does not have one dollar (i.e. Si = 0), then nothing

happens. From now on we will call this model as unbiased exchange model as

all the agents are being picked with equal probability. We refer to this dynamics as

follow:

unbiased: (Si, Sj)
λ (Si − 1, Sj + 1) (if Si ≥ 1). (2.2)

In other words, any agents with at least one dollar gives to all of the others agents

at a fixed rate. Later on, we will adjust the rate λ (more exactly λ1[1,+∞)(Si)) by

normalizing by N in order to have the correct asymptotic as N → +∞ (the rate of

one agent giving a dollar per unit time is of order N otherwise).

Another possible dynamics is to pick the giver agent, i.e. agent i, with higher
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probability if the agent is rich, i.e. Si large. Thus, poor agent will have a lower

frequency of being picked. From now on we will call this model as poor-biased

model and it illustrates as follow:

poor-biased: (Si, Sj)
λSi (Si − 1, Sj + 1). (2.3)

Notice that since the rate of giving is Si, an agent with no money, i.e. Si = 0, will

never have to give. As for the unbiased dynamics (2.2), we will also adjust the rate,

normalizing by N .

Our third dynamics that we would like to explore is the rich-biased model: we

reverse the bias compared to the previous dynamics, rich agents are less likely to give:

rich-biased: (Si, Sj)
λ/Si (Si − 1, Sj + 1) (if Si ≥ 1). (2.4)

As a consequence of this dynamics, rich agents will tend to become even richer com-

pared to poor agents creating a feedback that could lead to singular behavior. The

adjustment of the rate for this dynamics is more delicate since the sum of the rates

λ/Si is no longer constant. In particular, we will see that a normalization of the rates

to have a constant rate of giving a dollar per agent will lead to finite time blow-up of

the dynamics in the limit N → +∞.

We illustrate the dynamics in figure 2.1-left. The key question of interest is the

exploration of the limiting money distribution among the agents as the total number

of agents and the number of time steps become large. We illustrate numerically

(see figure 2.2) the three previous dynamics using N = 500 agents. In the unbiased

dynamics (pink), the wealth distribution is (approximately) exponential with the

proportion of agent decaying as wealth increases. On the contrary, the poor-biased

dynamics (blue) has the bulk of its distribution around $10 (the average capital per

agent). For the rich-biased dynamics (green), most of the agents are left with no
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money and few with large amounts (more than $30). To visualize the temporal

evolution of the three dynamics, we estimate the Gini index G after each iteration in

figure 2.1-right:

G = 1
2µ

∑
1≤i,j≤N

|Si − Sj|, (2.5)

where µ is the average wealth (µ = 1
N

∑N
i=1 Si). The widely used inequality indicator

Gini index G measures the inequality in the wealth distribution and ranges from 0

(no inequality) to 1 (extreme inequality). Since all agents have the same amount of

dollar initially (Si(t = 0) = µ), the Gini index starts at zero (i.e. G(t = 0) = 0). In

the unbiased dynamics, the Gini index stabilizes around .5 (which corresponds to the

Gini index of an exponential distribution). The Gini index is strongly reduced in the

poor-biased dynamics (G ≈ .19). On the contrary, the Gini index keeps increasing

in the rich-biased dynamics and seems to approach 1 (its maximum). We study in

more details this phenoma in section 2.6.3. We emphasize that the “rich-get-richer”

phenomenon, numerically observed in the rich-biased dynamics in the present work,

has also been reported in other models from econophysics, and we refer interested

readers to Boghosian et al. [28, 29] and references therein.

2.2.2 Asymptotic Dynamics: N → +∞ and t → +∞

One of the main difficulty in any rigorous mathematical treatment lies in the

general fact that models in econophysics typically consist of a large number of in-

teracting (coupled) economic agents. Fortunately the framework of kinetic theories

allows simplification of the mathematical analysis of certain such models under some

appropriate limit processes. For the unbiased model (2.2) and the poor-biased model

(2.3), instead of taking the large time limit and then the large population limit as in

Lanchier [106], we first take the large population limit to achieve a transition from

the large stochastic system of interacting agents to a deterministic system of ordi-
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Figure 2.1: Left: Illustration of the 3 Dynamics: at Random Time, One Dollar is
Passed From a “Giver” i to a “Receiver” j. Right: The Rate of Picking the “Giver”
i Depends on the Wealth Si.

380
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Figure 2.2: Left: Distribution of Wealth for the Three Dynamics After 50, 000
Steps. The Distribution Decays for the Unbiased Dynamics (Pink) i.e. Poor Agents
are More Frequent Than Rich Agents, Whereas in the Poor-Biased Dynamics, the
Distribution (Blue) is Centered at the Average $10. For the Rich-Biased Dynamics,
Almost All Agents Have Zero Dollars Except a Few with a Large Amount (More
Than $30). Right: Evolution of the Gini Index (2.5) for the Three Dynamics. The
Gini Index is Lower for the Poor-Biased Dynamics (Less Inequality) Whereas it is
Approaching 1 for the Rich-Biased Dynamics.
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nary differential equations by proving the so-called propagation of chaos Sznitman

[145], Merle and Salez [118], Méléard and Roelly-Coppoletta [119], Oelschlager [123]

through a well-designed coupling technique, see figure 2.3 for a illustration of these

strategies. After that, analysis of the deterministic description is then built on its

(discrete) Fokker-Planck formulation and we investigate the convergence toward an

equilibrium distribution by employing entropy methods. Arnold et al. [11], Matthes

[114], Jüngel [97]. For the rich-biased model, we prove the propagation of chaos by

virtue of a novel martingale-based technique introduced in Merle and Salez [118], and

we report some interesting numerical behavior of the associated ODE system. We

illustrate the various (limiting) ODE systems obtained in the present work in figure

2.4.

Stochastic processes

Wealth distribution

Deterministic distri.

Propagation
of chaos

Fokker-Planck
+ entropy

Stochastic processes

Wealth distribution

Equilibrium distri.

Figure 2.3: Schematic Illustration of the Strategy of Proof: The Approach of Send-
ing t → ∞ First and then Taking N → ∞ is Carried Out in Lanchier [106] (See
Also Lanchier and Reed [109, 110] for Usage of this Approach Applied for a Variety
of Models in Econophysics). Our Strategy is to Perform the Limit N → ∞ Before
Investigating the Time Asymptotic t → ∞.

For the poor-biased model, we present an explicit rate of convergence of its asso-

ciated system of ordinary differential equations toward its equilibrium via the Bakry-

Emery approach Bakry and Émery [15]. Then, we resort to numerical simulation in

the determination of the sharp rate of convergence and a heuristic argument is used
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Figure 2.4: Summary of the Limit ODE Systems Obtained in this Manuscript. The
Exact Form of the Operator Q will be Model-Dependent.

in support of our numerical observation.

This paper is organized as follows: in section 2.3, we briefly review different ap-

proaches to tackle the propagation of chaos. Section 2.4 is devoted to the investigation

of the unbiased exchange model, where the rigorous large population limit N → ∞

is carried out via a coupling argument and the limiting system of ODEs is studied

in detail. We perform the analysis, for the poor-biased model in section 2.5 and for

the rich-biased model in section 2.6, in a parallel fashion that resembles section 2.4.

A subsection is dedicated in 2.6.3 to the emergence of a dispersive traveling wave in

the rich-biased dynamics. Finally, a conclusion is drawn in section 2.7.

2.3 Review Propagation of Chaos

2.3.1 Definition

We propose to review the method used to prove the so-called propagation of chaos.

But first we need to carefully define what propagation of chaos means. With this aim,

we consider a (stochastic) N−particle system denoted (S1, . . . , SN) where particles

are indistinguishable. In other words, the particle system is invariant by permutation,
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i.e. for any test function φ and permutation σ ∈ SN :

E[φ(S1, . . . , SN)] = E[φ(Sσ(1), . . . , Sσ(N))].

In particular, all the single processes Si for i = 1, . . . , N have the same law (but they

are in general not independent). Denote by p(N)(s1, . . . , sN) the density distribution

of the N−process and let p(N)
k be the marginal density, i.e. the law of the process

(S1, ..., Sk) (for 1 ≤ k ≤ N):

p(N)
k (s1, . . . , sk) =

∫
sk+1,...,sN

p(N)(s1, . . . , sN) dsk+1 . . . dsN .

Consider now a limit stochastic process (S1, . . . , Sk) where {Si}i=1,...,k are indepen-

dent and identically distributed. Denote by p1 the law of a single process, thus by

independence assumption the law of all the processes is given by:

pk(s1, . . . , sk) =
k∏

i=1
p1(si).

Definition 2 We say that the stochastic process (S1, . . . , SN) satisfies the propagation

of chaos if for any fixed k:

p(N)
k

N→+∞
⇀ pk (2.1)

which is equivalent to have for any test function φ:

E[φ(S1, . . . , Sk)] N→+∞−→ E[φ(S1, . . . , Sk)]. (2.2)

Remark. For binary collision models Carlen et al. [43, 42], proving propagation of

chaos is equivalent to show that p(N)
2 (s1, s2) ≈ p(N)

1 (s1) p(N)
1 (s2), i.e. collisions come

from two independent particles.

2.3.2 Coupling Method

The coupling method Sznitman [145] consists in generating the two processes

(S1, . . . , SN) and (S1, . . . , Sk) simultaneously in such a way that:
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i) (S1, . . . , Sk) and (S1, . . . , Sk) satisfy their respective law,

ii) Si and Si are closed for all 1 ≤ i ≤ k.

The main difficulty is that {Si}i=1,...,k are independent but {Si}i=1,...,N are not, thus

the two processes cannot be too closed. In practice, we expect to find a bound of the

form:

E[|Si − Si|] ≤ C√
N

N→+∞−→ 0 , for all 1 ≤ i ≤ k. (2.3)

Such result is sufficient1 to prove (2.2) and therefore one deduces propagation of

chaos.

In a more abstract point of view, the inequality (2.3) gives an upper bound for

the Wasserstein distance between p(N)
k and the limit density pk. Since convergence

in Wasserstein distance is equivalent to weak-* convergence for measures, we can

conclude about the propagation of chaos (2.1).

2.3.3 Empirical Distribution - Tightness of Measure

Another approach to prove propagation of chaos is to study the so-called empirical

measure:

p(N)
emp(s) = 1

N

N∑
i=1

δSi
(s) (2.4)

where δ is the Delta distribution, i.e. for a smooth test function φ(s) the duality

bracket is defined as:

⟨p(N)
emp, φ⟩ = 1

N

N∑
i=1

φ(Si). (2.5)

Notice that p(N)
emp is a distribution of a single variable, thus the domain of p(N)

emp remains

the same as N increases which simplifies its study. However, p(N)
emp is also a stochastic

measure, i.e. p(N)
emp is a random variable on the space of measures Billingsley [26]. The

1using as a test function φ(s1, . . . , sk) = φ1(s1) . . . φk(sk)
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link between propagation of chaos and empirical distribution relies on the following

lemma.

Lemma 2.3.1 The stochastic process (S1, . . . , SN) satisfies the propagation of chaos

(2.1) if and only if:

p(N)
emp

N→+∞
⇀ p1, (2.6)

i.e. for any test function φ the random variable ⟨p(N)
emp, φ⟩ converges in law to the

constant value E[φ(S1)].

The proof can be found in Sznitman [145] but for completeness we write our own in

Appendix A.

2.4 Unbiased Exchange Model

2.4.1 Definition and Limit Equation

We consider first the unbiased model that is briefly mentioned in the introduction

above. For the three models investigated in this work, we consider a (closed) economic

market consisting of N agents with µ dollars per agents for some (fixed) µ ∈ N+, i.e.

there are a total of µN dollars. We denote by Si(t) the amount of dollars that agent

i has (i.e. Si(t) ∈ {0, . . . , µN} and ∑N
i=1 Si(t) = µN for any t ≥ 0).

Definition 3 (Unbiased Exchange Model) The dynamics consist in choosing with

uniform probability a “giver” i and a “receiver” j. If the receiver i has at least one

dollar (i.e. Si ≥ 1), then it gives one dollar to the receiver j. This exchange occurs

according to a Poisson process with frequency λ/N > 0.

The unbiased exchange model can be written as a stochastic differential equation

Privault [133], Shreve [141]. Introducing {N(i,j)
t }1≤i,j≤N independent Poisson processes
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with constant intensity λ
N

, the evolution of each Si is given by:

dSi(t) = −
N∑

j=1
1[1,∞)

(
Si(t−)

)
dN(i,j)

t︸ ︷︷ ︸
“i gives to j”

+
N∑

j=1
1[1,∞)

(
Sj(t−)

)
dN(j,i)

t︸ ︷︷ ︸
“j gives to i”

. (2.1)

To gain some insight of the dynamics, we focus on i = 1 and introduce some notations:

N1
t =

N∑
j=1

N(1,j)
t , M1

t =
N∑

j=1
N(j,1)

t .

The two Poisson processes N1
t and M1

t are of intensity λ. The evolution of S1(t) can

be written as:

dS1(t) = −1[1,∞)
(
S1(t−)

)
dN1

t + Y (t−)dM1
t , (2.2)

with Y (t) Bernoulli distribution with parameter r(t) (i.e. Y (t) ∼ B(r(t))) represent-

ing the proportion of “rich” people:

r(t) = 1
N

N∑
j=1
1[1,∞)

(
Sj(t)

)
. (2.3)

Thus, the dynamics of S1 can be seen as a compound Poisson process.

Motivated by (2.2), we give the following definition of the limiting dynamics of

S1(t) as N → ∞ from the process point of view.

Definition 4 (Asymptotic Unbiased Exchange Model) We define S1(t) to be

the (nonlinear) compound Poisson process satisfying the following SDE:

dS1(t) = −1[1,∞)
(
S1(t−)

)
dN1

t + Y (t−)dM1
t , (2.4)

in which N1
t and M1

t are independent Poisson processes with intensity λ, and Y (t) ∼

B(r(t)) independent Bernoulli variable with parameter

r(t) := P
(
S1(t) > 0

)
= 1 − P

(
S1(t) = 0

)
. (2.5)

We denote by p(t) =
(
p0(t), p1(t), . . .

)
the law of the process S1(t), i.e. pn(t) =

P
(
S1(t) = n). Its time evolution is given by:

d
dtp(t) = λQunbias[p(t)] (2.6)
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with:

Qunbias[p]n :=


p1 − r p0 if n = 0

pn+1 + r pn−1 − (1 + r)pn for n ≥ 1
(2.7)

and r = 1 − p0.

2.4.2 Coupling for the Unbiased Exchange Model

We now provide the coupling strategy to link the N−particle system (S1, . . . , SN)

with the limit dynamics (S1, . . . , Sk). In Sznitman [145], the core of the method

is to use the same “noise” in both the N−particle system and the limit system.

Unfortunately, it is not possible in our settings: the clocks N(i,j)
t cannot be used

“as it” since they would correlate the jump of Si with the jump of Sj which is not

acceptable. Indeed, if Si(t) and Sj(t) are independent, they cannot jump at (exactly)

the same time.

For this reason, we have to introduce an intermediate dynamics, denoted by

{Ŝi}i≥1, which employs exactly the same “clocks” as our original dynamics (2.1),

but the property of being rich or poor is decoupled.

Definition 5 (Intermediate model) We define for {Ŝi}1≤i≤N to be a collection of

identically distributed (nonlinear) compound Poisson processes satisfying the following

SDEs for each 1 ≤ i ≤ N :

dŜi(t) = −
N∑

j=1,j ̸=i

1[1,∞)
(
Ŝi(t−)

)
dN(i,j)

t +
N∑

j=1,j ̸=i

Y (t−)dN(j,i)
t (2.8)

−1[1,∞)
(
Ŝi(t−)

)
dN(i,i)

t + Y (t−)dM(i,i)
t (2.9)

in which Y (t) ∼ B(r(t)), the Poisson clocks N(i,j)
t (1 ≤ i ̸= j ≤ N) are the same

as those used in (2.1), the two extra clocks N(i,i)
t and M(i,i)

t are independent with rate

λ/N .
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We do not use the “self-giving” clocks N(i,i)
t since we want to decouple the receiving

and giving dynamics.

-1

+1

-1

(if..)

limit dynamicsunbiased model intermediate

Figure 2.5: Schematic Illustration of the Coupling Strategy. We Use an Intermediate
Process (Ŝ1, . . . , ŜN) to Decouple the “Give” and “Receive” Parts of the Dynamics.

An schematic illustration of the above coupling technique is shown in Fig 2.5

below. We first have to control the difference between the process (S1, . . . , SN) and

the intermediate dynamics (Ŝ1, . . . , ŜN). The key idea is based on the following simple

yet effective lemma that allows to create optimal coupling between two flipping coins

Den Hollander [75].

Lemma 2.4.1 For any p, q ∈ (0, 1), there exist X ∼ B(p) and Y ∼ B(q) such that

P(X ̸= Y ) = |p− q|.

Proof. Let U ∼ U [0, 1] a uniform random variable. Define the Bernoulli random

variables as X := 1[0,p)(U) and Y := 1[0,q)(U). It is straightforward to show that

X ∼ B(p), Y ∼ B(q) and P(X ̸= Y ) = |p− q|. □

More generally, if Nt and Mt are two inhomogeneous Poisson processes with rate λ(t)
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and µ(t), respectively, then there exists a coupling such that

dE[|Nt −Mt|] ≤ |λ(t) − µ(t)|dt.

This leads to the following proposition.

Proposition 2.4.2 Let
(
S1, . . . , SN

)
and

(
Ŝ1, . . . , ŜN

)
be solution to (2.1) and (2.8)

respectively, with the same initial condition. Then for any 1 ≤ i ≤ N , we have

dE[|Si(t) − Ŝi(t)|] ≤ λE[|r(t) − r(t)|] dt + λ
2
N

dt, (2.10)

where r(t) = 1
N

∑N
j=1 1[1,∞)

(
Sj(t)

)
and r(t) given by (2.5).

Proof. The processes Ŝi(t) and Si(t) “share” the same clocks N(i,j)
t and N(j,i)

t for

j ̸= i. Denote the ’rich or not’ random Bernoulli random variables:

Ri(t) = 1[1,∞)
(
Si(t)

)
and R̂i(t) = 1[1,∞)

(
Ŝi(t)

)
. (2.11)

Once a clock N(i,j)
t rings, the processes become:

(Si, Sj) (Si −Ri, Sj +Ri),

(Ŝi, Ŝj) (Ŝi − R̂i, Ŝj + Y ).
(2.12)

Notice that the difference |Si − Ŝi| can only decay after the jump from the clock N(i,j)
t

(the ’give’ dynamics reduce the difference). However, the ’receive’ dynamics from the

clock N(j,i)
t could increase the difference |Sj − Ŝj| if R̂i ̸= Y . More precisely, we find:

dE[|Si(t) − Ŝi(t)|] ≤ 0 +
N∑

j=1,j ̸=i

E[|Rj(t−) − Y (t−)|] λ
N

dt + 2λ
N

dt (2.13)

where the extra 2λ
N

dt is due to the extra clocks N(i,i)
t and M(i,i)

t in (2.9).

Now we have to couple the Bernoulli process Y (t−) with Rj(t−) in a convenient

way to make the difference as small as possible. Here is the strategy:
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• Step 1: generate a master Poisson clock Nt with intensity λN which gives a

collection of jumping times.

• Step 2: to select which clock N(i,j)
t rings, calculate the proportions of “rich

people” for the N−particle system and for the limit dynamics:

r(t−) = 1
N

N∑
j=1
1[1,∞)

(
Sj(t−)

)
, r(t−) = 1 − p0(t−). (2.14)

• Step 3: let U ∼ U([0, 1]) a uniform random variable.

– if U < r(t−), pick an index i uniformly among the rich people (i.e. i such

that Si(t−) > 0), otherwise we pick i uniformly among the poor people

(i.e. i such that Si(t−) = 0). Pick index j uniformly among {1, 2, . . . , N}.

– if U < r(t−), let Y (t−) = 1, otherwise Y (t−) = 0 (i.e. Y (t−) =

1[0,r(t−)](U)).

• Step 4: if i ̸= j, update using (2.12)

Thanks to our coupling, the ’receiving’ dynamics of Si and Ŝi will differ with proba-

bility |r − r|:

E[|Rj(t−) − Y (t−)|] = P

(
Rj(t−) ̸= Y (t−)

)
= E [|r − r|] . (2.15)

Plug in the expression in (2.13) concludes the proof.

□

Remark. The update formula (2.12) for (Ŝi, Ŝj) highlights that the ’give’ and

’receive’ dynamics are now independent in the auxiliary dynamics (i.e. R̂i and Y are

independent). In contrast, we use the same process Ri to update Si and Sj.

Now we study the coupling between the auxiliary dynamics (Ŝ1, . . . , ŜN) and the

limit dynamics (S1, . . . , Sk) for a fixed k (while N → ∞). The idea is to remove
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the clocks N(i,j)
t for 1 ≤ i, j ≤ k to decouple the time of the jump in Si and Sj as

described in the figure 2.6.

1

2

k

N

1 2 k N

"giver"
i

"receiver" jgives to

same clocks for

and

same clocks for

and
for } clocks

with rate

clocks to modify

no effect on

and

Figure 2.6: The Clocks N(i,j)
t Used to Generate the Unbiased Dynamics (2.1) Have to

Be Modified to Generate the Limit Dynamics (S1(t), . . . , Sk(t)) (2.4). The Processes
Si(t) and Sj(t) Have to Be Independent, Thus the Clocks N(i,j)

t for 1 ≤ i, j ≤ k
Cannot Be Used.

Proposition 2.4.3 Let
(
Ŝ1, . . . , ŜN

)
solution to (2.8) and {Si}1≤i≤k independent

processes solution to (2.4). Then for any fixed k ∈ N+, there exists a coupling such

that for all t ≥ 0:

dE[|Ŝi(t) − Si(t)|] ≤ λ
4(k − 1)

N
dt , for 1 ≤ i ≤ k. (2.16)

Proof. We assume i = 1 to simplify the writing. To couple the two processes Ŝ1 and

S1, we use the same Bernoulli variable Y (t−) to generate both ’receive’ dynamics:
dŜ1(t) = −1[1,∞)

(
Ŝ1(t−)

)
dN̂1

t + Y (t−)dM̂1
t ,

dS1(t) = −1[1,∞)
(
S1(t−)

)
dN1

t + Y (t−)dM1
t .

Meanwhile, the Poisson clocks N̂1
t , M̂1

t are already determined in (2.8):

N̂1
t = N(1,1)

t +
N∑

j=2
N(1,j)

t and M̂1
t = M(1,1)

t +
N∑

j=2
N(j,1)

t . (2.17)
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Unfortunately, we cannot use the same definition for the clocks N1
t and M1

t as the

clocks N̂i
t and M̂j

t are not independent (they both contain the clock N(i,j)
t ). Thus,

we need to remove those coupling clocks when defining N1 and M1. Fortunately, we

only have to generate the dynamics for k process, thus we only have to replace the

clocks N(1,i) and N(i,1) for i = 1..k (see figure 2.6):

N1
t =

k∑
j=1

N(1,j)
t +

N∑
j=k+1

N(1,j)
t and M̂1

t =
k∑

j=1
M(1,j)

t +
N∑

j=k+1
N(j,1)

t (2.18)

where N(1,j)
t and M(1,j)

t are independent Poisson clocks with rate λ
N

.

Using this coupling strategy, the difference |Ŝ1 − S1| could only increase (by 1) if

the clocks N(1,j)
t , M(1,j)

t , N(1,j)
t or N(j,1)

t ring for 2 ≤ j ≤ k leading to (2.16).

□

Finally, combining propositions 2.4.2 and 2.4.3 gives rise to the following theorem.

Theorem 1 Let
(
S1, . . . , SN

)
to be a solution to (2.1). Then for any fixed k ∈ N+

and t ≥ 0, there exists a coupling between
(
S1, . . . , Sk

)
and

(
S1, . . . , Sk

)
(with the

same initial conditions) such that:

E[|Si(t) − Si(t)|] ≤ C(t)√
N

(eλt − 1)
λ

+ λ
4(k − 1)t

N
(2.19)

with C(t) =
(

1
4 + λ4t

)1/2
+ λ 2√

N
holding for each 1 ≤ i ≤ k.

Proof. We assume without loss of generality that i = 1. First, we show that the

processes S1 and Ŝ1 remain closed. We denote:

Ri = 1[1,∞)
(
Si

)
, R̂i = 1[1,∞)

(
Ŝi

)
, Ri = 1[1,∞)

(
Si

)
.
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We have:

E[|r − r|] = E

[∣∣∣∣∣ 1
N

N∑
i=1

Ri − r

∣∣∣∣∣
]

= E

[∣∣∣∣∣ 1
N

N∑
i=1

(Ri − R̂i) + 1
N

N∑
i=1

(R̂i − r)
∣∣∣∣∣
]

≤ 1
N

N∑
i=1
E[|Ri − R̂i|] +E

[∣∣∣∣∣ 1
N

N∑
i=1

(R̂i − r)
∣∣∣∣∣
]

≤ E[|S1 − Ŝ1|] +E

( 1
N

N∑
i=1

(R̂i − r)
)21/2

,

where we use |Ri − R̂i| ≤ |Si − Ŝi|. To control the variance, we expand:

E

( 1
N

N∑
i=1

(R̂i − r)
)2 = 1

N
Var[R̂1] + N(N − 1)

N2 Cov(R̂1, R̂2)

≤ 1
4N + Cov(R̂1, R̂2),

since R̂1 is a Bernoulli variable its variance is bounded by 1/4. Controlling the

covariance of R̂1 and R̂2 is more delicate since the two processes are not independent

due to the clocks N(1,2)
t and N(2,1)

t . Fortunately, these clocks have a rate of only λ/N

and thus the covariance has to remain small for a given time interval. To prove it,

let’s use the independent processes R1 and R2:

Cov(R̂1, R̂2) = Cov(R̂1 −R1, R̂2 −R2) ≤
(
E[|R̂1 −R1|2] · E[|R̂2 −R2|2]

)1/2

using Cauchy-Schwarz. Since the two processes Ŝi and Si remain close, we deduce:

E[|R̂1(t) −R1(t)|2] = E[|R̂1(t) −R1(t)|] ≤ E[|Ŝ1(t) − S1(t)|] ≤ λ
4t
N
,

using proposition 2.4.3 (with k = 2). We conclude that:

E[|r(t) − r(t)|] ≤ E[|S1(t) − Ŝ1(t)|] +
( 1

4N + λ
4t
N

)1/2
.

Going back to proposition 2.4.2, we find:

dE[|Si(t) − Ŝi(t)|] ≤ λE[|S1(t) − Ŝ1(t)|] dt+
( 1

4N + λ
4t
N

)1/2
dt + λ

2
N

dt

≤ λE[|S1(t) − Ŝ1(t)|] dt+ C(t)√
N

dt
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with C(t) =
(

1
4 + λ4t

)1/2
+ λ 2√

N
= O(1). Using Gronwall’s lemma, since |Si(0) −

Ŝi(0)| = 0, we obtain:

E[|Si(t) − Ŝi(t)|] ≤ C(t)√
N

(eλt − 1)
λ

. (2.20)

We finally conclude by using proposition 2.4.3 and triangular inequality. □

Remark. In the community of Markov chains, the process (S(t) : t ≥ 0) with

S(t) := (S1(t), . . . , SN(t)) can serve as an example a zero-range process Spitzer [143],

and it is also observed in Merle and Salez [118] that the unbiased exchange model

exhibits a cutoff phenomenon (see for instance Diaconis [77], Aldous [5], Aldous and

Diaconis [6]), which is now ubiquitous among literatures on interacting Markov chains.

2.4.3 Convergence to Equilibrium

After we achieved the transition from the interacting system of SDEs (3) to the

deterministic system of nonlinear ODEs (2.6), in this section we will analyze (2.6) with

the intention of proving convergence of solution of (2.6) to its (unique) equilibrium

solution. The main ingredient underlying our proof lies in the reformulation of (2.6)

into a (discrete) Fokker-Planck type equation, combined with the standard entropy

method Arnold et al. [11], Matthes [114], Jüngel [97]. We emphasize here that the

convergence of the solution of (2.6) has already been established in Graham [83],

Merle and Salez [118], but we include a sketch of our analysis here for the sake of

completeness of the present manuscript.

To study the ODE system (2.6), we introduce some properties of the nonlinear

binary collision operator Qunbias, whose proof is merely a straightforward calculations

and will be omitted.
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Lemma 2.4.4 If p(t) = {pn(t)}n≥0 is a solution of (2.6), then

∞∑
n=0

Qunbias[p]n = 0 ,
∞∑

n=0
nQunbias[p]n = 0. (2.21)

In particular, the total mass and the mean value is conserved.

Thanks to these conservations, we have p(t) ∈ Vµ for all t ≥ 0, where

Vµ := {p |
∞∑

n=0
pn = 1, pn ≥ 0,

∞∑
n=0

n pn = µ}

is the space of probability mass functions with the prescribed mean value µ. Next,

the equilibrium distribution of the limiting dynamics (2.6) is explicitly calculated.

Proposition 2.4.5 The (unique) equilibrium distribution p∗ = {p∗
n}n in Vµ associ-

ated with the limiting dynamics (2.6) is given by:

p∗
n = p∗

0(1 − p∗
0)n, n ≥ 0, (2.22)

where p∗
0 = 1

1+µ
if we put initially that ∑∞

n=0 n pn(0) = µ for some µ ∈ N+.

This elementary observation can be verified through straightforward computations,

which we will omit here.

Next, we recall the definition of entropy Cover [62], which will play a major role

in the analysis of the large time behavior of the system (2.6).

Definition 6 (Entropy) For a given probability mass function p ∈ Vµ, the entropy

of p is defined via

H[p] =
∑

n

pn log pn.

Remark. It can be readily seen through the method of Lagrange multipliers that

the geometric distribution (2.22) has the least amount of entropy among probability

mass functions from Vµ.
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To prove (strong) convergence of the solution of (2.6) to its equilibrium solution

(2.22), a major step is first to realize that the original ODE dynamics (2.6) can be

reformulated as a variant of a Fokker-Planck equation Risken [137]. Indeed, let us

introduce s(t) := {sn(t)}n≥0 with sn(t) := p0(t)[r(t)]n. Notice that sn+1
sn

= r. Thus,

for n ≥ 1 we can deduce that

p′
n = sn+1

sn+1
pn+1 + sn

sn−1
pn−1 − sn

sn

pn − sn+1

sn

pn.

Setting qn(t) = pn(t)
sn(t) , we obtain

p′
n = sn+1[qn+1 − qn] − sn[qn − qn−1], (2.23)

with the convention that q−1 ≡ 1. This formulation leads to the following:

Proposition 2.4.6 Let {pn(t)}n≥0 be the solution to (2.6) and φ : R → R to be a

continuous function, then
∞∑

n=0
p′

n φ(n) =
∞∑

n=0
(rpn − pn+1)

(
φ(n+ 1) − φ(n)

)
. (2.24)

Corollary 2.4.7 Taking φ(n) ≡ 1 and φ(n) = n for n ≥ 0 in (2.24), we recover the

facts that ∑∞
n=0 pn and ∑∞

n=0 n pn are preserved over time.

Inserting φ(n) = log pn, we can deduce the following important result.

Proposition 2.4.8 (Entropy dissipation) Let p(t) = {pn(t)}n≥0 be the solution

to (2.6) and H[p] be the associated entropy, then for all t > 0,

d
dtH[p] = −DKL (p||p̃) − DKL (p̃||p) ≤ 0,

where p̃ := {p̃n}n≥0 is defined by p̃0 = p0 and p̃n = rpn−1 for n ≥ 1.

Proof. It is worth noting that
∞∑

n=0
p̃n = p0 +

∞∑
n=0

p̃n+1 = p0 + r
∞∑

n=0
pn = p0 + r = 1,
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so that {p̃n}n indeed defines a probability distribution (for all t ≥ 0). Then we deduce

from (2.24) that

d
dtH[p] =

∞∑
n=0

p′
n log pn =

∞∑
n=0

(rpn − pn+1) log pn+1

pn

=
∞∑

n=0
(pn+1 − p̃n+1)

(
log rpn

pn+1
− log r

)

=
∞∑

n=0
(pn+1 − p̃n+1) log p̃n+1

pn+1

=
∞∑

n=0
(pn − p̃n) log p̃n

pn

= −
∞∑

n=0
pn log pn

p̃n

−
∞∑

n=0
p̃n log p̃n

pn

= −DKL (p||p̃) − DKL (p̃||p) ≤ 0,

in which DKL (p||q) := ∑∞
n=0 pn log pn

qn
(≥ 0) is the Kullback-Leiber divergence from

the probability distribution q to p. □

Remark. By a property of the Kullback-Leiber divergence Csiszár and Shields [63],
d
dt

H[p] = 0 if and only if p = p̃, but it can be readily shown that p = p̃ if and only

if p coincides with the equilibrium distribution p∗.

Our next focus is on the demonstration of the strong convergence of solutions

p(t) = {pn(t)}n≥0 of (2.6) to its unique equilibrium solution given by (2.22). First

of all, we notice that Vµ is clearly closed and bounded in ℓp for each 1 ≤ p ≤ ∞,

whence there exists some p̂ = {p̂n}n≥0 ∈ Vµ and a diverging sequence {tk}k such that

p(k) := p(tk) ⇀ p̂ weakly in ℓp (1 < p < ∞) as k → ∞. In particular, we have the

point-wise convergence

p(k)
n → p̂n for each n ≥ 0.

Our ultimate goal is to show that p̂ = p∗, for which we first establish the following

proposition.
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Proposition 2.4.9 Suppose that {p(k)}k is a sequence of probability distributions in

Vm such that

p(k) ⇀ p̂

weakly in ℓp for some 1 < p < ∞. If the family {p(k)}k satisfies the following uniform

integrability condition Oksendal [124]
∞∑

n=0
nγp(k)

n < ∞ uniformly for all k (2.25)

for some γ > 1, then
∞∑

n=0
p(k)

n log p(k)
n →

∞∑
n=0

p̂n log p̂n as k → ∞. (2.26)

Proof. It suffices to show that for any given ε > 0, there exists some universal

constant N = N(ε) such that
∞∑

n=N

−p(k)
n log p(k)

n < ε ∀k ≥ 0. (2.27)

Assume that ∑∞
n=0 n

γp(k)
n ≤ C holds uniformly in k for some constant γ > 1, where

C > 0 is fixed. Then p(k)
n ≤ C

nγ for all n ∈ N and k ∈ N. Since g(x) := −x log x is an

increasing function for small x > 0, we have for some fixed sufficiently large N that
∞∑

n=N

−p(k)
n log p(k)

n ≤
∞∑

n=N

− C

nγ
log C

nγ
< ε,

and the proof is completed.

□

The next lemma ensures that the solution {pn(t)}n≥0 of our limiting ODE system

(2.6) is uniformly integrable (in time), whose proof is elementary and is thus skipped.

Lemma 2.4.10 Let {pn(t)}n≥0 to be the solution of (2.6). Assume that ∑∞
n=0 pn(0)an <

∞ for some a > 1, then for each fixed γ > 1,
∞∑

n=0
nγpn(t) < ∞

holds uniformly in time.
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We are now in a position to prove the desired convergence result.

Proposition 2.4.11 The solution p(t) = {pn(t)}n≥0 of (2.6) converges strongly in

ℓp for 1 < p < ∞ as t → ∞ to its unique equilibrium solution p∗ = {p∗
n}n given by

(2.22).

Proof. Our proof follows closely to the general strategy presented in Perko [126]

and is in essence a continuity argument. We will denote the flow of the ODE system

(2.6) with initial data p0 ∈ Vµ by ϕt(p0). It is recalled that we only need to show that

p̂ = p∗. We argue by contradiction and suppose that p̂ ̸= p∗. Since H[p(t)] is strictly

decreasing along trajectories of (2.6) and since p(tk) ⇀ p̂ weakly in ℓp (1 < p < ∞)

as k → ∞, we deduce that H[ϕtk
(p0)] → H[p̂] by combining proposition 2.4.9 and

proposition 2.4.10, whence

H[ϕtk
(p0)] > H[p̂]

for all t > 0. But if p̂ ̸= p∗, then for all s > 0 we must have H[ϕs(p̂)] < H[p̂],

and by continuity, it follows that for all p ∈ Vµ sufficiently close to p̂ in the ℓp norm

(1 < p < ∞) we have H[ϕs[p]] < H[p̂] for all s > 0. But then for p := ϕtk
(p0) and

sufficiently large k, we have

H[ϕs+tk
(p0)] < H[p̂],

which contradicts the above inequality. Therefore we must have that p̂ = p∗ and

hence p(t) ⇀ p∗ weakly in ℓp (1 < p < ∞) as t → ∞. In particular, we have the

pointwise convergence

pn(t) → p∗
n as t → ∞ for each n ≥ 0.
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Now since

∥p(t) − p∗∥1 : =
∞∑

n=0
|pn(t) − p∗

n| =
N∑

n=0
|pn(t) − p∗

n| +
∞∑

n=N+1
|pn(t) − p∗

n|

≤
N∑

n=0
|pn(t) − p∗

n| +
∞∑

n=N+1
(pn(t) + p∗

n),

by taking N to be sufficiently large and independent of t, the desired strong conver-

gence in ℓp for 1 < p < ∞ follows immediately. □

2.5 Poor-Biased Exchange Model

We now investigate our second model where the ’given’ dynamics is biased toward

richer agent: the wealthier an agent becomes, the more likely it will give a dollar.

As for the previous model, we first investigate the limit dynamics as the number of

agents N goes to infinity, then we study the large time behavior and show rigorously

the convergence of the wealth distribution to a Poisson distribution.

2.5.1 Definition and Limit Equation

We use the same setting as the unbiased model: there are N agents with initially

the same amount of money Si(0) = µ with µ ∈ N+.

Definition 7 (Poor-biased exchanged model) The dynamics consists in choos-

ing a “giver” i with a probability proportional to its wealth (the wealthier an agent,

the more likely it will be a “giver”). Then it gives one dollar to a “receiver” j chosen

uniformly.

From another point of view, the dynamics consist in taking one dollar from the

common pot (tax system) and re-distribute the dollar uniformly among the indi-

viduals. Thus instead of ‘taxing the agents’ in the unbiased exchange model, the

poor-biased model is ‘taxing the dollar’.
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The poor-biased model can be written in term of stochastic differential equation,

the wealth Si of agent i evolves according to:

dSi(t) = −
N∑

j=1
dN(i,j)

t +
N∑

j=1
dN(j,i)

t , (2.1)

with N(i,j)
t Poisson process with intensity λi,j(t) = λSi(t)

N
.

Since the clocks {Ni,j
t }1≤i,j≤N are now time dependent (in contrast to the unbiased

model), the dynamics might appear more difficult to analyze. But it turns out to be

simpler, since the rate of receiving a dollar is constant:
N∑

j=1
λj,i(t) =

N∑
j=1

λSj(t)
N

= λµ,

where µ is the (conserved) initial mean. In contrast, in the unbias dynamics, the rate

of receiving a dollar is equal to the proportion of rich people r(t) which fluctuates in

time. Let’s focus on i = 1 and sum up the clocks introducing:

N1
t =

N∑
j=1

N(1,j)
t , M1

t =
N∑

j=1
N(j,1)

t , (2.2)

where the two Poisson processes N1
t and M1

t have intensity λS1 and λµ (respectively).

Thus, the poor-biased model leads to the equation:

dS1(t) = −dN1
t + dM1

t . (2.3)

Notice that S1(t) is not independent of Sj(t) as both processes can jump at the same

time due to the two clocks N(1,j)
t and N(j,1)

t .

Motivated by the equation above, we give the following definition of the limiting

dynamics as N → ∞.

Definition 8 (Asymptotic Poor-biased model) We define S1 to be the compound

Poisson process satisfying the following SDE:

dS1(t) = −dN1
t + dM1

t , (2.4)
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in which N1
t and M1

t are independent Poisson processes with intensity λS1(t) and λµ

(respectively) where µ is the mean of S1(0) (i.e. µ = E[S1(0)]).

If we denote by p(t) =
(
p0(t), p1(t), . . .

)
the law of the process S1(t), its time evolution

is given by:
d
dtp(t) = λQpoor[p(t)] (2.5)

with:

Qpoor[p]n :=


p1 − µ p0 if n = 0

(n+ 1)pn+1 + µ pn−1 − (n+ µ) pn for n ≥ 1
(2.6)

and µ = ∑+∞
n=0 n pn(t) = ∑+∞

n=0 n pn(0).

2.5.2 Proof of Propagation of Chaos

The aim of this subsection is to prove the propagation of chaos, i.e. that the

process
(
S1, . . . , Sk

)
converges to

(
S1, . . . , Sk

)
as N goes to infinity. As for the

unbiased exchange model, the key is to define the Poisson clocks for the limit dynamics

Ni
t and Mi

t close to the clocks of the N−particle system Ni
t and Mi

t for 1 ≤ i ≤ k, but

at the same time making the clocks independent. With this aim, we have to ’remove’

the clocks N(i,j)
t and M(i,j)

t for 1 ≤ i, j ≤ k.

Theorem 2 Let
(
S1, . . . , SN

)
to be a solution to (2.1) and

(
S1, . . . , Sk

)
a solution

to (2.4). Then for any fixed k ∈ N+, there exists a coupling between
(
S1, . . . , Sk

)
and(

S1, . . . , Sk

)
(with the same initial conditions) such that:

E[|Si(t) − Si(t)|] ≤ 4kλµ
N

(eλt − 1), (2.7)

holding for each 1 ≤ i ≤ k.

Proof. To simplify the writing, we suppose i = 1. We define for 1 ≤ i ≤ k the
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clocks for the limit dynamics as follow:

N1
t = G1 ·

 N∑
j=k+1

N(1,j)
t

+ N̂1
t , M1

t =
 N∑

j=k+1
N(j,1)

t

+ M̂1
t . (2.8)

Here, G1 is a Bernoulli random variable that prevents the clocks to ring for S1 if

the rates of the clocks N(1,j)
t from k + 1 ≤ j ≤ N are too large compare to S1. The

parameter of this Bernoulli random variable is given by:

G1(t) ∼ B
(

1 ∧ NS1(t)
(N − k)S1(t)

)
, (2.9)

with a∧b = min{a, b} for any a, b ∈ R. On the contrary, the two processes N̂1
t and M̂1

t

are used to compensate if the rates of the clocks N(1,j)
t and N(j,1)

t from k+ 1 ≤ j ≤ N

are not large enough. Both processes N̂1
t and M̂1

t are independent (inhomogeneous)

Poisson processes with rates respectively:

µ̂(t) = λ

(
S1(t) − (N − k)S1(t)

N

)
+

and ν̂(t) = λ

µ−
N∑

j=k+1

Sj(t)
N

 (2.10)

where a+ = max{a, 0} for any a ∈ R. One can check that under the aforementioned

setup (coupling of Poisson clocks), N1
t and M1

t are indeed independent counting

processes with intensity λSi(t) and λµ, respectively.

The difference |S1(t) − S1(t)| could increase due to 3 types of events:

i) N(1,j)
t and N(j,1)

t ring for 1 ≤ j ≤ k,

ii) N̂1
t and M̂1

t ring

iii) N(1,j)
t ring for j ≥ k + 1 and G1 = 0.

Notice that the third type of event leads to:

S1(t) = S1(t−) − 1 , S1(t) = S1(t−) (2.11)

i.e. only S1 gives. However, the event {G1 = 0} only occurs if S1(t−) > S1(t−).

Therefore, the event iii) could only make |S1(t) − S1(t)| to decay.
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Therefore, we deduce:

dE[|S1(t) − S1(t)|] ≤
k∑

j=1

λ

N
E[S1(t)]dt +

k∑
j=1

λ

N
E[Sj(t)]dt

+E[µ̂(t)]dt + E[ν̂(t)]dt

≤ 2kλµ
N

dt + E[µ̂(t)]dt + E[ν̂(t)]dt (2.12)

using E [Sj(t)] = µ for any j. Let’s bound the rates µ̂ and ν̂:

E[µ̂] = E
[
λ
(
S1 − (N − k)S1

N

)
+

]
≤ λE

[(
Si − Si

)
+

+ kS1

N

]

≤ λE
[
|S1 − S1|

]
+ λkµ

N

E[ν̂] = E

λ(µ−
N∑

j=k+1

Sj

N

) = λkµ

N
.

We deduce from (2.12):

dE[|S1(t) − S1(t)|] ≤ λE
[
|S1(t) − S1(t)|

]
dt+ 4kλµ

N
dt. (2.13)

Applying the Gronwall’s lemma to (2.13) yields the result.

□

2.5.3 Large Time Behavior

After we achieved the transition from the interacting system of SDEs (2.1) to the

deterministic system of linear ODEs (2.5), we now analyze the long time behavior of

the distribution p(t) and its convergence to an equilibrium. The main tool behind

proof relies again on the reformulation of (2.5) into a (discrete) Fokker-Planck type

equation, in conjunction with the standard entropy method Arnold et al. [11], Matthes

[114], Jüngel [97].

Let’s introduce a function space to study p(t):

Vµ := {p ∈ ℓ2(N) |
∞∑

n=0
pn = 1, pn ≥ 0,

∞∑
n=0

n pn = µ}, (2.14)

D(Qpoor) := {p ∈ ℓ2(N) | Qpoor[p] ∈ ℓ2(N)}, (2.15)
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where ℓ2 denote the vector space of square-summable sequences. In contrast to the

unbias model with the dynamics (2.5), the operator Qpoor is an unbounded operator

(i.e. D(Qpoor) ̸⊂ ℓ2(N)). For any p ∈ Vµ ∩ D(Qpoor), it is straightforward to show

that:
∞∑

n=0
Qpoor[p]n = 0 ,

∞∑
n=0

nQpoor[p]n = 0, (2.16)

which express that the total mass and the mean value is conserved. Moreover, there

exists a unique equilibrium p∗ for Qpoor in Vµ given by a Poisson distribution:

p∗
n = µn

n! e−µ, n ≥ 0. (2.17)

To investigate the convergence of p(t) solution to (2.5) to the equilibrium p∗

(2.17), we introduce two function spaces.

Definition 9 We define the sub-vector spaces of ℓ2:

H0 = {p ∈ ℓ2(N) |
∞∑

n=0

p2
n

p∗
n

< +∞}, (2.18)

H1 = {p ∈ ℓ2(N) |
∞∑

n=0
p∗

n

(
pn+1

p∗
n+1

− pn

p∗
n

)2

< +∞}, (2.19)

and define corresponding scalar products:

⟨p,q⟩H0 :=
∞∑

n=0

pnqn

p∗
n

, ⟨p,q⟩H1 :=
∞∑

n=0
p∗

n

(
pn+1

p∗
n+1

− pn

p∗
n

)(
qn+1

p∗
n+1

− qn

p∗
n

)
. (2.20)

The advantage of using the scalar product ⟨., .⟩H0 is that the operator Qpoor becomes

symmetric. To prove it, we rewrite the operator a la Fokker-Planck.

Lemma 2.5.1 For any p ∈ H0, we have:

Qpoor[p]n = µD−
(
p∗

nD
+
(
pn

p∗
n

))
(2.21)

with D+(pn) = pn+1 − pn, D−(pn) = pn − pn−1 and the convention p−1 = p∗
−1 = 0.
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Proof. Since p∗
n/p

∗
n+1 = (n+ 1)/µ, we find

1
µ
Qpoor[p]n = p∗

n

p∗
n+1

pn+1 −
p∗

n−1
p∗

n

pn −
(
p∗

n

p∗
n

pn −
p∗

n−1
p∗

n−1
pn−1

)
= µp∗

nun+1 − p∗
n−1un −

(
p∗

nun − p∗
n−1un−1

)

with un = pn/p
∗
n. Using the notation D+ and D−, we write:

1
µ
Qpoor[p]n = p∗

nD
+un − p∗

n−1D
+un−1 = D−(p∗

nD
+un).

□

Remark. Equation (2.21) has a flavor of a Fokker-Planck equation of the form

∂tρ = ∇ ·
(
ρ∞∇

(
ρ

ρ∞

))
, (2.22)

where ρ∞ is an equilibrium distribution to which ρ converges (and ρ∞ may also depend

on ρ, making the equation nonlinear).

As a consequence, we deduce that the operator Qpoor is symmetric on H0.

Proposition 2.5.2 For any p,q ∈ H0, the operator Qpoor (2.6) satisfies:

⟨Qpoor[p],q⟩H0 = ⟨p, Qpoor[q]⟩H0 for any p,q ∈ H0. (2.23)

Moreover,

⟨Qpoor[p],p⟩H0 = −µ
∞∑

n=0
p∗

n

(
D+

(
pn

p∗
n

))2

= −µ∥p∥2
H1 . (2.24)

Proof. We simply use integration by parts:

1
µ

⟨Qpoor[p],q⟩H0 =
∞∑

n=0
D−

(
p∗

nD
+pn

p∗
n

)
qn

p∗
n

= −
∞∑

n=0
p∗

n

(
D+pn

p∗
n

)(
D+ qn

p∗
n

)

=
∞∑

n=0

pn

p∗
n

D−
(
p∗

nD
+ qn

p∗
n

)
= 1
µ

⟨p, Qpoor[q]⟩H0 .

□
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Furthermore, the operator −Qpoor would have a so-called spectral gap if one can show

that the norm ∥.∥H1 controls the norm ∥.∥H0 . To prove it, we establish a Poincaré

inequality.

Lemma 2.5.3 There exists a constant Cp > 0 such that for any p ∈ H1 satisfying∑
n pn = 1

∥p − p∗∥2
H0 ≤ Cp∥p∥2

H1 (2.25)

where ∥.∥H0 and ∥.∥H1 are defined in (2.20) and p∗ is the equilibrium (2.17).

Proof. Similar to the standard proof of a classical Poincaré inequality we proceed

by contradiction. Assume that no such Cp exists, then there exists a sequence (of

sequence) p(k) such that ∑∞
n=0 p

(k)
n = 1 and

∥p(k) − p∗∥H0 ≥ k∥p(k)∥H1 (2.26)

for all k ∈ N. Denote s(k) = p(k) − p∗
n. Then we have ∑∞

n=0 s
(k)
n = 0 and (2.26) reads

∥s(k)∥H0 ≥ k∥s(k)∥H1 . (2.27)

Without loss of generality, we can assume the normalization condition ∥s(k)∥H0 = 1

for all k and thus ∥s(k)∥H1 ≤ 1
k
. By weak compactness, there exists s∞ ∈ H0 such

that s(k) ⇀ s∞ in H0 and in particular s(k)
n

k→∞−−−→ s∞
n for all n.

Since ∥s(k)∥H1 ≤ 1
k
, we also have s

(k)
n+1

p∗
n+1

− s
(k)
n

p∗
n

k→∞−−−→ 0 for all k, or equivalently, (n +

1)sN
n+1 − µsN

n
k→∞−−−→ 0. Thus, (n + 1)s∞

n+1 = µs∞
n and therefore s∞

n = µn

n! s
∞
0 for all

n. As ∑∞
n=0 s

∞
n = 0, we must have s∞

0 = 0 and therefore s∞ = 0. Contradiction,

∥s∞∥H0 = 1 since ∥s(k)∥H0 = 1 for all k.

□

As a result of the lemma, the operator −Qpoor has a spectral gap of at least 1/Cp

since:

⟨−Qpoor[p − p∞] , p − p∞⟩H0 = ⟨−Qpoor[p] , p⟩H0 = ∥p∥2
H1 ≥ 1

Cp

∥p − p∗∥2
H0 . (2.28)
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We shall establish the existence of a unique global solution to the linear ODE

system (2.5). The key ingredient in our proof relies heavily on standard theory of

maximal monotone operators (see for instance Chapter 7 of Brezis [34]).

Proposition 2.5.4 Given any p0 ∈ D(Qpoor), there exists a unique function

p(t) ∈ C1
(
[0,∞); H0) ∩ C

(
[0,∞); D(Qpoor)

)
satisfying (2.5).

Proof. We use the Hille-Yosida theorem and show that the (unbounded) linear

operator −Qpoor on H0 is a maximal monotone operator. The monotonicity of −Qpoor

follows from its symmetric property on H0:

⟨−Qpoor[v],v⟩H0 = µ
∞∑

n=0
p∗

n

(
D+

(
vn

p∗
n

))2

≥ 0 for all v ∈ D(Qpoor).

To show the maximality of −Qpoor, it suffices to show R(I−Qpoor) = H0, i.e., for each

f ∈ H0, the equation p − Qpoor[p] = f admits at least one solution p ∈ D(−Qpoor).

To this end, the weak formulation of p −Qpoor[p] = f reads

⟨p,q⟩H0 + ⟨−Qpoor[p],q⟩H0 = ⟨f ,q⟩H0 for all q ∈ H0, (2.29)

whence the Lax-Milgram theorem yields a unique p ∈ H1.

□

We can now prove the convergence of p(t) solution of (2.5) to its equilibrium solution

(2.17).

Theorem 3 Let p(t) be the solution of (2.5) and p∗ the corresponding equilibrium.

Then:

∥p(t)−p∗∥H0 ≤ ∥p0−p∗∥H0e− λ
Cp

t (2.30)

where p0 is the initial condition, i.e. p(t = 0) = p0.
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Proof. Taking the derivative of the square norm gives:

1
2
d

dt
∥p(t) − p∗∥2

H0 = ⟨p′(t) , p(t) − p∗⟩H0 = λ⟨Qpoor[p(t)] , p(t) − p∗⟩H0

= λ⟨p(t) , Qpoor[p(t)]⟩H0 = −λ∥p(t)∥2
H1 , (2.31)

using the symmetry of Qpoor and the relation (2.24). Using the Poincaré constant

from lemma (2.5.3), we deduce:

1
2
d

dt
∥p(t) − p∗∥2

H0 ≤ − λ

Cp

∥p(t) − p∗∥2
H0 .

Applying the Gronwall’s lemma leads to the result.

□

To finish our investigation of the poor-biased dynamics, we would like to find an

explicit rate for the decay of the solution p(t) toward the equilibrium p∗, i.e. find an

explicit value for the Poincaré constant Cp in lemma (2.5.3). The key idea, due to

Bakry and Emery Bakry and Émery [15], is to compute the second time derivative of

∥p(t) − p∗∥H0 .

Lemma 2.5.5 For any p ∈ Vµ ∩ D(Qpoor), we have:

⟨Qpoor[Qpoor[p]] , p⟩H0 ≥ −µ⟨Qpoor[p] , p⟩H0 . (2.32)

Proof. Using the symmetry of Qpoor, we have:

⟨Qpoor[Qpoor[p]] , p⟩H0 = ⟨Qpoor[p] , Qpoor[p]⟩H0 = µ2
∞∑

n=0
D− (p∗

n zn)D− (p∗
n zn) 1

p∗
n

with zn = D+
(

pn

p∗
n

)
. Since D− (p∗

n zn) 1
p∗

n
= µzn − nzn−1, integration by parts gives:

1
µ2 ⟨Qpoor[Qpoor[p]] , p⟩H0 =

∞∑
n=0

D− (p∗
n zn) (zn − n

µ
zn−1)

=
∞∑

n=0
D− (p∗

n zn) zn +
∞∑

n=0
p∗

n znD
+
(
n

µ
zn−1

)
.
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Using D+(n
µ
zn−1) = n

µ
D−(zn) + zn

µ
, we deduce:

1
µ2 ⟨Qpoor[Qpoor[p]] , p⟩H0 =

∞∑
n=0

D− (p∗
n zn) zn +

∞∑
n=0

p∗
n zn

n

µ
D−(zn) +

∞∑
n=0

p∗
n

z2
n

µ

=
∞∑

n=0

(
D− (p∗

nzn) zn + p∗
nzn

n

µ
D−(zn)

)
+ 1
µ

⟨Qpoor[p],p⟩

=: A + 1
µ

⟨Qpoor[p] , p⟩H0

To conclude we have to show that A ≥ 0. Notice that p∗
n

n
µ

= p∗
n−1, thus:

A =
∞∑

n=0

(
D− (p∗

n zn) zn + p∗
n−1 znD

−(zn)
)

= −
∞∑

n=0
p∗

n znD
+(zn) +

∞∑
n=0

p∗
n zn+1D

−(zn+1)

=
∞∑

n=0
p∗

n

(
− znD

+(zn) + zn+1D
−(zn+1)

)

=
∞∑

n=0
p∗

n

(
zn+1 − zn

)2
≥ 0.

□

Remark. In general, the computation of the second time derivative of the energy

(in our case, ∥p(t)−p∗∥H0) requires a number of smartly-chosen integration by parts.

However, these computations can actually be made more tractable and organized to

some extent. We refer interested readers to Matthes et al. [115], Jüngel and Matthes

[98], Bukal et al. [35] for ample illustration of the technique known as systematic

integration by parts.

Proposition 2.5.6 The exponential decay rate in theorem (3) is at least λ, i.e.

∥p(t)−p∗∥H0 ≤ Ce−λt.

Proof. Taking the second derivative and using the symmetry of Qpoor give:

1
2
d2

dt2
∥p(t) − p∗∥2

H0 = d

dt
λ⟨Qpoor[p(t)] , p(t)⟩H0 = 2λ2⟨Qpoor[p(t)] , Qpoor[p(t)]⟩H0

≥ −2λ2µ⟨Qpoor[p] , p⟩H0 = −λ d
dt

∥p(t) − p∗∥2
H0
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thanks to (2.32) and (2.31). Denoting ϕ(t) = ∥p(t) − p∗∥2
H0 , we have: ϕ′′ ≥ −2λϕ′.

Integrating over the interval (t,+∞) yields:

0 − ϕ′(t) ≥ −2λ(0 − ϕ(t)) ⇒ ϕ′(t) ≤ −2λϕ(t)

and the Gronwall’s lemma allows to obtain our result.

It remains to justify that limt→+∞ ϕ′(t) = limt→+∞ ϕ(t) = 0. Theorem (3) already

shows that limt→+∞ ϕ(t) = 0. Moreover, denoting g(t) = −ϕ′(t) ≥ 0, we have

g′ ≤ −2λg. Thus, by Gronwall’s lemma, g(t) t→+∞−→ 0.

□

2.5.4 Numerical Illustration of Poor-Biased Model

We investigate numerically the convergence of p(t) solution to the poor-biased

model (2.5) to the equilibrium distribution p∗ (2.17). We use µ = 5 (average money)

and λ = 1 (rate of jumps) for the model. To discretize the model, we use 1, 001

components to describe the distribution p(t) (i.e. (p0(t), . . . , p1000(t))). As initial

condition, we use pµ(0) = 1 and pi(0) = 0 for i ̸= µ. The standard Runge-Kutta

fourth-order method (e.g. RK4) is used to discretize the ODE system (2.5) with the

time step ∆t = 0.01.

We plot in figure (2.7)-left the numerical solution p at t = 12 unit time and com-

pare it to the equilibrium distribution p∗. The two distributions are indistinguishable.

Indeed, plotting the evolution of the difference ∥p(t)−p∗∥H0 (figure (2.7)-right) shows

that the difference is already below 10−10. Moreover, the decay is clearly exponential

as we use semi-logarithmic scale.

Notice that the numerical simulation suggests that the optimal decay rate of

∥p(t) − p∗∥H0 is 2λ, which is twice the analytical decay rate λ proved in proposition

2.5.6. The reason for this discrepancy is that the solution of p(t) remains in the
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Figure 2.7: Left: Comparison Between the Numerical Solution p(t) (2.5) of the
Poor-Bias Model and the Equilibrium p∗ (2.17). The Two Distributions are Indis-
tinguishable. Right: Decay of the Difference ∥p(t) − p∗∥H0 in Semilog Scale. The
Decay is Exponential as Predicted by the Theorem 3.

subspace Vµ ∩ D(Qpoor), i.e. the mean of p(t) is preserved. The analysis of the

spectral gap of Qpoor in the proposition 2.5.6 does not take account this constraint.

We numerically investigate the spectrum of −Qpoor denoted {αn}∞
n=1. The first

eigenvalue satisfies α1 = 0 due to the equilibrium p∗ (i.e. Qpoor[p∗] = 0). The other

eigenvalues are αn = n− 1 and in particular the spectral gap is α2 = 1. One can find

explicitly a corresponding eigenfunction given by:

p(2) = D−(p∗) = (p∗
0, p

∗
1 − p∗

0, . . . , p
∗
n − p∗

n−1, . . .). (2.33)

Thus, for any p ∈ Vµ ∩ D(Qpoor), we find:

⟨p , p(2)⟩H0 =
∞∑

n=0
pn(p∗

n − p∗
n−1)

1
p∗

n

=
∞∑

n=0
pn(1 − n/µ) = 1 − µ/µ = 0.

This explains why the effective spectral gap for the dynamics is given by α3 and not

α2: the solution p(t) (2.5) lives in Vµ ∩D(Qpoor) and therefore it is orthogonal to p(2).

Remark. We can find explicitly the exact formulation of the eigenfunction p(k) of

−Qpoor for all k ∈ N+. We find by induction:

p(k) =
p∗

0, p
∗
1 − (k − 1)p∗

0, · · · , p∗
n +

n−1∑
j=0

(−1)n−j

∏n−j
ℓ=1 (k − ℓ)
(n− j)! p∗

j , · · ·

 (2.34)

leading to:

p(k)
n =

n∑
j=0

(
k − 1
j

)
(−1)j µn−j

(n− j)!e
−µ, n ≥ 0, (2.35)
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with
(

k
j

)
binomial coefficient (i.e.

(
k
j

)
= k!

(k−j)! j!). Moreover, through an induction

argument and some combinatorial identities, we can verify that ⟨p(m),p(k)⟩H0 = 0 for

m ̸= k. We speculate that {p(k)}∞
k=1 spans the entire space H0, but we do not have

a proof for this conjecture.

2.6 Rich-Biased Exchange Model

In our third model, the selection of the ’giver’ is biased toward the poor instead

of the rich, i.e. the more money an individual has the less likely it will be chosen.

2.6.1 Definition and Limit Equation

As before, the definition of the model is given first.

Definition 10 (Rich-biased exchange model) A “giver” i is chosen with inverse

proportionality of its wealth. The “receiver” j is chosen uniformly.

The rich-biased model leads to the following stochastic differential equation:

dSi(t) = −
N∑

j=1
dN(i,j)

t +
N∑

j=1
dN(j,i)

t , (2.1)

with N(i,j)
t Poisson process with intensity λij given by:

λij =


0 if Si = 0

λ
N

· 1
Si

if Si > 0
(2.2)

An agent i receives a dollar at rate λw where w is the inverse of the harmonic mean:

w = 1
N

∑
Sk>0

1
Sk

. (2.3)

Definition 11 (Asymptotic Rich-biased model)

dS1(t) = −dN1
t + dM1

t , (2.4)
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in which N1
t and M1

t are independent Poisson processes with intensity λ/S1(t) (if

S1(t) > 0) and λw(t) respectively. The inverse mean w(t) is given by:

w[p(t)] :=
∞∑

n=1

pn(t)
n

(2.5)

where p(t) =
(
p0(t), p1(t), . . .

)
the law of the process S1(t). The time evolution of

p(t) is given by:
d
dtp(t) = λQrich[p(t)] (2.6)

with:

Qrich[p]n :=


p1 − w p0 if n = 0
pn+1
n+1 + wpn−1 −

(
1
n

+ w
)
pn for n ≥ 1

(2.7)

We will also need the weak form of the operator: for any test function φ:

⟨Qrich[p] , φ⟩ =
∑
n≥0

pn

(
wφ(n+ 1) + 1{n≥1}

n
φ(n− 1) −

(
w + 1{n≥1}

n

)
φ(n)

)
(2.8)

2.6.2 Propagation of Chaos Using Empirical Measure

We investigate the propagation of chaos for the rich-biased dynamics using the

empirical measure (see subsection 2.3.3). We consider {Si(t)}1≤i≤N the solution to

(2.1) and introduce the empirical measure:

pemp(t) = 1
N

N∑
i=1

δSi(t)(s). (2.9)

The goal is to show that the stochastic measure pemp(t) converges to the deterministic

density p(t) solution of (2.6). The main difficulty is that the empirical measure is

a stochastic process on a Banach space ℓ1(N) and thus of infinite dimension. For-

tunately, the space is a discrete (i.e. N) and therefore we do not have to consider

stochastic partial differential equations which are famously difficult. Moreover, we

only have to consider a finite number of possible jumps.
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When agent i gives a dollar to j (i.e. (Si, Sj) (Si − 1, Sj + 1)), the empirical

measure is transformed as

pemp pemp + 1
N

(
δSi−1 + δSj+1 − δSi

− δSj

)
. (2.10)

To write down the evolution equation satisfied by pemp, we regroup the agents with

the same number of dollars (i.e. we project the dynamics on a subspace).

Proposition 2.6.1 The empirical measure pemp(t) (6.1) satisfies:

dpemp(t) = 1
N

+∞∑
k=1,l=0

(
δk−1 + δl+1 − δk − δl

)
dN(k,l)

t (2.11)

where N(k,l)
t independent Poisson clock with intensity:

λk,l = N · pemp,k · (N · pemp,l − 1{k=l}) · λ

k ·N
(2.12)

where pemp,k is the k−th coordinate of pemp.

Proof. Following the jump process given in (2.10), the empirical measure satisfies:

dpemp(t) = 1
N

N∑
i,j=1,i ̸=j

(
δSi−1 + δSj+1 − δSi

− δSj

)
dN(i,j)

t (2.13)

Introducing N(k,l)
t the Poisson process regrouping all the clocks corresponding to a

giver with k dollars giving to a receiver with l dollars:

N(k,l)
t =

∑
{i ̸=j | Si=k,Sj=l}

N(i,j)
t , (2.14)

In this sum, each clock N(i,j)
t has the same intensity λ/(Si ·N) = λ/(k ·N). Moreover,

counting the number of clocks involved in the sum (2.14) leads to (2.12). The indicator

1{k=l} is here to remove the self-giving clocks N(i,i)
t : when an agent gives to itself,

nothing happens. □
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Corollary 2.6.2 For any test function φ, the empirical measure pemp(t) (6.1) satis-

fies:

dE[⟨pemp(t), φ⟩] = λE[⟨Qrich[pemp(t)], φ⟩]dt − λ

N
E[⟨R[pemp(t)], φ⟩]dt (2.15)

where Qrich is the operator defined in (2.7) and R defined by:

R[p]n := pn+1

n+ 1 + pn−1

n− 11{n≥2} − 2
n
pn1{n≥1}. (2.16)

Proof. From the proposition 2.6.1, we find:

dE[⟨pemp(t), φ⟩] = E

 +∞∑
k=1,l=0

(
φ(k − 1) + φ(l + 1) − φ(k) − φ(l)

)
pemp,k · pemp,l

λ

k


− 1
N
E
[+∞∑

k=1

(
φ(k − 1) + φ(k + 1) − 2φ(k)

)
pemp,k · λ

k

]
dt

= λE
[+∞∑

k=1

(
φ(k − 1) − φ(k)

)
pemp,k

k

]
dt

+λE
[+∞∑

l=0

(
φ(l + 1) − φ(l)

)
w[pemp] · pemp,l

]
dt

− λ

N
E
[+∞∑

k=1

(
φ(k − 1) + φ(k + 1) − 2φ(k)

)
pemp,k · 1

k

]
dt

where w[pemp] is defined in (2.5). We recognize the weak formulation of Qrich (2.8)

leading to (2.15). □

The operator R (2.16) corresponds to the bias in the evolution of the empirical

measure pemp(t) compared to the evolution of p(t) solution to the limit equation (2.6).

This bias vanishes as λ/N goes to zero when the number of agents N becomes large.

The other source of discrepancy between pemp(t) and p(t) is the variance of pemp(t)

(as it is a stochastic measure). Let’s review an elementary result on compensated

Poisson process.

Remark. Denote Z(t) a compound jump process and M(t) its compensated version:

dZ(t) = Y (t) dNt , M(t) = Z(t) −
∫ t

0
µ(s)λ(s) ds (2.17)
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where Y (t) denotes the (independent) jumps and Nt Poisson process with intensity

λ(t) and µ(t) = E[Y (t)]. The Ito’s formula is given by:

dE[φ(M(t))] = E
[
φ
(
M(t−) + Y (t−)

)
− φ(M(t−)

]
λ(t)dt − E[φ′(M(t))µ(t)λ(t)] dt.

In particular, for φ(x) = x2, we obtain:

dE[M2(t)] = E[2M(t−)Y (t−) + Y 2(t−)]λ(t)dt− E[2M(t)µ(t)λ(t)] dt

= E[Y 2(t)]λ(t)dt. (2.18)

Here, we assume that the jump Y (t) is independent of the value Z(t). To generalize

the formula, one has to replace µ(t) = E[Y (t)] by E[Y (t)|Z(t)].

Motivated by this remark, we obtain the following result.

Proposition 2.6.3 Denote M(t) the compensated process of the empirical measure

pemp(t):

M(t) = pemp(t) −
(

pemp(0) + λ
∫ t

0

(
Qrich[pemp(s)] + 1

N
R[pemp(s)]

)
ds
)

(2.19)

then M(t) is a ℓ1-value martingale and satisfies:

E[∥M(t)∥ℓ1 ] ≤
√

4λ
N
t. (2.20)

Proof. The key observation is that the jump (2.10) for the empirical measure are

of order O(1/N). Indeed:

E

[∥∥∥∥ 1
N

(δk−1 + δl+1 − δk − δl)
∥∥∥∥2

ℓ1

]
≤ 4
N2 . (2.21)

Applying the formula (2.18) we obtain::

dE[∥M(t)∥2
ℓ1 ] ≤

+∞∑
k=1,l=0

E
[ 4
N2 · Npemp,k ·Npemp,l

]
λ

k ·N
dt ≤ 4λ

N
dt. (2.22)

Integrating in time gives (2.20). □
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We are now ready to prove the propagation of chaos for the rich-biased dynamics by

showing that the empirical measure pemp(t) converges to p(t) as N → +∞. The key

Lemma 2.6.4 The operator Qrich (2.7) is globally Lipschitz on ℓ1(N) ∩ P(N) and R

is an bounded on ℓ1(N).

∥Qrich[p] −Qrich[q]∥ℓ1 ≤ 4∥p − q∥ℓ1 for any p,q ∈ ℓ1(N) ∩ P(N) (2.23)

∥R[p]∥ℓ1 ≤ 4∥p∥ℓ1 for any p ∈ ℓ1(N) (2.24)

Proof. Since p ∈ ℓ1(N)∩P(N), the rate of receiving w[p] (2.3) satisfies 0 ≤ w[p] ≤ 1.

Thus,

|Qrich[p]n −Qrich[q]n| ≤ |pn+1 − qn+1| + |pn−1 − qn−1| + 2|pn − qn|.

Summing in n gives the result. We proceed similarly for the operator R. □

Theorem 4 Consider p(t) solution to the limit equation (2.6) and pemp(t) empirical

measure (6.1). Then:

E[∥pemp(t) − p(t)∥ℓ1 ] ≤ O
(
te4λt

√
N

)
, (2.25)

in particular pemp(t) N→+∞
⇀ p(t) for any t ≥ 0.

Proof. First we write down the integral form of the equation satisfied by both p(t)

and pemp(t):

p(t) = p0 +
∫ t

0
Qrich[p(s)] ds

pemp(t) = p0 +
∫ t

0
Qrich[pemp(s)] ds+ 1

N

∫ t

0
R[pemp(s)] ds+M(t)

Combining the two equations give:

∥pemp(t) − p(t)∥ℓ1 ≤ λ
∫ t

0
∥Qrich[pemp(s)] −Qrich[p(s)]∥ℓ1 ds

+ λ

N

∫ t

0
∥R[pemp(s)]∥ℓ1 ds+ ∥M(t)∥ℓ1

≤ 4λ
∫ t

0
∥pemp(s) − p(s)∥ℓ1 ds+ λ4t

N
+ ∥M(t)∥ℓ1
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using lemma 2.6.4. Denoting ϕ(t) = E[∥pemp(t) − p(t)∥ℓ1 ], we deduce from the bound

(2.20) of M(t):

ϕ(t) ≤ 4λ
∫ t

0
ϕ(s) ds+ λ4t

N
+
√

4λ
N
t.

Applying Gronwall’s lemma leads to:

ϕ(t) ≤

λ4t
N

+
√

4λ
N
t

 e4λt

leading to the result. □

Remark. The martingale-based technique, developed in Merle and Salez [118] and

employed here for justifying the propagation of chaos, is remarkable since it does not

require us to study the N -particle process (S1, . . . , SN) but solely its generator. One

drawback is that this method might not work if the generator Q of the limit process

is unbounded, which is the case for the generator Qpoor of the (limit) poor-biased

dynamics (2.5).

2.6.3 Dispersive Wave Leading to Vanishing Wealth

As illustrated in the introduction (figure 2.2), the rich-biased dynamics tend to

accentuate inequality, i.e. the Gini index G(t) was approaching 1 (its maximum value)

for the agent-based model (2.4) (2.1). We would like to investigate numerically the

behavior of the solution to the rich-biased dynamics using the limit equation (2.6)

and the distribution p(t) = (p0(t), p1(t), . . .).

In figure 2.8, we plot the evolution of the distribution p(t) starting from a Dirac

distribution with mean µ = 5 (i.e. p5 = 1 and pi = 0 for i ̸= 5). We observe

that the distribution spreads in two parts: the bulk of the distribution moves toward

zero whereas a smaller proportion is moving to the right. One can identify the two

pieces as the “poor” and the “rich”. Thus, the dynamics could be interpreted as the
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Figure 2.8: Evolution of the Wealth Distribution p(t) for the Rich-Biased Dynamics
(2.6). The Distribution Spreads in Two Parts: A Large Proportion Starts to Con-
centrate at Zero (“Poor Distribution”) and While the Other Part Form a Dispersive
Traveling Wave. Parameters: ∆t = 5 · 10−3, p(t) ≈ (p0(t), p1(t), . . . , p1,000(t)). A
Standard Runge-Kutta of Order 4 Has Been Used to Discretize the System.
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Figure 2.9: Left: Estimation of the Center c(t) and Standard Deviation σ(t) of
the Dispersive Wave along with Their Parametric (Power-Law) Estimation (2.27).
Right: Comparison of the Distribution p(t) (See Figure 2.8) with the Dispersive
Wave Using ϕ the Standard Normal Distribution.

poor getting poorer and the rich getting richer. Notice that the proportion of poor

is increasing (e.g. p0(t) is increasing) whereas the “rich” distribution resembles a

dispersive traveling wave. Since both the total mass and the total amount of dollar

are preserved (i.e. ∑n n · pn(t) = µ for any t), the dispersive traveling wave contains

the bulk of the money but it is also vanishing in time.

To investigate more carefully the dispersive wave, we try to fit numerically its
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profile. After numerically examination, we choose to approximate by a Gaussian

distribution. Meanwhile we approximate the “poor” distribution by a Dirac centered

at zero δ0. Thus, we approximate the distribution p(t) by the following Ansatz:

pn(t) ≈ (1 − r(t)) · δ0 + r(t) · 1
σ(t)ϕ

(
n− c(t)
σ(t)

)
, (2.26)

where ϕ is the standard normal distribution (i.e. ϕ(x) = e−x2/2/
√

2π), c(t) is the

center of the profile, σ(t) its standard deviation and r(t) the proportion of rich. The

speed of the wave c(t) and its standard deviation σ(t) are estimated numerically and

plotted in figure 2.9. Their growth is well-approximated by a power-law of the form:

c(t) = 1.4748 · t.466 , σ(t) = 0.9261 · t.399. (2.27)

Since the total amount of money is preserved, the proportion of rich r(t) can be easily

deduced from c(t) since we must have µ = r(t) · c(t). Such approximation leads to

the fitting in figure 2.8-right (dotted-black curves). We notice that the proportion of

rich in our Ansatz is vanishing:

r(t) = µ

c(t)
t→+∞−→ 0. (2.28)

Thus, we make the conjecture that p(t) converges weakly toward δ0, i.e. all the money

will asymptotically disappear.

To further assess our conjecture, we measure the evolution of the Gini index for

the distribution p(t):

G[p] = 1
2µ

+∞∑
i=0

+∞∑
j=0

|i− j|pipj (2.29)

with µ the standard mean. Using the Ansatz (2.26), we can approximate the value

of the Gini index given (see Appendix B):

G(t) ≈ 1 − µ

c(t) + µ · σ(t)√
π c2(t) . (2.30)
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We plot in figure 2.10-left the evolution of the Gini index G(t) along with its approx-

imation (2.30). We observe a good agreement between the two curves. To examine

closely the long time behavior of the curves, we plot the evolution of 1 − G(t) in

log-scales (figure 2.10-right) over a longer time interval (up to t = 105). Both curves

seem to converges similarly toward 0 (indicating that G(t) t→+∞−→ 1) with a slight

overshoot for the Ansatz. This overshoot might be due to our approximation that

the “poor distribution” of p(t) is concentrated exactly at zero (i.e. (1− r(t))δ0). This

approximation amplifies the inequality between the “poor” and “rich” parts of the

distribution and hence increases slightly the Gini index. But overall the asymptotic

behavior of the Gini index for p(t) matches with the formula (2.30) and thus strength-

ens our assumption that p(t) will converge (weakly) to a Dirac δ0. However, further

analytically studies are needed to derive the asymptotic behavior of p(t) directly from

the rich-biased evolution equation (2.6).
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Figure 2.10: Left: Evolution of the Corresponding Gini Index (2.29) along with
the Analytical Approximation Using the Dispersive Wave Profile (2.30). Right The
Gini Index Converges to 1 Due to the Vanishing Dispersive Wave Transporting All
the Wealth to Infinity.
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2.7 Conclusion

In this manuscript, we have investigated three related models for money exchange

originated from econophysics. For the unbiased and poor biased dynamics, we rig-

orously proved the so-called propagation of chaos by virtue of a coupling technique,

and we found an explicit rate of convergence of the limit dynamics for the poor bi-

ased model thanks to the Bakry-Emery approach. We have also introduced a more

challenging dynamics referred to as the rich biased model, and a propagation of chaos

result was established via a powerful martingale-based argument presented in Merle

and Salez [118]. In contrast to the two other dynamics, the rich-biased dynamics

do not converge (strongly) to an equilibrium. Instead, we have found numerically

evidence of the emergence of a (vanishing) dispersive wave. Such wave of extreme

wealthy individual increases the inequality in the wealth distribution making the

corresponding Gini index converging to its maximum 1.

Although we have shown numerically strong evidence of a dispersive wave, it is

desirable to derive such emerging behavior directly from the evolution equation. One

direction of future work would be to derive space continuous dynamics of evolution

equations in order to investigate analytically the profile of traveling waves. However,

space continuous description such as the uniform reshuffling model could lead to

additional challenges. For instance, proving propagation of chaos using the martingale

technique for the uniform reshuffling model was more involved Cao et al. [39].

From a modeling perspective, one should explore how selecting the ”receiver” as

well as the ”giver” could impact the dynamics. Indeed, in the three dynamics studied

in the manuscript, the re-distribution process (how the one-dollar is redistributed)

is uniform among all the agent. It would be reasonable to have the redistribution

of the dollar based on the individual wealth (e.g. poor individual being more likely
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to receive a dollar). The interplay between receiver and giver selection could lead to

novel emerging behaviors.
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Chapter 3

ENTROPY DISSIPATION AND PROPAGATION OF CHAOS FOR THE

UNIFORM RESHUFFLING MODEL

Chapter 3 is the pre-print Cao et al. [39] submitted to Mathematical Models and

Methods in Applied Sciences, which is a joint work with Pierre-Emmanuel Jabin and

Sebastien Motsch.

3.1 Abstract

The uniform reshuffling model for money exchanges is investigated, in which two

agents picked uniformly at random redistribute their dollars between them. This

stochastic dynamics is of mean-field type and eventually leads to a exponential dis-

tribution of wealth. To better understand this dynamics, it is possible to investigate

its limit as the number of agents goes to infinity. By proving rigorously the so-

called propagation of chaos, the stochastic dynamics can be linked to a (limiting)

nonlinear partial differential equation (PDE). This deterministic description, which

is well-known in the literature, has a flavor of the classical Boltzmann equation aris-

ing from statistical mechanics of dilute gases. It is possible to prove its convergence

toward its exponential equilibrium distribution in the sense of relative entropy.

3.2 Introduction

Econophysics is an emerging branch of statistical physics that incorporate notions

and techniques of traditional physics to economics and finance Savoiu [140], Chatterjee

et al. [57], Dragulescu and Yakovenko [79]. It has attracted considerable attention

in recent years raising challenges on how various economical phenomena could be
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explained by universal laws in statistical physics, and we refer to Chakraborti et al.

[53, 54], Pereira et al. [125], Kutner et al. [103] for a general review.

The primary motivation for study models arising from econophysics is at least

two-fold: From the perspective of a policy maker, it is important to deal with the

raise of income inequality Dabla-Norris et al. [66], De Haan and Sturm [70] in order

to establish a more egalitarian society. From a mathematical point of view, we have

to understand the fundamental mechanisms, such as money exchange resulting from

individuals, which are usually agent-based models. Given an agent-based model,

one is expected to identify the limit dynamics as the number of individuals tends to

infinity and then its corresponding equilibrium when run the model for a sufficiently

long time (if there is one), and this guiding approach is carried out in numerous works

across different fields among literature of applied mathematics, see for instance Naldi

et al. [122], Barbaro and Degond [19], Carlen et al. [42].

In this work, we consider the so-called uniform reshuffling model for money ex-

change in a closed economic system with N agents. The dynamics consists in choosing

at random time two individuals and to redistribute their money between them. To

write this dynamics mathematically, we denote by Xi(t) the amount of dollar agent

i has at time t for 1 ≤ i ≤ N . At a random time generated by a Poisson clock with

rate N , two agents (say i and j) update their purse according to the following rule:

(
Xi, Xj

)
⇝
(
U(Xi+Xj) , (1−U)(Xi+Xj)

)
, (3.1)

where U is a uniform random variable over the interval [0, 1] (i.e. U ∼ Uniform[0, 1]).

The uniform reshuffling model is first studied in Dragulescu and Yakovenko [79] via

simulation. The agent-based numerical simulation suggests that, as the number of

agents and time go to infinity, the limiting distribution of money approaches the

exponential distribution as shown in Figure 3.1.
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Figure 3.1: Simulation Results for the Uniform Reshuffling Model. The Blue His-
togram Shows the Distribution of Money after T = 1000 Time Unit. The Red Solid
Curve Is the Limiting Exponential Distribution Proved in Lanchier and Reed [109].
We Used N = 10, 000 Agents, Each Starting with $10.

It is well-known (see for instance Matthes and Toscani [116], Bassetti and Toscani

[20], Düring et al. [80], Apenko [10]) that under the large population N → ∞ limit,

We can formally show that the law of the wealth of a typical agent (say X1) satisfies

the following limit PDE in a weak sense:

∂tq(t, x) =
∫ ∞

0

∫ ∞

0

1[0,k+ℓ](x)
k + ℓ

q(t, k)q(t, ℓ) dℓ dk − q(t, x). (3.2)

To our best knowledge, the rigorous derivation of the limit equation (3.2) from the

particle system description is absent in most of the literature on econophysics (just

like many other PDEs arising from models in econophysics Katriel [101], Heinsalu

and Patriarca [90], Chakrabarti et al. [51]), because the propagation of chaos effect is

implicitly assumed in the large N limit in most derivations. The remarkable exception

is the paper Cortez [60], where the author showed a uniform-in-time propagation of

chaos by virtue of a delicate coupling argument. In section 3.6 of this manuscript, we

will provide an alternative rigorous justification of the equation (3.2) under the limit

N → ∞.
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Once the limit PDE is identified from the interacting particle system, the natu-

ral next step is to study the problem of convergence to equilibrium of the PDE at

hand, it has been shown in Düring et al. [80], Matthes and Toscani [116] that the

unique (smooth) solution of (3.2) converges to its exponential equilibrium distribu-

tion exponentially fast in Wasserstein and Fourier metrics. In the present work, we

demonstrate a polynomial in time convergence in relative entropy, by establishing a

entropy-entropy dissipation inequality (see Theorem 9 below) which is not available

among the literature. An illustration of the general strategy used in this work (and

implicitly in many of the works cited above) is shown in Figure 4.1.

Figure 3.2: Schematic Illustration of the General Strategy of Our Treatment of the
Uniform Reshuffling Dynamics.

Although only a very specific binary exchange model is explored in the present

paper, other exchange rules can also be imposed and studied, leading to different

models. To name a few, the so-called immediate exchange model introduced in Hein-

salu and Patriarca [90] assumes that pairs of agents are randomly and uniformly

picked at each random time, and each of the agents transfer a random fraction of

its money to the other agents, where these fractions are independent and uniformly

distributed in [0, 1]. The uniform reshuffling model with saving propensity investi-
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gated in Chakraborti and Chakrabarti [52], Lanchier and Reed [109] suggests that

the two interacting agents keep a fixed fraction λ of their fortune and only the com-

bined remaining fortune is uniformly reshuffled between the two agents, which makes

the uniform reshuffling model the particular case λ = 0. For more variants of ex-

change models with (random) saving propensity and with debts, we refer the readers

to Chatterjee et al. [56] and Lanchier and Reed [110].

This manuscript is organized as follows: in section 4.3, we briefly discuss the

properties of the limit equation (3.2). We show in section 3.4 convergence results for

the solution of (3.2) in Wasserstein distance and in the linearized region. We take on

the most delicate analysis of the entropy-entropy dissipation relation in section 3.5.

Finally, we present a rigorous treatment of the propagation of chaos phenomenon in

section 3.6.

3.3 The Limit Equation and Its Properties

We present a heuristic argument behind the derivation of the limit PDE (4.6)

arising from the uniform reshuffling dynamics in section 5.3.1. Several elementary

properties of the solution of (4.6) are recorded in section 5.3.2. Section 5.3.3 is devoted

to another formulation of the uniform reshuffling model, which can be viewed as a

lifting of the reshuffling mechanics (3.1) and is implicitly exploited in Apenko [10].

In section 3.3.4, we highlight a key ingredient known as the micro-reversibility, of the

collision operator determined by the right side of (4.6), which allows us to construct

certain Lyapunov functions associated with (4.6) (such as entropy).
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3.3.1 Formal Derivation of the Limit Equation

Introducing N(i,j)
t independent Poisson processes with intensity 1/N , the dynamics

can be written as:

dXi(t) =
∑

j=1..N,j ̸=i

(
U(t−)(Xi(t−)+Xj(t−)) −Xi(t−)

)
dN(i,j)

t (3.1)

with U(t) ∼ Uniform[0, 1] independent of {Xi(t)}1≤i≤N . As the number of players N

goes to infinity, one could expect that the processes Xi(t) become independent and

of same law. Therefore, the limit dynamics would be of the form:

dX(t) =
(
U(t−)(X(t−)+Y (t−)) −X(t−)

)
dNt (3.2)

where Y (t) is an independent copy of X(t) and Nt a Poisson process with intensity

1. Taking a test function φ, the weak formulation of the dynamics is given by:

dE[φ(X(t))] = E[φ
(
U(t)(X(t)+Y (t))

)
− φ(X(t))] dt (3.3)

In short, the limit dynamics correspond to the jump process:

X ⇝ U(X+Y ). (3.4)

Let’s denote q(t, x) the law of the process X(t). To derive the evolution equation for

q(t, x), we need to translate the effect of the jump of X(t) via (3.4) onto q(t, x).

Lemma 3.3.1 (Hierarchy of probability distributions) Suppose X and Y two in-

dependent random variables with probability density q(x) supported on [0,∞). Let

Z = U(X + Y ) with U ∼ Uniform([0, 1]) independent of X and Y . Then the law of

Z is given by Q+[q] with:

Q+[q](x) =
∫ ∞

m=0

1[0,m](x)
m

(∫ m

z=0
q(z)q(m− z)dz

)
dm (3.5)

=
∫
R+×R+

1[0,k+ℓ](x)
k + ℓ

q(k)q(ℓ)dℓdk (3.6)
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Proof Let’s introduce a test function φ.

E[φ(U(X+Y ))] =
∫

x≥0

∫
y≥0

∫ 1

u=0
φ(u(x+ y))q(x)q(y) dudxdy

=
∫

m≥0

∫ m

z=0

∫ 1

u=0
φ(um)q(z)q(m− z) dudzdm

=
∫

m≥0

∫ m

z=0

1
m

∫ m

s=0
φ(s)q(z)q(m− z) dsdzdm

using the change of variables z = x and m = x+ y followed by s = um. We conclude

using Fubini that:

E[φ(U(X+Y ))] =
∫

s≥0
φ(s)

(∫
m≥0

1[0,m](s)
1
m

∫ m

z=0
q(z)q(m− z) dzdm

)
ds

=
∫

s≥0
φ(s)Q+[q](s) ds (3.7)

with Q+[q] defined by (4.5). □

We can now write the evolution equation for the law of X(t) (3.2), the density

q(t, x) satisfies weakly:

∂tq(t, x) = G[q](t, x) for t ≥ 0 and x ≥ 0 (3.8)

with

G[q](x) := Q+[q](x) − q(x) =
∫ ∞

0

∫ ∞

0

1[0,k+ℓ](x)
k + ℓ

q(k)q(ℓ)dℓdk − q(x). (3.9)

3.3.2 Evolution of Moments

Now we will establish several elementary properties of the solution of (4.6):

Proposition 3.3.2 Assume that q(t, x) is a classical (and global in time) solution of

(4.6) and define by mk(t) the k-th moment of q:

mk(t) :=
∫ ∞

0
xkq(t, x)dx. (3.10)

Then:

m′
k(t) = 1

k + 1

k∑
j=0

Cj
kmj(t)mk−j(t) − mk(t), (3.11)
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where Cj
k =

 k

j

 = k!
j!(k−j)! represents the binomial coefficient.

Proof Notice that the moment can be written as: mk(t) = E[Xk(t)]. Thus, we use

the weak formulation of the evolution equation of q(t, x) (3.3) with φ(x) = xk and

deduce that:

m′
k = E[

(
U(X+Y )

)k
−X

k] = E[Uk]E[(X+Y ))k] −mk,

since U is independent of X and Y . Moreover, E[Uk] =
∫ 1

u=0 u
k du = 1

k+1 . Using the

independence of X and Y and expanding lead to (3.11). □

Corollary 3.3.3 Let q(t, x) solution of (4.6) and mk(t) its k−th moment (3.10).

The total mass and the mean are preserved, i.e. m′
0(t) = m′

1(t) = 0 and all the

moments mk(t) converges in time exponentially fast.

Proof Writing (3.11) for k = 2 leads to:

m′
2 = −1

3m2 + 2
3m

2
1 (3.12)

and thus m2(t) = 2m2
1+
(
m2(0)−2m2

1

)
e− 1

3 t. More generally, we proceed by induction

to show that mk(t) converges exponentially, more precisely mk(t) is of the form:

mk(t) = m∗
k + O(e− k−1

k+1 t) (3.13)

with m∗
k the limit value of mk(t). We first re-write the evolution equation of mk(t):

m′
k(t) = −k − 1

k + 1mk(t) + Pk−1(t) (3.14)

with Pk−1(t) = 1
k+1

∑k−1
j=1 C

j
kmj(t)mk−j(t). By induction, Pk−1(t) has to converge in

time. Using variation of constant in (3.14) gives:

mk(t) = mk(0)e− k−1
k+1 t + e− k−1

k+1 t
∫ t

s=0
e

k−1
k+1 sPk−1(s) ds, (3.15)
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which leads to (3.13). □

From the proposition, we observe that the second moment m2(t) converges expo-

nentially toward the constant 2m2
1. This behavior could be expected as the equilib-

rium of the dynamics (4.6) is given by:

q∞(x) := 1
m1

e− x
m1 1[0,∞)(x) (3.16)

for which the second moment is equal 2m2
1.

Remark. Moment calculations can be useful in the study of classical spatially

homogeneous Boltzmann equation, and we refer the readers to Alonso et al. [8] for

more information on this regard.

3.3.3 Pairwise Distribution

Before studying the evolution of the entropy of the solution q(t, x), we make a

detour with another formulation of the reshuffling model using a two-particles distri-

bution. Indeed, the jump process X(t) (3.4) is a “truncated version” of the following

dynamics:

(X,Y )⇝
(
U(X+Y ) , (1 − U)(X+Y )

)
(3.17)

where U ∼ Uniform([0, 1]). Introducing a test function φ(x, y), this dynamics lead

to:

dE[φ(X,Y )] = E[φ
(
U(X+Y ) , (1 − U)(X+Y )

)
− φ(X,Y )] dt. (3.18)

We now translate this evolution equation into a PDE.

Proposition 3.3.4 Let f(t, x, y) the density distribution of the process (X(t), Y (t)).

It satisfies (weakly) the linear evolution equation:

∂tf = L+[f ] − f (3.19)
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with

L+[f ](x, y) = 1
x+ y

∫ x+y

z=0
f(z, x+ y − z) dz. (3.20)

Proof The evolution equation (3.17) gives:

d
dt

∫
x,y≥0

f(t, x, y)φ(x, y) dxdy =
∫ 1

u=0

∫
x,y≥0

f(t, x, y)φ
(
u(x+y), (1−u)(x+y)

)
dxdydu

−
∫

x,y≥0
f(t, x, y)φ(x, y) dxdy (3.21)

To identify the operator associated with the equation, let’s rewrite the “gain term”

(dropping the dependency in time for simplicity) using two changes of variables:

∫ 1

u=0

∫
x,y≥0

f(x, y)φ
(
u(x+y), (1−u)(x+y)

)
dxdydu

=
∫ 1

u=0

∫
m≥0

∫ m

z=0
f(z,m− z)φ

(
um, (1−u)m)

)
dzdmdu

=
∫

x′,y′≥0

∫ x′+y′

z=0
f(z, x′ + y′ − z)φ(x′, y′) 1

x′ + y′ dzdx
′dy′

with (x′ = um, y′ = (1 − u)m) leading to dx′dy′ = mdudm. □

Remark. Notice that the operator L (4.7) “flattens” the distribution f over the

diagonals x+ y = Constant and thus minimizing its entropy over each diagonal (see

Figure 3.3). In particular, the equilibrium for the dynamics are the distribution of

the form: f∗(x, y) = ϕ(x+ y).

x

y

x

y
"flatten"
diagonals

Figure 3.3: The Operator L+ (4.7) Flattens the Distribution f(x, y) Over the Di-
agonal Lines x+ y = Constant.
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The linear operator L+ (4.7) is linked to the non-linear operator Q+ (4.5). Indeed,

assuming X and Y are independent, i.e. f(x, y) = q(x)q(y), integrating L+[f ] over

the ’extra’ variable y gives:

∫
y≥0

L+[f ](x, y) dy =
∫

y≥0

1
x+ y

∫ x+y

z=0
q(z)q(x+ y − z) dz dy

=
∫ +∞

m=x

1
m

∫ m

z=0
q(z)q(m− z) dz dy = Q+[q](x).

manifold

vector space

projection

Linear PDE

Non-linear PDE

Figure 3.4: Schematic Representation of the Evolution of f(t, x, y) and q(t, x). If
f Belongs to the Manifold of Independent Functions, i.e. f(t, x, y) = q(t, x)q(t, y),
Then the Evolution of Its Marginal q Satisfies locally the Non-Linear Equation (4.6).
Notice That the Manifold of Independent Function Is Not Invariant By the Flow
of the Linear PDE. Notice That We Have Assumed m1 = 1 So That f∞(x, y) :=
q∞(x)q∞(y) = e−x−y. Also, the Definition of g Appears in (3.6).

3.3.4 Micro-Reversibility

The evolution equation for f (3.19) corresponds to a collisional operator with the

kernel:

K
(
x, y;x′, y′

)
= 1
x+ y

δx+y(x′ + y′) (3.22)

where δ denote the Dirac distribution. Indeed, writing z = (x, y), the equation (3.19)

could be written:

∂tf(z, t) =
∫

z̃≥0
K
(
z̃; z

)
f(z̃, t) dz̃ −

∫
z′≥0

K
(
z; z′

)
f(z, t) dz′ (3.23)
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where z′ = (x′, y′) denotes the post-collisional position and z̃ = (x̃, ỹ) the pre-collision

position.

Remark. A more rigorous way to define the kernel K is through a weak formulation

using a test function φ(x, y):

”
∫

x′,y′≥0
K
(
x, y;x′, y′

)
φ(x′, y′) dx′dy′” = 1

x+ y

∫ x+y

z=0
φ(z, x+ y − z) dz. (3.24)

The collisional kernel K satisfies a micro-reversibility condition, namely:

K
(
z; z′

)
= K

(
z′; z

)
for any z and z′ ∈ R+ × R+. (3.25)

x

y "micro-reversibility"

jump rate

Figure 3.5: The Collision Kernel K (3.22) Satisfies a Micro-Reversibility Condition.

One has to integrate against a test function φ to make this statement rigorous.

As a consequence, we deduce the lemma.

Lemma 3.3.5 Let φ(x, y) a (smooth) test function and f(t, x, y) the solution of

(3.19). Then:

d
dt

∫
z
f(z, t)φ(z)dz = −1

2

∫
z,z′

K(z; z′)
(
f(z′, t)−f(z, t)

)(
φ(z′)−φ(z)

)
dzdz′. (3.26)
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Proof We drop the dependency in time to ease the reading:

d
dt

∫
z
f(z)φ(z)dz =

∫
z̃,z
K(z̃; z)f(z̃)φ(z)dz̃dz −

∫
z,z′

K(z; z′)f(z)φ(z)dz̃dz

=
∫

z,z′
K(z; z′)f(z)

(
φ(z′) − φ(z)

)
dzdz′

=
∫

z,z′
K(z′; z)f(z′)

(
φ(z) − φ(z′)

)
dzdz′

=
∫

z,z′
K(z; z′)f(z′)

(
φ(z) − φ(z′)

)
dzdz′

= 1
2

∫
z,z′

K(z; z′)
(
f(z) − f(z′)

)(
φ(z′) − φ(z)

)
dzdz′.

We deduce that both the L2 norm and the entropy of f(t, x, y) decay in time. □

3.4 Convergence to Equilibrium: Wasserstein and Linearization

We carry out an linearization analysis around the exponential equilibrium distri-

bution of the solution of (4.6) and demonstrate an explicit rate of convergence under

the linearized (weighted L2) setting in section 3.4.1. These arguments are reinforced

in section 3.4.2 into a local convergence result for the full nonlinear equation. A cou-

pling approach is encapsulated in section 3.4.3 in order to show that solution q(t, x)

of (4.6) relaxes to its equilibrium q∞ exponentially fast in the Wasserstein distance.

3.4.1 Linearization Around Equilibrium

Now we perform a linearization analysis near the global exponential equilibrium

q∞, in a fashion that is similar to Baranger and Mouhot [18]. For this purpose, we

define the linear operator L to be

L[h](x) :=
∫ ∞

0

∫ ∞

0

1[0,k+ℓ](x)
k + ℓ

q∞(k+ ℓ− x)
(
h(k) + h(ℓ) − h(x) − h(k+ ℓ− x)

)
dk dℓ.

Setting q = q∞(1 + εh) for 0 < ε << 1, we deduce from (3.3) that

∂th(x) = L[h](x), (3.1)
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where h ∈ L2(q∞) is orthogonal to N (L) := Span{1, x} in L2(q∞). For the lin-

earized equation (3.1), the natural entropy is the L2(q∞) norm of h, and the entropy

dissipation is given by

d
dtE : = d

dt
1
2∥h∥2

L2(q∞)

=
∫
R3

+

1[0,k+ℓ](x)
k + ℓ

q∞(k)q∞(ℓ)
(
h(k) + h(ℓ) − h(k + ℓ− x) − h(x)

)
h(x) dk dℓ dx

= −1
4

∫
R3

+

1[0,k+ℓ](x)
k + ℓ

q∞(k)q∞(ℓ)
(
h(k + ℓ− x) + h(x) − h(k) − h(ℓ)

)2
dk dℓ dx.

In particular, it implies that the spectrum of L in L2(q∞) is non-positive.

Remark. It is not hard to show that the linear operator −L enjoys a self-adjoint

property on the space L2(q∞). Thus the existence of a spectral gap η is equivalent to

∀h ⊥ N (L), −⟨L[h], h⟩L2(q∞) := −
∫ ∞

0
L[h](x)h(x) q∞(x) dx ≥ η ∥h∥2

L2(q∞).

Remark. Following Grünbaum [84], we give some comments on the space L2(q∞).

If q is the unique solution of (4.6) and we set q = q∞(1 + εh) as before for h ⊥ N (L),

then

∫ ∞

0
q log q dx =

∫ ∞

0
q∞(1 + εh) log(q∞(1 + εh)) dx

=
∫ ∞

0
q∞ log q∞ dx+ ε

∫ ∞

0

(
log 1

M
− 1
M
x
)
h q∞ dx

+
∫ ∞

0
q∞(1 + εh)

(
εh− (εh)2

2 ± · · ·
)

dx

=
∫ ∞

0
q∞ log q∞ dx+ ε2

2

∫ ∞

0
h2 q∞ dx+O(ε3),

where we used the fact that h ⊥ N (L). Therefore, we can see that ∥h∥2
L2(q∞) =∫∞

0 h2 q∞ dx gives the first-order correction to the expansion of the entropy of q around

q∞.
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We will prove that the linearized entropy E = 1
2∥h∥2

L2(q∞) decays exponentially fast

in time with an explicit sharp decay rate, the essence of which lies in the following

lemma.

Lemma 3.4.1 Let m1 = 1 and A := {h ∈ L2(q∞) | h ∈ N (L)}. Then

inf
h∈A

∫∞
0 h2(x) q∞(x) dx∫∞

0
e−z

z
(
∫ z

0 h(x) dx)2 dz
= 3, (3.2)

and the infimum in (3.2) is attained (up to a non-zero multiplication constant) at

h(x) = 1
2 (x2 − 4x+ 2).

Proof The key ingredient in the proof is the fact that the so-called Laguerre poly-

nomials, defined by

Ln(x) = ex

n!
dn

dxn
(e−xxn) =

n∑
k=0

(
n

k

)
(−1)k

k! xk, n ≥ 0,

form an orthonormal basis for the weighted L2 space L2(q∞) Abramowitz and Stegun

[1]. Thus, for any h ∈ L2(q∞) which is not identically zero, we can write h =∑∞
n=0 αnLn, in which αn ∈ R for all n. Next, notice that the condition h ∈ A implies

that α0 = α1 = 0. Moreover, we have
∫∞

0 h2(x) q∞(x) dx = ∑∞
n=2 α

2
n thanks to the

orthonormality of the Laguerre polynomials {Ln}n≥0. To proceed further, we recall

that Poularikas [132] Ln(z)−Ln+1(z) =
∫ z

0 Ln(x)dx and zL′
n(z) = nLn(z)−nLn−1(z)
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for all n ≥ 1, whence

∫ ∞

0

e−z

z

(∫ z

0
h(x)dx

)2
dz =

∫ ∞

0

e−z

z

( ∞∑
n=2

αn(Ln(z) − Ln+1(z))
)2

dz

=
∫ ∞

0
e−z

 ∞∑
n,m=2

αnαm

(
Ln − Ln+1

z

)
(Lm − Lm+1)

2

= −
∞∑

n,m=2

αnαm

n+ 1

∫ ∞

0
e−z(Lm(z) − Lm+1(z)) dLn+1(z)

=
∞∑

n,m=2

αnαm

n+ 1

∫ ∞

0
Ln+1(z) d

(
e−z(Lm(z) − Lm+1(z))

)

=
∞∑

n,m=2

αnαm

n+ 1

∫ ∞

0
Ln+1(z)Lm+1(z) e−z dz

=
∞∑

n=2

α2
n

n+ 1 ≤ 1
3

∞∑
n=2

α2
n.

Finally, notice that the inequality above will become an equality if and only if αn = 0

for all n ≥ 3, or in other words, if and only if h(x) = L2(x) = 1
2 (x2 − 4x+ 2) up to a

non-zero multiplication constant. □

We are now in a position to prove the following result.

Theorem 5 Assume that h ∈ L2(q∞) solves the linearized equation (3.1), then we

have

∥h(t)∥L2(q∞) ≤ ∥h(0)∥L2(q∞)e− 1
3 t. (3.3)

Proof We will only prove the result for m1 = 1, and the general case follows readily

from a change of variable argument. From the discussion above, we already have that

− d
dt

1
2∥h∥2

L2(q∞) =
∫
R3

+

1[0,k+ℓ](x)
k + ℓ

q∞(k)q∞(ℓ)·

(h(k + ℓ− x) + h(x) − h(k) − h(ℓ))h(x) dk dℓ dx.
(3.4)

Thanks to h ∈ A, it is not hard to see through a change of variable that

∫
R3

+

1[0,k+ℓ](x)
k + ℓ

q∞(k)q∞(ℓ)h(k + ℓ− x)h(x) dk dℓ dx = 0.
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Also, a simple calculation yields that
∫
R3

+

1[0,k+ℓ](x)
k + ℓ

q∞(k)q∞(ℓ)h2(x) dk dℓ dx =
∫ ∞

0
h2(x) e−x dx

and
∫
R3

+

1[0,k+ℓ](x)
k + ℓ

q∞(k)q∞(ℓ)h(k)h(x) dk dℓ dx =
∫ ∞

0

e−z

z

(∫ z

0
h(x) dx

)2
dz.

Consequently, (3.4) reads

− d
dt

1
2∥h∥2

L2(q∞) =
∫ ∞

0
h2(x) e−x dx− 2

∫ ∞

0

e−z

z

(∫ z

0
h(x) dx

)2
dz

≥ 1
3

∫ ∞

0
h2(x) e−x dx = 1

3∥h∥2
L2(q∞),

in which the inequality follows directly from the previous lemma. Thus we can con-

clude by Gronwall’s inequality. □

3.4.2 Local Convergence in L2

We now extend the linearization argument from the previous subsection into a

local convergence result for the full non-linear equation.

Theorem 6 There exists some ε > 0 such that if at some time t ≥ 0,
∫ |q(t, x) − q∞(x)|2

q∞(x) dx ≤ ε,

then q converges to q∞ and for any λ < 1
3 , there exists Cλ such that

∫ |q(t, x) − q∞(x)|2
q∞(x) dx ≤ Cλ e−λ t.

Proof For a solution q, we denote h(t, x) = (q − q∞)/q∞ and calculate

− d
dt

1
2 ∥h∥2

L2(q∞) = −
∫
h ∂tq = −

∫
h (Q+[q] − q)

= −
∫
h q∞ L[h] −

∫
h(x) q∞(x) 1x≤k+ℓ

k + ℓ
q∞(k + ℓ− x)h(k)h(ℓ) dx dk dℓ.
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Denote

R(x) =
∫
1x≤k+ℓ

k + ℓ
q∞(k + ℓ− x)h(k)h(ℓ) dk dℓ,

and calculate
∣∣∣∣∫ h(x) q∞(x)R(x) dx

∣∣∣∣ ≤
(∫

q∞(x) 1x≤k+ℓ

k + ℓ
q∞(k + ℓ− x)h2(k)h2(ℓ) dx dk dℓ

)1/2

·
(∫

h2(x) q∞(x) 1x≤k+ℓ

k + ℓ
q∞(k + ℓ− x) dx dk dℓ

)1/2
.

So first of all,∫
q∞(x) 1x≤k+ℓ

k + ℓ
q∞(k + ℓ− x)h2(k)h2(ℓ) dx dk dℓ

=
∫
1x≤k+ℓ

k + ℓ
q∞(k) q∞(ℓ)h2(k)h2(ℓ) dx dk dℓ = ∥h∥4

L2(q∞).

On the other hand,
∫
h2(x) q∞(x) 1x≤k+ℓ

k + ℓ
q∞(k + ℓ− x) dx dk dℓ =

∫
h2(x) q∞(x) dx = ∥h∥2

L2(q∞).

Hence, ∣∣∣∣∫ h(x) q∞(x)R(x) dx
∣∣∣∣ ≤ ∥h∥3

L2(q∞).

Coming back to the equation, we have that

− d
dt

1
2 ∥h∥2

L2(q∞) ≥ −
∫
h(x) q∞(x) L[h] dx− ∥h∥3

L2(q∞).

Using the previous calculations on the spectral gap of L, we can conclude that

− d

dt

1
2 ∥h∥2

L2(q∞) ≥ 1
3 ∥h∥2

L2(q∞) − ∥h∥3
L2(q∞),

which finishes the proof with a Gronwall bound. □

We can couple this with an interpolation argument to modify the smallness as-

sumption in weighted L2 by using the relative entropy, which leads us to Theorem 7

below, whose proof will be deferred to Appendix C (as the proof of Theorem 7 relies

on several a priori estimates established in section 3.5).
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Theorem 7 Assume that for some λ0 >
1
2 , sup

x
eλ0 x q(0, x) < ∞. Then there exists

some δ > 0 such that if at some time t ≥ 0,

∫
q(t, x) log q(t, x)

q∞(x) dx ≤ δ,

we have that q converges to q∞ and for any λ < 1
3 , there exists Cλ such that

∫ |q(t, x) − q∞(x)|2
q∞(x) dx ≤ Cλ e−λ t.

3.4.3 Coupling and Convergence in Wasserstein Distance

In this section we shall employ a coupling argument to demonstrate the conver-

gence of the solution of (4.6) to the exponential probability density function given by

(5.12). Before we state the main result of this section, we first collect several relevant

definitions.

Definition 12 For random variables X and Y taking values in R+, we write X ⊥ Y

to mean that X and Y are mutually independent. Also, the Wasserstein distance with

exponent 2 between two probability density functions (say f and g) is defined by

W2(f, g) = inf
{√

E[|X − Y |2]; Law(X) = f, Law(Y ) = g
}
,

where the infimum is taken over all pairs of random variables defined on some prob-

ability space (Ω,P) and distributed according to f and g, respectively.

Next, we present a stochastic representation of the evolution equation (4.6), which

is interesting in its own right.

Proposition 3.4.2 Assume that qt(x) := q(t, x) is a solution of (4.6) with initial

condition q0(x) being a probability density function supported on R+ with mean m1.
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Defining (Xt)t≥0 to be a R+-valued continuous-time pure jump process with jumps of

the form

Xt
rate 1

U(Xt + Yt), (3.5)

where Yt is a i.i.d. copy of Xt, U ∼ Uniform[0, 1] is independent of (Xt) and (Yt), and

the jump occurs according to a Poisson clock running at the unit rate. If Law(X0) =

q0, then Law(Xt) = qt for all t ≥ 0.

Proof Taking φ to be an arbitrary but fixed test function, we have

d
dtE[φ(Xt)] = E[φ(U(Xt + Yt))] − E[φ(Xt)]. (3.6)

Denoting q(t, x) as the probability density function of Xt, (5.9) can be rewritten as

d
dt

∫
R+
q(t, x)φ(x)dx =

∫
R2

+

∫ 1

0
φ(u(k + ℓ))q(k, t)q(ℓ, t)dudkdℓ−

∫
R+
q(t, x)φ(x)dx.

After a simple change of variables, one arrives at

d
dt

∫
R+
q(t, x)φ(x)dx =

∫
R+

(Q+[q](x, t) − q(t, x))φ(x)dx. (3.7)

Thus, q must satisfy ∂tq = G[q] and the proof is completed. □

Remark. Using a similar reasoning, we can show that if (X t)t≥0 is a R+-valued

continuous-time pure jump process with jumps of the form

X t
rate 1

U(X t + Y t), (3.8)

where Y t is a i.i.d. copy of X t, U ∼ Uniform[0, 1] is independent of (X t) and (Y t),

and the jump occurs according to a Poisson clock running at the unit rate. Then

Law(X0) = q∞ implies Law(X t) = q∞ for all t ≥ 0.

The main result of this section is recorded in the following theorem:

Theorem 8 Under the setting of Proposition 4.3.2, we have

W2(qt, q∞) ≤ e− 1
6 tW2(q0, q∞), ∀t ≥ 0. (3.9)
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Proof Fixing t ∈ R+, we need to couple the two densities qt and q∞. Suppose

that (Xt)t≥0 and (X t)t≥0 are R+-valued continuous-time pure jump processes with

jumps of the form (3.5) and (3.8), respectively. We can take (Xt, Yt) and (X t, Y t)

as in the statement of Proposition 4.3.2 and Remark 3.4.3, respectively. Meanwhile,

we require that Xt ⊥ Y t, X t ⊥ Yt and (Xt, X t) ⊥ (Yt, Y t), i.e., several independence

assumptions can be imposed along the way when we introduce the coupling. We insist

that the same uniform random variable U is used in both (3.5) and (3.8). Moreover,

we impose that Law(X0) = q0 and Law(X0) = q∞. As a consequence of the previous

proposition and remark, qt = Law(Xt) and Law(X t) = q∞ for all t ≥ 0, whence

E[X t] = E[Y t] = m1 and E(X2
t ) = E(Y 2

t ) = 2m2
1, ∀t ≥ 0. Also, we have that

E[Xt] = E[Yt] = m1 for all t ≥ 0. Thanks to the aforementioned coupling, we then

have

d
dtE[(Xt −X t)2] = E[

(
U(Xt + Yt −X t − Y t)

)2
− (Xt −X t)2]

= 1
3

(
E[(Xt −X t)2] + E[(Yt − Y t)2] + 2E[(Xt −X t)(Yt − Y t)]

)
− E[(Xt −X t)2]

= 2
3E[(Xt −X t)2] + 2

3E[Xt −X t] · E[Yt − Y t] − E[(Xt −X t)2]

= −1
3E[(Xt −X t)2].

Now we pick X0 with law q∞ so that W 2
2 (q, q∞) = E[(X0 − X0)2], and a routine

application of Gronwall’s inequality yields (3.9). □

3.5 Entropy Dissipation

We state our main result, Theorem 9, in section 5.5.1 so that readers know exactly

what is at stake. We will present various expressions of the entropy and entropy

dissipation associated to the solution q(t, x) of (4.6), along with a discussion of the

strategy of the proof of Theorem 9 in section 5.5.2. A sequence of auxiliary lemmas
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and corollaries are recorded in section 5.5.3 and 3.5.4. Finally, a full proof of Theorem

9, built upon all of the preparatory work from 5.5.1 to 3.5.4, is shown in 3.5.5.

3.5.1 Main Result

For the integro-differential equation (4.6), a common strategy Bassetti and Toscani

[20], Düring et al. [80], Matthes and Toscani [116] is to use the Laplace transform or

Fourier transform of (4.6) to prove the exponential decay of solution of (4.6) to q∞(x)

in some Fourier metric. However, little analysis of (4.6) has been carried out without

resorting to Laplace or Fourier transform. In particular, we would like to show the

dissipation of relative entropy, i.e., DKL(q(·, t) || q∞), along solution trajectories:

d
dt

∫ ∞

0
q log q

q∞
dx = d

dt

∫ ∞

0
q log q dx ≤ 0. (3.1)

It is reasonable to expect the validity of (3.1) as the exponential probability density

q∞ maximizes the negative entropy −
∫∞

0 p log p dx among all continuous probability

density functions supported on [0,∞) with prescribed mean.

The following proposition together with its proof should be a reminiscent of the

calculations carried out for a standard Boltzmann equation arising from the kinetic

theory of (dilute) gases Villani [147].

Proposition 3.5.1 Let φ(x) be a (continuous) test function on R+ and assume that

q is a smooth solution of (4.6), then we have

d
dt

∫ ∞

0
q(t, x)φ(x)dx = −1

4

∫
R3

+

1[0,k+ℓ](x)
k + ℓ

(
q(k + ℓ− x)q(x) − q(k)q(ℓ)

)
·

(
φ(k + ℓ− x) + φ(x) − φ(k) − φ(ℓ)

)
dkdℓdx.

Moreover, inserting φ = log q and employing the fact that total mass is conserved

(i.e., m′
0(t) = 0 for all t ≥ 0), we obtain the dissipation of relative entropy:

d
dt

∫ ∞

0
q(t, x) log q(t, x)dx = −1

4D[q],
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where

D[q] :=
∫
R3

+

1[0,k+ℓ](x)
k + ℓ

(
q(k+ ℓ−x)q(x)− q(k)q(ℓ)

)
log q(k + ℓ− x)q(x)

q(k)q(ℓ) dk dℓ dx ≥ 0.

(3.2)

Proof We notice that the PDE (4.6) can be rewritten as

∂tq(x) =
∫ ∞

0

∫ ∞

0

1[0,k+ℓ](x)
k + ℓ

(
q(k)q(ℓ) − q(x)q(k + ℓ− x)

)
dkdℓ (3.3)

(thanks to Proposition 3.3.2). Omitting the time variable for simplicity, we deduce

that

d
dt

∫ ∞

0
q(x)φ(x)dx =

∫
R3

+

1[0,k+ℓ](x)
k + ℓ

(
q(k)q(ℓ) − q(x)q(k + ℓ− x)

)
φ(x)dkdℓdx

=
∫
R3

+

1[0,k+ℓ](x)
k + ℓ

q(k)q(ℓ)
(
φ(x) − φ(ℓ)

)
dkdℓdx

=
∫
R3

+

1[0,k+ℓ](x)
k + ℓ

q(k)q(ℓ)
(
φ(k + ℓ− x) − φ(k)

)
dkdℓdx

= 1
2

∫
R3

+

1[0,k+ℓ](x)
k + ℓ

q(k)q(ℓ)

·
(
φ(k + ℓ− x) + φ(x) − φ(k) − φ(ℓ)

)
dkdℓdx

= −1
4

∫
R3

+

1[0,k+ℓ](x)
k + ℓ

(
q(k + ℓ− x)q(x) − q(k)q(ℓ)

)

·
(
φ(k + ℓ− x) + φ(x) − φ(k) − φ(ℓ)

)
dkdℓdx.

□

Remark. The dissipation of the relative entropy can also be seen via an alternative

perspective. Indeed, we fix t ≥ 0 and assume that X1(t) and X2(t) are i.i.d R+-valued

random variable with its probability density function given by q(t, x), and we define

(Z1, Z2) = (U(X1 +X2), (1−U)(X1 +X2)) with U ∼ Uniform[0, 1] being independent

of X1 and X2. Then we deduce from the PDE (4.6) and Lemma 4.3.1 that

2 d
dtDKL(q || q∞) = H((Z1, Z2), (X1, X2)) − H((X1, X2))

≤ H((Z1, Z2)) − H((X1, X2)),
(3.4)
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where H(X, Y ) :=
∫
R ρX(x) log ρY (x)dx represents the cross entropy from Y to X, if

the laws of X and Y are given by ρX and ρY . It can be shown Apenko [10] that the

joint entropy of (Z1, Z2) is always no more than the joint entropy of (X1, X2), whence

the rightmost side of (3.4) is non-positive.

Corollary 3.5.2 The exponential distribution q∞ defined in (5.12) is the only (smooth)

equilibrium solution of the PDE (4.6).

Proof By Proposition 3.5.1, we see that

q∞(x)q∞(k + ℓ− x) = q∞(k)q∞(ℓ) for all k, ℓ, x ≥ 0 such that k + ℓ ≥ x.

Since
∫∞

0 q∞(x) dx = 1 and
∫∞

0 x q∞(x) dx = m1, q∞ must be the exponential proba-

bility density provided by (5.12). □

We will prove that
∫
q log q

q∞
dx t→∞−−−→ 0 occurs polynomially fast in time. Without

of loss generality, throughout the argument to be presented below we will set m1 = 1,

i.e., q∞(x) = e−x for x ≥ 0. Our main result is stated as follows:

Theorem 9 Under the assumptions of Lemma 3.5.7 below, we have for some con-

stant C, θ > 0 and for any t ≥ C log(1/D) that∫ +∞

x=0
q(x, t) log q(x, t)e−x

dx ≤ C Dθ. (3.5)

To our best knowledge, Theorem 9 is the first entropy-entropy dissipation inequality

established for the uniform reshuffling dynamics.

3.5.2 Basic Expressions of the Entropy-Entropy Dissipation

Let us start by looking at the strong convergence of the pairwise distribution,

which is essentially trivial. Indeed, we recall the linear PDE (3.19), which reads

∂tf = L+[f ] − f,
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where

L+[f ](x, y) = 1
x+ y

∫ x+y

z=0
f(z, x+ y − z) dz.

Then denoting

g(t, λ) = 1
λ

∫ λ

0
f(t, z, λ− z)dz, (3.6)

we can rewrite (3.19) as ∂tf(t, x, y) = g(t, x+ y) − f(t, x, y), whence

∂tg(t, λ) = 1
λ

∫ λ

z=0
∂tf(t, z, λ− z) dz

= 1
λ

∫ λ

0
(g(t, λ) − f(t, z, λ− z)) dz = 0.

Hence g(t, λ) = g(0, λ) and trivially

|f(t, x, y) − g(0, x+ y)| ≤ e−t. (3.7)

Unfortunately this cannot be used to show the convergence on the actual equation

for q(t, x) because the two models are not equivalent: If q(t, x) solves (4.6), which is

nonlinear, then in general f(t, x, y) = q(t, x) q(t, y) does not solve (3.19). The one

exception is when q(t, x) is some exponential.

This can also be seen from the fact that in the argument above f does not necessar-

ily converge to an exponential but to whatever g(t = 0) was. The rate of convergence

is also too fast as the second moment of q converges much slower for example.

We will still find some of the structure above in the entropy dissipation for q but

that is one reason why the entropy dissipation is not easy to handle. In particular,

the entropy dissipation will vanish whenever f(x, y) = g(x+y) which seems to create

some degeneracy.

Next, we can rewrite the dissipation term in a manner that will make the connec-

tion with the exponential more apparent. We define for simplicity f(x, y) = q(x) q(y),

and as before

g(λ) = 1
λ

∫ λ

0
f(z, λ− z) dz = 1

λ

∫ λ

0
q(z) q(λ− z) dz.
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Finally, we also define

h(x) =
∫
R+
g(x+ y) dy.

We remark here that h coincides with the collision gain operator Q+[q] defined via

(4.5). With these definitions, we have

Lemma 3.5.3 One has that

D = 2
∫
R2

+

q(x) q(y) log q(x) q(y)
g(x+ y) dx dy + 2

∫
R2

+

g(x+ y) log g(x+ y)
q(x) q(y) dx dy,

or as well that

D = 2
∫
R2

+

q(x) q(y) log q(x) q(y)
g(x+ y) dx dy + 2

∫
R2

+

g(x+ y) log g(x+ y)
h(x)h(y) dx dy

+ 4
∫
R+
h(x) log h(x)

q(x) dx.

Formally this forces g(x+y) to be close to f(x, y) so this is a very similar term to the

one that we had found when looking at equation (3.19). It is some sort of degeneracy

because it does not directly force f to be close to e−x−y so we will have to resolve it.

Of course since f(x, y) = q(x) q(y), f(x, y) = g(x+y) forces q to be some exponential

and therefore this should be possible.

Proof We can first simply rewrite

D =
∫
R3

+

1y+z≥x

y + z
(f(y + z − x, x) − f(y, z)) log f(y + z − x, x)

f(y, z) dx dy dz.

Observe that by swapping x and z∫
R3

+

1y+z≥x

y + z
(f(y + z − x, x) − f(y, z)) log f(y + z − x, x)

=
∫
R3

+

1y+x≥z

y + x
(f(y + x− z, z) − f(y, x)) log f(y + x− z, z).

Changing variable y → y′ = y + x− z, we get that∫
R3

+

1y+z≥x

y + z
(f(y + z − x, x) − f(y, z)) log f(y + z − x, x)

=
∫
R3

+

1y′+z≥x

y′ + z
(f(y′, z) − f(y′ + z − x, x)) log f(y′, z).
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Hence

D = 2
∫
R3

+

1y+z≥x

y + z
(f(y, z) − f(y + z − x, x)) log f(y, z).

In other words,

D = 2
∫
R2

+

f(y, z) log f(y, z) dy dz − 2
∫
R2

+

g(y + z) log f(y, z) dy dz.

Now, we observe that
∫
R2

+

f(y, z) log g(y + z) dy dz =
∫
R2

+

g(y + z) log g(y + z) dy dz.

Indeed, a change of variable y = x− w and z = w yields
∫
R2

+

g(y + z) log g(y + z) dy dz =
∫
R+
x g(x) log g(x) dx.

By the same change of variables, we also have
∫
R2

+

f(y, z) log g(y + z) =
∫
R+

log g(x)
∫ x

0
f(x− w,w) =

∫
R+
x g log g.

Hence

D

2 =
∫
R2

+

f(y, z) log f(y, z)
g(y + z) dy dz +

∫
R2

+

g(y + z) log g(y + z)
f(y, z) dy dz.

Finally as f(y, z) = q(y) q(z), we may also notice that
∫
R2

+

g(y + z) log g(y + z)
f(y, z) dy dz =

∫
R2

+

g(y + z) log g(y + z) dy dz

− 2
∫
R2

+

g(y + z) log q(y) dy dz

=
∫
R2

+

g(y + z) log g(y + z) − 2
∫
R+
h(y) log q(y).

So we also have that
∫
R2

+

g(y + z) log g(y + z)
f(y, z) dy dz =

∫
R2

+

g(y + z) log g(y + z)
h(y)h(z) dy dz

+ 2
∫
R+
h(y) log h(y)

q(y) dy,
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concluding the estimate. □

Next, we intend to collect here some various bounds stemming from the dissipation

term, the essence of those bounds lies in the following lemma.

Lemma 3.5.4 We have that
∫
q(x) log q(x)

H(x) dx ≤
∫
φ(y) q(x) q(y) log q(x) q(y)

g(x+ y) dx dy,

in which

H(x) =
∫
g(x+ y)φ(y) dy,

for any φ ≥ 0 such that
∫
φ q dx = 1.

Proof Indeed, as log is concave,
∫
q(x)φ(y) q(y) log g(x+ y)

q(x) q(y) dx dy ≤
∫
q(x) log

(∫ g(x+ y)
q(x) φ(y) dy

)
dx

=
∫
q(x) log H(x)

q(x) dx,

and the proof is completed. □

As a consequence of this lemma, inserting ϕ(x) = 1 and then ϕ(x) = x, we then

deduce that
∫
q(x) log q(x)

h(x) dx ≤
∫
q(x) q(y) log q(x) q(y)

g(x+ y) dx dy,∫
q(x) log q(x)

m(x) dx ≤
∫
x q(x) q(y) log q(x) q(y)

g(x+ y) dx dy,

where

m(x) =
∫
g(x+ y) y dy =

∫ ∞

x
g(z) (z − x) dz =

∫ ∞

x

∫ ∞

y
g(z) dz dy =

∫ ∞

x
h(y) dy.

Remark. We also note that m(0) = 1 (since
∫
h dx =

∫
q dx = 1) and so

∫
h logm dx = −

∫
m′ logm dx = −

∫
h dx = −

∫
xh(x) dx = −1,
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by virtue of the fact that
∫
xh(x) dx =

∫
x q(x) dx = 1. Thus,∫

h log h

m
dx =

∫
h log h

e−x
dx.

This leads to a possible strategy: Control
∫
h log h

m
in terms of

∫
q log q

h
,
∫
h log h

q

and
∫
q log q

m
. Then control

∫
q log q

e−x by the previous quantities and
∫
h log h

m
. We

can then estimate
∫
x q(x) q(y) log q(x) q(y)

g(x+y) dx dy via
∫
q(x) q(y) log q(x) q(y)

g(x+y) dx dy and

some control on the decay of q at infinity. So in the end this would lead to some kind

of bounds on
∫
q log q

e−x in terms of the dissipation term. We illustrate the strategy

in Figure 3.6.

projection projection

vector space

??

??

manifold

Figure 3.6: To Measure the Decay of the Relative Entropy
∫
q log q

e−x , We Have to
Control the Term

∫
h log h

e−x or Similarly the Term
∫
g log g

e−x−y (Represented In Pur-
ple). Indeed, the Dissipation Term D Already Provides a Control Over the ’Triangle’
of Relative Entropies

∫
f log f

g
,
∫
g log g

h̃
and

∫
h̃ log h̃

g
with h̃(x, y) = h(x)h(y).

However normally it is not possible to switch relative entropy estimates. Indeed,

it is not so hard to find examples of non-negative functions φ, ϕ, ψ with total mass

1 such that ∫
φ log φ

ψ
= ∞,
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while ∫
ϕ log ϕ

ψ
+
∫
ϕ log ϕ

φ
+
∫
φ log φ

ϕ
< ∞.

Therefore this strategy is not obvious to implement. It should work nicely if we had

a control like e−x/C ≤ q(x) ≤ C e−x but the general case is certainly trickier. What

saves us is the key observation that here h and m are actually very nice functions

in all cases. For example, m and h are monotone decreasing so bounded from above

and bounded from below on any finite interval (from the propagation of moments

on q). This gives us some hope when implementing the aforementioned machinery.

We emphasize here that our entropy-entropy dissipation argument draws inspiration

from earlier works on Becker-Döring equations and coagulation models Jabin and

Niethammer [95], Cañizo et al. [36].

3.5.3 Switching Relative Entropies

We note that the relative entropy behaves in the following manner

Lemma 3.5.5 For any two µ, ν ∈ P(R+) and for any C ≥ 2, then

1
2C

∫
ν/C≤µ≤C ν

(µ− ν)2

ν
+ 1

8

∫
µ≤ν/C

ν + 1
4

∫
µ≥C ν

µ log µ
ν

≤
∫
µ log µ

ν

≤ C

2

∫
ν/C≤µ≤C ν

(µ− ν)2

ν
+
∫

µ≤ν/C
ν +

∫
µ≥C ν

µ log µ
ν
.

(3.8)

Proof We observe that

∫
µ log µ

ν
=
∫
ν
(
µ

ν
log µ

ν
+ 1 − µ

ν

)
.

On the other hand, around 1, the function ϕ(x) = x log x + 1 − x satisfies that

ϕ(x) ≤ (x − 1)2/2 for x ≥ 1 and ϕ(x) ≤ C
2 (x − 1)2 for 1/C ≤ x ≤ 1. On the other

hand ϕ(x) ≥ (x − 1)2/2C for 1 ≤ x ≤ C and ϕ(x) ≥ (x − 1)2/2 for 1/C ≤ x ≤ 1.
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Furthermore ϕ lies between 1/8 and 1 when x ≤ 1/2 and larger than x
4 log x for x ≥ 2.

□

Remark. One can also rewrite a little bit the statement of Lemma 3.5.5 so that we

do not need to impose that µ and ν are probability measures.

This allows us to “switch” relative entropies between two measures that are com-

parable.

Corollary 3.5.6 There exists a constant C > 0 such that if µ1, µ2, ν ∈ P(R+) with

λ−1 µ1 ≤ µ2 ≤ λµ1 and λ ≥ e, then
∫
µ1 log µ1

ν
≤ C λ3

∫
µ2 log µ2

ν
+ λ3

∫
µ2 log µ2

µ1
.

Proof Apply Lemma 3.5.5 with C = 2λ first on µ1 and ν to find
∫
µ1 log µ1

ν
≤ λ

∫
ν

2λ
≤µ1≤2λ ν

(µ1 − ν)2

ν
+
∫

µ1≤ ν
2λ

ν +
∫

µ1≥2 λ ν
µ1 log µ1

ν
.

Thanks to Lemma 3.5.5 again, we have
∫

µ1≤ ν
2λ

ν ≤ 8
∫
µ2 log µ2

ν
.

Now if µ1 ≤ ν
2λ

then µ2 ≤ ν
2 . Similarly if µ1 ≥ 2λ ν then µ2 ≥ 2 ν and moreover

µ1 log µ1

ν
≤ λµ2 log λµ2

ν
≤ 3λ log λµ2 log µ2

ν
.

Conversely if ν
2λ

≤ µ1 ≤ 2λ ν then ν
2λ2 ≤ µ2 ≤ 2λ2 ν, and

(µ1 − ν)2

ν
≤ 2

(
(µ2 − ν)2

ν
+ (µ1 − µ2)2

ν

)
≤ 2 (µ2 − ν)2

ν
+ 4λ (µ1 − µ2)2

µ1
.

Hence
∫

ν
2λ

≤µ1≤2λ ν

(µ1 − ν)2

ν
≤ 2

∫
ν

2λ2 ≤µ2≤2λ2 ν

(µ2 − ν)2

ν

+ 4λ
∫

µ1
λ

≤µ2≤λ µ1

(µ1 − µ2)2

µ1
.
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Note that by Lemma 3.5.5 applied with C = λ, we have that

∫
µ1
λ

≤µ2≤λ µ1

(µ1 − µ2)2

µ1
≤ 2λ

∫
µ2 log µ2

µ1
.

Also, Lemma 3.5.5 applied with C = 2λ2 gives rise to

∫
ν

2λ2 ≤µ2≤2λ2 ν

(µ2 − ν)2

ν
≤ 4λ2

∫
µ2 log µ2

ν
.

Assembling these estimates, the proof is completed. □

3.5.4 Additional Estimates

This leads us to try to compare q and h. We first observe that we can get easy

upper bounds.

Lemma 3.5.7 Assume that for some 0 < λ0 < 1,
∫

eλ0x q(t = 0, x) dx < ∞. Then

we have that

sup
t

∫
eλ0 x q(t, x) dx < ∞.

Proof We use a Laplace transform by defining

F (t, λ) =
∫

eλ x q(t, x) dx,

and note that

∂tF =
∫
R2

+

eλ (y+z) − 1
λ (y + z) q(y) q(z) dy dz − F = 1

λ

∫ λ

0
(F (µ))2 dµ− F.

It is useful to remark right away that the stationary solution to this equation satisfies

that F 2 = ∂λ(λF ) which has solutions of the form 1
1−C λ

. Those do blow-up but only

for λ large enough. As a matter of fact since ∂λF |λ=0 = 1, we can see that we should

even have C = 1. For this reason, denote now G = (1 − C λ)F with some C < 1
λ

such that G(t = 0, λ) ≤ 1 on [0, λ0]. We first show that sup
λ∈[0,λ0]

G(t, λ) ≤ 1 for all
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t ≥ 0. Indeed, let λ(t) be such that sup
λ∈[0,λ0]

G(t, λ) = G(t, λ(t)), then

∂t sup
λ∈[0,λ0]

G(t, λ) ≤ ∂tG(t, λ(t)),

this is because ∂λG(t, λ(t)) = 0 if λ(t) < λ0, while if λ(t) = λ0 then ∂λG(t, λ(t)) ≤ 0

and λ′(t) ≤ 0, leading to the same inequality. Now since

∂tG = (λ−1 − C)
∫ λ

0

(G(µ))2

(1 − C µ)2 dµ−G, (3.9)

together with
∫ λ

0
dµ

(1−C µ)2 = λ
1−C λ

, we deduce that

∂t sup
λ∈[0,λ0]

G(t, λ) ≤
(

sup
λ∈[0,λ0]

G(t, λ)
)2

− sup
λ∈[0,λ0]

G(t, λ),

which yields via the maximum principle that sup
λ∈[0,λ0]

G(t, λ) ≤ 1. Now thanks to (3.9)

again and the elementary observation that ∂t sup
λ∈[0,λ0]

G(t, λ) ≤ sup
λ∈[0,λ0]

∂tG(t, λ), we

arrive at

∂t sup
λ∈[0, λ0]

G(λ) ≤ 0,

which immediately proves the desired upper bound. □

Remark. We believe it is possible to prove the exponential convergence of the

Laplace transform F (t, λ) to 1/(1 − λ) over λ ∈ [0, λ0). However, this is not strictly

better though than having the exponential convergence in some weak Wasserstein

norm plus the control of the exponential moments that is given above, so we did not

try too much in this direction.

Out of Lemma 3.5.7, we may deduce pointwise bounds on q and h, for this purpose,

we need the following preparatory result.

Lemma 3.5.8 We have that

sup
t≥0

h(t, 0) < ∞,

i.e., h(t, 0) is uniformly bounded in time.
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Proof To show h(t, 0) is uniformly bounded in time, we write

h(t, 0) =
∫
R2

+

q(y) q(z)
y + z

dy dz = 2
∫ ∫

y≤z

q(y) q(z)
y + z

dy dz

≤ 2
∫ ∫

y≤z

q(y) q(z)
z

dy dz

≤ 2 sup
y≤r

∫
z≥r

r q(z)
z

dz + 2 sup
y≤r

∫ ∫
y≤z, z≤r

q(z)
z

dy dz + 2
r
.

We know that there exists some r uniformly in time such that

∫ ∫
y≤z, z≤r

q(z)
z

dy dz =
∫

z≤r
q(z) dz ≤ 1

8 .

Moreover, for this r we also have
∫

z≥r
r q(z)

z
dz ≤ 1

8 . Thus,

h(t, 0) ≤ 1
2 sup

x≤r
q(x) + 2

r
.

Now we recall the equation for q to find that for any x ≤ r,

∂tq(t, x) ≤ h(t, 0) − q(t, x) ≤ 1
2 sup

x≤r
q(t, x) + 2

r
− q(t, x),

so if x∗ is such that q(t, x∗) = sup
x≤r

q(t, x), then

∂tq(t, x∗) ≤ 2
r

− 1
2 q(t, x∗).

By Gronwall’s inequality, we deduce that sup
x≤r

q(t, x) ≤ 4
r
, which allows us to finish

the proof. □

Corollary 3.5.9 Assume that for some 0 < λ0 < 1,
∫

eλ0x q(0, x) dx < ∞, then we

have that

sup
t

∫
eλ0x h(t, x) dx < ∞, sup

t,x
eλ0x h(t, x) < ∞,

q(t, x) ≤ C e−λ0 x + q(0, x) e−t for some C > 0.
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Proof The first bound follows from the definition of h. Indeed, as h = Q+[q], we

have ∫
eλ0 x h(t, x) dx =

∫ eλ0 (y+z) − 1
λ0 (y + z) q(y) q(z) dy dz

≤
∫

eλ0 (y+z) q(y) q(z) dy dz < ∞.

Next we observe that h is decreasing in x, so for any x ≥ 0∫ ∞

0
eλ0 y h(t, y) dy ≥

∫ x

0
eλ0 y h(t, y) dy ≥ h(t, x)

∫ x

0
eλ0 y dy

= h(t, x) eλ0 x − 1
λ0

.

Since h(t, x) ≤ h(t, 0) is uniformly bounded in time, this shows the second point.

Finally we recall the equation for q, which reads ∂tq = h− q, so we may rewrite (4.6)

as

q(t, x) = q(0, x) e−t +
∫ t

0
h(s, x) e−(t−s) ds. (3.10)

Moreover, notice that

eλ0 x
∫ t

0
h(s, x) e−(t−s) ds ≤ sup

s

(
eλ0 x h(s, x)

) ∫ t

0
e−(t−s) ds

≤ sup
s

(
eλ0 x h(s, x)

)
.

.

Combining these estimates with (3.10) ends the proof. □

We now turn to lower bounds on q and hence h. We start with a lower bound on

q in terms of h.

Lemma 3.5.10 There exists C such that for any t ≥ 1,

q(t, x) ≥ 1
C
h(t− 1, x). (3.11)

Proof We note from the equation (4.6) that

∂th(t, x) = 2
∫ ∞

x

1
λ

∫ λ

0
h(t, z) q(t, λ− z) dz dλ− 2h(t, x).
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Therefore

∂th(t, x) ≥ −2h(t, x),

and we have that for any s ≤ t that

∂tq(t, x) ≥ e−(t−s) h(s, x) − q(t, x),

leading for example to the claimed result

q(t, x) ≥ h(t− 1, x)
C

with C = e2

e−1 , thereby completing the proof. □

Unfortunately, this is not enough to give us a bound between q and h which would

solve everything. Instead, we can first deduce a bound near the origin.

Lemma 3.5.11 There exists a constant C such that

inf
t≥1

inf
x∈[0, 2]

h(t, x) ≥ 1
C
, inf

t≥2
inf

x∈[0, 2]
q(t, x) ≥ 1

C
. (3.12)

Proof For any x ≤ 2, we have that

h(t, x) =
∫
1x≤y+z

y + z
q(t, y) q(t, z) dy dz

≥
∫

y,z≥1

1
(y + 1) (z + 1) q(y) q(z) dy dz =

(∫ ∞

1

q(y)
1 + y

dy
)2

.

By Cauchy-Schwartz, we have that∫ ∞

1
q(y) dy ≤

(∫ ∞

1

q(y)
1 + y

dy
)1/2 (∫ ∞

1
(1 + y) q(y) dy

)1/2

≤
(∫ ∞

1

q(y)
1 + y

dy
)1/2 (∫ ∞

0
(1 + y) q(y) dy

)1/2

=
√

2
(∫ ∞

1

q(y)
1 + y

dy
)1/2

.

On the other hand the convergence of all moments of q shows that there exists C

such that for all t ≥ 1, ∫ ∞

1
q(y) dy ≥ 1

C
.
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Therefore there exists C such that h(t, x) ≥ 1
C

whenever x ≤ 2 and t ≥ 1. Finally,

we deduce the second result from Lemma 3.5.10. □

We combine this with the following doubling type of argument.

Lemma 3.5.12 There exists a constant C such that for any x and t ≥ 1, there holds

q(t, x) ≥ x

C

(
inf

s∈[t−1,t]
inf

y∈[x/2, 3x/4]
q(s, y)

)2

.

Proof This is a simple consequence of a lower bound on h. Indeed, we have

h(t, x) =
∫
1x≤y+z

y + z
q(t, y) q(t, z) dy dz

≥ 2
3x

∫
y, z∈[x/2, 3x/4]

q(y) q(z) dy dz.

Therefore,

h(t, x) ≥ x

24

(
inf

y∈[x/2, 3x/4]
q(t, y)

)2

.

We can again conclude by virtue of Lemma 3.5.10. □

Lemma 3.5.13 There exists a constant C such that for any t ≥ 2 and x ≥ 2, we

have

q(t, x) ≥
∫

y≥x

q(t− 1, y)
C y

dy.

Proof This is again a consequence of a lower bound on h. Indeed,

h(t, x) =
∫
R2

+

1x≤y+z

y + z
q(t, y) q(t, z) dy dz

≥
∫

y≤x

∫
z≥x

q(y) q(z)2 z dy dz.

Thus, by the lower bound on q on [0, 2] (thanks to Lemma 3.5.11), we arrive at

h(t, x) ≥
∫

y≥x

q(t, y)
C y

dy.

Using Lemma 3.5.10, we can again conclude. □

Owing to Lemma 3.5.13, we immediately deduce that
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Corollary 3.5.14 There exists some C > 0 such that for any x ≥ 2 and any t ≥

max(C x, 1)

h(t, x) ≥ e−C x

C
, q(t, x) ≥ e−C x

C
.

Proof Define ϕ(y) = (y/x−1)+
y

for y ≤ 2x and ϕ = 1/y if y ≥ 2x (see Figure 3.7).

Figure 3.7: The Function ϕ Used In the Proof of Corollary 3.5.14. Notice That
ϕ(y) ≤ 1

y
for All y > 0.

Note that ϕ is Lipschitz with

∥∇ϕ∥L∞ ≤ 1
x2 .

Hence

x2
∫
ϕ(y) q(y) dy ≥ x2

∫
ϕ(y) e−y dy −W1(q, e−x),

in which W1(q, e−x) represents the Wasserstein distance (with exponent 1) between q

and e−x. Thanks to the exponentially fast in time of the convergence W1(q, e−x) → 0,

which is a simple consequence of Theorem 8, we deduce that∫
y≥x

q(y)
y

dy ≥
∫
ϕ(y) e−y dy − C

x2 e−t/6.

Note that ∫
ϕ(y) e−y dy ≥

∫
y≥2x

e−y

y
dy ≥ e−3x

3x

∫
2x≤y≤3x

dy = e−3x

3 .

Therefore from Lemma 3.5.13, we can conclude provided that C
x2 e−t/6 ≤ e−3x

6 . □

3.5.5 Proof of the Main Result

Armed with all the previous estimates, we can finally present the proof of Theorem

9.
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Proof of theorem 9. We note from our earlier estimates that∫
q log q

m
dx ≤

∫
x q(x) q(y) log q(x) q(y)

g(x+ y) dx dy

=
∫ (

x q(x) q(y) log q(x) q(y)
g(x+ y) + x g(x+ y) − x q(x) q(y)

)
dx dy.

For some K > 0, we can separate the integral into those x ≤ K, for which
∫

x≤K

(
x q(x) q(y) log q(x) q(y)

g(x+ y) + x g(x+ y) − x q(x) q(y)
)

dx dy ≤ KD.

On the other hand, denoting ϕ(x) = x log x+ 1 − x, which is a non-negative convex

function on R+ and satisfies ϕ(x) ≤ C x for some constant C if x is bounded, we

deduce for any λ ∈ (0, λ0) that
∫

x≥K

(
x q(x) q(y) log q(x) q(y)

g(x+ y) + x g(x+ y) − x q(x) q(y)
)

dx dy

≤ 1
λ

∫
x≥K

g(x+ y)ϕ ◦ ϕ
(
q(x) q(y)
g(x+ y)

)
dx dy + 1

λ

∫
x≥K

eλ x g(x+ y) dx dy,

where the inequality follows from the Fenchel’s inequality x y ≤ ϕ(x)+ϕ∗(y), in which

ϕ∗ denotes the Legendre convex conjugate of ϕ (and one can check that ϕ∗(y) =

ey − 1 ≤ ey and also
(

ϕ
λ

)∗
(y) ≤ eλ y

λ
).

We can immediately note that ϕ ◦ ϕ ≤ x log x for large x. Thus from Corollary 3.5.9,

we have that∫
x≥K

(
x q(x) q(y) log q(x) q(y)

g(x+ y) + x g(x+ y) − x q(x) q(y)
)

dx dy

≤ D

λ
+ C

λ
e−(λ0−λ) K .

Combining both estimates gives rise to
∫
q log q

m
≤ (K + 1) D

λ
+ C

λ
e−(λ0−λ) K ,

and optimizing in K leads to
∫
q log q

m
≤ C D log 1

D
. (3.13)
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The next step is to change this to
∫
h log h

m
. We decompose again

∫
h log h

m
=
∫

x≤K
(h log h

m
+m− h) +

∫
x≥K

(h log h

m
+m− h).

We note that since h = −∂xm,
∫

x≥K
h logm = −

∫
x≥K

∂xm logm = m(K) logm(K) −m(K).

Applying Corollary 3.5.9 again, this shows that for some constant C, we have that
∫

x≥K
(h log h

m
+m− h) ≤ C e−K/C . (3.14)

From Corollary 3.5.9 and Corollary 3.5.14, we note that on x ≤ K there holds e−C K ≤
q
h

≤ eC K , at least provided that t ≥ C x. As we will see soon, we will choose

K logarithmic in 1/D which gives the assumption appearing in the statement of

Theorem 9.

Now in the region x ≤ K, we can use Lemma 3.5.5 in exactly the same manner

as what we did in Corollary 3.5.6, which yields that
∫

(h log h

m
+m− h) ≤ C eC K

∫
q log q

m
+ C e−K/C

≤ C eC K D log 1
D

+ C e−K/C .

Optimizing in K, we find that for some θ > 0 (but θ < 1 unfortunately),
∫
h log h

m
≤ C

(
D log 1

D

)θ

. (3.15)

Now we recall that, as a simple consequence of Lemma 3.5.4, we have
∫
h log h

m
=
∫
h log h

e−x
. (3.16)

Therefore we now want to change back from h to q. This is the same process and

leads to ∫
q log q

e−x
≤ C

(∫
h log h

e−x

)θ

. (3.17)
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To finish the proof, we just need to combine (3.17) with (3.16) and (3.15). □

We end this section with a numerical experiment demonstrating the entropic con-

vergence of q to q∞, see Figure 5.5.

relative entropy

fitting

Figure 3.8: Simulation of the Relative Entropy from q to q∞ after t = 10 in the
Semilogy Scale. We Employed Forward Euler Method with Time Step-Size ∆t =
0.05, Space Step-Size ∆x = 0.01, and a “Random” Initial Condition q(t = 0, x)
Having Mean Value m1 = 5 for the Numerical Simulation of (4.6). This Experiment
Suggests That the Relaxation of

∫
q log(q/q∞) dx Might Be Exponentially Fast in

Time, Instead of Polynomially Fast in Time as Guaranteed By Theorem 9.

3.6 Propagation of Chaos

We give the statement of the propagation of chaos, Theorem 19 in 3.6.1. A

technical lemma that will be employed in the proof of Theorem 19 is displayed in

3.6.2. We reveal the full proof of Theorem 19 in 3.6.3.

3.6.1 Statement of Propagation of Chaos

In this section, we try to adapt the martingale-based techniques developed in

Merle and Salez [118], Hermon and Salez [91] to justify the propagation of chaos

105



Sznitman [145]. For this purpose, we equip the space P(R+) with the Wasserstein

distance with exponent 1, which is defined via

W1(µ, ν) = sup
∥∇φ∥∞≤1

⟨µ− ν, φ⟩

for µ, ν ∈ P(R+). We will also need the following version of Itô’s formula.

Lemma 3.6.1 Consider an inhomogeneous Poisson process Nt with intensity λ(t),

and a random variable Y (t) left-continuous and adapted to the filtration Ft generated

by Nt. We define the compound jump process Z(t) and M(t) its associated compen-

sated martingale by:

dZ(t) = Y (t) dNt, M(t) = Z(t) − Z(0) −
∫ t

0
Ỹ (s)λ(s) ds, (3.1)

where Ỹ is any other left-continuous and adapted process. Itô’s lemma then implies

that for any C1 function Φ,

dE[Φ(M(t))] = E [Φ (M(t−) + Y (t)) − Φ(M(t−))]λ(t) dt−E[∇Φ′(M(t))·Ỹ (t)λ(t)]dt.

(3.2)

Our main result in this section is stated as follows.

Theorem 10 Denote the empirical distribution of the uniform reshuffling stochastic

system (3.1) at time t as

ρemp(t) := 1
N

N∑
i=1

δXi(t),

and let q(t) be the solution of (4.6) with initial condition q(0). If

E[W1(ρemp(0), q(0))] −→ 0 as N → ∞, (3.3)

then we have that

E[W1(ρemp(t), q(t))] −→ 0 as N → ∞,

holding for all 0 ≤ t ≤ T with any prefixed T > 0.
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3.6.2 Switching Supremum and Expectation

We will also make use of the following result, which allows us to interchange the

operation of supremum and of expectation.

Lemma 3.6.2 Consider a random Radon measure Z on R with
∫
Z(dx) = 0 and

with uniformly bounded second moment
∫
(1 + |x|2) |Z|(dx) ≤ m2 almost surely for

some constant m2. Then there exists θ > 0 such that

E
[

sup
∥∇φ∥∞≤1

∫
φ dZ

]
≤ C m2

(
sup

∥∇φ∥∞≤1
E
[∫

φ dZ
]2
)θ

.

Proof This is essentially an interpolation argument. First of all, we can always

assume that φ(0) = 0 by subtracting a constant. Introduce a classical convolution

kernel Kε. We have that ∥Kε ⋆ φ− φ∥L∞ ≤ C ε which implies that
∫
φZ(dx) ≤

∫
Kε ⋆ φZ(dx) + C ε.

Then we reduce ourselves to a compact support: since ∥∇φ∥∞ ≤ 1 then |φ(x)| ≤ |x|

and ∫
Kε ⋆ φZ(dx) ≤

∫
|x|≤R

Kε ⋆ φZ(dx) + 2
∫

|x|≥R
|x| |Z|(dx)

≤
∫

|x|≤R
Kε ⋆ φZ(dx) + 2 m2

R
.

On [−R,R], we have on the other hand that ∥Kε ⋆ φ∥H2 ≤ C
ε

∥φ∥W 1,∞ ≤ C R
ε
. Hence

sup
∥∇φ∥∞≤1

∫
φZ(dx) ≤ C

R

ε
sup

∥φ∥H2 ≤1

∫
|x|≤R

φZ(dx) + C m2

(
ε+ 1

R

)
.

Of course

sup
∥φ∥H2 ≤1

∫
|x|≤R

φZ(dx) = ∥Z∥H−2([−R,R]),

and by using Fourier series

∥Z∥2
H−2([−R, R]) =

∑
k

R2

1 + k4

(∫ R

−R
e−i k π x/R dZ

)2

.
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Hence by Cauchy-Schwartz,

E
[

sup
∥∇φ∥∞≤1

∫
φZ(dx)

]
≤ C m2

(
ε+ 1

R

)

+ C
R2

ε

∑
k

1
1 + k4 E

(∫ R

−R
e−i k π x/R dZ

)2
1/2

.

Finally we have that

∥∇e−i k π x/R∥∞ ≤ C k,

so that

E

(∫ R

−R
e−i k π x/R dZ

)2
 ≤ C k2 sup

∥∇φ∥∞≤1
E
[(∫

φ dZ
)2
]
.

This allows us to conclude that

E
[

sup
∥∇φ∥∞≤1

∫
φZ(dx)

]
≤ C m2

(
ε+ 1

R

)

+ C
R2

ε

(∑
k

k2

1 + k4 sup
∥∇φ∥∞≤1

E
[(∫

φ dZ
)2
])1/2

,

or

E
[

sup
∥∇φ∥∞≤1

∫
φZ(dx)

]
≤ C m2

(
ε+ 1

R

)

+ C
R2

ε

(
sup

∥∇φ∥∞≤1
E
[(∫

φ dZ
)2
])1/2

,

which finishes the proof by optimizing in R and ε. □

3.6.3 Proof of Propagation of Chaos

The proof of Theorem 19 occupies the rest of the section.

Proof We recall that the map Q+[·] : P(R+) → P(R+) is defined via

Q+[q](x) =
∫ ∞

0

∫ ∞

0

1[0,k+ℓ](x)
k + ℓ

q(k)q(ℓ) dk dℓ,

and that a classical solution q(t, x) of

q(t, x) = q(0, x) +
∫ t

0
G[q](s, x) ds (3.4)
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exists for 0 ≤ t < ∞, where G = Q+ − Id and q(0, x) is an continuous probability

density function with mean m1 whose support is contained in R+. The map Q+ is

Lipschitz continuous in the sense that

W1(Q+[f ], Q+[g]) ≤ W1(f, g) (3.5)

for any f, g ∈ P(R+). Indeed, we have

W1(Q+[f ], Q+[g]) = sup
∥∇φ∥∞≤1

E [φ(U(X1 + Y1)) − φ(U(X2 + Y2))] ,

where X1, Y1 are i.i.d with law f , X2, Y2 are i.i.d with law g, and U ∼ Uniform[0, 1]

is independent of Xi and Yi for i = 1, 2. By Lipschitz continuity of the test function

φ, we obtain

W1(Q+[f ], Q+[g]) ≤ E [2U |X1 −X2|] = E[|X1 −X2|].

We now recall an alternative formulation of W1(f, g), given by

W1(f, g) = inf {E[|X − Y |]; Law(X) = f, Law(Y ) = g} ,

so in particular, we may take a coupling of X1 and X2 so that W1(f, g) = E[|X1−X2|].

Assembling these pieces together, we arrive at (D.3).

We are going to prove a more precise control than (D.3), by working directly on

Q+[f ]. Consider now two random probability measures f and g with bounded second

moment and a deterministic test function φ. We have that

∫
φ(x) (Q+[f ] −Q+[g]) dx =

∫
1x≤k+ℓ

k + ℓ
φ(x) (f(dk) − g(dk)) (f(dℓ) + g(dℓ)) dx

=
∫

(f(dℓ) + g(dℓ))
∫

Φℓ(k) (f(dk) − g(dk)),

where we denote

Φℓ(k) = 1
k + ℓ

∫ k+ℓ

0
φ(x) dx.
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Since
∫
Q+[f ] =

∫
Q+[g], we can always assume without loss of generality that φ(0) =

0, whence |φ(x)| ≤ ∥∇φ∥∞ |x| ≤ |x|. Now we observe that Φℓ is deterministic with

|∂kΦℓ(k)| ≤ |φ(k + ℓ)|
k + ℓ

+ 1
(k + ℓ)2

∫ k+ℓ

0
|φ(x)| dx ≤ 1+ 1

(k + ℓ)2

∫ k+ℓ

0
x dx ≤ 3

2 . (3.6)

By (3.6) and recalling that again Φℓ is deterministic and obtained from φ, we obtain:

E
[∫

Φℓ(k) (f(dk) − g(dk))
]

≤ 3
2 E

[
sup

∥∇φ∥∞≤1

∫
φ(x) (f(dx) − g(dx))

]
.

Therefore we conclude that

E
[

sup
∥∇φ∥∞≤1

∫
φ(x) (Q+[f ] −Q+[g])

]
≤ 3E

[
sup

∥∇φ∥∞≤1

∫
φ(x) (f(dx) − g(dx))

]
. (3.7)

We now observe that the empirical measure is a compound jump process: Define Nt a

homogeneous Poisson process with constant intensity λ = (N−1)/2. Given τ1, . . . , τk

the times when Nt jumps, we take the Yτk
independent: At each τk, with uniform

probability 2
N (N−1) we choose a pair i < j and take

Yτk
= 1
N

(
δ(x− Uk (Xi(τk−) +Xj(τk−)) + δ(x− (1 − Uk) (Xi(τk−) +Xj(τk−))

− δ(x−Xi(τk−)) − δ(x−Xj(τk−))
)
,

where the Uk are i.i.d. in [0, 1].

We immediately note that

λE[Yt] = 1
N2

∑
i<j

E
[
δ(x− U (Xi(t−) +Xj(t−))

+ δ(x− (1 − U) (Xi(t−) +Xj(t−)) − δ(x−Xi(t−)) − δ(x−Xj(t−))
]
,

(3.8)

where U is uniformly distributed in [0, 1] and independent of all Xi(t−).

We also remark that by the standard control of moments, we immediately have

that ∫
x2 ρemp(t, dx) ≤ m2 = 2 +

∫
x2 ρemp(0, dx). (3.9)
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We now show that the empirical measure of the stochastic system satisfies an ap-

proximate version of (D.2). Fix a deterministic test function φ with ∥∇φ∥∞ ≤ 1,

and consider the time evolution of ⟨ρemp, φ⟩ where for some probability measure ν,

we denote by the duality bracket ⟨ν, φ⟩ =
∫
φ dν. We emphasize here that φ can

also be random and will indeed be chosen according to ρemp to estimate Wasserstein

distances involving ρemp. Then

dE[⟨ρemp, φ⟩] = dE [⟨Yt dNt, φ⟩] = λ ⟨E[Yt], φ⟩ dt.

Hence by (D.5),

dE[⟨ρemp, φ⟩] = 1
N2

∑
i<j

E
[
φ
(
U(Xi +Xj)

)
+ φ

(
(1 − U)(Xi +Xj)

)
− φ(Xi) − φ(Xj)

]
dt

= 1
N2

∑
i,j=1...N,i̸=j

E
[
φ
(
U(Xi +Xj)

)
− φ(Xi)

]
dt

= 1
N2

N∑
i,j=1

E
[
φ
(
U(Xi +Xj)

)
− φ(Xi)

]
dt+R dt,

where all Xi, Xj are taken at time t− and where R = − 1
N2

∑
i E
[
φ
(
2U Xi

)
− φ(Xi)

]
.

Hence |R| ≤ O
(

1
N

)
uniformly over φ and t ≥ 0. On the other hand, we may calculate

⟨Q+[ρemp], φ⟩ = 1
N2

∑
i,j

∫
φ(x)

1x≤Xi+Xj

Xi +Xj

dx = 1
N2

∑
i,j

∫ 1

0
φ(u (Xi +Xj)) du,

by the change of variables x = u (Xi +Xj). Therefore

dE[⟨ρemp, φ⟩] = E [⟨G[ρemp], φ⟩] dt+R dt. (3.10)

By Dynkin’s formula, the compensated process

Mφ(t) := ⟨ρemp(t), φ⟩ − ⟨ρemp(0), φ⟩ −
∫ t

0
(E[⟨G[ρemp(s)], φ⟩] +R(s)) ds (3.11)

is a martingale. Furthermore, comparing with (D.2), we easily obtain that

⟨ρemp(t) − q(t), φ⟩ = Mφ(t) + ⟨ρemp(0) − q(0), φ⟩

+ E
∫ t

0
⟨G[ρemp(s)] −G[q(s)], φ⟩ ds+ O

(
t

N

)
.
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Taking the supremum over φ, we therefore have that

E sup
∥∇φ∥∞≤1

⟨ρemp(t) − q(t), φ⟩ ≤ E sup
∥∇φ∥∞≤1

(|Mφ(t)| + ⟨ρemp(0) − q(0), φ⟩)

+
∫ t

0
E sup

∥∇φ∥∞≤1
⟨G[ρemp(s)] −G[q(s)], φ⟩ ds+ O

(
t

N

)
.

By the definition of the W1 distance, we deduce from (D.4) that

EW1(ρemp(t), q(t)) ≤ η(t) + C
∫ t

0
EW1(ρemp(t), q(t)) ds+ C t

N
,

in which we have set

η(t) := E sup
∥∇φ∥∞≤1

|Mφ(t)| + EW1(ρemp(0), q(0)). (3.12)

Thus, Gronwall’s inequality gives rise to

EW1(ρemp(t), q(t)) ≤
(

sup
t∈[0,T ]

η(t) + C T

N

)
eC T . (3.13)

In order to establish propagation of chaos for t ≤ T , it therefore suffices to show that

sup
t∈[0,T ]

η(t) N→∞−−−→ 0. (3.14)

To prove (D.10), we treat each term appearing in the definition of η(t) separately.

The second term in (D.8) approaches to 0 as N → ∞ by our assumption.

To handle the first term, let us write Z(t) = ⟨ρemp(t), φ⟩ and M(t) = Mφ(t)

for notation simplicity. Of course Z(t) is a compound jump process itself and by

combining (D.6) and (D.7)

Mφ(t) = Z(t) − Z(0) −
∫ t

0
Ỹ (s) ds, Ỹ (t) = ⟨G[ρemp(t)], φ⟩ +R.

We may hence use Itô’s lemma as stated in Lemma 3.6.1, which yields

dE[M2(t)] =
∑
i<j

E
[
M2

ij(t) −M2(t)
] dt
N

− E [2M(t) ⟨G[ρemp(t)], φ⟩] dt+ O
( 1
N

)
dt,
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where Mij = M + Yij and we define

Yij :=
〈 1
N

(δUk(Xi+Xj) + δ(1−Uk) (Xi+Xj) − δXi
− δXj

), φ
〉
.

Therefore, we have

dE[M2(t)] =
∑
i<j

E
[
2M(t)Yij + Y 2

ij

] dt
N

− E [2M(t) ⟨G[ρemp(t)], φ⟩] dt

+ O
( 1
N

)
dt.

By our previous calculations

1
N

∑
i<j

E[M(t)Yij]

= 1
N2

∑
i<j

E[M(t) (φ(U (Xi +Xj) + φ((1 − U) (Xi +Xj) − φ(Xi) − φ(Xj))]

= 1
N2

∑
i ̸=j

E[M(t) (φ(U (Xi +Xj)) − φ(Xi))]

= 1
N2

∑
i,j

E[M(t) (φ(U (Xi +Xj)) − φ(Xi))] +O
( 1
N

)
,

as U is random variable independent of M(t) and ρemp(t).

Therefore

1
N

∑
i<j

E[M(t)Yij] = E [M(t) ⟨G[ρemp(t)], φ⟩] +O
( 1
N

)
,

and consequently

dE[M2(t)] =
∑
i<j

E
[
Y 2

ij

] dt
N

+ O
( 1
N

)
dt ≤ C

N
dt,

for a constant C that depends only on ∥∇φ∥∞. This lets us deduce that

sup
∥∇φ∥∞≤1

E [Mφ(t)] ≤ C t

N
.

Recalling the definition of Mφ(t), we have that

Mφ(t) =
∫
φ(x)µ(t, dx)
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for some random Radon measure µ with uniformly bounded second moment. Further-

more
∫
µ(t, dx) = 0 since

∫
ρemp(t, dx) = 1 =

∫
ρemp(0, dx) and

∫
G[ρemp(t)] dx = 0.

We may hence apply Lemma 3.6.2 to obtain that

E
[

sup
∥∇φ∥∞≤1

Mφ(t)
]

≤ C
tθ

N θ
,

which allows to conclude that sup
t∈[0,T ]

η(t) N→∞−−−→ 0. □

Remark. One can readily check that

∥Q+[f ] −Q+[g]∥L1(R+) ≤ 2 ∥f − g∥L1(R+)

for all probability densities f, g whose support are contained in R+, but as we are

working on P(R+), we can not use any strong distances. Hence, equipping P(R+)

with an appropriate distance so that the operator Q+ has enjoys a Lipschitz continuity

with respect to the chosen distance is an indispensable step to make the argument

above work.
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Chapter 4

EXPLICIT DECAY RATE FOR THE GINI INDEX IN THE REPEATED

AVERAGING MODEL

Chapter 4 is the pre-print Cao [37] submitted to Mathematical Methods in the

Applied Sciences.

4.1 Abstract

The repeated averaging model for money exchanges is investigated, in which two

agents picked uniformly at random share half of their wealth to each other. It is

intuitively convincing that a Dirac distribution of wealth (centered at the initial

average wealth) will be the long time equilibrium for this dynamics. In other words,

the Gini index should converge to zero. To better understand this dynamics, it is

possible to investigate its limit as the number of agents goes to infinity by proving the

so-called propagation of chaos, which links the stochastic agent-based dynamics to a

(limiting) nonlinear partial differential equation (PDE). This deterministic description

has a flavor of the classical Boltzmann equation arising from statistical mechanics of

dilute gases. Its convergence toward a Dirac equilibrium distribution can be proved

by showing that the associated Gini index of the wealth distribution converges to zero

with an explicit rate.

4.2 Introduction

Econophysics is an emerging branch of statistical physics that apply concepts and

techniques of traditional physics to economics and finance Savoiu [140], Chatterjee

et al. [57], Dragulescu and Yakovenko [79]. It has attracted considerable attention
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in recent years raising challenges on how various economical phenomena could be

explained by universal laws in statistical physics, and we refer to Chakraborti et al.

[53, 54], Pereira et al. [125], Kutner et al. [103] for a general review.

The primary motivation for study models arising from econophysics is at least

two-fold: from the perspective of a policy maker, it is important to deal with the

raise of income inequality Dabla-Norris et al. [66], De Haan and Sturm [70] in order

to establish a more egalitarian society. From a mathematical point of view, we have

to understand the fundamental mechanisms, such as money exchange resulting from

individuals, which are usually agent-based models. Given an agent-based model,

one is expected to identify the limit dynamics as the number of individuals tends to

infinity and then its corresponding equilibrium when run the model for a sufficiently

long time (if there is one), and this guiding approach is carried out in numerous works

across different fields among literatures of applied mathematics, see for instance Naldi

et al. [122], Barbaro and Degond [19], Carlen et al. [42].

In this work, we consider the so-called repeated averaging model for money ex-

change in a closed economic system with N agents. The dynamics consists in choosing

at random time two individuals and to redistribute equally their combined wealth. To

write this dynamics mathematically, we denote by Xi(t) the amount of dollar agent

i has at time t for 1 ≤ i ≤ N . At a random time generated by a Poisson clock with

rate N , two agents (say i and j) update their wealth according to the following rule:

(
Xi, Xj

)
⇝
(
Xi+Xj

2 ,
Xi+Xj

2

)
, (4.1)

Despite of the simplicity of the model, there are actually quite a few manuscripts

in the literature which are solely dedicated to it. To the best of our knowledge, the

first systematic treatment of this model is carried out by David Aldous Aldous and

Lanoue [7], which is followed up by a very recent study presented in Chatterjee et al.
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[58]. In both works, the focus is related to the estimation of the so-called mixing times

and hence the targeted audiences are mathematicians from the Markov chain mixing

time community. In this manuscript, we intend to give a kinetic theory perspective

of the model. Indeed, under the large population N → ∞ limit, We can rigorously

show that the law of the wealth of a typical agent (say X1) satisfies the following

limit PDE in a weak sense:

∂tρ(t, x) = 2(ρ ∗ ρ)(t, 2x) − ρ(t, x). (4.2)

Once the limit PDE is identified from the interacting particle system, the natural

next step is to study the problem of convergence to equilibrium of the PDE at hand.

In the present work, we demonstrate that the Gini index of ρ(t) converges to 0 (its

minimum value), whence showing that a Dirac distribution centered at the initial

average wealth is the equilibrium distribution. Moreover, this model can be served

as the first example for which quantitative estimates on the convergence of Gini

index can be obtained, which is our primary motivation for writing this paper. An

illustration of the general strategy used in this work is shown in Figure 4.1.

Figure 4.1: Schematic Illustration of the General Strategy of Our Treatment of the
Repeated Averaging Dynamics, Where µ Represents the Initial Average Wealth.

Although only a very specific binary exchange model is explored in the present
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paper, other exchange rules can also be imposed and studied, leading to different

models. To name a few, the so-called immediate exchange model introduced in Hein-

salu and Patriarca [90] assumes that pairs of agents are randomly and uniformly

picked at each random time, and each of the agents transfer a random fraction of

its money to the other agents, where these fractions are independent and uniformly

distributed in [0, 1]. The so-called uniform reshuffling model investigated in Drag-

ulescu and Yakovenko [79], Lanchier and Reed [109], Cao et al. [39] suggests that the

total amount of money of two randomly and uniformly picked agents possess before

interaction is uniformly redistributed among the two agents after interaction. For

models with saving propensity and with debts, we refer the readers to Chakraborti

and Chakrabarti [52], Chatterjee et al. [56] and Lanchier and Reed [110]. Also, one

can also modulate the rule of picking agents, leading to biased models of money

exchange, see for instance Cao and Motsch [40].

This manuscript is organized as follows: in section 4.3, we briefly discuss the

heuristic derivation of the limit equation (4.2) and give convergence results for the

solution of (4.2) in terms of variance of the distribution as well as the Gini index.

Finally, we draw a conclusion in section 4.4 and present a rigorous treatment of the

propagation of chaos phenomenon in Appendix D, by applying the martingale-based

technique employed in Cao et al. [39].

4.3 Convergence to Dirac Distribution

We present a heuristic argument behind the derivation of the limit PDE (4.2)

arising from the repeated averaging dynamics in section 5.3.1, we also record a useful

stochastic representation behind the PDE (4.2) on which we will heavily rely. Section

5.3.2 is devoted to the exponential decay of the variance of the solution ρ(t) of (4.2).

In section 5.3.3, we establish a quantitative convergence result on the Gini index of
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the probability distribution ρ(t), by enforcing the log-concavity property of the initial

datum.

4.3.1 Formal Derivation of the Limit Equation

Introducing N(i,j)
t independent Poisson processes with intensity 1/N , the dynamics

can be written as:

dXi(t) =
∑

j=1..N,j ̸=i

(
Xi(t−)+Xj(t−)

2 −Xi(t−)
)

dN(i,j)
t . (4.1)

As the number of players N goes to infinity, one could expect that the processes Xi(t)

become independent and of same law. Therefore, the limit dynamics would be of the

form:

dX(t) =
(
X(t−)+Y (t−)

2 −X(t−)
)

dNt, (4.2)

where Y (t) is an independent copy of X(t) and Nt a Poisson process with intensity

1. Taking a test function φ, the weak formulation of the dynamics is given by:

dE[φ(X(t))] = E
[
φ

(
X(t)+Y (t)

2

)
− φ(X(t))

]
dt. (4.3)

In short, the limit dynamics correspond to the jump process:

X ⇝
X+Y

2 . (4.4)

Let us denote ρ(t, x) the law of the process X(t). To derive the evolution equation

for ρ(t, x), we need to translate the effect of the jump of X(t) via (4.4) onto ρ(t, x).

Lemma 4.3.1 Suppose X and Y two independent random variables with probability

density ρ(x) supported on [0,∞). Let Z = (X + Y )/2, then the law of Z is given by

Q+[ρ] with:

Q+[ρ](x) = 2(ρ ∗ ρ)(2x), ∀x ≥ 0. (4.5)
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The proof of this lemma is quite elementary and will be omitted. We can now write

the evolution equation for the law of X(t), the density ρ(t, x) satisfies weakly:

∂tρ(t, x) = L[ρ](t, x) for t ≥ 0 and x ≥ 0 (4.6)

with

L[ρ](x) := Q+[ρ](x) − ρ(x) = 2(ρ ∗ ρ)(2x) − ρ(x). (4.7)

Remark. Suppose that ρ(0, x) is a probability density on [0,∞) with mean µ > 0.

It is readily checked that the dynamics (4.6) preserves the total mass and the mean

value. That is,

d
dt

∫
R+
ρ(t, x) dx = 0 and d

dt

∫
R+
x ρ(t, x) dx = 0.

For each test function φ, one can show that
∫
R+
φ(x)G[δµ](dx) = 0, implying that

the Dirac distribution centered at µ is a equilibrium solution of (4.6).

We now present a stochastic representation of the evolution equation (4.6), which

is interesting in its own right.

Proposition 4.3.2 Assume that ρt(x) := ρ(t, x) is a solution of (4.6) with initial

condition ρ0(x) being a probability density function supported on R+ with mean µ.

Defining (Xt)t≥0 to be a R+-valued continuous-time pure jump process with jumps of

the form

Xt
rate 1 Xt+Yt

2 , (4.8)

where Yt is a i.i.d. copy of Xt, and the jump occurs according to a Poisson clock

running at the unit rate. If Law(X0) = ρ0, then Law(Xt) = ρt for all t ≥ 0.

Proof Taking φ to be an arbitrary but fixed test function, we have

d
dtE[φ(Xt)] = E[φ((Xt + Yt)/2)] − E[φ(Xt)]. (4.9)
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Denoting ρ(t, x) as the probability density function of Xt, (4.9) can be rewritten as

d
dt

∫
R+
ρ(t, x)φ(x) dx =

∫
R2

+

φ((k + ℓ)/2)ρ(k, t)ρ(ℓ, t) dk dℓ−
∫
R+
ρ(t, x)φ(x) dx.

After a simple change of variables, one arrives at

d
dt

∫
R+
ρ(t, x)φ(x) dx =

∫
R+

(Q+[ρ](x, t) − ρ(t, x))φ(x) dx.

Thus, ρ has to satisfy ∂tρ = L[ρ] and the proof is completed. □

4.3.2 Exponential Decay of the Variance

Our main goal in this subsection is the proof of the following

Theorem 11 Assume that ρ(t, x) is a classical solution of (4.6) for each t > 0, with

the initial condition ρ(0, x) being a probability density on [0,∞) with mean µ > 0 and

finite variance. Then the variance of ρ at time t, denoted by V(t), decays exponentially

in time. More specifically, we have V(t) = V(0) e− 1
2 t.

Proof Thanks to the conservation of the mean value, we have

V(t) =
∫
R+
x2 ρ(t, x) dx− µ2.

Thus, we deduce

d
dtV(t) = 2

∫
R+
x2 (ρ ∗ ρ)(2x) dx−

∫
R+
x2 ρ(x) dx

=
∫
R+

2x2
(∫ 2x

0
ρ(y) ρ(2x− y) dy

)
dx−

∫
R+
x2 ρ(x) dx

=
∫

y≥0
ρ(y)

(∫
x≥y/2

2x2 ρ(2x− y) dx
)

dy −
∫
R+
x2 ρ(x) dx

=
∫

y≥0
ρ(y)

(∫
z≥0

((y + z)/2)2 ρ(z) dz
)

dy −
∫
R+
x2 ρ(x) dx

= −1
2

(∫
R+
x2 ρ(t, x) dx− µ2

)
= −1

2V(t).
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A simple integration yields the advertised conclusion.

Remark. The proof of Theorem 11 can also be carried out from a purely stochastic

point of view, by leveraging the stochastic representation of the PDE (4.6). Indeed,

suppose that (Xt)t≥0 and (Yt)t≥0 are defined as in the statement of Proposition 4.3.2.

Then we can calculate

d
dtV(t) = d

dtVar[Xt] = Var[(Xt + Yt)/2] − Var[Xt] = −1
2Var[Xt] = −1

2V(t),

which leads us to the same result.

4.3.3 Exponential Decay of the Gini Index

The widely used inequality indicator Gini index G measures the inequality in the

wealth distribution and ranges from 0 (no inequality) to 1 (extreme inequality). We

recall the definition of G here for the reader’s convenience.

Definition 13 Given a probability density function ρ supported on R+ with mean

value µ > 0. The Gini index of ρ is given by

G[ρ] = 1
2µ

∫∫
R2

+

ρ(x) ρ(y) |x− y| dx dy.

Alternatively, we can also rewrite

G[ρ] = 1
2µE[|X − Y |],

in which X and Y are i.i.d. random variables with law ρ.

In econophysics literature, analytical results on Gini index are comparatively rare.

In certain models, the Gini index can be shown to converge to 1, which implies the

emergence of the ”rich-get-richer” phenomenon and the accentuation of the wealth

inequality, see for instance Boghosian et al. [28, 29] and references therein. There is
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also a recently proposed model known as the rich-biased model Cao and Motsch [40],

in which the authors observe a numerical evidence for the convergence of Gini index

to its maximum possible value but analytical justification is still absent. As have been

indicated earlier, the limit PDE (4.6) associated with the repeated averaging model

can be served as the first example for which quantitative estimates on the behavior

of Gini index can be hoped. We start with the following preliminary observation.

Proposition 4.3.3 Assume that ρ(t, x) is a classical solution of (4.6) for each t > 0,

with the initial condition ρ(0, x) being a probability density on [0,∞) with mean µ > 0.

Then the Gini index G[ρ] is non-increasing in time. Moreover, we have

d
dtG[ρ] = − 1

µ

∫∫∫
R3

+

ρ(v) ρ(w) ρ(y)
(

|v − y| + |w − y|
2 −

∣∣∣∣v + w

2 − y
∣∣∣∣
)

dv dw dy

≤ 0.
(4.10)

Proof By symmetry, we have

d
dtG[ρ] = 1

µ

∫∫
R2

+

∂tρ(x) ρ(y) |x− y| dx dy

= 1
µ

∫∫
R2

+

2 (ρ ∗ ρ)(2x) ρ(y) |x− y| dx dy − 2G[ρ]

= 1
µ

∫∫
R2

+

2
(∫ 2x

0
ρ(z) ρ(2x− z) dz

)
ρ(y) |x− y| dx dy − 2G[ρ]

= 1
µ

∫∫∫
R3

+

ρ(v) ρ(w) ρ(y)
∣∣∣∣v + w

2 − y
∣∣∣∣ dv dw dy − 2G[ρ]

= − 1
µ

∫∫∫
R3

+

ρ(v) ρ(w) ρ(y)
(

|v − y| + |w − y|
2 −

∣∣∣∣v + w

2 − y

∣∣∣∣
)

dv dw dy,

whence the proof is finished. □

Remark. In light of the previous remark and stochastic representation of the PDE

(4.6). We can also provide an alternative proof of Proposition 4.3.3. Indeed, suppose

that (Xt)t≥0 and (Yt)t≥0 are defined as in the statement of Proposition 4.3.2. Then
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we can compute

d
dtG[ρ] = 1

2µ
d
dtE[|Xt − Yt|] = 1

µ
E[|(Xt + Zt)/2 − Yt|] − 1

µ
E[|Xt − Yt|]

= − 1
µ

(E[|Xt − Yt|] − E[|(Xt + Zt)/2 − Yt|]) ≤ 0,

in which Zt is a fresh i.i.d. copy of Xt (independent of Yt as well). This coincides

with (4.10)

At this point, we may expect to bound G[ρ] in terms of − d
dt
G[ρ] in order to

extract some information on the rate of decay of G. But unfortunately, inequalities

of the form − d
dt
G[ρ] ≥ c · G[ρ] can not be always fulfilled. For example, if we take

ρ = 1
2δ0 + 1

2δ2µ, then one can check that d
dt
G[ρ] = 0, whereas G[ρ] = 1

2 > 0. However,

not all hope is lost. Indeed, if we restrict the initial data ρ(0, x) to be log-concave,

we can prove the following

Theorem 12 Assume that ρ(t, x) is a classical solution of (4.6) for each t > 0, with

the initial condition ρ(0, x) being a log-concave probability density on [0,∞) with mean

µ > 0. Then the Gini index G[ρ] converges to 0 exponentially fast in time. Moreover,

we have

G[ρ(t)] ≤ G[ρ(0)]e− t
14434 . (4.11)

To facilitate the proof of Theorem 12, we need the following

Lemma 4.3.4 Assume that ρ(t, x) is a classical solution of (4.6) for each t > 0, with

the initial condition ρ(0) being a log-concave probability density on [0,∞) with mean

µ > 0. Then ρ(t) is again log-concave for each t > 0.

Proof The proof is an immediate consequence of the stochastic representation of

(4.6), together with the elementary fact that log-concavity is preserved by convolution.

□
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Remark. Preservation of log-concavity can also be established for other PDEs,

although the proofs are usually quite involved. For instance, it is well-known that

evolution under the one-dimensional heat equation preserves the log-concavity of the

initial datum Brascamp and Lieb [33].

Proof of Theorem 12 For notational simplicity, we write

G := G[ρ] and H := − d
dtG[ρ]. (4.12)

In fact, we will not need the restriction that the support of the distribution ρ is

[0,∞).

By approximation, without loss of generality, we may assume that ρ(x) > 0 for all

real x. For example, one may approximate ρ by its convolution p ∗ϕ with the density

ϕ of a centered normal distribution with an arbitrarily small variance. Then ρ∗g > 0

on R and ρ ∗ ϕ is arbitrarily close to ρ and log-concave, thanks to the preservation of

log-concavity by convolution.

As ρ is a log-concave density, ρ is continuous and attains its maximum value, say

ρ∗(> 0), at some point c ∈ R, so that ρ∗ = ρ(c) ≥ ρ(x) for all real x. Moreover, again

because ρ is log-concave, there exist (unique) real a and b such that

a < c < b and ρ(a) = ρ(b) = ρ∗/e.

We define

q(x) :=



q1(x) := ρ∗ exp
{

−x− c

a− c

}
if x < a,

ρ∗ if a ≤ x < b,

q2(x) := ρ∗ exp
{

−x− c

b− c

}
if x ≥ b.

Thanks to the log-concavity of ρ again, we have ρ(x) ≤ q(x). We refer to Figure 4.2

for an illustration.
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Figure 4.2: For ρ(x) = x e−x
1{x>0}, Here Are the Graphs {(x, ρ(x)) | −2 ≤ x ≤ 6}

(blue), {(x, q(x)) | −2 ≤ x ≤ 6} (Black), {(x, q1(x)) | a ≤ x ≤ c} (Dashed Red),
and {(x, q2(x)) | c ≤ x ≤ b} (Dashed Green). For This Particular ρ, We Have c = 1,
a = −W0 (−1/e2) ≈ 0.1586, and b = −W−1 (−1/e2) ≈ 3.1461, Where Wj Is the jth
Branch of the Lambert W Function Lambert [105].

By shifting, we may assume with of loss of generality that a = 0. Thus,

G ≤
∫∫
R2

q(x) q(y) |x− y| dx dy

= ρ2
∗
e2b3 + 9eb3 + 3b3 + 3b2c− 12eb2c− 3bc2 + 12ebc2

3e2

≤ ρ2
∗
(1 + 3e + e2/3) b3

e2 ,

since 0 < c < b. Moreover, again by the log-concavity of p, we have ρ ≥ ρ∗/e on the

interval [a, b] = [0, b], so that 1 =
∫
R ρ ≥

∫ b
0 ρ∗/e = b ρ∗/e, whence ρ∗ ≤ e/b and

G ≤ (1 + 3e + e2/3) b. (4.13)

On the other hand, because ρ ≥ ρ∗/e on the interval [a, b] = [0, b] and the integrand

in the definition of H is non-negative, we have

H ≥
(
p∗

e

)3 ∫∫∫
[0,b]3

(
|x− z| + |y − z|

2 −
∣∣∣∣x− z + y − z

2

∣∣∣∣
)

dx dy dz

=
(
ρ∗

e

)3 b4

24 .
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Also, 1 =
∫
R ρ ≤

∫
R q = ρ∗b(1 + 1/e), so that ρ∗ ≥ 1/(b(1 + 1/e)) and hence

H ≥
(

1
(e + 1)b

)3
b4

24 = b

24(e + 1)3 . (4.14)

Comparing (4.13) and (4.14), we deduce

H ≥ G

24(e + 1)3(1 + 3e + e2/3) ≥ G

14334 ,

as claimed. □

Finally, we provide a numerical experiment in order to corroborate the relaxation

of the Gini index guaranteed by Theorem 12, see Figure 4.3. For the initial condition,

we use a gamma probability density with shape parameter µ = 5 and rate parameter

equal to unity, i.e., ρ(0, x) = 1[0,∞)(x) · xµ−1 e−x/Γ(µ). The standard forward Euler

scheme (with the time step-size ∆t = 0.05 and the space step-size ∆x = 0.01) is

enforced for the numerical solution of (4.6). Note that the Gini index of our choice

of ρ(0, x) has a nice closed expression G[ρ(0)] = 21−2µ Γ(2µ)
µ (Γ(µ))2 , which reduces (approxi-

mately) to 0.2461 for µ = 5.

0 1 2 3 4 5
0

5 · 10−2

0.1

0.15

0.2

0.25

time t

G
in
i
in
d
e
x

Gini index

fitting 0.2461 · e−0.263·t

Figure 4.3: Evolution of the Gini Index of ρ(t) (the Solution of (4.6)) for 0 ≤ t ≤ 5,
with the Initial Datum Being a Gamma Probability Density with Shape Parameter
µ = 5 and Rate Parameter Equal to Unity, i.e., ρ(0, x) = 1[0,∞)(x) · xµ−1 e−x/Γ(µ).
The Black Dotted Line and the Red Smooth Curve Represent the Gini Index and Its
Fitting Curve, Respectively. We Also Remark That in This Experiment These Two
Curves Are Almost Indistinguishable.
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4.4 Conclusion

In this manuscript, we have investigated the repeated averaging dynamics for

money exchange originated from econophysics. Because of the model simplicity in

its appearance, there is a comparative lack of mathematical literature that is purely

dedicated to this model, although this model is a special case of the general dynamics

studied in Matthes and Toscani [116]. We presented a propagation of chaos result,

which links the stochastic N particle system to a deterministic nonlinear evolution

equation. Although certain convergence results of the Gini index are obtained for

other econophysics models, we emphasize that no quantitative estimates on the long

time behavior of Gini index are available in the current literature (at least to our best

knowledge). Thus, this toy model may serve as a starting point for more systematic,

quantitative investigation of the large-time asymptotic of Gini index arising from

other models. As a open conjecture, we speculate that the constant 1/14434 appearing

in the statement of Theorem 12 might be tremendously improved.

It would also be interesting to investigate the behavior of the Gini index for the

stochastic agent-based model where the number of agents N is arbitrary but fixed.

We believe that it would be relatively simple (in this setting) to demonstrate the

convergence of the Gini index towards zero, but the difficulty arises when we want to

obtain an explicit rate of the aforementioned convergence.
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Chapter 5

K-AVERAGING AGENT-BASED MODEL: PROPAGATION OF CHAOS AND

CONVERGENCE TO EQUILIBRIUM

Chapter 5 is the paper Cao [38] published on Journal of Statistical Physics.

5.1 Abstract

The paper treats an agent-based model with averaging dynamics which is referred

to as the K-averaging model. Broadly speaking, this model can be added to the

growing list of dynamics exhibiting self-organization such as the well-known Vicsek-

type models Aldana and Huepe [4], Aldana et al. [3], Pimentel et al. [127]. In the

K-averaging model, each of theN particles updates their position by averaging overK

randomly selected particles with additional noise. To make the K-averaging dynamics

more tractable, it is possible to establish a propagation of chaos type result in the

limit of infinite particle number (i.e. N → ∞) using a martingale technique. Then, it

is possible to prove the convergence of the limit equation toward a suitable Gaussian

distribution in the sense of Wasserstein distance as well as relative entropy. Additional

numerical simulations are provided to illustrate both results.

5.2 Introduction

The collective behavior of various particle systems is a subject of intensive re-

search that has potential applications in biology, physics, economics, and engineering

Naldi et al. [122], Belmonte et al. [22], Chuang et al. [59]. Different models are pro-

posed to study the emergence of flocking of birds, formation of consensus in opinion

dynamics, and phase transitions in network models Motsch and Tadmor [121], Porfiri
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and Ariel [131], Chaté et al. [55], Barbaro and Degond [19]. Broadly speaking, all of

the aforementioned models are instances of interacting particle systems, under vari-

ous interaction rules among the particles. We refer the readers to Liggett [112] for a

general introduction into this branch of applied mathematics.

In this work, we investigate a simple model to describe the collective alignment

of a group of particles. The model we examine here can be classified in general as an

averaging dynamics and will be referred to as the K-averaging model. The readers

are encouraged to consult Carlen et al. [42], Bertin et al. [24, 25], Boissard et al. [30]

for a variety of models in biology and physics in which averaging plays a key role

in the model definition. One important inspiration for the present work is a paper

of Maurizio Porfiri and Gil Ariel Porfiri and Ariel [131], which can be thought as a

K-averaging model on the unit circle. In the K-averaging model considered in this

manuscript, at each time step, we update the position of each particle (viewed as an

element of Rd) according to the average position of its K randomly chosen neighbors

while being simultaneously subjected to additive noise (see equation (5.1)). Thus, we

give the following definition.

Definition 14 (K-averaging model) Consider a collection of stochastic processes

{Xn
i }1≤i≤N evolving on Rd, where n is the index for time. At each time step, each

particle updates its value to the average of K randomly selected neighbors, subject to

an independent noise term:

Xn+1
i := 1

K

K∑
j=1

Xn
Sn

i (j) +W n
i , 1 ≤ i ≤ N, (5.1)

where Sn
i (j) are indices taken randomly from the set {1, 2, . . . , N} (i.e., Sn

i (j) ∼

Uniform({1, 2, . . . , N}) and is independent of i, j and n), and W n
i ∼ N (0, σ2

1d) is

independent of i and n, in which 0 and 1d stands for the zero vector and the identity

matrix in dimension d, respectively (see Figure 5.1 for a illustration).
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We illustrate the dynamics in Figure 5.1. The key question of interest is the

exploration of the limiting particle distribution as the total number of particles and

the number of time steps become large. We illustrate numerically (see Figure 5.2) the

evolution of the dynamics in dimension d = 1 using N = 5, 000 particles after n =

1000 time steps. One of the main difficulty in the rigorous mathematical treatment

time

K-average

noise

equilibrium distribution

Figure 5.1: Sketch Illustration of the K-Averaging Dynamics (5.1). At Each Time
Step, a Particle Updates Its Position By Taking the Averaging of K Randomly Se-
lected Particles and Adding Some (Gaussian) Noise.

of models involving large number of interacting particles or agents lies in the general

fact interaction will build up correlation over time. Fortunately the framework of

kinetic theories allows possible simplification of the analysis of certain such models via

suitable asymptotic analysis, see for instance Oelschlager [123], Méléard and Roelly-

Coppoletta [119], Hauray and Jabin [89], Jabin and Wang [96], Merle and Salez [118],

Sznitman [145]. For the model at hand, our main contribution is two fold: we first

prove a result of propagation-of-chaos type under the large N limit (see Theorem 13

for a precise statement), in which interactions among particles are eliminated in finite

time and a mean-field dynamics emerges. After the large population limit is carried
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Figure 5.2: Simulation of the K-Averaging Dynamics in Dimension d = 1 with
K = 5 and N = 5000 Particles after 1000 Time Steps, in Which We Used σ = 0.1
and Initially Each Xi ∼ Uniform(−1, 1). As To Be Shown Later, the Distribution
of Particles Will Be Asymptotically Gaussian Under the Large N and Large Time
Limits.

out and the simplified dynamics (see equation (5.5)) is obtained, we then show that

the law of the limiting dynamics defined by (5.5) is asymptotically Gaussian under the

large time limit, and such convergence of distribution occurs both in the Waasserstein

distance (see Theorem 14) and in the sense of relative entropy (see Theorem 15). A

schematic illustration of the strategy used in this manuscript is presented in Figure

5.3. We briefly explain the possible motivation of studying such a model (at least

in dimension d = 1). In the context of a opinion dynamics model (see for instance

Baumann et al. [21]), Xn
i may represent an evolving opinion of agent i at time step

n. For a given event, agent i has a opinion Xi (which can be positive or negative)

with strength |Xi|, and agents update their opinions based on the equation (5.1).

There remain some open questions related to our current work. First, our analysis

of the model is restricted toK ≥ 2, under which we are able to identify the equilibrium

distribution and prove various results, we speculate that the propagation of chaos
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Figure 5.3: Schematic Illustration of the Limiting Procedure Carried Out for the
Study of the K-Averaging Dynamics (5.1). The Empirical Measure ρn

emp(x) of the
System (See Equation (5.1)) Will Be Shown to Converge as N → ∞ to Its Limit Law
ρn Described By the Evolution Equation (5.10), and Then the Relaxation of ρn to Its
Gaussian Equilibrium Will Be Established.

property will be lost if K = 1, yet we have not been able to find a perfect analytical

justification. We also remark here that the case of K = 1 can be seen as a variant

of the ”Choose the Leader” (CL) dynamics introduced in Carlen et al. [42], in which

each of the N particles decides to jump to the location of the other particle chosen

independently and uniformly at random at every time step, though noise is injected

in such a jump. Second, we think similar results can be obtained if the noise is no

longer Gaussian, except that the equilibrium will not be explicit in general.

The remainder of the paper is organized as follows: In section 5.3.1, we present

several preliminaries related to random probability measures and the concept of prop-

agation of chaos. Sections 5.3.2 and 5.3.3 are concerned with the intuitive derivation

of the simplified model (5.5) and related properties. We give a full proof of the

propagation of chaos result in section 5.4 and the large time asymptotic of (5.5) is

investigated in 5.5. We devote section 5.6 to the continuous-time counterpart of the

K-averaging model studied in previous sections, and finish the paper with a conclu-
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sion in section 5.7.

5.3 K-Averaging Model

In section 5.3.1, we perform a brief review on convergence of random probability

measures and the notion of propagation of chaos. Section 2.2 encapsulated a heuristic

argument for the large N limit, and we prove a Lipschitz continuity property of the

key operator T arising naturally from the K-averaging dynamics in section 5.3.3,

which will be leveraged in the proof of Theorem 13.

5.3.1 Review Propagation of Chaos and Convergence of Random Measures

We devote this section to a quick review on propagation of chaos and convergence

of random probability measures. First, we intend to briefly discuss about propagation

of chaos, but we need to carefully define what propagation of chaos means. With this

aim, we consider a (stochastic) N -particle system denoted by (X1, . . . , XN) in which

particles are indistinguishable. In other words, the particle system enjoys a property

known as permutation invariance, i.e. for any test function φ and permutation η ∈

SN :

E[φ
(
X1, . . . , XN

)
] = E[φ

(
Xη(1), . . . , Xη(N)

)
].

In particular, all the single processes Xi have the same law for 1 ≤ i ≤ N (although

they are in general correlated). Let ρ(N)(x1, . . . , xN) to be the density distribution of

the N -particle process and denote ρ(N)
k its k-particle marginal density, i.e., the law of

the process (X1, . . . , Xk):

ρ
(N)
k (x1, . . . , xk) :=

∫
xk+1,...,xN

ρ(N)(x1, . . . , xN)dxk+1 . . . dxN .

Consider now a (potential) limit stochastic process (X1, . . . , Xk) where {X i}1≤i≤k

are i.i.d. Denote by ρ1 the law of a single process, thus by independence assumption
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the law of all the process is given by:

ρk(x1, . . . , xk) =
k∏

i=1
ρ1(xi), i.e., ρk =

k⊗
i=1

ρ1.

The following definition is classical and can be found for instance in Sznitman

[145], Carlen et al. [42].

Definition 15 We say that the stochastic process (X1, . . . , XN) satisfies the propa-

gation of chaos if for any fixed k:

ρ
(N)
k

N→∞−−−⇀ ρk, (5.1)

which is equivalent to the validity of the following relation for any test function φ:

E[φ
(
X1, . . . , Xk

)
] N→∞−−−→ E[φ

(
X1, . . . , Xk

)
]. (5.2)

Next, we shift to a review on convergence of random probability measures. Such

topic can be found for instance in a classical book by Billingsley Billingsley [26].

However, we prefer to give a more practical treatment on convergence of random

probability measures, based on Berti et al. [23]. Consider a sequence of random

probability measures µn(ω), i.e., for a given ω ∈ Ω, µn(ω) ∈ P(Rd). We shall define

the mode of convergence as follows:

Definition 16 We say that µn converges to µ ∈ P(Rd) in probability, denoted by

µn
P−→ µ, if

⟨µn(ω), φ⟩ P−→ ⟨µ(ω), φ⟩ for any φ ∈ Cb(Rd). (5.3)

We record here a simple criteria to test the convergence in probability of random

measures.

Lemma 5.3.1 Suppose that the sequence of random measures {µn(ω)}n satisfies

Eω[|⟨µn(ω) − µ(ω), φ⟩|] n→∞−−−→ 0 for all φ ∈ Cb(Rd). (5.4)
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Then µn
P−→ µ.

Proof It is a direct application of the Markov’s inequality. Fixing φ ∈ Cb(Rd) and

let ε > 0, we have

P[|⟨µn(ω), φ⟩ − ⟨µ(ω), φ⟩| > ε] = P[|⟨µn(ω) − µ(ω), φ⟩| > ε]

≤ Eω[|⟨µn(ω) − µ(ω), φ⟩|]
ε

n→∞−−−→ 0.

Therefore, the random variables Xn(ω) := ⟨µn(ω), φ⟩ converges in probability to

X(ω) := ⟨µ(ω), φ⟩. Since it is true for any φ ∈ Cb(Rd), we deduce that µn
P−→ µ. □

5.3.2 Formal Limit as N → ∞

We would like to investigate formally the limit as N → ∞ of the dynamics, and

we will provide the rigorous derivation in the next section. Motivated by the famous

molecular chaos assumption (also known as propagation of chaos), which suggests

that we have the statistical independence among the particle systems defined by

(5.1) under the large N → ∞ limit, we henceforth give the following definition of the

limiting dynamics of X1 as N → ∞ from the process point of view.

Definition 17 (Asymptotic K-averaging model) We define a collection of ran-

dom variables {Xn}n≥0 by setting X0 = X0
1 and

Xn+1 := 1
K

K∑
j=1

Y n
j +W n, (5.5)

where {Y n
j }1≤j≤K are K i.i.d copies of Xn and W n ∼ N (0, σ2

1d) is independent of

n.

If we denote ρ to be the law of X, then it is possible to determine the evolution

of ρ with respect to time n. For this purpose, We will first collect some definitions to

be used throughout the manuscript.
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Definition 18 We use P(Rd) to represent the space of probability measures on Rd.

We will denote by ϕ the probability density of a d-dimensional Gaussian random

variable E ∼ N (0, σ2
1d). For ρ ∈ P(Rd), we define T : P(Rd) → P(Rd) through

T [ρ] = ϕ ∗ SK [CK [ρ]], (5.6)

in which the CK is the K-fold repeated self-convolution defined via

CK [ρ] := ρ ∗ ρ ∗ · · · ∗ ρ︸ ︷︷ ︸
K times

, (5.7)

and SK is the scaling (renormalization) operator given by

SK [ρ](x) := Kd · ρ(Kx), ∀x ∈ Rd. (5.8)

Remark. We emphasize here that the operator T given in Definition 18 fully

encodes the update rule (5.5) for the asymptotic K-averaging model. Indeed, for

each valid test function φ, we have

⟨ρn+1, φ⟩ = E[φ(Xn+1)] = E

φ
 1
K

K∑
j=1

Y n
j +W n

 = ⟨T [ρn], φ⟩, (5.9)

where the last equality follows because the random variable 1
K

K∑
j=1

Y n
j + W n has law

T [ρn]. Thus, from the density point of view, as ρn is the law of X at time n, then

T [ρn] represents exactly the law of X at time n+ 1.

Equipped with Definition 18, we can write the evolution of the limit equation

as

ρn+1 = T [ρn], n ≥ 0. (5.10)

Notice that the mean value is preserved by the dynamics (5.5), we will make a harmless

assumption throughout this paper that
∫

x∈Rd
xρn(x)dx = 0 ∀n ≥ 0. (5.11)
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Remark. In dimension 1, we derive from (5.5) that

Var(Xn+1) = Var
 1
K

K∑
j=1

Y n
j +W n

 = Var(Xn)
K

+ σ2,

leading to Var(Xn) n→∞−−−→ Kσ2

K−1 . A similar consideration demonstrates that the covari-

ance matrix associated with Xn ∈ Rd converges to Kσ2

K−1 · 1d.

Now we can verify that a suitable Gaussian profile is a fixed point of the iteration

process described by (5.10) as long as K ≥ 2.

Lemma 5.3.2 Fixing K ≥ 2. Let

ρ∞(x) := 1
(2πσ2

∞)
d
2
e− |x|2

2σ2
∞ (5.12)

with σ2
∞ := K

K−1σ
2, then ρ∞ is a fixed point of T . i.e, ρ∞ satisfies ρ∞ = T [ρ∞].

Proof It is readily seen that the operator T maps a Gaussian density to another

(possibly different) Gaussian density. We investigate the effect of each operator ap-

pearing in the definition of T on ρ∞. Indeed, since Z1 + · · · + ZK ∼ N (0, Kσ2
∞1d)

when (Zi)1≤i≤K are i.i.d. with law N (0, σ2
∞1d), we have

CK [ρ∞](x) = 1
(2πKσ2

∞)
d
2
e− |x|2

2Kσ2
∞ .

Next, notice that Z
K

∼ N (0, σ2
∞

K
1d) if Z ∼ N (0, Kσ2

∞1d), from which we deduce that

SK [CK [ρ∞]](x) = 1
(2πσ2

∞/K)
d
2
e− |x|2

2σ2
∞/K .

Finally, we conclude that

T [ρ∞](x) = ϕ ∗ SK [CK [ρ∞]](x) = 1
(2π(σ2

∞/K+σ2))
d
2
e− |x|2

2(σ2
∞/K+σ2) = ρ∞(x),

which completes the proof. □

We end this subsection with a numerical experiment demonstrating the relaxation

of the solution of (5.10) to its Gaussian equilibrium ρ∞, as is shown in Figure 5.4.
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Figure 5.4: Simulation of the Discrete Evolution Equation (5.10) in Dimension
d = 1 with K = 5 after 3 Time Steps, in Which We Used σ = 0.1 and a Uniform
Distribution Over [−1, 1] Initially ρ0(x) := 1

21[−1,1](x) (the Green Curve). The Blue
and Red Curve Represent ρ3 and ρ∞, Respectively. We Also Remark That in This
Example ρ5 and ρ∞ Are Almost Indistinguishable.

5.3.3 Lipschitz Continuity of the Operator T

To conclude section 2, we demonstrate a useful property of the operator T intro-

duced in (5.6). First, we start with the following definition.

Definition 19 For each µ ∈ P(Rd), we define the (strong) norm of µ, denoted by

|||µ|||, via

|||µ||| = sup
∥φ∥∞≤1

|⟨µ, φ⟩|.

The main result in this section lies in the Lipschitz continuity of T , to which we

now turn.

Proposition 5.3.3 For each µ, ν ∈ P(Rd), we have

|||T [µ] − T [ν]||| ≤ K|||µ− ν|||. (5.13)
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Proof We recall that for each g ∈ P(Rd) we have

T [g] = ϕ ∗ SK [CK [g]].

Moreover, we have

⟨SK [g], h⟩ = Kd⟨g, S 1
K

[h]⟩, ∀g, h ∈ P(Rd).

Also, for µ, ν ∈ P(Rd) and φ ∈ Cb(Rd), there holds

⟨µ ∗ ν, φ⟩ = ⟨ν, µ̂ ∗ φ⟩,

where µ̂ is defined via µ̂(x) := µ(−x). Fixing φ with ∥φ∥∞ ≤ 1, for each pair of

probability measures µ, ν ∈ P(Rd), we have

⟨T [µ] − T [ν], φ⟩ = ⟨SK [CK [µ]] − SK [CK [ν]], ϕ ∗ φ⟩

= Kd⟨CK [µ] − CK [ν], S 1
K

[ϕ ∗ φ]⟩

= Kd
K−1∑
j=0

⟨µ ∗ · · · ∗ µ︸ ︷︷ ︸
j times

∗ ν ∗ · · · ∗ ν︸ ︷︷ ︸
K − 1 − j times

∗ (µ− ν), S 1
K

[ϕ ∗ φ]⟩

:= Kd
K−1∑
j=0

⟨κj ∗ (µ− ν), S 1
K

[ϕ ∗ φ]⟩

= Kd⟨µ− ν,
K−1∑
j=0

κ̂j ∗ S 1
K

[ϕ ∗ φ]⟩.

(5.14)

Setting ψj = κ̂j ∗ S 1
K

[ϕ ∗ φ] for each 1 ≤ j ≤ K − 1, then we have

∥ψj∥∞ ≤ ∥S 1
K

[ϕ ∗ φ]∥∞ ≤ ∥φ∥∞

Kd
≤ 1
Kd

.

Thus, if we define φ(1) = Kd∑K−1
j=0 ψj, then ∥φ(1)∥∞ ≤ Kd+1

Kd = K. Now taking the

supremum over all φ with ∥φ∥∞ ≤ 1, we deduce from (5.14) that

|||T [µ] − T [ν]||| ≤ K|||µ− ν|||

and the proof is completed. □
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5.4 Propagation of Chaos

This section is devoted to the rigorous proof of propagation of chaos for the K-

averaging dynamics, by employing a martingale-based technique introduced recently

in Merle and Salez [118]. We will need the following definition.

Definition 20 Let {Xn
i }1≤i≤N be as in Definition 14, we define

ρn
emp(x) := 1

N

N∑
i=1

δXn
i
(x) (5.1)

to be the empirical distribution of the system at time n. In particular, ρn
emp is s

stochastic measure.

Thanks to a classical result (see for instance Proposition 1 in Dai Pra [67] or

Proposition 2.2 in Sznitman [145]), to justify the propagation of chaos, it suffices

to show that

ρn
emp

L−→ ρn as N → ∞.

i.e.,

⟨ρn
emp, φ⟩ L−→ ⟨ρn, φ⟩ for any φ ∈ Cb(Rd).

In fact, one can prove our first theorem.

Theorem 13 Under the settings of the K-averaging model with K ≥ 2, if

ρ0
emp

P−→ ρ0 as N → ∞, (5.2)

then for each fixed n ∈ N we have

ρn
emp

P−→ ρn as N → ∞,

where ρn
emp and ρn are defined in (5.1) and (5.10), respectively.
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Proof We adopt a martingale-based technique developed recently in Merle and

Salez [118]. We have for each test function φ that

E
[
⟨ρn+1

emp, φ⟩
]

= E

 1
N

N∑
i=1

φ

 1
K

K∑
j=1

Y n
i,j +W n

i

 (5.3)

where {Y n
i,j} are i.i.d. with law ρn

emp. Denoting

Zn
i = 1

K

K∑
j=1

Y n
i,j +W n

i

for each 1 ≤ i ≤ N , since the law of Zn
i is T [ρn

emp] for each 1 ≤ i ≤ n and {Zn
i }1≤i≤N

are i.i.d., following the reasoning behind (5.9) we have

E

 1
N

N∑
i=1

φ (Zn
i )
∣∣∣∣∣∣ ρn

emp

 = ⟨T [ρn
emp], φ⟩. (5.4)

Now if we set

Mn : = 1
N

N∑
i=1

φ (Zn
i ) − E

 1
N

N∑
i=1

φ (Zn
i )
∣∣∣∣∣∣ ρn

emp


= ⟨ρn+1

emp, φ⟩ − ⟨T [ρn
emp], φ⟩

(5.5)

for each n ≥ 0, then (Mn)n≥0 defines a martingale. Moreover, thanks to the fact

that {φ(Zn
i )} are i.i.d. bounded random variables, and using the convention that the

variance operation Var(X) is interpreted as Var(X) := ∑d
k=1 Var(Xk) when X is a

d-dimensional vector-valued random variable, we have

(E[|Mn|])2 ≤ E[|Mn|2] = E

Var
 1
N

N∑
i=1

φ (Zn
i )
∣∣∣∣∣∣ ρn

emp


≤ Var

(
1
N

N∑
i=1

φ (Zn
i )
)

≤ ∥φ∥2
∞d

N
,

where we have employed Popoviciu’s inequality (see for instance Popoviciu [129]) for

upper bounding the variance of a bounded random variable. Comparing (5.5) with
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(5.10) yields

E
[
|⟨ρn+1

emp − ρn+1, φ⟩|
]

≤ E
[
|⟨T [ρn

emp] − T [ρn], φ⟩|
]

+ ∥φ∥2
∞d√
N

. (5.6)

Now if ∥φ∥∞ ≤ 1, we can recall the computations carried out in (5.14), which ensures

the existence of some φ(1) with ∥φ(1)∥∞ ≤ K such that

⟨T [ρn
emp] − T [ρn], φ⟩ = ⟨ρn

emp − ρn, φ(1)⟩. (5.7)

Then we can deduce from (5.6) and (5.7) that

E
[
|⟨ρn+1

emp − ρn+1, φ⟩|
]

≤ E
[
|⟨ρn

emp) − ρn, φ(1)⟩|
]

+ d√
N
, (5.8)

in which φ(1) satisfies ∥φ(1)∥∞ ≤ K. We can iterate (5.8) to arrive at

E
[
|⟨ρn

emp − ρn, φ⟩|
]

≤ E
[
|⟨ρ0

emp − ρ0, φ(n)⟩|
]

+ dn√
N
, (5.9)

in which φ(n) satisfies ∥φ(n)∥∞ ≤ Kn. Finally, combining (5.2) with (5.9) allows us

to complete the proof of Theorem 13. □

Remark. As we do not have a uniform-in-time propagation of chaos, we would like

to know whether the convergence declared in Theorem 13 still holds if we do not fix

n (i.e., if n → ∞). We speculate such an uniform in time convergence can no longer

be hoped for by looking at the evolution of the center of mass of the particle systems.

Indeed, define

Cn+1 := 1
N

N∑
i=1

Xn
i

to be the location of the center of mass, and denote by Fn the natural filtration

generated by (Xn
1 , · · · , Xn

N), then in dimension d = 1 we have

E[Cn+1 | Fn] = 1
N

N∑
i=1

E[Xn+1
i | Fn] = 1

N

N∑
i=1

1
K

K∑
j=1

E[Xn
Sn

i (j) | Fn]

= 1
N

N∑
i=1

1
K

K∑
j=1

1
N

N∑
ℓ=1

Xn
ℓ = Cn,
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E[(Cn+1 − Cn)2 | Fn] = E

( 1
N

N∑
i=1

Xn+1
i − Cn

)2 ∣∣∣∣∣∣ Fn


= Var

 1
N

N∑
i=1

Xn+1
i

∣∣∣∣∣∣ Fn

 = 1
N

Var[Xn+1
1 | Fn]

≥ σ2

N
,

where the last equality comes from the fact that Xn+1
i and Xn+1

j are i.i.d. given Fn.

Thus, loosely speaking, at least in dimension d = 1, the center of mass of the particle

systems behaves like a discrete time Brownian motion with intensity of order at least

O(1/
√
N), such an variation can accumulate in time which will eventually ruin the

chaos propagation property in the long run.

5.5 Large Time Behavior

The long time behavior of the limit equation, resulted from the simplified mean-

field dynamics, is treated in this section. In section 5.5.1, by employing a coupling

technique and equipping the space of probability measures on Rd with the Wasser-

stein distance, we will justify the asymptotic Gaussianity of the distribution of each

particle. Then we will strengthen the convergence result shown in the previous sec-

tion in section 5.5.2, and numerical simulations are also performed in support of our

theoretical discoveries in section 5.5.3. We emphasize here that coupling techniques

will be at the core of our proof in section 5.5.1, and the technique used in section

5.5.2 depends heavily on several classical results in information theory.

5.5.1 Convergence in Wasserstein Distance

After we have achieved the transition from the interacting particle system (5.1)

to the simplified de-coupled dynamics (5.5) under the limit N → ∞, in this section

144



we will analyze (5.5) and its associated evolution of its law (governed by (5.10)), with

the intention of proving the convergence of ρn to a suitable Gaussian density. The

main ingredient underlying our proof lies in a coupling technique. First, we recall the

following classical definition.

Definition 21 The Wasserstein distance (of order 2) is defined via

W2
2 (µ, ν) := inf

X∼µ
Y ∼ν

E[|X − Y |2],

where both µ and ν are probability measures on Rd.

We can now state and prove our main result in this section.

Theorem 14 Assume that the innocent-looking normalization (5.11) holds and K ≥

2, then for the dynamics (5.10), we have

W2
2 (ρn+1, ρ∞) ≤ 1

K
W2

2 (ρn, ρ∞), ∀n ≥ 0 (5.1)

In particular, if ρ0 ∈ P(Rd) is chosen such that W2
2 (ρ0, ρ∞) < ∞, then

lim
n→∞

W2
2 (ρn, ρ∞) = 0.

Proof We first show that

W2
2 (T (µ), T (ν)) ≤ 1

K
W2

2 (µ, ν) (5.2)

for each µ, ν ∈ P(Rd). In other words, if we equip the space P(Rd) with the Wasser-

stein distance of order 2, T is a strict contraction as long as K ≥ 2. Now we fix

µ, ν ∈ P(Rd). It is recalled that T (µ) is the law of the random variable

X := X1 + · · · +XK

K
+ E ,

where {Xi}1≤i≤K are i.i.d. with law µ and E ∼ N (0, σ2
1d). Thus, if we also introduce

Y := Y1 + · · · + YK

K
+ Ẽ ,
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in which {Yi}1≤i≤K are i.i.d. with law ν and Ẽ ∼ N (0, σ2
1d), then we can write

W2
2 (T (µ), T (ν)) = inf

X∼T (µ),Y ∼T (ν)
E[|X − Y |2]

= inf
Xi∼µ,Yi∼ν

E
[∣∣∣∣X1 + · · · +XK

K
+ E − Y1 + · · · + YK

K
− Ẽ

∣∣∣∣2
]
.

We can couple (X1, · · · , XK , E) and (Y1, · · · , Yk, Ẽ) as we want. First, we take E = Ẽ ,

meaning we have a common source of noise. Second, fixing η > 0, we take (X1, Y1)

such that

E[|X1 − Y1|2] ≤ W2
2 (µ, ν) + η,

(i.e. almost best coupling). Finally, we perform similarly for the other (Xi, Yi) with

(Xi, Yi) independent of (Xj, Yj) if i ̸= j. These procedures lead us to

W2
2 (T (µ), T (ν)) ≤ E

[∣∣∣∣X1 − Y1 + · · · +XK − YK

K

∣∣∣∣2
]

≤ 1
K2

(
E[|X1 − Y1|2] + · · · + E[|XK − YK |2]

)
≤ 1
K

W2
2 (µ, ν) + η

K
.

Since this is true for any η > 0, (5.2) is verified. Now we can deduce from (5.2) that

W2
2 (ρn+1, ρ∞) = W2

2 (T (ρn), T (ρ∞)) ≤ 1
K

W2
2 (ρn, ρ∞),

whence (5.1) is proved. □

5.5.2 Convergence in Relative Entropy

In this subsection we will show that the evolution of the discrete equation (5.10)

relaxes to its Gaussian equilibrium ρ∞ in the sense of relative entropy, as long as

K ≥ 2. Before stating our result, we first clarify some definitions. We refer the

reader to Cover [62] for a comprehensive account of modern information theory.
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Definition 22 We use

H(X) := H(g) =
∫
Rd
g(x) log g(x)dx

to represent the differential entropy of a Rd-valued random variable X with law g.

Moreover,

DKL(g||h) := H(g) − H(g, h) =
∫
Rd
g(x) log g(x)dx −

∫
Rd
g(x) log h(x)dx

denotes the relative entropy from h ∈ P(Rd) to g ∈ P(Rd), in which

H(g, h) := H(X, Y ) =
∫
Rd
g(x) log h(x)dx

is the cross-entropy from g to h (or equivalently, from X to Y where the laws of X

and Y are g and h, respectively).

For the reader’s convenience, we explicitly state two fundamental results from

information theory that we shall reply on.

Lemma 5.5.1 (Shannon-Stam) Under the set-up of Definition 22, we have

H(
√
λX +

√
1 − λY ) ≤ λH(X) + (1 − λ)H(Y )

for each λ ∈ [0, 1].

Lemma 5.5.1 is one of the three equivalent formulations of the well-known Shannon-

Stam inequality, see for instance section 1.3.2 of Rezakhanlou et al. [136]. The next

lemma (see for instance Theorem 1 in Artstein et al. [12] or equation (7) in Madi-

man and Barron [113]) demonstrates the monotonicity of the differential entropy

along re-scaled sum of i.i.d. square-integrable random variables.

Lemma 5.5.2 Let X1, X2, . . . be i.i.d. square-integrable random variables. Then

H
(
X1 + · · · +Xn√

n

)
≤ H

(
X1 + · · · +Xn−1√

n− 1

)

for each n ≥ 2.
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Theorem 15 Assume that ρ is a solution to (5.10), then for each fixed K ≥ 2 we

have

DKL(ρn+1||ρ∞) ≤ 1
K

DKL(ρn||ρ∞). (5.3)

In particular, for each K ≥ 2 we have DKL(ρn||ρ∞) → 0 as n → ∞.

Proof Let {Xn}n≥0 be as in Definition 17. If we introduce a random variable X∞

with law ρ∞, i.e.,X∞ ∼ N (0, σ2
∞1d), then for each n ∈ N, we can rewrite (5.5) as

Xn+1 = 1√
K

· 1√
K

K∑
j=1

Y n
j +

√
K − 1
K

X∞,

since
√

K−1
K
X∞ = W n in law. Setting γ = 1√

K
, we obtain

Xn+1 = √
γ · 1√

K

K∑
j=1

Y n
j +

√
1 − γ ·X∞.

Consequently, the Shannon-Stam inequality (see Lemma 5.5.1) together with the

monotonicity of differential entropy along normalized sum of i.i.d. random variables

(see Lemma 5.5.2) yields

H(Xn+1) ≤ γH
 1√

K

K∑
j=1

Y n
j

+ (1 − γ)H(X∞) ≤ γH(Xn) + (1 − γ)H(X∞). (5.4)

Next, we observe that the cross-entropy from each f ∈ P(Rd) with mean 0 to the

equilibrium distribution ρ∞ is essentially the variance of f , meaning that

H(f, ρ∞) = −d

2 log(2πσ2
∞) −

∫
Rd |x|2f(x)dx

2σ2
∞

.

In particular, if X and Y are independent random variables with mean 0 and a2+b2 =

1, then

H(aX + bY,X∞) = a2H(X,X∞) + b2H(Y,X∞).

Thus, using this formulation with √
γ and

√
1 − γ, we find

H(Xn+1, X∞) = γH
 1√

K

K∑
j=1

Y n
j , X∞

+ (1 − γ)H(X∞, X∞)

= γH(Xn, X∞) + (1 − γ)H(X∞).
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Combining this with (5.4) leads to

DKL(ρn+1||ρ∞) = H(Xn+1) − H(Xn+1, X∞)

≤ γH(Xn) + (1 − γ)H(X∞) − γH(Xn, X∞) − (1 − γ)H(X∞)

= γDKL(ρn||ρ∞),

and the proof is completed. □

Remark. By Talagrand’s inequality (see for instance Theorem 9.2.1 in Bakry

et al. [14]), the convergence DKL(ρn||ρ∞) → 0 implies the convergence W2
2 (ρn, ρ∞) →

0.

5.5.3 Numerical Illustration of Decay in Relative Entropy

We investigate numerically the convergence of the solution ρn of (5.10) to its

equilibrium ρ in support of our Theorem 15, see Figure 5.5. We use d = 1 (dimension),

K = 5 (number of neighbors to be averaged over), σ = 0.1 (the intensity of a centered

Gaussian noise) in the simulation of the evolution equation (5.10). To discretize

(5.10), we employ the step-size ∆x = 0.001 and a cutoff threshold M = 100, 000 so

that the support of ρn is contained in {j∆x}−M≤j≤M for all n, and the total number

of simulation steps is set to 15. As initial condition, we use the Laplace distribution

ρ0(x) = 1
2e−|x|. Moreover, the simulation result is displayed in the semi-logarithmic

scale, which clearly indicates a geometrically fast convergence.
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Figure 5.5: Simulation of the Relative Entropy from ρ to ρ∞ in Dimension d = 1 with
K = 5 after 15 Time Steps, in Which We Used σ = 0.1 and a Laplace Distribution
ρ0(x) = 1

2e−|x| Initially. The Blue and Orange Curve Represent the Numerical Error
and the Analytical Upper Bound on the Error, Respectively. We Also Noticed That
the Numerical Error Can Not Really Go Below 10−12, but This Is Presumably Due
to the Floating-Point Precision Error.

5.6 Continuous-Time K-Averaging Dynamics

With suitable modifications the argument used in the discrete-time applies in

continuous-time as well, so in this section we briefly consider the continuous version

of the K-averaging model studied in previous sections, i.e., the K-averaging occurs

according to a Poisson process. First, we give a formal definition of the model.

Definition 23 (Continuous-time K-averaging model) Consider a collection of

stochastic processes {Xi(t)}1≤i≤N evolving on Rd. At each time a Poisson clock with

rate λ rings, we pick a particle i ∈ {1, . . . , N} uniformly at random and update the

position of Xi according to the average position of K randomly selected neighbors,

subject to an independent noise term, i.e., for each test function φ the process must
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satisfy

dE[φ
(
X1(t), . . . , XN(t)

)
] = λ

N∑
i=1

E[φ
(
X1(t), . . . , Zi(t), . . . , XN(t)

)
− φ

(
X1(t), . . . , XN(t)

)
]dt,

(5.1)

where Zi(t) := 1
K

∑K
j=1 XSi(j)(t) + Wi(t), Si(j) are indices taken randomly from the

set {1, 2, . . . , N} (i.e., Si(j) ∼ Uniform({1, 2, . . . , N}) and is independent of i, j and

t), and Wi(t) ∼ N (0, σ2
1d) is independent of i and t.

In the large N limit, we expect an emergence of a simplified dynamics, which

motivates the following definition.

Definition 24 (Asymptotic continuous-time K-averaging model) Consider

a Rd-valued stochastic process X(t) which satisfies the following relation for each test

function φ:

dE[φ
(
X(t)

)
] = λE[φ

(
Z(t)

)
− φ

(
X(t)

)
]dt, (5.2)

in which Z(t) := 1
K

∑K
j=1 Y j(t) + W (t), where {Y j(t)}1≤j≤K are K i.i.d. copies of

X(t) and W (t) ∼ N (0, σ2
1d) is independent of t.

If we define ρ(x, t) to be the law of X at time t, one can readily see that the

evolution of ρ is governed by

∂tρ = λ(T [ρ] − ρ), t ≥ 0. (5.3)

Moreover, one can show the continuous-time analog of Theorem 13 and Theorem

15.

Theorem 16 Let ρemp(t) := 1
N

∑N
i=1 δXi(t) to be the empirical distribution of the sys-

tem determined by (5.1) at time t and ρ the solution of (5.3) with the Gaussian

equilibrium ρ∞ defined in (5.12), then
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(i) under the set-up of the continuous-time K-averaging model with K ≥ 2, if

ρemp(0) P−→ ρ(0) as N → ∞, (5.4)

then we have

ρemp(t) P−→ ρ(t) as N → ∞,

holding for all 0 ≤ t ≤ T with any prefixed T > 0.

(ii) for each fixed K ≥ 2 we have

d
dtDKL(ρ||ρ∞) ≤ −λ(1 − γ)DKL(ρ||ρ∞), (5.5)

where γ = 1
K

as before. In particular, we have

DKL(ρ(t)||ρ∞) ≤ DKL(ρ(0)||ρ∞) · e−λ(1−γ)t. (5.6)

Proof We assume without loss of generality that λ = 1. For (i), mimic the argument

in the discrete-time setting we obtain for each test function φ that

dE [⟨ρemp(t), φ⟩] = E
[

1
N

N∑
i=1

φ
(
Zi(t)

)
− 1
N

N∑
i=1

φ
(
Xi(t)

)]
dt

= E [⟨T [ρemp(t)] − ρemp(t), φ⟩] dt,

in which Zi(t) = 1
K

∑K
j=1 Yi,j(t) +Wi(t) and {Yi,j(t)} are i.i.d. with law ρemp(t). Then

by Dynkin’s formula, the compensated process

Mφ(t) := ⟨ρemp(t), φ⟩ − ⟨ρemp(0), φ⟩ −
∫ t

0
⟨T [ρemp(s)] − ρemp(s), φ⟩ds

defines a martingale. Comparing with (5.3) yields

⟨ρemp(t) − ρ(t), φ⟩| ≤ |Mφ(t)| + |⟨ρemp(0) − ρ(0), φ⟩|

+
∫ t

0
|⟨T [ρ(s)] − T [ρemp(s)] −

(
ρ(s) − ρemp(s)

)
, φ⟩|ds.

(5.7)
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We then take the supremum over all φ with ∥φ∥∞ ≤ 1 to deduce from Proposition

5.3.3 and (5.7) that

|||ρemp(t) − ρ(t)||| ≤ η(t) + (K + 1)
∫ t

0
|||ρemp(s) − ρ(s)|||ds,

where we have set

η(t) := sup
∥φ∥∞≤1

|Mφ(t)| + |||ρemp(0) − ρ(0)|||.

By Gronwall’s inequality, we obtain

sup
t∈[0,T ]

|||ρemp(t) − ρ(t)||| ≤
(

sup
t∈[0,T ]

η(t)
)

e(K+1)T .

In order to justify our claim (i) for t ≤ T , it therefore suffices to show that

sup
t∈[0,T ]

η(t) P−−−→
N→∞

0. (5.8)

To show (5.8), we address each term appearing in the definition of η(t) separately.

The second one vanishes due to our assumption (D.1). For the first one, i.e., the

martingale term, we note that the i-th coordinate of Mφ is a continuous time martin-

gale with jumps of size 1
N
φ(Zi) − 1

N
φ(Xi) whose rates of occurrence are λ · dt = dt.

Therefore,

E[|Mφ(T )|2] ≤
∫ T

0
E
[

N∑
i=1

∣∣∣∣ 1
N
φ(Zi) − 1

N
φ(Xi)

∣∣∣∣2
]

dt ≤ 4∥φ∥2
∞

N
T ≤ 4T

N
,

whence the convergence

sup
t∈[0,T ]

(
sup

∥φ∥∞≤1
|Mφ(t)|

)
P−−−→

N→∞
0

follows readily from Doob’s martingale inequality. For (ii), we recall that in the

discrete-time case (with γ = 1
K

), (5.3) can be rewritten as

DKL(ρn+1||ρ∞) − DKL(ρn||ρ∞) ≤ −(1 − γ)DKL(ρn||ρ∞).

This can be translated immediately to its continuous-time analog (5.5), whence the

proof is completed. □
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5.7 Conclusion

In this manuscript, we have investigated a model (which we call the K-averaging

model) for a system of self-propelled particles on Rd, in both discrete-time and

continuous-time settings. We also provided an rigorous proof on the convergence

of the distribution of a typical particle towards a suitable Gaussian equilibrium un-

der the large particle size N → ∞ and large time n → ∞ limit. Even though the

majority of the work is done in discrete-time, the relevant results carry over easily

to continuous-time. It would also be interesting to examine variants of this model.

For instance, the K-averaging dynamics on S1 is closely related to several models in

the literature Porfiri and Ariel [131], Aldana and Huepe [4], Aldana et al. [3], Pi-

mentel et al. [127], Porfiri [130], and it is reasonable to expect a rigorous proof of

the corresponding mean-field limit. Unfortunately, the situation on S1 is inevitably

much more complicated since we are lacking the vector-space structure. More gener-

ally, averaging is not a straightforward operation over a manifold Degond et al. [72].

Other extensions of the model in the present manuscript are also possible. As of now,

every agent communicate with each other. Thus, what would happen if only agents

are only interacting through a pre-defined graph of neighboring few chosen neigh-

bors? We would lose the invariance by permutation, thus the notion of limit is more

challenging. This would also link the model to certain ”consensus models” Hardin

and Lanchier [87], Lanchier and Li [108]. One can also explore different laws of com-

munication between the particles (especially of the non-symmetric and non-all-to-all

variety), and investigate the role of noise introduced into the system.

ACKNOWLEDGMENTS

It is a pleasure to thank my Ph.D advisor Sébastien Motsch for his tremendous help
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Chapter 6

ASYMPTOTIC FLOCKING FOR THE THREE-ZONE MODEL

Chapter 6 is the paper Cao et al. [41] published on Mathematical Biosciences and

Engineering, in collaboration with Sebastien Motsch, Alexander Reamy, and Ryan

Theisen.

6.1 Abstract

In this manuscript, the asymptotic flocking behavior of a general model of swarm-

ing dynamics is proved. The model describes interacting particles encompassing three

types of behavior: repulsion, alignment and attraction. This dynamics is called the

three-zone model. The result expands the analysis of the so-called Cucker-Smale

model where only alignment rule is taken into account. Whereas in the Cucker-Smale

model, the alignment should be strong enough at long distance to ensure flocking

behavior, here it is only required that the attraction is described by a confinement

potential. The key for the proof is to use that the dynamics is dissipative thanks

to the alignment term which plays the role of a friction term. Several numerical

examples illustrate the result and it is also possible extend the proof for the kinetic

equation associated with the three-zone dynamics.

6.2 Introduction

Flocking behavior is an intriguing phenomenon observed frequently in nature.

However, it remains an open question how birds or fish are able to organize efficiently

to form a coherent motion. Modeling has proved to be crucial in highlighting how

such complex behaviors can be described by simple interaction rules. Among the
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different models proposed, the three-zone model has been particularly popular in bi-

ology Aoki [9], Reynolds [135], Huth and Wissel [92], Couzin et al. [61], Li et al. [111].

In the three-zone model, agents representing birds or fish engage in three types of

interactions: repulsion, alignment, and attraction, depending on the relative location

of their neighboring agents. The goal of this manuscript is to provide sufficient con-

ditions for the convergence of such a system towards a flock, which we define to occur

when all agents approach a common velocity.

Analytical studies of flocking dynamics have mainly been inspired by the seminal

work of Cucker and Smale Cucker and Smale [64, 65]. In their research, they studied

a simplified version of the so-called Vicsek model Vicsek et al. [146], where only the

alignment force between agents is considered. They proved rigorously the convergence

of the dynamics to a flock, given the condition that the alignment force is sufficiently

strong. This work has been followed by many generalizations Motsch and Tadmor

[120, 121], Agueh et al. [2] and improvements Ha and Tadmor [86], Ha and G. [85],

Carrillo et al. [46].

One key element of proving the convergence of the Cucker-Smale model to a flock

is the decay of the kinetic energy of the system due to the alignment rule, which

acts as a source of friction. In the present manuscript, the dynamics combine the

alignment rule with the additional forces of attraction and repulsion. Therefore, we

have to define the energy of the system as the sum of its kinetic energy and potential

energy. The attraction-repulsion term does not modify the total energy since it is

Hamiltonian dynamics. However, the alignment term causes the kinetic energy, and

consequently the total energy of the system, to decay with respect to time. As a

result, if the attraction-repulsion force is such that the particle configuration remains

spatially bounded, the influence of the alignment term will guarantee the system

converges to a flock. Notice that we do not draw any conclusions about the spatial
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organization of the flock, though many analytic and numerical studies have studied

this problem Von Brecht et al. [149], Carrillo et al. [48, 45].

Since our proof is based mainly on an energy functional, it is possible to extend

the method to the kinetic equation associated with the three-zone model. However,

in this case, we have to define a weaker notion of flocking for the kinetic equation.

There is additional difficulty in dealing with a kinetic equation: since we are working

with a continuum distribution, there is no longer a maximum distance between two

agents. Despite these obstacles, we manage to prove a L1-type convergence result by

using stochastic process theory.

So far, the sufficient condition for flocking requires that the attraction term is given

by a confinement potential. However, this condition can be weakened by incorporating

the effect of the alignment in the non-spatial dispersion of the agents. Here, the effects

of attraction and alignment are treated separately. It might be possible to improve

the sufficient condition for flocking and/or to find a joint condition on the strength

of attraction and alignment using commutator techniques Villani [148], Bakey et al.

[13]. Commutator may also help to prove that the dynamics converges exponentially

fast toward equilibrium. Other perspectives will be to extend the proof to other types

of interactions, such as non-symmetric interactions Motsch and Tadmor [120], Karper

et al. [100], Motsch and Tadmor [121], Jabin and Motsch [94], or those using the so-

called topological distance Ballerini et al. [17], Haskovec [88], Blanchet and Degond

[27].

The paper is organized as followed: in section 6.3, we introduce the three-zone

model for agent-based dynamics. We prove the main result by finding a sufficient

condition for the emergence of a flock and give several numerical illustrations. In

section 6.4, we extend this result to the kinetic equation associated with the agent-

based model. Finally, we draw a conclusion in section 6.5.
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6.3 Agent-Based Models

6.3.1 Three-Zone Model

We consider the three-zone model, which describes agents moving according to

three rules of interaction: repulsion (at short distance), alignment and attraction

(long distance). A schematic representation of the model is given in figure 6.1. Each

agent i is represented by a vector position xi and a velocity vi both belonging to Rd

(with d = 2 or 3). The evolution of the N agents is governed by the following system:

ẋi = vi (6.1)

v̇i = 1
N

N∑
j=1

ϕij(vj − vi) − 1
N

∑
j ̸=i

∇xi
V (|xj − xi|). (6.2)

Here, ϕij = ϕ(|xj − xi|) represents the strength of the alignment between agents i

and j. We suppose that the function ϕ is strictly positive. Similarly, ∇xi
V (|xj − xi|)

represents the attraction or repulsion of agent j on i. Indeed, developing the gradient

gives:

−∇xi
V (|xj − xi|) = V ′(|xj − xi|)

xj − xi

|xj − xi|
.

Thus, agent i is attracted to agent j if V ′ > 0 and repulsed if V ′ < 0. In fig. 6.1, we

illustrate two possible choices for ϕ and V .

6.3.2 Flocking: Rigorous Results

The goal of this section is to prove conditions guaranteeing that the three-zone

model (6.1)(6.2) converges to a flock.

Definition 25 We say that a configuration {xi,vi}i converges to a flock if the fol-

lowing are satisfied:

1) There exists v∞ such that vi
t→∞−−−→ v∞ for all i = 1, . . . , N .
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repulsion

alignment

attraction

0

repulsion attraction

distance r

φ(r) alignment

V (r) repul./attrac.

Figure 6.1: Left: Illustration of the Three-Zone Model. The Model Includes Three
Types of Behavior: attraction/alignment/repulsion. Right: Attraction and Repul-
sion Are Represented Through the Function V , Alignment Is Described Via ϕ.

2) There exists M such that |xj − xi| ≤ M for all i, j = 1, . . . , N and for all t ≥ 0.

In other words, in order to achieve a flock, agents should converge to a common

velocity v∞ and the distance between agents should remain (uniformly) bounded in

time.

The key quantity for studying the emergence of a flock is the energy function,

defined below:

E({xi,vi}i) = 1
2N

N∑
i=1

|vi|2 + 1
2N2

N∑
i,j,i̸=j

V (|xj − xi|). (6.3)

We can interpret this value as a sum of the kinetic and potential energy of the system.

By itself, the attraction-repulsion term (6.1)-(6.2) describes a Hamiltonian system

and therefore preserves the total energy E . However, the alignment term causes the

total energy to decay with respect to time. That is, it plays the role of a ’friction

term’, making the system dissipative. More precisely, we can estimate the decay rate

of the energy E .

159



Lemma 6.3.1 Let {xi,vi}i be the solution of the N-bird system (6.1)(6.2). Then the

energy E (6.3) satisfies:

d

dt
E({xi,vi}i) = − 1

2N2

N∑
i,j=1

ϕij|vj − vi|2. (6.4)

Since ϕ is a positive function, the energy E is decaying along the solution trajectory.

Proof. Taking the derivative in time of the energy leads to:

d

dt
E({xi,vi}i) = 1

N

N∑
i=1

v̇i · vi + 1
2N2

N∑
i,j,i̸=j

∇xi
V (|xj − xi|) · (vj − vi)

= 1
N2

N∑
i=1

N∑
j,j ̸=i

(
∇xi

V (|xj − xi|) · vi + ϕij(vj − vi) · vi

)

+ 1
2N2

N∑
i,j,i̸=j

∇xi
V (|xj − xi|) · (vj − vi).

By an argument of symmetry, we find:

N∑
i,j,i̸=j

∇xi
V (|xj − xi|) · vi =

N∑
i,j,i̸=j

V ′(|xj − xi|)
xj − xi

|xj − xi|
· vi

= −
N∑

i,j,i̸=j

V ′(|xj − xi|)
xj − xi

|xj − xi|
· vj

= 1
2

N∑
i,j,i̸=j

V ′(|xj − xi|)
xj − xi

|xj − xi|
· (vi − vj).

Therefore, we can simplify:

d

dt
E({xi,vi}i) = 1

N2

∑
i ̸=j

ϕij(vj − vi) · vi.

Using now the symmetry ϕij = ϕji, we conclude

d

dt
E = 1

2N2

N∑
i,j=1

ϕij(vj − vi) · (vi − vj) = − 1
2N2

N∑
i,j=1

ϕij|vj − vi|2.

□

Since the energy E is decaying, we deduce that the potential energy is bounded

uniformly.
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Lemma 6.3.2 Take {xi,vi}i to be a solution of the three-zone model (6.1)(6.2).

There exists C such that for any time t ≥ 0 and i, j:
N∑

i,j,i̸=j

V (|xj(t) − xi(t)|) ≤ C. (6.5)

Proof. Take C0 = E({xi(0),vi(0)}i). Since E is decaying along the solution

trajectory, we deduce that for all t:

1
2N

N∑
i=1

|vi(t)|2 + 1
2N2

N∑
i,j,i̸=j

V (|xj(t) − xi(t)|) ≤ C0,

Since the kinetic energy 1
2
∑N

i=1 |vi|2 is always positive, we deduce:
N∑

i,j,i̸=j

V (|xj(t) − xi(t)|) ≤ 2C0N
2.

Taking C = 2C0N
2 yields the result. □

To take advantage of the lemma 6.3.2, we suppose that V is a confinement poten-

tial Karper et al. [100]:

V (r) r→+∞−→ +∞. (6.6)

Roughly speaking, agents still experience an attraction force at long distances.

Under this assumption, we can prove the second part of flocking behavior, namely

that the distances between agents are bounded.

Lemma 6.3.3 Suppose V satisfies (6.6). Then there exists rM such that:

|xj(t) − xi(t)| ≤ rM for any i, j, and t ≥ 0. (6.7)

Proof. From lemma 6.3.2, we know that the potential energy is bounded, in

particular:

V (|xj(t) − xi(t)|) ≤ C,

Since V satisfies (6.6), we deduce that there exists rM such that:

V (r) > C if r > rM .
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Since V (|xj(t) − xi(t)|) is bounded by C, we conclude that |xj(t) − xi(t)| is bounded

by rM . □

Remark. Similarly, if we suppose that V diverges at r = 0, then there exists a

minimal distance rm between agents:

|xj(t) − xi(t)| ≥ rm.

We can now conclude by deriving sufficient conditions to guarantee flocking be-

havior for the three-zone model.

Theorem 17 Suppose V satisfies (6.6) and is bounded from below, ϕ is strictly pos-

itive and bounded. Moreover, assume that both ϕ and V have bounded first-order

derivative. Then the three-zone model converges to a flock.

Proof. Using lemma 6.3.3, we know that the distance between agents remains

bounded: |xj(t) − xi(t)| ≤ rM . Since rM is finite, we can take the minimum of ϕ on

this interval:

m = min
s∈[0,rM ]

ϕ(s).

Since ϕ is strictly positive, we deduce that m > 0. Therefore,

ϕij = ϕ(|xj(t) − xi(t)|) ≥ m > 0.

Since the energy E({xi,vi}i) is decaying and bounded from below we deduce that
d
dt

E({xi,vi}i) t→∞−→ 0 (if d
dt

E is uniformly continuous). Therefore, using lemma 6.3.1,

ϕij|vj − vi|2
t→+∞−→ 0.

Since ϕij ≥ m > 0, we conclude that |vj − vi|
t→∞−→ 0.

Moreover, the mean velocity, v̄ = 1
N

∑
i vi, is preserved by the dynamics (by

symmetry), thus

vi(t) t→∞−→ v̄ for all i
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which concludes the proof. To finish the proof, it suffices to establish the uniform

continuity of d
dt

E , which is guaranteed if uniformly in time bounds on the second time

derivative of E can be obtained. Indeed, we calculate

d2

dt2
E({xi,vi}i) = − 1

2N2

N∑
i,j=1

ϕ′(|xj(t) − xi(t)|)|vj − vi|2
xj − xi

|xj − xi|
· (vj − vi)

− 1
N2

N∑
i,j=1

ϕ(|xj(t) − xi(t)|)(vj − vi) · (v̇j − v̇i) := I + II,

where II is given by

II = − 1
N2

N∑
i,j=1

ϕij(vj − vi) ·
( 1
N

N∑
k=1

[ϕkj(vk − vj) − ϕki(vk − vi)]

+ 1
N

∑
k ̸=j

V ′(|xk − xj|)
xk − xj

|xk − xj|
− 1
N

∑
k ̸=i

V ′(|xk − xi|)
xk − xi

|xk − xi|

)
.

In the sequel, we shall denote by C a time-independent constant whose value may

vary from line to line (which may depend on N). Combining the boundedness of ϕ

and ϕ′ with the fact that 1
2N

∑N
i=1 |vi(t)|2 ≤ C holds uniformly in time, one can easily

achieve |II| ≤ C, where this bound on |II| is independent of both N and t. For the

tricker term I, we have

|I| ≤ C

N2

N∑
i,j=1

|vi(t) − vj(t)|3 ≤ C

N

N∑
i=1

|vi(t)|3.

Thus, the proof will be completed once we show that 1
N

N∑
i=1

|vi(t)|3 ≤ C. To this end,

we calculate

1
3
d

dt

N∑
i=1

|vi|3 = 1
N

N∑
i,j=1

ϕij(vj − vi) · vi|vi| + 1
N

N∑
i=1

∑
j ̸=i

V ′(|xj − xi|)
xj − xi

|xj − xi|
· vi|vi|

:= A+B.

We have

A ≤ C

N

N∑
j=1

|vj| ·
N∑

i=1
|vi|2 − C

N∑
i=1

|vi|3 ≤ CN − C
N∑

i=1
|vi|3
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and

B ≤ C

N

N∑
i,j=1

|vi|2 ≤ CN.

Therefore, we deduce that

1
N

d

dt

N∑
i=1

|vi|3 ≤ C − 1
N

N∑
i=1

|vi|3, ∀t ≥ 0, ∀N,

from which we obtain the uniform bound 1
N

N∑
i=1

|vi(t)|3 ≤ C as desired. This ends the

proof. □

Remark. The reason that we can not achieve a bound like | d2

dt2 E| ≤ C with the

constant C being independent of both N and t is due to the N -dependence of the

constant C appearing in the lemma 6.3.2 and lemma 6.3.3.

6.3.3 Numerical Investigation

To illustrate the theorem 17, we perform numerical experiments for various choices

of attraction-repulsion potentials. The theorem 17 guarantees that the velocities of

the agents will converge to a single value, but there is no information about their

position and in particular their relative distance. It is an open question to predict

what shape the flock will have. All we know is that the distance between agents is

bounded uniformly in time, which leaves the door open for many possible scenarios.

Several studies have examined the stability of particular equilibrium solutions Fetecau

et al. [81], Kolokolnikov et al. [102], Carrillo et al. [48], Carrillo and Huang [47], Car-

rillo et al. [45]. Models featuring self-propelled particles with an attraction-repulsion

influence function have also been extensively studied D’Orsogna et al. [78], Chuang

et al. [59], and several patterns observed (e.g. flock, mill formation). In our settings,

however, mill formation cannot occur as the agents’ velocities will converge to same
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value. Of particular interest is the shape of the swarm as the number of individuals

N increases.

To first illustrate the theorem 17, we choose the following functions for the three-

zone model (see Fig. 6.2-left):

V (r) = r
(

ln r − 1
)

, ϕ(r) = r

2 + r3 . (6.8)

The potential V (r) diverges at +∞ (i.e. satisfies (6.6)) and the alignment function is

strictly positive (i.e. ϕ(r) > 0), thus we can apply the theorem 17 and deduces that

the agents will always converge to a flock. Notice that the alignment function ϕ(r) is

integrable, thus without the attraction/repulsion term V (r) there is no guarantee that

a flock will occur. In others words, since the three-zone model (6.1)-(6.2) reduces to

the Cucker-Smale model when V ′ = 0, having ϕ integrable is not a sufficient condition

to guarantee flocking.

1 2 3

−1

1

distance r

V (r) = r( ln r − 1) φ(r) = r
2+r3

1 2 3

−1

1

2

distance r

V (r) = r2 ln r φ(r) = r
2+r3

Figure 6.2: Attraction-Repulsion V and Alignment ϕ Used for the Simulations. In
Both Cases, V Diverges at Infinity (i.e. Satisfies (6.6)).

We use as initial condition a uniform distribution of agents on a square of size
√
N .

Their velocity is taken from a normal distribution. In the figure 6.3, we plot the distri-

bution of agents after t = 200 time units for four different group size: N = 20, 50, 100

and 1000. For each group size, the agents regroup on a disc of radius close to 2 space

units and the distribution is uniform inside the disc. As the number of agents N

165



increases, the radius remains constant and therefore the average distance between

particles decreases. This type of pattern has been called catastrophic D’Orsogna et al.

[78], Ruelle [139] since the density will eventually become singular as N −→ +∞ and

thus there is no thermodynamic limit. In other words, the repulsion is not strong

enough to push back nearby agents.

In our second illustration, we reduce even further the repulsion force among agents

using the following potential V (r) (see Fig. 6.2-right):

V (r) = r2 ln r , ϕ(r) = r

2 + r3 . (6.9)

There are now two possible equilibrium points for attraction/repulsion at the dis-

tances r = 1 and r = 0. In the figure 6.4, we plot the distribution of agents after

t = 200 time units for two group sizes (N = 50 and N = 200). We observe that the

agents are now aggregating on a circle. This indicates that the equilibrium distribu-

tion might be a domain of dimension one Balagué et al. [16].

The evolution of the total energy E (6.3) for all cases is given in figure 6.5. As

predicted by lemma 6.3.1, the energy is always strictly decaying. Moreover, we observe

oscillatory behavior between fast and slow decay. The reason for this behavior is the

repreated contraction-expansion of the spatial configuration as the agents approach

equilibrium. The energy is decaying slower when agents are far away due to the

decay of ϕ at distances greater than one space unit. These types of oscillation are

also observed for the convergence of Boltzmann equation toward global equilibrium

Filbet [82], Desvillettes and Villani [76].
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Figure 6.3: Simulation of the Three-Zone Model (6.1)-(6.2) with Potential V and
Alignment Function ϕ Given By (6.8). Agents Regroup on a Disc of Size R ≈ 1.8 for
Any Group Sizes. Parameters: ∆t = .05, Total Time t = 200 Unit Time.
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Figure 6.5: Evolution of the Energy E for the Solutions Depicted in Figures 6.3 and
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the Successive Contraction-Expansion of the Spatial Configuration. The Decay of the
Energy Is Faster When Agents Are Closer to Each Other.
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6.4 Kinetic Equation

6.4.1 Formal Derivation

We would like to investigate the flocking behavior of dynamics in the limit of

infinitely many agents, i.e. N −→ ∞. With this aim, we introduce the so-called

kinetic equation associated to the particle dynamics (6.1)-(6.2). To derive the kinetic

equation, one can introduce the empirical distribution Bolley et al. [31], Carrillo et al.

[44], Degond and Motsch [74], Degond et al. [73, 71], Jabin [93]:

fN(x,v, t) = 1
N

N∑
i=1

δxi(t)(x) ⊗ δvi(t)(v), (6.1)

where {xi(t),vi(t)} is the solution of the system (6.1)-(6.2). By integrating the em-

pirical distribution fN against a test function, we can show that fN satisfies in a

weak-sense the following kinetic equation:

∂tf + v · ∇xf + ∇v ·
(
F [f ]f

)
= 0, (6.2)

with

F [f ](x,v) = −
∫

y∈Rn
∇xV (|y−x|)ρ(y) dy (6.3)

+
∫

(y,w)∈Rn×Rn
ϕ(|y−x|)(w−v)f(y,w) dydw,

and

ρ(x) =
∫

v∈Rn
f(x,v) dv (6.4)

the spatial distribution of particles.

The rigorous convergence of the particle dynamics (6.1)-(6.2) toward the kinetic

equation (6.2) is out of the scope of the present paper. But following the methods

developed in Spohn [144], Bolley et al. [31], Carrillo et al. [44], one would expect to

have an error estimation between the empirical distribution fN (6.1) and a ’classic’
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solution f to the kinetic equation (6.2)-(6.3). More precisely, for any time T , there

exists a constant c such that the Wasserstein distance between the two distributions

satisfies:

W(f(T ), fN(T )) ≤ W(f(0), fN(0))ec·T .

Notice that this result cannot be used to study the long time behavior of the solution

of the kinetic equation f(t) since the error-bound is not uniform in time.

6.4.2 Flocking Behavior

To analyze the long-time behavior of the solution to the kinetic equation (6.2),

we introduce the following energy function:

E = 1
2

∫
(x,v)∈Rn×Rn

|v|2f(x,v) dxdv + 1
2

∫
(x,y)∈Rn×Rn

V (|y−x|)ρ(x)ρ(y) dxdy. (6.5)

Symmetry argument shows that the energy E is decaying (i.e. the system is dissipa-

tive).

Lemma 6.4.1 The functional E satisfies:

d

dt
E = −1

2

∫
(x,v),(y,w)

ϕ(|y−x|)|w−v|2f(x,v)f(y,w) dxdvdydw. (6.6)

Proof. Taking the derivative of the energy with respect to time leads to:

d

dt
E = 1

2

∫
x,v

|v|2∂tf(x,v) dxdv

+ 1
2

∫
x,y
V (|y−x|)

(
∂tρ(x)ρ(y) + ρ(x)∂tρ(y)

)
dxdy

=: A+B.
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Then,

A = −1
2

∫
x,v

|v|2∇x ·
(
vf
)

dxdv − 1
2

∫
x,v

|v|2∇v ·
(
F [f ]f

)
dxdv

= 0 +
∫

x,v
v · F [f ]f dxdv

=
∫

x,v

∫
y,w

v · ϕ(|y−x|)(w − v)f(x,v)f(y,w) dxdydvdw

−
∫

x,y

∫
v

v · ∇xV (|y−x|)ρ(y)f(x,v) dxdydv

=
∫

x,v

∫
y,w

v · ϕ(|y−x|)(w − v)f(x,v)f(y,w) dxdydvdw

−
∫

x,y
∇xV (|y−x|) · ρ(x)ρ(y)u(x) dxdy.

To compute the term B, we notice that the density distribution ρ satisfies the conti-

nuity equation:

∂tρ+ ∇x · (ρu) = 0 with ρ(x)u(x) =
∫

v
vf(x,v) dv. (6.7)

We deduce:

B = 1
2

∫
x,y
V (|y−x|)

(
− ∇x ·

[
ρ(x)u(x)

]
ρ(y) − ρ(x) ∇y ·

[
ρ(y)u(y)

])
dxdy

= 1
2

∫
x,y

∇x
[
V (|y−x|)ρ(y)

]
· ρ(x)u(x) + ∇y

[
V (|y−x|)ρ(x)

]
· ρ(y)u(y) dxdy

=
∫

x,y
∇xV (|y−x|) · ρ(x)ρ(y)u(x) dxdy,

using the change of variable in the second term x ↔ y. Therefore,

A+B =
∫

x,v

∫
y,w

v · ϕ(|y−x|)(w−v)f(x,v)f(y,w) dxdydvdw

= −1
2

∫
x,y,v,w

ϕ(|y−x|)|w−v|2f(x,v)f(y,w) dxdydvdw.

□

The decay of the energy E is the cornerstone to prove the flocking of the dynamics.

However, in the context of the kinetic equation (6.2), we deal with a continuum of
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agents and therefore it is more delicate to prove that the velocity of all agents converge

to a common value. We prove a L1 type estimate for the decay of the velocity toward

its average value. The method relies mainly on stochastic process theory.

We denote by (Xt,Vt) and (Yt,Wt) two independent stochastic processes with

probability density function f(·, t) solution to (6.2). The energy E (6.5) can be written

as:

E = 1
2E[|V|2] + 1

2E[V (|X−Y|)], (6.8)

and its decay as:
d

dt
E = −1

2E[ϕ(|X−Y|)|V−W|2]. (6.9)

We first recall an elementary lemma in stochastic process theory that will be useful

later. For the sake of completeness of the manuscript, we also give the proof.

Lemma 6.4.2 Suppose Xt is bounded uniformly in L2 and that Xt converges in prob-

ability to 0 (i.e. Xt
P−→ 0). Then: Xt

t→+∞−→ 0 in L1.

Proof. First, we show that Xt bounded in L2 implies that Xt is uniformly integrable.

Denote C the constant such that E[|Xt|2] ≤ C for all t. We have:

E[|Xt|1{|Xt|≥k}] ≤
(
E[X2

t ]E[12
{|Xt|≥k}]

)1/2
≤ C1/2P(|Xt| ≥ k)1/2

≤ C1/2
( 1
k2E[X2

t ]
)1/2

≤ C

k
k→+∞−→ 0,

using (resp.) Cauchy-Schwarz and Markov inequalities.

We now use that Xt
P−→ 0 to conclude. Fix ε > 0:

E[|Xt|] = E[|Xt|1{|Xt|≤ε/2}] + E[|Xt|1{|Xt|>ε/2}] ≤ ε

2 + E[|Xt|1{|Xt|>ε/2}].

By uniform integrability, there exists δ > 0 such that:

E[|Xt|1A] ≤ ε/2 if P(A) ≤ δ. (6.10)
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Since Xt
P−→ 0, there exists t∗ such that P(|Xt| > ε/2) ≤ δ for t ≥ t∗. Combined

with (6.10), we deduce E[|Xt|1{|Xt|>ε/2}] ≤ ε/2. Therefore, E[|Xt|] ≤ ε for t ≥ t∗. □

We now can prove our main theorem.

Theorem 18 Under the same assumptions of theorem 17, with the additional as-

sumption that infs≥0 ϕ(s) ≥ c > 0 for some c, the solution f of (6.2) satisfies:

∫
x,y,v,w

|v − w|f(x,v, t)f(y,w, t) dxdydvdw t→+∞−→ 0 (6.11)

Proof. Denote (Xt,Vt) and (Yt,Wt) two independent stochastic processes with

density distribution f (6.2). We first show that Vt−Wt
P−→ 0. Fix δ > 0 and ε > 0.

We have to show that: P(|Vt−Wt| > δ) < ε for a sufficiently large value of t.

Since the energy E is uniformly bounded, there exists C such that E[V (|Xt −

Yt|)] ≤ C for all time t. Since the potential V satisfies (6.6), there exists L such that

V (r) ≥ 2C/ε for r > L. Now we split our estimation:

P(|Vt−Wt| > δ) = P(|Vt−Wt| > δ, |Xt−Yt| ≤ L)

+P(|Vt−Wt| > δ, |Xt−Yt| > L)

=: A+B.

First, we find an upper-bound for B:

B ≤ P(|Xt−Yt| > L) ≤ P(V (|Xt−Yt|) > 2C/ε)

≤ ε

2CE[V (|Xt−Yt|)] ≤ ε

2 .

Then, we investigate A:

A ≤ P
(

|Vt−Wt| > δ

∣∣∣∣ |Xt−Yt| ≤ L
)

≤ 1
δ2E

[
|Vt−Wt|2

∣∣∣∣ |Xt−Yt| ≤ L
]
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Consider m = infr≤L ϕ(r) > 0. We have:

A ≤ 1
mδ2E

[
ϕ(|Xt−Yt|)|Vt−Wt|2

∣∣∣∣ |Xt−Yt| ≤ L
]

≤ − 2
mδ2

dE
dt
.

If dE
dt

is uniformly continuous, then we have dE
dt

t→+∞−→ 0, hence there exists t∗ such that

A ≤ ε/2 for t ≥ t∗. Therefore, we conclude:

P(|Vt−Wt| > δ) = A+B ≤ ε

for t ≥ t∗. Hence, Vt−Wt
P−→ 0.

Now, since the energy E remains uniformly bounded, we deduce that Vt−Wt is

uniformly bounded in L2:

E[|Vt−Wt|2] ≤ C.

Using lemma 6.4.2, we conclude that: Vt −Wt
t→+∞−→ 0 in L1 leading to the result

(6.11). To complete the proof, we have to demonstrate the uniform continuity of
d
dt

E , which is ensured if uniformly in time bounds on the second time derivative of

E can be obtained. Actually, this fact can be shown by mimicking the computations

performed in the corresponding part of the proof of theorem 17 and the computations

are essentially the same. This ends the proof. □

Remark. The reason that we need the somehow strong assumption that inf
s≥0

ϕ(s) ≥

c > 0 is as follows: Similar to the computations performed in theorem 17, we will have

| d2

dt2 E| ≤ C for a time-independent constant C if we can establish a uniform-in-time

bound on
∫

x,v |v|3f(x,v)dxdv. Differentiating in time gives us

d

dt

∫
x,v

|v|3f(x,v)dxdv ≤ C −
∫

x,v,y,w
ϕ(|y − x|)|v|3f(x,v)f(y,w)dxdvdydw,

in which C > 0 is independent of time. With infs≥0 ϕ(s) ≥ c > 0 and Gronwall’s

inequality we obtain the desired uniform bound on
∫

x,v |v|3f(x,v)dxdv.
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6.5 Conclusion

In this study, we have derived sufficient conditions for the emergence of flock in

a system of particles which includes attraction-repulsion and alignment interactions.

The result sides with previous work on the Cucker-Smale model, but there is addi-

tional difficulty in the dynamics considered in this study, since energy estimates are

insufficient to prove convergence. In particular, we do not have exponential decay

towards equilibrium. However, it might be possible to obtain a stronger result, for in-

stance by using commutator techniques Villani [148], Bakey et al. [13] to compensate

the lack of Gronwall-type inequality.

It would also be interesting to adapt this model to other types of collective behav-

ior, such as milling. Of course, this would require several adjustments to our starting

assumptions: one could suppose that alignment only occurs at close distances (i.e.

the function ϕ has a compact support). Another extension would be to consider non-

metric interactions such as topological distance or non-symmetric interactions (e.g.

presence of leaders).
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Chapter 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

In this report, we introduced the notion of interacting particle systems which

appears in enormous branches of applied mathematics, including but not limited to

flocking dynamics, opinion models, econophysics, statistical physics, and artificial

neural networks. One important tool in the analysis of these N particle systems at

the microscopic level is the so-called propagation of chaos, which (occasionally) allows

us to derive a partial differential equation governing the evolution of the one-particle

marginal probability density function as N → ∞. This transition from a microscopic,

individual-based description to a macroscopic description is crucial for understanding

of the large-scale asymptotic behavior of the underlying particle systems. Once a

deterministic PDE is obtained, one can apply standard PDE techniques to investigate

the long time behavior of its solution. In this respect, We are especially interested

in the so-called entropy methods and convergence of probability densities in the sense

of relative entropy. Entropy methods have been intertwined with information theory,

logarithmic Sobolev inequalities, Bakry-Emery approach, stochastic analysis and have

become increasingly popular in many interdisciplinary research projects.

7.2 Future Work

Currently we are working on other interacting particles systems. One of my current

project with my Ph.D advisor is to identity the proper “limit object” in a moderately

interacting N -particle system arising in a tumor growth model, which is quite different
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from the usual mean-field setting. Nevertheless, we expect that a propagation-of-

chaos type result will still hold in the large N limit. Another project I am working

on with my advisor consists of an attempt to perform density estimations based

on geometric tools known as the mean curvature flow, with the intent to “beat”

the traditional well-known kernel method (which is extremely popular in literature).

Research in areas closely related to interacting particle systems is also possible, for

instance we have great interest in the mathematics of the theoretic machine/deep

learning.
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equations: an analogue of cercignani’s conjecture”, Anal. PDE 10, 1663–1708
(2017).

[37] Cao, F., “Explicit decay rate for the gini index in the repeated averaging model”,
arXiv preprint arXiv:2108.07904 (2021).

[38] Cao, F., “k-averaging agent-based model: propagation of chaos and convergence
to equilibrium”, J. Stat. Phys. 184 (2021).

[39] Cao, F., P.-E. Jabin and S. Motsch, “Entropy dissipation and propagation
of chaos for the uniform reshuffling model”, arXiv preprint arXiv:2104.01302
(2021).

[40] Cao, F. and S. Motsch, “Derivation of wealth distributions from biased exchange
of money”, arXiv preprint arXiv:2105.07341 (2021).

[41] Cao, F., S. Motsch, A. Reamy and R. Theisen, “Asymptotic flocking for the
three-zone model”, Math. Biosci. Eng. 17, 7692–7707 (2020).

[42] Carlen, E., R. Chatelin, P. Degond and B. Wennberg, “Kinetic hierarchy and
propagation of chaos in biological swarm models”, Phys. D 260, 90–111 (2013).

[43] Carlen, E., P. Degond and B. Wennberg, “Kinetic limits for pair-interaction
driven master equations and biological swarm models”, Math. Models Methods
Appl. Sci. 23, 1339–1376 (2013).

180



[44] Carrillo, J. A., Y.-P. Choi and M. Hauray, “The derivation of swarming mod-
els: mean-field limit and wasserstein distances”, in “Collective dynamics from
bacteria to crowds”, pp. 1–46 (Springer, 2014).

[45] Carrillo, J. A., Y.-P. Choi and S. Pérez, “A review on attractive-repulsive hy-
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PROOF OF LEMMA 2.2.1
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Proof. Suppose first that the stochastic process (S1, . . . , SN) satisfies the propa-
gation of chaos. Let φ be a test function, Z(N) = ⟨ρ(N)

emp, φ⟩ a random variable and
Z = E[φ(S1)] a constant. For notation convenience, we write [N ] := {1, 2, . . . , N}.
To prove that Z(N) converges in law to Z, it is sufficient to prove the convergence in
L2:

E[|Z(N) − Z]|2] = E

∣∣∣∣∣ 1
N

N∑
i=1

φ(Si) − Z

∣∣∣∣∣
2 (A.1)

= 1
N2

∑
i,j,i̸=j

E[φ(Si)φ(Sj)] + 1
N2

N∑
i=1

E[φ2(Si)]

− 2
N

N∑
i=1

E[φ(Si)]Z + Z
2

N→+∞−→ Z
2 + 0 − 2Z · Z + Z

2 = 0

using (2.2) with k = 2 and k = 1.
Proving the converse is more challenging. Let’s take as test function φ(s1, . . . , sk) =

φ1(s1) . . . φk(sk) and denote the random variable Zi = ⟨ρ(N)
emp, φi⟩ for all i. By assump-

tion, Zi converges in law to the constant ⟨ρ1, φi⟩ = E[φi(S1)]. We deduce:∣∣∣∣E[φ1(S1) · · ·φk(Sk)] − E[φ1(S1) · · ·φk(Sk)]
∣∣∣∣ ≤ E[φ1(S1) · · ·φk(Sk)] − E[Z1 · · ·Zk]

+E[Z1 · · ·Zk] − E[φ1(S1) · · ·φk(Sk)]
=: |A| + |B|.

Since each Zi converges to the constant E[φi(Si)], all the product in B convergence
to zero using Slutsky’s theorem. For A, we use the invariance by permutations:

A = 1
N !

∑
σ∈SN

E[φ1(Sσ(1)) · · ·φk(Sσ(k))] − 1
Nk

∑
(i1,...,ik)∈[N ]k

E[φ1(Si1) · · ·φk(Sik
)] (A.2)

= (N − k)!
N !

∑
(i1,...,ik)∈PN,k

E[φ1(Si1) · · ·φk(Sik
)] − 1

Nk

∑
(i1,...,ik)∈[N ]k

E[φ1(Si1) · · ·φk(Sik
)],

where PN,k ⊂ [N ]k is the set of all the permutations of k elements in [N ] and in
particular |PN,k| = N !/(N − k)!. To conclude, we split the set [N ]k in two parts:

A =
(

1 − 1
Nk

· N !
(N − k)!

)
· (N − k)!

N !
∑

(i1,...,ik)∈PN,k

E[φi1(Si1) · · ·φik
(Sik

)]

− 1
Nk

∑
(i1,...,ik)∈[N ]k\PN,k

E[φ1(Si1) · · ·φk(Sik
)]
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Thus, denoting C an upper-bound for any E[φ1(Si1) · · ·φk(Sik
)]:

|A| ≤
(

1 − N !
Nk(N − k)!

)
C + 1

Nk
(Nk − |PN,k|)C (A.3)

= 2
(

1 − N !
Nk(N − k)!

)
C = 2

(
1 − (N−k + 1)

N
· · · N−1

N
· N
N

)
C

N→+∞−→ 0.

□
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We estimate the Gini coefficient for a (continuous) distribution of the form:

ρ(x)=(1−r) ·δ0(x)+r · 1
σ
ϕ
(
x−c

σ

)
(B.1)

where ϕ is the standard normal distribution, r,c,σ some positive constant with r∈
[0,1]. The law ρ can be represented by a random variable:

X=(1−Y ) ·0+Y ·(c+σZ) (B.2)

with Y random Bernoulli variable with probability r (i.e. Y ∼B(r)), Z a random
variable with normal law (i.e. Z∼N (0,1)), Y and Z being independent. To estimate
the Gini index of ρ, we take two independent random variables X1 and X2 with such
law and estimate the expectation of their difference:

G = 1
2µE[|X1 −X2|]=

1
2µE[|Y1 ·(c+σZ1) − Y2 ·(c+σZ2)|]

= 1
2µE[|c(Y1 −Y2)+σ(Y1Z1 −Y2Z2)|] (B.3)

We then take the conditional expectation with respect to Y1 and Y2:

2µG = 0+E[|c+σZ1|]P[Y1 =1,Y2 =0]
+E[|−c−σZ2|]P[Y1 =0,Y2 =1]

+E[|σ(Z1 −Z2)|]P[Y1 =1,Y2 =1]
= 2 ·E[|c+σZ1|]r(1−r)+E[|σ(Z1 −Z2)|]r2 (B.4)

For large c, we made the approximation E[|c+σZ1|]≈E[c+σZ1]=c. Moreover, the
expectation of the difference between two standard Gaussian random variables is
known explicitly: E[|Z1 −Z2|]=2/

√
π. We deduce:

2µG≈2c ·r(1−r)+σ
2√
π
r2. (B.5)

Furthermore, if r=µ/c, we obtain:

G≈1− µ

c
+ σµ√

πc2 . (B.6)
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Proof The whole strategy is of course to find some δ such that if∫
q(t,x) log q(t,x)

q∞(x) dx≤δ, (C.1)

then we have for the ε of Theorem 6∫ |q(t,x)−q∞(x)|2
q∞(x) dx≤ε. (C.2)

We start with using Lemma 3.5.5 for C=2 and note that

1
4

∫
q∞/2≤q≤2q∞

|q(t,x)−q∞(x)|2
q∞(x) dx+ 1

8

∫
q≤q∞/2

q∞(x)dx+ log2
4

∫
q≥2q∞

q(t,x)dx

≤
∫
q(t,x) log q(t,x)

q∞(x) dx.

(C.3)

Observe that if q≤q∞/2 then

|q(t,x)−q∞(x)|2
q∞(x) ≤q∞(x),

so the first two terms already provides the straightforward bound
∫

q≤2q∞

|q(t,x)−q∞(x)|2
q∞(x) dx≤8

∫
q(t,x) log q(t,x)

q∞(x) dx. (C.4)

Now if q≥q∞ then
|q(t,x)−q∞(x)|2

q∞(x) ≤ (q(t,x))2

q∞(x) .

Therefore for any p>1,
∫

q≥2q∞

|q(t,x)−q∞(x)|2
q∞(x) dx≤

∫
q≥2q∞

|q(t,x)|2
q∞(x) dx

≤
(∫

q≥2q∞
q(t,x)dx

)1−1/p
(∫

q≥2q∞

|q(t,x)|p+1

(q∞(x))p dx
)1/p

.

We now use Corollary 3.5.9 to find that
∫

q≥2q∞

|q(t,x)|p+1

(q∞(x))p dx≤Cp

∫ (
e(−(p+1)λ0+p)x +epx (q(0,x))p+1

)
dx

≤C ′
p

∫
e(−(p+1)λ+p)x dx,
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in which λ∈(1
2 ,λ0). Now we take p close enough to 1 such that p−(p+1)λ<0 which

is always possible if λ0>
1
2 . For this choice of p, we hence obtain that

∫
q≥2q∞

|q(t,x)−q∞(x)|2
q∞(x) dx≤Cp

(∫
q≥2q∞

q(x)dx
)1−1/p

.

Going back to (C.3), we can conclude that

∫
q≥2q∞

|q(t,x)−q∞(x)|2
q∞(x) dx≤Cp

(∫
q(t,x) log q(t,x)

q∞(x) dx
)1−1/p

,

and combining this with (C.4), we deduce that for some C and θ∈(0,1)

∫ |q(t,x)−q∞(x)|2
q∞(x) dx≤C

(∫
q(t,x) log q(t,x)

q∞(x) dx
)θ

≤C δθ.

It is enough to choose δ being small enough to conclude the proof. □
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In this appendix, we sketch the proof of the so-called propagation of chaos [145, 50],
relying on a martingale-based technique developed in [118]. We emphasize that the
proof presented here only a slight modification of the Theorem 6 in [39].

We equip the space P(R+) with the Wasserstein distance with exponent 1, which
is defined via

W1(µ,ν)= sup
∥∇φ∥∞≤1

⟨µ−ν,φ⟩

for µ,ν∈P(R+). The propagation of chaos result is summarized in the following

Theorem 19 Denote the empirical distribution of the repeated averaging N particle
system (4.1) at time t as

ρemp(t) := 1
N

N∑
i=1

δXi(t),

and let ρ(t) be the solution of (4.6) with initial data ρ(0). If

E[W1(ρemp(0),ρ(0))]−→0 as N→∞, (D.1)

then we have that
E[W1(ρemp(t), q(t))]−→0 as N→∞,

holding for all 0≤ t≤T with any prefixed T >0.
Proof We recall that the map Q+[·] : P(R+)→P(R+) is defined via

Q+[ρ](x)=2(ρ∗ρ)(2x), ∀x≥0.

Assume that a classical solution ρ(t,x) of

ρ(t,x)=ρ(0,x)+
∫ t

0
L[ρ](s,x)ds (D.2)

exists for 0≤ t<∞, where L=Q+ − Id and ρ(0,x) is a probability density function
whose support is contained in R+. The map Q+ is Lipschitz continuous in the sense
that

W1(Q+[f ],Q+[g])≤W1(f,g) (D.3)
for any f,g∈P(R+). Indeed, we have

W1(Q+[f ],Q+[g])= sup
∥∇φ∥∞≤1

E [φ((X1 +Y1)/2)−φ((X2 +Y2)/2)] ,

where X1,Y1 are i.i.d with law f , X2,Y2 are i.i.d with law g. By Lipschitz continuity
of the test function φ, we obtain

W1(Q+[f ],Q+[g])≤E[|X1 −X2|].

We now recall an alternative formulation of W1(f,g), given by

W1(f,g)=inf {E[|X−Y |]; Law(X)=f, Law(Y )=g} ,
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so in particular, we may take a coupling of X1 and X2 so that W1(f,g)=E[|X1 −X2|].
Assembling these pieces together, we arrive at (D.3). More generally, suppose we
have two random probability measures f and g with bounded second moment, taking
expectation on both sides of (D.3) gives rise to

E
[

sup
∥∇φ∥∞≤1

∫
φ(x)(Q+[f ]−Q+[g])

]
≤E

[
sup

∥∇φ∥∞≤1

∫
φ(x)(f(dx)−g(dx))

]
. (D.4)

We now observe that the empirical measure is a compound jump process: Define Nt a
homogeneous Poisson process with constant intensity λ=(N−1)/2. Given τ1, . . . , τk

the times when Nt jumps, we take the Yτk
independent: At each τk, with uniform

probability 2
N (N−1) we choose a pair i<j and take

Yτk
= 1
N

(
2δ(x−(Xi(τk−)+Xj(τk−)/2))

−δ(x−Xi(τk−))−δ(x−Xj(τk−))
)
.

We immediately note that

λE[Yt]=
1
N2

∑
i<j

E
[
2δ(x−(Xi(t−)+Xj(t−)/2))

−δ(x−Xi(t−))−δ(x−Xj(t−))
]
.

(D.5)

We now show that the empirical measure of the stochastic system satisfies an
approximate version of (D.2). Fix a deterministic test function φ with ∥∇φ∥∞ ≤1,
and consider the time evolution of ⟨ρemp,φ⟩ where for some probability measure ν,
we denote by the duality bracket ⟨ν,φ⟩=

∫
φdν. Then

dE[⟨ρemp,φ⟩]=dE [⟨Yt dNt,φ⟩]=λ⟨E[Yt],φ⟩dt.

Therefore, thanks to (D.5),

dE[⟨ρemp,φ⟩]= 1
N2

∑
i<j

E [2φ((Xi +Xj)/2)+−φ(Xi)−φ(Xj)]dt

= 1
N2

∑
i,j=1...N,i̸=j

E [φ((Xi +Xj)/2)−φ(Xi)]dt

= 1
N2

N∑
i,j=1

E [φ((Xi +Xj)/2)−φ(Xi)]dt,

where all Xi, Xj are taken at time t−. On the other hand, we may calculate

⟨Q+[ρemp],φ⟩=
∫
φ(x)2 1

N2

N∑
i,j=1

δXi+Xj
(2x)dx= 1

N2

N∑
i,j=1

φ((Xi +Xj)/2) .
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Therefore
dE[⟨ρemp,φ⟩]=E [⟨L[ρemp],φ⟩] dt. (D.6)

By Dynkin’s formula, the compensated process

Mφ(t) :=⟨ρemp(t),φ⟩−⟨ρemp(0),φ⟩−
∫ t

0
E[⟨L[ρemp(s)],φ⟩]ds (D.7)

is a martingale. Furthermore, comparing with (D.2), we easily obtain that

⟨ρemp(t)−ρ(t),φ⟩=Mφ(t)+⟨ρemp(0)−ρ(0),φ⟩

+E
∫ t

0
⟨L[ρemp(s)]−L[ρ(s)],φ⟩ds.

Taking the supremum over φ, we therefore have that

E sup
∥∇φ∥∞≤1

⟨ρemp(t)−ρ(t),φ⟩≤E sup
∥∇φ∥∞≤1

(|Mφ(t)|+⟨ρemp(0)−ρ(0),φ⟩)

+
∫ t

0
E sup

∥∇φ∥∞≤1
⟨L[ρemp(s)]−L[ρ(s)],φ⟩ds.

By the definition of the W1 distance, we deduce from (D.4) that

EW1(ρemp(t), q(t))≤η(t)+2
∫ t

0
EW1(ρemp(t), q(t))ds,

in which we have set

η(t) :=E sup
∥∇φ∥∞≤1

|Mφ(t)|+EW1(ρemp(0), q(0)). (D.8)

Thus, Gronwall’s inequality gives rise to

EW1(ρemp(t),ρ(t))≤
(

sup
t∈[0,T ]

η(t)
)

e2T . (D.9)

In order to establish propagation of chaos for t≤T , it therefore suffices to show that

sup
t∈[0,T ]

η(t) P−−−→
N→∞

0. (D.10)

To prove (D.10), we treat each term appearing in the definition of η(t) separately. The
second term in (D.8) approaches to 0 as N→∞ by our assumption. The treatment
of the first term is more delicate, but can be carried out in a similar fashion as the
proof of Theorem 6 in [39]. In the end, we obtain estimates of the form

E
[

sup
∥∇φ∥∞≤1

|Mφ(t)|
]

≤C
tθ

N θ

for some θ>0, which allows to finish the proof of (D.10). □
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