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ABSTRACT

T-cells are an integral component of the immune system, enabling the body to

distinguish between pathogens and the self. The primary mechanism which enables

this is their T-cell receptors (TCR) which bind to antigen epitopes foreign to the body.

This detection mechanism allows the T-cell to determine when an immune response

is necessary. The computational prediction of TCR-epitope binding is important to

researchers for both medical applications and for furthering their understanding of

the biological mechanisms that impact immunity. Models which have been developed

for this purpose fail to account for the interrelationships between amino acids and

demonstrate poor out-of-sample performance. Small changes to the amino acids in

these protein sequences can drastically change their structure and function. In recent

years, attention-based deep learning models have shown success in their ability to

learn rich contextual representations of data. To capture the contextual biological

relationships between the amino acids, a multi-head self-attention model was created

to predict the binding affinity between given TCR and epitope sequences. By learning

the structural nuances of the sequences, this model is able to improve upon existing

model performance and grant insights into the underlying mechanisms which impact

binding.
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Chapter 1

INTRODUCTION

1.1 Biological Background

The adaptive immune system is the body’s innate way of recognizing and defend-

ing against pathogens (Wilson and Hunt, 2002). One of the defining mechanisms used

by the adaptive immune system is the T-cell. A primary function of these cells is

distinguishing foreign invaders from the cells which comprise the self. Cells produce

antigens as a byproduct of normal cell metabolism, because of this each antigen is

unique to the process by which it was created. This means that pathogen-infected

cells produce different antigens than those normally produced by healthy cells in the

body. Each cell presents its created antigens using a major histocompatibility com-

plex (MHC) protein which binds to these fragments, carries them to the cell surface,

and presents them there.

The exposed antigens on the cell surface enable T-cells to investigate if a particular

cell has been infected with a virus. As T-cells patrol the body their receptors come into

contact with the binding regions on the other cell’s antigens, also known as an epitope.

If a binding occurs between the TCR and epitope, an immune response is started to

kill the target pathogen-infected cell. However, the immune system must monitor

for a plethora of diseases and their respective epitopes. To accommodate for this the

immune system creates millions of distinct TCRs using the variable (V), diversity (D),

and joining (J) genes, creating immune cover through VDJ recombination (Sewell,

2012). These TCRs are also cross-reactive with the ability to recognize multiple

epitopes.
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Utilizing the adaptive immune system is the primary focus of immunotherapy,

a treatment that harnesses the body’s innate defenses against novel diseases (Schu-

macher et al., 2019). One common immunotherapy target is cancer, a disease caused

by somatic mutations leading to abnormal cell growth and function. Cancer can

evade the body’s immunosurveillance and remain undetected through various mech-

anisms making it difficult to deal with unaided (Seliger, 2005). The immune system,

however, is not rendered completely useless. The mutations which create cancer cells

cause them to produce neoantigens, antigens that contain peptides that are absent

from the human genome (Schumacher et al., 2019).

Immunotherapy has been shown to be an effective treatment due to its long-lasting

effects and selectivity (Koury et al., 2018). One avenue of treatment immunotherapy

uses is the transfusion of T-cells with receptors that bind to a patient’s cancer cell

neoantigens. This enables their immune system to identify cancer cells as foreign to

the body. Immunology researchers start this process by determining the neoantigen

epitopes produced by the patient’s cancer cells. Once the epitope sequences have

been determined, they must find or engineer T-cells with the cognate TCRs required

for treatment.

The TCR screening process however is challenging and costly. There are over

1015 possible rearrangements of a T-cell’s VDJ genes, the genes which ultimately

influence the epitopes a T-cell binds to (Lythe et al., 2016). The scale of TCR

candidates to test against the patient’s epitopes makes manual laboratory approaches

for determining which TCRs bind to a target neoantigen epitope expensive and time-

consuming. A computational solution is necessary to reduce the number of candidates

for the development of a patient-specific course of treatment.
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1.2 Computational Background

In recent years, several antigen-specific databases have been created including

VDJDB, McPAS, and IEDB (Shugay et al., 2018; Tickotsky et al., 2017; Vita et al.,

2019). The new availability of data has enabled machine learning approaches for

predicting the specificity between TCRs and epitopes. A few different computational

models have been proposed for this problem. Solutions include netTCR which utilizes

convolutional neural networks (CNN) to determine the interactions between TCRs

and epitopes in the most common human allele HLA-A*02:01 (Jurtz et al., 2018).

ERGO on a similar note experiments with long short-term memory (LSTM) and

autoencoder (AE) structures to build a unified prediction model (Springer et al.,

2020). TCRex’s approach involves creating a random forest model to build a series

of decision trees for each epitope (Gielis et al., 2019). Another solution, TCRGP

utilizes both the TCRα and TCRβ regions to determine which regions are important

for epitope recognition (Jokinen et al., 2019). However, these methodologies suffer

from several major problems.

The first problem arises with methods such as TCRGP and TCRex which both

propose antigen-specific models for each epitope. This limits their prediction models

to only epitopes which have a sufficient number of known cognate TCRs, severely

inhibiting their practicality for out-of-sample predictions. Next, all of these models

are black-box models which suffer from a lack of interpretability, leaving the biolog-

ical explanations behind binding still unknown. The final problem shared by these

models is the loss of positional and contextual information from the TCR and epitope

sequences in the models. Their chosen structures fail to learn how amino acids impact

the structure and function of others in the same sequence.
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Attention-based models have shown success in their ability to encode contextual

information in natural language processing (NLP) (Vaswani et al., 2017). Similar

to sentences, protein sequences also share hidden contextual relationships between

their amino acids which impact their ability to bind to other sequences (Serçinoğlu

and Ozbek, 2020). In this paper, I present a new model which utilizes a multi-head

self-attention mechanism. The attention layer helps the model learn the biological

contextual representations of epitopes and TCRs and understand how each of the

amino acids determines their binding affinity to each other.
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Chapter 2

METHODS

Data was collected and cleaned from three databases for training and testing.

After analysis of procured data, the input to the multi-head self-attention model was

chosen to be a pair of sequences consisting of a sequence from the TCRβ chain and

an epitope sequence. Given the two sequences, the model calculates and outputs the

binding affinity between them as a value between 0 and 1. The prediction model was

implemented using PyTorch (Paszke et al., 2019). The model’s architecture consists

of two separate encoder layers for each type of sequence, which then both feed into a

unified decoder layer. The encoders both contain multi-head attention layers, while

the decoder consists of a dense linear layer.

Prior to being input into the model, the sequences are transformed into embed-

dings using an embedding layer. The combination of the embedding layer and multi-

head attention layer in the encoder enables the model to learn specific amino acid la-

tent features and relationships, as well as their impacts on binding affinity. The model

was trained on the collected data which was split using two different methodologies

designed to test the model’s performance on out-of-sample data. Hyperparameter

selection and performance assessment were done using nested-cross validation over

five folds. In order to test the multi-head-attention model’s performance, netTCR,

ERGO-LSTM, and ERGO-AE were chosen to be baseline models (Tickotsky et al.,

2017; Jurtz et al., 2018). These three models are trained on the same dataset and

splits as the multi-head-attention model to compare their performances.
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2.1 Data Procurement and Processing

Data for known TCR-epitope binding pairs was collected from three databases

VDJDB, McPAS, and IEDB in December 2020 (Shugay et al., 2018; Tickotsky

et al., 2017; Vita et al., 2019). Initially, the combination of the three databases

contained 284,859 pairs before pre-processing. Entries in the databases represented

the TCRs and epitopes using strings of characters indicating the amino acids in the

protein sequences. Furthermore, they included information for the complementarity-

determining region 3 (CDR3) sequences from both TCRα and TCRβ regions. The

CDR3 is used across all three of the databases to represent an individual TCR due to

its importance as a determinant for antigen recognition (Tickotsky et al., 2017). Fig-

ure 2.1 shows the distribution of TCR sequence information available in the collected

data. Approximately 68.8% of TCR-epitope pairs were missing a reported sequence

from the TCRα chain. Inferring these sequences would likely introduce errors due to

the large sequence space over which the TCRα chain can exist. Consequently, the

TCRα chain sequences were dropped from the data rather than imputed.

The databases also included epitopes from both MHC class I and II proteins,

however, the data was mostly skewed towards MHC class I. Figure 2.2 highlights the

lack of MHC class II epitopes in the databases. Both classes of MHC proteins are

structurally similar but contain some differences that enable them to bind to specific

types of T-cells (Wilson and Hunt, 2002). These small structural changes make it

difficult to extrapolate information from one class to another. With very few samples,

it is unlikely the model will learn significant binding determinants for MHC class II

epitopes. Furthermore, most nucleated cells present class I MHC proteins whereas

only some specialized cells present class II MHC proteins. This makes predictions on

class I MHC proteins more desirable than their counterparts. The aforementioned

6



Figure 2.1: The availability of CDR3 protein sequences across VDJDB, McPAS,
and IEDB.

combination of factors led to the data being filtered to only contain MHC I epitope

sequences.

After the two previously mentioned filters for missing data were applied, the rest of

the dataset was pre-processed into a unified format consisting of the CDR3 sequence

from the TCRβ chain and the epitope sequence for the target antigen. Several addi-

tional quality control filters were also placed on the remaining data to remove pairs

that were not described using protein sequences or contained unknown amino acid

symbols. Once these filters were applied the remaining data consisted of 6,388 pairs

from VDJDB, 11,936 pairs from McPAS, and 169,223 pairs from IEDB. The three

databases did contain some repeated samples and overlapping data, requiring the

removal of duplicates after they were combined. After all pre-processing steps, the

final data count came to 150,008 unique TCR-epitope binding pairs. Inside of which

982 unique epitopes and 140,675 TCRs were observed.

Non-binding pairs are not readily available as the consulted databases only record

binding pairs. A method for negative data generation was developed using random
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Figure 2.2: The distribution of MHC classes across VDJDB, McPAS, and IEDB.

recombination of the positive data. One consideration for random recombination is

the possibility for a single TCR to bind to multiple epitopes and multiple TCRs to

a single epitope (Sewell, 2012). However, the space of possible TCR and epitope

sequences makes it unlikely that two randomly selected sequences will have an affin-

ity for binding with each other. With this consideration, the random recombination

method was used to supplement the positive data. The method works by duplicating

an existing positive pair and replacing the TCR in the duplicate with another ran-

domly selected TCR from the positive data. If this generated a pair already present

in the dataset another TCR was chosen until a unique pair was created. This pro-

cess generated a 1:1 ratio of negative data to be utilized for training, validation, and

testing. Additionally, since each original pair’s epitope was used during the random

recombination, the distribution of epitopes in the data remained the same as before.

The recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pan-

demic has highlighted the need for antigen-specific treatments such as vaccines. An

additional SARS-CoV-2 dataset was pulled from IEDB in July 2021 (Vita et al.,
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2019). This data was kept separate from the rest of the training data for use as

an independent out-of-sample testing dataset. The pulled data featured 332 newly

added TCR-epitope pairs for SARS-CoV-2. The epitopes and TCRs in the SARS-

CoV-2 dataset were not present in the training data. The same quality control filters

were applied to ensure all data was described using protein sequences. After filtering,

two epitopes were present in the SARS-CoV-2 dataset. The first, YLQPRTFLL, had

304 recorded cognate TCRs while the other epitope, RLQSLQTYV, had 28 recorded

cognate TCRs.

2.2 Training and Testing Set Split

The possible sequence space for both epitopes and TCRs is extremely large. It is

estimated that the body harbors 1010 distinct TCR clonotypes at any time to screen

for the various diseases humans encounter regularly (Lythe et al., 2016). It is also

possible for a pathogen to escape recognition by a particular TCR through a series

of mutations that cause sufficient antigen changes to render it non-binding (Sewell,

2012). Therefore it is of interest to predict binding affinities for sequences not seen by

the model before. To simulate predictions on out-of-sample sequences, two strategies

were devised to split the training and testing data. These strategies were used to

evaluate the model’s ability to generalize on unseen TCRs and epitopes.

• TCR Split: The data was split such that any TCRs that are in the testing

set are not found in the training set. This split of the data models a situation

where additional TCRs are being screened for epitopes with known binding

TCRs. The goal of training and testing on this split is to evaluate the model’s

prediction performance on out-of-sample TCRs.

• Epitope Split: The data was split such that any epitopes that are in the testing
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set are not found in the training set. This split of the data models a situation

where the antigens and therefore epitopes for a specific disease have not been

encountered before. This is possibly due to the appearance of a novel disease

or a series of mutations to a known disease. The goal of training and testing

on this split is to evaluate the model’s prediction performance on out-of-sample

epitopes.

A random sampling method was originally considered as a part of the experiment

on model performance. However, upon further examination of the collected data, it

was hypothesized that a random split would have a similar performance to a TCR

split. The vast majority of TCR sequences in the dataset only appear once, meaning

a random sampling would already have minimal TCR sequence overlap between the

training and testing set. To test this hypothesis and compare the two methods, 10

random splits of the data were created. Each of the splits was then converted into a

TCR split by correcting the folds to not overlap on any TCR sequences.

An overlapping fold was corrected by exchanging offending TCR sequences with

other folds. A fold removing an offending TCR would, when possible, exchange for

a sequence that was already present in its fold. Otherwise, it would select a random

TCR which was unique with no duplicates in the other fold. After all corrections were

made, each split of the random split was compared to its respective corrected TCR

split. On average there was a 91.22% similarity in TCR sequence membership between

the two kinds of splits. Due to the relative similarity between the splits generated by

both methods their performance would likely also be similar. The random sampling

method was not utilized in the rest of the experiments to reduce result redundancy

and the overall amount of training required.
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2.3 Multi-head Attention Model

The created binding affinity prediction model consists of two encoders that encode

the TCR and epitope sequences separately and a linear decoder that determines

the affinity between the two sequences. The defining characteristic of this model is

the multi-head self-attention mechanism located inside the encoders (Vaswani et al.,

2017). The multi-head self-attention mechanism selectively focuses the attention of

the model based on the strength of relationships between amino acids in the sequences.

The arrangement of the amino acids in TCR and epitope sequences plays a vital

role in determining their structure and function (Serçinoğlu and Ozbek, 2020). The

attention layer helps the model learn the biological context behind these arrangements

that ultimately impact their ability to bind to other sequences.

Prior to being input into the model, each input sequence is padded to a constant

length. These two lengths pT and pE for TCR and epitope sequences respectively are

a part of the hyperparameter set. After this pre-processing step, each input sequence

to the model is fed into an initial embedding layer to obtain embeddings of size

p. Figure 2.3 shows an example of a padded TCR sequence being transformed into

embeddings of size pT × p. The individual amino acid symbols were treated as words

in this case, with each symbol being one of p entries in the embedding dictionary.

The intuition behind this layer is to learn the latent features for each amino acid and

determine which have similar properties for binding.

The sequence embeddings T ∈ RpT×p and E ∈ RpE×p are then fed into their

corresponding encoders. The attention mechanisms in each encoder fT and fE process

the sequences separately to learn their contextual representations. The encoder then

quantifies and learns the strength of linear relationships between amino acid and

their positions in the sequence. These learned relationships then become the basis
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Figure 2.3: An example of a padded sequence being transformed into embeddings

for the amount of attention the model places on other positions when transforming

the input. The new representation of each sequence becomes a linear average of the

input representation weighted by the learned attention values from the strength of

the input’s positional relationships. More precisely, a TCR sequence T is fed into

three linear layers returning (linear-transformed) key (K), query (Q), and value (V )

matrices as follows:

K = TWK , Q = TWQ, V = TW V (2.1)

The relationship strength between i-th amino acid and the others, denoted as wi,

is determined by the scaled dot-product of the i-th row of Q with all rows of K as

follows:

wi = Softmax

(
qiK

T

√
pT

)
(2.2)

Where qi is the i-th row of Q. The contextual representation of i-th amino acid
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is then defined as a linear sum of all amino acid vectors weighted by vi.

t∗i = wiV = wi1v1 + · · ·+ wipTvpT ,

T ∗ = WV

(2.3)

Where wi is the i-th row of W . Each element of wi can be interpreted as an

importance score of each amino acid in the sequence for determining the new repre-

sentation of the i-th amino acid. This attention mechanism is called self-attention.

The cognitive load of the attention mechanism is spread out by concatenating and

passing multiple self-attention outputs through a single dense layer. The epitope se-

quence is similarly processed through a separate multi-head attention layer to obtain

a new representation matrix. These two encoders are distinct to separately learn the

structures of both sequences. Finally, the output of both multi-head attention layers

forms the expected dimensions of TCR and epitope representations (T ∗ and E∗).

The encoded sequence representations are concatenated and fed into the decoder

fd. The concatenated representation is then passed through several linear transforma-

tions decreasing in size using the Sigmoid Linear Unit activation function, also known

as the Swish function (Ramachandran et al., 2017). The output of the decoder is then

fed into a Sigmoid activation function to receive the binding affinity score between

the two sequences as follows:

Score(T ,E) =
1

1 + e(−fd(T ∗,E∗))
(2.4)

The outputted binding affinity is a real number between 0 and 1 representing

the likelihood of a binding between the two sequences. This value is rounded to

the nearest integer to receive either a 0 or a 1 indicating a negatively or positively

predicted binding respectively. The model is trained using the Adam algorithm to

minimize the binary cross-entropy loss (Kingma and Ba, 2014). During the creation

of the model, five hyperparameters were identified for tuning.
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• Maximum TCR Size - The size to which TCR sequences are uniformly padded.

• Maximum Epitope Size - The size to which epitope sequences are uniformly

padded.

• Initial Embeddings - A blocks substitution matrix (BLOSUM) matrix that de-

scribes the initial weights in the embedding layer.

• Hidden Layer Dimensions - The size of the hidden layers present in the linear

transformations after concatenation of the two post-attention representations

of the sequences.

• Drop Rate - The probability of dropout during the linear transformations in

the dense layer. Dropout has been shown to reduce overfitting on datasets of

limited sizes (Hinton et al., 2012).

The TCR and epitope size hyperparameters were chosen to identify if particular

segments of the sequences were more important than others for binding. During pre-

processing both sequence types utilize mid-padding which inserts or deletes symbols

in the middle of the sequence until the sequence is a standard length. This means

sequences longer than the maximum length will only have symbols from the beginning

or end of their sequences preserved. A larger maximum size means more information

from longer sequences is preserved, however shorter sequences become more sparse

with the insertion of several padding symbols. Several sizes were tested based on the

distribution of sequence lengths in the data. Additionally, a size termed∞ was tested

where all of the sequences were padded to match the length of the largest sequence

in the dataset.

The initial embeddings hyperparameter tests if integrating BLOSUM matrices

can improve model performance. BLOSUM matrices are used during protein sequence

14



alignment to compare the similarity of two amino acids (Henikoff and Henikoff, 1992).

The embedding layer weights are still updated during training, however, the intent

of this experiment is to determine if current biological models contain important

information for binding which cannot be intuitively learned by the model. The last

two hyperparameters were identified in the dense layer of the decoder. Various sizes

of hidden layers and dropout rates were tested to maximize model performance and

minimize overfitting. Table 2.1 shows the chosen hyperparameter search space for the

model. The hyperparameters were tuned via grid search and each set’s performance

was tested using 5-fold nested cross-validation.

Table 2.1: The hyperparameter search space for the model tuned via grid search.

Hyperparameter Values Tested Final Model Value

Maximum TCR Size {10, 15, 18, 20, 22,∞} 20

Maximum Epitope Size {10, 15, 18, 20, 22,∞} 22

Initial Embeddings* {45, 50, 62, None} None

Hidden Layer Dimensions {512, 1024, 2048} 1024

Drop Rate {25%, 33%, 50%} 25%

*The values for the initial embeddings refer to a BLOSUM matrix number.

2.4 Additional Structures Tested

The described structure was not the only model tested for this task but it was

found to be the best performing of all the created architectures. The aforementioned

multi-head attention model utilizes just a single attention layer to receive the encoded

representation of each protein sequence. However, structures for natural language

processing such as ELMO and BERT utilize multiple attention layers to obtain their
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Figure 2.4: A depiction of the multi-head attention model

rich encodings of sentences (Peters et al., 2018; Devlin et al., 2019). An additional

multi-head attention model using two attention layers was created and trained on the

same hyperparameter sets. This model was found to have no significant differences

in performance compared to the single-layer attention model. The single-layer atten-

tion model was kept instead to minimize training overhead. Additionally, multiple

activation functions were tested for the dense layer in the decoder. The model was

trained multiple times using each of the PyTorch implementations of Swish, ReLU,

LeakyReLU, GELU, and Tanh across several hidden layer sizes (Paszke et al., 2019).
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Swish was able to consistently outperform the other activation functions for all layer

sizes. This resulted in it being chosen as the primary activation function for the

decoder.

2.5 Baseline Comparison Models

Three additional models were chosen as baselines to measure the multi-head at-

tention model’s effectiveness. The chosen models; ERGO’s LSTM model, ERGO’s

AE model, and netTCR’s CNN model; were trained on the TCR split and epitope

split using their best-performing hyperparameters as reported by their corresponding

literature (Tickotsky et al., 2017; Jurtz et al., 2018). Training for all three models

used the same dataset as the multi-head attention model. The models would all

be trained on equivalent ratios of positive and negative samples. This enabled fair

comparisons without bias from dataset differences. For measuring performance us-

ing cross-validation, the indices for the 5-folds were recorded and utilized across all

models to ensure training and testing data remained consistent.
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Chapter 3

RESULTS

The multi-head attention model performed better than the other baseline models

for the binding affinity prediction task on the TCR split. However, all models per-

formed poorly on the epitope split and were unreliably able to distinguish between

binding and non-binding pairs. In further analysis of the multi-head attention model

hyperparameters, two were determined to have the most impact on performance. The

hidden layer size and the maximum length of the input sequences. An examination

of the sequence lengths in the dataset shows that for a majority of sequences, the

entire sequence is necessary for determining binding affinity and not just specific re-

gions. However, sequences with larger lengths are not correlated to more accurate

predictions.

In further experimentation to improve the performance of the multi-head-attention

model on out-of-sample data, the learned attention matrix was analyzed as a confi-

dence measure for predictions. Similar epitopes to the SARS-CoV-2 epitopes were

found in the training data and used as baselines. The attention matrices were cal-

culated for the baseline epitope’s cognate TCRs. These matrices were then averaged

into different groups based on the model’s original predictions. The Euclidean dis-

tances between the attention matrices for the SARS-CoV-2 TCRs and the baseline

attention matrices were compared. It was found that the distances between the at-

tention matrices were significantly closer when a SARS-CoV-2 TCR belonged to a

similar prediction group as the baseline TCRs. This led to the conclusion that the

attention matrix can be used to establish confidence in out-of-sample predictions.
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3.1 Prediction Performance

The model’s performance for the binding affinity prediction tasks was evaluated

on data splits created using the previously described TCR split and epitope split.

Table 3.1 shows that the multi-head attention model outperforms other models in

the TCR split for the AUC and recall performance metrics. Only one other model,

ERGO’s AE model, is able to outperform the multi-head attention model in terms of

precision. The multi-head attention model’s recall score is an especially distinguishing

feature. These prediction models are intended to reduce the pool of TCR candidates

which can be considered for treatment development. Recall is an important metric

for this reason, as models should still be sensitive to potential TCR candidates even

if it comes at some cost of selectivity.

Notably, the results in table 3.2 highlight a massive performance difference be-

tween the TCR split and the epitope split for all tested models. Despite being trained

on the same pool of data, the exclusion of specific testing epitopes from the training

set dramatically decreases performance across the board. The middling performance

metrics for each model as well as the high variances indicate that all models essentially

became random classifiers. The multi-head-attention model performed similarly on

out-of-sample SARS-CoV-2 data as it did on the epitope split with an overall recall

of 64.26%. The individual recall for each epitope was 65.13% for YLQPRTFLL and

57.14% for RLQSLQTYV.

Part of this disparity can be explained by the differences in data distribution

between the two types of sequences. A large proportion of the TCRs in the database

are unique and many share common motifs in their sequences. There are several

groups of TCR sequences that only differ by a few amino acid substitutions. These

groups often do not bind to the same few epitopes. The addition of the negative data
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generated through random recombination allows the model to see several examples

of similar TCRs with both binding and non-binding affinities to a particular epitope.

This enables the multi-head-attention model and other baseline models to learn the

changes to TCRs that impact their epitope-specific binding affinities.

On the other hand, the epitope sequences do not have this same overlap of features

and motifs. Most epitopes in the dataset are distinct from others with multiple amino

acid changes. This makes it difficult to extrapolate their learned structures to another

epitope in the dataset. The epitope split ensures that an epitope in the testing set has

never been seen by the model before. Without a diverse set of examples or similar

sequences, the learned models struggle to apply their limited information to make

an accurate prediction. The near 50% AUC and high variance for all models on the

epitope split indicates that key features for determining binding are still missing.

During the hyperparameter tuning stage, two hyperparameters were identified as

having the greatest effect on model performance. The first of which was the size

of hidden layers within the dense layer. The second was the lengths the sequences

were uniformly padded to. The multi-head attention model benefited from having

high length bounds on the sequences. Reducing these bounds below 15 amino acids

was very detrimental to the performance of the model. Similarly, having unbounded

lengths on the sequences and simply padding each sequence to the longest length in

the dataset also resulted in a decrease in performance.

On further analysis of the data, the average epitope length was 12.36 and the

average TCR length was 14.38. This seems to indicate the entire epitope and TCR

sequence may be crucial for binding and not just specific positions. However, in

the final model, the same distribution of lengths for TCRs occurred in both the

correctly and incorrectly predicted groups. This indicates that TCRs with longer

protein sequences do not necessarily encode more information for this task than their
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shorter counterparts. Subsequently, initializing the embedding layer using BLOSUM

matrices was found to have little to no effect on the performance of the model. On

average, a random initialization of the embedding matrix performed better than a

BLOSUM initialized embedding matrix.

Table 3.1: Performance comparison of the multi-head attention model to other
baseline models on the TCR split.

Model TCR Split

AUC Recall Precision

Multi-head Attention 75.76% (±0.26%) 82.52% (±2.43%) 62.58% (±0.91%)

ERGO - AE 75.66% (±0.19%) 74.16% (±1.28%) 65.44% (±0.57%)

ERGO - LSTM 72.40% (±0.27%) 76.24% (±3.35%) 62.12% (±0.67%)

netTCR - CNN 72.94% (±0.84%) 81.35% (±2.74%) 61.43% (±0.67%)

Table 3.2: Performance comparison of the multi-head attention model to other
baseline models on the epitope split.

Model Epitope Split

AUC Recall Precision

Multi-head Attention 51.58% (±5.06%) 59.58% (±18.50%) 49.01% (±3.33%)

ERGO - AE 50.25% (±1.39%) 56.84% (±8.73%) 47.89% (±2.49%)

ERGO - LSTM 49.02% (±3.47%) 57.84% (±8.85%) 49.19% (±1.76%)

netTCR - CNN 54.17% (±3.16%) 62.17% (±15.29%) 52.63% (±1.37%)

3.2 Attention as a Confidence Measure

The multi-head attention model and baseline models all demonstrate limited per-

formance when trained on the epitope split. Furthermore, the multi-head attention
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model shows similar results on the out-of-sample SARS-CoV-2 data. A key feature

is still missing from each of the models when it comes to predicting binding for epi-

topes that have never been seen by them. In this section, I show that the multi-head

attention model’s attention matrix W can be used to further improve prediction

performance in such situations.

Intuitively it can be assumed that two TCR sequences that bind to the same

epitope share similar positional inter-relationships between their amino acids. It was

further assumed that two similar epitopes’ cognate TCRs would also share similar

amino acid relationships. This would result in the TCRs having similar attention

matrix representations in the multi-head attention model. While on the other hand,

a TCR which binds to a distant epitope would have distinct amino acid relation-

ships and thus a dissimilar attention matrix. Based on these assumptions, it was

hypothesized that previous predictions for epitopes could be used to validate future

predictions on similar out-of-sample epitopes by using the attention matrices for their

cognate TCRs.

To test this hypothesis, two baseline epitopes were found by comparing the lengths

of the longest common subsequences between the training data epitopes and the

SARS-CoV-2 epitopes. Pairs that contained these two baseline epitopes were then

retrieved from the original training data. For each baseline epitope, its paired TCRs

were then sorted into one of four confusion matrix categories based on the multi-

head attention model’s binding affinity predictions: true-positive (TP), false-positive

(FP), true-negative (TN), and false-negative (FN). This resulted in two groups of

four categories, one group for each baseline epitope. For each of these categories,

a reference attention matrix was calculated by averaging the attention matrices for

each of the TCRs in that particular category.
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(A) Correctly predicted positive pairs (B) Incorrectly predicted positive pairs

Figure 3.1: Distribution of the distance between (A) the correctly predicted TCRs
and the FP/TP reference matrices, and (B) the incorrectly predicted TCRs and the
FN/TN reference matrices.

If a TCR was predicted as binding to an epitope in the SARS-CoV-2 dataset,

then the attention matrix for that TCR was compared to the true-positive and false-

positive reference matrices for the corresponding baseline epitope. If a TCR has

a closer attention matrix to that of the true-positive reference matrix, then it can

be affirmed that it is a binding TCR. Otherwise, if it shares more similarity with

the false-positive reference matrix, it should be reconsidered as a non-binding TCR.

In a similar manner, a TCR which was predicted as non-binding to a SARS-CoV-2

epitope should be compared to the true-negative and false-negative reference matrices

for the corresponding baseline epitope. It follows such that, similarity with the true-

negative matrix will affirm the prediction as non-binding, while similarity with the

false-negative matrix indicates the TCR should be reconsidered as binding.

The Euclidean distance was utilized as the distance metric to calculate the similar-

ity of the attention matrices and reference matrices. Figure 3.1 shows the comparison

between the Euclidean distances for correctly predicted pairs on the left and incor-

rectly predicted pairs on the right. In a paired t-test it was observed that TCRs that

were predicted to bind to the SARS-CoV-2 epitope had attentions significantly closer
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(p < 2.2 × 10−16) to that of the true-positive TCRs than those which were false-

positives. Similarly, the incorrectly predicted TCRs have attentions significantly

closer (p < 2.2 × 10−16) to the false-negative TCRs than the true-negative TCRs.

These distances were also found to not be significantly correlated with the model

scores (correlation values between 0.05 − 0.23). This indicates that the distance to

each reference matrix is a distinct measure from the model that can be used for

evaluating the confidence of predictions on out-of-sample data.
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Chapter 4

FUTURE WORK

Although the attention matrices can be used as confidence measures for predic-

tions on out-of-sample data, the epitope split and SARS-CoV-2 dataset performance

indicate that additional features might be necessary for binding predictions. The pro-

tein sequences in this model are represented as strings of amino acid symbols. But

in reality, both TCRs and epitopes are 3-dimensional structures with various grooves

and loops which impact their ability to adhere to each other in a binding (Serçinoğlu

and Ozbek, 2020). The model is forced to infer the amino acid relationships between

the two protein sequences without this knowledge of their structure. Adding these

structural features to the data may result in large boosts to model performance.

Even without this 3-dimensional structure information, the multi-head attention

model’s ability to learn sequence interactions can still be further improved. Currently,

the model utilizes a naive padding technique for both the TCR and epitope sequences

which arbitrarily pads or trims amino acids in the middle of the sequences until they

are a standard length. An alignment method that can match the binding regions

between TCRs and epitopes would ensure the conservation of amino acids which

impact the binding the most.

The success of the multi-head attention model also indicates that other NLP so-

lutions may be applicable to this problem. Although the BLOSUM matrices were

unable to enhance model performance, other embedding types can be used for the

protein sequences. For example, the embedding layer may be able to be improved

using recent NLP embedding models. In lieu of the embedding and attention layers,

the embeddings for each sequence can be calculated using ELMO or BERT and di-
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rectly fed into the decoder (Peters et al., 2018; Devlin et al., 2019). These models

may be able to extract some additional complex characteristics of the sequences and

improve model performances.
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Chapter 5

CONCLUSION

The multi-head self-attention model shows promising results for the TCR-epitope

binding prediction task. The attention mechanism helps the model learn biological

contextual representations of both TCR and epitope sequences. By selectively corre-

lating the amino acids in each sequence the model gains insight into the structural

changes that occur when a single position’s amino acid is changed. It demonstrated

its ability to apply this knowledge by outperforming the other baseline models on the

TCR split of data. Despite this, both the multi-head attention model and baseline

models failed to make accurate predictions on the epitope split of the data. However,

the multi-head attention model’s learned attention matrix demonstrated its usefulness

as an interpretable model. The attention matrix was successfully used as a confidence

measure for evaluating out-of-sample predictions. This is evident of the multi-head

attention model’s ability to learn contextual representations that are translatable

across sequences.
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