
Sparse-Tensor Methods in Physics

by

Julio J. Candanedo

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved October 2023 by the
Graduate Supervisory Committee:

Oliver Beckstein, Co-Chair
Christian Arenz, Co-Chair

Cynthia Keeler
Onur Erten

ARIZONA STATE UNIVERSITY

December 2023

ABSTRACT

In this thesis, applications of sparsity, specifically sparse-tensors are motivated

in physics. An algorithm is introduced to natively compute sparse-tensor’s partial-

traces, along with direct implementations in popular python libraries for immediate

use. These applications include the infamous exponentially-scaling (with system

size) Quantum-Many-Body problems (both Heisenberg/spin-chain-like and Chemical

Hamiltonian models). This sparsity aspect is stressed as an important and essential

feature in solving many real-world physical problems approximately-and-numerically.

These include the original motivation of solving radiation-damage questions for

ultrafast light and electron sources.

i

Alison Parker

ii

ACKNOWLEDGMENTS

I thank my late adviser John C.H. Spence, for encouraging me to do a PhD

in physics with him. It was a great experience, especially before the COVID-19

Pandemic, and his hospitably for staying with him briefly in Berkeley during summer

2019. He showed me the importance of the van-Cittert-Zernike and Shannon theorems,

and the communications/information background for lenless-imagining, as well as

motivating the importance of radiation-damage for information loss.

I also greatly thank Oliver for taking me under his wing, after the passing of my

adviser his extreme patience with me during this time. Araceli, Physics Department

for funding. I thank Christian (co-adviser), and committee Onur and Cynthia.

In addition, to John and Oliver, I’m grateful for direct influences from David-

Gurevich (for teaching me chess), Matthias (for encouraging me to explore pure

mathematics), Maulik (teaching me the path-integral), and Dmitri (for bringing to

light the nonadiabatic nature of radiation-less transitions). Also to Maxim and Sergei

for helping me as an undergraduate.

While I stayed in Uppsala, Sweden, I thank early support from Calle, Nic, and

others at Ångströmlaboratoriet, for a friendly and supportive atmosphere. Including

for securing a STINT-grant for me. I thank Ken, for his hospitably in Montréal,

Québec, to escape the summer heat, only to stay until winter! During an excellent

school, TDDFT2019, at Rutgers I met a good-friend Daniel, whom taught me much

of computational-chemistry, and I am eternally grateful for this collaboration. And

his hospitably while I visited Memphis in 2021.

After, the passing of my adviser, I taught 1st year physics, and I thank Darya,

iii

for her support during this time, including letting me modify curriculum to include

python virtual physics labs. I would also like to thank my students, whom I taught

over the years, including Esme, Siandelle, Tegan, Sepideh, Neil, Sophia, Cedrick, and

Eurico.

I thank fellow friends whom are also PhD inmates, I mean students; Tom, Adam,

Megan, Armin, Billy, Hanan, Sanjana, Shujie, Chenou, Ricky, Sean, Ian, and even

the other Ian, Reza, Andrew and the other Andrew. I think most of us have escaped

now. Also non-PhD student friends: Nadia, Stella, Derek, Joe, Chufeng, Rick, Kevin,

and Ganesh, I enjoyed our conversations. And last but not least: Araceli, Gio, Kyle,

Pedro, Lauren, and Russell.

Most importantly, I could not have done this without the support of my immediate

family: Mother, Father, and Sister.

iv

TABLE OF CONTENTS

Page

LIST OF FIGURES . xii

CHAPTER

1 CASE FOR SPARSITY . 1

1.1 Natural World and Information. 1

1.2 Naturalness = Sparsity? . 2

1.3 Occam’s Razor & the Wave-Function-Collapse 2

1.4 Network Science . 4

1.5 Hypergraphs & Simplicial-Complexes . 6

1.6 Finite-Element . 8

1.7 Bridging theory & High-Performance-Computing 9

1.7.1 NumPy’s einsum Function . 10

1.7.2 Strassen Theory & AlphaTensor . 11

1.7.3 Tensor Processing Units . 11

1.8 Sparse-Tensor Research . 12

1.9 Physical Problems . 12

1.9.1 Nonlinear Dynamics . 12

1.9.2 Quantum Many Body Problems . 13

1.9.3 Radiation Damage . 14

1.10 Organization and Goals . 14

2 SINGULAR-VALUE & SCHMIDT DECOMPOSITION 16

2.1 How to Define a Wavefunction? . 16

v

CHAPTER Page

2.2 What is a Tensor? . 17

2.2.1 What is a Sparse-Tensor? . 20

2.3 The Tensor-Network . 21

2.3.1 Tensor Diagrammatic Representation . 21

2.3.2 Singular-Value-Decomposition . 23

2.3.3 Tensor Decompositions . 24

2.3.4 External-index Surfaces . 25

2.4 Tensor-Network as a Sparse-Tensor . 26

2.5 Unstructured Sparse-Arrays . 26

2.5.1 Well-ordering . 29

2.6 Tensor Operations . 31

2.6.1 Composition, Sub-indexing, and Permutations 31

2.6.2 Array-labeling . 31

2.6.3 Cartesian-product . 32

2.6.4 Intra-intersection/Slice . 35

2.7 Duality: Unstructured-sparse & Tensor-network Sparse Tensors . . 36

2.8 Tensor Types . 36

3 SPARSE-PARTIAL-TRACING . 38

3.1 Partial-Trace . 38

3.2 Ordered Network Structure . 39

3.2.1 List of Tensors . 40

3.3 List-of-Labels Trace Representation . 41

vi

CHAPTER Page

3.3.1 Network CONtraction (ncon) . 42

3.4 Hyper-trace/Hyper-contraction . 42

3.4.1 Slicing Hypergraph . 43

3.4.2 Sparse-tensor Representation . 44

3.4.3 Simplicial-complex? . 45

3.5 Dense-Sparse Partial-Trace . 46

3.6 Sparse-Dense Network . 47

3.6.1 Dense-Sparse Networks Continued . 49

3.7 Sparse-Sparse Partial-Trace (algorithm 1) . 50

3.7.1 Sparse Reshaping . 50

3.7.2 Modified Shape . 52

3.7.3 Tuples-to-Integers . 53

3.7.4 Integers-to-Tuples . 53

3.7.5 Tuples-to-Tuples . 54

3.7.6 Binary Summation (bisum) . 54

3.8 Sparse-Sparse Partial-Trace (Algorithm 2) . 55

3.8.1 Direct-Intersection . 55

3.8.2 Shoelace . 57

3.8.3 Multi-Intersection (Hyperedge) . 58

3.9 Surjective-map . 60

3.10 A Word of Caution! . 62

3.11 Output Considerations . 62

vii

CHAPTER Page

3.12 Partial Partial-Trace . 63

4 SPARSITY IN TENSOR-NETWORKS . 64

4.1 The Heisenberg Model . 64

4.1.1 Exchange Interaction . 66

4.1.2 2-site Heisenberg Example . 67

4.2 Generalized Heisenberg-model . 68

4.2.1 Generalization & Comments . 69

4.2.2 [su(N)1] ∼= [[su(2)N−1]] . 70

4.2.3 Let’s Consider N = 3 and s = 1 . 71

4.2.4 Low-energy Excitations . 71

4.3 NN-Factorization . 72

4.4 Tensor Operator Element . 75

4.5 Fundamental-Representation of su(N) . 78

4.5.1 Complex Representation . 78

4.5.2 Adjoint Representation . 79

4.5.3 Jordan-Wigner Transformation . 80

4.6 Exact-Diagonalization . 80

4.6.1 Explicit-Matrix Diagonalization . 81

4.6.2 Iterative Diagonalization . 82

4.6.3 MPO-ED (linear-chain) . 82

4.6.4 Generic-network ED . 84

4.7 Approximations to Ψ . 86

viii

CHAPTER Page

4.8 Density-Matrix-Renormalization-Group . 88

4.8.1 State . 89

4.8.2 The Energy . 89

4.8.3 Tensor Network Derivative & Optimization 89

4.8.4 Update & Sweep . 90

4.8.5 Generalized-DMRG . 91

4.9 Mean-Field Theory . 91

4.10 Sparsity of Tensor-Network Pieces . 92

4.10.1 Sparsity of H . 92

4.10.2 Sparsity of W . 93

4.10.3 Sparsity of Ψ . 93

4.11 Sparsity & Entanglement-Entropy . 95

4.12 Entanglement-Entropy . 96

4.12.1Bond-Entropy . 97

4.12.2Block-Entropy. 97

4.12.3Central-Charge . 98

4.13 Procedure . 98

4.14 Results . 99

4.14.1 c(m) Calculation . 100

4.14.2m(L) Calculation . 102

4.14.3Conjecture . 103

4.14.4 Symmetry imposed ΨMPS . 104

ix

CHAPTER Page

4.15 Error Fidelity . 105

5 SPARSITY IN CHEMICAL SYSTEMS . 108

5.1 Orbital Interaction . 109

5.2 Full Configuration-Interaction . 110

5.3 Active-Space Configuration-Interaction . 110

5.3.1 Multi-Configuration-SCF (MCSCF) . 112

6 MOLECULAR DYNAMICS . 113

6.1 Freshman’s Dream . 113

6.2 Atomic Dynamics . 115

6.2.1 Weak Molecular Interactions . 115

6.2.2 Strong Molecular Interaction . 117

6.2.3 Computational Methods . 118

6.3 Potential Energy Surface . 119

6.3.1 Black-Box Decomposition of the Potential Energy Surface . 120

6.3.2 Atomic Cluster Expansion & Simplicial-Decomposition . . . 121

6.3.3 PES Hopping . 124

6.4 Cell-list and NN-interactions . 124

6.5 Classical Molecular Dynamics Algorithm . 127

6.5.1 ∼ N2 Pair-force Calculation . 127

6.5.2 Sparse Pair-force Calculation . 128

6.5.3 For Many-body Force Calculation. 129

6.5.4 An Example Run . 129

x

CHAPTER Page

6.6 Application in Radiation-Damage. 130

6.6.1 The Exciton & Excimer Model . 132

6.7 Real-Time Molecular-Dynamics . 134

6.7.1 Real-Time H+
2 Coherent Excitation . 135

6.7.2 Ehrenfest Dynamics . 136

6.8 Real-Time Radiation-Damage . 137

7 CONCLUSION . 141

REFERENCES . 144

APPENDIX

A SPARSE-EINSUM BISUM† . 156

B CHEMRXIV PAPER . 162

C JCP PAPER . 190

D JCP PERMISSION . 196

xi

LIST OF FIGURES

Figure Page

1. Out of All Possible Images, Given a Pixel-dimension, Sparse/natural Images

form an Infinitesimally-small Subset. (Note that TV-static Should in the

Figure Should have 256 Colors) . 3

2. This is a Table of Various Animals and Their Neural-network Density. 6

3. Six Simplicial-complexes Emulating the Sphere, S2, with Increasing

Simplex-count. Note that the Highest-resolution Representation of the

Sphere is the Sparsest (this is Because out of All the Possible Connections

with More Nodes Fewer are Used). Note in the Limit of the Perfectly-

continuous-mathematical-sphere we Obtain the Infinite-sparse Limit. Num-

ber of Total Possible Edges is:

n
2

 ∼ n2, while Number of Presenting

Edges is 6n. While Number of Triplets are

n
3

 ∼ n3, and Number of

Faces are ∼ n. 7

4. Various Graphical Representations of Tensors/Arrays. 21

5. The Decomposition of a Sparse-tensor (Previously Known as a Dense-tensor)

into Network of Dense-tensors. 25

6. The Decomposition of the Sparse-array into a Shape, Array-of-tuples, and

Data Arrays. 29

7. Three Examples of Tensor-index Hypergraphs. 43

8. Three Examples of Slicing-prescription Hypergraphs. 44

xii

Figure Page

9. This Figure Shows an Example of a Direct-intersection (the Collection of

All the Edges) Between Two Arrays’ (Red and Blue) Elements (i.e. the

Nodes), Represented by a Sum of Disjoint Complete Bipartite-graphs. 57

10. (left) An Example for the Lace Algorithm on 4 Lists/Arrays. (Right)

Showing the Contraction-hyperedge and the Searching Path (Shown to the

Left) Shown by the Solid Line. 59

11. This Figure Shows an Example of the Complete Operation Between Two

Surjective-maps, two Ordering, and a Direct-intersection Map. 60

12. Shown is a Log-plot Showing the Bond-dimension, m, of an MPS. The

Filled-in Portion, Shows the MPS is Modelling Compared to the Entire

ED-wavefunction-tensor. This is Plotted For a Region of 40 Sites. Note Al-

though the Non-filled in Region Appears Smaller, Its In-fact Exponentially

Larger Than the Filled in Portion Due to the Vertical Axis-scale. 94

13. Examples of the Entanglement-Entropy of the su(2)1 Model (Left Plot)

for m = 60 (Lower Curve) and m = 200 (Upper Curve) Respectively, and

Their Difference (Right Plot). 100

14. Examples of the Entanglement-entropy as a Function of the Bipartite

Divider ℓ on a 1-dimensional L = 120 Site Lattice Spin-chain. The Upper

Curve Shows the Results for [su(4)1], the Middle Curve Shows Results for

[su(3)1], and the Lower Curve Shows the Result For [su(2)1]. 101

xiii

Figure Page

15. This Plot Shows the Central-charge as Fitted to DMRG Data, the MPS

Over L = 60 Spin-sites. For su(2)1 (Blue) Which Converges to c = 1 as

Expected With Bond-dimension m ≈ 20. su(3)1 (Orange) Approaching

c = 2, Also as Expected, with Bond-dimension Roughly m ≈ 100. And

su(4)1 (Green), With the Central-charge Increasing Not Converging to the

Expected c = 3 Value Yet. 101

16. This Plot Shows the Constant-entropy Term, C1, in Eq. 4.8 Least-squares-

fitted to Numerical DMRG Data (the MPS). For Systems With L = 60

Spin-site Chains in su(2)1, su(3)1, and su(4)1 Theories. 102

17. The “Converged” (Such That the Central-charge Does Not Change Much)

Bond-dimension m (MPS in DMRG) For A XXX Spin-chain of Length L.

DMRG Data is Fitted With Function m = b ∗ La + c, With Least-squares

Parameters: a = 0.51001911, b = 5.0420591, c = −13.39164775. 103

18. The Converged Energy E (MPS in DMRG) For A XXX Spin-chain of

Length L. DMRG Data is Fitted With Function m = a∗L+ b, With Least-

squares Parameters: a = −0.3183050050730525, b = 0.17962704375639882.

. 104

19. When Constraining For Symmetry, Within Each m2-sub-matrix May Be

Reduced to Block-diagonal Form. 105

20. Shown is the Fidelity of the MPS State (for Sparsities) when Compared to

the EDS, for L = 10, 14, 22 Lattice Sites, with Blue, Orange, and Green

Dots Respectively. 107

xiv

Figure Page

21. Shown is the energy difference of the EDS and MPS (for Various Sparsities)

states, for L = 10, 14, 22 Lattice Sites, with Blue, Orange, and Green Dots

Respectively. 107

22. Above is a Cartoon Depiction of a Hypothetical Potential Energy Surface

(PES), the Vertical-axis Being Energy, While the Horizontal-axis Being a

Reaction Coordinate (Defined by Nuclei Distances). In this Figure, Four

Curves are Shown: Ground-State Singlet (Solid Curve, S0), its Associated

Triplet State (Dotted Curve, T0), An Excited Singlet State (S1), and another

triplet state (dashed curve, T1). The Gray Shading Region, Bounded By

the Uppermost Curve is the Ionization/Continuum Threshold. 120

23. Plotted is the Energy-difference (When Compared to the First Time-step)

in Time. Ideal Situation is a Perfectly Horizontal Line. This is On 1

CPU For A 10 Minute Simulation of Approximately 4300 Argon Atoms for

5000 Time-steps. The Algorithm is the Aforementioned FIT-MD, With

Linear-interpolation. 130

24. Plotted is the Radial-Distribution-Function (RDF) of the 1st Time-step

(Blue) and Last (Orange), of the Same Simulation in Fig. 23. The Initial

Stage is a Perfect Crystal, and the Last Instance is a Slightly Thermalized

Sample. 131

xv

Figure Page

25. This Figure Shows the EELS spectrum of RGSs as Published in Klein &

Venebles, for Neon (Red), Argon (Cyan), Krypton (Yellow), and Xenon

(Violet). Vertical-axis is Re-scaled With-respect-to Each RGS Spectra

(Highest Peak of Each is Rescaled to ‘1’). 133

26. Above is the PES of H+
2 /HF/STO-3G Basis, Showing Both Electronic

States, σ and σ∗. 135

27. Above are Shown the Irradiation By the Electric-field Shown (Top) of the

2-state H+
2 , By Real-Time Runge-Kutta (An Approximation for the Unitary

Integration) Integration (bottom). 139

28. The Top Plot Shows the Interatomic Distance of the Same Cation, Dis-

playing the Dynamics Under Various Pulse Intensities. This Clearly Shows

an Increase to the Molecules Vibrational Period, Until an Infinite Period

is Achieved at the Asymptotic Limit Leading to Dissociation. While the

Bottom Plot Displays a Function of Vibrational Period to the Exposure

Electric Field Strength. 140

29. This plot shows a timing comparison between the torch.einsum (solid line,

averaged over 2 samples) function, the sparse-dense bisum trace(connected

dots, averaged over 5 samples) function, and finally the sparse-sparse

bisum tensor contraction: AqjwhkrjdBkrqljdmn (each tensor of shape(
14 14 14 14 14 14 14 14

)
) on a single CPU. 161

xvi

Chapter 1

CASE FOR SPARSITY

1.1 Natural World and Information

In physics, our objective is to understand the natural world. We must first label

objects and phenomena. While the universe doesn’t provide a measuring stick at

all locations, that doesn’t hinder us from using units and coordinates. Through

these units, we can associate a collection of numerical values (arrays) with physical

phenomena. Furthermore, it is well-known that our human perceptions can be

misleading and limited. Therefore, we rely on data obtained from various instruments

and sensors, which output data in the form of numerical arrays. Examples include

audio/sound, digital images, spreadsheets of labeled data, sport statistics, or financial

information. In physics, we work with trajectories, position vectors, state vectors,

diffraction patterns, spectra, and more.

On the flip side, computers have proven to be an invaluable tool in science. In

computational simulations, we often need to organize real-world data into multi-

dimensional arrays. For instance, a 2-dimensional image can be transformed into

a 3-dimensional array comprising three 2-dimensional pixel arrays (one for each

color), with each numerical value representing the intensity of that color. Many array

manipulation techniques can be reduced to the manipulation of indices, such as linear

algebraic techniques (matrix multiplication). In the modern information age, we

1

witness the digitization of nature, which we refer to as ’data.’ Our objective is to

introduce algorithms to manipulate this natural, physical data. It’s important to note

that although reality is dense, our understanding of it is achieved through sparsity.

1.2 Naturalness = Sparsity?

As we shall show, real-world data is anything but random. Let’s introduce a

Gedankenexperiment/thought-experiment. Suppose we wish to determine how many

images may be formed from 1024× 768 pixels (old XGA/standard-resolution circa

2000) with 2 xor 256 colors? In total there are 786,432, pixels so the number of images

is 2786,432 or 256786,432. Either number is absolutely enormous. Figure 1 attempts to

illustrate that the vast majority possible images (configurations of those pixels) are

reminiscent of tv-static (infinite temperature Ising-model), we call this the dense-state.

1.3 Occam’s Razor & the Wave-Function-Collapse

In understanding the physical world, perhaps the most important principle is

Occam’s Razor. This widely known principle1 is named after William of Ockham,

a 14th-century English scholar. Occam’s Razor is often paraphrased as “Entia non

sunt multiplicanda praeter necessitatem” or “More things should not be used than are

1However, it’s likely that this principle has been around for much longer.

2

Figure 1. Out of All Possible Images, Given a Pixel-dimension, Sparse/natural
Images form an Infinitesimally-small Subset. (Note that TV-static Should in the
Figure Should have 256 Colors)

necessary”, or as lex parsimoniae or the law of parsimony. For us, this is the guiding

philosophy of sparse methods. We aim to solve problems with unknowns, potentially

in an underdetermined fashion, for the sparest possible solution. Let’s consider an

example system:

A
Σ

Suppose we have complete knowledge of the state of A, i.e., ψA, with absolute

certainty, meaning that the entropy S = 0. This state encounters a completely

unknown region, Σ, while the systems interact with the boundary of ∂A. If we can

make a few assumptions about Σ, for example, if it shares similar characteristics with

3

A, then the entropy of Σ is proportional to the number of all possible states2 that

match the boundary condition given by ψA, i.e. S ∝ logN . However, Occam’s razor

guides us in determining which states are the most important. It leads us to favor

states with the least complexity, the sparest ones. While there might be many states

ψΣ with similar sparsity, we can reduce our uncertainty or entropy by the logarithm

of the number of these important states.

1.4 Network Science

Suppose we have a system consisting of N particles, bodies, or systems, and we

can characterize their interactions by their proximity to each other. This proximity

is represented by an edge, linking two particles together. The study of edges and

nodes together is studied mathematically, and is referred to as Graph Theory, see

Bollobás 1998. In computer-science related fields this is called network-science, see

El Gamal and Kim 2011. We will make a subtle distinction between them; graphs

are abstract-mathematical-objects (with sets), while networks are realized graphs

(with ordered-sets/arrays/lists). Networks carry an enumeration for their nodes and

hence edges3. This enumeration allows for concrete algorithm description, e.g. a

2There is an interesting program by Maxim Gumin on GitHub: https://github.com/mxgmn/
WaveFunctionCollapse which obtains these possible states.

3A mathematical Graph is defined by two sets: node set and edge set. While networks are
defined by two arrays.

4

https://github.com/mxgmn/WaveFunctionCollapse
https://github.com/mxgmn/WaveFunctionCollapse

definition of the adjacency-matrix. The network description is only really useful when

discussing relatively sparse networks/graphs. In addition to sparsity, properties such

as: small-worlds, as shown in Watts and Strogatz 1998 and power-law as shown in

Barabási and Albert 1999 become important.

Furthermore, in many applications, these arrays require significant memory due to

the complexity of real-world data. However, conveniently, many entries are numerically

zero. This lends itself to sparse representation, where only non-zero entries are stored

along with their locations (their indices) in the dense representation. This sparse

representation contains all the information content of the dense representation.

Neural-networks

One application for networks is the description of natural neurological systems.

Here neurons are the nodes, while synapses are the edges. There have been many

studies to preform a neuron-count for various animals, however unfortunately less

research has been done on the synapses-count. When animals perform voluntary

actions, they demonstrate an understanding of the-physics in their environment,

and process new data accordingly, similar to operators. We may compute the

connectivity-density of neural-networks by: density = 2s
n2 , s being the synapse-

count and n being the neuron-count. Because both synapse-count and neuron-count

are truly astronomical, research has only rough estimates can be made for their

values. Nonetheless, empirically a few patterns emerge, the smarter the species the

sparser their neural-network. Although its difficult to assign a particular number

5

to intelligence, sparsity seems to do a good job, see figure 2, it is intuitively clear

based on our interactions with animals, we can determine which are more intelligent

relative to each other.

animal neuron count synapse count density
human 8.61× 1010 1.00× 1014 2.70× 10−8

human-(3yo) 8.61× 1010 1.00× 1015 2.70× 10−7

brown rat 2.00× 108 4.48× 1011 2.24× 10−5

cat 7.60× 108 1.00× 1013 3.46× 10−5

house mouse 7.10× 107 1.00× 1012 3.97× 10−4

honey bee 9.60× 105 1.00× 109 2.17× 10−3

drosophila 1.00× 105 1.00× 108 2.00× 10−2

fruit-fly 2.50× 104 2.00× 107 6.40× 10−2

roundworm 3.02× 102 7.50× 103 1.64× 10−1

sea-squirt 2.31× 102 8.62× 103 3.23× 10−1

Figure 2. This is a Table of Various Animals and Their Neural-network Density.

The following table of shows various animals and their neural-network density.

Sources/citations for fig. 2 are referenced by: humans in Azevedo et al. 2009, brown-

rat in Herculano-Houzel, Mota, and Lent 2006, cat in Ananthanarayanan et al. 2009,

mouse in Herculano-Houzel and Lent 2005, honeybee in Menzel and Giurfa 2001,

drosophila inSchlegel et al. 2023, fruit-fly inRaji and Potter 2021, roundworm in

White et al. 1986, and sea-squirt in Ryan, Lu, and Meinertzhagen 2018.

1.5 Hypergraphs & Simplicial-Complexes

The networks we have considered so far consist of 0- and 1-dimensional objects, i.e.,
nodes and edges, respectively. However, a straightforward generalization is possible to
n-dimensional hyper-edges, which include n nodes at once. This generalization yields

6

objects known as hypergraphs or hyper-networks. These objects represent a significant
extension of graphs and networks but have not been as thoroughly studied. A related
structure that has been extensively studied in differential geometry and algebraic
topology is the Simplicial-Complex, which includes simplices (higher-dimensional
triangles) analogous to the aforementioned hyper-edges. In many instances, an n-
dimensional differential manifold can be cast into a Simplicial Complex with simplices
of at most n dimensions. This process is known as triangulation4. In addition to
hypergraphs, simplicial complexes have a nested-intersection structure5.

Figure 3. Six Simplicial-complexes Emulating the Sphere, S2, with Increasing
Simplex-count. Note that the Highest-resolution Representation of the Sphere is the
Sparsest (this is Because out of All the Possible Connections with More Nodes Fewer
are Used). Note in the Limit of the Perfectly-continuous-mathematical-sphere we

Obtain the Infinite-sparse Limit. Number of Total Possible Edges is:
(
n
2

)
∼ n2,

while Number of Presenting Edges is 6n. While Number of Triplets are
(
n
3

)
∼ n3,

and Number of Faces are ∼ n.

All networks, hyper-networks, and simplicial-complexes are sparse data structures,

4The Hauptvermutung Conjecture

5If a n-dimensional simplex Kn is included, then its boundary simplices, {Kn−1}, must also be
included.

7

because of their usefulness in describing only a small subset of all possible connections,

this is supported by fig. 3. Note, if we have the complete hypergraph, the inclusion

of all possible hyperedges on n nodes/vertices, and we have physical interactions on

all hyperedges, we once again obtain the exponential scaling problem:

2n ∼
∑
i

n
i

 .

1.6 Finite-Element

In the study of continuum mechanics and field theory, we consider functions

defined within some space. In physics, we often simplify shapes to obtain analytic

results, following the concept of a ‘spherical cow’. However, when dealing with real

complexities, we may utilize grid methods to enumerate all locations in space and

time, as mentioned in our introduction. However, a dense array of representative

field and continuum values quickly becomes intractable. For instance, with three

dimensions of space and one dimension of time, algorithms scale approximately as

N4 just to store a coarse representation. Instead, Finite Element Methods (FEM)

first introduced by Turner et al. 1956, allow us to consider arbitrary real geometries

used in engineering. Much like the ‘Hauptvermutung’, real-world complexities can be

captured via triangulation. Today, FEM is standard in many engineering packages

that utilize computers to prototype various situations. This development is interesting,

because if any material can be decompose into a simplicial complex, it may also be

related to a Discrete Exterior Calculus (DEC). Research in this field goes by the name

8

of Finite-Element Exterior Calculus, as developed by Arnold, Falk, and Winther 2006.

Similar methods can also be applied to Lattice Gauge Theory calculations in Finite

Element Gauge Theory, see Brower et al. 2016; Brower et al. 2021.

1.7 Bridging theory & High-Performance-Computing

Quick-and-naïve direct program implementations of theoretical-equations, while

relatively easy to understand, often suffer from low-computational-performance. This

is because High-Performance Computing (HPC) algorithms typically rely on the

specific architecture of the computer and low-level programming languages that

obscure the physics of the problem In addition to common approximations in the

theoretical equations embedded in their efficient implementation, these “makeshift”

solutions are often highly specialized for a particular problem and cannot be easily

generalized to others. The problem-solving paradigm typically falls into two categories:

either it’s easy for humans (straightforward implementation following closely from

theory) but difficult for computers (high computational complexity), or it’s difficult

for humans (complicated implementation with contrived factors and approximations)

but easy for computers. In the past decade, Python’s popularity has surged due to its

capacity to quickly connect highly specialized, often compiled, black-box subroutines.

Many theoretical problems can be transposed into multidimensional array problems,

necessitating efficient multidimensional array manipulation.

9

1.7.1 NumPy’s einsum Function

Albert Einstein is perhaps best known for his discovery of General Relativity in

1915. In developing his theory, he generalized vector analysis into tensor analysis

to study differential geometry. He recognized the recurring theme of summing over

certain tensor indices. To address this, a common approach in pen-to-paper work

is to label all tensor indices belonging to a list of tensors with alphabetical letters.

Matching indices are assumed to be summed over, following the Einstein-Summation

convention (see Einstein 1916). This operation is a broad generalization of the

matrix-product, as in A@B = AikBkj = Cij. Therefore, this operation is perhaps

the most fundamental and universal operation for working with two or more generic

multidimensional arrays. Examples of the Einstein convention within the Einstein

field equations include (with g as the metric tensor):

Γk
ij =

1

2
gkl (∂igjl + ∂jgil − ∂lgij)

Rµν = ∂iΓ
i
µν − ∂µΓ

i
νi + Γi

ipΓ
p
µν − Γi

µpΓ
p
iν ,

Rµν −
R

2
gµν =

8πG

c4
Tµν .

The einsum-function is one of the most important and powerful algorithms in

computer-science and science more generally. It allows for the efficient manipu-

lation of tensors/arrays in their native degrees-of-freedom, i.e. their indices. This

algorithm is user-friendly and computer-friendly. For a summary of deep-learning

applications of einsum, I would refer to the reader to an article by Rocktäschel 2018

10

1.7.2 Strassen Theory & AlphaTensor

Since Strassen’s 1969 discovery, Strassen 1969, that matrix-matrix multiplication

can be achieved in less than O ∼ N3 operations, matrix-matrix multiplications have

been an active area of research. A major contributor has been the work of AI firm

DeepMind’s AlphaTensor, Fawzi et al. 2022, and subsequent work by others. The

“hope” or aspiration of this research is whether matrix multiplications can be reduced

to O ∼ N2 time-complexity.

1.7.3 Tensor Processing Units

These partial-tracing operations on dense matrix-matrix and dense matrix-vectors

are very common in deep-learning. Given the widespread impact on deep-learning on

current-society, motivated the development of Application-Specific-Integrated-Chip

(ASIC) known as the Tensor-Processing-Unit (TPU), Jouppi et al. 2017 to preform

these operations. There have been 4 generations of TPUs, with the latest being

called TPUv4, as developed by Jouppi, Yoon, Ashcraft, et al. 2021, using 7 nm

chip-technology. TPUv4i is optimized to preform 128× 128 matrix-multiplications

natively, with a performance of 138 TFLOPs (in 16-bit float/8-bit int). Despite the

TPU being a ASIC, this one operation is ubiquitous in science that it may be applied

to electronic-structure problems, as in Ganahl et al. 2023 and Pederson et al. 2022,

and fluid mechanics problems, as shown in Q. Wang et al. 2022.

11

1.8 Sparse-Tensor Research

As emphasized in the previous sections, the significance of sparsity and tensors

in science suggests a growing interest in sparse tensor methods. While not widely

explored, a few groups have delved into these methods. The development of block-

sparse tensor methods began with physical chemists, particularly the Krylov group,

which introduced a new implementation Epifanovsky et al. 2013 for computing post-

Hartree-Fock correlated electronic structure methods. This was followed by work in

the 2010s by the Solomonik group, with publications such as Solomonik et al. 2014;

Solomonik and Hoefler 2015; Kanakagiri and Solomonik 2023, emphasizing parallelism.

More recently, in the 2020s, Choy et al. of NVIDIA have worked on sparse tensor

networks and machine vision Choy, Gwak, and Savarese 2019.

1.9 Physical Problems

1.9.1 Nonlinear Dynamics

The fact that natural images and data may be rendered in a sparse format (given

a suitable basis), leads to their sparse-format being used for efficient numerical-

algorithms. Recently there also have been many advances in modelling nonlinear

dynamics using sparsity, we give a brief example of this algorithm. Suppose we are

given dynamic (in-time) random/experimental data-points, Rtx (time and Cartesian-

12

coordinates). Our objective is to determine which function fits this data the best.

Following the work of brunton2022, we will focus on understanding nonlinear

dynamics. Suppose we have nonlinear temporal data Rtx, with this we may compute

its temporal derivative Ṙtx. We may also be able to compute many functions directly

from the data, R2
tx, ∂iRtx, sinRtx, and etc... This may be collected into a matrix with

the columns as functions and the rows being the temporal data:

Θtf =

(
R2 R3 ∂R sinR · · ·

)
.

Within this basis we may consider, the 1st order time dynamical differential equation:

Ṙtx = Θtfξfx .

Where ξfx are the coefficients for the basis-array Θ. This equation is under-determined,

and thus may have many possible solutions in the given basis. The desired solution

is magically the sparsest-version of ξfx within the basis-of-functions given by Θtf , to

generate the best model. Recently, there have been mathematical algorithms, Candès,

Romberg, and Tao 2006, to promote these sparse-solutions, and these techniques may

be used to solve the under-determined equation above. This algorithm was shown to

reproduce/discover the Naiver-Stokes Equations!

1.9.2 Quantum Many Body Problems

Similar to nonlinear dynamics of the previous subsection, albeit linear, Quantum-

Many-Body (QMB) Problems also pose an insurmountable problem without any

assumptions. Fortunately, as shown in later chapters (chapters 4 and 5) the Density-

13

Matrix-Renormalization-Group (DMRG) or Matrix/Tensor-Product ansatz allows for

a dramatic reduction in computational-complexity. From exponential to polynomial

or even linear computational complexity!

1.9.3 Radiation Damage

The original motivation of this work was in understanding radiation-damage

mechanisms in ultrafast electron and x-ray (light) sources. Radiation-damage at the

ultrafast time-scale involves the severing of covalent bonds. These covalent bonds are

many-electron systems which constitute a strong-correlation problem, which must

be resolved by a suitable QMB problem, especially when away from the vibrational

equilibrium position (the transition from strong → weak coupling, see chapter 6).

This fact is a major impediment to understanding radiation-damage and the behavior

of molecules on the ultrafast time-scales. In many avenues in this research the sparse

approximation would need to be invoked as suggested later in this work.

1.10 Organization and Goals

It is well-known that if the matrices are sparse, their matrix-multiplication algo-

rithm can scale much less than O << N3, scaling instead linearly with the number

of nonzero/sparse elements. Algorithms which scale linearly (∼ N), or sometimes

pseudolinearly (∼ N logN), have a technical term: fast. In this thesis we explore how

14

to generalize this concept to multidimensional-arrays, this forms the basis of chapter 2

and 3. This should prove to be an invaluable tool for solving computationally difficult

tasks such as the infamous Quantum-Many-Body (QMB) problems (in particular the

su(N) Heisenberg-model), introduced in chapter 4. Examples of numerical solutions

of these problems are demonstrated in chapter 4 and 5. We complete our discussion

by addressing the original motivation of this work: Radiation Damage, via a chapter

6 on Molecular Dynamics. Although, the physical universe is dense, all long-range

interactions between all particles exist, the idea is that this universe can be understood

in the sparse limit. And therefore the ultimate idea is to solve physical problems

under the constraint of sparsity (in addition to others, e.g. symmetry). These physical

problems may be defined by some operator, e.g. Hamiltonian or Koopman. Either

way, this is a guess because there is no a priori need for this condition, and is solely

taken by faith, by the simplicity-doctrine or principle-of-parsimony, i.e. Occam’s

Razor.

15

Chapter 2

SINGULAR-VALUE & SCHMIDT DECOMPOSITION

2.1 How to Define a Wavefunction?

According to Matrix-Mechanics, an early theory of quantum-mechanics invented

by Heisenberg, Born, and Jordan, as shown in Born, Heisenberg, and Jordan 1926;

Born 1955, the wavefunctions capture the coherent-ignorance of a system over some

known orthonormal-basis. This orthonormal-basis can be almost anything, e.g.

molecular-orbital states, polarization/spin states, scattering states; just like classical-

incoherent probabilities that can be applied to almost all real-world situations. In

this framework, the wavefunction merely captures coherent-probabilities (amplitudes)

as an array of complex-numbers, a vector (matrix) of complex-numbers. These are

determined by another matrix of complex-numbers, the Hamiltonian. Either way,

these array-of-numbers are the intrinsic fundamental elements of this theory.

The task of quantum-theory is to compute the wavefunction Ψ (modulo a global-

phase), or properties from it, i.e. the observables, this yields the predictive properties

of the theory. It is truly fascinating that a fundamental theory is intrinsically linear.

When we consider Quantum-Many-Body (QMB) systems, we may keep the vector

picture for Ψ, or the more generic tensor representation will be shown to be more

convenient in manifesting the effective 1-body, 2-body, · · · , n-body representations of

the wavefunction under consideration.

16

2.2 What is a Tensor?

There is much confusion over this question, likely due to the ubiquitous nature

of tensors across many disciplines. The history of tensors can be traced back to the

work of Ricci-Curbastro, Levi-Civita, and Gibbs. Tensors are rigorously defined as

multi-linear maps. We start with the following definition of an array, applicable to

multidimensional arrays as used in computer science.

Definition 1: Array (math/computer-science)

An Array is a regular multi-dimensional cubic spacing of n1×n2×n3×· · ·×nN

elements with entries from a Ring R (for positive integers ni ∈ Z+, indicating

the quantity of elements in each dimension).

The collection of numbers (n1, n2, n3, · · · , nN) form the shape of the Array.

An Array is said to live in the R-module (essentially a generalized vector-

space).

Following definition 1, a matrix in the mathematical-context (Linear-Algebra) is 2-

dimensional Array, with entries taking a field6. In computer-science and other fields,

these arrays are sometimes called tensors. Next let’s discuss this main character,

tensors and sparse-tensors. Unlike Arrays which live in module-space, tensors live

in vector-spaces. The definition of tensors in given in many math, see Needham

6A field is particular type of ring. Fields notably exclude many types of Z sets.

17

2021; Dummit and Foote 2004; Lee 2012 and physics, Thorne, Wheeler, and Misner

2000, books, but here we consider a slight generalization that is often used to include

modules (versus the more common vector-spaces).

Definition 2: Tensor (math/physics)

Suppose we have a module V and it’s dual-module V ∗, then a Tensor is defined

on a Cartesian-product of this space, and is defined by the following multilinear

map:

T : V ∗ × · · · × V ∗︸ ︷︷ ︸
N copies

×V × · · · × V︸ ︷︷ ︸
M copies

→ F .

That is a tensor can be viewed as a function (with slots, analogous to a multi-

variable continuous function, e.g. f(x, y, · · · , z)):

T [_,_, · · · ,_;_,_, · · · ,_]

The slot-variables for the multi-linear-functions are called indices.

The definitions above help relate us back to computer-science and concrete

implementations of theories we wish to implement. Next, let’s discuss an important

aspect of tensors, their decompositions.

Definition 3: Tensor-Rank

Suppose we have a n-axis tensor T . We define the tensor-rank,

with-respect-to the tensor-product (⊗). Let’s represent an arbitrary 1-

axis/dimensional tensors by Xi, then we can decompose T (as a sum
∑

of

18

tensor-products (⊗)):

T =
rank∑
j

n⊗
i

X
(j)
[i] . (2.1)

Then T ’s rank is the tensor-rank (∈ N), is the smallest possible value of rank

(in the equation above). Equation 2.1, is also called:

the tensor-rank-decomposition.

Let’s give an example of a tensor, M ∈ Cn ⊗ Cn ⊗ Cn, its tensor-rank-decomposition

is given by (collections of 1-tensors ai,bi, ci):

M = a1 ⊗ b1 ⊗ c1 + a2 ⊗ b2 ⊗ c2 + a3 ⊗ b3 ⊗ c3 + a4 ⊗ b4 ⊗ c4 + a5 ⊗ b5 ⊗ c5 .

Let’s give an explicit example of a rank-1: 2-dimensional tensor:

M =

4 5 6

8 10 12

12 15 18

 =

1

2

3

⊗

4

5

6

Even through the original 2-dimensional tensor seemingly appears to have ran-

dom/independent entries, its clearly shown they can be decomposed into two 1-

dimensional tensors. Therefore, M can be considered ‘sparse’. While a tensor is

‘dense’ if it has full or close to the maximum tensor-rank. The maximum tensor-rank

for any given tensor is still an unsolved problem. Naively, one would think this rank

is equal to the number of entries, but due to the structure of tensor products, many

entries can be simultaneously addressed, therefore dramatically decreasing this value.

An example is given in maximum-rank, by Buczyński and Landsberg 2013, of a tensor

in CN ⊗ CN ⊗ CN is N2 −N − 1, e.g. for N = 3, max-tensor-rank is 5, a tensor of

rank 5 is ‘dense’.

19

2.2.1 What is a Sparse-Tensor?

Namely, Sparse-Tensors/Arrays have the ability to be easily factored. Sparse-

tensors/arrays are properly tensors xor arrays, however its pure information content

is usually much lower than face-value.

Definition 4: Sparse-Tensor

Sparse-tensors are tensors (suppose of dimension n & axes size N) whose tensor-

rank, r, allows for a smaller representation

(dense-tensors/arrays have Nn entries):

Nn > rnN .

Its commonly referred as an attribute of tensors/arrays, however as we shall

see these sparse-tensors/arrays exist in their own interesting paradigm, inheriting

network/graph structure. A common symptom of sparse tensors/arrays is they are

mostly filled with the trivial multiplicative ideal7, i.e. ‘0’, and hence the purpose for

def. 5. These definitions are somewhat related because of zero’s special property, and

that tensor-products of tensors with mostly zeros, multiply, let A and B be tensors

with nonzero densities: ρA and ρB respectively, then A ⊗ B has nonzero density

ρAρB ≤ min{ρA, ρB}.

7Zero has the marvelous property that x× 0 = 0, for all numbers x.

20

Definition 5: Sparse-Array (computer-science)

Sparse-arrays are arrays consisting of mostly ‘0’ (zeros).

2.3 The Tensor-Network

Here we define an abstract and generic sparse-data-structure class, which can be

tailored to many problems.

2.3.1 Tensor Diagrammatic Representation

Here let’s define tensors by multidimensional arrays with multiple-axes representing
each dimension. We may represent these graphically by a node with multiple legs, as
shown in fig.4. Each leg is mathematically referred to as a half-edge, and represents
each axis. Note if we have N elements over a given axis, then a n-axis tensor has Nn

elements.

scalar vector matrix 3-tensor 4-tensor

· · ·

n-tensor

Figure 4. Various Graphical Representations of Tensors/Arrays.

21

In relativity studies, tensors may have two kinds of legs: contravariant and

covariant. In the Penrose-tensor-convention, shown in Penrose and Rindler 1984,

contravariant legs face towards the top-of-the-page while covariant face towards the

bottom-of-the-page. In many-body quantum systems, each leg is associated with a

1-particle Hilbert space, as these are complex objects also come into two verities: H

and its complex-conjugate H̄. There are many excellent resources detailing these

kind of diagrams, these include Bridgeman and Chubb 2017; Roberts et al. 2019.

Additionally, some authors use different node symbols (and colors) for different types

of tensors, e.g. in the context of tensor-decompositions. Let’s give an example of the

representation of the infamous many-body Schrödinger-equation using these kind of

diagrams:

HΨ = EΨ →
Ψ

H
= E

Ψ
.

Let’s notice two kinds of edges: internal and external. All internal -edges are

contracted/partial-traced over. However this diagrammatic picture obfuscates the

many-body nature of the problem, and instead of this we may unfold/reshape all

n-particles’ degrees-of-freedom into the tensor-network:

· · ·

· · ·

Ψ

H = E · · ·
Ψ

.

The above diagram directly illustrates the difficulty of the problem, each tensor (both

H and Ψ) scales exponentially, Nn, in size (number of particles). Within the past

22

few-decades it was realized that these tensors may be decomposed or factored into

smaller pieces that may be solved-sequentially, White 1992.

2.3.2 Singular-Value-Decomposition

The most famous form of tensor, or rather matrix, decomposition is the Singular-

Value-Decomposition (SVD). The SVD algorithm despite being invented over a

century ago, plays an increasingly important role in the current information-era,

brunton2022. The SVD factors any matrix into 3 smaller matrices, very much like

the eigendecomposition. Diagrammatically this is represented by (using the biparition

of the wavefunction):

Ψ = =

The middle-matrix/the singular-values is diagonal (with only internal-indices), and

whose node may be represented by some by a diamond, ⋄. This singular-matrix may

be combined with either matrix with an external-index, this yields the final diagram.

SVD is defined for matrices8, for singular-values λi:

Wab =
r∑
i

λi (ai ⊗ bi)

Because SVD, may be applied to non-square matrices, it may be viewed as a general-

ization of matrix-diagonalization.

8The computation of the SVD of a generic matrix A reduces to the computation of L,R, and λ
from the following eigenvalue-equations: (A@AT)L = λLL and (AT@A)R = λRR, with the choice:
C = min{|λL|, |λR|} (L xor R), and value: λ =

√
nonzero(λC).

23

Although, W (above) might be sparse, L,R matrices are unlikely to be sparse

(arrays mostly consisting of 0s). However, often the number of entries is much

smaller9 than the original matrix: |A| >> (|L|+ |R|) Ṫhe general n-tensor may also

be 1-tensor-decomposed:

Wabc···z =
r∑
i

λi (ai ⊗ bi ⊗ ci ⊗ · · · ⊗ zi) .

Graphically, the generalized SVD (tensor-rank-decomposition) is given as:

= λ0 + λ1 + · · ·+ λr

note that all first-order tensors are not in-general the same (equal to each other),

they are all distinct.

2.3.3 Tensor Decompositions

Generalizations of SVD have been developed for generic tensors (rather than
matrices, i.e. 2-tensor), sometimes this is called High-Order (HOSVD). This is
straight-forwardly implemented by reshaping of tensor-axes 10. The essential idea
is the external-edges denote the boundary of a tensor-network, and this tensor-
network holds many internal-indices relevant to a given problem. Then these are
fully-traced/contracted we obtain the original tensor (sometimes approximately, if
truncations were considered), nevertheless the tensor-network form allows for efficient
storage and manipulations. A general HOSVD/tensor-network decomposition may
resemble:

9Hence, if L and R are patted with 0s to match the size of A, they will mostly be zeros and
hence fall under sparse in this definition.

10However conceivably there are alternative tactics for achieving this.

24

. . .

...

=

. . .

...

.

Figure 5. The Decomposition of a Sparse-tensor (Previously Known as a
Dense-tensor) into Network of Dense-tensors.

2.3.4 External-index Surfaces

The collection of all external-indices for a tensor or tensor-network constitutes the

surface or boundary of the tensor/tensor-network. In quantum-many-body systems

we may partition the surface into two kinds of boundaries, these are legs associated to

the 1-particle Hilbert-space, H and its complex conjugate, H̄. Many-body-quantum-

wavefunctions are typically11 associated to only one kind of boundary, while operators

are associated to both. This is readily seen by (the dashed ovals indicate the

surface/boundary):

†

· · ·

· · ·
H

†
· · ·
Ψ

· · ·
Ψ†

.

Any sub-collection external-indices also constitutes a boundary which may be identified

with another tensor/tensor-network. In the tensor-network literature, these kind of

11Many-Body wavefunctions, Ψ, may belong to a mixture of {H, H̄}, but on a given site it can
only belong to one of those Hilbert-spaces.

25

external indices connecting to the wavefunction are called the physical -indices. While,

the intra-operator internal-indices will serve as the underlying graph of the theory.

2.4 Tensor-Network as a Sparse-Tensor

Let’s formalize and summarize our findings, as shown in fig. 5. A sparse-tensor may

be defined as an list/array of tensors and a network-structure, called the tracing-rule

(or tracing-prescription). The network structure (in the name-sake of tensor-network),

identifies the various tensor axës to each other, indicating the partial-tracing structure.

As will be shown, this kind of sparse-tensor, not only leads to storage savings, but also

computational savings. This is because this tensor can be worked in its compressed

form, or sparse form.

2.5 Unstructured Sparse-Arrays

In this section we describe a different kind of sparse-tensor. Here we directly

capture the structure of unstructured sparse-multidimensional arrays (sparse array),

also commonly referred to as sparse-tensors. Dense arrays (regular arrays) have their

data stored directly adjacent to each other in physical contiguous memory. Here

we consider unstructured-Sparse-arrays, these will be represented by 3-dense-arrays.

Sparse-Arrays are meant to represent dense-arrays perfectly, with the assertion that

elements which are zero are neglected12. The sparse-arrays may be broken into 2

12sometimes approximately zero, in which case the representation is approximate.

26

primary parts: A 2-dimensional dense index-array and 1-dimensional dense data-array.

The sparse index-array is represented by:

Sparse Index-Array ≡ A [|] ,

with the vertical-line, |, separating this 2d array’s two indices. With the left-side

representing the dense-index columns13. And the right-side indexing the enumeration

of the sparse-tuple entry. In order to draw parallel with the dense-representation, the

dense-indices are often shown explicitly included. For example for a tensor A, with

dense-indices ijkl, and sparse-index I (enumerating all the non-zero values):

Dense Representation ≡ A [i, j, k, l]

Sparse Representation ≡ A [i, j, k, l | I] .

Notice, the dense representation does not have the I (sparse) index. Additionally, a

small bit of additional information is needed for the sparse-to-dense map, the dense-

shape, or shape, of the dense-representation of the array. Therefore the complete

attributes of the sparse-array include: shape-array (s), array-of-tuples/index-array

(Aindex), and the data-array (Adata). The full anatomy of a sparse-array is thus given

in fig. 6. There are multiple implementations of these objects, sparse-arrays/tensors,

in popular python libraries, such as PyTorch (Paszke, Gross, and al. 2019), JAX

(Bradbury et al. 2018), and TensorFlow (TensorFlow et al. 2015). However, as of now

mid-2023, they do not carry the functionality described here.

13Crucially with entries columns now representing the dense-array’s axës.

27

Shape

The shape-array is a 1-dimensional array which gives the shape of the array in

it’s dense-representation. This is useful for the mapping between sparse-arrays and

dense-arrays.

Index-array

The sparse-array index-array or indices or array-of-tuples is by convention

lexicographically-ordered. This helps in identifying duplicates, and other sparse-

array operations. The index-array captures the structure of the array.

Data

For us the data-arrays are 1-dimensional with a length matching the index-

arrays, and being in 1-1 correspondence with the index-array. That is the list-index

(of the index-array) matches the data-array index. These arrays are typically of

float datatypes, and have no restriction on duplicates, with a slot-representation of

Adata []. A more general setting; e.g. block-sparse which allows for data-arrays to be

arbitrary dimensional multi-dimensional with 1-dimension matching the index-arrays

length (indexed by I).

28

Density

The density is defined by (assuming Aindex is in a proper format, only filled with

unique entries):

density =
total elements in proper sparse-tensor

total elements in dense-tensor

=
len(Adata)∏

i shape[i]
=

1

sparsity
.

I

i

shape

dataindex-array

Figure 6. The Decomposition of the Sparse-array into a Shape, Array-of-tuples, and
Data Arrays.

2.5.1 Well-ordering

Suppose we have a lexicographically-sorted index-array, Aindex [[|]], and it’s

uniques array, u (collection of integers indicating the first appearance, index, of a

29

unique element in the sorted array). Then the duplicate elements are all the elements

in the lexicographically-sorted sparse-tensor between two successive unique elements,

u[i] : u[i+1] (not including u[i+1]). Therefore, we sum all these elements of A [[|]]

for all successive-elements in u. This creates an array with unique data values for

each index-tuple:

Aindex [[[|]]] = Aindex [[| u]] ,

Adata [] =
∑
i∈|u|

Adata [u[i] : u[i+ 1]] .

Note u[i+ 1] = |u| for the last unique-array’s index, i = |u|.

Sparse-arrays can only faithfully represent dense-arrays (bijectively) iff their row-

wise elements of the index-array are unique. In order to verify that this is the case for

an arbitrarily defined index-array, they are put canonically sorted into lexicographic-

order (refer to the appendix) to ensure they are in fact well-ordered. Well-ordering is a

strictly ordered/sorted list, i.e. using the relation <. Such that for-all entries a, b ∈ A

(A being a list/array) with element indices i and j respectively, then a[i] < b[j]

for i < j. A weaker statement is partial-well-order, this indicates the possibly for

duplicates, while retaining lexicographic-order, i.e. ≤. We will refer to well-ordering

an array, when discussing summation over duplicate tuple elements, while retaining

lexicographic-order14.

14Alternative names could be coalesce.

30

2.6 Tensor Operations

2.6.1 Composition, Sub-indexing, and Permutations

Given two 1-dimensional arrays A and B, we can compose/subindex one by the

other. Mathematically, this is written over functions with A ◦ B, alternatively we

may use a square-bracket notation, e.g. A[B]. If B can be bijectively mapped to A,

all entries in B are unique, then this is called a permutation. Often to sort arrays,

say A, we determine the permutation array, B, such that when composed, A[B], the

result is ordered. This is useful when talking about sparse-arrays, because of their

interconnected array structure.

2.6.2 Array-labeling

We may associate a character/letter to every axis of a tensor/array. For instance,

without-loss-of-generality if A is a 4-dimensional array, then A[i, j, k, ℓ] denotes a

labeling of A, for labels {i, j, k, ℓ}. These characters are completely arbitrary, and are

merely used to match certain indices/axës to others to create edges (or hyperedges

more generally, such that every edge is associated to a type of character).

31

2.6.3 Cartesian-product

The cartesian-product is all the possible 2-tuples created by all entries in A (1st

tuple entry), and all the entries in B (2nd tuple entry). The cartesian-product may be

generalized to products of n lists-of-tuples to obtain a list of n-tuples of tuples. The

tuple-of-tuples may be straightforwardly reduced to a larger order m-tuple, whereby

m > n. Further, details of this operation are given in §5 of Munkres 2000. Originally,

an operation in set-theory, when applied to lists/arrays they maintain wellorderedness

iff both original arrays were well-ordered. If we consider the cartesian-product on

partially-ordered arrays. Their cartesian-product is neither well-ordered nor partially-

ordered. Naïvely we would hope that the product could produce a partially-ordered

list-of-tuples. There is a straight-forward permutation correction without having to

resort to an array sort.

Direct-product (Dense Arrays/Tensors)

Perhaps the most general operation on arrays is the direct-product (a.k.a tensor

or Kronecker-product), it is the product of all entries in one array to the other. The

result is a new tensor/array with a rank equal to the sum of the constituent ranks.

32

An example of this operation over two 2-dimensional arrays:

Aµν =

A00 A01 · · · A0n

A10 A11 · · · A1n

...
...

Am0 Am1 · · · Amn

Bκλ =

B00 B01 · · · B0ℓ

B10 B11 · · · B1ℓ

...
...

Bk0 Bk1 · · · Bkℓ

.

Then the direct-product, ⊗, is explicitly defined as:

Aµν ⊗Bκλ =

A00

B00 B01 · · · B0ℓ

B10 B11 · · · B1ℓ

...
...

Bk0 Bk1 · · · Bkℓ

· · · · · · A0n

B00 B01 · · · B0ℓ

B10 B11 · · · B1ℓ

...
...

Bk0 Bk1 · · · Bkℓ

...
...

Am0

B00 B01 · · · B0ℓ

B10 B11 · · · B1ℓ

...
...

Bk0 Bk1 · · · Bkℓ

· · · · · · Amn

B00 B01 · · · B0ℓ

B10 B11 · · · B1ℓ

...
...

Bk0 Bk1 · · · Bkℓ

.

Symbolically this may be represented by:

A [µ, ν]⊗B [κ, λ] = AB [µ, ν, κ, λ] .

The general direct-product over n-dimensional arrays is similarly:

A(0) [m0]⊗ A(1) [m1]⊗ · · · ⊗ A(n) [mn] = C [m0,m1, · · · ,mn] .

This operation may be represented by a network/graph. If every data-entry in A is

given a node, and likewise for B. The products are associated to edges connecting

33

them, then the complete-bipartite graph captures this product. For the general direct-

product involving n tensors/arrays the resulting graph is the complete-n-partite

graph.

A1 A2 A3

A4 A5 A6

A7 A8 A9

⊗

B1 B2 B3

B4 B5 B6

B7 B8 B9

 ⇒

A1

A2

A3

A4

A5

A6

A7

A8

A9

B1

B2

B3

B4

B5

B6

B7

B8

B9

.

Direct-product (Sparse Arrays/Tensors)

Suppose we have two well-ordered A & B sparse-arrays, then their direct-product is:

the binary-cartesian-product over their respective list-of-tuples, with a reshaped/flat-

tened direct-product of their data, and concatenated shape-tuple:

Aindex ×Bindex = C index

reshape
(
Adata ⊗Bdata) = Cdata

Ashape
∣∣ ∣∣ Bshape = Cshape .

34

with | | denoting the array concatenation operation over the tuple-axis (e.g. At
I | |Bt′

I =

Ct′′
I , with t′′ = t+ t′). This readily generalizes to n-sparse-arrays, A(n):

A
(0)
index × A

(1)
index × · · · × A

(n)
index = Cindex

reshape
(
A

(0)
data ⊗ A

(1)
data ⊗ · · · ⊗ A

(n)
data

)
= Cdata

A
(0)
shape

∣∣ ∣∣ A(1)
shape

∣∣ ∣∣ · · ·
∣∣ ∣∣ A(n)

shape = Cshape .

Note all A(n)
index arrays all have to be well-ordered for Cindex to be well-ordered.

2.6.4 Intra-intersection/Slice

Now suppose we are given a single tensor/array, and we would like to identify

some columns/axës with each-other (via labels). This reduction in the array’s

degrees-of-freedom is called slicing, or intra-intersecting. Because these are internal

operations, these are best done first, as intra-intersecting can only reduce the size.

Unfortunately, if the intersecting columns are not adjacent to each other or the

intra-intersecting indices are internal, they must be re-well-ordered (at least from the

first intra-intersection column/index/axis to the rest). This operation requires an

element-wise search of all rows in a given sparse-array’s index-array.

35

2.7 Duality: Unstructured-sparse & Tensor-network Sparse Tensors

Let’s map the SVD definition of sparse to the unstructured definition. In

SVD/HOSVD/TN we have sums of 1-dimensional-tensors. Clearly, the worse15

representation is the Cartesian-basis, but it provides the map, a 1d-tensor with

binary/Boolean values {0,1}, with a single entry being the nonzero entry: ‘1’. These

basis-vectors may be perfectly/bijectively mapped to the integers denoting the lo-

cation of the ‘1’. This can be done over all basis-vectors, I, of the tensor-product-

decomposition: Wijk···l =
⊗n

I X
I
i . We thus may associate a product of basis-1-tensors

by a tuple addressed to a data entry (the definition of unstructured sparse). An

example is shown below:

0

0

0

1

⊗

0

0

1

0

⊗

1

0

0

0

↔
(
3 2 0

)
.

2.8 Tensor Types

We have discussed the dense-tensors, however, often these are not the best

representations for storing or manipulating the tensor’s data.

• dense : tensor data is storage is continuous, immediately-adjacent in the data

15As we’ve mentioned the tensor-rank is typically much less than Nn, with sides of length N and
dimension n

36

entries corresponds to being immediately-adjacent in physical computer memory.

All data entries are stored, and thus dense-tensors carry inherit similarly sized

rows (all rows are the same size.).

• sparse (unstructured) : tensor data is stored in a 1-dimensional representa-

tion, with every data-entry addressed by a unique (ideally) integer n-tuple (for

an n-dimensional dense tensor).

• blocksparse : generalizing the unstructured sparse, by replacing data entries

to include entire dense tensors in there place. Thus a unique n-tuple addresses

an entire dense tensor. All data-entry-dense-tensors are of the same size and

shape.

• sparse (structured) : tensor data is once again stored in a convenient format,

but the addresses are given by a rule. This tensor format is the most subjective,

and may take many forms. E.g. band-matrices are a good example of structured

sparse, as each band (diagonal slices of matrices) may be stored in memory and

used as needed.

37

Chapter 3

SPARSE-PARTIAL-TRACING

Following our discussion about the importance of sparsity in describing the physical

and natural-world, we would like a method to natively contract higher-dimensional

sparse data structures such as sparse-arrays or sparse-tensors. Similarly to the

principle-of-sparsity, tensor-contractions are ubiquitous in physics, and in this section

we shall show a method to precisely achieve this for sparse-tensors/arrays. This work

was first posted on the arXiv in Candanedo 2023b.

3.1 Partial-Trace

The last operation described was the summation over the identification of two

axës, e.g. if we have a 2d-array, a matrix, the diagonal elements correspond to the

part where the matrices’ indices match (are identified). In theory, this can also be

done over the tensor-product of many tensors. The partial-trace or tensor-contraction

(also may be described as a quotient) corresponds to the operation:

Tr
(⊗

A(n)
)

.

In practice the partial-trace may be computed without resorting to the complete

tensor-product. The usefulness of computing the partial-trace efficiently is of high-

38

importance, as described in the introduction. In order to implement this operation,

the information of which tensor and its specific axis/index is identified with another is

required. This identification is a tedious part of partial-tracing, but this bookkeeping

plays an important role in defining this operation. This operation hence may be

represented by an ordered-graph or network, i.e. a sparse-tensor itself, as described

below.

3.2 Ordered Network Structure

Let G be a graph, V (G) be the vertex-array (enumeration of the vertex-set) of G,

and E(G) be the edge-set of G, and (i, j) ∈ V (G)× V (G), denoting the ith and jth

vertex. Then we may define a matrix on the Cartesian-product (page 54 in Bollobás

1998):

Aij =

1 (i, j) ∈ E(G)

0 (i, j) /∈ E(G)

.

This matrix is called the Adjacency-Matrix. We may make a similar argument

analogously for hypergraphs and tensors. Let H be a hypergraph, V (H) be the vertex-

array, and En(H) the nth order hyperedge set (a collection of n-tuples, including n = 1,

i.e. the usual edge, n = 2). Let t ∈
∏n V (H), then the nth-order adjacency-tensor is:

An[t] =

1 t ∈ En(H)

0 t /∈ En(H)

.

39

Note in our convention, if t ∈ En(H), then all permutations of t are included in

En(H) as well, as was assumed in the graph/adjacency-matrix. The entire adjacency-

structure of the hypergraph is captured by all the adjacency-tensors. Instead this

structure may be captured by a single-tensor; this will require the enumeration of the

edges, to form the edge-array. The resulting matrix is the Incidence-Matrix, and its

defined over V (H)× E(H):

Iie =

1 V [i] ∈ E[e]

0 V [i] /∈ E[e]

.

This matrix works equally well for graphs and hypergraphs. This is related to

the adjacency-matrix for 2-hypergraphs (regular graphs) by matrix-product: Aij =∑
e IieIje. Therefore using the adjacency-matrix, we may associate a graph to a

matrix (2-dimensional tensor), and a n-hypergraph (a hypergraph is only n-order

hyperedges) to a n-axës-tensor.

3.2.1 List of Tensors

Here we consider a equations which manipulate a many of tensors, thus for

organizational purposes, let’s arrange all these relevant tensors into a list. This list

is enumerated/indexed for later use, but of arbitrary order. Let’s suppose we have

n tensors of different dimensions and sizes enumerated by a parenthesis-superscript:

A(n), then we may form a list (an ordered set) A as:

A =
[
A(0), A(1), A(2), · · · , A(n−1)

]
.

40

3.3 List-of-Labels Trace Representation

Now in order to specify the tensor-network or contraction-structure we must

identify a certain tensor’s indices with another tensor’s indices. A common approach

in pen-to-paper work, is to enumerate/label all tensor-indices (belonging to all tensors

in the list-of-tensors) with alphabetical-letters, any matching indices are assumed to

be summed over; this is the Einstein-Summation convention, Einstein 1916. Note

this convention misses summation over any single-index. This convention may be

extended by matching with an expression to the other-side of the equal sign. As any

tensor expression may be equated to a single tensor (the resultant), the labeling of this

tensor can supplement the Einstein-Summation convention. This is the convention in

the popular Python library NumPy et al. 2020 for the einsum module, we shall call

this the einsum convention. E.g. suppose we are given A,B,C tensors, we sum over

any indices not appearing on the left-side (in the resultant) of the equal sign:

D[α, β] = A[α, i]B[β, i, j, k]C[i, j]

Pχ
LoL = [αi, βijk, ij, αβ] .

Therefore given N tensors in the list-of-tensors, we may specify N + 1 strings-of-

characters (one for each tensor, and one optional entry for the output tensor) to

represent the tracing-prescription. For the generic list-of-tensors, A we have (for

labels ℓ):

Pχ
LoL =

[
ℓ(0), ℓ(1), ℓ(2), · · · , ℓ(n−1)

]
.

41

3.3.1 Network CONtraction (ncon)

Instead of letters, e.g. {α, β, i, j, k} above, the ncon notation, developed by Pfeifer

et al. 2014, uses an array/list of labels, with the labels represented by positive integers

(excluding ‘0’) to denote internal/dummy indices, with negative integers denoting an

external indices (not summed over).

3.4 Hyper-trace/Hyper-contraction

Now let’s consider the identification of tensor’s axës with nodes/vertices of a

network. Tracing-prescriptions involving many tensors, the aforementioned list-of-

labels representation (Einstein notation) may become cumbersome (in the use of too

many arbitrary letters). Instead a graphical/visual form of a given tracing-prescription

may be introduced. We begin by associating tensor-indices as nodes/vertices/points

in our network. Nodes are connected by a hyperedge, a grouping indices, if they

belong to the same tensor. More precisely, they are connected by a ordered-hyperedge.

We give an illustration on figure 7, which shows 3 independent examples of these

hypergraphs. These kinds of hypergraphs are examples of disconnected hypergraphs,

and have the designation: trivial multipartite hypergraph (each disjoint hyperedge

partition is a tensor). Note, this is the same structure as the tensor-diagrams

discussed earlier. The collection of a set-of-nodes and a list-of-hyperedges forms a

ordered hypergraph/hypernetwork, see chapter 1, 4, 6 in Bretto 2013. If the list-

42

of-tensors and their axis are ordered, then this information is captured by a list of

lexicographically-ordered 2-tuples, denoting the (tensor, axis of tensor).

•
•

A

•
•

B •
•
•
•

A

•
•
•

B

•••

C

••••

A

•
•
•

B

• • •

C

•
•
•
•

D

•

E

Figure 7. Three Examples of Tensor-index Hypergraphs.

3.4.1 Slicing Hypergraph

Many references refer to many kinds of different graph/network tensor repre-
sentations, however this intuitive graphical picture was likely first introduced by
Penrose1971. Graphs/Networkshave two components: vertices/nodes and edges,
Bollobás 1998, we previously introduced the vertices. Here we would like to represent
the contraction-structure via an edge as is usually done. However, we allow for
the generalization to the hyperedge (an edge connected to integer many nodes).
Examples of these slicing-prescriptions hypergraphs are shown in fig. 8, which gives 3
independent examples applied to the hypergraphs in fig. 7. One crucial property is
that the hypergraph should partition all the nodes (including 1-node hyperedges).

43

•
•

A

•
•

B •
•
•
•

A

•
•
•

B

•••

C

••••

A

•
•
•

B

• • •

C

•
•
•
•

D

•

E

Figure 8. Three Examples of Slicing-prescription Hypergraphs.

3.4.2 Sparse-tensor Representation

Now we would like to associate the graphical figures into matrices themselves (to

promote computational automation). This may be done via the hypergraph/tensor

adjacency-map introduced. However, this would imply a direct-sum of many adjacency-

sparse-tensors, e.g. A = A1 ⊕ A2 ⊕ A3 ⊕ · · · ⊕ An. This notation can become

cumbersome, and therefore alternatively a incidence-matrix representation may be

introduced, in this representation is by definition sparse if multi-edges are neglected.

The incidence-matrix is a map between the node-tuples and the tracing/slicing

hyperedges. That is we enumerate the hyperedges (of all orders, e.g. 1-edge, 2-edge,

etc...) by integers. As with the ncon label, positive integers denote (tracing) and

negative integers represent external (sliced) indices. Note that these hyperedges also

44

partition all axës of all the tensors. If these tensors are themselves sparse or dense,

the network itself is a sparse-tensor.

3.4.3 Simplicial-complex?

A natural question when dealing with hypergraph structure is: whether we may

realize simplicial-complex structure, defined in Hatcher 2005. In simplicial-complexes

the n-hyperedge are identified with an n − 1-simplex (0-node hyperedges cannot

be mapped). However, unlike the generic hypergraph, simplicial-complexes are a

topological-space, and thus have self-containing self-intersecting structure, if a, b ∈ Ω,

then a ∩ b ∈ Ω, for simplicial-complex Ω. Therefore for example a simplicial-complex

may be realized by:

•
•
•
•

A

•
•
•
•

B

••••

C

.

45

3.5 Dense-Sparse Partial-Trace

Here we demonstrate the partial-tracing between a purely sparse-array (S) and

dense-array (D) to yield another dense-array O. The assumption that the output

array is dense, O, follows that is it is essentially inevitable, else the input dense-array

D was likely sparse-initially. Let’s suppose both the sparse-array (S) and dense-array

(D) have both kinds of indices: external and internal. Let’s refer to the collection of

external indices by IE and JE for both the sparse and dense-array respectively, and

likewise for internal-indices II and JI . Such that both arrays can be brought into the

form (via transpositions) 16: S[IE , II] and D[JE , JI]. Then the resulting dense-array

O is O[IE, JE], consisting of the external-indices only. These three tensors/array

may be brought into matrix form via reshaping (see next sections). The entries of

O are simply the iterative-sum (sum over every sparse-entry I) of the product of

compositions:

O[IE, JE]
∑
=D[JE , ÎI]Sdata[I] .

Notice the sparse internal-index tuple II is injected/composed into the dense-array.

The sub-array D[JE , ÎI] is multiplied by Sdata[I], and summed to the existing entries

of O[IE, JE]. The algorithm is summarized as (e.g. J represents a collectively many

16Due to syntax limitations, the implementation considered here involves reshaping all internal-
indices for a given array into 1-axis, and all external-indices into another. Therefore the sparse-array
becomes a sparse-matrix (a standard data structure, i.e. IE → IE), and the dense-array becomes a
dense-matrix. The same composition-procedure is then applied to this setting.

46

axës, while J represents one reshaped axis):

D
swapaxes

−−−−−−→D[JE, JI]
reshape

−−−−−−→D[JE|JI]

S
swapaxes

−−−−−−→S[IE, II]
reshape

−−−−−−→S[IE, II]
reshape

−−−−−−→S[IE, II]{
O[JE, IE]

Σ
=Sdata[I]D[JE, IE]

}
I
−−−−−−→O .

Reshaping and transposing (swapaxes) for dense-arrays carry trivial computational

expense, O(1). Although transpositions for sparse-arrays carry the same cost if

we neglect the resorting to place into a canonical lexicographically-ordered form.

Reshaping is seemingly an unavoidable O ∼ N (which corresponds to the number

of sparse-entries). For each sparse-entry we compute its composition into the dense-

matrix as inserted into the output dense-array.

3.6 Sparse-Dense Network

In this section, we consider tensor-networks of sparse and dense tensors together.

Essential mechanism is that the sparse-tensors’ index-arrays select parts of the dense-

array/tensor, to work with and contract, placing them at the appropriate address

in the dense output array. Let’s consider a network made from dense and sparse

arrays/tensors. For instance, if we implement a simultaneous-dense-trace the following

network its time-complexity scales ∼ N12 (with all axës containing N entries), if we do

a sequential-dense-trace this may be lowered to ∼ N10. Let’s suppose each of the two

sparse-tensors has η sparse (nonzero) entries compared to the dense-tensor’s N4 entries.

Therefore, for a simultaneous sparse-trace, this should be lowered to ∼ N4η2 (note

47

when η = N4, we recover the simultaneous-dense-trace time-complexity). Note that

η ≤ N3 to match the sequential-dense-trace time-complexity. A curious observation

is that the optimal dense-partial-trace should be a least ∼ N8, thus this suggests that

the result may be sparse itself for sufficiently small η.

→

∑
×,∗

××
×
×

∗
∗
∗

∗
→

Now let’s consider the necessary part for the 1D-MPS/DMRG-algorithm (introduced

in a later chapter). In quantum-equilibrium, Ψ† = Ψ, we have two tensor-networks:

the MPS, Ψ = {ψ} =
(
Ψ†)†, with on-site pieces ψ. And the MPO, H = {W}, with

on-site pieces W . It consists17 of dense-tensors {L, ψ†, ψ, R}, and sparse-tensor W . To

compute the DMRG-algorithm we must compute the following tensor-contraction18.

1

2

3

4 = {1, 2, 3, 4}

ψ L ψ† W †

ψ† R ψ W

L ψψ† R W

Again for this tensor-network the dense-partial-trace has time-complexity of ∼

m4M2N2, however when done sequentially ∼ 2m3MN +m2M2N2. As m is usually

17L and R are environmental tensors, the partial-trace of all previous sites to the left and right
respectively.

18With ψψ† = Tr(ψψ), the 2-site-wavefunction, and W = Tr(WW); the 2-site-Hamiltonian.

48

the largest bond-dimension, its highest power is usually the limiting factor, i.e the

∼ m3 term19. For the simultaneous sparse-partial-trace, we have two-matrix-products

along the perimeter dense-tensors ∼ 2m3, with their addition and coalescence of

η ∼ MN terms, leading to the same computational time-complexity as sequential-

dense-partial-trace ∼ 2m3MN . The sequential-sparse-partial-trace does not lead

to much improvements, because the large-bond dimension m is always along the

dense-tensors.

3.6.1 Dense-Sparse Networks Continued

It appears that in order to leverage the sparse-tensors we need for them to discon-

nect the dense-tensor-network appreciably. Let’s consider the bipartite chessboard of

sparse and dense tensors.

The sparse-tensors slice the dense-tensors, and therefore the entire trace is equal to

the sum of the products; one would expect this to have a time-complexity to scale

∼ ηn, with n sparse-tensors with η being the number of sparse (nonzero) elements.

19For the Heisenberg-model M ∼ N2 (e.g. N for su(N), or N ∼ 2s + 1 for spin-s-su(2)), for
chemical-models (less-local) we have N = L sites (molecular-orbitals), then M ∼ N2 ∼ L2.

49

3.7 Sparse-Sparse Partial-Trace (algorithm 1)

This algorithm resembles the previous one, and relies on the reshape algorithm,

about to be discussed. The idea of the algorithm, is to contract one edge of the

partial-trace-network at a time. Each edge corresponds yields external and internal

indices on every sparse-tensor. Every relevant sparse-tensor then may be reshaped

and transposed natively sparse index-arrays to established sparse-matrices. The

sparse-matrix operations may then be used to yield a resultant-matrix (a sparse

xor dense matrix). This resultant-matrix may be reshaped/transposed back into its

desired form.

3.7.1 Sparse Reshaping

In this section we would like to reshape sparse-arrays, as is commonly done for

dense-arrays. Reshaping is the merging or partitioning of axes for a given array. Unlike

dense-arrays, which store data contiguously in real-space memory, sparse-arrays store

the data into 3-dense-arrays. Two of these dense-arrays: shape and array-of-tuples,

control the structure of the data, here we introduce dense-operations on these two

arrays to alter the structure of sparse-data. The structure of sparse-data is managed

by array-of-tuples. For our discussion, let A and B be arrays-of-tuples: A,B ⊂
∏

i Zi

(i.e. Cartesian-product of many integer array-subsets of Z). Thus we would like to

50

define a function h, that maps an array-of-tuples to another array-of-tuples:

h : A −→ B .

We choose to take an intermediate step, and instead solve the simpler problems of

mapping tuples-to-integers and integers-to-tuples:

A −→ ZN −→ B .

Ultimately, we desire a finite-paring functions, let ZN ⊂ N such that |ZN | ̸= ∞

(i.e. ZN has finitely many elements), then the pairing-function is:

f : A −→ ZN

g : ZN −→ A ,

such that: f(g(ZN)) = ZN or g(f(A)) = A. With the total number of dense-

elements being: N =
∏

i s[i]. And the range of integers (in order): ZN =(
0 1 2 · · · N − 1

)
. Additionally, it is worth noting that the reshape-function

defined here does not rely on any kind of ordering. There are many kinds of pairing-

functions, we choose the C-language reshaping-order 20.

20Let i denote rows and j denote columns of A then:

Aij = A[i, j] =

(
1 2 3 4
5 6 7 8

)
“C”-order

−−−−−−−−→
(
1 2 3 4 5 6 7 8

)
= A[i′] .

51

3.7.2 Modified Shape

For both tuples-to-integers and integers-to-tuples maps, we need to modify the

shape array, s[i], into an auxiliary array s̃[i]. In each case the shape-array means:

current-array shape xor desired-array-shape respectively. Either way, this involves

permuting the shape array in a particular fashion, with a cumulative-product. The

modification of s[i] is the following21:

si =

(
s0, s1, s2, s3, · · · , sn−1 sn

)
s̃i =

(∏
i∈[1,n] si

∏
i∈[2,n] si

∏
i∈[3,n] si · · · sn−1sn sn 1

)
.

Injectivity, is given by the fact that this auxiliary-shape array is strictly decreasing,

i.e. s̃[i] > s̃[j] for j > i. And surjectivity stems from the precise spacing of the

auxiliary-array. For example, suppose we have: ai =
(
a0 a1 a2 · · · an

)
, with

each ai value having a ceiling value of si (the shape), our integer is, z:

z = a0

 ∏
i∈[1,n]

si

+ a1

 ∏
i∈[2,n]

si

+ a2

 ∏
i∈[3,n]

si

+ · · ·+ an−1sn + an .

21In practice, this may be done with:

s[0] = 1

s[i] = flip(s[i])
s[i] = roll(s[i], 1)
s[i] = cumulative-product(s[i])
s[i] = flip(s[i]) .

flip, entails: (s0, s1, · · · , sn−1, sn) → (sn, sn−1, · · · , s1, s0)
roll, entails: permute, via right-shift

52

3.7.3 Tuples-to-Integers

The conversion tuples-to-integers may be achieved by a dense-matrix-vector

product, for a suitably auxiliary-shape-array (s̃i), array-of-tuples Ai
I (with i the

tuple-index), to an array-of-integers aI :

aI = Ai
I s̃i .

This operation thus has time-complexity of O ∼ nN , with n being the number of

columns (axës), and N being the number of sparse-elements, this will have linear-

scaling as usually n << N .

3.7.4 Integers-to-Tuples

Given the modified shape-array, we may do the following dense-operations to

obtain the new array-of-tuples, from an array-of-integers (or 1-tuples):

A[I, i] = AI ⊗ 1i

A[:, 1 :] = A[:, 1 :] mod s̃[: −1]

A[I, i] =

⌊
A[I, i]

s̃[i]

⌋
.

These include, computing the integer direct-product of an array-of-integers with an

array consisting of all ones, 1i, with the size of the desired tuple. The result is AIi

a 2-dimensional array. Then the modulo-division (remainder) is applied along the

second axis with the modified-shape array (along a subset of entries along that axis,

i.e. the first/zeroth entry of A[:,0] is ignored as is the last shape element). Then the

53

complementary-function, integer-division, is applied along the same axis, but this time

over all elements. Finally the resulting array is transposed to obtain the array-of-tuples

into a canonical form (axës following the sparse-array data entry index), hence A[i, I].

This operation like, it’s inverse, scales linearly in time: O ∼ nN+nN+nN+1 ∼ 3nN .

3.7.5 Tuples-to-Tuples

It can be easily shown that to map a tuple into another tuple of different size,

using the intermediate integer is a bijective map. This is because of the well-known

relation that the composition of bijective functions is itself bijective.

3.7.6 Binary Summation (bisum)

Now that we have the sparse-reshaping algorithm, we can convert any binary

(consisting of two) tensor-operation into a matrix-product, for sparse-tensors this is

the sparse-sparse matrix-product. This allows for the utilization of existing sparse-

sparse-matrix-product algorithms. We will explain how this algorithm works. Suppose

we have two sparse-tensors, A and B, with data {Ai
I , aI , si} and {Bi

I , bI , ti}. And

we also have the sparse-index adjacency-matrix (indicating which axës of A and

identified with axës in B). Then the sparse-tensors may be reshaped gathering

external-axës and internal-axës together, yielding sparse-matrices: {Aσ
I , aI , sσ} and

{Bσ
I , bI , tσ} that may be multiplied normally to yield sparse-matrix {Cσ

I , cI , uσ}. This

matrix C may intern be reshaped into the desired tensor {Cj
I , cI , uσ}, with j being

54

the external-indices/axës in both A and B. More details and results are given in an

appendix chapter.

3.8 Sparse-Sparse Partial-Trace (Algorithm 2)

In algorithm 1, we outsourced the sparse-sparse-matrix-product to another external

algorithm. We also were limited by partial-tracing only two tensors at a time22. Here

we consider its computation natively for an arbitrary amount of tensors. In order

to preform this operation, we need to identify certain axës with others (in a general

tensor partial-trace). Therefore it appears we desire an intersection.

3.8.1 Direct-Intersection

In set-theory, the operation to determine a subset which belongs to both sets

is called the intersection. Let A and B be sets, then A ∩ B = C such that for all

elements of c ∈ C are simultaneously in A and B. The intersection is desirable, in

our discussion, because inter-array partial-tracing only occurs over internal entries

which agree in numerical value. For arrays (sets with some arbitrary order, with

potentially duplicate entries), we desire instead the indices (from each array) which

contribute to the intersecting element, we desire the argument-intersection. That is,

22Therefore, requiring sequential contractions for a tensor network, i.e. much like the dense-array
situation.

55

given two arrays A and B and 1 intersecting element c between them, IA and IB

indicate the indices appearance of this element, c, in both A and B. Therefore the

composition/sub-index into A and B:

A[IA] = B[IB] = c .

Now if A and B have multiple intersecting elements, c0, c1, · · · , cn, then we require an

array-of-indices given by: [I
(0)
A , I

(1)
A , · · · , I(n)A], and [I

(0)
B , I

(1)
B , · · · , I(n)B] for B’s indices,

such that A[I(j)A] = B[I
(j)
B] = C(j). If there exists duplicates for each intersecting

elements, then each I
(i)
A are list-of-indices themselves. Unlike the entries the array-

of-indices is unique, and therefore if well-ordered their Cartesian-product will also

be well-ordered. Leading to the net result of the direct-intersection, for 2 arrays,

all the pairs (2-tuples) of indices that agree. As arrays have no restriction on

duplicated elements, the natural extension for the set-intersection, to arrays is the

direct-intersection.

The direct-intersection is useful because it allows us to compute the partial-

trace (if we remove internal-indices, with this operation denoted by \ , from the

direct-intersection, and well-order, with this operation given by the superscript <):

Tr
(⊗

A
)
=

 \
⋂

edges

A(n)

<

.

The result will contain contributions from all the possible products which contribute

to the partial-trace.

We would now like to realize the direct-intersection, the intersection of elements

between arrays/tensors. The direct-intersection is the direct-product over the inter-

secting elements of two (or more) tensors/arrays, and deletion of non-intersecting

56

elements. Or a particular slice/intra-intersection of their full direct-product. Visually,

for two arrays this is given by a disconnected-union of many complete-bipartite-graphs,

each complete-bipartite-graphs acting on the intersecting elements.

Figure 9. This Figure Shows an Example of a Direct-intersection (the Collection of
All the Edges) Between Two Arrays’ (Red and Blue) Elements (i.e. the Nodes),
Represented by a Sum of Disjoint Complete Bipartite-graphs.

3.8.2 Shoelace

Suppose we have 2 arrays A and B, and we would like to compute their direct-

intersection. Then we shall need to sort each A and B, in order to utilize the

binary-search on both arrays. We begin by starting at one of the arrays, and

searching for the first element in the other via a left-side and right-side binary-search.

If found, the left-side and right-side search yields the range of values that match, else

if not found the left-side and right-side search matches in value and is known as the

insertion-point. This interval-search can be done by going between the two arrays.

If we assume both arrays are sorted, then if we binary-search between the arrays,

and a found element that skips over many, all these elements are by definition not

included in both arrays. This even applies if the searched element is not found, as

the insertion point provides another constraint to future searches. Furthermore, these

57

arrays need-not have unique elements, but merely sorted. Additionally, all required

binary-searches become increasingly constrained. Therefore if there are M unique

entries in the intersection of A and B, |A ∩B| =M , with N total entries in each the

algorithm should have time-complexity of O ∼M logN .

3.8.3 Multi-Intersection (Hyperedge)

The previous algorithm applies to a 2-node edge, i.e. between 2-arrays. This

is readily generalizable to a n-node hyper-edge, i.e. between n-arrays. The main

idea here is to layout the arrays in an arbitrary 1-dimensional23 order with two pivot

arrays. These pivot-arrays are special as they guide the search. Suppose we start the

search on an edge array A, for some element a ∈ A, we search with the adjacent array

if found we proceed to search its adjacent array, this is repeated until the last array

(an edge array, D). If the search makes it all the way through all arrays, then their

intersecting elements are direct-producted together and saved. Else (if any search

fails) a ∈ A is searched in B for some insertion point i. This insertion point defines

the next search, d = D[i], and the algorithm repeats going towards edge array A.

The algorithm to linking edge-to-edge may be called a sweep.

The algorithm is depicted in fig. 10, for the case of four list-of-tuples/arrays. On

that figure, all lines (dotted, dashed, solid) are binary-searches O ∼ logN , dashed

lines are searches which “failed”, yielding the insertion point (both searches yield the

23Suppose we have 4 arrays as in fig. 10, orders of ABCD, ACDB, CDBA, or any permutation
should yield the same results.

58

same location). After a failure, one edge is compared to the other directly, the next

unique element(s) in that edge start a new search. While the dotted & solid lines

compute the left and right search respectively, and correspond to a successful search.

Once we reach the end of any array the algorithm is finished.

A B C D

A

B

C

D

Figure 10. (left) An Example for the Lace Algorithm on 4 Lists/Arrays. (Right)
Showing the Contraction-hyperedge and the Searching Path (Shown to the Left)
Shown by the Solid Line.

59

3.9 Surjective-map

So far the direct-intersection computes the intersecting-indices associated to the

ordered arrays. This is not quite what is desired, this is because the internal-indices,

which are intersected, are generally in a different order than that of the external-

indices. Therefore we would like to obtain the direct-intersection according to the

corresponding ordered external-indices.

Figure 11. This Figure Shows an Example of the Complete Operation Between Two
Surjective-maps, two Ordering, and a Direct-intersection Map.

An important but subtle ingredient is the surjective-map between the external-

indices and internal-indices. Suppose we have sorted the internal and external-indices

(F) together such that the internal-indices (D) are lexicographically-ordered D≤,

D≤||F (let || denote concatenation), in general this means the external-indices F

are not ordered. Because the external-indices yield our result, they must be well-

60

ordered, and hence ordered. This may be achieved by a permutation i, to achieve

partial-ordering. However, we must go further and determine which indices in the

partially-ordered array are unique, these indices are given by a sorted-array u. When

surjectively-composed/sub-indexed into F≤ this yields F<. This array u, cannot

directly be used with elements of D≤ which carry a different order and size. Therefore,

we may generate an auxiliary array with the order of F≤, but with entries according

to the indices of the unique entry they correspond to in F≤, e.g. without-loss-of-

generality the 8th unique element in F≤ all have entry 8, this auxiliary array is in

bijective agreement with F≤ and is named f≤. The inverse of the sorting permutation

array i−1 may be composed to revert this into the order of D≤.

D≤||F i−→F≤ u−→F<

F≤ 1−1−→ f≤ i−1

−→ f ,

note f is in the original order of F , and hence ordered like D≤. Therefore, f provides

a surjective map from every element in D≤, to an element in F<:

f : D≤ → F< .

This is important because, the result, given by the external-indices must be well-

ordered, whilst they are apart of potentially many products. Therefore, it can be

shown that, if d(0) ⊂ D(0)≤ and d(1) ⊂ D(1)≤ are ordered subsets of two different

sparse-array list-of-tuples, such that their corresponding external-tuples are unique

then:

d(0)[f (0)]× d(1)[f (1)]⊂F (0)< × F (1)< ,

61

is a well-ordered subset of the result.

3.10 A Word of Caution!

Although, the aforementioned algorithms seem promising (with algorithmic com-

plexity decreasing proportional to its nonzero density), a few words are in order.

Most, existing algorithms and implementations (both in hardware and software) de-

tail with the dense contractions. These have parallelization and branch-less benefits,

and thus amendable to GPU and TPU acceleration. The most tedious part of the

sparse-sparse algorithms is the computation of direct-products of irregular-pieces

and their subsequent summation. These irregular-pieces fundamentally hinder, at

least straightforwardly, direct parallelization efforts. Additionally, the searching for

unique internal-index pieces, i.e. the direct-intersection, requires a branched-program,

in order to cut the irregular-pieces. Lately, sorting is essential, and these are typ-

ically non-parallelizable. Although, a particular sorting-algorithm von Neumann’s

stable merge-sort is somewhat parallelizable, and therefore essential for efficient

implementation of the aforementioned algorithms.

3.11 Output Considerations

Let’s consider two sparse-arrays with index-arrays A and B. For a partial-trace we

have external/free and internal/dumb parts for each index-array. The unique tuples

62

Āexternal and B̄external define an external dense-array Āexternal × B̄external = C where

the partial-trace result is defined. As long as Adata and Bdata arrays do not contain

0s, then the resultant data array Cdata also does not contain 0s (sparse), and hence is

purely, 100%, dense (within that external basis). Therefore we know a priori if the

resultant is sparse xor dense, this can be used to choose the appropriate algorithm

for performance considerations.

3.12 Partial Partial-Trace

In addition, to parallelization issues, the aforementioned irregular pieces could

potentially produce outer-products (direct-intersection) which exceed cache memory.

A solution around this is an algorithm like Gustavson’s algorithm, Gustavson 1978

which computes rows (xor columns) of the output matrix (array), and thus constraining

the size of these outer-products (that are later summed).

63

Chapter 4

SPARSITY IN TENSOR-NETWORKS

In this chapter we will give an example where using a sparse-data-structure, namely

the tensor-network (TN), as an excellent method to obtain approximate solutions

to the exponentially-hard, NP-hard, Quantum-Many-Body (QMB) Problems. Of

particular interest here are two class of models: Heisenberg and Chemistry. Both of

these models have been studied with various variations and generalizations, whose

solutions are of great-interest. The Chemistry-model is a fermionic-occupation model,

with the chemical-Hamiltonian24. While the Heisenberg-model intrinsically has

Nearest-Neighbor (NN) interactions. However, our primary focus is on the generalized

Heisenberg-model, and will be our prototypical example. This may be solved with 3

levels of detail: Exactly, DMRG/TN, or via Mean-Field. Furthermore, we will give

the sparsity-level of solutions to this model based on the system’s size, and discuss

results as it relates to the entanglement-entropy.

4.1 The Heisenberg Model

The Heisenberg model, defined in Heisenberg 1928, was introduced for the purpose

of explaining ferromagnetism, it is a generalization of the earlier Ising Model. The

setting of the model is on a lattice of spins. With their fundamental interaction of

24This is meant to model electron distribution in the Adiabatic approximation.

64

spin-spin interactions, because this interaction strength decays exponentially with

real-distance, a crucial approximation is the Nearest-Neighbor (NN) interaction,

yielding a mesh (interaction edges connecting nearby lattice points). The original

model was on a 1-dimensional linear-chain of spin-1
2

particles, and has been solved

using the Bethe-Ansatz, Bethe 1931. Despite its model’s simplicity, the Heisenberg

model has lead to many amendments, as shown in Pauli 1927 and Tomonaga 1997.

We may assert a slight generalization with Jij being a weighted -adjacency-matrix

over a general-graph/network (i, j being site indices, for eq. 4.1, only going over

upper-triangular part of the matrix, else a factor of 1
2

is producted):

Hαβ =
1

2
JijS

ia
αγS̄

ja
γβ . (4.1)

for a 1D spin-chain we have Jij = δi,i+1. With Latin-indices a, b are used to denote

the Lie-algebra generators, e.g. the Pauli matrices. Where Sia is the spin-operator

of the system over the system for sites i and Lie-Algebra element a. With all the

Lie-Algebra generators, λapq, located ith entry of

Sia
αγ =

(
1⊗ · · · ⊗ 1⊗ λa

ith
⊗1⊗ · · · ⊗ 1

)
αγ

(4.2)

With Greek-indices (α, β) are used to denote the total-product of spinor-indices, i.e.

over all sites, system-spinor indices. We wish to solve, the Schrodinger-equation:

HαβΨβ = EαΨα .

This model is an example of an exponentially-complex problem, whose Hamiltonian

scales to 2L × 2L, with L sites. This Model-comes in two varieties depending on the

exchange-integral’s sign, to yield the antiferromagentic xor ferromagnetic case.

65

4.1.1 Exchange Interaction

Let · be the inner/dot-product, and @ be the matrix-product, then the spin-

exchange interaction is given by:

Sia
αγS

ja
γβ = Si · Sj = σx

i @σx
j + σy

i @σy
j + σz

i @σz
j .

σx
i = 1⊗ · · · ⊗ 1⊗ σx︸︷︷︸

ith

⊗1⊗ · · · ⊗ 1 .

Without-loss-of-generality, let’s consider a 6-site-model, and examine the σx term

between site 0 and 1:

σ0@σ1 = (σx ⊗ 1⊗ 1⊗ 1⊗ 1⊗ 1)@ (1⊗ σx ⊗ 1⊗ 1⊗ 1⊗ 1)

= (σx
@1)⊗ (1@σx)⊗ 1⊗ 1⊗ 1⊗ 1

= σx ⊗ σx ⊗ 1⊗ 1⊗ 1⊗ 1 .

Above is possible because of the ability to pass the matrix-product element-wise

through the tensor-product.

σ0@σ1 = (σx ⊗ σx ⊗ 1⊗ 1⊗ 1⊗ 1)@ (σx ⊗ σx ⊗ 1⊗ 1⊗ 1⊗ 1)

The 1-dimensional spin-1
2

representation of su(2) model has been solved using the

combinatorial Bethe-Ansatz, Bethe 1931.

66

4.1.2 2-site Heisenberg Example

Let’s calculate the 2-site Heisenberg-model explicitly for a demonstration. We

begin with our adjacency-matrix, describing the connectivity of our sites:

Jij =

0 1

0 0

Next we construct our spin-matrices:

S0a
αβ = 1⊗ σa =

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

,

0 0 −i 0

0 0 0 −i

1 0 0 0

0 1 0 0

,

1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

S1a
αβ = σa ⊗ 1 =

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

,

0 −i 0 0

i 0 0 0

0 0 0 −i

0 0 i 0

,

1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1

.

67

Clearly these are sparse, and may be traced with the adjacency-matrix to yield the

Hamiltonian:

Hαβ =
1

2
JijS

ia
αγS

ja
γβ

=
1

2
S0a
αγS

1a
γβ

= ±1

2

1 0 0 0

0 −1 2 0

0 2 −1 0

0 0 0 1

.

The ± sign on the Hamiltonian-matrix determines the model-type: (−) for fer-

romagnetic and (+) for antiferromagnetic. Either way this matrix may be easily

diagonalized, and yields spectrum:

Eantiferromagnetic =

(
−3

2
+1

2
+1

2
+1

2

)
Eferromagnetic =

(
−1

2
−1

2
−1

2
+3

2

)
These eigenvalues correspond to two types of eigenstates:

|1, 1⟩ = ↑↑

|1, 0⟩ = 1√
2
(↑↓ + ↓↑)

|1,−1⟩ = ↓↓

 s = 1 (triplet) |0, 0⟩ = 1√
2
(↑↓ − ↓↑)

}
s = 0 (singlet) .

4.2 Generalized Heisenberg-model

The original Heisenberg-model may be generalized in a variety of ways. Principally,

this is through the generalization of the Pauli-matrices to some other Lie-algebra,

68

namely representations of su(N). As we have infinitely possible representations for a

given su(N)-algebra enumerated by the spin s (over the half-integers) this is also a

source of generalization. Therefore, the s-spin isotropic su(N) Heisenberg-model, as

shown in Affleck 1985; Gauthé 201925 is denoted: [su(N)2s], and is our prototypical

QMB-problem we wish to solve.

Furthermore, we may introduce anisotropy, this may be done in the original

Heisenberg-model (e.g. XY or XZ models), however, in the generalized version

this amounts to: Jij → Jab
ij or for a 1D spin-chain: Jab

ij = δi,i+1δ
ab. This newly

expanded adjacency-matrix may be referred to a Killing-form Jab
ij , defined on all the

network/graph’s edges (ij). Ultimately our model becomes:

Hαβ =
1

N
Jab
ij S

ia
αγS̄

jb
γβ , (4.3)

H
[su(N)k]
αβ =

1

N
JijS

ia
αγS̄

ja
γβ =

Jij
N

(Si · Sj) , (4.4)

with spin-matrices Sia
αγ generalized with the Lie-algebra generators (of representation

k
2
) in-place of the Pauli-matrices, see eq. 4.2.

4.2.1 Generalization & Comments

Above eq. 4.4, may be generalized to include kinetic-energy and potential-energy

1-body terms, or additional pair-wise terms, etc...:

Hαβ = H
[su(N)k]
αβ + T (S) + V (S) + V (S, S ′) + · · ·

25We consider this to the antiferromagnetic Heisenberg model, unless other-wise stated.

69

These new models lead to new physics and phases, that are no longer known to

be analytically-solvable, e.g. with the Bethe-Ansatz. In particular, Haldane 1983,

argued that integer Heisenberg spin-chains are insulating. However, because of NN-

interactions the Heisenberg-Hamiltonian is very sparse, is there anything that be

can done to leverage this? In the brilliant work of 1992 by White 1992, showed how

this can be done with an algorithm called: Density-Matrix-Renormalization-Group

(DMRG). We will know describe the generalization of his idea in modern (2023)

terminology26.

4.2.2 [su(N)1] ∼= [[su(2)N−1]]

For the generalized Heisenberg-model: SU(N) ∼= SU
(
2; s = N−1

2

)
with additional

exchange-terms27, this is shown in Beach et al. 2009

Hαβ =
2s∏
ℓ=1

(
1− 2

(
s(s+ 1) + Sia

αγS
ia
γβ

ℓ(ℓ+ 1)

))
.

26Although, this was motivated by previous work by Wilson, Baxter and transfer-matrix-technique
to factor partition-functions, e.g. 2D Ising-Model, White’s work was the phase-transition in our
understanding.

27Like seen in the Uimin-Lai-Sutherland, Majumdar-Ghosh, Affleck-Kennedy-Lieb-Tasaki (AKLT)
models.

70

4.2.3 Let’s Consider N = 3 and s = 1

Hij = (1− (2 + Si · Sj))

(
1−

(
2 + Si · Sj

3

))
3Hij = −1 + 2Si · Sj + (Si · Sj)

2 .

Many 1-dimensional models have exact solutions, and therefore these models

act as an effective playground for testing numerical methods for higher dimensional

situations.

4.2.4 Low-energy Excitations

The Heisenberg-model above, [su(N)k], is related to a couple of well-studied

models in Conformal-Field-Theory (CFT): N -free (1+1)D Dirac-Fermion-model and

the Wess–Zumino–Novikov–Witten (or WZW) model. The WZW-model is defined

on a Lie-group manifold, e.g. SU(N), a coupling-constant, λ, and integer level k.

While, the N -free-(1+1)D-Dirac-Fermion-model has U(N) symmetry which may be

decomposed into U(1) = SU(N) × U(1), for spin-sector and charge-sector parts

respectively. This spin-sector part is equivalent, Fradkin 2013, to the WZW(su(N)1)-

model at the fixed-point28: λ2 = 4π/k = 4π. Furthermore, it can be shown in

Führinger et al. 2008, that the low-energy limit of the Heisenberg-model is the WZW-

model: [su(N)k] ∼ WZW (su(N)k). This is nice because WZW/free-Dirac-Fermion

28A relation between the coupling constants found via beta-function techniques.

71

models have been thoroughly studied, and therefore many exact results exist which

help guide/calibrate the DMRG computations.

4.3 NN-Factorization

The intra-operator connectivity denote interactions of the Hamiltonian. These

The intra-operator connectivity of these models are typically given via a mesh

(an infinite graph) or finite graph/pair-wise-network. In our consideration, we also

make the restriction to pair-wise interactions. This yields a network or graphs, that

describe the connectivity of the model. These models ultimately yield a Hamiltonian

matrix, of the form:

Hij = Jab
ij A

i
aB

j
b .

We shall demonstrate how to factorize this Hamiltonian into matrix-products (partial-

tracing over two axës) of the site-tensor-operators:

H = Tr (WW · · ·W) .

This has been extensively studied for purely 1-dimensional linear configurations in the

DMRG literature, and this factorization is known as the Matrix-Product-Operator

(MPO). It is usually given in two distinct ways (with first vectors transposed, for

72

visualization):

1

...

...

0

1 · · · · · · 0

...

...

1

0

...

...

1

(4.5)

0

...

...

1

1

...

...

0 · · · · · · 1

1

...

...

0

. (4.6)

Where empty spaces are zero, and · · · represent all pair-wise interactions between

two sites, and 0 represents the non-trivial-zero. These forms are usually called upper-

triangular and lower-triangular respectively. However, here we will designate these

by a different name. Let L =

(
1 · · · · · · 0

)
and R =

(
0 · · · · · · 1

)
, eg ‘1’ on the

left xor ‘1’ on the right. Then the upper-triangular-matrix is represented by LR and

the lower-triangular-matrix is RL (these L/R names are arbitrary, e.g. may be called

+/−). A few observations are in-order, if we matrix-multiply many of these matrices

(all the same, suppose of the RL type) we obtain:

(RL)n = (RL)(RL) · · · (RL) =

1

...

...∑n
i (Σi) · · · · · · 1

= RL+

1

(

n∑
i

(Σi)

)

where Σi = L · R, ie the full pair-wise interaction. This recursive operation, with

the cumulative sum saved in the original nontrivial-zero location, allows for the

73

factorization of the NN-Hamiltonians via an MPO, and thus efficient-evaluation via

the DMRG algorithm. This is pleasant result, next we would like to generalize this for

an arbitrary pair-wise network/graph, however now we run into some complications.

The aforementioned matrices may only connect two sites at a time, we cannot connect

N sites to a single site. In graph-theory, this node-connectivity is known as the

degree. We would like to expand this node, this my be intuitively represented by a

higher-dimensional-matrix or tensor. There we wish to understand the pattern of

their construction.

Visually the aforementioned matrix may visualized by a square, whose entries of

interest of those which belong to the perimeter of the matrix. The nontrivial-zeros

element only belonged to the upper-right and lower-left entry. This begs the question,

whether it is possible that the nontrivial-zero belongs to the upper-left and lower-right

elements too? It turns out the answer is yes29, and these matrices may be called LL

and RR respectively:

(LL) =

0 · · · · · · 1

...

...

1

(RR) =

1

...

...

1 · · · · · · 0

. (4.7)

Note R@(LL)@R = H3 and similarly L@(RR)@L = H3, the 3-site 2-NN-

Hamiltonian H3. Therefore, we may create the TNO with any 4 of these matrices,

note however in order to combine them with an inner-product we must kiss a L-axis

with a R-axis of another site-matrix. Therefore we observe the following pattern:

29And required for Periodic-Boundary-Conditions.

74

potentially interesting elements exist on the perimeter of this site-matrix-operator.

Graphically, we may associate these matrices to (RL,LR,LL,RR respectively):

.

Now let’s return to our chain MPO model:

· · · · · ·

This may be decomposed into an oriented-graph (directed-graph without multi-edges),

in order to define the matrices above:

· · · · · ·

Ultimately, any oriented (directed)-graph is a valid factorization, in-fact this is 1

of 2edges many. All these are valid factorizations of the system. However, there are

two configurations that yield only 1-type of matrix (completely-consisting of LR xor

RL), these are the factorizations widely used in the MPO literature, for example

pirvu2010; Verstraete, Murg, and Cirac 2008, and many other sources (around the

work of Verstraete).

4.4 Tensor Operator Element

Now let’s focus on the construction of the tensor connecting a site to 3-others,

this is a 3-dimensional tensor Wijk. After a contraction of any of the axes, we

75

shall obtain a 2-dimensional matrix like before. Therefore this suggests a similar

structure as before. We may guess that the nontrivial elements lie on the edges

of a 3-dimensional cube, with nontrivial-zeros potentially occupying each vertex.

This hypothesis is once-again correct. We may construct tensors with all 8 parities

{LLL,LLR,LRL,RLL,RRL,RLR,LRR,RRR}. Their direct visualisation is given

below (dark lines indicate the non-zero entries, while dashed-lines indicate the tensors’

dense-array shape).

With 3-edges emanating from this nontrivial-zero having this same pattern. What

about an axis connected to 4 other sites or more? for this we have to consider the

hyper-cube graph for some visualization and intuition for general higher dimensional

tensors.

d-Hypercube-graph Perspective

We started with visualization with a square and a cube, this generalizes for a

generic hypercube. The d-hypercube (d-dimensional) graph is a graph on 2d vertices,

76

such that each vertex has the same connectivity/degree, i.e. regular, with 2d−1d

edges. Defined by the n-fold-Cartesian-product on the 2-vertex complete-graph K2,

i.e. Qn =
∏nK2.

Any of the vertices of the d-hypercube can house the-nontrivial-zero, which

once-defined can uniquely define all the d edges. Therefore the perimeter for an

d-dimensional hypercube is its 1-dimensional skeleton, i.e. graph.

d-Bitstrings

In computer-science, bits are objects which take two values, i.e. Boolean. Our L

and R decomposition has the same character, let L↔ 0 and R ↔ 1. Each axis of a

tensor has an orientation, the collection of all axës yields an array-of-orientations,

this will be referred to as a bitstring. For instance, we may associate each entry in

77

the following array to an axes in a tensor (denoting its orientation):

[L,R, L, L, L,R, L,R,R, · · ·R,R,R] ↔ [0, 1, 0, 0, 0, 1, 0, 1, 1, · · · 1, 1, 1] .

4.5 Fundamental-Representation of su(N)

4.5.1 Complex Representation

The complex-representation of su(N)1 is the following straight-forward general-

ization of the Pauli-matrices. Details may be found in well-known book by Georgi

1999. For the Lie-algebra su(N), we have N2 − 1 generators. There are two kinds

of generators which make up the complete Lie-algebra: Cartan (N − 1 mutually

commuting generators) and Non-Cartan.

Cartan

In su(N)1, the Cartan-operators take the form of completely diagonal matrices.

The following matrices Gi are constructed for i ∈ [2, N]:

Gi =
1√
(i−1)i

2

(
δi−1
pq ⊕ (1− i)

)
.

78

Non-Cartan

Within su(N)1, the Non-Cartan generators take a simple form of Hermitian

Matrices taking a single off-diagonal entry at a time. The N(N−1)
2

purely matrices

take the following form:

1

1

,

1

1

, · · · ,

1

1

,

 1

1

, · · ·

With the N(N−1)
2

imaginary versions with i in the lower-triangular part, and −i in

the upper-triangular part. There matrices generalize the 2× 2 Pauli-matrices:

σx =

0 1

0 1

 σy =

0 i

0 −1

 .

4.5.2 Adjoint Representation

Given the generators λi, they must satisfy the following commutator:

[
λapr, λ

b
rq

]
= fabcλcpq ,

for structure-constants fabc with respect to the Lie-algebra su(N). These structure-

constants, may thus be found given the fundamental-representation by:

fabc = − i

4

[
λapr, λ

b
rq

]
λcqp .

79

These structure-constants fabc, subsequently define a real-representation of the Lie-

algebra itself, known as the adjoint-representation:

Λa
bc = −i fa

bc .

4.5.3 Jordan-Wigner Transformation

The Jordan-Wigner (JW) transformation maps spins (Lie-algebra generators) to

Fermions. Explicitly, it transforms the off-diagonal generators into creation/annihi-

lation operators the generalized su(N)-JW transformation is given by Yu and Ge

2016.

4.6 Exact-Diagonalization

Now we would like to consider the solution of linear-problems, e.g. HΨ = B for Ψ,

these are ubiquitous in physics and especially in quantum-theory. Ultimately, these

problems amount to diagonalizing H → H ′ is a suitable eigenbasis, H ′ = UHU †. This

diagonal version yields the solution of the aforementioned linear-problem, and H ′’s

diagonal-elements are called eigenvalues, while U ’s contain the corresponding eigenvec-

tors Ψ, and our beloved many-body wavefunction. This is the Exact-Diagonalization

(ED) method, and corresponds to the numerically-exact solution (within machine-

precision). In practice, as mentioned our matrices, H and Ψ grow exponentially as the

problem scales linearly, and thus this problem quickly becomes intractable. However,

80

as we shall see in a bit, not all ED-algorithms are created equal. We will start by briefly

mentioning the naive explicit-matrix-ED method as it is the most straight-forward.

Next, we will mention the iterative-methods, specifically the Davidson-method, and

discuss how this transposes the ED problem into a matrix-vector product. Finally, we

discuss how to realize this matrix-vector-product under a factorization of the matrix

H, via tensor-decompositions for a linear-chain-structure (Matrix-Product-Operator)

and a generic-structure. This ultimately, reduces into many sparse-matrix/tensor and

dense-vector contractions. In contrast, the ED procedure we cannot make assumptions

about Ψ’s internal structure, i.e. correlations, and therefore it must be assumed to

be a dense-tensor. Because Ψ is dense, and scales exponentially with system size

the major limitation of the ED-methods is the physical-memory storage of Ψ and its

contraction-intermediaries.

4.6.1 Explicit-Matrix Diagonalization

For this method, we need to explicitly construct the matrix, we wish to diagonalize.

Let’s suppose we consider the stereotypical QMB system, our L-spin spin-chain

(potentially multidimensional). The resulting Hamiltonian-matrix is of dimension:

2L × 2L, even for modestly-large numbers this becomes is intractable to densely-store.

Furthermore, naïve diagonalization scales as O ∼ N3, therefore the time-complexity

is Otime ∼ 23L with space-complexity Ospace ∼ 22L+1. We may notice this matrix

is sparse, and use sparse-diagonalization algorithms for a slight improvement; with

time-complexity is Otime ∼ 2L and space-complexity Ospace ∼ 2L+1.

81

4.6.2 Iterative Diagonalization

Unlike the explicit-matrix-diagonalization scheme, which obtains all eigenstates, we

may opt to select a few low (or high) lying eigenstates. These may be obtained one at a

time using Krylov-subspace, iterative-subspace, methods, e.g. the Davidson-Algorithm,

Davidson and Thompson 1993; Saad 2003. This transposes the diagonalization-

problem into to a partial-tracing problem (many effective matrix-vector products).

Furthermore, we view the matrix, as an operator, and hence we never have to

explicitly construct it. If this operator can be decomposed into a MPO/tensor-

network structure, we can compute the partial-traces sequentially. Such that we

can avoid ever constructing the actual operator explicitly (in either sparse xor dense

format). If H has some known symmetry, the eigenvector Ψ, may be broken into a

block-sparse structure, and independently diagonalized in each sector.

4.6.3 MPO-ED (linear-chain)

In order to illustrate our strategy for the general-case, lets attempt solving models

exactly represented by an MPO. For an MPO, our problem reduces to:

· · ·

· · ·

Ψ

H →
• •· · ·

· · ·
Ψ

.

Note that the intra-contraction of the MPO tensor-network yields the explicit

exponentially-large Hamiltonian tensor. The linear-chain is an example of the most-

sparse-yet-fully-connected-network. Because its simplicity we can implement the

82

algorithm assuming this uniformly linear structure. It can be shown that this algorithm

may be reduced to the sparse-and-dense-tensor products. If sparse-partial-contractions

are used we may directly obtain the sparse-representation of this operator, this may

be sequentially reshaped into the usual sparse matrix-representation of this opera-

tor. Again explicitly-building the operator is a major space/memory ask. Instead,

because of our factorization of H, we may sequentially apply each MPO-element.

To begin, the MPO-element being a sparse-tensor may be reshaped into a sparse-

matrix (combining a physical-index to an intra-operator index, the reshaping yields:

(N,N,M,M) → (N ×M,N ×M)):

→ .

Next, lets reshape Ψ to become a dense-matrix:

Ψ
→ · · ·

Ψ
→

Ψ
.

Given the reshaping above, we introduce the zipper -algorithm, in which MPO-

elements are sequentially applied on the trial-vector Ψ, from start-to-end. We begin,

by computing the sparse-dense matrix-product (between the 1st MPO element) and

the trial-vector Ψ:

Ψ
=

Ψ′
.

An important observation is that Ψ′ contains another axis, corresponding to an

intra-MPO index, and therefore the number of elements of Ψ′ is greater by the size

83

of this intra-MPO axis, |Ψ| < |Ψ′|. Next, we reshape-Ψ′, swapaxës, and reshape

back-into a dense-matrix:

Ψ′ → · · ·
Ψ′ → · · ·

Ψ′ →
Ψ′ .

Note that the trial-vector, Ψ, is dense, and may be reshaped and axës-swapped at

O ∼ 1 expense. The sparse-dense matrix-product is then recomputed for the next

MPO-element, this process is repeated until we’ve swapped all axes, i.e. the end of

the MPO chain in which no intra-MPO indices are left. The final step looks like:

Ψ′
=

Ψ
.

The major limitation of this algorithm is the physical-memory storage requirements

of Ψ and its partial-contraction Ψ′, with Omemory ∼MNL for a chain of L sites.

4.6.4 Generic-network ED

In the previous subsection, we considered the case of a linear-chain. Because of its

homogeneous and simple structure, the zipper-algorithm can exploit these similarities,

such that the ED-algorithm is simple itself. Now we would like to consider a

complication, the ED of generic tensor-network-operator (TNO). In order to facilitate

this over an arbitrary-network, we require knowing the optimum-contraction-path

and a tracing-module that returns the index/axis-label (which nodes correspond to

84

which edge) on-the-fly. Let’s define our tensor-network:

H = Tr
(⊗

W (i)
)

.

Pair-contraction

Often the simultaneous-contraction of many dense-tensors is best done pair-wise.

Therefore we sequentially apply the pieces of the TNO to the wavefunction Ψ to

create intermediate wavefunctions Ψ′:

Ψ′ = Tr
(
W (i)Ψ

)
Ψ′ = Tr

(
W (j)Ψ′)

...

Ψ = Tr
(
W (k)Ψ′) .

The contraction-algorithm efficiency depends on the order W ’s are applied. The

optimal-contraction path is an NP-hard problem. This problem may be given by

a weighted network, with weights being the width of each contraction-edge. An

approximate solution is provided by the Greedy Algorithm. Greedy Algorithm starts

with node with lowest degree, and then follows with a Breath-First-Search (BFS)

with lowest graph-node degree. The major limitation of this algorithm is the memory

of the intermediate wavefunctions Ψ′. This is especially true for higher-degree (more

edges per node) networks underlying the Tensor-Network-Operator (TNO). In the

linear-chain we have an intermediary memory of ∼M(NL), because of an intermediate

TNO external-axis/index of size M . For instance, for the complete-graph on n nodes,

85

Kn, the pair-wise-contraction leads to an intermediate-Ψ of size ∼ M ⌊n
2
⌋⌈n

2
⌉(NL).

Therefore, it should be optimal for a purely-sparse intra-TNO partial-trace to reduce

intra-TNO connectivity.

4.7 Approximations to Ψ

We reviewed in the last section how to exactly solve these QMB problems, including

with Hamiltonians/Operators which exponentiate, but may be exactly-factored into a

base factors, i.e. H = W⊗. We noticed that ED algorithms were able to be improved

with this exact-factorization. However, we are still limited by the unassuming nature

of Ψ, this tensor is still exponential in size.

Now, we wish to a priori assume the correlation (tensor-network-state connectivity)

structure of Ψ. Typically correlation is local, and hence the typical/canonical choice is

to have Ψ’s tensor-network structure to match its parent Hamiltonian/Operator. For

example, given an MPO-network, the “matching” network is the Matrix-Product-State

(MPS).

MPO • •· · ·

MPS • •· · ·

86

The MPS unlike the MPO does not exactly represent its parent tensor. However,

if correlation structure is chosen correctly, this hopefully yields a good approximation

to its parent tensor. This subtle fact greatly limits the applicability of the MPS.

However, we would like to observe: that despite the apparent increase in complexity,

the MPS actually has much less entries than the original eigenvector. This is also

true for any tensor-network approximate-factorization.

This approximate-factorization controls the sparsity of Ψ, and hence our objective

is to diagonalizeH (the MPO) given this sparse-constraint. This can easily be achieved

in Krylov-subspace-methods if we compute its effective matrix-vector product, e.g.

the merging of MPO into the MPS to form a new MPS (as shown above). So this

clearly involves tensor-partial-trace. However, there is one subtle issue, our result

includes internal indices, which once merged start to grow the tensor-network once

again. Therefore, after the partial-trace, re-compression30 (SVD) is necessary to

return the resulting MPS to the original bond-dimension m. For example, after

applying a MPO layer to an MPS, we obtain an MPS of higher bond-dimension

of precisely m′ = M +m, this MPS(M +m) needs to be compressed, as shown in

McCulloch 2007 to MPS(m). The MPO on MPS application for two generic sites is

shown below (note the larger bond-dimension).

After this “matrix-vector” product is estimated, we may obtain the iterative-Krylov-

30This compression may also be obtained using iterative methods!

87

subspace ED on a generic QMB-state tensor-network decomposition (beyond MPS

and MPOs), with sub-exponential scaling.

4.8 Density-Matrix-Renormalization-Group

Now we shall discuss White’s algorithm, White 1992, 1993, and generalizations,

with another a slight generalization to Tree-Tensor-Networks (TTN), to find approxi-

mate solutions to the aforementioned QMB models efficiently. The first step in this

algorithm is to obtain the factorization of your model into a tensor-network. For

White, this was the 1-dimensional chain of the original Heisenberg-model, whose

factorization is achieved via the Matrix-Product-Operator (MPO) as described above.

The key property of this operator is that it has 2-physical-index surfaces, when each

surface is reshaped into a single index, the result is the model’s Hamiltonian-matrix

with two-indices. The Heisenberg-Hamiltonian is thus exactly factored, and will be

represented by H, with each piece W (ℓ) (corresponding to site ℓ), such that:

Hαβ = W
(0) i α0β0

j W
(1) j α1β1

k W
(2) k α2β2

l · · ·W (ℓ) y αnβn
z .

with α = {α0, α1, · · · , αn} and β = {β0, β1, · · · , βn}. And the ends of the MPO, are

usually matched with “vacuum” states: ⟨0|i and |0⟩z.

88

4.8.1 State

Our objective will be a similar-shaped state-tensor-network with a single physical-

index-surface. Unlike the Hamiltonian-operator, the state’s factorization is not

in-general exact and corresponds to the correlations/entanglement within the many-

body wavefunction, represented symbolically by Ψ.

4.8.2 The Energy

If Ψ is representing the ground-state, then the full trace:

E = tr
(
Ψ†HΨ

)
represents the ground-state energy. Our objective is therefore to optimize Ψ, such

that E is as low as possible

δE

δΨ
= 0 ,

given the degrees-of-freedoms of Ψ. For this we need to introduce a new kind of

calculus, that of tensor-networks. The integral is the aforementioned partial-trace,

while the derivative is given next.

4.8.3 Tensor Network Derivative & Optimization

Let’s define the Tensor-Network-Derivative (TND) of any tensor-network as:

∂(i)A ,

89

this operation merely deletes the ith tensor, and the resulting external-indices created

from this deletion creates a new tensor-network. Higher-order TNDs are possible via

deleting more than 1 tensor:

∂(ij) ∂(ijk) ∂(ijkl) · · · ∂(ij···z) .

However, of special interest are the 2nd-TND, or 2-site-optimization as discussed

by White 1992. For the 2-site-optimization, given sites i and j, this corresponds to

solving the eigenvalue-problem for ψij (2-body/site wavefunction):(
∂(ij)E

)
ψij = Eij ψij .

In particular, we introduce the density-matrix (assuming quantum-equilibrium):

ρ = Ψ⊗Ψ† .

To obtain (the DMRG equation):(
∂(ij) (ρH)

)︸ ︷︷ ︸
enviroment

ρij = Eij ρij .

After diagonalizing to obtain the 2-body-density-matrix, ρij, we use tensor-

decomposition-techniques (e.g. SVD), to decompose this 2-body-density-matrix

into connected 1-body pieces:

ρij = Tr (ρiρj) .

4.8.4 Update & Sweep

Recall, our objective is to compute Ψ, while holding H fixed. Therefore, we

perform a sweep over all adjacent site-pairs in our tensor-network. This would result

90

in a change in Ψ, and hopefully into a convergence to an unchanging state, the

ground-state, given the constraints of the system. Excited states may be found is a

similar way, by constraining the diagonalization into a particular excited state, e.g.

via the Krylov-subspace methods explained before.

4.8.5 Generalized-DMRG

DMRG is commonly defined for 1-dimensional systems, as it was originally for-

mulated for by White 1992. However, our definition above can be applied for any

tensor-network, however, the issue becomes tracing the environment, Tr
(
∂(ij) (ρH)

)
,

for higher dimension/more complicated (especially with loops) networks. This gen-

eralization (for dimensions higher than 1) is called Projected-Entangled-Pair-States

(PEPS), see Verstraete and Cirac 2004.

4.9 Mean-Field Theory

After our definition of DMRG, we have a rather simple Mean-Field (MF) theory

definition: we define Mean-Field Solution to be DMRG(m = 1). That is we seek a

MPS, that is a tensor-product state, i.e. the sparest solution! For a homogeneous

1-dimensional system, with N state per site, with L sites the bond-dimension scales

upto NL, as shown below.

m
Mean-Field, 1 NL, Exact

91

Pure MF-theory for electrons is rather unnatural, but formally exists as Hartree

Theory31, because of their fermionic mutual/pair exchange-interaction. Hence the

wide-scale application of Hartree-Fock theory, a MF-theory including the essential

fermionic 2-body exchange-interaction. Formally this requires us to consider MPS

with at least m = 2. Therefore, we may extend this definition, a generalized-MF-

theory, to be a MPS with bond dimension m ∼ N , the degrees-of-freedom per site.

Or even more generally, have a bond-dimension m independent on the system-size,

e.g. ∂Lm = 0, a kind of pseudo-mean-field-theory.

4.10 Sparsity of Tensor-Network Pieces

4.10.1 Sparsity of H

For an arbitrary network/graph Jij, the pair-spin-operator S · S has sparse-

elements32 of NL−2
(

(3N+2)(N−1)
2

)
. For E = L − 1 (1-dimensional path) number of

edges in Jij, and divided by the total number of elements we have:

density = NL−2

(
(3N + 2)(N − 1)

2

)
1

N2L

sparsity ∼ NL .

31Also Time-Dependent-Hartree (TDH) or Random-Phase-Approximation (RPA), and even
Kohn-Sham theory (without HF-exchange).

32The number of parameters for su(N) is N(N − 1) + N(N+1)
2 − 1 = (3N+2)(N−1)

2 .

92

As L→ ∞, the sparsity becomes infinite and hence the matrix nonzero entry density

becomes zero.

4.10.2 Sparsity of W

Without 1-body/on-site terms, in D dimensions (the 1-dimensional MPO uses

D = 2 tensor-operators, 2-dimensional PEPS use D = 4), we have:

nonzero elements = D

((
(3N + 2)(N − 1)

2

)
+N

)
∼ DN2 ,

all elements = N2
(
N2 + 1

)D ∼ N2(D+1) ,

sparsity ∼ N2D

D
.

Again sparsity increases exponentially with dimension with internal degrees of freedom

N , albeit at a slower rate than the entire Hamiltonian-matrix. For a given-dimension,

e.g. it decreases polynomially ∼ N−4 for D = 2 (for an MPO).

4.10.3 Sparsity of Ψ

Unlike the H which is undoubtedly very-sparse with a well-defined/obviously-

factorizable structure, Ψ is trickier. The fact that it is given by a tensor-network

already suggests sparsity. Within the MPS network, a larger system L (the number of

sites or individual coherent systems), will require larger bond-dimension m. Suppose

each 1-body-system has N states (for the regular Heisenberg model this is N = 2), in

an MPS, we then may define the sparsity = NL

m
. An example of sparsity is the filled

93

0 10 20 30 40

100

101

102

103

104

105

106

MPS site (i)

M
P

S
B

on
d-

D
im

en
si

on
(m

)

Figure 12. Shown is a Log-plot Showing the Bond-dimension, m, of an MPS. The
Filled-in Portion, Shows the MPS is Modelling Compared to the Entire
ED-wavefunction-tensor. This is Plotted For a Region of 40 Sites. Note Although
the Non-filled in Region Appears Smaller, Its In-fact Exponentially Larger Than the
Filled in Portion Due to the Vertical Axis-scale.

versus unfilled region in fig. 12. So to address the question of the sparsity of Ψ based

on the spin-chain’s system length L, we require m(L), the required33-bond-dimension

given the system’s length.

33To achieve a certain level of convergence or accuracy.

94

4.11 Sparsity & Entanglement-Entropy

At the end of the last section, we discussed the sparsity of 1D MPS Heisenberg

states to be NL

m
, with bond-dimension m, system-length L, and with generators

belonging to the su(N) Lie-algebra. However, this is unsatisfying on its own because

N,L are intrinsic parameters of the system (they parameterize the Hamiltonian),

while m does not. Therefore, we would like a functional form of m in terms of these

parameters, here we achieve this numerically, and fit to an empirically motivated and

conjectured function. In calculating our objective, we are motivated by a connection

between: entanglement-entropy and sparsity. These are closely related, at least in

the context of SVD: while entanglement-entropy is defined for quantum states (on

a boundary) via the sum of the log of singular-values. Sparsity, by rank arguments

before, is the number of singular-values.

When modelling our QMB-Hamiltonian, we would like our QMB-wavefunction

to capture most of the entanglement-entropy set-forth by exactly-solvable analytical

methods. The QMB-wavefunction that stays close to this value, despite compression,

is said to emulate or represent the entire theory faithfully34.

As we know the low-energy states of the Heisenberg-model resemble the WZW

model; [su(N)1)] ∼ WZW(su(N)1), as described in Führinger et al. 2008; Nataf and

Mila 2018. Previously calculated WZW results such as the central-charges, c, which

determine the entanglement-entropy function (shown later), and scaling-dimensions

34The precise definition of close is arbitrarily defined.

95

∆ may be theoretically/analytically calculated, Fradkin 2013, to be:

csu(N)k =
k(N2 − 1)

k +N
→ csu(N)1 = N − 1 .

∆su(N)k =
N2 − 1

N(N + k)
→ ∆su(N)1 =

N − 1

N
.

With k representing the integer level of the WZW theory, and the spin-representation

k = 2s of the su(N)k Lie-algebra in the Heisenberg-model case.

4.12 Entanglement-Entropy

Given a quantum-state, e.g. QMB-state Ψ, Entanglement-Entropy, as developed

and shown by Taddia2013; Bennett et al. 1996; Calabrese and Cardy 2004; Ranga-

mani and Takayanagi 2017 concerns the factorizability and connectivity of Ψ. This

value may be theoretically and numerically calculated, and thus may be used to

determine the amount of total connectivity considered by the numerical calculation.

Theoretically as m→ NL the full-connectivity is obtained, and the central-charges

should match: cCFT = cDMRG. However, even then there is a slight difference between

the CFT-theory and the intrinsically discrete MPS, and thus the central-charge c, for

larger su(N) off the theoretical-value for increasing N , as shown in Nataf and Mila

2018 the precise reason for this effect is still unknown.

96

4.12.1 Bond-Entropy

In the DMRG-algorithm, when we decompose the 2-site ψij wavefunction, via

SVD, into two 1-site wavefunctions ψi and ψj (with singular-values λr), we have on

option for a bond-dimension cutoff m. The von-Neumann formula applied to these

singular-values yields the Bond-Entropy. Throughout the MPS, this value should be

constant (the Area-law).

ψij ψi λr ψj

S = −
∑
r

λr log λr

4.12.2 Block-Entropy

To compute the block-entropy, we compute a partial-trace over the overlap, in

order to obtain Reduced-Density-Matrices (RDMs) on either side of the partition.

ρ = ···

· · ·
= ΨΨ†

ρ2RDM = ···

· · ·
= Tr

(
ΨΨ†)

Therefore the singular-values of the ρ2RDM given the cut ℓ, yield the block-entropy.

These can be obtained if the MPS can be canonicalized with respect to one of the

97

boundary sites, and traced and decomposed with the other boundary site. A similar

algorithm may be used to compute Renyi-Entropies, as seen in Rolandi and Wilming

2020.

4.12.3 Central-Charge

The relationship between the central-charge c, along ℓ (the partition) a finite

L-site spin-chain (with site spacing a, usually in units of a = 1, and Open-Boundary-

Conditions (OBC)), and the Entanglement-entropy S is given by the Cardy-Calabrese

formula, derived in Calabrese and Cardy 2004, (eq. 4.8):

S(ℓ; c, C1) =
c

6
log2

(
2L

aπ
sin

(
πℓ

L

))
+ C1 . (4.8)

When used with DMRG for an ΨMPS, we may compute a numerical cDMRG, along

(ℓ) parts of the tensor-network (i.e. the MPS). This then may be compared to CFT

results listed above. Above C1 is a constant with contributions with the boundary

entropy of Affleck-Ludwig, see Affleck and Ludwig 1991; Laflorencie et al. 2006, along

with other contributions which are lesser understood.

4.13 Procedure

Our objective is to compute the required bond-dimension m of a converged ΨMPS

on L sites. Therefore we scan over the L dimension (simulate many systems with

98

different number of L sites), and determine the required m, based on the convergence35

cDMRG. Because finite-sized systems seem to not match, as shown in Nataf and Mila

2018, the exact theoretical cCFT, we opt for convergence with-in the c gradient with-

respect-to m (for a given system of size L) for some tolerance (arbitrarily chosen as

0.001); dc
dm

< δc = 0.001. Popular tensor-network software, Roberts et al. 2019; Gray

2018, are used in conjunction to the aforementioned algorithms, for computational

efficiency. In summary the following simulation algorithm is followed (for each

L-system size):

1. We solve L-site [su(2)1] DMRG upto m MPS-bond-dimension ΨMPS

2. Calculate the block Entanglement-Entropy, S(ℓ) = −ρℓ log2(ρℓ)

3. least-squares-fit to the Cardy-Calabrese Formula (eq. 4.8) to find c (and C1).

4. if c− c′ ≤ 0.001 the simulation is converged (take the m value which achieves

this convergence)

4.14 Results

Let’s first compute the block-entanglement entropy over a sample system36 of 120

sites for [su(2)1] and [su(3)1], these results are plotted in fig. 14. Notice these plots

follow the Cardy-Calabrese formula, they contain ripples/oscillations about this value

35Or alternatively the ground-state-energy E

36The model used is Hαβ = 1
N JijS

ia
αγS

ja
γβ , ie. for only the fundamental-representation.

99

0 20 40 60 80 100 120

0.6

0.8

1

1.2

1.4

partition (ℓ)

E
nt

an
gl

em
en

t-
en

tr
op

y
(S

)

0 20 40 60 80 100 120

0

1

2

3
·10−4

partition (ℓ)

en
ta

ng
le

m
en

t
en

tr
op

y
(S

)

Figure 13. Examples of the Entanglement-Entropy of the su(2)1 Model (Left Plot)
for m = 60 (Lower Curve) and m = 200 (Upper Curve) Respectively, and Their
Difference (Right Plot).

in the entanglement-entropy. The reason for these ripples, which exist only for the

OBC formulation is not precisely known, but can be fitted as is done in Laflorencie

et al. 2006. The correct fit is necessary to determine the proper entanglement-entropy

and thus central-charge c. This is not our main focus in order to compute the sparsity,

and thus the central-charge obtained from the Cardy-Celebrese formula is sufficient

for our purposes.

4.14.1 c(m) Calculation

Next, lets determine the central-charge (c, fig. 15) and entropy-constant (C1, fig.

16) with different MPS-bond-dimensions, given the same system L = 60 for su(2)1,

su(3)1, and su(4)1.

100

0 10 20 30 40 50 60 70 80 90 100 110 120

1

2

3

partition (ℓ)

en
ta

ng
le

m
en

t
en

tr
op

y
(S

)

Figure 14. Examples of the Entanglement-entropy as a Function of the Bipartite
Divider ℓ on a 1-dimensional L = 120 Site Lattice Spin-chain. The Upper Curve
Shows the Results for [su(4)1], the Middle Curve Shows Results for [su(3)1], and the
Lower Curve Shows the Result For [su(2)1].

0 50 100 150 200 250 300 350 400

0

1

2

3

MPS-bond-dimension (m)

ce
nt

ra
l-c

ha
rg

e
(c

)

Figure 15. This Plot Shows the Central-charge as Fitted to DMRG Data, the MPS
Over L = 60 Spin-sites. For su(2)1 (Blue) Which Converges to c = 1 as Expected
With Bond-dimension m ≈ 20. su(3)1 (Orange) Approaching c = 2, Also as
Expected, with Bond-dimension Roughly m ≈ 100. And su(4)1 (Green), With the
Central-charge Increasing Not Converging to the Expected c = 3 Value Yet.

101

0 50 100 150 200 250 300 350 400

1

1.5

2

MPS-bond-dimension (m)

en
tr

op
y

co
ns

ta
nt

(C
1
)

Figure 16. This Plot Shows the Constant-entropy Term, C1, in Eq. 4.8
Least-squares-fitted to Numerical DMRG Data (the MPS). For Systems With L = 60
Spin-site Chains in su(2)1, su(3)1, and su(4)1 Theories.

4.14.2 m(L) Calculation

Now we give an example in SU(2) following the procedure above. We find the

following result after running 120 DMRG calculations to compute the central-charge

c:

sparsity(ΨMPS
su(2)) ∼

2L

L1/2
.

The data is plotted on fig. 17, and every data-point has an uncertainty of δm±2 (note

m and δm are integers). Furthermore, the energy E (L) along the same parameters

are plotted in fig. 18.

102

0 50 100 150 200 250 300 350 400 450 500

20

40

60

80

100

system length (L)

M
P

S
bo

nd
di

m
en

si
on

(m
)

m(L)

Figure 17. The “Converged” (Such That the Central-charge Does Not Change Much)
Bond-dimension m (MPS in DMRG) For A XXX Spin-chain of Length L. DMRG
Data is Fitted With Function m = b ∗ La + c, With Least-squares Parameters:
a = 0.51001911, b = 5.0420591, c = −13.39164775.

4.14.3 Conjecture

Note that m ∼ 5L1/2, so the total computational-complexity is ODMRG ∼ m3 ∼

L3/2, based on system’s size/length. Now we conjecture that the the sparsity of

[su(N)1] Heisenberg is:

sparsity(ΨMPS
[su(N)1]

) ∼ NL

L1/N
.

As it would follow that N → ∞, the MPS-bond-dimension m → C, i.e. m should

approach some constant value C, reaffirming the Mean-Field-theoretic, large-N ,

concept. A major limitation to verifying this claim is the bond-dimension m quickly

103

0 100 200 300 400 500

−150

−100

−50

0

system length (L)

sy
st

em
E

ne
rg

y
(E

)

E (L)

Figure 18. The Converged Energy E (MPS in DMRG) For A XXX Spin-chain of
Length L. DMRG Data is Fitted With Function m = a ∗ L+ b, With Least-squares
Parameters: a = −0.3183050050730525, b = 0.17962704375639882.

becomes m ≈ 2000 for moderate system sizes (L = 120 as shown in Nataf and Mila

2018) upto su(8). As mentioned in earlier sections, the sparsity of the MPO is not

much help here, instead we must constrain the symmetries of the MPS, this yields

the blocksparse structure of ΨMPS.

4.14.4 Symmetry imposed ΨMPS

Taking into account symmetries induces a blocksparse structure on the ΨMPS,
this is very convenient because DMRG-algorithm is largely limited by the MPS
bond-dimension m, by ∼ m3. The block-sparse structure induced by symmetries,
allow for linear-matrix-algebra on the smaller blocks. Symmetries alone do not reduce
the ∼ m3, cubed, time-complexity, but do allow for larger systems to be considered
(because of the suppression of m→ m/f , for some f > 1).

104

N

m m = N

m

{()

m

{()
...

m

{()

Figure 19. When Constraining For Symmetry, Within Each m2-sub-matrix May Be
Reduced to Block-diagonal Form.

We may break the SU(N) symmetry with-respect-to the N − 1 Cartan-generators,

hence SU(N) → U(1)N−1. However, the best approach is using the full SU(N)

symmetry (all Lie-algebra generators), as done in Nataf and Mila 2014, this has been

shown in earlier work. The importance and first implementation of this idea was

motivated by earlier work by McCulloch and Gulácsi 2001.

4.15 Error Fidelity

The standard algorithm to compute the similarity between two quantum-states,

or there fidelity (faithfulness to each other), is usually given by:

F (σ, ρ) =

∣∣∣∣tr(√√
ρ, σ

√
ρ

) ∣∣∣∣2 ,

105

This applies for general mixed density matrices σ & ρ, Nielsen and Chuang 2010. If

both states are pure-states we instead have the overlap:

F =

∣∣∣∣tr (Ψ†
σΨρ

) ∣∣∣∣2 .

This measure, quantum-state-fidelity F , has two important atributes: F (σ, ρ) =

F (ρ, σ) and F ∈ [0, 1], with F (σ, ρ) = 1 iff (if and only if) σ = ρ.

In the recent literature, interesting work in determining if two different quantum-

states, from two different systems, have length-scale equivalence, IR-equivalence,

using the same measure, Liu et al. 2017; Zou, Milsted, and Vidal 2018; Hauru and

Vidal 2018.

In this section we compare the fidelity of the MPS when compared to the ED-State

(EDS). This is done by computing the square of the overlap between the two quantum-

states: F =

∣∣∣∣tr(Ψ†
EDSΨMPS(m)

) ∣∣∣∣2, note tr
(
Ψ†

EDSΨEDS

)
= 1 = tr

(
Ψ†

MPS(m)ΨMPS(m)

)
.

· · ·
· · ·
Ψ†

The results are shown in figs 20 and 21. It is noteworthy that with m ≈ 20, the

MPS essentially identical to the EDS state for all L = 10, 14, 22 lattice sites systems

for [su(2)1]. The MPS sparsity is calculated by:

sparsity (ΨMPS) =
2L

#elements in MPS
.

Notice that fractional sparsity, implies the MPS has more parameters than the EDS,

in the aforementioned figures.

106

100 101 102 103 104

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

MPS sparsity

F
−

1

Figure 20. Shown is the Fidelity of the MPS State (for Sparsities) when Compared
to the EDS, for L = 10, 14, 22 Lattice Sites, with Blue, Orange, and Green Dots
Respectively.

100 101 102 103 104

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

MPS sparsity

E
M

P
S(

m
)
−

E
E

D
S

Figure 21. Shown is the energy difference of the EDS and MPS (for Various
Sparsities) states, for L = 10, 14, 22 Lattice Sites, with Blue, Orange, and Green
Dots Respectively.

107

Chapter 5

SPARSITY IN CHEMICAL SYSTEMS

Since the QMB Schrödinger-equation has been established as the defacto equation

of microscopic scale chemical theory, quantum-chemistry has been effectively solved.

Within the Born-Oppenheimer approximation, this QMB is represented by the Full-

Configuration-Interaction Hamiltonian (FCI), whose Exact-Diagonalization (ED)

yields the desired wavefunctions. The remaining problem is the actual wavefunction

solution. Resulting problem is exponentially-complex, and directly infeasible to

actually be solved on classical-computers. As we have explained before wavefunctions

exist, within our selected basis. Therefore the lowest level structure for us are the

basis-functions37, when orthogonalized these are called orbitals, where wavefunctions

may be constructed on to form configurations or Slater-determinants. The selection

of many configurations are then called an active-space. Interestingly, sparsity actually

plays a role in all three levels of theory, and this will be shown here. This chapter is

based off, and serves as an introduction to Candanedo 2023a. This work allows for

the construction of an arbitrary Selected-Configuration-Interaction (SCI) systems as

an alternative to the exponentially-costly FCI problem.

37Historically and currently the Gaussian-Basis-Functions (GBF) serve as an important represen-
tation of these basis-functions.

108

5.1 Orbital Interaction

The orbital-space is determined using atomic-centric orbitals, while their orbital

configuration solution is optimized through a Mean-Field (MF) method known as Self-

Consistent Field (SCF). This yields the orthogonal-basis Molecular-Orbitals (MO):

SCF-coefficients (p index represents MO basis, while α represents atomic-orbital

basis):

ψp = Cα
p ϕα(r) .

To obtain the SCF-coefficients, Cα
p , we need to diagonalize the 1-body Fock-operator,

constructed by:

Fαβ = Tαβ + Vαβ + (αβ|γδ)Cγ
pC

δ
qOpq .

With: Tαβ the kinetic-energy-integral, Vαβ 1-body potential-integral (e.g. nuclei-

electronic interaction, dipole-moment, etc...), (αβ|γδ) the 2-body-integral (e.g.

Electronic-Repulsion-Integral (ERI)), and Opq Hartree-Fock ground state Slater-

determinant occupation. This algorithm has scales at ∼ N4, due to the 2-body term,

fortunately this term is often sparse (especially for sufficiently large systems). This

sparsity is due to two kinds: via selection rules (due to the Wigner-Eckart Theorem)

and approximately (due to sufficiently small overlaps ∼ εmachine). Once this sparsity

is exploited the algorithm is ∼ N3 due to the full-diagonalization of Fαβ.

109

5.2 Full Configuration-Interaction

In the previous section, we have only optimized a special determinant: the ground-

state determinant. In reality there are many possible, in-fact exponentially many of

these determinants/QMB-states. The QMB-electronic-states, Ψ, are defined as (with

CI-coefficient Cp
I):

ΨI = Cp
Iψp .

Although, the FCI-Hamiltonian is incredibly sparse, the number of possible states is

enormous:

FCI states(N, n↑ + n↓) =

N
n↑

N
n↓

 ,

withN being the orthogonal-orbital count, n↑ and n↓ being the number of up and down

electrons considered. Therefore we desire approximate solutions to this formulation.

5.3 Active-Space Configuration-Interaction

Interestingly not all determinants are required to capture the physics of interest

in most problems, e.g. bond-breaking. Therefore, it has become increasingly clear

that sparse-methods, as I like to call it, come to the recuse. Often, only a very small

subset of states are selected, this may be from a trucated-CI (CIS, CISD, etc...) or

active-space CI. The Complete-Active-Space (CAS) notation will be defined as such:

CAS(orbitals, electrons) = CAS(N, n↑ + n↓) ,

110

this is standard notation in chemical-physics. We give an example for CAS(3, 2):

...
...

l

Note this definition, CAS, is irrespective of the choice of active-orbitals, instead we

may define a vector ξi =
(
l, l + 1, l + 2

)
, with l representing the location of the 1st

active orbital in the figure above, to select the active-orbitals, to avoid ambiguity.

For CAS(M , m↑ +m↓), we have the following:

sparsity =

N
n↑

N
n↓

M
m↑

M
m↓

.

With each new QMB-state/determinant, we should re-optimize the SCF-orbital-

coefficients Cα
p , this is also done, in addition to configuration-optimization, we obtain

Multi-Configuration-Self-Consistent-Field (MCSCF).

111

5.3.1 Multi-Configuration-SCF (MCSCF)

The FCI problem may be solved for CAS(18,18), and CAS(22,22) on supercom-

puters. These active-spaces are often not sufficient for many interesting chemical

systems. Instead approximate FCI-solvers allow for much larger active-spaces:

• DMRG, Ma, Schollwöck, and Shuai 2022b, (CAS(108,30) with m = 6000 and

2800 CPUs as shown in Zhai and Chan 2021)

• FCIQMC, Booth, Thom, and Alavi 2009, (CAS(24,24) as shown in Halson,

Anderson, and Booth 2020)

• Selected-CI (SCI)

– Adaptive-Sampling-CI (ASCI, CAS(50,50)), shown in Tubman et al. 2016;

Levine et al. 2020

– Heat-bath-CI (HCI, CAS(190, 12)), shown in Holmes, Tubman, and Umri-

gar 2016

– incremental-FCI (iFCI, CAS(118,32)), developed by Zimmerman 2017

My preprint, follows the SCI path and allows for this theory to be computed for

arbitrary Slater-determinants without a mechanism of choosing these determinants.

112

Chapter 6

MOLECULAR DYNAMICS

In this chapter, we explore real-time and real-space molecular dynamics with

classical nuclei-centric dynamics. These algorithms are valuable for understanding

condensed matter dynamics in both inorganic (Thompson et al. 2022) and organic

chemistry (Van Der Spoel et al. 2005; Phillips et al. 2005). We describe these

algorithms by first examining atomic dynamics. Then we develop an ab initio

understanding of these dynamics. Next, we delve into the more general setting

involving strong-correlation regimes and the potential energy surface. We then

explore the algorithm’s sparsification, which includes neighbor lists and nearest-

neighbor interactions. In conclusion, we bring these concepts together to create

an alternative molecular dynamics algorithm aimed at classically modeling excited

molecular states. Similar algorithms to molecular dynamics exist in other domains,

such as nuclear physics and galaxy/universe dynamics. These large-scale simulations

bridge the gap between atomic theory and fluid theory.

6.1 Freshman’s Dream

The prototypical example of molecular-dynamics is the simulation of rare-gases,

as developed by Verlet 1967. This is because their inert nature, their interactions may

113

be reduced by a single function, called the Lennard-Jones function. Unfortunately,

these simulations, although as a nice education tool or as a starting-point for a larger

project, is otherwise considered non-interesting. However, as mentioned, let’s use this

as a starting point. The Lennard-Jones function is a analytic function given by38:

Vij(r) = E

((r0
r

)12
− 2

(r0
r

)6)
.

This function is empirically-fitted, however for theorists this empirically determined

parameters are unsatisfying, and lacks the flexibly and subtle features we may want

to capture. Therefore instead we may use a tabulated-potential, which is determined

via ab initio methods (i.e. quantum-chemistry calculations). The tabulated-potential

is a vector, i.e. V (r) → Vr over some discrete values of r. Intermediate values,

between discrete values, may be obtained via interpolation (e.g. linear or spline).

The interpolated-tabulated potential is also useful for capturing multidimensional

potential functions, via multidimensional-interpolation methods.

We would like to generalize the atomic description to incorporate more complicated

situations. For this we need to explore the inter-molecular forces, there are plenty of

excellent books on the topic, including: Dill and Bromberg 2010; Israelachvili 2011;

Stone 2013, however our perspectives are ab initio.

38with r0 being the minimum interaction distance (where V = 0), and E being the max cohesion
energy, r being the interatomic distance

114

6.2 Atomic Dynamics

6.2.1 Weak Molecular Interactions

Suppose we have two atoms (or molecules/particles), with isolated Hamiltonians

H1 and H2 with eigenstates ψ1 and ψ2 respectively (e.g. Lennard-Jones particles).

The combined isolated systems could have Hamiltonian H = H1 ⊕H2. The essential

idea of weak/dispersion/induction-interactions is to have their eigenstates interact to

yield modified eigenstates ψ̃1 and ψ̃2 that describe the (weakly)-interacting system39.

This is achieved via perturbation theory on H, as we tactically assume that their

cohesion interaction is much weaker than each system internally. As long as these

two systems do not appreciably exchange electrons40, the systems can be said to be

isolated/local.

To first-order, we have Coulomb interactions of any net monopole (electric) charges.

The following orders successively include higher and higher any permanent multipole

moments. However, the fun begins when we consider non-permanent multipole-

moments, and these contributions first appear to second-order perturbation-theory

(London’s theory). Because, we assumed each atom to be a composite system,

with internal structure, this structure itself may interact with the other system’s

39For example have a potential-energy as a function of the isolated eigenstates, V (ψ1, ψ2), e.g.
∝ ψ1 ⊗ ψ2.

40Note electrons will always be coherently-exchanged, due to quantum-tunneling, but this effect
is exponentially suppressed (with exp (−σx) with σ being the quantum conductivity). This is in-fact
is related to the cohesive energies of the systems of interest.

115

structure. More concretely, their fluctuations interact with each other, and eventually

in equilibrium, they synchronously fluctuate leading to a decrease in their combined

correlation energy (and a slight alteration of their eigenstates).

Concretely, these contributions may be calculated via the aforementioned method,

use the eigenstates to generate an interaction which mediates this weak-correlation

contribution. This interaction is mediated by Linear-Response (LR) theory between

the atoms (systems), this yields a system centric character: the polarizability or

Green’s-function (internal)41.. There exists polarizabilities for all multipole-moments,

but to lowest order the most well-known is the dipole-polarizability, usually denoted

by α (x, y denote Cartesian indices):

αxy ∝ ⟨ψ†dxdyψ⟩ .

Their frequency-dependent generalization allows for direct computation of the corre-

lation energy:

E =
6

π

∫
R
α(iω)α(iω) dω .

This may be converted into the famous London formula, which intern can be converted

into Lennard-Jones parameters, Tkatchenko et al. 2012.

However, unlike permanent multipole moments, inducible dispersion or weak-

interactions (from non-permanent moments) are infamously non-additive. That is

there exists intrinsic 3-atom/body contributions which may not be divided into

pair-interactions. This also holds for a generic n-atom/body interaction, however,

41Potentially anisotropic (and multi-polar) and frequency-dependent, especially for interactions
with close proximity.

116

for these interactions they are suppressed by a factor r−3n (for the n-body dipole,

leading term). Ultimately the inclusion of many other bodies incoherently, leads

to the inclusion of a dielectric function, Lifshitz 1956; Dzyaloshinskii, Lifshitz, and

Pitaevskii 1961.

A few notes on these weak/dispersion-interactions are in order. Although, these

are “weak” interactions, they are ‘strong’ on the scale of thermal temperatures, and

hence play an important role in soft-matter-physics, e.g. biophysics. There is a notable

mathematical artifact of the serendipitous cancellation of many-body dispersion-forces

with their higher-multipole contributions. Yielding a superficially accurate pair-wise

dipole-dipole contributions to the complete dispersion-force.

6.2.2 Strong Molecular Interaction

When these two systems come into direct contact they intrinsically alter each

other to form one merged system instead. And thus it would be inappropriate to

describe this new system by the previously separate, but interacting pieces. Therefore,

we must brute-force diagonalize the new system’s Hamiltonian’s altogether. This is

known as the strong-correlation regime. This resulting system, then may then be

weakly interacted with another system as described before.

This intuition follows from topological arguments, analogous to a cobordism

between two manifolds. There exists a cobordism between two molecular PES joined

together via these topological artifacts, known as conical-intersections (need not

be point-like conical, but also higher dimensional seems, Martinez 2010). These

117

conical-intersections fuse two potential-energy-surfaces along a degeneracy-seam. And

are not only ubiquitous in polyatomic-molecules, but mediate radiationless-transitions

(radiation-matter coupling) and chemical-bond formation.

A characteristic feature of many chemicals is the tendency for molecules to settle

in non-perfectly-symmetric configuration, even at 0 K. Instead a symmetry-breaking

phenomena is at play is called the Jahn-Teller Effect, this effect is usually mediated by

a conical-intersection, which usually occupies the symmetric point (usually yielding a

potential-energy degeneracy), leaving the molecule with a choice of nearby minima.

Therefore, if we wish to model a change in chemistry (chemical reactions, or

chemistry), strong-interaction/multi-reference methods are a necessity.

6.2.3 Computational Methods

The holy-grail is the exact-diagonalization of the whole chemical-Hamiltonian. Of

course we have discussed this is essentially infeasible. Therefore, many approximate

solutions exist. In nature, most molecules are near their equilibrium configuration,

in local energy minima. In these portions of the PES, so-called single-reference

methods do an excellent job capturing this weak-correlation, e.g. Hartree-Fock

(exchange only), Coupled-Cluster, truncated-excitation-CI (e.g. CISD), and Kohn-

Sham Theories. For situations in the strong-regime, multi-reference methods are

required. Their are multi-reference generalizations of the aforementioned methods,

however the gold-standard in this regime, in quantum-chemistry, is the Complete-

Active-Space-2nd-Order-Perturbation-Theory (CASPT2), as developed by Roos et

118

al. 1982; Anderson, Malmqvist, and Roos 1990. Inside the active space, tensor-

network, Gray and Chan 2022, or Density-Matrix-Renormalization-Group (DMRG),

Ma, Schollwöck, and Shuai 2022a, algorithms can be used for efficient diagonalization.

These multi-reference methods are still an active area of research, and are notoriously

known for a priori chemical-knowledge for best results.

6.3 Potential Energy Surface

The Potential-Energy-Surface (PES) is a scalar function on the nuclei’ configura-

tion space, Teufel 2003. The PES is strictly different for all possible combinations

of nucleons and electron count. However, the PES may have many layers, one for

each electronic excited state, e.g. fig. 22, and therefore it may also be called a

spectra. The PES is largely continuous, with possible cusp/non-differentiable points

of a conical-intersection’s seam. A generic PES, is not represented by some analytic

function for all points. However, one can coarse grain the PES, by sampling it, e.g.

by a equally spaced lattice, only to implement interpolation schemes to get the points

in-between.

119

en
er

gy
−→

coordinate−→

T1

S1

T0

S0

continuum

Figure 22. Above is a Cartoon Depiction of a Hypothetical Potential Energy
Surface (PES), the Vertical-axis Being Energy, While the Horizontal-axis Being a
Reaction Coordinate (Defined by Nuclei Distances). In this Figure, Four Curves are
Shown: Ground-State Singlet (Solid Curve, S0), its Associated Triplet State (Dotted
Curve, T0), An Excited Singlet State (S1), and another triplet state (dashed curve,
T1). The Gray Shading Region, Bounded By the Uppermost Curve is the
Ionization/Continuum Threshold.

6.3.1 Black-Box Decomposition of the Potential Energy Surface

The interatomic forces in real-systems are quite complicated to understand from at

an ab initio level. Therefore, beyond rare-gas-solids, the concept of Force-Fields (FF)

arose to describe a “black-box” algorithm calibrated to empirical-data (or en masse ab

initio Kohn-Sham data). This was done in roughly 3 generations: traditionally-fitted

potentials (AMBER, J. Wang et al. 2004, CHARMM, Vanommeslaeghe et al. 2010),

bond-order/reactive potentials (Tersoff, Tersoff 1988, ReaxFF, Senftle et al. 2016),

machine-learning-potentials (Behler-Parrinello, Behler and Parrinello 2007). This kind

120

of has the unsatisfying “black-box” feature, which does not make it easily amendable

(e.g. excited states) nor can their accuracy be systematically improved.

6.3.2 Atomic Cluster Expansion & Simplicial-Decomposition

Interestingly, the larger intrinsic n-body dispersion/weak interactions contribute a

smaller and smaller amount of the cohesive energy. However, this is the opposite for

strong interactions which contribute more, i.e. are excited by higher-energy photons.

Therefore, we conclude that many-body cutoff is 2 more than the valency of the

neutral-nuclei involved (e.g. carbon’s valency is 4, so consider 6-body interactions).

Suppose we have 1 million carbon atoms, with 6 electrons each, in a poor orbital

basis (2 orbitals per electron), then our Chemical-Hamiltonian will have: ≈ 2.04×

103612356 terms. Again this problem is intractable. Suppose only consider weak-

interactions, then we may use the atomic approximation, and if we include all N

atoms, this system would like an intrinsic N -fold interaction, along with all the other

many-body interactions yielding 2N terms. Hence the classical equations when taking

into account all intrinsic many-body interactions also exponentiates, similar to the

quantum-systems.

For MD simulations, we consider a potential-energy with pair-wise and greater

interactions (that is we relegate this to the chemical-potential and the kinetic-energy).

As total energy is conserved, the flow of kinetic energy into potential energy yields

the dynamics we desire. We may expand and partition the system’s total energy in

121

terms of many-body contributions:

E = E1 + E2 + E3 + E4 + · · ·+ En (6.1)

=
1

1!
Vi(R

x
i) +

1

2!
Vij(R

x
ij) +

1

3!
Vijk(R

x
ijk) + · · ·+ 1

n!
Vijk···z(R

x
ijk···z) (6.2)

Above Rx
ijk···z are displacement-vectors (or tensors), in the multi-dimensional limit

they represent simplices. Therefore the n-dimensional interaction is tabulated by

a n-dimensional dense-array. And the n-body connectivity-structure is given by a

n-dimensional sparse-array. My original idea, not implemented, was to tabulate the

interactions of all possible atoms truncated at a given n-body level . For instance for

hydrogen-peroxide (H2O2), we would calculate the following interactions in vacuum:

VH, VO, VHH, VHO, VOO, VHHO, VHOO, VHHOO (order does not matter). The issue with

this native method, is the immediate atomic environmental are extremely important.

Atoms are polarizable in the weak-limit, and change behavior dramatically in the

strong-limit with covalent-bonds.

Interestingly, parallel to my early work, Drautz 2019; Bachmayr et al. 2019

developed a new formalism, as of 2019, called the Atomic-Cluster-Expansion (ACE).

His work was a far reaching and more developed form of my idea, originally building

on the work of tensor-potentials, developed by Shapeev 2016, a few years prior to

Drautz’s work. Instead Drautz/ACE considers pseudo-hydrogenic (1-body) basis

functions for each atom i and its immediate neighborhood atoms j:

Ai
nℓµ(Rijx) =

∑
j

radial︷ ︸︸ ︷
Rnℓ

BiBj
(Rij)

angular︷ ︸︸ ︷
Yℓ(Rijx) = A

(2) i
Bα

122

A is essentially a 3-index/axis tensor42, as a function of pair-displacement Rijx,

consisting of an atomic-index i (lowercase Latin letters), atomic-state-index B (the

‘uncoupled’/hyperedge index, script-capital Latin letters), and α (the ‘coupled’ index,

Greek-letters). After this tensor is found for-all atoms i, above α = {nℓ}, a reshape for

organization of the indices. Using this 2-body function we may obtain the many-body

state for all atoms i by the following tensor-hyper-contraction:

A
(n) i
Aαβ···ω =

n−1∏
α

A
(2) i
Aα .

In order to obtain the energy or gradient, we require the tensor-hypercontraction of

the n-body state-function (n− 1 2-body state-functions) to the n-body expansion-

coefficients, c(n):

Ei =

2-body︷ ︸︸ ︷
c(1)Bα Ai

Bα +

3-body︷ ︸︸ ︷
c
(2)B
αβ Ai

BαA
i
Bβ +

4-body︷ ︸︸ ︷
c
(3)B
αβγ A

i
BαA

i
BβA

i
Bγ + · · ·+

n-body︷ ︸︸ ︷
c
(n)B
αβ···ω

n−1∏
Ai

Bα .

The expansion-coefficients (c(1), c(2), · · · c(n)) are universal given the basis-set (larger

basis sets yield larger expansion coefficients), and act as the force-field parameters.

As of this writing, in 2023, this is still an active area of research, specifically on

the connection of machine-learning potential into the ACE, Lysogorskiy et al. 2023.

The primary idea is to use ACE formalism to constrain the machine-learning space,

Batzner et al. 2022; Batatia et al. 2022.

42Quite reminiscent to the MPS tensors.

123

6.3.3 PES Hopping

Classical dynamics flows on a single PES layer. However, one can also conceive of

pseudo-classical dynamics which hops between layers. The PES hopping can occur

via excitations xor spontaneously, as done in Tully 1990. The precise PES Hopping

amplitude is given by the off-diagonal terms of the Non-Adiabatic-Coupling (NAC)

vector43. Approximations to this amplitude based on the diagonal components and

the nuclei’s kinetic-energy are given by Landau-Zener model, which has been modified

by Nakamura and coworkers, Nakamura 2012.

6.4 Cell-list and NN-interactions

Suppose we have a 2-dimensional (can be arbitrary dimension) system, with all

particles located in a region given by the blue-box.

43Also known as the derivative-coupling.

124

Now let’s partition our system into smaller piece:

λ

Within each box, i.e. intra-interactions, all possible interactions are computed (hence

dense). However, inter-box, i.e. inter-interactions, are sparse and these are given

by the following triangular-lattice (dashed-brown connections above) that includes

the typical cubic Nearest-Neighbor (NN) and Next-Nearest-Neighbors (NNN), these

interactions form a network/graph, whose structure is captured by a sparse-tensor

ΛIJ (symmetric with interchange I ↔ J). It’s worthy to note that any graph/network,

defined by ΛIJ , of interactions may be computed in this manner (including those

with periodic-boundary-conditions).

This partition is computed by projecting the re-scaled 1-body-coordinates Rix to

integers44. In order to determine the box in which the atom belongs we sparse-reshape

(tuple-to-integer, discussed in a previous chapter, shape being the shape of the box

stack):

Bi = reshape
(
⌊λRix⌋

)
.

44Such that the cell-list is in units of the scale.

125

This vector Bi, yields the parent-box for every atom, however, the inverse can be

easily found (by the inverse-argument-sort, and domain-search as given in sparse-

partial-tracing). This ultimately leads to the irregular sparse-tensor45: CI
i , a yielding

given the box-enumeration and belonging atoms. Hence initializing a cell-list scales

pseudo-linearly ∼ N logN , and should be re-initialized based on anticipated drift.

Now let’s consider the effect of the cutoff/scale-choice λ. Suppose we have N atoms

with M boxes (that are evenly divided by λ) then for bulk-atoms our interaction

reduces the number of interactions by 9
M2 (more boxes, less of the total interaction is

considered). The cutoff/scale is due to approximate-zero London interactions and is

approximately: λ ∼ 15 Å for real-biological systems. This algorithm may be compared

to other neighbor lists like Verlet-Neighbor-List. Suppose we have a Verlet-Neighbor-

List (radial-cutoff) cutoff of λVerlet, then our cell-list scale is λcell-list =
2
3
λVerlet.

For many-body interactions, the cutoff may be made much smaller because as

these interactions have a higher power-law decay in their interaction (go to zero much

faster). Therefore, we may use another cell-list, with smaller cutoff λ ∼ ℓatomic bond,

to generate all possible pair interactions. Because we have already considered all

pair-interactions, these can be used to determine which many-body-interactions we

wish to include. In the spirit of the simplicial-complex paradigm, all many-body

interactions considered are those which are born from those pair-interactions.

45Precise data-structure is that of PyTree, jagged/ragged-tensor.

126

6.5 Classical Molecular Dynamics Algorithm

Now let’s describe our combined algorithm to compute the molecular-dynamics for

potentially excited state molecules. We abbreviate this algorithm Fitted-Interpolated-

Tabulated-Molecular-Dynamics (FIT-MD). Let’s begin by describing the straight-

forward pair-interactions. The system over consideration has the following character-

istics:

• State: {Rix, Ai}: Coordinates & Unary-atom-types,

• Cell-list: {ΛIJ , BJj}: cell-list & cell-domain,

• Potential: {E naR, u}: tabulated-potential, potential-units.

From these we wish to obtain E , fix, and gar: Energy (scalar), forces (3-vector for

every atom), and pair-correlation function respectively. We will demonstrate how

FIT-MD, once again, reduces to sparse-dense tensor-contractions.

6.5.1 ∼ N2 Pair-force Calculation

We begin by computing the displacement-matrix (Rijx), and from it the distance

matrix (Rij) decomposed into its integer part Nij and remainder decimal part dxij:

Rijx = Rix −Rjx = (Rix ⊗ 1j − 1i ⊗Rjx)ijx

Nij, dxij = Rij = |Rijx|ij = |
∑
x

(Rijx)
2|ij .

Therefore we need Nij, dxij, Rijx. Next, we need to compute the pair-type aij from

the two unary atom-types {Ai, Aj}. This is done by the sparse-reshape (symmetric

127

including diagonal) of the Cartesian-product (|| denotes the concatenation operation):

Aijσ = (Ai × Aj) = ((Ai ⊗ 1j) || (1i ⊗ Aj))ijσ → Aijσ → aij .

All together, we require: Ospace ∼ 6N2 in memory. Using these we may compute46

the energy E and force fix (with linear interpolation):

E =
1

2

∑
ij

(
E [0, aij, Nij]− E [1, aij, Nij]

dxij
u

)
ij

fij = (EnAR[1, aij, Nij] + (EnAR[1, aij, Nij + 1]− EnAR[1, aij, Nij]) ∗ dxij)

fix = fijRijx .

6.5.2 Sparse Pair-force Calculation

We follow a similar procedure as the ∼ N2 algorithm, but within each cell pair I

and J :

RIJ
ijx = ΛIJ

(
Bi

IR
ix −Bj

JR
jx
)

N IJ
ij , dx

IJ
ij = RIJ

ij = |RIJ
ijx|IJij .

Next, we compute the pair-atomic-types:

AIJ
ijσ =

(
AI

i × AJ
j

)
=
(
(AI

i ⊗ 1Jj) || (1Ii ⊗ AJ
j)
)
ijσ

→ AIJ
ijσ → aIJij .

46Note the composition: (E [0, aij , Nij])ij , yields a tensor of the same shape of the nested tensor.

128

Similarly, using these we may compute the energy E and force fix:

E =
1

2

∑
IJij

(
E [0, aIJij , N

IJ
ij]− E [1, aIJij , N

IJ
ij]

dxIJij
u

)

f IJ
ij =

(
EnAR[1, a

IJ
ij , N

IJ
ij] + (EnAR[1, a

IJ
ij , N

IJ
ij + 1]− EnAR[1, a

IJ
ij , N

IJ
ij]) ∗ dxIJij

)IJ
ij

fix = f IJ
ij R

IJ
ijx .

Each cell-pair {I, J} is parallelizable (achieved over a parallel-for-loop over IJ).

Therefore in a distributed computing setting, the potential is known E naR along all

nodes along with the relevant atomic-parameters, e.g. coordinates.

6.5.3 For Many-body Force Calculation

The objective, although not explicitly implemented was to include 3-body, 4-body,

and perhaps higher order atomic terms, in order to model molecular covalent bonding.

For Lennard-Jones particles, we may define this pair-wise interaction easily, however

the potential function such as E naR1R2R3 (3-body, 3-body-type a) could also be treated.

Determining the proper form of E naR1R2R3 , and higher order terms, is still a challenge

and active area of research.

6.5.4 An Example Run

We consider a 18× 12× 10 FCC unit-cell Argon crystal dynamics using the afore-

mentioned algorithm. We compute the energy as a function of time to demonstrate

stability, fig. 23, and the correlation function, fig. 24, to demonstrate the dynamics.

129

0.0 0.2 0.4 0.6 0.8 1.0
·106

0

0.5

1

1.5

2

·10−4

time (a.u.)

E
[t
]−

E
[0
]
(a

.u
.)

Figure 23. Plotted is the Energy-difference (When Compared to the First
Time-step) in Time. Ideal Situation is a Perfectly Horizontal Line. This is On 1
CPU For A 10 Minute Simulation of Approximately 4300 Argon Atoms for 5000
Time-steps. The Algorithm is the Aforementioned FIT-MD, With
Linear-interpolation.

6.6 Application in Radiation-Damage

Let’s consider the Lennard-Jones solid (a solid whose large-scale cohesion is

dominated by weak-correlation effects, e.g. rare-gas-solids, with experimental data

shown in Klein and Venables 1977) irradiated by electron beams. When irradiated by

electronic xor x-ray beams, we obtain excitations whose relative strength is captured

by the inelastic spectra. Therefore, the experimental Electron-Energy-Loss-Spectrum

(EELS), Egerton 2011, gives us hints on the excitation pathways, these are given

130

0 5 10 15 20 25 30

0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

interatomic distance (a.u.)

g_
r

(a
.u

.)

Figure 24. Plotted is the Radial-Distribution-Function (RDF) of the 1st Time-step
(Blue) and Last (Orange), of the Same Simulation in Fig. 23. The Initial Stage is a
Perfect Crystal, and the Last Instance is a Slightly Thermalized Sample.

in fig. 25. We notice two kinds of peaks: excitonic (of Frenkel type, long-lived ∼ 1

ns) and an overdamped-plasmonic (density-oscillations with multiple peaks of broad

and short-lived, ∼ 1 fs, type). The local excitonic peaks are the highest narrow

peaks in all spectra, in fig. 25, they do a singlet-triplet split with greater atomic

number. The excitonic-peaks are electronic peaks to the left of the largest-width

peak (the plasmon). The delocalized/large-impact-parameter plasmon peaks have

the dominant cross-section for electron beams, the integral of these Lorentzian-like

peaks. The precise mechanism of the overdamped-plasmonic decay is an interesting

problem. However, we have simplified the discussion to consider two plasmonic

pathways/resultants: excitons or phonons (which ultimately yielded to an incoherent

temperature increase).

131

The smallest accessible electronic state is the 1st excitonic state, this results in

a new PES between itself and the other atoms. This is straight-forward PES scan

on the excited state. However, this excited state was a non-gas phase state, rather

the atom submersed in a macroscopic dielectric. Two approaches may be tried to

obtained this state: incorporation of a Screening Model, Klamt 2011 or solving a

modified Hartree-Fock algorithm.

Although, the diffraction pattern is captured in Fourier-space, the Real-Space

correlation is sufficient to extract results (à la Plancherel’s theorem). Therefore we

conduct Real-Space FIT Molecular-Dynamics simulations to include the effect of

stochastic excitonic-excitations and temperature-increase, to determine this changing

correlation-function, similar to those on fig.24. The result was in determining the

sublimation-point with-respect-to radiation exposure
(

e

Å2

)
(this sublimation-point is

duration dependent), work is in Appendix A. This work was suppose to be a stepping

stone for future work in covalently-bonded matter, i.e. molecules. In protein/polymer

EELS, the EELS contain similar features: excitons (charge-transfer, those with larger

dielectric function) and the familiar overdamped-plasmons.

6.6.1 The Exciton & Excimer Model

Now let’s return to our exciton-model. We model, excitons to be excited states of

molecules while submerged in a uniform dielectric. With respect to ab initio methods,

this may be accomplished in a variety of ways. Here we introduce one of these. This

132

8 10 12 14 16 18 20 22 24 26 28
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Energy (eV)

C
ro

ss
Se

ct
io

n
(a

rb
.

un
it

s.
)

Experimental EELS of RGS

EELS Solid Ne
EELS Solid Ar
EELS Solid Kr
EELS Solid Xe

Figure 25. This Figure Shows the EELS spectrum of RGSs as Published in Klein &
Venebles, for Neon (Red), Argon (Cyan), Krypton (Yellow), and Xenon (Violet).
Vertical-axis is Re-scaled With-respect-to Each RGS Spectra (Highest Peak of Each
is Rescaled to ‘1’).

may easily be achieved in Hartree-Fock (HF) theory47 using the domain-decomposition

COnductor-like Screening MOdel (ddCOSMO) solvation-model, introduced by Klamt

2011; Cancès, Maday, and Stamm 2013. The solution to this theory ψ is then used

as a reference in Coupled-Cluster-Singles-Doubles (CCSD), a well-known method to

capture weak-correlation effects of separated systems (e.g. of two separated Argon

47With a psuedo-potential/Effective-Core-Potentials (ECP) in order to constrain later post-HF
methods

133

atoms). However, this yields the ground state, to obtain excited states, Equation-

of-Motion-CCSD (EoM-CCSD) is used (in addition to the ground-state provided by

CCSD). The ground-state, 1st excited-state, and the lowest double excimer excited

state (denoting a double single excitation, 1 excitation on either atom) is used for

the PES.

6.7 Real-Time Molecular-Dynamics

Next, we release the electronic degrees-of-freedom, only to freeze the nuclei, to

directly interact with a real-time electromagnetic field (only for nuclei to be influenced

by a changing electronic field). This is an active area of research in electronic-structure

theory, largely called Real-Time (RT) methods, Li et al. 2020, and are useful for

studying strong fields as produced by bright lasers or concentrated electron beams,

in order to study nonlinear light-matter effects.

In RT, we can define the driving Hamiltonian-operator H(t), and take its matrix-

exponential, to form unitary evolution operators U(t, t′) = exp (−iℏH(t)dt) (upto

truncation of the Magnus series)48. As we’ve mentioned before the Hamiltonian-

operator is very sparse, however their matrix-exponential is not, while both (before

and after) state-vector are assumed to be dense. Therefore the trick of RT theory is to

use the sparse operator’s information to interpolate between both dense state-vectors.

48Such that ψ(t′) = U(t′, t)ψ(t)

134

6.7.1 Real-Time H+
2 Coherent Excitation

The simplest example of RT-HF dynamics is the coherent excitation of a 2-state

model, in this case H+
2 in the minimal basis sto-3g, provides this model. This model

was previously calculated by Li, Smith, et al. 2005. The ground state being the

bonding σ-orbital and the other (excited) state being the anti-bonding σ∗-orbital.

The differences between the two Potential Energy Surfaces, given by the interatomic

separation is shown below, fig. 26.

0.5 1 1.5 2 2.5 3

0

0.5

1

Interatomic Distance (Å)

E
ne

rg
y

(a
.u

.)

PES of H+
2 /HF/sto-3g

ground state
excited state

Figure 26. Above is the PES of H+
2 /HF/STO-3G Basis, Showing Both Electronic

States, σ and σ∗.

At rest (the minimum PES value), the energy difference is δE = 0.4764. Therefore

by tuning to this frequency interesting dynamics can occur. So given the E-field

135

(ω0 = 0.4764 a.u. = 12.9635 eV = 95.64 nm light, |E| = 0.05 a.u.), we intend to drive

the cation’s electronic dynamics (while holding the nuclei still). The results are shown

in figure 27, initially the ground state is fully occupied, as irradiation continues the

excited state gets populated (while the ground state gets de-populated). Eventually,

oscillations occurs at the Rabi frequency ω = 0.4764.

P1(t) = 1− P2(t) (6.3)

P2(t) =

(
Γ2

Γ2 + (ω−ω0)2

4

)
sin2 (ω12t) (6.4)

the occupation of the σ and σ∗ orbitals follow the cos2(ωt) and sin2(ωt) shape as

suggested by equations 6.3 and 6.4. This is shown in fig. 27, which shows the time-

varying electric field and a Runge-Kutta integration schemes for the RT dynamics

with time-step dt = 0.2 a.u.

6.7.2 Ehrenfest Dynamics

Now lets finally release the nuclei, along with the electrons, to obtain the full

molecular-dynamics (light, electronic, and nuclei dynamics). As mentioned in an

earlier section, there are two paths of achieving this with semi-classical nuclei: Tully

(surface-hopping) xor Ehrenfest (mean-field) Dynamics, Li, Tully, et al. 2005. Here

we consider the latter, which defines the classical potential from the incoherent sum of

the potentials weighted by the electronic density-matrix fclassical(r, t) = fpp(r)Dpq(t).

Applying this to the aforementioned H+
2 /sto-3g system we obtain fig. 28(a) for a

136

variety of electric-field-strengths. As is easily noticed the period oscillation slowly

grows with increasing field-strength until an asymptotic point corresponding to an

oscillation with infinite period, indicating a broken bond. The next figure 28(b) shows

the period of oscillation as a function of the electric-field strength, clearly showing

this asymptote.

6.8 Real-Time Radiation-Damage

Radiation damage is an unavoidable outcome of experimental probing of real

systems. It manifests as intrinsic noise in experimental data, stemming from undesired

information, which, in our case, is inelastic scattering (For spectroscopists, the

situation is reversed, with elastic scattering considered noise, e.g., in phononic

spectroscopy). Unlike the RGS simulation, we consider molecular scale effects of

irradiation. The real-time formalism above is suitable for single-reference, or weakly,

correlated systems, however as we’ve mentioned bond-breaking requires the strong

correlation formalism solved statically by CASPT2 or DMRG/Tensor-Networks, as

developed by Chan and Sharma 2011; Ma, Schollwöck, and Shuai 2022b. These

methods can be implemented for small-scale molecules/systems, this is different from

the earlier Lennard-Jones analysis. Ultimately, if sufficiently bright-beams, in the

long-time limit, we expect the system to be completely transition into the Warm-

Dense-Matter (WDM) state, as described in Dornheim, Groth, and Bonitz 2018;

137

Dornheim et al. 2023. Although interesting for nuclear and astro-physical systems,

by the time the WDM state is reached, the original condensed system is nonexistent

(and any additional probe only characterizes this state). Either way, sparsity49

undoubtedly plays an important and necessary role in untangling the general problem

of nonequilibrium and nonlinear dynamics associated with Radiation-Damage.

49In: atomic distribution, electronic Hilbert-space, PES-interpolation, real-time propagation, and
etc... as shown in this work.

138

(a)

0 50 100 150 200
−6

−4

−2

0

2

4

6
·10−2

Time (a.u.)

E
le

ct
ri

c
F
ie

ld
(a

.u
.)

Electric Field Temporal Profile

(b)

0 50 100 150 200

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Time (a.u.)

O
cc

up
at

io
n

H+
2 /RK-RTHF/sto-3g

ground state
excited state

Figure 27. Above are Shown the Irradiation By the Electric-field Shown (Top) of
the 2-state H+

2 , By Real-Time Runge-Kutta (An Approximation for the Unitary
Integration) Integration (bottom).

139

(a)

0 10 20 30 40
0

0.2

0.4

0.6

0.8

Time (fs)

In
te

ra
to

m
ic

D
is

ta
nc

e
(Å

)

E-field Affect on H+
2 /RT-HF/sto-3g

|E| = 0.09
|E| = 0.10
|E| = 0.12
|E| = 0.124
|E| = 0.12763

,

Figure 28. The Top Plot Shows the Interatomic Distance of the Same Cation,
Displaying the Dynamics Under Various Pulse Intensities. This Clearly Shows an
Increase to the Molecules Vibrational Period, Until an Infinite Period is Achieved at
the Asymptotic Limit Leading to Dissociation. While the Bottom Plot Displays a
Function of Vibrational Period to the Exposure Electric Field Strength.

140

Chapter 7

CONCLUSION

The original motivation for developing and researching these algorithms was

radiation damage, where bright sources illuminate molecules, leading to nonlinear

interactions with the sample. Understanding these nonlinear interactions is the core

of radiation damage study, in both Ultrafast-Xray-Diffraction (UXD) and Ultrafast-

Electron-Diffraction (UED)50 The motivating idea is diffraction-before-destruction

method was suggested by the Janos group, Neutze et al. 2000, (and others earlier)

for x-ray lasers (UXD). These experiments use the diffraction pattern to capture

structural (also dynamic, i.e. spectra) information. Understanding these mechanisms

required a quantum understanding of electron motion, involving multiple disciplines.

It became apparent that tensor contraction methods and sparsity are widespread in

chemistry, physics, and computer science, all crucial for this research. The primary

goal of this thesis is to emphasize the importance of sparse tensor methods for practical

computational physics. We have illustrated three applications in quantum chemistry,

tensor networks, and molecular dynamics.

Although sparse-tracing algorithms presented here give a performance boost

for very sparse arrays on a single CPU, the primary difficultly with unstructured-

sparse-tensor contractions is the Parallelization-issue, as noticed by Kanakagiri and

Solomonik 2023. Unlike dense-array contractions which are essentially trivially

50Also for their ‘Microscope’ mode.

141

parallelizable, sparse-array contractions involve irregular, potentially of a large extent,

pieces which are difficult to distribute evenly along a distributed computing setting

(itself a sparse-tensor, a network). This is the same difficultly for dense-sparse array-

contractions. One limitation of current sparse-sparse tensor/array algorithms is the

apparent lack of suitable Application-Specific Integrated Circuit (ASIC) development.

These algorithms rely on a branched programming architecture, like binary search,

which makes them suitable for CPU-like tasks rather than GPU tasks. It’s worth

noting that the entire CPU core functionality might not be required for the entire

sparse-sparse algorithm.

Pioneered by White 1992, the use of tensor decompositions for QMB (Quantum

Many-Body) operators and states provides a systematic method to solve exponentially

difficult QMB problems approximately while increasing accuracy. This forms the core

of the tensor network field. In their compressed form, these operators still exhibit

extreme unstructured array sparsity, primarily filled with zeros. Compressed forms of

QMB-states typically consist of a tensor-network of dense-tensors. Symmetries are

crucial in transforming these dense tensors into block-sparse structures. However, it’s

possible to discover even sparser tensor networks (with a higher contraction-edge/node

ratio), further compressing the QMB state. Future work may involve finding such

sparser tensor networks, like MERA, beyond the one explored here, which is the

MPS. Electronic structure in quantum chemistry, especially in its strong-correlation

(multi-reference) form, is an exponentially difficult task, as it’s a Quantum Many-Body

(QMB) problem. We’ve developed a method to construct a Selected Configuration

Interaction (SCI) method, a specific type of active-space method, to accurately choose

142

relevant configurations for future work. This active space is analogous to the MPS

bond dimension but offers more precise selection.

Sparsity is observed in molecular dynamics where the potential energy surface

can be sparsely tabulated and interpolated, atom interactions are limited to a cutoff

neighborhood, and force calculations can be represented using sparse tensor hyper-

contractions. The main challenge lies in connecting strongly correlated ab initio

chemical information with atomic cluster expansion coefficients.

These methods are however completely general for many other uses. It is inter-

esting that although, the universe has a strictly “dense” description51, it is somehow

approximately described by a sparse description.

51Every interaction is included, e.g. an apple on Earth interacts with M87.

143

REFERENCES

Affleck, Ian. 1985. “Large-n Limit of SU(n) Quantum “Spin” Chains.” Phys. Rev. Lett.
54 (10): 966–969. https://doi.org/10.1103/PhysRevLett.54.966.

Affleck, Ian, and Andreas W. W. Ludwig. 1991. “Universal noninteger “ground-state
degeneracy” in critical quantum systems.” Phys. Rev. Lett. 67 (2): 161–164.
https://doi.org/10.1103/PhysRevLett.67.161.

Ananthanarayanan, Rajagopal, Steven K Esser, Horst D Simon, and Dharmendra S
Modha. 2009. The Cat is out of the Bag: Cortical Simulations with 109 neurons,
1013 synapses.

Anderson, K, Per Aake Malmqvist, and B Roos. 1990. “Second-order perturbation
theory with a CASSCF reference function.” J. Phys. Chem. C 94:5483.

Arnold, Douglas N, Richard S Falk, and Ragnar Winther. 2006. “Finite Element
Exterior Calculus, Homological Techniques, and Applications.” Acta numerica
15:1–155.

Azevedo, Frederico AC, Ludmila RB Carvalho, Lea T Grinberg, José Marcelo Farfel,
Renata EL Ferretti, Renata EP Leite, Wilson Jacob Filho, Roberto Lent, and
Suzana Herculano-Houzel. 2009. J. Comp. Neurol. 513 (5): 532–541.

Bachmayr, M, G Csanyi, R Drautz, G Dusson, S Etter, C van der Oord, and C Ort-
ner. 2019. “Atomic Cluster Expansion: Completeness, Efficiency and Stability.”
arXiv:1911.03550, arXiv.

Barabási, Albert-László, and Réka Albert. 1999. “Emergence of Scaling in Random
Networks.” Science 286 (5439): 509–512.

Batatia, Ilyes, Simon Batzner, Dávid Péter Kovács, Albert Musaelian, Gregor NC
Simm, Ralf Drautz, Christoph Ortner, Boris Kozinsky, and Gábor Csányi. 2022.
arXiv:2205.06643, arXiv.

Batzner, Simon, Albert Musaelian, Lixin Sun, Mario Geiger, Jonathan P Mailoa,
Mordechai Kornbluth, Nicola Molinari, Tess E Smidt, and Boris Kozinsky. 2022.
Nature Communications 13 (1): 2453.

144

https://doi.org/10.1103/PhysRevLett.54.966
https://doi.org/10.1103/PhysRevLett.67.161
Https://arxiv.org/pdf/1911.03550.pdf
Https://arxiv.org/pdf/2205.06643.pdf

Beach, K. S. D., Fabien Alet, Matthieu Mambrini, and Sylvain Capponi. 2009. “SU(N)
Heisenberg model on the square lattice: A continuous-N quantum Monte Carlo
study.” Phys. Rev. B 80 (18): 184401. https://doi.org/\href{https://link.aps.
org/doi/10.1103/PhysRevB.80.184401}{10.1103/PhysRevB.80.184401}.

Behler, Jörg, and Michele Parrinello. 2007. “Generalized neural-network representation
of high-dimensional potential-energy surfaces.” Phys. Rev. Lett. 98 (14): 146401.

Bennett, Charles H., Herbert J. Bernstein, Sandu Popescu, and Benjamin Schumacher.
1996. “Concentrating partial entanglement by local operations.” arXiv:quant-
ph/9604024, Phys. Rev. A 53 (4): 2046–2052. https://doi.org/10.1103/PhysRevA.
53.2046.

Bethe, Hans. 1931. “Zur theorie der Metalle: I. Eigenwerte und eigenfunktionen der
linearen atomkette.” Zeitschrift für Physik 71 (3-4): 205–226.

Bollobás, Béla. 1998. Modern Graph Theory. Vol. 184. Springer Science & Business
Media.

Booth, George H, Alex JW Thom, and Ali Alavi. 2009. J. Chem. Phys. 131 (5).

Born, Max. 1955. “Statistical Interpretation of Quantum Mechanics.” Science 122
(3172): 675–679.

Born, Max, Werner Heisenberg, and Pasqual Jordan. 1926. “On Quantum Mechanics
II.” Z. Phys 35 (8-9): 557–615.

Bradbury, James, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary,
Dougal Maclaurin, George Necula, et al. 2018. JAX: composable transformations
of Python+NumPy programs. V. 0.3.13. http://github.com/google/jax.

Bretto, Alain. 2013. Hypergraph Theory: An Introduction. Springer.

Bridgeman, Jacob C, and Christopher T Chubb. 2017. “Hand-waving and Interpretive
Dance.” J. Phys. A 50 (22): 223001.

Brower, Richard C, George Fleming, Andrew Gasbarro, Timothy Raben, Chung-I
Tan, and Evan Weinberg. 2016. “Quantum Finite Elements for Lattice Field
Theory.” arXiv preprint arXiv:1601.01367.

145

https://doi.org/\href{https://link.aps.org/doi/10.1103/PhysRevB.80.184401}{10.1103/PhysRevB.80.184401}
https://doi.org/\href{https://link.aps.org/doi/10.1103/PhysRevB.80.184401}{10.1103/PhysRevB.80.184401}
Https://arxiv.org/pdf/quant-ph/9604024.pdf
https://doi.org/10.1103/PhysRevA.53.2046
https://doi.org/10.1103/PhysRevA.53.2046
http://github.com/google/jax

Brower, Richard C, George T Fleming, Andrew D Gasbarro, Dean Howarth, Timothy
G Raben, Chung-I Tan, and Evan S Weinberg. 2021. “Radial Lattice Quantization
of 3D ϕ 4 field theory.” Phys. Rev. D 104 (9): 094502.

Buczyński, Jarosław, and Joseph M Landsberg. 2013. “Ranks of Tensors and a
Generalization of Secant Varieties.” Linear Algebra and its Applications 438 (2):
668–689.

Calabrese, Pasquale, and John Cardy. 2004. “Entanglement Entropy and Quantum
Field Theory.” arXiv:hep-th/0405152, JSTAT 2004 (06): P06002.

Cancès, Eric, Yvon Maday, and Benjamin Stamm. 2013. “Domain Decomposition for
Implicit Solvation Models.” J. Chem. Phys. 139 (5).

Candanedo, Julio. 2023a. “notes on Generalized Configuration-Interaction in python.”
chemrxiv-2023-9gch7, chemRxiv 32.

. 2023b. “Sparse Partial-Tracing.” arXiv preprint arXiv:2303.10784.

Candès, Emmanuel J, Justin Romberg, and Terence Tao. 2006. “Robust uncertainty
principles: Exact signal reconstruction from highly incomplete frequency infor-
mation.” IEEE Transactions on information theory 52 (2): 489–509.

Chan, Garnet Kin-Lic, and Sandeep Sharma. 2011. “The Density Matrix Renormal-
ization Group in Quantum Chemistry.” Annual review of physical chemistry
62:465–481.

Choy, Christopher, JunYoung Gwak, and Silvio Savarese. 2019. 4D Spatio-Temporal
ConvNets: Minkowski Convolutional Neural Networks.

Davidson, Ernest R, and William J Thompson. 1993. “Monster Matrices: their
eigenvalues and eigenvectors.” Computers in Physics 7 (5): 519–522.

Dill, Ken, and Sarina Bromberg. 2010. Molecular Driving Forces: statistical thermo-
dynamics in biology, chemistry, physics, and nanoscience. Garland Science.

Dornheim, Tobias, Simon Groth, and Michael Bonitz. 2018. “The uniform electron
gas at warm dense matter conditions.” Physics Reports 744:1–86.

146

Https://arxiv.org/pdf/hep-th/0405152.pdf
Https://doi.org/10.26434/chemrxiv-2023-9gch7
https://arxiv.org/abs/2303.10784

Dornheim, Tobias, Zhandos A Moldabekov, Kushal Ramakrishna, Panagiotis Tolias,
Andrew D Baczewski, Dominik Kraus, Thomas R Preston, David A Chapman,
Maximilian P Böhme, Tilo Döppner, et al. 2023. “Electronic Density Response
of Warm Dense Matter.” Physics of Plasmas 30 (3).

Drautz, Ralf. 2019. Phys. Rev. B 99 (1): 014104.

Dummit, David Steven, and Richard M Foote. 2004. Abstract algebra. Vol. 3. Wiley
Hoboken.

Dzyaloshinskii, Igor E, Evgenii M Lifshitz, and Lev P Pitaevskii. 1961. “The General
Theory of van der Waals Forces.” Advances in Physics 10 (38): 165–209.

Egerton, Ray F. 2011. Electron energy-loss spectroscopy in the Electron Microscope.
Springer Science & Business Media.

Einstein, Albert. 1916. “The Foundation of the General Theory of Relativity.”
Https://einsteinpapers.press.princeton.edu/vol6-trans/7, on page 158. Annalen
der Physik 49:769–822.

El Gamal, Abbas, and Young-Han Kim. 2011. Network Information Theory. Cam-
bridge University Press.

Epifanovsky, Evgeny, Michael Wormit, Tomasz Kuś, Arie Landau, Dmitry Zuev, Kirill
Khistyaev, Prashant Manohar, Ilya Kaliman, Andreas Dreuw, and Anna I Krylov.
2013. “New implementation of high-level correlated methods using a general
block tensor library for high-performance electronic structure calculations.” J.
Comput. Chem. 34,

Fawzi, Alhussein, Matej Balog, Aja Huang, Thomas Hubert, Bernardino Romera-
Paredes, Mohammadamin Barekatain, Alexander Novikov, Francisco J R Ruiz,
Julian Schrittwieser, Grzegorz Swirszcz, et al. 2022. “Discovering faster matrix
multiplication algorithms with reinforcement learning.” Nature 610 (7930): 47–53.

Fradkin, Eduardo. 2013. Field Theories of Condensed Matter Physics. Cambridge
University Press.

Führinger, Max, Stephan Rachel, Ronny Thomale, Martin Greiter, and Peter Schmit-
teckert. 2008. “DMRG studies of critical SU(N) spin chains.” arXiv:0806.2563,
Annalen der Physik 520 (12): 922–936.

147

Https://einsteinpapers.press.princeton.edu/vol6-trans/7
Https://arxiv.org/pdf/0806.2563.pdf

Ganahl, Martin, Jackson Beall, Markus Hauru, Adam GM Lewis, Tomasz Wojno, Jae
Hyeon Yoo, Yijian Zou, and Guifre Vidal. 2023. “Density Matrix Renormalization
Group with Tensor Processing Units.” PRX Quantum 4 (1): 010317.

Gauthé, Olivier. 2019. “Tensor Network Methods for SU(N) Spin Systems.” PhD diss.,
Université Paul Sabatier-Toulouse III.

Georgi, Howard. 1999. Lie algebras in particle physics. Westview Press.

Gray, Johnnie. 2018. “quimb: A python package for quantum information and many-
body calculations.” JOSS 3 (29): 819.

Gray, Johnnie, and Garnet Kin Chan. 2022. “Hyper-optimized compressed contraction
of tensor networks with arbitrary geometry.” arXiv:2206.07044, arXiv.

Gustavson, Fred G. 1978. “Two fast algorithms for sparse matrices: Multiplication
and permuted transposition.” ACM TOMS 4 (3): 250–269.

Haldane, F Duncan M. 1983. “Continuum dynamics of the 1-D Heisenberg antiferro-
magnet.” Phys. Lett. A 93 (9): 464–468.

Halson, James J, Robert J Anderson, and George H Booth. 2020. arXiv:2007.11939v1,
Molecular Physics 118 (19-20): e1802072.

Hatcher, Allen. 2005. Algebraic Topology. Cambridge University Press.

Hauru, Markus, and Guifre Vidal. 2018. “Uhlmann Fidelities from Tensor Networks.”
arXiv:1710.05397v2, Phys. Rev. A 98 (4): 042316.

Heisenberg, Werner. 1928. “Zur Theorie des Ferromagnetismus.” Zeitschrift für Physik
49:619–636.

Herculano-Houzel, Suzana, and Roberto Lent. 2005. “Isotropic fractionator: a simple,
rapid method for the quantification of total cell and neuron numbers in the
brain.” Journal of Neuroscience 25 (10): 2518–2521.

Herculano-Houzel, Suzana, Bruno Mota, and Roberto Lent. 2006. “Cellular scaling
rules for rodent brains.” PNAS 103 (32): 12138–12143.

148

Https://arxiv.org/pdf/2206.07044.pdf
Https://arxiv.org/pdf/2007.11939.pdf
Https://arxiv.org/pdf/1710.05397.pdf

Holmes, Adam A, Norm M Tubman, and CJ Umrigar. 2016. arXiv:1606.07453, JCTC
12 (8): 3674–3680.

Israelachvili, Jacob N. 2011. Intermolecular and Surface Forces. Academic Press.

Jouppi, Norman P, Doe Hyun Yoon, Matthew Ashcraft, et al. 2021. “Ten Lessons From
Three Generations Shaped Google’s tpuv4i: Industrial Product.” In Proceedings
of the 48th annual ISCA, 1–14. IEEE.

Jouppi, Norman P, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
et al. 2017. “In-Datacenter Performance Analysis of a Tensor Processing Unit.”
In Proceedings of the 44th annual ISCA, 1–12.

Kanakagiri, Raghavendra, and Edgar Solomonik. 2023. “Distributed-memory DMRG
via sparse and dense parallel tensor contractions.” arXiv:2307.05740, arXiv.

Klamt, Andreas. 2011. “The COSMO and COSMO-RS solvation models.” Wiley
Interdiscip. Rev. Comput. Mol. Sci. 1 (5): 699–709.

Klein, Michael L., and John A. Venables. 1977. “Rare Gas Solids.” Academic Press
Inc. London.

Laflorencie, Nicolas, Erik S Sørensen, Ming-Shyang Chang, and Ian Affleck. 2006.
“Boundary Effects in the critical scaling of entanglement entropy in 1D systems.”
arXiv:cond-mat/0512475, Phys. Rev. Lett. 96 (10): 100603.

Lee, John M. 2012. Introduction to Smooth Manifolds. Springer.

Levine, Daniel S, Diptarka Hait, Norm M Tubman, Susi Lehtola, K Birgitta Whaley,
and Martin Head-Gordon. 2020. arXiv:1912.08379, JCTC 16 (4): 2340–2354.

Li, Xiaosong, Niranjan Govind, Christine Isborn, A Eugene DePrince III, and Kenneth
Lopata. 2020. “Real-time time-dependent electronic structure theory.” Chem.
Rev. 120 (18): 9951–9993.

Li, Xiaosong, Stanley M Smith, Alexei N Markevitch, Dmitri A Romanov, Robert J
Levis, and H Bernhard Schlegel. 2005. “A time-dependent Hartree–Fock approach
for studying the electronic optical response of molecules in intense fields.” PCCP
7 (2): 233–239.

149

Https://arxiv.org/pdf/1606.07453.pdf
Https://arxiv.org/pdf/2307.05740.pdf
Https://arxiv.org/pdf/cond-mat/0512475.pdf
Https://arxiv.org/pdf/1912.08379.pdf

Li, Xiaosong, John C Tully, H Bernhard Schlegel, and Michael J Frisch. 2005. “Ab
initio Ehrenfest dynamics.” J. Chem. Phys. 123 (8).

Lifshitz, Evgenii M. 1956. “The Theory of Molecular Attractive Forces between
Solids.” J. Exp. Theor. Phys. 2 (1): 73–83.

Liu, Jin-Guo, Zhao-Long Gu, Jian-Xin Li, and Qiang-Hua Wang. 2017.
arXiv:1609.09309, New J. Phys. 19.

Lysogorskiy, Yury, Anton Bochkarev, Matous Mrovec, and Ralf Drautz. 2023. Phys.
Rev. Mater. 7 (4): 043801.

Ma, Haibo, Ulrich Schollwöck, and Zhigang Shuai. 2022a. Density Matrix Renormal-
ization Group (DMRG)-Based Approaches in Computational Chemistry. Elsevier.

. 2022b. DMRG-Based Approaches in Computational Chemistry. Elsevier.

Martinez, Todd J. 2010. “Seaming is Believing.” Nature 467 (7314): 412–413.

McCulloch, Ian P. 2007. arXiv:cond-mat/0701428, J. Stat. Mech. 2007 (10): P10014.

McCulloch, Ian P, and Miklós Gulácsi. 2001. “Total spin in the Density Matrix
Renormalization Group algorithm.” Philosophical Magazine Letters 81 (6): 447–
453.

Menzel, Randolf, and Martin Giurfa. 2001. Trends in Cognitive Sciences 5 (2): 62–71.

Munkres, James R. 2000. Topology. Vol. 2. Prentice Hall Upper Saddle River.

Nakamura, Hiroki. 2012. Nonadiabatic Transition: concepts, basic theories and appli-
cations. World Scientific.

Nataf, Pierre, and Frédéric Mila. 2014. “Exact Diagonalization of Heisenberg SU(N)
models.” Phys. Rev. Lett. 113 (12): 127204.

. 2018. arXiv:1802.05482, Phys. Rev. B 97 (13): 134420.

Needham, Tristan. 2021. Visual differential geometry and forms: a mathematical
drama in five acts. Princeton University Press.

150

Https://arxiv.org/pdf/1609.09309.pdf
Https://arxiv.org/pdf/cond-mat/0701428.pdf
Https://arxiv.org/pdf/1802.05482.pdf

Neutze, Richard, Remco Wouts, David Van der Spoel, Edgar Weckert, and Janos
Hajdu. 2000. “Potential for biomolecular imaging with femtosecond X-ray pulses.”
Nature 406 (6797): 752–757.

Nielsen, Michael A, and Isaac L Chuang. 2010. Quantum Computation and Quantum
Information. Cambridge university press.

NumPy, Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gom-
mers, Pauli Virtanen, David Cournapeau, et al. 2020. “Array programming with
NumPy.” Nature 585, no. 7825 (September): 357–362. https://doi.org/10.1038/
s41586-020-2649-2.

Paszke, Adam, Sam Gross, and et al. 2019. “PyTorch.” In Advances in Neural Informa-
tion Processing Systems 32, edited by H. Wallach, H. Larochelle, A. Beygelzimer,
F. d’Alché-Buc, E. Fox, and R. Garnett, 8024–8035. Curran Associates, Inc.

Pauli, Wolfgang. 1927. “Zur quantenmechanik des Magnetischen Elektrons.” 43.
http : / / neo - classical - physics . info /uploads / 3 / 4 / 3 / 6 / 34363841 /pauli_ -
_the_magnetic_electron.pdf.

Pederson, Ryan, John Kozlowski, Ruyi Song, Jackson Beall, et al. 2022. “Large Scale
Quantum Chemistry with Tensor Processing Units.” J. Chem. Theory Comput.

Penrose, Roger, and Wolfgang Rindler. 1984. Spinors and Space-Time: Volume 1,
Two-Spinor Calculus and Relativistic Fields. Vol. 1. Cambridge University Press.

Pfeifer, Robert NC, Glen Evenbly, Sukhwinder Singh, and Guifre Vidal. 2014. “NCON:
A tensor network contractor for MATLAB.” arXiv preprint arXiv:1402.0939.

Phillips, James C, Rosemary Braun, Wei Wang, James Gumbart, Emad Tajkhorshid,
Elizabeth Villa, Christophe Chipot, Robert D Skeel, Laxmikant Kale, and Klaus
Schulten. 2005. “Scalable molecular dynamics with NAMD.” J. Comput. Chem.
26 (16): 1781–1802.

Raji, Joshua I, and Christopher J Potter. 2021. PLoS One 16 (5): e0250381.

Rangamani, Mukund, and Tadashi Takayanagi. 2017. Holographic Entanglement
Entropy. Springer.

151

https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
http://neo-classical-physics.info/uploads/3/4/3/6/34363841/pauli_-_the_magnetic_electron.pdf
http://neo-classical-physics.info/uploads/3/4/3/6/34363841/pauli_-_the_magnetic_electron.pdf

Roberts, Chase, Ashley Milsted, Martin Ganahl, Adam Zalcman, Bruce Fontaine,
Yijian Zou, Jack Hidary, Guifre Vidal, and Stefan Leichenauer. 2019. Ten-
sorNetwork: A Library for Physics and Machine Learning. arXiv: 1905.01330
[physics.comp-ph].

Rocktäschel, Tim. 2018. “Einsum is All you Need - Einstein Summation in Deep
Learning.” https:// rockt.github.io/ 2018/ 04/ 30/ einsum.

Rolandi, Alberto, and Henrik Wilming. 2020. “Extensive Renyi entropies in Matrix
Product States.” arXiv:2008.11764, arXiv.

Roos, Björn O, Per Linse, Per EM Siegbahn, and Margareta RA Blomberg. 1982. “A
simple method for the evaluation of the second-order-perturbation energy from
external double-excitations with a CASSCF reference wavefunction.” Chemical
Physics 66 (1-2): 197–207.

Ryan, Kerrianne, Zhiyuan Lu, and Ian A Meinertzhagen. 2018. “The peripheral
nervous system of the ascidian tadpole larva: Types of neurons and their synaptic
networks.” Journal of Comparative Neurology 526 (4): 583–608.

Saad, Yousef. 2003. Iterative Methods for Sparse Linear Systems. SIAM.

Schlegel, Philipp, Yijie Yin, Alexander S Bates, Sven Dorkenwald, et al. 2023.
2023.06.27.546055, bioRxiv.

Senftle, Thomas P, Sungwook Hong, Md Mahbubul Islam, Sudhir B Kylasa, Yuanxia
Zheng, Yun Kyung Shin, Chad Junkermeier, Roman Engel-Herbert, Michael
J Janik, Hasan Metin Aktulga, et al. 2016. “The ReaxFF reactive force-field:
development, applications and future directions.” npj Computational Materials 2
(1): 1–14.

Shapeev, Alexander V. 2016. arXiv:1512.06054, Multiscale Modeling & Simulation 14
(3): 1153–1173.

Solomonik, Edgar, and Torsten Hoefler. 2015. “Sparse Tensor Algebra as a Parallel
Programming Model.” arXiv:1512.00066, arXiv.

Solomonik, Edgar, Devin Matthews, Jeff R Hammond, John F Stanton, and James
Demmel. 2014. “A massively parallel tensor contraction framework for coupled-

152

https://arxiv.org/abs/1905.01330
https://arxiv.org/abs/1905.01330
https://rockt.github.io/2018/04/30/einsum
Https://arxiv.org/pdf/2008.11764.pdf
Https://www.biorxiv.org/content/10.1101/2023.06.27.546055v1
Https://arxiv.org/pdf/1512.06054v2.pdf
Https://arxiv.org/abs/1512.00066

cluster computations.” Journal of Parallel and Distributed Computing 74 (12):
3176–3190.

Stone, Anthony. 2013. The Theory of Intermolecular Forces. Oxford University Press.

Strassen, Volker. 1969. “Gaussian Elimination is not Optimal.” Numerische Mathe-
matik 13 (4): 354–356.

TensorFlow, Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng
Chen, Craig Citro, et al. 2015. “TensorFlow: Large-Scale Machine Learning on
Heterogeneous Systems.” Software available from tensorflow.org, https://www.
tensorflow.org/.

Tersoff, Jerry. 1988. “New empirical approach for the structure and energy of covalent
systems.” Phys. Rev. B 37 (12): 6991.

Teufel, Stefan. 2003. Adiabatic Perturbation Theory in Quantum Dynamics. Springer
Science & Business Media.

Thompson, Aidan P, H Metin Aktulga, Richard Berger, Dan S Bolintineanu, W
Michael Brown, Paul S Crozier, Pieter J in’t Veld, Axel Kohlmeyer, Stan G
Moore, Trung Dac Nguyen, et al. 2022. “LAMMPS-a flexible simulation tool for
particle-based materials modeling at the atomic, meso, and continuum scales.”
Comput. Phys. Commun. 271:108171.

Thorne, Kip S, John Archibald Wheeler, and Charles W Misner. 2000. Gravitation.
Princeton University Press.

Tkatchenko, Alexandre, Robert A DiStasio Jr, Roberto Car, and Matthias Scheffler.
2012. “Accurate and efficient method for many-body van der Waals interactions.”
Phys. Rev. Lett. 108 (23): 236402.

Tomonaga, Sin-Itiro. 1997. The Story of Spin. University of Chicago Press.

Tubman, Norm M, Joonho Lee, Tyler Y Takeshita, Martin Head-Gordon, and K
Birgitta Whaley. 2016. J. Chem. Phys. 145 (4).

Tully, John C. 1990. “Molecular Dynamics with Electronic Transitions.” J. Chem.
Phys. 93 (2): 1061–1071.

153

https://www.tensorflow.org/
https://www.tensorflow.org/

Turner, M Jon, Ray W Clough, Harold C Martin, and LJ Topp. 1956. “Stiffness and
Deflection Analysis of Complex Structures.” J. Aeronaut. Sci. 23 (9): 805–823.

Van Der Spoel, David, Erik Lindahl, Berk Hess, Gerrit Groenhof, Alan E Mark, and
Herman JC Berendsen. 2005. “GROMACS: fast, flexible, and free.” J. Comput.
Chem. 26 (16): 1701–1718.

Vanommeslaeghe, Kenno, Elizabeth Hatcher, Chayan Acharya, Sibsankar Kundu,
Shijun Zhong, Jihyun Shim, Eva Darian, Olgun Guvench, P Lopes, Igor Vorobyov,
et al. 2010. “CHARMM general force field: A force field for drug-like molecules
compatible with the CHARMM all-atom additive biological force fields.” J.
Comput. Chem. 31 (4): 671–690.

Verlet, Loup. 1967. “Computer “experiments” on classical fluids. I. Thermodynamical
properties of Lennard-Jones molecules.” Phys. Rev. 159 (1): 98.

Verstraete, Frank, and J Ignacio Cirac. 2004. “Renormalization Algorithms for
Quantum-Many-Body systems in two and higher dimensions.” arXiv:cond-
mat/0407066, arXiv.

Verstraete, Frank, Valentin Murg, and J Ignacio Cirac. 2008. “Matrix Product States,
projected entangled pair states, and variational renormalization group methods
for quantum spin systems.” arXiv:0907.2796, Advances in Physics 57 (2): 143–
224.

Wang, Junmei, Romain M Wolf, James W Caldwell, Peter A Kollman, and David A
Case. 2004. “Development and Testing of a General Amber Force Field.” J.
Comput. Chem. 25 (9): 1157–1174.

Wang, Qing, Matthias Ihme, Yi-Fan Chen, and John Anderson. 2022. “A Tensor-
Flow Simulation framework for Scientific Computing of Fluid Flows on Tensor
Processing Units.” Computer Physics Communications 274:108292.

Watts, Duncan J, and Steven H Strogatz. 1998. “Collective Dynamics of ‘small-world’
Networks.” Nature 393 (6684): 440–442.

White, John G, Eileen Southgate, J Nichol Thomson, Sydney Brenner, et al. 1986.
“The structure of the nervous system of the nematode Caenorhabditis elegans.”
Philos Trans R Soc Lond B Biol Sci 314 (1165): 1–340.

154

Https://arxiv.org/pdf/cond-mat/0407066.pdf
Https://arxiv.org/pdf/0907.2796.pdf

White, Steven R. 1992. “Density Matrix Formulation for Quantum Renormalization
Groups.” Phys. Rev. Lett. 69 (19): 2863.

. 1993. “Density-Matrix Algorithms for Quantum Renormalization Groups.”
Phys. Rev. B 48 (14): 10345.

Yu, Li-Wei, and Mo-Lin Ge. 2016. “Z3 parafermionic chain emerging from Yang-Baxter
equation.” arXiv:1507.05269, Scientific Reports 6 (1): 21497.

Zhai, Huanchen, and Garnet Kin Chan. 2021. J. Chem. Phys. 154 (22).

Zimmerman, Paul M. 2017. J. Chem. Phys. 146 (10).

Zou, Yijian, Ashley Milsted, and Guifre Vidal. 2018. “Conformal data and renormal-
ization group flow in critical quantum spin chains using periodic uniform matrix
product states.” arXiv:1710.05397v2, Phys. Rev. Lett. 121 (23): 230402.

155

Https://arxiv.org/pdf/1507.05269.pdf
Https://arxiv.org/pdf/1710.05397.pdf

APPENDIX A

SPARSE-EINSUM BISUM†

156

†This was a paper submitted to the Journal of Open Source Software (JOSS) and
arXiv.

A.0.1 Summary

In this work we introduce sparse-tensor contraction method in PyTorch analogous
to einsum in NumPy.

A.0.2 Statement of need

Among the many needs in high-performance scientific computing, two major prob-
lems arise: we must leverage sparse-data-structures and work with multidimensional-
arrays (a parallelizable data-structure). When working with multidimensional-arrays,
a clear-and-concise and universal manipulation is the einsum function of NumPy
et al. 2020. However, there is not much work in the intersection of these needs. I.e.
those which manipulate sparse-tensors/arrays as einsum does. Therefore this work
remedies this need.

A.0.3 Overview of Functionality

As einsum stands for Einstein-Summation, bisum stands for Binary-Summation.
The primary function of this package traces/contractions two tensors at a time (pair
sequential-contraction is usually required for efficient contraction in multi-tensor
traces) for types: sparse-sparse, sparse-dense, dense-sparse, and dense-dense (the
original ‘einsum‘ function). This function intakes a string, list-of-tensors, xor tensor;
to describe the partial-tracing procedure. Key features include:

1. Efficient Tensor Operations: bisum excels in performing a variety of tensor
operations, including summation, contraction, and element-wise multiplication,
on large dense data structures. While minimizing the memory usage.

2. Sparse Data Focus: the program capitalizes on the idea that many real-world
data-sets contain numerous zero values. bisum optimizes computations by
ignoring these zero values, significantly reducing the computational load and
improving execution speed. By eliminating calculations involving zero values,
bisum reduces memory usage and speeds up computation times, making it

157

a valuable tool for applications involving massive data-sets. This work was
originally motivated by earlier work Candanedo 2023b.

3. Streamlined Syntax: bisum introduces a user-friendly syntax that simplifies
the representation of tensor operations. This enables users to express complex
mathematical operations concisely and intuitively, contributing to improved
code readability and maintainability.

4. Application Flexibility bisum finds applications in a wide range of fields, in-
cluding scientific research, engineering, machine learning, signal processing, and
more. Its efficiency and ease of use make it a versatile choice for various compu-
tational tasks. This involves uses in Machine-Learning, Scientific-Simulations
(e.g. physics, chemistry, engineering, and etc...), and Signal-Processing.

5. Optimized for Real Data: While many computations involve zero-padding,
bisum focuses solely on real data values, eliminating the need to iterate over
zero entries. This targeted approach ensures that the program’s performance is
optimized for sparse/dense, real-valued data-sets. Much real-world data can be
made sparse with adequate transformations.

6. Compatibility: bisum can be easily integrated into existing code-bases and
workflows, complementing other computational libraries and tools. It is inte-
grated with the popular Machine-Learning library PyTorch (Paszke, Gross, and
al. 2019).

bisum fills a crucial niche in the computational landscape by providing a specialized
solution for efficient tensor operations on large sparse/dense/mixed data structures.
Its focus on sparse data values that significantly boosts performance, making it an
indispensable tool for tackling complex calculations in various domains. Whether it’s
accelerating machine learning tasks or enhancing scientific simulations, ‘bisum‘ offers
a practical approach to optimizing computations while maintaining code simplicity
and readability.

A.0.4 Usage: how to install

bisum is on the python-index, and therefore may be easily installed via the
following command:

pip install bisum

158

A.0.5 Usage: how to import

bisum relies on sparse-tensors from PyTorch and therefore we import both libraries
as such:

import torch
from torch import einsum
from bisum import bisum

and on PyTorch we can determine where we would like the tensor to live (on CPU
xor GPU)

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

A.0.6 Usage: einsum-like example

We create natively dense random tensors (and can cast from to be sparse, via the
.to_sparse() command):

A = torch.rand(8**3, device=device).reshape(8,8,8)
B = torch.rand(8**3, device=device).reshape(8,8,8)

torch.allclose(bisum("ijk,kjl", A.to_sparse(), B), einsum("ijk,kjl", A,
B))

torch.allclose(bisum("ijk,kjl", A.to_sparse(), B.to_sparse()
).to_dense(), einsum("ijk,kjl", A, B))

A.0.7 other label types example

bisum traces 2 sparse-tensors (torch.tensor objects) via 3 Tracing-prescriptions:
1. einsum-string (like numpy, str, labelling each tensor axis) 2. ncon (used in the
tensor-network community, list of 1d-int-torch.tensor, labelling each tensor axis,
as described by Pfeifer et al. 2014) 3. adjacency-matrix (as in numpy.tensordot,
(2,n) 2d-int-torch.tensor, with n being the number of indices identified between

159

the two tensors). Suppose we would like to compute the following partial-trace/tensor-
contraction Cnjwl = AiksndjBwklsdi:

C_einsum = bisum("iksndj, wklsdi -> njwl", A, B)
C_ncon = bisum([[-1,-2,-3,4,-5,6],[1,-2,3,-3,-5,-1]], A, B)
C_adjmat = bisum(torch.tensor([[0,1,2,4],[5,1,3,4]]), A, B)

print(torch.allclose(C_einsum, C_ncon) and torch.allclose(C_ncon,
C_adjmat))

while the pure tensor-product, ⊗ is:

import numpy as np

C_einsum = bisum("abcdef, ghijkl", A, B)
C_ncon = bisum([], A, B)
C_adjmat = bisum(torch.tensor([]), A, B)

print(np.allclose(C_einsum, C_ncon) and np.allclose(C_ncon, C_adjmat))

A.0.8 brief results when compared to torch.einsum

We did a quick comparison of this function (in the sparse-sparse mode) to PyTorch’s
native einsum function. The results of this comparison of relatively sparse-tensors is
shown in fig. 29.

A.0.9 Development Notes

Currently, bisum is in alpha-stage (0.2.0) with code on: github/bisum, and
posted on the Python Package Index, or PyPI/bisum. On here bisum has a MIT
License. Although, bisum is a useful extension of einsum-function, more improvements
are desired. Sparse-sparse matrix products on GPUs (tailor-made for dense-dense
contractions) are relatively slow, sparse-dense contraction should be much faster.
Also functionality on block-sparse or jagged/ragged/PyTree (irregularity shaped)
sparse-tensors is desired.

160

https://github.com/jcandane/bisum
https://pypi.org/project/bisum/

Figure 29. This plot shows a timing comparison between the torch.einsum (solid
line, averaged over 2 samples) function, the sparse-dense bisum trace(connected dots,
averaged over 5 samples) function, and finally the sparse-sparse bisum tensor
contraction: AqjwhkrjdBkrqljdmn (each tensor of shape(
14 14 14 14 14 14 14 14

)
) on a single CPU.

161

APPENDIX B

CHEMRXIV PAPER

162

notes on Generalized Configuration-Interaction in python
Julio Candanedo∗

September 28, 2023

Abstract
In this work we construct a detailed understanding of the distribution of electrons as described

by the Full-Configuration-Interaction (FCI). These results are presented at an introductory level
for beginning practitioners or non-experts. Suitable background are a knowledge of linear-algebra
and basic NumPy and Python principles of array manipulation.

Contents
1 Introduction 3

2 Many Body Theory 3
2.1 Solving the Many-Body Schrödinger Equation . 4
2.2 Fock Space & Exterior Algebra Representation . 5
2.3 Occupied Representation . 5
2.4 Occupied Representation . 6
2.5 Graphical SO Representation . 6
2.6 Binary Representation . 7
2.7 The Sign . 7
2.8 Many-Body Hamiltonian . 7

2.8.1 1-body, kinetic . 8
2.8.2 1-body, external . 8
2.8.3 2-body, electron-electron . 8
2.8.4 Total CI Hamiltonian . 8

3 Combinatorics 9
3.1 Unrestricted-FCI . 9
3.2 Python itertools . 9
3.3 The Cartesian Product . 9

4 Active Space 9

5 SO-Matrix Elements 10

6 CI-Matrix Elements 11
6.1 Slater-Condon Information . 11
6.2 Excitation/Deëxcitation Operators . 12

6.2.1 single excitations . 13
6.2.2 double excitations . 13
6.2.3 Orbitals in Common . 13

6.3 CI Matrix Construction . 13

7 Solving the CI Equation 14
7.1 direct diagonalization . 14
7.2 Krylov-subspace method . 14

∗Department of Physics, Arizona State University, Tempe, AZ 85287, USA
jcandane@asu.edu / juliojcandanedo@gmail.com

1

163

8 Optimization Considerations 15
8.1 Slater-Condon Searching . 15
8.2 CI Hamiltonian Diagonalization . 15

9 Comparison and Examples 15
9.1 Sparsity of the CI Hamiltonian Matrix . 15
9.2 Potential Energy Surfaces . 15

10 Conclusion 16

11 Acknowledgements 17

A Python Subindexing 18
A.1 Subindexing/Subscripting . 18

A.1.1 sparse-partial-tracing . 18

B Raw Code 19
B.1 useful definitions . 19

B.1.1 Determinant Manipulation . 19
B.1.2 Slater-Condon Rules . 20
B.1.3 SO Dressing . 21
B.1.4 CI Dressing . 22

B.2 fci.py . 22

C Mean Field Theory 23
C.1 AO & MO Basis . 23
C.2 Hartree-Fock . 23

C.2.1 Objective . 24
C.2.2 SCF Setup . 24
C.2.3 SCF procedure . 24

C.3 Adiabatic Kohn-Sham . 25
C.3.1 Response-KS . 25

C.4 Multicomponent . 25

2

164

1 Introduction
The electronic-structure problem is amongst the most important problems in science, especially in
chemistry, to determine the chemical properties ab initio, without the a priori need for empirical
information. As an agreement between ab initio and empirical results constitute a complete under-
standing, here we desire to understand the ab initio theory.

In chemistry, we have two kinds of fundamental particles: electrons and nuclei. These have very dif-
ferent mass scales yet similar charge, therefore in this paradigm we may invoke the Born-Oppenheimer
approximation, to separate nuclear and electronic degrees of freedom. This is not always an excellent
approximation in all circumstances, but is often a suitable starting point in understanding the more
general-setting. Because electrons must be treated quantum mechanically, the Schrödinger equation
is required. Beyond hydrogenic atoms, molecules have multiple electrons, and hence the Many-Body
Schrödinger-equation (MBSE) is the fundamental equation describing their distribution. Then this
problem transposes into solving the nuclei-clamped static Schrödinger equation for the electrons. It is
this problem we wish to understand at a basic level.

In order to compute this distribution in the computer, discretization is compulsory. For this
we consider a Basis-Set-Ansatz (BSA), particularly we consider a Gaussian-Basis-Set. This theory is
broadly known as the Configuration Interaction (CI). And like the full Schrödinger equation the theory
is linear and is solved via Exact-Diagonalization (ED) of the Full-CI (FCI) Hamiltonian. The full-CI
is an approximation of the full-SE (SE), for a finite basis set, whereas the SE is the idealistic equation
describing the structure on the continuum (an infinite basis set).

The FCI Hamiltonian is very sparse and maybe constructed matrix-element by matrix-element
for non-zero elements described by the well-known Slater-Condon rules, described in §6.1. These
rules exist because physical Hamiltonians at the microscopic-level contain 1-particle (1-body) and 2-
particle/pair (2-body) interactions. These 1-particle interactions are the kinetic energy or effective
potential (interactions with particles that are not electrons, e.g. nuclei), while the 2-particle inter-
actions are the inter-electron interactions. The equations implementing the Slater-Condon rules for
explicitly restricted-systems are found in both [Szabo and Ostlund, 2012a] and [Helgaker et al., 2014].

Because the FCI space is very large, i.e. scaling exponentially with the number of electrons, it is
computationally intractable for most interesting systems (in chemistry and biochemistry). It is often
truncated by excitations or a choice of an Active-Space descriptions, this is beyond the scope of this
paper. If the theory is contracted to a single state, this is known as Mean-Field Theory, for the ground
state this is the famous Hartree-Fock Theory. Solving the Mean-Field/Hartree-Fock Equation is the
first step to solving the FCI equations here.

Although, the full-CI algorithm is not directly useful beyond academic interest, for its aforemen-
tioned exponential complexity, it is directly useful to calibrate new hypothesises/approximations to
the Many-Body Schrödinger Equation, that may be useful. Our goal is to reduce CI theory into a
game, combinatorics followed by a set of rules, and with it to construct a Hamiltonian from the subset
of Slater-Determinants ΛCI ⊂ ΛFCI.

Additionally, this paper describes the implementation of the CI equations in NumPy with the help
of [PySCF et al., 2018], to give Atomic Orbital Integrals, to hopefully connect and render CI-theory
more transparent. The FCI tool of [Psi4NumPy et al., 2018] was initially consulted, but proved to
be unhelpful for the author’s purposes. Note that Einstein-summation-notation, i.e. sum-of-repeated-
indices, is used through-out the text.

2 Many Body Theory
Our objective is to understand the Many-Body Schrödinger-equation for electrons, romantically put:

HΨ = E Ψ

with H being the Many-body Hamiltonian, Ψ being the many-body wavefunction (a complex vector),
and E being the many-body excitation energies.

3

165

2.1 Solving the Many-Body Schrödinger Equation
Now let’s attempt to solve the static Schrödinger equation for the electronic distribution. The most
straight-forward solution of the Schrödinger equation for the molecular Hamiltonian is on a cubic grid.
Therefore, suppose we have a cubic grid with N nodes on a side, i.e. N3 grid-points total, representing
a grid of side ℓ with resolution dx with n-electrons, then we require

grid-points
(
ΨSchrödinger) =

(
N3)n = N3n =

(
ℓ

dx

)3n

,

to represent Ψ! If the grid-points are represented by a complex NumPy array1. Let’s solve for the
neutral Boron atom (n = 5 electrons) with ℓ = 2.2 Å and dx = 0.1 Å (very compact and coarse)2.

memory
(
ΨSchrödinger) = 16 (22)3∗5 ≈ 2 × 1021 Bytes ∼ 2 ZB,

memory
(
ΨSchrödinger) = 1

2 internet-traffic in 2018!

In more practical terms a Becke (non-uniform) grid might be more useful (this is also used in DFT
calculations), but this exponential need for memory still remains an issue. The first major innovation
to solving the Schrödinger equation is the Mean-Field approximation on 1-body wavefunctions, for
electrons (Fermions more generally), the Hartree-Fock approximation (when including exchange), as
is explained in §C.2. This reduces the memory substantially to:

grid-points
(
ΨHartree-Fock) = nN3 = n

(
ℓ

dx

)3
,

memory
(
ΨHartree-Fock) ≈ 852 kB.

Three more innovations (DFT, LCAO, and Gaussian-orbitals) were introduced in the mid-20th century
to alleviate this extreme cost. Two pioneers (of many) Walter Kohn and John Pople were awarded
the Nobel Prize in Chemistry in 1998 for their contributions. Walter Kohn was awarded for this work
on developing DFT, using functionals on 1-body densities to capture many-body correlations. This in
principle leads to a reduction in memory to:

ρDFT
grid-points = N3 =

(
ℓ

dx

)3
,

memory
(
ρDFT) ≈ 170.4 kB.

It was clear early-on that grid based techniques, run into a computational bottleneck. Because electrons
clump close to the point charge nuclei, they are usually described by central-distribution analytic
functions, e.g. Slater-functions (e.g. exp (−|r|)). For multi-atom (multi-centered) molecules, Roothaan
suggested using Linear Combinations of Atomic Orbitals (LCAO or Molecular Orbitals MO), to model
this kind of electron amplitude distribution. This is the basis-function ansatz. Pople (and others)
developed and promoted Gaussian-function Basis Sets (GBS) for rapid integration and manipulation.
He popularized this approach with his Quantum Chemistry code Gaussian. Gaussian-functions are
used because they are popular well-behaved central-distribution, which have analytic integrals (unlike
the analytic Slater functions). Within the given basis-set, the Schrödinger equation becomes the
Configuration Interaction (CI) equation. Despite the challenge of solving even the Boron atom above,
these innovations have allowed for routine large-scale ab initio3 simulations of proteins, with 10,000+
basis-functions. For a recent implementation see [Seritan et al., 2021]. Appendix A discusses a few
different kinds of basis-sets and how to obtain them from online databases. Before we discuss details
of an Self-Consistent-Field (SCF) calculations lets describe these atomic/molecular integrals.

1With 8 Bytes/double-float (64-bit float), and 16 Bytes/double-complex (64-bit complex). With KB= 21×10 B,
MB= 22×10 B, GB= 23×10 B, etc...

2See Cisco’s news-release https://newsroom.cisco.com/press-release-content?articleId=1955935.
3KS-DFT without physically motivated functionals can hardly be called ab initio.

4

166

2.2 Fock Space & Exterior Algebra Representation
This subsection may seem more abstract, but serves an essential foundation. Let’s rewrite the MBSE
in a more useable form:

H(X)Ψ(X) = E Ψ(X)
H(X)⟨X|Ψ⟩ = E ⟨X|Ψ⟩.

Above X denotes 3N coordinates and spin, and let x denote 3-dimensional coordinates and spin, and
let x denote the Cartesian direction. What is the structure of Ψ? As introduced by Slater and Fock in
the 1920s, recognizing the Fermionic character of electrons, many-body electronic-wavefunctions must
be wholly anti-symmetric under particle-swapping. This is done by the n-electron Slater Determinant
of 1-electron wavefunctions ψ:

Λ(x1,x2, · · · ,xn) = 1
n!

∣∣∣∣∣∣∣∣∣

ψ1(x1) ψ2(x1) · · · ψn(x1)
ψ1(x2) ψ2(x2) · · · ψn(x2)

...
...

ψ1(xn) ψ2(xn) · · · ψn(xn)

∣∣∣∣∣∣∣∣∣
.

For those whom are familiar with the exterior-algebra, this is repeated use of the exterior/anti-
symmetric product:

Λ(x1,x2, · · · ,xn) = Λ(X) = (ψ1 ∧ ψ2 ∧ · · · ∧ ψn) (X) =
n∧

i

ψi(X).

The similarity of the symbols ∧ and Λ (Greek-letter), is the reason why it will be used to repre-
sent a single Slater-Determinant. More generally; our many-body wavefunction are an n-form on N
dimensional complex vector space:

Ψ ∈
n∧

(CN) .

With N being the number of grid points xor basis functions, and n the number of electrons/Fermions.
This is indeed true for HF determinant (the Fermi-vacuum state, all lowest orbitals occupied first).
However, Ψ being an arbitrary n-form is a linear combination of all possible n-forms, therefore:

Ψ =
∑ n∧

ψ .

Each determinant is a volume element in that dimension. The full-CI wavefunction therefore resembles
finding a perimeter. For example, suppose we have a system of N = 4 orbitals (xor grid points), and
n = 2 electrons, then the wavefunction is a linear combination:

Ψ = c1 ψ1 ∧ ψ2 + c2 ψ1 ∧ ψ3 + c3 ψ1 ∧ ψ4 + c4 ψ2 ∧ ψ3 + c5 ψ2 ∧ ψ4 + c6 ψ3 ∧ ψ4 ,

and hence a 2-form, with coefficients ci being the CI-coefficients we desire for a given state. Total
finite dimensional Fock-space is the full exterior algebra of dimension of the number of SO orbitals,
i.e. 2N for N SOs, while the CI-space is the subset of occupied space,

(
N
m

)
.

2.3 Occupied Representation
Instead of writing the anti-symmetric product, the information can be kept track of using Dirac
notation, along with the determinant sign, and the many-body anti-symmetric/wedge product may be
written as:

∣∣ψ1ψ2 · · ·ψn

〉
.

Before we proceed we need to determine representations of these determinants, in particular how to
represent them in the computer.

5

167

The occupied-representation is useful to determine the precise MOs to evaluate 1-body and 2-
body Hamiltonians to the CI matrix element. For example, suppose we have the following occupied
determinant, for a given CI-state Î over occupied MOs i:

∣∣∣∣ψ1ψ3ψ4 · · ·ψi

〉
∼
[

1 3 4 · · · i
]

= ΛÎi.

2.4 Occupied Representation
Instead of writing the anti-symmetric product, the information can be kept track of using Dirac
notation, along with the determinant sign, and the many-body anti-symmetric/wedge product may be
written as:

∧

i∈Λ
ψi =

∣∣ψ1ψ2 · · ·ψn

〉
.

Before we proceed we need to determine representations of these determinants, in particular how to
represent them in the computer. The occupied-representation is useful to determine the precise MOs
to evaluate 1-body and 2-body Hamiltonians to the CI matrix element. For example, suppose we have
the following occupied determinant, for a given CI-state Î over occupied MOs i:

∣∣∣∣ψ1ψ3ψ4 · · ·ψi

〉
∼
[

1 3 4 · · · i
]

= ΛÎi.

As we treat the spins independently, two sets of determinants,
(
Λ↑,Λ↓), describe the full configuration,

for CI states I, and occupied MOs i (in general for open-shell cases Λ↑ and Λ↓ may have different
amount of occupied orbitals. Also within each spin-type each determinant may have different amount
of occupied orbitals, i.e. Spin-Flip):

Λ↑
Ii , Λ↓

Ii.

2.5 Graphical SO Representation
Graphically, Slater-Determinants may be represented by MO or SO diagrams. With {•, ↑, ↓} repre-
senting an occupied MO/SO orbital, while a vacancy represents an unfilled virtual orbital, an example
is shown in fig. 1.

︸︷︷︸
Restricted

↑

↑
↑

↓
↓︸ ︷︷ ︸

Restricted Open Shell
︸ ︷︷ ︸
Unrestricted

︸︷︷︸
Generalized

Figure 1: An example of a Restricted (R) Molecular-Orbital diagram (left). (center-left) For
Restricted-Open (RO) Shell, two examples of MO and SO diagrams (N = 6 orbitals, and n = 5
electrons), showing occupation of various orbitals. For Unrestricted (U) states, the energies need-not
be equal between the two different spins (center-right). If we have no restriction on spin, and desire
to include spin-flip situations the Generalized (G) theory is given by the right diagram.

6

168

2.6 Binary Representation
Alternatively, we have the binary-representations of molecular-orbitals, which directly correspond to
the occupation of each molecular orbital, and hence directly to the MO-diagram. Suppose we have an
arbitrary CI-state I, denoted by Î, with the following representation:

∣∣∣∣ 0 1 0 1 1 · · · 0 1 0
〉

∼
[

0 1 0 1 1 · · · 0 1 0
]

= BÎp.

The binary-representation will be useful for inter-determinant comparison. For each the spin, σ = {↑
, ↓}, case we have two binary-representations, representation the occupation of each Spin-Orbital (SO).
Thus the full-CI-configuration is described by the following 3-dimensional array (for CI state I, spin
σ, and MO orbital p):

BIσp.

2.7 The Sign
The determinant sign, is perhaps the trickiest part of computing CI-matrix elements. Fortunately,
[Helgaker et al., 2014], clears this issue on page 2-5, and uses Γ to denote the sign-convention of a
determinant. Because annihilating (denoted by a, target MO is occupied) and creation (denoted by
a†, target MO is vacant) operations are mutually exclusive they may be done with-in the same MO:

a†
σmBÎσp = a†

σm [p0, p1, · · · , 0m, · · · , pn]
= ΓÎσm [p0, p1, · · · , 1m, · · · , pn] ,

while, for the annihilation operator:

aσmBÎσp = aσm [p0, p1, · · · , 0m, · · · , pn] = 0
aσmBÎσp = aσm [p0, p1, · · · , 1m, · · · , pn]

= +1 [p0, p1, · · · , 1m, · · · , pn] .

Above ΓÎσm = +1, “if there are an even number of electrons in the spin orbitals”4 left to the MO of
interest. The method of determining this is a cumulative sum over the occupation.

In the code, we begin with the cumulative-sum over the MOs,
(∑

p BIσp

)
Iσp

, as previously shown
this yields the correct sign for the the creation/vacant operations. Next, the annihilating/occupied
parts of the MO (assuming ΨIσi are sorted in ascending order along i), must be replaced by a counting-
up array.

CIσp =
(∑

p

BIσp

)

Iσp

CIσi
!= [0, 1, 2, · · · , ni]

ΓIσp = (−1)CIσp = [I|p]σ .

The sign, for each determinant, is required because the information of the exact full anti-symmetric
sequence was lost.

2.8 Many-Body Hamiltonian
The Many-Body Hamiltonian may be decomposed into 3 major parts: kinetic, external, and electron-
electron interactions. The electron-electron interactions involve the interaction of two electrons.

4[Helgaker et al., 2014]

7

169

2.8.1 1-body, kinetic

If the electrons are nonrelativistic, then they have a kinetic energy given by the Laplacian-operator5:

HIJ = − ℏ2

2m

∫
Ψ† I(x)∆ΨJ(x) dx ,

= − ℏ2

2mγIJ
pq

∫
ψ†

p(x)∆ψq(x) dx ,

= − ℏ2

2mγIJ
pq C

† p
α Cq

β

∫
ϕ†

α(x)∆ϕβ(x) dx
︸ ︷︷ ︸

kαβ

.

2.8.2 1-body, external

Suppose we know the external distribution of particles. Then we may introduce their influence on
a many-body electronic system as a 1-body interaction (as they involve interacting with 1-electron
at a time). Most common types considered are nuclei-electron and light-electrons interactions. For
nuclei-electron, the interaction is:

HIJ = − Ze2

4πε0

∫ Ψ† I(x)ΨJ(x)
|Ri − x| dx

= − Ze2

4πε0
γIJ

pq

∫
ψ†

p(x)ψq(x)
|Ri − x| dx

= − Ze2

4πε0
γIJ

pq

∫ (
C† p

α ϕ†
α(x)

) (
C† q

β ϕβ(x)
)

|Ri − x| dx

= − Ze2

4πε0
γIJ

pq C
† p
α C† q

β

∫
ϕ†

α(x)ϕβ(x)
|Ri − x| dx

︸ ︷︷ ︸

= − Ze2

4πε0
γIJ

pq C
† p
α C† q

β hαβ

Above Ri are the coordinates of the nuclei.

2.8.3 2-body, electron-electron

Because we are considering inter-electron contributions (as they are identical particles), this requires
the 2-body electronic density. The explicit form is:

HIJ = + e2

4πε0

∫∫ Ψ†(x,x′)Ψ(x,x′)
|x − x

′| dx dx′ ,

= + e2

4πε0
ΓIJ

pqrs

∫∫
ψ†

pq(x,x′)ψrs(x,x′)
|x − x

′| dx dx′ ,

= + e2

4πε0
ΓIJ

pqrsC
† p
α C† q

β Cr
γC

s
δ

∫∫
ϕ†

αβ(x,x′)ψrs(x,x′)
|x − x

′| dx dx′

︸ ︷︷ ︸
(αβ|γδ)

,

Above ΓIJ
pqrs are the 2-body structure coefficients.

2.8.4 Total CI Hamiltonian

The total-CI Hamiltonian is the matrix:

HIJ =
∑

στpqrs

(
γIJσ

pq (p|q)σ + ΓIJστ
pqrs (pq||rs)στ)

.

5If relativistic, this is the Dirac-operator, which may be expanded to first order to the Laplace-operator, this is beyond
the scope of this paper.

8

170

γ and Γ are the structural 1-body and 2-body coefficients respectively, they are independent of the
molecular structure (all this information is captured in the 1- and 2- body AO Hamiltonians). These
coefficients only depend on the combinatorics at hand. If the Mean-Field equations have been solved,
then we can solve instead (by rotating the equations above in the AO basis):

HIJ =
∑

σταβγδ

(
γIJσ

αβ (α|β)σ + ΓIJστ
αβγδ (αβ||γδ)στ)

.

3 Combinatorics
3.1 Unrestricted-FCI
The Combinatorics of FCI follow the N -balls-in-M -slots combinatorics (for identical balls with N <
M). Except, the slots are called orbitals of the MO/SO/GO variety, and balls are called electrons.
Here we consider SO-orbitals, this considers two independent N -balls-in-M -slots problems for ↑ and ↓
electrons separately. The number of combinations for the N -balls-in-M -slots problem is given by the
choose expression:

states =
(
M
N

)
= M !
N !(M −N)! .

Although it might be worthwhile to compute this for low M and N , the computer can do this for
larger M and N . For unrestricted-FCI considered here we have:

states =
(
M
N↑

)(
M
N↓

)
.

3.2 Python itertools
Since both ↑ and ↓ systems are independent (we do not consider spin-flip situations here), we may
consider without-loss-of-generality one of these systems. E.g. the ↓-system, in python using itertools
we may create an array indexing all possible Molecular Orbitals (MO)6 and choose N↓ elements,
indicated the occupied MO orbitals. Python’s itertools then generates all possible choices, this is
exactly what we want for FCI. This yields the an array/matrix Λ↓Ip, and may be similarly done for
Λ↑Ip.

3.3 The Cartesian Product
Suppose we have all the possible combinations for each spin type, ↑ and ↓, i.e. B↑Ip and B↓Ip

respectively. We would like to combine these two, to produce a complete list of determinants. In order
to do this, it must be realized these systems independent, given any configuration, e.g. for determinant
↑ 7 B↑7p, we would like all the configurations for the ↓-type i.e. B↓Jp. Therefore, the approach is to
concatenate (this operation is given by the two-vertical-lines) the following outer-product:

BσIp = B↑Ip ×B↓Jp = B↑Ip ⊗ 1J

︸ ︷︷ ︸
σ=0=↑

∣∣ ∣∣ 1I ⊗B↓Jp

︸ ︷︷ ︸
σ=1=↓

.

4 Active Space
Let’s constrain the active-space, by introducing vector ξp (Boolean vector, True : part of active-space,
False : not part of active-space) xor ξz (array enumerating active orbitals). The FCI combinatorics
then may be applied within the occupied active-orbitals going to the vacant active-orbitals, this yields
a set of {Λ↑

ξ ,Λ
↓
ξ}. These occupation values may be recast into the proper orbitals by the composition

operation: Λ↑ = ξ[Λ↑
ξ] and Λ↓ = ξ[Λ↓

ξ]. These then may be recombined with the reference Bσp, they
zeroing-out the active-orbitals and replacing with the new occupations (obtained via the composition
operation).

6If there are 7 MOs, then this array is [0,1,2,3,4,5,6].

9

171

5 SO-Matrix Elements
Following our focus on the unrestricted-calculation, let’s suppose we complete a unrestricted-SCF
calculation, see the appendix, then we obtain the MO-coefficients {C↑, C↓} which not only yield
orthogonal states, but are minimized to a mean-field shielding of the electronic charges. This forms a
foundation to build beyond the mean-field approximation, and these theories, including CI are called
post-HF or post-SCF. Using these coefficients the 1-body and 2-body interactions may be formed by
dressing the atomic-centric interactions given by the Atomic Orbital, i.e. AO-arrays. This dressed
interaction is called the Spin-Orbit (SO) representation, and serves as the playground where CI games
occur. That is to say, CI theory itself keeps the same level of SCF shielding throughout all electronic
states7.

The dressing is implemented by matrix-products between the AO-representation and the Mean-
Field shielding Orbital (MO) coefficients. Here we consider 1-body AO interaction represented by
a 2-dimensional matrix/array (α|β) and a 2-body AO interaction represented by a 4-dimensional
matrix/array (αβ|γδ):

(σp |σ′q) =
∑

αβ

(α |β)Cα
σpC

β
σ′q

(σp, σ′q || τr, τ ′s) =
∑

αβγδ

(α, β || γ, δ)Cα
σpC

β
σ′qC

γ
τrC

δ
τ ′s

=
∑

αβγδ

(p, q || r, s)σσ′ττ ′
.

Let’s attempt to understand the 2-body interaction first. Here the complete SO-transformed MO
inter-electron integrals are8:

(p, q | r, s)σσ′ττ ′
=

(p, q || r, s)↑↑↑↑ (p, q | r, s)↑↑↓↓ (p, q | r, s)↑↑↑↓ (p, q | r, s)↑↑↓↑

(p, q | r, s)↓↓↑↑ (p, q || r, s)↓↓↓↓ (p, q | r, s)↓↓↑↓ (p, q | r, s)↓↓↓↑

(p, q | r, s)↑↓↑↑ (p, q | r, s)↑↓↓↓ (p, q | r, s)↑↓↑↓ (p, q | r, s)↑↓↓↑

(p, q | r, s)↓↑↑↑ (p, q | r, s)↓↑↓↓ (p, q | r, s)↓↑↑↓ (p, q | r, s)↓↑↓↑

=

(p, q || r, s)↑↑↑↑ (p, q | r, s)↑↑↓↓ 0 0
(p, q | r, s)↓↓↑↑ (p, q || r, s)↓↓↓↓ 0 0

0 0 (p, q | r, s)↑↓↑↓ (p, q | r, s)↑↓↓↑

0 0 (p, q | r, s)↓↑↑↓ (p, q | r, s)↓↑↓↑

 .

However, those matrix-elements which have an odd-number of spin electrons are nonphysical and
should be 0. Therefore the nonzero matrix-elements are:

(p, q | r, s)στ = (σp, σq | τr, τs)
(p, q | r, s)στ

+ = (σp, τq | τr, σs)
(p, q | r, s)στ

− = (σp, τq |σr, τs) .

A similar procedure is done for the 1-body AO matrices:

(p | q)σ = (σp |σq) = (α |β)Cα
σpC

β
σq .

In unrestricted (Spin-Orbit) CI, we require only the spin-orbital transformed 1-electron and 2-electron
operators, with (spin state given by σ = {↑, ↓}):

(p|q)σ =
(
hαβC

↑α
p C↑β

q

hαβC
↓α
p C↓β

q

)

(pq||rs)στ =
(

(αβ || γδ)C↑α
p C↑β

q C↑γ
r C↑δ

s (αβ | γδ)C↓α
p C↓β

q C↑γ
r C↑δ

s

(αβ | γδ)C↑α
p C↑β

q C↓γ
r C↓δ

s (αβ || γδ)C↓α
p C↓β

q C↓γ
r C↓δ

s

)
.

7Correcting for the excited state shielding and polarizability is done by Multiconfigurational Mean Field Methods,
beyond standard CI.

8from the large blocks, we flip-spin from left-to-right on the 4th MO index, and flip-spin from up-to-down from the
2nd MO index.

10

172

6 CI-Matrix Elements
Next, we would like to take the SO-matrix elements (to keep our focus on the unrestricted case), of
the previous section, and transform these into the CI-basis. This transformation needs to take into
account the structure of the determinants. The structure of the determinants probes for nontrivial
elements as suggested by the Slater-Condon rules, which probe the connectivity of the determinant
space. In particular the 1-differences and 2-differences of the determinants. The Slater-Condon rules
are entirely independent of the molecule involved, they only depend on the number of electrons and
the basis space.

6.1 Slater-Condon Information
The Slater-Condon rules are dependent on the differences between determinants. In the unrestricted
case, we may take tensor-differences of the binary representation of the Slater-determinants (I → J):

BIJσp = BJσp −BIσp. (1)

Given two CI states I and J , BÎĴσp gives the difference of the binary MO occupations, p, for each spin
σ. This matrix consists of 0 (no change), 1 (1 new occupation), xor −1 (1 less occupation). To get
the difference-of-occupations for each spin we take the absolute-value for each element and sum (over
MOs):

SIJσ = 1
2

(∑

p

|BIJσp|
)

IJσ

.

This will be useful to determine the type of Slater-Condon rules required for each CI Hamiltonian
matrix element I, J . For each spin-component the possible non-zero differences (a given I, J) in the
the determinants are given (e.g. [δ↑, δ↓]):

rule 0 rule 1 rule 2

[0, 0]
[1, 0]

[0, 1]

[2, 0]

[1, 1]

[0, 2]

(2)

For differences greater than δ ↑ + δ ↓ ≥ 3, have a matrix-element is 0 (rule 3). This yields 7 Slater-
Condon rules in U-CI. For each of the 6 terms above (plus rule 3) apply a partition of the entire CI
matrix. This may be seen by the example on fig. 2, for 4 Slater-Condon rules (each column above, in
eq. 2). The CI Hamiltonian matrix-elements may be partitioned into seven 1-dimensional arrays. The
value of these matrix-elements are determined by a formula on the next page. As the 0-difference rule
is always located on the matrix-diagonal It may be used to initialize the CI Hamiltonian with 0s in
the off diagonal (covering rule 3). Next, for the remaining 5 rules, the indices of the CI Hamiltonian
for their applicability are determined by (determined by the Spin-Difference Matrix):

I↑, J↑ such that S
[
I↑, J↑] = [1, 0]

I↓, J↓ such that S
[
I↓, J↓] = [0, 1]

I↑↑, J↑↑ such that S
[
I↑↑, J↑↑] = [2, 0]

I↑↓, J↑↓ such that S
[
I↑↓, J↑↓] = [1, 1]

I↓↓, J↓↓ such that S
[
I↓↓, J↓↓] = [0, 2] ,

note for a symmetric (in I ↔ J) spin-difference matrix SIJσ this is double counting9. This algorithm
scales as O ∼ N2, with N being the number of CI states (which in-turn scales exponentially). In
principle, the sparsity of the CI algorithm scales suggests a more optimum approach.

9E.g. for every pair i ∈ I↑, j ∈ J↑, there exists a pair j ∈ I↑, i ∈ J↑

11

173

CI Matrix Rule 0

Rule 1 Rule 2 Rule 3

0

2

3

7

5

8

0

1

4

4

6

8

0

3

2

4

8

9

1

1

3

3

7

9

0

2

5

5

4

9

1

2

6

6

7

5

0

1

2

3

4

5

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

Figure 2: Above is an example of decomposing a 6×6 CI Matrix into 4 1-dimensional arrays, according
to which Slater-Condon Rule is satisfied: rule 0 (yellow), rule 1 (green), rule 2 (blue), and rule 3 (red).

For an example, let’s consider we have a system of 3 spin-orbitals (SO) per spin-type, and 2 ↑-
electrons and 1 ↓-electron system. This system has 9 possible FCI states (let’s enumerate them 1 thru
9). This system has the following connectivity given in figures 3 and 4.

The connectivity of these CI states is purely combinatorics, i.e. independent of the molecular
structure. The sparsity10 of the CI matrix here is due to the neglecting of determinant-differences
greater than 2. If differences of 3 or higher are considered then the Slater-Condon CI connectivity is
just the complete graph matrix.

6.2 Excitation/Deëxcitation Operators
The creation/annihilation operators are obtained directly from the difference matrix, let’s denote it
by symbol: B. Suppose we suppose a particular matrix-element with indices: I and J . Then the
pair-difference, δ, is just an array with “-1”, “0”, and “1” elements. The “-1” element indicates a loss
of an electron from a given orbital, i.e. an annihilation, while “1” indicates a creation of an electron
into a given orbital (and “0” indicates no change):

BKσp = BIσp −BJ σp

where BKσp = +1 creation operator, rest matrix p elements set to 0,
where BKσp = −1 annihilation operator, rest matrix p elements set to 0,

B†
Kσp −→ {aKσp, a

†
Kσp}

10This is compounded/convoled by any sparsity of the molecule specific MO/SO Hamiltonian arrays.

12

174

1

23

4

5

6

7 8

9

1

23

4

5

6

7 8

9

Figure 3: Slater-Condon Rules for 1-difference, in ↑ and ↓ spaces respectively, for the example.

1

23

4

5

6

7 8

9

1

23

4

5

6

7 8

9

1

23

4

5

6

7 8

9

Figure 4: Slater-Condon Rules for 2-difference, in ↑↑, ↑↓, and ↓↓ spaces respectively, for the example.

6.2.1 single excitations

For single excitations, the process is easy enough

6.2.2 double excitations

For double excitations, we have to consider sign changes due to the structure of the double excitation.
This sign is computed as in §2.7.

6.2.3 Orbitals in Common

For the first Slater-Condon rule we require the orbitals which are initially occupied and do not change
under excitation/deëxcitation, these are named: c↑r and c↓r. These are found by adding the two
Binary representations:

cKσp =
⌊
BIσp +BJ σp

2

⌋
.

With the result of the division is projected into the integers, i.e. the floor function.

6.3 CI Matrix Construction
In UCI, should have 12 different excitation/deëxcitation-operators11 and 2 ‘common’ orbital-operators
(for the 1st Slater-Condon rule), with the SO-matrix elements (pq||rs)στ , and along with the occupation

11For Slater-Condon Rule 1, there are 4:
(↑

↓
)

×
(

excite
deëxcite

)
.

While for Slater-Condon Rule 2, there are 8:

↑↑
↑↓
↓↑
↓↓

×

(
excite

deëxcite

)
.

13

175

BIσp we may construct the explicit CI matrix construction may be implemented as:

H
!= 0IJ

H[I, I] = (p|p)σ
BIσp + 1

2 (pp|qq)στ
BIσpBIτq

H[I↑, J↑] = (p|q)↑
aK

↑pa
†K
↑q + (pq||rr)↑↑

aK
↑pa

†K
↑q c

K
↑r + (pq|rr)↑↓

aK
↑pa

†K
↑q c

K
↓r

H[I↓, J↓] = (p|q)↓
aK

↓pa
†K
↓q + (pq||rr)↓↓

aK
↓pa

†K
↓q c

K
↓r + (pq|rr)↓↑

aK
↓pa

†K
↓q c

K
↑r

H[I↑↑, J↑↑] = (pq||rs)↑↑
aK

↑pa
†K
↑q a

K
↑ra

†K
↑s

H[I↑↓, J↑↓] = (pq|rs)↑↓
aK

↑pa
†K
↑q a

K
↓ra

†K
↓s

H[I↓↓, J↓↓] = (pq||rs)↓↓
aK

↓pa
†K
↓q a

K
↓ra

†K
↓s ,

note repeated indices are summed over12. H[I, J] indices fill the H matrix with indices I and J with
the right-hand-side of the equation. Or succinctly put as:

H
!= 0IJ

H[I, I] = (p|p)σ
BIσp + 1

2 (pp||qq)στ
BIσpBIτq

H[Iσ, Jσ] = (p|q)σ
aK

σpa
†K
σq + (pq||rr)στ

aK
σpa

†K
σq c

K
τr

H[Iστ , Jστ] = (pq||rs)στ
aK

σpa
†K
σq a

K
τra

†K
τs ,

this is possible by combining the excite/deëxcite-operators.

7 Solving the CI Equation
7.1 direct diagonalization
After construction of the CI Hamiltonian Matrix (in the CI basis), a simple diagonalization is performed
to get the eigenspectrum:

HIJXJK = EKXIK

where XJK is the eigenvalue matrix and EK are the eigenvectors. If the list of determinants include
the Hartree-Fock determinant, then this is the solution to the fully correlated ground state.

7.2 Krylov-subspace method
Often instead we seek the ground-state or low-lying excited states. In this case we may use iterative-
diagonalization solvers on the Krylov-subspace, such as developed by [Davidson, 1975]. The python li-
brary [SciPy et al., 2020] has an implementation of this in its scipy.sparse.linalg.LinearOperator
module. The SciPy function solely asks for how to compute the matrix-vector product, e.g. Ψ′ = HΨ,
this may be done without explicitly constructing H with all its zeros. So HCI is saved as a dense
diagonal vector (the diagonal part of the Hamiltonian above) and a sparse-matrix (given by the Slater-
Condon rules, defined above). The resulting matrix-vector product is then (essentially a sparse-matrix-
dense-vector product):

Ψ′[I] = D(0)Ψ[I]
Ψ′[JSC] = DSCΨ[ISC]

Ψ′[I] = Ψ′[I] + Ψ′[JSC] .

One of the indices of the SC-rules selects the trial-wave-function’s indices and these are multiplied by
the sparse-matrix’s data entry only to be segmented summed over the over index. Above Ψ′[JSC] sums
over like indices, the segment-sum, this is also explicitly implemented by popular python libraries, e.g.
in JAX, [Bradbury et al., 2018], the desired function is jax.ops.segment_sum.

12For instance (p|p)σ BIσp + 1
2 (pp|qq)στ BIσpBIτq is actually:∑

pσ
(p|p)σ BIσp + 1

2
∑

pqστ
(pp|qq)στ BIσpBIτq

14

176

8 Optimization Considerations
As mentioned the number of CI-states grows exponentially, therefore the number of CI-states is po-
tentially much larger than the number of molecular/spin-orbitals, or even the number of atom co-
ordinates. Essentially the CI algorithm amounts to the diagonalization of this exponentially large
many-body chemical Hamiltonian. There are two ways to remedy this: exploit sparsity/symmetry
and reduce the wavefunction’s search-space (Hilbert Space, the active-space). In practice both should
be used. Because it is sparse, due to the sparsity of the SO integrals (defined above) and the Slater-
Condon rules, we may save these entries in a convenient format: as a sparse-matrix (for off-diagonal
parts) and a dense-vector (for diagonal parts). The algorithm above only requires BIσp (which scales
exponentially due to I CI-state index), and the ladder operators {a, a†} to compute the HCI matrix
data entries, and hence are only transiently needed. Ultimately, the workflow begins with selecting
the theory (active-space and reference(s) states) and the Hartree-Fock solution. Then using these to
compute intermediaries as needed to yield the sparse-matrix {IK , JK , dK} (K goes over all SC values,
not a CI-state index) and dense-vector DI :

Rule (e.g. AS & reference)
Hartree-Fock Cσα

p
→

BIσp

(p|q)σ

(pq||rs)στ

{a, a†}
→

DI

IK

JK

dk

.

8.1 Slater-Condon Searching
In particular our current implementation of the FCI algorithm, requires an element-wise search which
scales N2 (N being the number of CI states), because it must search every determinant pair to discover
its connectivity. If the set of determinants can be generated systematically instead of searched, then
the connectivity is automatically known. This algorithm scales pseudolinearly O ∼ N1. Note this still
does not help the O ∼ N3 diagonalization costs, with exponentiate with exponential N → exp (N).

8.2 CI Hamiltonian Diagonalization
As mentioned many times, the exponential scaling of the FCI algorithm implies the FCI matrix is very
large, and hence iterative diagonalization methods prove useful here that can obtain the nth smallest or
largest eigenstates. These iterative algorithms may be used in conjunction with Sparse-Matrix Vector
Multiplication, to prevent the explicit construction of the CI Hamiltonian.

9 Comparison and Examples
As we are limited because of the exponentiation of unrestricted-FCI, and our inefficient implementa-
tion, we consider small examples (as is usually the case, even in efficient implementations).

9.1 Sparsity of the CI Hamiltonian Matrix
The sparsity of the CI Hamiltonian Matrix is demonstrated for a few sample molecules in figure 5. The
larger the CI Hamiltonian Matrix is the greater the sparsity, also many nonzero elements, although
not exactly zero are approximately-zero. These approximately-zero elements are due to the sparsity of
the SO-matrices (from the electron-repulsion). We notice however, that in all cases, the matrices are
diagonally dominant, indicative that Slater-Condon Rule 0 is usually the dominant source of nonzero
elements.

9.2 Potential Energy Surfaces
Here we consider the simplest neutral molecule H2/FCI/cc-pvdz to visualize its potential energy sur-
face, shown in fig. 6. The lowest curve representing the ground state, and the rest are enumerated as
their energy increases.

15

177

Figure 5: Above are examples of the FCI Hamiltonian for molecules H2He/FCI/sto-3g, H4/FCI/sto-3g,
and LiH/FCI/sto-3g respectively in a minimal basis, all atoms spaced 1.5 Å from each other.

0.5 1 1.5 2 2.5 3

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

Interatomic Distance (Å)

En
er

gy
(a

.u
.)

H2/FCI/cc-pvdz

Figure 6: The Potential Energy Surface of H2/FCI/cc-pvdz.

10 Conclusion
The code and description given here, allows for general considerations of CI theory, a variety of patterns
of different determinants. Typically truncated CI methods such as CIS, CISD, CISDT, etc... include
all singles, doubles or triples, while the discussion here allows to consider only certain excitations.

16

178

Ultimately, we are left with two major questions:

• How to generate all nontrivial CI matrix elements without O ∼ n2 scaling? (with n ≡ number-
of-CI states, i.e. n ∼ exp (M), with M being the number-of-orbitals).

• Is it possible to determine the important CI states (and their connectivity), from the molecular
geometry alone (Rix Cartesian-coordinates x = {x̂, ŷ, ẑ} for all nuclei i), atomic-number Zi, and
net charge Q)?

The former question has been so some degree answered by DetCI method introduced by [Handy, 1980]
and [Olsen et al., 1988], and commonly used by Physical Chemists to Partition or truncate the FCI
wavefunction (e.g. Restricted-Active-Spaces, CIS, etc...), Further explainations may be provided by
excellent notes: [Sherrill, 1995]. The latter question is more difficult, and has not been addressed as
far as the author is concerned (as of 2023).

11 Acknowledgements
The author would like to thank Daniel Nascimento for many interesting discussions, including on
this work’s topic. The author would also like to thank the Department of Physics at Arizona State
University for funding.

17

179

A Python Subindexing
The rôle of Slater-determinant MO occupation

(
Λ↑,Λ↓), excitation operators

(
A†, A,C, etc...

)
, and

indices
(
I↑, J↓, etc...

)
, is to sub-index the 3 important arrays: 1-body SO Hamiltonian, 2-body SO

Hamiltonian, and the SO sign-matrix. These sub-indexing arrays must be of data type integers.
When sub-indexing an array A by another array B, the sub-indexed array inherits of the shape of its
sub-indexer, e.g. B sub-indexes A, then A[B] has the same dimension/shape as B. If the sub-indexed
array A is sub-indexed by 2 or more, potentially different, arrays, e.g. B,C, then B and C must be of
the same shape and dimension. If there is a shape mismatch (dimensional mismatch, e.g. a 2D and
3D array), then one array must be extended to accommodate the larger array. This is done by the
outer-product with the ones array (an array of entirely ones), e.g. for extending ΛIi:

AIij = ΛIi ⊗ 1j .

Let’s examine the case of:
∑

i

(
A†, A ||Ci, Ci

)↑↑
,

here AI and A†
I are 1-dimensional (I is the 1D CI-matrix partition-index), yet CIi is 2-dimensional.

Therefore, the actual formula is:
(∑

i

((
A†

I ⊗ 1i, AI ⊗ 1i ||CIi, CIi
)↑↑)

Ii

)

I

.

Therefore this term before the sum is also 2-dimensional with indices {I, i}, note † and ↑ are not indices.
After the sum, this term is 1-dimensional, given by the outer-most parenthesis, and thus yields this
term’s contribution to the CI-matrix partition.

A.1 Subindexing/Subscripting
For regular CI-theory, the creation/annihilation operators are arrays with just a single non-zero entry,
with value “1” xor “-1”, and hence they merely select a certain matrix element from the 1- and 2-
body SO Hamiltonian (up to a sign). In particular, for these theories, the tracing with 2-body SO
Hamiltonian is very inefficient. Instead, the creation/annihilation can be stored as a single entry
indexing the SO-orbital of interest, and be used to sub-index that particular orbital. In this formalism
the CI Hamiltonian becomes:

H
!= 0IJ

H[I, I] = (p|p)σ
BIσp + 1

2 (pp|qq)στ
BIσpBIτq

H[I↑, J↑] = (p|q)↑
aK

↑pa
†K
↑q + (pq||rr)↑↑

aK
↑pa

†K
↑q c

K
↑r + (pq|rr)↑↓

aK
↑pa

†K
↑q c

K
↓r

H[I↓, J↓] = (p|q)↓
aK

↓pa
†K
↓q + (pq||rr)↓↓

aK
↓pa

†K
↓q c

K
↓r + (pq|rr)↓↑

aK
↓pa

†K
↓q c

K
↑r

H[I↑↑, J↑↑] =
(
apK

↑ aq
†K
↑ || arK

↑ as
†K
↑

)↑↑

H[I↑↓, J↑↓] =
(
apK

↑ aq
†K
↑ | arK

↓ as
†K
↓

)↑↓

H[I↓↓, J↓↓] =
(
apK

↓ aq
†K
↓ || arK

↓ as
†K
↓

)↓↓
.

Therefore if all excoriation/deëxcitation-operators had merely entries binary (0 xor 1), they provide a
mask for obtaining the needed entry at O ∼ 1. These entries, however need to be supplemented by
the sign as given in §2.7.

A.1.1 sparse-partial-tracing

Building on this, sparse-partial-tracing, instead of the dense-partial-tracing, can greatly speed up and
save on memory for many of these very sparse methods.

18

180

B Raw Code
B.1 useful definitions
B.1.1 Determinant Manipulation

def givenΛgetB(ΛA, ΛB, N_mo):
"Given Λ(i occupied orbitals for each determinant) get B (binary rep.)"

Binary = np.zeros((ΛA.shape[0], 2, N_mo), dtype=np.int8)
for I in range(len(Binary)):

Binary[I, 0, ΛA[I,:]] = 1
Binary[I, 1, ΛB[I,:]] = 1

return Binary

def SpinOuterProduct(A, B, stack=False):
ΛA = np.einsum("Ii, J -> IJi", A, np.ones(B.shape[0], dtype=np.int8)).reshape(

(A.shape[0]*B.shape[0], A.shape[1]))
ΛB = np.einsum("Ii, J -> JIi", B, np.ones(A.shape[0], dtype=np.int8)).reshape(

(A.shape[0]*B.shape[0], B.shape[1]))

if stack:
return np.array([ΛA,ΛB])

else:
return ΛA, ΛB

def get_fci_combos(mf):

O_sp = np.asarray(mf.mo_occ, dtype=np.int8)
N_s = np.einsum("sp -> s", O_sp)
N = O_sp.shape[1]

Λ_α = np.asarray(list(combinations(np.arange(0, N, 1, dtype=np.int8) , N_s[0])))
Λ_β = np.asarray(list(combinations(np.arange(0, N, 1, dtype=np.int8) , N_s[1])))
ΛA, ΛB = SpinOuterProduct(Λ_α, Λ_β)
Binary = givenΛgetB(ΛA, ΛB, N)

return Binary

19

181

B.1.2 Slater-Condon Rules

def determinantsign(Binary):
sign = np.cumsum(Binary, axis=2)
for I in range(len(Binary)):

iia = np.where(Binary[I,0] == 1)[0]
iib = np.where(Binary[I,1] == 1)[0]
sign[I, 0, iia] = np.arange(0, len(iia), 1)
sign[I, 1, iib] = np.arange(0, len(iib), 1)

return ((-1)**(sign)).astype(np.int8)

def get_excitation_op(i, j, binary, sign, spin=0):
Difference = binary[i,spin] - binary[j, spin]
a_t = (Difference + 0.5).astype(np.int8)
a = -1*(Difference - 0.5).astype(np.int8)
if np.sum(a[0]) > 1: ### this is a double excitation

å_t = 1*a_t ## make copy
å_t[np.arange(len(å_t)),(å_t!=0).argmax(axis=1)] = 0 ## zero first 1
a_t = np.abs(å_t - a_t) ## absolute difference from orginal
a_t = np.asarray([sign[j, spin]*å_t,sign[j, spin]*a_t]) ## stack

å = 1*a ## make copy
å[np.arange(len(å)),(å!=0).argmax(axis=1)] = 0 ## zero first 1
a = np.abs(å - a) ## absolute difference from orginal
a = np.asarray([sign[i, spin]*å,sign[i, spin]*a]) ## stack

return a_t, a

def SlaterCondon(Binary):

sign = determinantsign(Binary)
SpinDifference = np.sum(np.abs(Binary[:, None, :, :] - Binary[None, :, :, :]), axis=3)//2

indices for 1-difference
I_A, J_A = np.where(np.all(SpinDifference==np.array([1,0], dtype=np.int8), axis=2))
I_B, J_B = np.where(np.all(SpinDifference==np.array([0,1], dtype=np.int8), axis=2))
indices for 2-differences
I_AA, J_AA = np.where(np.all(SpinDifference==np.array([2,0], dtype=np.int8), axis=2))
I_BB, J_BB = np.where(np.all(SpinDifference==np.array([0,2], dtype=np.int8), axis=2))
I_AB, J_AB = np.where(np.all(SpinDifference==np.array([1,1], dtype=np.int8), axis=2))

get excitation operators
a_t , a = get_excitation_op(I_A , J_A , Binary, sign, spin=0)
b_t , b = get_excitation_op(I_B , J_B , Binary, sign, spin=1)
ca = ((Binary[I_A,0,:] + Binary[J_A,0,:])/2).astype(np.int8)
cb = ((Binary[I_B,1,:] + Binary[J_B,1,:])/2).astype(np.int8)

aa_t, aa = get_excitation_op(I_AA, J_AA, Binary, sign, spin=0)
bb_t, bb = get_excitation_op(I_BB, J_BB, Binary, sign, spin=1)
ab_t, ab = get_excitation_op(I_AB, J_AB, Binary, sign, spin=0)
ba_t, ba = get_excitation_op(I_AB, J_AB, Binary, sign, spin=1)

SC1 = [I_A, J_A, a_t , a, I_B, J_B, b_t , b, ca, cb]
SC2 = [I_AA, J_AA, aa_t, aa, I_BB, J_BB, bb_t, bb, I_AB, J_AB, ab_t, ab, ba_t, ba]

return SC1, SC2

20

182

B.1.3 SO Dressing

def get_SO_matrix(uhf_pyscf, SF=False, H1=None, H2=None):
""" Given a PySCF uhf object get SO Matrices """

Ca, Cb = (uhf_pyscf).mo_coeff
S = (uhf_pyscf.mol).intor("int1e_ovlp")
eig, v = np.linalg.eigh(S)
A = (v) @ np.diag(eig**(-0.5)) @ np.linalg.inv(v)
H = uhf_pyscf.get_hcore()

n = Ca.shape[1]
eri_aa = (ao2mo.general((uhf_pyscf)._eri , (Ca, Ca, Ca, Ca),

compact=False)).reshape((n,n,n,n), order="C")
eri_aa -= eri_aa.swapaxes(1,3)
eri_bb = (ao2mo.general((uhf_pyscf)._eri , (Cb, Cb, Cb, Cb),

compact=False)).reshape((n,n,n,n), order="C")
eri_bb -= eri_bb.swapaxes(1,3)
eri_ab = (ao2mo.general((uhf_pyscf)._eri , (Ca, Ca, Cb, Cb),

compact=False)).reshape((n,n,n,n), order="C")
#eri_ba = (1.*eri_ab).swapaxes(0,3).swapaxes(1,2) ## !! caution depends on symmetry
eri_ba = (ao2mo.general((uhf_pyscf)._eri , (Cb, Cb, Ca, Ca),

compact=False)).reshape((n,n,n,n), order="C")
H2 = np.stack((np.stack((eri_aa, eri_ab)), np.stack((eri_ba, eri_bb))))

H1 = np.asarray([np.einsum("AB, Ap, Bq -> pq", H, Ca, Ca), np.einsum("AB, Ap, Bq -> pq",
H, Cb, Cb)])

if SF:
eri_abab = (ao2mo.general((uhf_pyscf)._eri , (Ca, Cb, Ca, Cb),

compact=False)).reshape((n,n,n,n), order="C")
eri_abba = (ao2mo.general((uhf_pyscf)._eri , (Ca, Cb, Cb, Ca),

compact=False)).reshape((n,n,n,n), order="C")
eri_baab = (ao2mo.general((uhf_pyscf)._eri , (Cb, Ca, Ca, Cb),

compact=False)).reshape((n,n,n,n), order="C")
eri_baba = (ao2mo.general((uhf_pyscf)._eri , (Cb, Ca, Cb, Ca),

compact=False)).reshape((n,n,n,n), order="C")
H2_SF = np.stack((np.stack((eri_abab, eri_abba)), np.stack((eri_baab, eri_baba))))
return H1, H2, H2_SF

else:
return H1, H2

21

183

B.1.4 CI Dressing

def CI_H(H1, H2, SC1, SC2):
"""
Explicitly construct the CI Hamiltonian Matrix
GIVEN: H1 (1-body Hamtilonian)

H2 (2-body Hamtilonian)
SC1 (1-body Slater-Condon Rules)
SC2 (2-body Slater-Condon Rules)

GET: CI Hamiltonian
"""

I_A, J_A, a_t , a, I_B, J_B, b_t , b, ca, cb = SC1
I_AA, J_AA, aa_t, aa, I_BB, J_BB, bb_t, bb, I_AB, J_AB, ab_t, ab, ba_t, ba = SC2

H_CI = np.einsum("Spp, ISp -> I", H1, Binary, optimize=True)
H_CI += np.einsum("STppqq, ISp, ITq -> I", H2, Binary, Binary, optimize=True)/2
H_CI = np.diag(H_CI)

Rule 1
H_CI[I_A , J_A] -= np.einsum("pq, Kp, Kq -> K", H1[0], a_t, a, optimize=True)
H_CI[I_A , J_A] -= np.einsum("pqrr, Kp, Kq, Kr -> K", H2[0,0], a_t, a, ca, optimize=True)
H_CI[I_A , J_A] -= np.einsum("pqrr, Kp, Kq, Kr -> K", H2[0,1], a_t, a, Binary[I_A,1],

optimize=True)

H_CI[I_B , J_B] -= np.einsum("pq, Kp, Kq -> K", H1[1], b_t, b, optimize=True)
H_CI[I_B , J_B] -= np.einsum("pqrr, Kp, Kq, Kr -> K", H2[1,1], b_t, b, cb, optimize=True)
H_CI[I_B , J_B] -= np.einsum("pqrr, Kp, Kq, Kr -> K", H2[1,0], b_t, b, Binary[I_B,0],

optimize=True)

Rule 2
H_CI[I_AA, J_AA] = np.einsum("pqrs, Kp, Kq, Kr, Ks -> K", H2[0,0], aa_t[0], aa[0],

aa_t[1], aa[1], optimize=True)
H_CI[I_BB, J_BB] = np.einsum("pqrs, Kp, Kq, Kr, Ks -> K", H2[1,1], bb_t[0], bb[0],

bb_t[1], bb[1], optimize=True)
H_CI[I_AB, J_AB] = np.einsum("pqrs, Kp, Kq, Kr, Ks -> K", H2[0,1], ab_t, ab, ba_t, ba,

optimize=True)

return H_CI

B.2 fci.py

def fci_(mf):
""" Calculate the FCI of a PySCF Mean Field Object
GIVEN: mf (PySCF Mean Field Object)
GET: E (Eigenvlues), X (Eigenstates) """

Binary = get_fci_combos(mf)
H1, H2 = get_SO_matrix(mf)
SC1, SC2 = SlaterCondon(Binary)
H_CI = CI_H(H1, H2, SC1, SC2)
E, X = np.linalg.eigh(H_CI)

return E, X

22

184

C Mean Field Theory
Unlike the CI theory, which is a linear theory, Mean-Field (MF) Theories are necessarily nonlinear. In
particular their Hamiltonian depends on their eigenstates. To this end, these equations can be solved
by a Self-Consistent Field (SCF) algorithm. In theory, MF approach to “electronic structure” attempts
to solve the equilibrium electrostatic distribution, In practice, the MF equations also orthogonalize the
atomic-centric Basis-Set-Ansatz.

C.1 AO & MO Basis
Solving the MF equations even for a single particle in a inhomogeneous setting (a single electron on
some ionic background) is not analytically feasible. Instead [Roothaan, 1951] introduced the insight
of using Linear Combination of Atomic Orbitals (LCAO). Atomic orbitals are spherically symmetric
and analytic functions, Roothaan’s insight is that they may be added together to capture the inhomo-
geneous aspects of molecular-orbitals (lack of spherical or rotational symmetry). This may done by a
rotation matrix Aα

p :

ψLCAO
p = Aα

pϕα

such that (orthonormality holds):

ψ†
pψq = δpq .

The question is the functional form of Aα
p . Let’s begin by:

δpq = ψ†
pψq

= Aα
p ϕαϕβ︸ ︷︷ ︸

Sαβ

Aβ
q

Aα
pSαβA

β
q = Spq = δpq

Aα
p =

(
S

−1/2
αβ

)α

p
.

This requires the matrix-inverse-square-root of the overlap-matrix.

C.2 Hartree-Fock
Hartree-Fock Theory developed by [Hartree, 1928], [Fock, 1930], and [Slater, 1929] is the basis of much
of physical chemistry. It succeeds in obtaining most of the binding energy between electrons and nuclei.
Being a mean-field-theory it cannot account for the total binding energy, and the energy deficit from the
true binding energy (full-CI) is defined as the correlation energy. Post-Hartree-Fock methods attempt
to correct for this correlation energy in a variety of methods. Most post-Hartree-Fock methods start
with a Hartree-Fock calculation, as a spring-board, and so this brief introduction serves to give an
overview of this method. It even inspired Kohn-Sham (KS) theory, using Density Functional Theory
(DFT) to compensate for some lost correlation energy. In our implementation, the electrons exist in
a predefined finite basis, consisting of linear combinations of Gaussian orbitals (centered on classical
nuclei). Because of the creation of the 2-electron integrals, the HF method is naïvely a O(N4) method
(N being the number of basis functions). If methods such as density fitting are used this can be
reduced to O(N3), and if large enough samples are considered this can be further reduced to O(N2)
(although with a large O(N4) prefactor), [Helgaker et al., 2014].

The Hartree-Fock (HF) approximation to electronic-distribution is implemented in 3 broadly dif-
ferent forms: Restricted13, Unrestricted14, and Generalized form. They all map an atomic basis into
an orthonormal molecular basis. They have practical implementations using the Basis-Set-Ansatz,
i.e. LCAO, and in molecular systems the Gaussian-Basis-Set as promoted by many, i.e. Pople and
Boys et al.. HF is perhaps the most well developed electronic structure/distribution method, having
many modifications to achieve better results. The computationally cheapest method of proceeding, is
working with the AO basis form, which we shall describe below.

13Introduced by [Roothaan, 1951].
14Introduced by [Pople and Nesbet, 1954].

23

185

C.2.1 Objective

Our objective would be to obtain the aforementioned shielding coefficients Cσp
α for an arbitrary molec-

ular system. These Mean-field Orbital15 (MO) Coefficients rotate the atomic centric orbitals into the
correct ones with appropriate mean-field electronic shielding (they introduce an intrinsic length scale).
In practice they are applied by:

ψHF
pσ = Cα

pσϕα .

The α-index describes the AO basis-function, ϕα, while the σ index describes spin, and the p index
describes the MO. The MO coefficients may be obtained by the following equation, using the overlap
matrix Sαγ and the Fock Matrix Fαγ (a function of Cσ

αγ , introduced in §C.2.2):

Fσ
αγ(Cσ)Cσ

γβ = E σ
α SαγC

σ
γβ .

Because of their non-linearity we can not solve them directly, and instead we plan to solve a linearized
version (but iteratively until convergence):

Fσ
αγC

σ
γδ = E σ

α SαγC
σ
γβ .

C.2.2 SCF Setup

The construction of the Fock matrix is given by:
(α|β)σ

Fock = (α|β)σ
Kinetic + (α|β)σ

Nuclei/ECP︸ ︷︷ ︸
core

+ (αβ||γδ)στ
Dτ

γδ . (3)

It is the effective 1-body Hamiltonian, consisting of a “core” part and contracted 2-body part. The
elements of this matrix are the kinetic, nuclei-interaction, AO electron density matrix, and the 2-body
Hamiltonian (commonly consisting of just the Electron Repulsion Integral (ERI) term). These terms
other than the electron density, are obtained by Gaussian-Basis-Function integrators, which compute
the integral between these two basis functions. This is a tedious task which may be outsourced to
[PySCF et al., 2018] or [Psi4NumPy et al., 2018].

While the AO density-matrix may be constructed knowing the MO orbital occupation, given by
the MO density-matrix, and the MO coefficient shielding. We begin by discussing the MO Density
Matrix for the HF-state, this matrix is diagonal with the MO occupations on the diagonal, i.e. Dσ

pq =
BHFσpδpq. Then the AO-Density Matrix is given as:

Dσ
αβ = Cσp

α Dσ
pqC

σq
β . (4)

Next the electronic binding-energy may be calculated from the equation below (using these terms):

E = 1
2 D

σ
αβ((α|β)σ

core + Fσ
αβ) + Enuclei-nuclei . (5)

A more through review of the Roothaan/Pople-Nesbet solution to the Hartree-Fock problem may be
found in [Szabo and Ostlund, 2012b] (see chapter 3).

C.2.3 SCF procedure

Here we introduce the core-guess SCF procedure, it begins with diagonalizing the core-Hamiltonian.
This obtains eigenstates which must be orthogonalized:

(α|β)σ
core −→ Cσ

αβ

Ap
α−→Cpσ

α .

Next, the AO-density matrix is constructed (with the current Cpσ
α and eq. 4) along with the Fock

matrix. The diagonalization of the AO-Fock Matrix yields new eigenvectors which must be orthogo-
nalized.

Cpσ
α

eq. 4−→ Dαβ
eq. 3−→ (α|β)σ

Fock −→C ′σ
αβ

Ap
α−→C ′pσ

α

Then the similarity of the MO coefficients is determined:
Cpσ

α ∼ C ′pσ
α ,

and if they are sufficiently similar the algorithm stops and this is the desired answer, else it continues.
15alt. Molecular Orbital.

24

186

C.3 Adiabatic Kohn-Sham
A generalized version of Hartree and Hartree-Fock theory is the now famous Kohn-Sham (KS) theory.
Kohn-Sham theory is so popular that it is often used as synonymous to DFT (this is not the case, as
there is interesting research on Orbital-Free versions). Unlike the earlier, Thomas-Fermi theory, which
approximates the kinetic-energy by a density-functional, KS theory instead approximates electron-
electron interactions by a density-functional and treats the kinetic-energy exactly, within this theory.
Following Hartree, and Hartree-Fock’s theory, the novel feature is the inclusion of the (α|β)σ

XC operator
which would compute the effective electron-electron interaction, via a density-functional including
exchange and correlation. Like, HF theory, this operator is diagonalized and reconstructed until
convergence is reached. For a more detailed discussion the reader is referred to [Ullrich, 2011] (chapter
2, reviews static KS-DFT).

We begin by supposing there is an exact functional of the density for the energy of an electronic
system given by EXC[ρ]. This is nice, but not directly useful for our purposes, instead we may define
a potential created by this functional, obtained by its variation-with-respect-to-the-density:

(α|β)σ
XC = δE [ρ]

δDσ
αβ

= ((α|β))σ
.

This is the aforementioned novel feature. In the adiabatic approximation, this density is independent
of time Ḋσ

αβ = 0, and is the instantaneous ground state density. It this is matrix which includes
an additional contribution to the Fock matrix, without explicit Hartree-Fock exchange (as exchange
is included in the XC-functional) to build the Kohn-Sham matrix (informally also known as a Fock
matrix):

Fσ
αβ = (α|β)σ

Fock = (α|β)σ
Kinetic + (α|β)σ

Nuclei/ECP + (α|β)σ
XC + (αβ|γδ)στ

Dτ
γδ .

This matrix is solved SCF, much in the same way as the HF-equations.

C.3.1 Response-KS

For LR-KS (a.k.a. TDDFT) or other response theories, further derivatives of the XC energy-functional,
E [ρ], must be known:

((α|β))σ = δE [ρ]
δDσ

αβ

,

(αβ|γδ)στ
XC = ((αβ | γδ))στ = δ2E [ρ]

δDσ
αβδD

τ
αβ

,

(((αβγ | δεη)))στυ = δ3E [ρ]
δDσ

αβδD
τ
γδδD

υ
εη

.

C.4 Multicomponent
A straightforward generalization of the HF method is the Multicomponent Unrestricted Hartree-Fock
(muHF or µHF or µSCF). In this method we consider two or more different kinds of Fermions, e.g.
protons and electrons, in a single SCF procedure. This method was introduced as Nuclear Elec-
tron Orbital (NEO) method and extensively developed by the Hammes-Schiffer group starting with
[Webb et al., 2002]. Because this method makes no restriction to the kind of Fermion, e.g. nuclei
xor positrons, I prefer the Multicomponent SCF name, e.g. µHF if correlation is entirely absent.
One important consideration is the basis set. Electronic structure theory has developed many basis
sets for electrons in a variety of conditions (many of these are stored on the Basis Set Exchange, see
[Pritchard et al., 2019]). However, other Fermions have not gotten the same treatment.

Naïvely, the exponential-value of the basis-set parameters controls the scale of the basis, chang-
ing these introduces a new length-scale. This length-scale is controlled by the mass of the Fermion.
Thus, suppose ζ0 is the exponential of Gaussian-fitted-Slater functions, then ζ = ζ0

M2 is the expo-
nential factor for a particle of mass M . However, unlike atomistic basis functions which expect
a wavefunction solution for the inverse-distance potential of the nuclei

(
e.g. V (r) = 1

4πε0ε
1
r

)
, it is

25

187

well-known that nuclei experience more of a harmonic-potential (parabolic), i.e. corresponding to vi-
brational frequencies. Because nuclei are well-separated in regular matter, they are always in singly
occupied states. Therefore specialized basis functions should be used. In conjunction of introducing
the method, Hammes-Schiffer’s group introduced protonic basis-functions, see [Yu et al., 2020] and
density-functionals [Yang et al., 2017].

References
[Bradbury et al., 2018] Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin,

D., Necula, G., Paszke, A., VanderPlas, J., Wanderman-Milne, S., and Zhang, Q. (2018). JAX:
composable transformations of Python+NumPy programs.

[Davidson, 1975] Davidson, E. (1975). Comput. Phys., 17:87–94.

[Fock, 1930] Fock, V. C. (1930). Z. Phys., 61:126.

[Handy, 1980] Handy, N. C. (1980). Chem. Phys. Lett., 74(2):280–283.

[Hartree, 1928] Hartree, D. R. (1928). Math. Proc. Camb. Philos. Soc., 24(1):111–132.

[Helgaker et al., 2014] Helgaker, T., Jørgensen, P., and Olsen, J. (2014). Molecular Electronic-
Structure Theory. John Wiley & Sons.

[Olsen et al., 1988] Olsen, J., Roos, B. O., Jørgensen, P., and Jensen, H. J. A. (1988). J. Chem. Phys.,
89(4):2185–2192.

[Pople and Nesbet, 1954] Pople, J. A. and Nesbet, R. K. (1954). J. Chem. Phys., 22(3):571–572.

[Pritchard et al., 2019] Pritchard, B. P., Altarawy, D., Didier, B., Gibson, T. D., and Windus, T. L.
(2019). Journal of Chemical Information and Modeling, 59(11):4814–4820.

[Psi4NumPy et al., 2018] Psi4NumPy, Smith, D. G., Burns, L. A., Sirianni, D. A., Nascimento, D. R.,
Kumar, A., James, A. M., Schriber, J. B., Zhang, T., Zhang, B., Abbott, A. S., et al. (2018). J.
Chem. Theory Comput., 14(7):3504–3511.

[PySCF et al., 2018] PySCF, Sun, Q., Berkelbach, T. C., Blunt, N. S., Booth, G. H., Guo, S., Li,
Z., Liu, J., McClain, J. D., Sayfutyarova, E. R., Sharma, S., et al. (2018). Wiley Interdiscip. Rev.
Comput. Mol. Sci., 8(1):e1340.

[Roothaan, 1951] Roothaan, C. C. J. (1951). Rev. Mod. Phys., 23(2):69.

[SciPy et al., 2020] SciPy, Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T.,
Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett,
M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E.,
Carey, C. J., Polat, İ., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman,
R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F.,
van Mulbregt, P., and SciPy 1.0 Contributors (2020). Nature Methods, 17:261–272.

[Seritan et al., 2021] Seritan, S., Bannwarth, C., Fales, B. S., Hohenstein, E. G., Isborn, C. M.,
Kokkila-Schumacher, S. I., Li, X., Liu, F., Luehr, N., Snyder Jr, J. W., et al. (2021). Wiley
Interdiscip. Rev. Comput. Mol. Sci., 11(2):e1494.

[Sherrill, 1995] Sherrill, C. D. (1995). An introduction to configuration interaction theory.

[Slater, 1929] Slater, J. C. (1929). Phys. Rev., 34(10):1293.

[Szabo and Ostlund, 2012a] Szabo, A. and Ostlund, N. S. (2012a). Modern Quantum Chemistry. Dover
Publications.

[Szabo and Ostlund, 2012b] Szabo, A. and Ostlund, N. S. (2012b). Modern Quantum Chemistry.
Dover Publications.

26

188

[Ullrich, 2011] Ullrich, C. A. (2011). Time-dependent density-functional theory: concepts and applica-
tions. Oxford University Press.

[Webb et al., 2002] Webb, S. P., Iordanov, T., and Hammes-Schiffer, S. (2002). J. Chem. Phys.,
117(9):4106–4118.

[Yang et al., 2017] Yang, Y., Brorsen, K. R., Culpitt, T., Pak, M. V., and Hammes-Schiffer, S. (2017).
J. Chem. Phys., 147(11):114113.

[Yu et al., 2020] Yu, Q., Pavošević, F., and Hammes-Schiffer, S. (2020). J. Chem. Phys.,
152(24):244123.

27

189

APPENDIX C

JCP PAPER

190

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

Dynamics of rare gas solids irradiated
by electron beams

Cite as: J. Chem. Phys. 152, 144303 (2020); doi: 10.1063/1.5134801
Submitted: 1 November 2019 • Accepted: 23 March 2020 •
Published Online: 10 April 2020

J. Candanedo,1,a) C. Caleman,2,3 N. Tîmneanu,2 O. Beckstein,1,4 and J. C. H. Spence1

AFFILIATIONS
1 Department of Physics, Arizona State University, Tempe, Arizona 85282, USA
2Department of Physics and Astronomy, Uppsala University, Uppsala SE-75120, Sweden
3Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestraße 85, Hamburg, Germany
4Center for Biological Physics, Arizona State University, Tempe, Arizona 85282, USA

Note: This paper is part of the JCP Special Topic on Ultrafast Molecular Sciences by Femtosecond Photons and Electrons.
a)Author to whom correspondence should be addressed: jcandane@asu.edu

ABSTRACT

The remarkable success of x-ray free-electron lasers and their ability to image biological macromolecules while outrunning secondary radi-
ation damage due to photoelectrons, by using femtosecond pulses, raise the question of whether this can be done using pulsed high-energy
electron beams. In this paper, we use excited state molecular dynamics simulations, with tabulated potentials, for rare gas solids to investigate
the effect of radiation damage due to inelastic scattering (by plasmons, excitons, and heat) on the pair distribution function. We use electron
energy loss spectra to characterize the electronic excitations responsible for radiation damage.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5134801., s

I. INTRODUCTION

Radiation damage imposes fundamental limitations on the
fidelity and resolution of imaging and diffractionmethods. Recently,
it has been suggested and demonstrated that damage may be over-
come using femtosecond x-ray pulses to out-run the damage pro-
cesses.1 Using these pulses, the serial crystallography approach has
made it possible to solve the structure of protein micro-crystals,
record the femtosecond dynamics of light-sensitive proteins in
micro-crystals, and to observe protein dynamics at atomic reso-
lution during enzyme catalysis2. This ability to outrun damage is
important because it circumvents the need to immobilize by freez-
ing proteins to avoid damage in protein crystallography and so
allows observations of dynamics under near-physiological condi-
tions of temperature and chemical environment.3 The aim of this
research is to determine if this can also be done using brief electron
beam pulses for the collection of transmission electron diffraction
data and, if not, to understand the severity of the damage processes
that remain. As a preliminary, in this paper, we study electron-
beam radiation damage in the simple Rare Gas Solids (RGSs) in
order to avoid the complications of interatomic bonds and their
excitations.

Differences between diffraction and damage processes using
x rays and electrons have been compared by Henderson4 (contin-
uous exposure) and Spence5 (pulsed mode). Unlike x rays, elec-
trons are diffracted from both the nuclei (Rutherford scattering)
and the electron density. While the photoelectron cross section
greatly exceeds that for elastic scattering for x rays, elastic and
inelastic scattering cross sections for electrons are comparable. Laser
amplification is now available for hard x rays, but not for elec-
tron beams, which provide fewer electrons per pulse but have a
much larger elastic cross section. The Coulomb repulsion between
electrons makes focusing difficult simultaneously at the brief and
high currents. Flux is the product of source brightness and emit-
tance, with emittance proportional to the product of beam diver-
gence and source size. For transmission Electron Diffraction (ED)
from thin crystals, to avoid overlap of Bragg spots, this beam
divergence must be less than the Bragg angle, which for typical
photocathode emittance values results in a focused beam many
micrometers wide. As a result, Ultrafast Electron Diffraction (UED)
experiments are undertaken with very low fluence at the sample
per shot, and samples, in the form of a thin slab, should be homo-
geneous over an area of several micrometers. A typical fluence6
(integrated flux) of ∼10−4 − 10−6 e/Å2 (or dose as defined in the

J. Chem. Phys. 152, 144303 (2020); doi: 10.1063/1.5134801 152, 144303-1

Published under license by AIP Publishing

 21 S
eptem

ber 2023 03:04:48

191

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

Cryo-EM literature) is therefore much less than that used in Cryo-
EM. These are the conditions for which our simulations are per-
formed. Since the Cryo-EM dose of about <10 e/Å2 produces very
little damage, our first conclusion is that Coulomb interactions in the
beam and the resulting large beam diameters used with picosecond
pulses in the UED field will produce negligible amounts of dam-
age. Our simulations are therefore for much longer pulses than used
in UED.

The simplest form of radiation damage and energy transfer
from the beam to the sample occurs via direct Primary Knock-on
Atom (PKA) elastic collisions between beam electrons and the nuclei
(see Sec. II A). Other than PKA, radiation damage is caused by
inelastic collisions between the sample and beam electrons, causing
the sample to flow on a new potential energy surface. This change
in nuclear–nuclear correlation may be captured by using a time-
resolved Radial Distribution Function (trRDF), which may be com-
puted using Molecular Dynamics (MD) simulations. In this paper,
we describe a program that performs the required excited-state MD
to simulate RGS irradiation for electrons (also x-ray) beam pulses.
The specific aim of this paper is to use this program to compute the
trRDF during irradiation by an electron beam pulse.

Concurrently, dynamical (space–time) correlation may be cap-
tured by the Van Hove function,7 which is directly related, by
the imaginary part of its Fourier transform, to the loss or the
response function. This may be directly measured using the Elec-
tron Energy Loss Spectra (EELS). EELS spectra may be recorded
from nanometer-sized regions in an electron microscope simul-
taneously with the elastic scattering. These spectra may be inter-
preted in terms of a frequency and momentum dependent dielectric
function,8

dσ
dqdω = 2-λ2

πq Im�− 1
ε(q,ω)�. (1)

Here, ε(q, ω) is the dynamic dielectric function, with -λ = λ
2π , where

λ is the wavelength (in Bohr radius) of the incident particle, the
scattering vector q = 2 sin θ

-λ , and the energy loss E = �hω. EELS spec-
tra for the RGS which form at low temperature have been pub-
lished and interpreted, identifying the specific crystal excitations to
which the beam gives up energy as it traverses a thin slab of crys-
tal. The results are shown in Fig. 1 of the study of Bernstorff and
Saile.9

Two radiative loss mechanisms also captured by EELS spec-
tra are the Bremsstrahlung and Cherenkov effects. Both of these
interactions emit light that can be assumed to escape but contribute

FIG. 1. A visual comparison between a pristine (left) and irradiated (right) Ar4631

cluster by the 10 e/Å2 pulse mentioned in the text.

negligibly to the dynamics of the sample. This is because RGSs are
transparent to visible light due to the large band gap EG, and to
x rays, created by the Bremsstrahlung because of the small sam-
ple size and cross section. The nonradiative forms of energy loss by
electrons beams in matter are valence electron excitation and ioniza-
tion, inner-shell excitation and ionization, plasmons, excitons, and
direct phonon excitations. Although inner shell excitations transfer
more energy to the sample, they are much rarer events with smaller
cross sections and are ignored in this model. Direct phonon excita-
tions are similarly ignored due to their small cross sections relative
to plasmons and excitons.

II. METHODS

A. The model

The dominant features seen in experimental EELS spectra, con-
sist of two types: plasmon and exciton excitation. However, we first
consider the ballistic PKA events, akin to Rutherford scattering.
The maximum energy transfer from the beam electron to a nucleus
occurs for a head-on collision and may result in irreversible nuclear
displacement if this energy transfer exceeds the displacement energy,
which depends on the atomic number (it is 20 eV for copper). The
effect has been studied extensively in high-voltage (e.g., 1 MeV)
TEM using a continuous electron beam. The total cross section for
this process (about 10−6 Å2) is much smaller than that for elastic
scattering or inelastic excitation of valence electrons—for an atomic
number of 20, these are both equal to about 10−2 Å2. The volume
fraction of nuclei displaced by a head-on collision is10 Cd = σjT�e� ,
where σ is the cross section for displacement of a nucleus in a head-
on collision (scattering angle 180○, largest energy transfer), j is the
beam current density, and T the exposure time. For light elements at
1 MeV, Cd = 0.0125 with a continuous TEM current of 0.2 �A and a
beam diameter of 5 �m after one minute. Since typical UED average
currents are typically about 1 nA (for a bunch charge of a pA at a rep-
etition rate of 1 KHz) and beam diameters, limited by space-charge,
even larger, the volume fraction of atomic displacements in UED
will be far less than this, and the effect can be neglected compared to
other inelastic processes at these current densities.

Plasmon excitations are the dominate form of collective elec-
tronic excitation specially for higher Z RGS9 (also for proteins in
ice11), and they are highly localized and damped, as suggested by
their broad spectral linewidth corresponding to a lifetime of ∼100 as.
The products of plasmon decay are believed to be the main cause of
radiation damage in Cryo-EM, on the basis of their EELS spectra.11
For simulations with a time step larger than 100 as, the plasmon exci-
tation decay is simply modeled as a re-scaling of sample’s nuclear
velocities by the plasmon energy. The plasmon energy is propor-
tional to the square root of the density of valence electrons. Although
a perhaps bad approximation, the RPA dielectric function is used in
conjunction with Eq. (1) to determine the plasmon excitation cross
section.

Unlike plasmons, Frenkel exciton excitations in RGS are rel-
atively long lived (∼25 ns),12 and are also prominent in experi-
mental EELS spectra. In order to incorporate the collective effect
on the structural dynamics, the complete static Coulomb interac-
tion (explicit electrostatics between all nuclei and electrons) was

J. Chem. Phys. 152, 144303 (2020); doi: 10.1063/1.5134801 152, 144303-2

Published under license by AIP Publishing

 21 S
eptem

ber 2023 03:04:48

192

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

computed for the sample. Excitons are then incorporated by adding
a new set of Rydberg/Wannier states (ϕn(r)) in addition to the non-
interacting Hartree–Fock (HF) states, given by the Wannier equa-
tion [Eq. (2)] with static dielectric constant ε(0) [αi(0) being the
static polarizability of atom i with Vol being the sample’s volume
and � being the exciton mass],

�− �h2
2� � +

1
ε(0) e

2

r �ϕn(r) = Enϕn(r), (2)

ε(0) = 1 + 4π
Vol
�atoms�

i
αi(0)�. (3)

At every time step, t, of the stochastic simulation, all atoms are
subject to the following operator:

X(t)ws† + Y(t)w†s. (4)

Where {w†, w} and {s†, s} are creation and annihilation operators
forWannier orbitals and Slater (HF) orbitals, respectively. Both X(t)
and Y(t) take random Boolean values, {0, 1}. The probability of
1 is dependent on the half-life12 of the Poisson process of decay
(X(t)) and the excitation cross section and beam fluence at time
t (Y(t)). Since the sample is homogeneous, excitons are supposed
to be stationary, affecting only the total electrostatics and thereby
dynamics.

In previous simulations of X-ray Free-Electron Lasers (XFEL)
beam damage,13 secondary radiation damage (that is, atomic ion-
ization due to ejected photo-electrons) was considered. This is very
different in the case of electron beams, where the atomic electrons
ejected by the beam mostly have energies of a few electron volts
and where lower energy excitons and plasmons dominate the spec-
tra. These low energy secondary electrons are detected and used for
image-formation in the Scanning Electron Microscope (SEM). They
have been detected and studied in detail in time co-incidence with
the plasmons seen in EELS spectra in order to understand their ori-
gin.14 In this work, we have assumed that secondary electrons do not
have sufficient energy to ionize neighboring RGS atoms. Due to the
Ramsauer–Townsend effect, we can expect that because of the high
band gap of rare gas solids, the inelastic mean free path of ejected
secondary electrons will be greatly increased.15

B. Stochastic molecular dynamics

In order to study radiation damage, we wish to obtain the
time-resolved structure factor and the radial distribution func-
tion (trRDF), both of which may be computed by MD simula-
tions. MD was used to track the location of nuclei at every time
step during irradiation. The MD was implemented by integrating
Langevin’s equations with a heat bath parameter γ (in a.u.). In the
limit γ → 0, we recover Newtonian dynamics. The primary dif-
ficulty with this implementation of MD is the need for constant
modifications of the potential energy surface and the subsequent
excited state dynamics as ionization events occur during the MD.
These simulations should be performed on RGS clusters on time
scales of typical electron pulses (∼10 ps) and length scales of typical
proteins (∼100 Å).

Ideally, the Ab Initio MD (AIMD) simulation with dynamics
based on the time-dependent Schrödinger equation would be desir-
able to model such a complex environment. However, due to size

and time limitations, post-Hartree–Fock methods are not feasible.
Similarly, dynamics based on Kohn–Sham Density Functional The-
ory (KS-DFT) is also not quite feasible. Although larger space–time
scales may be accessed than those by post-HF methods, the desired
space–time scale is still not achievable. In addition, KS-DFT as cur-
rently developed may not fully capture the dynamical electron cor-
relations, which result in van der Waals interactions, the only form
of cohesion in RGS.

Instead, the Hartree–Fock equations were solved using a STO-
6G basis set for a range of inter-nuclear distances between two RGS
atoms, with either or both excited (excited orbitals were solutions to
Wannier’s equation). This formed a potential energy surface andwas
used to create a tabulated potential (implemented with resolution of
0.005 Å) on which nuclei may be propagated via classical MD. In
addition to this tabulated potential, a London dispersion potential
was included from the first Padé approximant of the Casimir–Polder
interaction to incorporate long-range cohesion.

III. RESULTS

A single simulation is demonstrated to show the capabilities
of this program. In this simulation, a 1 MeV electron Gaussian
pulse of 1 ns (0.5 ns FWHM) duration, 10 e/Å2 fluence, and 1
�m spot size (π4 �m

2 beam area) irradiated a solid Argon cluster,
Ar4631, centered and equilibrated at 50 K before the pulse. Visu-
ally, the results are shown on Fig. 1, and this figure compares a
cluster at a pristine condition to after the pulse has left the sam-
ple. The energy of the molecular system is shown in Fig. 2 and
demonstrates discrete jumps, both exciting and relaxing, in potential
energy corresponding to the exciton vertical transitions [see Eq. (4)].
The difference in the total energy before and after the simulation
(or pulse duration) constitutes the energy deposited in the sample
(in this case 2.1 keV) or a dose (when divided by clusters mass)
of 1.1 MGy.

Because of the stochastic nature of this simulation, averages
over many simulations are needed to simulate experimental results.

FIG. 2. This plot shows the evolution of the system’s energy as a function of
time during irradiation of the pulse mentioned in the text. KE = 1

2 ∑i mivi(t)2,
PE = 1

2 ∑ij Vij(t), and TE = KE + PE.

J. Chem. Phys. 152, 144303 (2020); doi: 10.1063/1.5134801 152, 144303-3

Published under license by AIP Publishing

 21 S
eptem

ber 2023 03:04:48

193

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 3. Averaged (over 24 simulations) time-resolved (vertical axis) radial distribu-
tion function (z-axis, i.e., the color in a.u.) plotted against the interatomic distance
(horizontal axis) for an experiment irradiating Ar4631 with a 1 MeV electron beam
with 1 e/Å2 total fluence and 1 �m spot size.

In this case, a set of 24 simulations of a 1 MeV electron pulse of
100 ps (50 ps FWHM) duration, 1 e/Å2 fluence, and 1 �m spot size
was used to irradiate the aforementioned cluster, Ar4631. The results
of the simulation-averaged atom-averaged trRDF are displayed in
Fig. 3. This figure shows minimal radiation damage with this 1 e/Å2

fluence pulse. Energy calculations show an averaged deposited dose
of 193 kGy.

Also investigated was the effect of the coupling, γ, of the sample
to a Langevin thermostat from just plasmon excitations (ignoring
exciton excitations). The results from varying this parameter to a
1 MeV electron pulse of 100 ps (50 ps FWHM) duration, 10 e/Å2

fluence, and 1 �m spot size are shown in Fig. 4. This figure shows
that weakly coupled systems, i.e., isolated clusters in vacuum, suffer
from radiation damage to a higher degree than samples connected
to a thermostat (which would effectively cool the sample).

FIG. 4. The change in the integrated trRDF when compared to unirradiated sample
for four different couplings to the Langevin thermostat.

IV. CONCLUSION

This program allows the analysis of radiation damage mecha-
nisms and excitations responsible by suppressing each of them in
turn. It makes use of EELS spectra to identify important excitations
for a given system. Damage mechanisms may be studied under a
wide range of conditions. These include beam energy, exposure time,
fluence (dose), and sample temperature. The program’s choice of
RGS is well-suited as a first step in understanding radiation damage
in soft-matter on these time and length scales. RGS are known for
their small cohesive energies and thus radiation sensitivity. It is thus
unsurprising that a dose of 1–5 MGy appears to cause dissociation
of the cluster on these time-scales. By comparison, the maximum
exposure/dose used in Cryo-EM (protein/soft-matter) samples are
roughly <30 MGy.4 These samples in addition to being in the bulk
(with neighboring unirradiated sample) have much larger cohesive
energies (from covalent bonds) than these RGS clusters. Apart from
covalent bonds, RGS and protein matter have similar EELS spectra11
in the form of excitons (albeit much less dominant) and plasmons.
van der Waals interactions are important in both systems (RGS and
protein crystals).

Although radiation damage fromXFELs are largely irreversible,
radiation damage from electron beams may be reversible. Excitons
mostly undergo radiative decay, while plasmons decay into phonons
producing heat. This heat may or may not be conducted away,
depending on the sample geometry. Excitons are more damaging
(potentially irreversible) when they are in close proximity in space
and time (Fig. 1 shows an example of this effect). Distancing these
electronic excitations in time (exciting them at different times and
allowing them to decay) could explain the experimental results of
ultrafast electron beams in paraffin showing increased resistance to
damage.16

The exposures required to resolve the structure of an individual
protein (in single-particle mode) require at least one elastic event per
non-hydrogen atom4 and therefore require a total exposure of ∼103
e/Å2. This is not possible in a single shot with pulsed photocathode
sources due to space-charge limitations.

SUPPLEMENTARY MATERIAL

See the supplementary material for additional specifics. The
code performing all these simulations is freely available at
https://github.com/jcandane.

ACKNOWLEDGMENTS

This work was funded by NSF STC (Award No. 1231306) by
the Helmholtz Association through the CFEL at DESY, the Swedish
Research Council (VR), and the Swedish Foundation for Interna-
tional Cooperation in Research and Higher Education (STINT).

REFERENCES
1R. Neutze, R. Wouts, D. van der Spoel, E. Weckert, and J. Hajdu, Nature 406, 752
(2000).
2J. C. H. Spence, IUCrJ 4, 322–339 (2017).
3V. Šrajer and M. Schmidt, J. Phys. D: Appl. Phys. 50, 373001 (2017).
4R. Henderson, Q. Rev. Biophys. 28, 171–193 (1995).
5J. C. H. Spence, Struct. Dyn. 4, 044027 (2017).

J. Chem. Phys. 152, 144303 (2020); doi: 10.1063/1.5134801 152, 144303-4

Published under license by AIP Publishing

 21 S
eptem

ber 2023 03:04:48

194

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

6J. Maxson, D. Cesar, G. Calmasini, A. Ody, P. Musumeci, and D. Alesini, Phys.
Rev. Lett. 118, 154802 (2017).
7L. Van Hove, Phys. Rev. 95, 249–262 (1954).
8R. Egerton, EELS in the Electron Microscope (Springer, 2011).
9S. Bernstorff and V. Saile, Opt. Commun. 58, 181–186 (1986).
10L. Reimer, Transmission Electron Microscopy (Springer, 2013).
11S. Q. Sun, S.-L. Shi, J. A. Hunt, and R. D. Leapman, J. Microsc. 177, 18–30
(1995).

12J. W. Keto, R. E. Gleason, and F. K. Soley, J. Chem. Phys. 71, 2676–2681
(1979).
13C. Caleman, M. Bergh, H. A. Scott, J. C. H. Spence, H. N. Chapman, and
N. Tîmneanu, J. Mod. Opt. 58, 1486–1497 (2011).
14F. J. Pijper and P. Kruit, Phys. Rev. B 44, 9192 (1991).
15J. C. H. Spence, Micron 28, 101–116 (1997).
16E. J. VandenBussche and D. J. Flannigan, Nano Lett. 19, 6687–6694
(2019).

J. Chem. Phys. 152, 144303 (2020); doi: 10.1063/1.5134801 152, 144303-5

Published under license by AIP Publishing

 21 S
eptem

ber 2023 03:04:48

195

APPENDIX D

JCP PERMISSION

196

The JCP article is posted with the required permissions, Julio J. Candanedo

197

Copyright © 2023 Julio Candanedo

198

	Table of Contents
	List of Figures
	Chapter
	1 Case for Sparsity
	1.1 Natural World and Information
	1.2 Naturalness = Sparsity?
	1.3 Occam's Razor & the Wave-Function-Collapse
	1.4 Network Science
	1.5 Hypergraphs & Simplicial-Complexes
	1.6 Finite-Element
	1.7 Bridging theory & High-Performance-Computing
	1.8 Sparse-Tensor Research
	1.9 Physical Problems
	1.10 Organization and Goals

	2 Singular-Value & Schmidt Decomposition
	2.1 How to Define a Wavefunction?
	2.2 What is a Tensor?
	2.3 The Tensor-Network
	2.4 Tensor-Network as a Sparse-Tensor
	2.5 Unstructured Sparse-Arrays
	2.6 Tensor Operations
	2.7 Duality: Unstructured-sparse & Tensor-network Sparse Tensors
	2.8 Tensor Types

	3 Sparse-Partial-Tracing
	3.1 Partial-Trace
	3.2 Ordered Network Structure
	3.3 List-of-Labels Trace Representation
	3.4 Hyper-trace/Hyper-contraction
	3.5 Dense-Sparse Partial-Trace
	3.6 Sparse-Dense Network
	3.7 Sparse-Sparse Partial-Trace (algorithm 1)
	3.8 Sparse-Sparse Partial-Trace (Algorithm 2)
	3.9 Surjective-map
	3.10 A Word of Caution!
	3.11 Output Considerations
	3.12 Partial Partial-Trace

	4 Sparsity in Tensor-Networks
	4.1 The Heisenberg Model
	4.2 Generalized Heisenberg-model
	4.3 NN-Factorization
	4.4 Tensor Operator Element
	4.5 Fundamental-Representation of su(N)
	4.6 Exact-Diagonalization
	4.7 Approximations to
	4.8 Density-Matrix-Renormalization-Group
	4.9 Mean-Field Theory
	4.10 Sparsity of Tensor-Network Pieces
	4.11 Sparsity & Entanglement-Entropy
	4.12 Entanglement-Entropy
	4.13 Procedure
	4.14 Results
	4.15 Error Fidelity

	5 Sparsity in Chemical Systems
	5.1 Orbital Interaction
	5.2 Full Configuration-Interaction
	5.3 Active-Space Configuration-Interaction

	6 Molecular Dynamics
	6.1 Freshman's Dream
	6.2 Atomic Dynamics
	6.3 Potential Energy Surface
	6.4 Cell-list and NN-interactions
	6.5 Classical Molecular Dynamics Algorithm
	6.6 Application in Radiation-Damage
	6.7 Real-Time Molecular-Dynamics
	6.8 Real-Time Radiation-Damage

	7 Conclusion

	References
	Appendix
	A sparse-einsum bisum
	B ChemRxiv Paper
	C JCP paper
	D JCP permission

