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ABSTRACT 
 

How to effectively and accurately describe, character and quantify the microstructure 

of the heterogeneous material and its 4D evolution process with time suffered from external 

stimuli or provocations is very difficult and challenging, but it’s significant and crucial for its 

performance prediction, processing, optimization and design. The goal of this research is to 

overcome these challenges by developing a series of novel hierarchical statistical 

microstructure descriptors called “n-point polytope functions” which is as known as Pn 

functions to quantify heterogeneous material’s microstructure and creating Pn functions 

related quantification methods which are Omega Metric and Differential Omega Metric to 

analyze its 4D processing.  

In this dissertation, a series of powerful programming tools are used to demonstrate 

that Pn functions can be used up to n=8 for chaotically scattered images which can hardly be 

distinguished by our naked eyes in chapter 3 to find or compare the potential configuration 

feature of structure such as symmetry or polygon geometry relation between the different 

targets when target’s multi-modal imaging is provided. These n-point statistic results calculated 

from Pn functions for features of interest in the microstructure can efficiently decompose the 

structural hidden features into a set of “polytope basis” to provide a concise, explainable, 

expressive, universal and efficient quantifying manner.  

In Chapter 4, the Pn functions can also be incorporated into material reconstruction 

algorithms readily for fast virtualizing 3D microstructure regeneration and also allowing 

instant material property prediction via analytical structure-property mappings for material 

design.  

In Chapter 5, Omega Metric and Differential Omega Metric are further created and 

used to provide a time-dependent reduced-dimension metric to analyze the 4D evaluation 
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processing instead of using Pn functions directly because these 2 simplified methods can 

provide undistorted results to be easily compared. The real case of vapor-deposition alloy films 

analysis are implemented in this dissertation to demonstrate that One can use these methods 

to predict or optimize the design for 4D evolution of heterogeneous material. 

The advantages of the all quantification methods in this dissertation can let us 

economically and efficiently quantify, design, predict the microstructure and 4D evolution of 

the heterogeneous material in various fields. 
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CHAPTER 1 

INTRODUCTION AND OVERVIEW  

One can pervasively find the heterogeneous material in nature such as polycrystals, 

and sandstone. Besides, lots of organism such as tooth, skin, bone, wood, and bamboo also 

belong to heterogeneous material. The characteristics of these organism is that they are 

composed with the strongest structure in some special area where often afford more force 

rather than other area. This is the outcome of revolution and optimization to let them can be 

evolved to burden more loading. That is why the progressed organism can reduce the 

probability of damage to sustain and survive in the severe environment.  

With the advent of advanced science and technology, more and more heterogeneous 

materials were created for engineering application because they have more better and 

remarkable physical properties compared to the homogenous material. This process is similar 

to the evolution of organism. In fact, because heterogeneous materials play a significant role 

in these day, it attracts more and more people to analyze and research their characteristics and 

unique. Unlike homogeneous materials, heterogeneous materials are nor evenly composed or 

structured. One can easily changing its contained phases’ arrangement and directional 

orientation, and its geometric structure during manufacture process to obtain pretty different 

material properties [1][20][70][80]. By repeating the procedures, one can create and design the 

most prosper heterogeneous material for specific use. Since this customized material can be 

used for miscellaneous purposes. However, it goes without saying that these repeating 

procedures are very sophisticated and arduous but the occurred benefits are tremendous for 

whole human beings. These days, so many novel heterogeneous materials are utilized in 

aircraft design and vehicle industry to boost up the durability of their product and cost down 

their cost. These are the best cases to be illustrated. 
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In the other words, from last paragraph, we can find out that the configuration of an 

object plays an important role for heterogeneous material. But how to accurately and 

technological compare and describe the configuration of it becomes a very essential and 

challenging question because it can help us to proverb and design the required material with 

designed material property in the future. How to quantify the microstructure is the most 

essential and fundamental part of material design. In order to obtain the most accurate and 

universal quantification results which can be further used for reliable material design, in this 

dissertation, I will focus on how to develop a series of precise quantification methods to 

quantify the configuration. 

For a simple or not complicate model, one can easily discern and describe its structural 

characteristics but for a sophisticated one, it’s impossible to tell and distinguish its structure 

from others. Especially, when it contain more than two phases. Since different material 

structure with assorted phase arrangement has different material properties, if we can 

completely quantify the heterogeneous materials, we can not only easily compare the different 

microstructures between several materials but also design the wanted heterogeneous materials. 

Actually, in this dissertation, I will use a novel method to decompose the geometric 

information. Even more, I can reconstruct it from its most ideal organization to design the 

optimal material which is suitable for expected circumstance.  

To express the multi-function and versatility of Pn functions, I will also use membrane 

generation as an example to illustrate that quantification method of Pn functions are valid and 

cogent tool to proof that not only 4D results of microstructures of different objects can be 

collated each other, but also the results and periodic pattern of the membrane’s generation can 

be analyzed. From all the results of membrane cases, we can apply Pn functions to various 
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fields which cannot distinguished by our naked eyes. In fact, Pn functions do are very efficient 

and accurate tool which can decompose and organize images into a series of data set. 

Before I start to introduce the n-point polytope functions, I would like to introduce 

the heterogeneous materials and the related information about its calculation. 
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1.1 Introduction of Heterogeneous Materials 

As we have mentioned before, unlike homogeneous material, a heterogeneous material 

is composed of assorted materials or different phases, i.e. microstructure, such as concrete 

which is combined with cement, sand, stone, etc. or the same material in different states such 

as a polycrystalline which is composed of many crystallites of varying size and orientation. 

That is why, under the generally circumstance, two man-made materials which contain same 

content, same processing procedure but different in their microstructure may have opposite 

or different material properties. Since heterogeneous materials do not have uniform 

composition and configuration, it will let its application becomes more sophisticated.  

Owing to its non-uniform composition and configuration characteristics, the 

manufactured one can be designed for specific use or purpose for various products with more 

benefits. Taking a bullet-proof vest for example, when designers design it, the designer’s only 

concern is the bullet resistant ability of its normal direction. The designed product’s lateral 

parts does not need to endure the same resistance of normal direction when bullet impacts it, 

so it can be designed thinner to get more flexibility by optimizing the arrangement of Kevlar 

fiber . Light weight and ergonomics/flexibility are very important factors of bullet-proof vest 

for the vest user. Heterogeneous material application does not only offer more benefits for 

user but also benefit the entrepreneur as well because of its low cost character. That is why 

heterogeneous materials are popular and prevail for industry application. 

Generally speaking, Heterogeneous materials normally focus on the study in 

microscopic length scale, which is much larger than the molecular dimension, but much 

smaller than the size of length scale of a macroscopic sample. In such circumstances, a 

heterogeneous material can be viewed as a continuum on the microscopic scale, subjected to 
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classical analysis, and maintain macroscopic properties simultaneously as shown in Figure 1. 

1. Typical examples can be easily found in synthetic materials, i.e., fiber and particulate 

composites, and natural environment, i.e. bones, tissue, sandstone, etc. 

 

Figure 1. 1 Schematic Illustration of a Two-Phase Heterogeneous Material With General 
Phase Properties K1 and K2 and Phase Volume Fraction 𝛷𝛷1 and 𝛷𝛷2.  
 

It is easy to imagine that an entity can change its material properties by altering its 

configuration or its geometric composition. Taking an arch bridge and honey-comb plate for 

example, the arch bridge and honey-comb plate can suffer higher loading than general bridge 

and solid flat plate because arch shape can distribute the loading more efficiently and hexagon 

configuration has more durability because its geometric configuration. When the 

heterogeneous material was researched with microscopic length scale, the conclusion shows 

that its physical properties and performance of heterogeneous materials are determined by 

their complex microstructures and how such microstructures evolve under various external 

stimuli [1][2]. Traditionally, the study of material microstructure has been limited by two 

dimensional (2D) imaging techniques. It frequently occurred the inaccurate or inadequate 

results of solving many cutting-edge problems and all the calculation procedures are laborious 
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and time-consuming. With the advent of advances in experimental methods, analytical 

techniques, and computational approaches enabled the development of three dimensional (3D) 

analyses to be executed [3]. In the following paragraph, I will relate about how to describe and 

quantify the microstructure of heterogeneous materials. 

1.2 Quantification of the Microstructure via Advanced Imaging 

Since different structures and configurations of heterogeneous material can seriously 

offer various material properties [1], that is why quantification is so crucial for heterogeneous 

material because the researcher can compare and distinguish the difference between materials 

which contain the same contents to consider which one will be used for certain situation 

through the result of quantification’s results.  

The procedure of quantification in this dissertation is that one need to obtain images 

such as X-ray results or objects’ cross-section images or just several similar pictures first, then 

transfer all the interesting images into digitalized matrix and finally use quantification method 

to decompose all the matrixes of microstructures into diagrams or data sets. In such situation, 

one can efficient research the microstructure and configuration of different objects. 

One need to acquire object’s image to start to calculate its quantification results. For 

getting image part, before the advanced imaging technology was progressed, how to get an in 

situ characterization of the 3D microstructure containing features of interest on multiple 

length scales and the 4D evolution processes (3D microstructure plus temporal evolution) are 

actually impossible. This challenge has been partially solved by the improved development and 

successful application of  advanced non-destructive in situ imaging techniques, such as x-ray 

micro-computed tomography [9][10]. Additionally, because of development of technology of 

the advanced imaging such as x-ray tomography microscopy, one can be easily allowed to 
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obtain detailed morphological feature data with sub-micrometer resolution and investigate 

microstructural evolution in situ under different external stimuli with different time these days 

[4]-[8]. 

Nowadays, X-ray tomography has already improved to a matured phase. X-ray 

tomography is a convenient, economic, non-destructive technique for characterizing 

microstructure in 3D and 4D [49][50][51]. X-ray tomography use extremely high brilliance and 

partially coherent synchrotron light to allow one to image multi-component materials from 

the sub-micrometer to nanometer range. X-ray tomography can be conducted in imaging 

modes based on light absorption or phase contrast. One can easily adjust small angular 

increments to obtain the interested 2D projections to proceed quantification process. 

Not only imaging technology has boosted but quantitative method has grown by leaps 

and bounds as well. The improvement of quantitative method plays a vital role for 

heterogeneous material because how to accurately quantifying the microstructure of a 

heterogeneous material from obtainable image data is very crucial for its analysis and 

optimization design. For this purpose, several structure quantitative schemes and methods 

have been developed to overcome the challenges. 

Basically, quantitative method is a mathematical frameworks and computational 

processes for quantitative representation, modeling and reconstruction of complex 

heterogeneous material microstructures and their evolution. From its results and diagrams, we 

can thoroughly control its construction and configuration status. Recently, quantitative 

microstructure representation (QMR) has been identified as a key technical gap in core areas 

of “Coupling Simulations and Experiments” and “Digital Representation and Visualization” 

[11]. Besides, a descriptor-based representations, a Hierarchical Materials Informatics, based 

on complete 2-point statistics and its lower dimensionally algorithmic method [12][13][14], can 
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accurate estimates of material properties [15]-[23] and thus, has been incorporated into various 

integrated computational material design frameworks. The representations of complete 2-

point statistics for frameworks such as “low dimensional projections of the complete 2-point 

statistics space” and “the image-based decompositions” which are usually adopted to cope 

with very abstract and challenging cases which cannot be visualized and interpreted physically 

can be represented effectively and successfully in achieving conciseness, expressiveness and 

universality. 

Another widely used descriptor-based representations involves the standard n-point 

correlation (or probability) function Sn, which provides the probability of occurrence of 

arbitrary n-point configurations in the material microstructure [1][24]-[26]. The complete set 

of Sn with n from 1 to infinity provides a concise quantitative microstructure representation 

which can thoroughly describe the physical properties and performance of the material system 

under external stimuli. The lower order function S2  even can be employed to calculate a wide 

spectrum of different heterogeneous material systems [27]-[34]. In practice, it is very 

challenging to utilize Sn with n≥3 because arbitrary n-point means that millions of 

permutations should be considered. To put it another way, one needs to enumerate all distinct 

n-point configurations then can efficiently compute and store their probability of occurrence. 

It is pretty expensive and time-consuming for computer and computer cluster to execute n-

point correlation (or probability) function because Sn’s statistical data set results are typically 

much larger in size than S2’s outcomes.  

Additionally, an alternative and auxiliary approach also used in this dissertation is non-

standard lower-order correlation functions such as the cluster functions [35][36] or surface 

functions [37][38], which can be encoded to analyze the connected construction of interesting 
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phase in material. Although these two functions do not belong to stand n-point correlation 

function and only have the property of lower order correlation function by their original 

definition, these methods are very effective in capturing specific morphological features for 

clustering configuration to offer supplemental data of representation [39] but its results cannot 

be allowed to systematically incorporate hierarchical higher order structural information for 

microstructure quantification. 

In this dissertation, it develops a set of novel hierarchical statistical microstructural 

descriptors, called the “n-point polytope functions” Pn, which use n-point regular polygon 

calculation model rather such as regular triangle, square and regular pentagon rather than any 

arbitrary n-point calculation model to calculate the target’s imaging.  Its conciseness, 

expressiveness, universality and interpretability for quantitative characterization, 

representation of configuration, and modeling of microstructural evolution during processing 

can proof it’s an accurate and reliable quantitative method. Pn functions successively include 

higher-order n-point statistics of the features of interest in the microstructure, and can be 

directly computed from multi-modal imaging data, including x-ray tomographic radiographs, 

optical/SEM/TEM micrographs, and EBSD color maps for quantification of different 

features of interest.  

In particular, the developed Pn functions is an efficient computational tools which can 

directly extract the statistical descriptors from multi-modal images to quantify different types 

of structural features and their evolution. Furthermore, we apply this functions to quantify 

and model for a variety of heterogeneous material systems, including particle-reinforced 

composites, metal-ceramic composites, concretes, porous materials; as well as the 

microstructural evolution in an aged lead-tin alloy. Our results indicate that the Pn functions 

can offer a practically complete, concise and accurate sets of basis for quantitative 
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microstructure representation (QMR) about both static 3D complex microstructure and 4D 

microstructural evolution of a wide spectrum of heterogeneous material systems.  

1.3 Reconstruction of Heterogeneous Materials 

Actually, the detailed and exactly results of correlation functions are powerful and 

useful information for heterogeneous material design. Different results of Pn functions of 

objects represent objects’ different characteristics such as some object has higher yield stress 

in certain direction because it has more square microstructure. For this reason, the research 

can deduce and derive a required and proper Pn functions of the new heterogeneous material 

for certain need during its design phase. When the new heterogeneous material’s Pn functions 

is confirmed, we can use the reconstruction skill to reverse it real configuration and 

microstructure in advance. These processes are really significant for heterogeneous material 

design. So if we can proof our reconstruction results are correct and valid, we can make huge 

progresses for material design field.  

In the past decade, lots of researchers have been focused on conductivity estimation 

and material design with desired and supposed physical properties [67]-[70]. All these 

researchers were proposed using spatial correlation functions and strong contrast expansion 

formulism (SCE) to analyze the property of material. Besides, the directly extracting n-point 

correlation functions from limited x-ray tomography data were also used to immediately 

estimate the physical properties of the material of interest from limited data, once the 

corresponding properties of individual phases are known [[1][71][72].  

From the past studies, we can know that an effective reconstruction procedure enables 

one to create and reverse blueprint of an object’s real structures at will from its deduced Pn 

functions before it will be manufactured and its subsequent analysis can make sure that the 
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created materials can furnish designed material properties and microstructures of the 

interesting target. It will be helpful for material engineers to save time and cost down the cost 

to generate novel materials. 

However, the most difficult challenge of reconstruction is that obtaining the accurate 

reconstructions of heterogeneous materials is so demanding because it is clear that even if the 

correlation functions of the reference and reconstructed systems are in good agreement, this 

does not ensure that the reconstructed structures of these two systems will match very well. 

However, the procedure of reconstruction in this dissertation overcomes all the challenges 

and can be used as a reliable method to forecast the real configuration from a designed object’s 

Pn functions.  

In this dissertation, reconstruction procedures are presented to reconstruct the 

structure for general random heterogeneous materials from a set of data which is calculated 

and acquired from real object’s Pn functions for QMR. I will illustrate that the results of 

reconstruction method reconstructed from an object’s Pn functions is efficient and valid by 

demonstrating the simulation results. After comparing the actual and reconstructed structure, 

a valid and reliable reconstruction structure can be acquired by using a reconstruction 

procedures which can be utilized with the data set of Pn function to benefit relating 

heterogeneous material design and analysis. 
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1.4 Summary of the Project 

1.4.1 Introducing the N-Point Polytope Functions (Pn Functions)  

In this dissertation, I will exhibit the ideals and functions of the hierarchical n-point 

polytope functions (Pn functions) which are the subset of spatial correlation functions. Pn 

functions allows one to directly extract key structural information from limited and chaotic x-

ray tomographic data or similar images. Compared to the traditional “standard spatial 

correlation functions”, this descriptor really can provide an efficient and valid way to quantify 

the sophisticated structure of heterogeneous materials without losing its original characteristics 

of generality and universality. In other words, Pn functions can be widely performed and 

adopted in assorted fields (e.g. medical experiment to distinguish if the sample cell is Malignant 

tumor or not, biological tissue comparison to determine if the samples are related or not, 

Material design optimization to predict the future created material will be the required material 

or not. and etc.) to quantify and compare the immethodical structure of various materials.  

The key component of our procedure to use Pn functions is the computation of a 

“probability map”, which is a digital data set can be obtain by transforming from the topology 

projections (e.g. X-ray tomography) and shown as Figure 1. 2. In this dissertation, I set the 

interested phase as value of 1 and the other phase is set as value of 0. By selecting the interested 

phase, probability map which only contains value of 1 and 0 can be utilized to calculate the 

probability of an arbitrary point in the material system for the interested phase. 
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Figure 1. 2 Probability Map of Imaging. (The Black Pixels Are Interested Phase and They 
Are Set As the Value of 1. The Descriptors Within The Triangle Are Assigned the Valued of 
1.) 
 

Therefore, the correlation functions of interest are then readily computed from the 

transformed probability map, based on their probability interpretations. The utility of our 

procedure illustrated by Pn functions (e.g. P2, P3, P4, P6, and P8) to analyze heterogeneous 

materials from simple morphologies such as the congruent spheres which are randomly 

overlapped or orderly latticed to complicate structures such as concrete microstructure, metal-

ceramic composite, and lead-tin alloy in chapter 2. Besides, in chapter 2, I will also introduce 

the basis and algorisms of Pn functions. 

 
1.4.2 Explaining the Utility and Verifying the Reliability of the Pn Functions. 

Why Pn functions is so useful and powerful? Actually, when gathering all the results of 

Pn functions from programming, I notice that a lot of hidden information (e.g. symmetric 

arrangement, periodicity pattern, average size of morphologic grain/ligament, etc.) can be 

categorized through results of related curves.  

Taking Figure 2. 4 for example, One can easily distinguish the each curve’s feature of 

curvature, oscillation, decreasing/increasing tendency, peak value, convergent altitude, etc. to 

realize further uncovered structure of the target. What factors effect and cause the tendency 
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of curve? In fact, these obvious and explicit tendencies are developed by the various features 

of microstructure which are not easy to be observed by our naked eyes. By using probability-

based Pn functions, I can easily sift these hidden and arranged information. In the chapter 3, I 

will discuss all the physical meaning for every curve’s tendency for simplified and its real 

application the thin film.  

1.4.3 How to Use the Pn Functions to Execute the Reconstruction of the Complex 

Heterogeneous Materials. 

In this dissertation, I will use the calculated data sets of Pn functions of  real objects’ 

imaging and Yeong-Torquato (YT) procedure to render material realizations via stochastic 

optimization [61][62]. Actually, reconstruction from real object’s Pn functions is relatively 

complicated processes because it has innumerable permutation to reconstruct its original 

microstructure. By using YT procedure, this energy-optimization algorism can try to find 

macrostructure’s lowest energy point by let the lowest energy point escape from the local 

minimal energy point which usually trap the reconstruction procedure and lead to an 

unfavorable reconstruction result.  

Generally speaking, an acceptable and reasonable result can be derived from YT 

procedure. This achieve has magnificent contribution in assorted field to research or design 

better materials without prodigal time and expense. The whole reconstruction procedure, 

algorism and basis are related in chapter 3.1. 

1.4.4 Verifying the Reliability and Precision Result of Reconstruction. 

After the reconstruction procedure is completed, an appraisal will be executed to 

examine the accuracy and validity of reconstruction results. Sometimes, I can directly tell some 

morphological feature such as interested particle’s shape, the dispersion of particle, and the 

connectivity of particle/ligament by our naked eye for simple case. However, disordered 
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systems are ubiquitous in physical, biological and material sciences. Examples include liquid 

and glassy states of condensed matter, colloids, granular materials, porous media, composites, 

alloys, packings of cells in avian retina and tumor spheroids, to name but a few. Under this 

complicated circumstance, our naked eyes may be useless. That is why I try to find a statistical 

morphological descriptors (i.e. the lineal-path function) to examine the accuracy and validity 

of reconstruction structure by a more scientific way.  

The lineal-path function L(r) [39][73], which provides the probability that a randomly 

placed line segment of length r entirely lying in the phase of interest. The difference between 

L(r) and P2 function shown as Figure 1. 3 is that a line segment which is continuously 

connected is thrown into probability map for L(r) rather than 2 arbitrarily non-connected 

points for P2 function. That is why the lineal-path function is sensitive to cluster particle 

because of its property of connectivity.  

 

Figure 1. 3 Schematic Illustration of the Difference Between L(r) and P2 Function. 
 

In particular, the lineal-path function L(r) will be computed from both the original 

system and the reconstructed realization to study the connectivity of interested phase. In this 

dissertation, I will use L(r) function as my criteria to assess the reliability and accuracy of 

reconstructed model in chapter 4.  
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1.4.5 Pn Functions’ Application for Coupling Simulations and Experiments 

Not only Pn functions can provide an efficiently way to quantify and reconstruct the 

microstructure of objects but it also can be used for distinguishing or coupling the difference 

or relationship between simulations and experiment results. Maybe someone doubts that why 

the ability to compare or couple the simulations and experiment is so important? Because the 

precise and verified simulations can shorten the design phases and cost down the budget of 

investment for products’ design and related manufacture, that is why we need a more 

convincing method to compare simulations and experiments. 

Actually, Pn functions can quantify the dissimilarity between simulations and 

experiments for some metaphysic cases which cannot easily be expressed or compressed 

thoroughly. Take the following cases for example, if someone asks you that how beautiful is 

that girl or if these 2 twins look alike? Maybe your answer is “She is pretty” or “They look 

alike”. However, since all the people have their aesthetic standard and their point of view, your 

answer shouldn’t be very objective and understood completely for other people. Actually, the 

main purpose of Pn functions is aimed to provide a scientific way to quantify the results from 

abstract phenomenon to countable outcomes by a series of numbers or several curves which 

can be assessed for the coupling circumstance between simulations and experiment such as 

complex structure simulation. When a person can validate his simulation’s results are reliable 

and verified, the created programming are pretty useful for further and future use. In my 

dissertation, I will use vapor-deposition of phase-separation alloy films as example to elaborate 

Pn functions’ ability to quantify 4D structure of films. Of course, Pn functions can be applied 

and suitable for other fields.  
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CHAPTER 2 

STRUCTURAL QUANTIFICATION FOR HETEROGENEOUS MATERIAL AND ITS 

MICROSTRUCTURE EVOLUTION  

2.1 Introduction of Correlation Functions 

In this chapter, I will introduce what is correlation function and some lower-order 

functions which are non-standard correlation functions but useful for quantification of 

microstructure. Finally, I will introduce the n-Point Polytope Functions (i.e. Pn functions) 

which is a subset of standard correction functions can offer more detailed and reliable 

quantification result.  

2.1.1 Conventional Statistical Microstructural Descriptors-Definition of the 

Correlation Functions 

The most prevailed class and widely used descriptor-based representations is the 

standard n-point correlation (or probability) function Sn, which provides the probability of 

occurrence of specifically arbitrary n-point configurations in the material imaging [1][24]-[26]. 

The set of Sn with n from 1 to ∞ provides a complete and thoroughly quantitative 

microstructure representation, physical properties and performance of the material system 

under quantitative consideration.  

Consider a heterogeneous material occupying two disjointedly random phases (i.e. 

phase 1, a regions 𝑉𝑉1 of volume fraction 𝛷𝛷1 , and phase 2, regions 𝑉𝑉2 of volume fraction 𝛷𝛷2 

shown in Figure 1. 1). The state of each phase in the material is constant and independent of 

time, that is, 𝑉𝑉1 ∪ 𝑉𝑉2 = 𝑉𝑉 and 𝑉𝑉1 ∩ 𝑉𝑉2 = 0. As we denote that phase 1 is our phase of interest, 

the indicator function 𝐼𝐼(1)(𝑥𝑥) (i.e. the probability of indicator of interested point) of phase 1 

is then given by  
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                                          𝐼𝐼(1)(𝑥𝑥) = �1, 𝑥𝑥 ∈ 𝑉𝑉1
0, 𝑥𝑥 ∈ 𝑉𝑉2

                                                  (2.1) 

This formula means that when one throw an arbitrary point into probability map for 

interested phase 1, the value of indicator function is 1 if the thrown point is located at phase 

1, but otherwise the value of indicator function is 0.  

We can follow the same procedure to get 𝐼𝐼(2)(𝑥𝑥) and it is clearly to see that 

                                          𝐼𝐼(2)(𝑥𝑥) = �0, 𝑥𝑥 ∈ 𝑉𝑉1
1, 𝑥𝑥 ∈ 𝑉𝑉2

                                                  (2.2) 

Since phase 1 and phase 2 are independent, continuous and complementary, we can 

derive that the sum of both indicator function is 1. 

                                         𝐼𝐼(1)(𝑥𝑥) + 𝐼𝐼(2)(𝑥𝑥) = 1                                                 (2.3) 

The n-point correlation function (or n-point probability function) 𝑆𝑆𝑛𝑛
(1) for phase 1 is 

then defined as follows: 

                     𝑆𝑆𝑛𝑛
(1)(𝒙𝒙𝟏𝟏,𝒙𝒙𝟐𝟐, … ,𝒙𝒙𝒏𝒏) = �𝐼𝐼(1)(𝒙𝒙𝟏𝟏)𝐼𝐼(1)(𝒙𝒙𝟐𝟐) … 𝐼𝐼(1)(𝒙𝒙𝒏𝒏)�                     (2.4) 

Where the angular brackets “⟨… ⟩” denote ensemble averaging over independent 

realizations of the medium. The formula 2.4 is the basic expression for n-point correlation 

function.  

It has been shown that the effective properties of a heterogeneous material can be 

explicitly expressed as series expansions involving certain integrals of Sn. Interested readers are 

referred to [2] for detailed discussions of Sn and their properties.  

However, using the Sn functions has some drawbacks Taking convex polygon for 

example, the n point polygon has n sides when n≥3 and each length of side doesn’t need to 

be the same. One needs to permute and enumerate all the difference distance between every 

n-point configuration to get a thoroughly consideration. In other words, it will be expensive 
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for computer to compute and store their probability of occurrence even when n=3 shown as 

Figure 2. 1. The resulting statistical data sets of Sn are typically too tedious and unrealistic to 

be executed and performed. 

 

Figure 2. 1 Schematic Illustration of the S3 (R1, R2 and R3 Are Distance From A to B, B to 
C and C to A Point Respectively. They Don’t Need to Be Given the Same Value.) 
 

For the simplification purpose, more and more researchers adopt the lower order 

function to quantify the sophisticated structure and the quantification results have been shown 

that even the lower order function , i.e. S2  ,can be utilized to model a wide spectrum of 

different heterogeneous material systems to acquire the data of QMR [27]-[34].  

However, some researchers also believe that two-point statistics alone might not be 

sufficient to represent certain complex microstructures because two-point statistics sometime 

is too weak to describe all the morphologic features [35]-[38]. Therefore, an alternative 

approach is to employ the non-standard lower-order correlation functions such as the cluster 

functions [1][40], which is very effective in capturing specific morphological features (e.g., 

clustering) [39] or surface functions [41][42], which is encoded with partial higher-order n-

point statistics. These methods are powerful but cannot be allowed to systematically 
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incorporate with hierarchical higher order structural information for microstructure 

quantification. I will introduce S2 (two-point correlation functions), Lineal-path function L, 

Two-point cluster function 𝐶𝐶2 and Pn function respectively in the following paragraphs.  

2.1.2 Two-Point Correlation Function 

Before discussing the two-point correlation function, actually I want to introduce one 

point probability function first. The one point probability function 𝑆𝑆1
(1) , which is the 

probability of finding one point to be in the phase 1, is equal to the volume fraction  of the 

phase 1(𝛷𝛷1), i.e., 

                                        𝑆𝑆1
(1)(𝒙𝒙𝟏𝟏) = 〈𝐼𝐼(1)(𝒙𝒙𝟏𝟏)〉 = 𝛷𝛷1                                       (2.5) 

The value of 𝛷𝛷1  is also pretty significant for quantification analysis of S2 function 

which will be introduce in the next paragraph because it always is the initial outset of the curve 

of the S2-r diagram (i.e. the value of Sn functions V.S. the length of the assigned two-point). 

All the onset of the Sn-r diagram with different value of n should be start at the same initial 

point when all the distance between every vertex is zero because when the length of every side 

is zero at the beginning, all the vertices of Sn function are converged and gathered in to one 

point. In fact, one point probability function is the cornerstone of the Sn function. Besides, Pn 

functions also have this similar character. I will introduce it more detailed later when we debate 

about the Pn functions.  

The two-point probability function 𝑆𝑆2
(1)for phase 1 can then be derived from Eq. (2.4) 

as 

                             𝑆𝑆2
(1)(𝒙𝒙𝟏𝟏,𝒙𝒙𝟐𝟐) = �𝐼𝐼(1)(𝒙𝒙𝟏𝟏)𝐼𝐼(1)(𝒙𝒙𝟐𝟐)�                                         (2.6) 

S2 function gives the probability that two randomly selected points x1 and x2 fall into 

phase i and j respectively when the number of phase is 3(see Figure 2. 2(A)). For a material 
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with q distinct phases, there are totally q*q different S2. However, it has been shown that only 

q of them are independent[1][40]-[42] and the remaining q*(q-1) functions can be explicitly 

expressed in terms of the q independent ones. In our case, q = 2 (i.e., inclusions and matrix) 

and thus, we only need to consider the two-point correlation functions associated with one of 

the phases (i.e., either for the inclusion or matrix). 

 

 
Figure 2. 2 Schematic Illustration of the Events That Contribute to Various Correlation 
Functions. The Two-Point Correlation Function S2 Gives the Probably of Finding Two 
Points in the Phases of Interest. In (A), We Show Events That Contribute to S2 (ij), Where i, 
j Can be Either Red Phase or Blue Phase. The Lineal-Path Function L(r) Gives the 
Probability That a Randomly Chosen Line Segment of Length r Entirely Falls into The 
Phase of Interest. In (B), We Show Events That Contribute to L(i). The Two-Point Cluster 
Function 𝐶𝐶2 (r) Gives the Probably of Finding Two Points Separated by r In The Same 
Cluster of The Phase of Interest. In (C), We Show Events That Contribute to 𝐶𝐶2 (i). 

 

The system is statistically homogeneous if the joint probability distributions describing 

the stochastic process are translationally invariant, i.e., invariant under a translation (shift) of 

the space origin. For a statistically homogeneous medium, 𝑆𝑆2
(1) is a function of the relative 

displacements of the point pairs.  

                                 𝑆𝑆2
(1)(𝒙𝒙𝟏𝟏,𝒙𝒙𝟐𝟐) = 𝑆𝑆2

(1)(𝒙𝒙𝟏𝟏 − 𝒙𝒙𝟐𝟐) = 𝑆𝑆2
(1)(𝒓𝒓)                           (2.7) 
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Where 𝒓𝒓 = 𝒙𝒙𝟐𝟐 − 𝒙𝒙𝟏𝟏. At r = 0, the auto-correlation function gives the probability that 

a randomly selected point falls into the phase of interest, i.e., the volume fraction of the 

associated phase. 

The material system is statistically isotropic if the joint probability distributions 

describing the stochastic process are rotationally invariant, i.e., invariant over rigid-body 

rotation of the spatial coordinates. If the medium is statistically isotropic, then 𝑆𝑆2
(1) is only a 

radial function, depending on the separation distances of point pairs [39]. 

                                     𝑆𝑆2
(1)(𝒙𝒙𝟏𝟏,𝒙𝒙𝟐𝟐) = 𝑆𝑆2

(1)(|𝒓𝒓|) = 𝑆𝑆2
(1)(𝑟𝑟)                               (2.8) 

Henceforth, we will drop the superscript in 𝑆𝑆2
(1) for simplicity. Without further 

elaboration, 𝑆𝑆2 is always the two-point correlation function of the phase of the interest (i.e. 

phase 1 is interested phase here). With the understanding of the nature of two-point 

probability functions, one can easily obtain the limit of the value of 𝑆𝑆2, 

                                lim
𝑟𝑟→0

𝑆𝑆2(𝑟𝑟) =  𝜑𝜑1 and  lim
𝑟𝑟→∞

𝑆𝑆2(𝑟𝑟) =  𝜑𝜑12                               (2.9) 

We note that the subset of Sn functions, i.e. S2, do can give the probability of finding 

a particular two-points configuration in specific phases to quantify the morphological features.. 

2.1.3 Lineal-Path Function 

The lineal-path function L(i)(r) gives probability that a randomly selected line segment 

of length r = | r | along the direction of vector r entirely falls into phase i (see Figure 2. 2(B)) 

[1][44]. When r = 0(i.e. the distance between 2 ends of line segment), L(i)(0) reduces to the 

probability of finding a point in phase i and thus, L(i)(0) = 𝛷𝛷i. The materials that do not contain 

obvious cluster features, the probability of finding a line segment with very large length solely 

falling into any phases is small. Accordingly, for large r values L(i) decays to zero rapidly in 

such materials. The lineal-path function contains partial topological connectedness 
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information of the material’s phases, i.e., that along a lineal-path. Generally, the lineal-path 

function underestimates the degree of clustering in the system (e.g., two points belonging to 

the same cluster but not along a specific lineal path will not contribute to L(i) or the dispersedly 

irregular shape of cluster will also influence the calculation result.). Although lineal-path 

function sometime underestimates the clustering features in the system, it still can offer a set 

of reliable data.  

Not only the lineal-path function can be executed in 2D but also performed for 

distribution of D-dimensional spheres with arbitrary degree of penetrability using statistical-

mechanical concepts. The quantification result is very good agreement between theory and the 

real model [1]. 

The lineal-path function do can efficiently quantify the connectivity features for 

common cases. That is why I consider take this non-standard n point correlation function as 

a criteria to assess the correction and accuracy of reconstruction structure.  

 
2.1.4 Two-Point Cluster Function 

The two-point cluster correlation function 𝐶𝐶2(𝑖𝑖)(𝑋𝑋1,𝑋𝑋2) which is slightly different 

from the two-point correlation function gives the probability that two randomly selected 

points x1 and x2 fall into the same cluster of phase i (see  Figure 2. 2 (C)) [1][45]. The two-

point cluster correlation function take consideration about if its end points are located in the 

same interested phase only rather than if all elements of line segment are located in the same 

phase or not. 

Here, the definition of cluster is that a compact region where any point in this domain 

is connected to any other point belonged to the same phase by a continuous path completely. 
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For statistically homogeneous materials, 𝐶𝐶2 depends only on the relative vector displacement(r) 

between the two points, i.e. 𝐶𝐶2(𝑋𝑋1,𝑋𝑋2) = 𝐶𝐶2(𝑟𝑟). 

In contrast to the lineal-path function, 𝐶𝐶2 contains complete clustering information of 

the phases, which has been shown to have dramatic effects on the material’s physical 

properties [1]. Moreover, unlike S2 and L, the cluster functions generally cannot be obtained 

from lower-dimensional cuts (e.g., 2D slices) of a 3D microstructure, which may not contain 

correct connectedness information of the actual 3D system because it only takes every 

calculation within the same cluster in account and neglects calculation of related connectivity.  

It has been shown that 𝐶𝐶2 is related to S2 via the following equation [45]  

𝑆𝑆2(𝑖𝑖𝑖𝑖)(𝑟𝑟) = 𝐶𝐶2(𝑖𝑖)(𝑟𝑟) + 𝐷𝐷2(𝑖𝑖)(𝑟𝑟)                                              (2.10) 

Where 𝐷𝐷2(𝑖𝑖)(𝑟𝑟) measures the probability that two points separated by r fall into 

different clusters of the phase of interest. In other words, 𝐶𝐶2 is the cluster’s connectedness 

contribution to the standard two-point correlation function S2. For microstructures with well-

defined inclusion, 𝐶𝐶2 (r) of the inclusions which is a short-ranged function will rapidly decays 

to zero as r approaches the largest linear size of the inclusions. We note that although 𝐶𝐶2 is a 

“two-point” quantity, it has been shown to embody higher-order structural information which 

makes it a highly sensitive statistical descriptor over and above S2 [39][46[47]. 

 
2.2 The Introduction of N-Point Polytope Functions (Pn Functions)  

In this section, I will introduce the n-point polytope functions. The main reason I want 

to use Pn functions to quantify my targeted microstructure is that although the lower-order 

functions such as S2 and L can efficiently quantify the microstructure, sometimes the 

complicated microstructure will be underestimated by these lower-order function especially 



  25 

when the geometric shape of the inclusion or interested phase is pretty variable. It will be 

difficult for tow-points basis function to thoroughly segment the whole geometric relationship 

of the structure. However, adopting standard correlation functions to quantify the 

microstructure is too expensive to obtain the final result. Without loss of generality, I use the 

n –point polytope functions which only take account of regular polygon with different length 

of side (i.e. r) as templates to analyze the microstructure. 

The whole quantification process is that I acquire a heterogeneous microstructure 

(either in 3D or a 2D slice. In this dissertation, I adopt 2D analysis) in which the different 

structural features are segmented and grouped into different “phases”. A simple example is a 

composite microstructure contains a “matrix phase” and a “particle phase”, see Figure 2. 3 (a). 

Note this microstructure can be a snapshot from an evolution process which belongs to 4 D 

case. The definition of Pn is then given as follows:  

Pn (r) ≡ Probability that all of the n vertices of a randomly selected regular n-point 

polytope with edge length r fall into the phase of interest.  

Base on this definition, one can derive two sets of the Pn functions for 2D and 3D. 

The first set involves n-point regular polygons, for which the vertex (edge) number n can take 

any positive integer values; and in the limit n→∞, the shape becomes a circle (in this limiting 

case, the quantity r is the radius of the circle, instead of the edge length to prevent Pn functions 

cannot be converged because of the length of side.). We note that the n-point polygon 

functions can be computed from both 2D slices and full 3D microstructure. The other set 

involves 3D polyhedra whose edges are of the same length. Since we merely consider the 

regular template for Pn functions, only a small number of 3D polyhedra satisfy this condition, 

including the five Platonic solids (i.e., the regular polyhedra: tetrahedron, octahedron, 
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dodecahedron, icosahedron, and cube) and the thirteen Archimedean solids (i.e., the semi-

regular polyhedra) (see Figure 2. 3 (b)) [48]. In the case of n = 2, the 2-point polytope function 

P2 is identical to the standard 2-point correlation function S2 when number of phase of imaging 

is 2 in 2D. 

 

 
 
Figure 2. 3 (a) Schematic Illustration of Stochastic Events Contributing to the Pn Functions 
in the Case of Regular Polygons. (b) Examples of Regular Polygons (Triangle, Square, 
Pentagon, Hexagon, and Decagon) and Polyhedra (Including the Platonic Solids P1-P5, and 
Archimedean Solids A1-A13) For Computing the Pn Functions. 
 

Figure 2. 3 (a) schematically illustrates the stochastic events that contribute to the Pn 

functions in the case of regular polygons. For r = 0, the polygon reduces to a single point, and 

Pn (r=0) gives the volume fraction 𝛷𝛷 of the phase of interest (i.e., the probability a randomly 

selected point falling into the phase of interest). For finite r values, Pn (r) provides n-point 

spatial correlations in the phase (feature) of interest. For very large r values (e.g., r→∞), the 

probabilities of finding the vertices in the phase of interest are almost independent of one 

another, thus, we have Pn (r→∞) ≈ 𝛷𝛷n, where 𝛷𝛷 is the volume fraction of the phase of interest 

in the system. These asymptotic behaviors allow us to introduce a convenient re-scaled form 

of the Pn functions, i.e.,  
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𝑓𝑓𝑛𝑛(𝑟𝑟) = [𝑃𝑃𝑛𝑛(𝑟𝑟) − 𝛷𝛷n]/[𝛷𝛷 − 𝛷𝛷𝑛𝑛]                                       (2.11) 

With 𝑓𝑓𝑛𝑛(𝑟𝑟 = 0)=1 and𝑓𝑓𝑛𝑛(𝑟𝑟 → ∞)=1. Finally, we note that one can define “cross-

correlation” polytope functions by requiring a subset of the vertices falling into different 

phases (features) in the microstructure. In this dissertation, we will mainly focus on the “auto” 

polytope functions defined with 2D polygons, in which all of the vertices of the polygons fall 

into the same phase of interest.  

Moreover, the value of volume fraction (𝛷𝛷) is also pretty significant for quantification 

analysis of Pn function because it always is the initial outset of the curve of the Pn -r diagram 

(i.e. the value of Pn functions V.S. the length of side of assigned template shown as Figure 2. 

4). All the onset of the Pn -r diagram with different value of n should be start at the same initial 

point because when the length of side of all assigned templates are zero at the beginning, all 

the vertices of all regular templates of Pn function are converged and gathered in to one point. 

By knowing the initial point and tendency of curve, we can easily predict and determine the 

calculation results are correct/correct or not. 

 

 
Figure 2. 4 The Tendency of the Pn Functions. 
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CHAPTER 3 

Pn FUNCTIONS’ PROCEDURE AND ITS APPLICATION  

In this chapter, I will introduce how to compute the Pn function from the imaging data. 

First, we use X-ray tomography to obtain the 2D interested cross section from the 3D 

microstructure [55]. The reason we choose X-ray tomography is that it is an extremely efficient, 

low-cost, and non-destructive technique for characterizing microstructure in 3D and 4D 

[49][50][51]. One can obtain imaging of multi-component materials from the sub-micrometer 

to nanometer range by using high brilliance and partially coherent synchrotron light. X-ray 

tomography can be conducted in imaging modes based on absorption or phase contrast. The 

technique can also be used using lab-scale systems (See Figure 3. 1). In x-ray tomography, 2D 

projections usually obtained at small angular increments can be employed to generate grayscale 

images of the microstructure. For simplifying purpose, square imagine of which length is 

denoted as Maxx will be used for its transformed probability map within my whole dissertation. 

When I acquire the 2D imaging, my first step is to transfer the imagines into grayscale and 

control their threshold value (from 0-255) or images’ contrast value to segment/distinguish 

details of individual material phases of interest and produce probability maps which are 

accurately 2D digitalized representations of the 3D microstructure. In my programing part, I 

set black pixel as my interested phase (i.e. inclusion of interest.) and white one as matrix. Such 

data sets of probability map can be used to quantify the microstructure. After I extract the Pn 

functions hundred times from the probability map, I really feel that x-ray tomography is an 

excellent technique/method that eliminates destructive cross-sectioning, and allows for 

superior resolution and image quality with minimal sample preparation[4]-[8][56][57].  
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Figure 3. 1 Schematic Illustration of the Key Components of X-Ray Tomography and an 
Illustration of a 2D Projection of a 3D Hard Sphere Packing Structure. Different Colors in 
the 2D Projection Represent Different Attenuated Intensities. 
 
3.1 Computing Pn Functions from Imaging Data  

Once we obtain the imaging data of probability map including both 2D images or 3D 

digital representations of the material microstructure, the probability-based descriptor of the 

Pn functions allow us to easily compute and extract the features from microstructural data. For 

example, in order to compute the value of Pn(r) with r=r*, the following procedure is used 

[55]: 

(i) We first decide that how many type of  the regular n-polytopes, i.e. the value of  n, 

are needed to be generated with the edge/side length r. Since I merely analyze 2D 

probability map in this dissertation, only the regular polygon templates are used. 

For example, if  n=4, it means that we will create one-point, 2-point, triangle, and 

square templates to calculate the Pn functions. The value of  r is the integer less 

equal than the half  value of  the pixel number/length of  probability map because 
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of  the setting of  continuous boundary condition which will be detailed described 

in the following section. 

(ii) In order to obtain a rigorous and real probability map, I adopt the periodic 

boundary conditions, i.e. PBC, for every imaging to execute the Pn functions. 

Actually, PBC is wildly used in computer simulation and mathematical models to 

let a limit unit model to be calculated as an infinite model. For 2D, the minimum 

PBC is combined with additional 8 congruent imaging, shown as  

(iii) Figure 3. 2, to construct a macroscopic imaging rather than a microscopic one. 

When a particle passes one side of  a unit, this particle will proceed to enter the 

according side of  its ambient unit with the same direction and speed. This 

characteristics can ensure the conservation of  moment/energy of  the whole 

system to get more accurate and reasonable results. Besides, when we calculate 

the distance between point A and point B without the PBC setting, the distance 

should be r2 with microscopic point of  view. However, when we add the PBC 

setting, the shortest distance between becomes r1 because both B point are same 

entity under PBC setting. Besides, when using Pn functions, we focus on the 

nearest distance as the side of  polygon to avoid overestimation. So the value of  

r, the distance between 2 points, is always ≤ L/2. Here, L stands for the 

length/pixel of  the square image. For this reason, I set nt, the length of  side of  

any template, is ≤ L/2 in the programing and add the PBS setting to my 

probability map to obtain more reasonable and precise results. 
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Figure 3. 2 Schematic Illustration of Periodic Boundary Condition. 
 

(iv) When step ⅰand ⅱare ready, then the selected polygon are randomly allocated 

and constantly oriented with periodic boundary condition for M times in the 

probability map which is transform from material microstructure (see Figure 3. 

3(a)).  

(v) Every time when the selected polygon is placed in the probability map, we check 

whether all of  its vertices fall into the phase of  interest (i.e., a “success” event), 

and we count the total number of  success event Ms out of  a total of  M trials. 

Because the thrown templates are assigned into an infinite probability map which 

is set with the PBC, the distance between templates’ 2 adjacent vertices located in 

the interested pixel (or voxel in 3D) denoted as r in dissertation is driven as the 

nearest one. Therefore, the edge length of  the pixel/voxel defines the smallest 

distance in the system and provides a natural unit for measuring the distance. 

(vi) We compute Pn (r*) = Ms/M. The Pn (r*) is the probability that a randomly 

selected n-polygon with the length of side, i.e. r*, having all its vertices fall into 

the phase of interest 
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(vii) Repeat step v for different r* values(r* is an integer and 1≤r*≤r) to compute the 

full Pn (r) function. 

(viii) Finally, the Pn (r) vs r diagram is drawn for further analysis purpose. Actually, 

many potential and hidden features/characters of imaging can be driven from this 

result diagram. How to uncover the relatedly concealed information will be 

discussed in the next section. . 

 

Figure 3. 3 Schematic Illustration of Different Sampling Templates for Computing Pn 
Functions (in the Case of n=3) From Images: (a) Directional Sampling, in Which Only the 
Location of the Template Is Randomly Selected. (b) Isotropic Sampling, in Which Both the 
Location and Orientation of the Polygon Template Are Randomly Selected. 
 

For sure, one can place n-polygon templates orientations (i.e., isotropic sampling 

shown as Figure 3. 3(b)) rather than constant orientation, directional sampling, to gather more 

information for more intricate cases. However, it means that you need to spend more time 

and computer resource to obtain more detailed result. 
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3.2 Information Content of Pn Functions Based on Model Microstructures 

3.2.1 Pn Functions for Separated Sphere Model 

In this section, I will continuously introduce the information content of Pn Functions. 

For simplifying purpose, I will take Figure 3. 4 for example to thoroughly demonstrate the 

implication and meaning of curve of Pn vs r diagram. The upper panels of Figure 3. 4 shows 

diverse morphologies of congruent spheres and lower panels are their related Pn –r diagram 

(i.e. P2 –r curve for this example)[55]. Here, r which is less and equal the half value of the 

imaging length stands for the nearest distance between 2 arbitrarily thrown points. Different 

morphology has different curve tendency which can potentially offer additional information 

to us. By observing the left 2 imaging of Figure 3. 4, it goes without saying that the value of r 

occurred with the zero slope at the first decay meant the size of interested phase (i.e. red phase) 

because when r increases its length over the diameter of the sphere, there is no any possibility 

for 2 arbitrary points to be located in the interested phase. Moreover, the value of r happened 

with the zero slope at the second decay means the distance from its neighbor. Besides, the 

converged value of the elevation of the Pn –r curve is also an important index for imaging. The 

converged value of the elevation indicates the dispersion and distribution of the same polytope 

templates. We can obviously acknowledge that the value of converge elevation shown as Ea 

at lower right panel is higher than lower middle and lower left one because the P2 polytope 

templates which are fallen in the interested phase are closer than r averagely. It means the 

allocation and arrangement of every polytope template has a high connectivity.  

Since not only P2–r curve can show these properties but also other Pn–r curve can sift 

their related information, I will introduce one more complex case and real case to illustrate the 

significance and explicitness of the Pn function in the following sections. 
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Figure 3. 4 Schematic Illustration of P2-r Curves. 
 
3.2.2 Pn Functions for Triangle Particles with Different Orientation and 

Arrangement.  

In this section, I will illustrate the result of 2 models composed of congruent equilateral 

triangle particles arranged on a square lattice and triangular lattice with different orientations 

in Figure 3. 5(a) and Figure 3. 6(a) to more comprehensively specify the information contained 

in the Pn vs r diagram.  The orientations of all triangle particles in each model are the same but 

the orientation in each model are different. 

First, let’s embark on the introduction of the Pn functions of Figure 3. 5(a). In order 

to demonstrate and consider more factors to get more detailed result, I create 2 directional 

sampling templates along with x and y axis direction for P3 (i.e. 3-point polytope functions). In 

other worlds, the directional P3 functions are computed by fixing the orientation of the 

equilateral triangular sampling templates vertically and horizontally respectively. From Figure 
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3. 5 (b) and Figure 3. 5 (c), the results can be seen that the P3 functions for all four 

microstructures start with the same value at r = 0, which is the volume fraction of the particles; 

and monotonically decrease as one moves away from r = 0. This monotonically decaying 

behavior is introduced in 2.2 and happened for all Pn functions. The reason of it is that when 

r is small from zero, the majority of contributions to the correlation functions are from the 

events in which the sampling templates entirely fall into the interested phase. That is why the 

success of such events dramatically decreases as the size of the template increases. When the 

value of r is bigger than the average length of diameter of the interested particle, the value of 

Pn function will converge to a constant value. If the average space between the adjacent 

interested particles are large than the average diameter/length of interested phase, the value 

of Pn function will approach to zero. Otherwise, the value of Pn function will converge to 

certain value according to the configuration of the microstructure.  

We note that when the orientation of the triangular particles is consistent with the 

orientation of the sampling triangular template, the resulting P3 function exhibits a slower 

decay for small r. This is because in such cases, the sampling templates with larger sizes (i.e., 

associated with larger r values) can still entirely fall into a single particle. So slower decreasing 

tendency of curve means that the shape of sampling template and interested particle/phase 

have more geometry relationship between each other. Under this observed circumstance, for 

sure, when one adopt various orientation of sampling template to perform Pn functions, one 

can easily observe and predict which shape with certain directional orientation is more proper 

to compute but it will cost lots of time and computer resource.  
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Figure 3. 5 (a) Model Microstructures Composed of Congruent Equilateral Triangle Particles 
With Different Orientations Arranged on a Square Lattice. The Resolution of the Images Is 
1048 by 1048 Pixels. (b) Directional 3-Point Polytope Functions P3 for the Model 
Microstructures Associated With Vertically Oriented Triangular Sampling Templates. (c) 
Directional 3-Point Polytope Functions P3 for the Model Microstructures Associated With 
Horizontally Oriented Triangular Sampling Templates. (d) 4-Point Polytope Functions P4 for 
the Model Microstructures. (e) 6-Point Polytope Functions P6 for the Model 
Microstructures. The Unit of Distance Is One Pixel Length. 
   

Interestingly, Figure 3. 5 (b) and Figure 3. 5 (c) can be seen that beyond the initial 

decay, the P3 functions exhibit significant peaks at certain intermediate and event large r values 



  37 

(e.g., r ≈ 180, 290, 340, 430 pixels). These peaks indicate the existence strong triangular 

correlations (i.e., hidden triangular patterns/symmetry) on the length scales as defined by the 

associated r values. We note it is very surprising to detect the emergence of large-scale 

triangular correlation (symmetry) in packing arrangements based on square lattice. This 

example also indicates that the novel statistical descriptors we developed are very efficient in 

capturing hidden order and spatial correlations in the microstructure [55]. 

Figure 3. 5(d) shows the 4-point polytope functions P4 for the model microstructures. 

A series of peaks (i.e., oscillations) beyond the initial decay can be clearly observed. These 

peaks correspond to the square correlation/symmetry on different length scales in the 

packings, which are resulted from the square symmetry of the underlying packing lattice. The 

P4 functions are almost identical for all four microstructures (see Figure 3. 5(a)), indicating that 

for this function the packing arrangements of the particles is more sensitive to the local particle 

shape [55]. 

Figure 3. 5 (e) shows the 6-point polytope functions P6 for the model microstructures. 

It can be seen that the initial decay of P6 is much faster than that in P3 and P4. This is because 

it is more difficult to entirely fit a hexagon in the particle compared to a triangle or a square 

with the same edge length. The P6 functions also exhibit significant peaks on certain 

intermediate and large length scales (e.g., r ≈ 180, 290, 340, 430 pixels), indicating hidden 

hexagonal symmetry/correlations on that length scale. These length scales are completely 

consistent with the length scales associated with the triangular peaks in P3 because the 

geometry of hexagon actually can be combined with these 2 oriented sampling templates [55].  
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Figure 3. 6 (a) Model Microstructures Composed of Congruent Equilateral Triangle Particles 
With Different Orientations Arranged on A Triangular Lattice. The Resolution of the 
Images Is 1048 by 1048 Pixels. (b) Directional 3-Point Polytope Functions P3 for the Model 
Microstructures Associated With Vertically Oriented Triangular Sampling Templates. (c) 
Directional 3-Point Polytope Functions P3 for the Model Microstructures Associated With 
Horizontally Oriented Triangular Sampling Templates. (d) 4-Point Polytope Functions P4 for 
the Model Microstructures. (e) 6-Point Polytope Functions P6 for the Model 
Microstructures. The Unit of Distance Is One Pixel Length.    
 

Now, let’s discuss the Pn functions of triangle particles which contain triangular 

packing lattice with different orientation in Figure 3. 6(a). Figure 3. 6 (b) and Figure 3. 6 (c) 

show the directional 3-point polytope functions P3 respectively associated with vertically and 



  39 

horizontally oriented triangular sampling template for the model microstructures shown in 

Figure 3. 6 (a). The P3 functions initially decay and exhibits a series of significant peaks 

(oscillations) with decaying magnitude as r increases. These peaks are associated with triangular 

correlations on different length scales, resulted from the underlying triangular packing lattice 

[55].   

Figure 3. 6 (d) shows the 4-point polytope functions P4 for the model microstructures. 

The hidden square correlations on large length scales (e.g., r ≈ 275, 340 pixels) are again picked 

up and manifested as the associated peaks. Figure 3. 6 (e) shows the 6-point polytope functions 

P6 for the model microstructures. Similar to the P3 functions, the P6 functions exhibit 

significant peaks and strong oscillations, indicating the hidden hexagonal correlations resulted 

from the triangular packing arrangements [55].   

We can see from these examples that the Pn functions can provide a systematic 

“decomposition” of the features of interest in the microstructure in terms of a series of 

polytope basis and very effective in capturing hidden symmetry/spatial orders in the system. 

Therefore, the set of Pn functions offers a systematic way to devise more accurate 

microstructure representations by successively incorporating higher order morphological 

information [55]. 
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3.3 Quantifying Microstructure of Heterogeneous Materials via Pn Functions 

In this section, we employ the Pn functions to quantify and model a variety of 

heterogeneous materials with distinct microstructures, including particle reinforced 

composites, bi-phase interpenetrating composites and porous materials. In addition, we also 

apply the Pn functions to quantify and model the microstructural evolution (e.g., coarsening 

development) in a lead-tin alloy aged at 175oC up to 120 hours.  

In next section, I will illustrate more complicate microstructures to explore Pn 

functions’ outstanding performance and ability to quantify microstructures. 

3.3.1 Quantification of Complex Microstructures  

 

Figure 3. 7 (a) 2D Microstructure Composed of Equal-Sized Hard Spheres in a Matrix. (b) 
The Pn Functions for the Particle Phase with n =2, 3, 4, 6 and 8. (c) The Corresponding 
Rescaled fn Functions Highlighting the Spatial Correlations (c.f. Eq. (2.11)). 
 

Figure 3. 7 shows the quantification of a 2D microstructure composed of equal-sized 

hard spheres in a matrix [28], i.e., a packing (see Figure 3. 7 (a)). The sphere packing is 

generated using Monte Carlo simulations [29]. The size of the image is 1024 by 1024 pixels 

and the diameter of the particle is D = 65 pixels. Figure 3. 7 (b) shows the Pn functions for the 

particle phase with n =2, 3, 4, 6 and 8. Similar to the cases of the model microstructures 

discussed in previous section, all Pn functions initially decay from the volume fraction 𝛷𝛷=0.545 

as r increases from 0. The positions of the first minimum in the Pn functions for small n values 
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roughly correspond to the linear size of the particle (~ 65 pixels). After the initial decay, all Pn 

functions studied here except for n = 8 exhibit strong oscillations and the first peaks in 

different Pn functions occur at approximately the same r values. These oscillations respectively 

indicates strong pair, triangle, square and hexagonal correlations on different length scales in 

the system. Figure 3. 7 (b) illustrates examples of such correlations, which are all associated 

with the mean nearest neighbor separate distance, i.e., the distance associated with the first 

peak in P2. These correlations result from the tendency for the particles to self-organize on a 

triangular lattice at high densities. The P8 is almost flat after the initial decay, indicating the 

system does not possess any octagonal correlations on intermediate and large length scales. 

Figure 3. 7 (c) shows the corresponding rescaled fn functions highlighting the spatial 

correlations (c.f. Eq. (2.11)) [55]. 

 

Figure 3. 8 (a) 2D Microstructure Composed of Equal-Sized Overlapping Spheres in a 
Matrix. (b) The Pn Functions for the Particle Phase With n =2, 3, 4, 6 and 8. (c) The 
Corresponding Rescaled fn Functions Highlighting the Spatial Correlations (c.f. Eq. (2.11)). 
 

Figure 3. 8 shows the quantification of a 2D microstructure composed of equal-sized 

overlapping spheres in a matrix [28] (see Figure 3. 8 (a)). The spheres are randomly placed in 

the matrix without any built-in spatial correlations. The size of the image is 512 by 512 pixels 

and the diameter of the particle is D = 45 pixels. Figure 3. 8 (b) shows the Pn functions for the 

particle phase with n =2, 3, 4, 6 and 8. Similar to the previous systems, all Pn functions initially 
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decay from the volume fraction 𝛷𝛷=0.50 as r increases from 0. After the initial decay, all Pn 

functions are virtually flat, indicating that the particles possess no spatial correlations of any 

symmetry on any length scales beyond the diameter of the particles. We note that for the 

totally random overlapping sphere system, the Pn functions possess the analytical expression 

Pn I = exp[-ρvn(r; R)], where ρ is the number density of the spheres in the system (i.e., number 

of spheres per unit volume) and vn(r; R) is the volume of the union of n spheres with radius R 

with centers placed at the vertices of a n-polytope with edge length r. Figure 3. 8 (c) shows the 

corresponding rescaled fn functions highlighting the spatial correlations (c.f. Eq. (2.11)) [55]. 

 

Figure 3. 9 (a) 2D Image of a Concrete Microstructure Composed of Reinforcement Rocks 
(Shown in Black) and the Cement Paste (Shown in White). (b) The Pn Functions for the 
Rock (Black) Phase with n =2, 3, 4, 6 and 8. (c) The Corresponding Rescaled fn Functions 
Highlighting the Spatial Correlations (c.f. Eq. (2.11)). 
 

Figure 3. 9 shows the quantification of a 2D concrete microstructure composed of 

reinforcement rocks (shown in black) and the cement paste (shown in white) [74](see Figure 

3. 9 (a)). The rock particles possess complex polygonal morphologies and a wide size 

distribution. The size of the image is 400 by 400 pixels. Figure 3. 9 (b) shows the Pn functions 

for the rock phase with n =2, 3, 4, 6 and 8. Similar to the previous systems, all Pn functions 

initially decay from the volume fraction 𝛷𝛷=0.48 as r increases from 0. The r value associated 

with the first minimum in the functions provides the average particle size in the system, i.e., ~ 

40 pixels. After the initial decay, the lower-order Pn functions (e.g., n≤4) exhibit weak 
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oscillations, reflecting the spatial correlations resulted from the mutual exclusion effects of the 

rock particles. The correlations are much weaker compared those in hard-sphere systems, 

mainly due to the anisotropy and size polydispersity of the rock particles. Figure 3. 9 (c) shows 

the corresponding rescaled fn functions highlighting the spatial correlations (c.f. Eq. (2.11)) 

[55]. 

 

Figure 3. 10 (a) 2D Image of A Fontainebleau Sandstone Microstructure Composed of the 
Rock Phase (Shown in Black) and the Pore Phase (Shown in White). (b) The Pn Functions 
for the Rock (Black) Phase with n =2, 3, 4, 6 and 8. (c) The Corresponding Rescaled fn 
Functions Highlighting the Spatial Correlations (c.f. Eq. (2.11)). 
 

Figure 3. 10 shows the quantification of a 2D microstructure of a Fontainebleau 

sandstone composed of the rock phase (shown in black) and the pore phase (shown in 

white)[30] (see Figure 3. 10 (a)). Similar to the concrete microstructure, the rock particles 

possess complex shapes and a wide size distribution. In addition, the particles are densely 

packed and compressed such that their boundaries are fused and cannot be clearly 

distinguished. The size of the image is 512 by 512 pixels. Figure 3. 10 (b) shows the Pn 

functions for the rock phase with n =2, 3, 4, 6 and 8. Similar to the previous systems, all Pn 

functions initially decay from the volume fraction 𝛷𝛷=0.82 as r increases from 0. The r value 

associated with the first minimum in the functions provides the average particle size in the 

system, i.e., ~ 32 pixels. After the initial decay, the Pn functions exhibit very weak oscillations 

for small and intermediate r values. This behavior is similar to that observed for the 
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overlapping sphere system, as the rocks are compressed and fused which can be effectively 

considered as “overlapped” in the boundary regions. Figure 3. 10 (c) shows the corresponding 

rescaled fn functions highlighting the spatial correlations (c.f. Eq. (2.11)) [55]. 

 

Figure 3. 11 (a) 2D Image of an Interpenetrating Metal-Ceramic Composite Microstructure 
Composed of the Boron-Carbide Phase (Shown in Black) and the Aluminum Phase (Shown 
in White). (b) The Pn Functions for the Boron-Carbide (Black) Phase with n =2, 3, 4, 6 and 
8. (c) The Corresponding Rescaled fn Functions Highlighting the Spatial Correlations (c.f. 
Eq. (2.11)). 
  

Figure 3. 11 shows the quantification of a 2D an interpenetrating metal-ceramic 

composite composed of the boron-carbide phase (shown in black) and the aluminum phase 

(shown in white) [30] (see Figure 3. 11 (a)). This microstructure contains “ligaments” of similar 

width instead of “particles”. The size of the image is 512 by 512 pixels. Figure 3. 11 (b) shows 

the Pn functions for the rock phase with n =2, 3, 4, 6 and 8. Similar to the previous systems, 

all Pn functions initially decay from the volume fraction 𝛷𝛷=0.65 as r increases from 0. The r 

value associated with the first minimum in the functions provides the average ligament width 

in the system, i.e., ~ 27 pixels. After the initial decay, the Pn functions exhibit weak oscillations 

for small and intermediate r values, characterizing the exclusion effects between the ligaments. 

Figure 3. 11 (c) shows the corresponding rescaled fn functions highlighting the spatial 

correlations (c.f. Eq. (2.11)) [55]. 
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3.3.2 Quantification of Microstructure Evolution 

Pn functions not only can comprehensively describe the features of microstructure but 

also can efficiently quantify the evolution of it. We now employ the Pn functions to quantify 

microstructure evolution (e.g., coarsening development) in a lead-tin alloy aged at 175oC up to 

120 hours, see Figure 3. 12. [75], we model the evolution process using time-dependent 2-

point correlation function S2, which is equivalent to P2. We showed that when properly scaling 

with the time-dependent increasing length scale (e.g., the average width of the ligaments), the 

S2 functions correspond to different aging time all collapse approximately onto a universal 

curve, capturing the intrinsic density fluctuations in the system. Here, we investigate the higher 

order functions.  

 

Figure 3. 12 Representative Microstructures of the Lead-Tin Alloy (Pb37Sn63) at 175 oC for 
Different Times. The Dark Region Represents Lead-Rich Phase and White Region 
Represents Tin-Rich Phase. The Linear Size of the Microstructure Is 100 μm. The 
Resolution of the Image Is 600 by 600 Pixels. 
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Figure 3. 13 The Pn Functions Associated With the Pb-Sn Alloy Microstructures at Different 
Aging Times. 
 

Figure 3. 13 shows the Pn functions (with n = 2, 3, 4, 6 and 8) associated with the Pb-

Sn alloy microstructures at different aging times as shown in Figure 3. 12. It can be seen that 

for Pn functions, the initial decay as r increases from 0 becomes slower as aging time increases. 

In other words, the r value associated with the first minimum in the functions increases as 

aging time increases (i.e. r16-hr value> r 25-hr value > r 160-hr value). As discussed above, this r 

value characterizes the average width of the “ligaments” in the microstructure, which coarsens 

as aging time increases. By the way, since the particles coarsen during the annealing process, 

the connectivity between each particle increases. By watching P2 vs r diagram in Figure 3. 13, 

we can notice that the converged height increases as aging time increases (i.e. Ea160-hr value> 

Ea25-hr value > Ea16-hr value). However, this phenomena correspond our previous conclusion 

which is denoted in 3.2.1 can explain its real physical situation [55].   

Moreover, at large aging time (e.g., t = 120 hours), we can see that significant triangle 

and square correlations emerge in the microstructure, which are manifested as the relatively 
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strong oscillations in the corresponding P3 and P4 functions. Such higher order correlations 

are not observed for small aging time and might be resulted from the additional correlation 

induced due to coarsening development. We note that the P2 functions also exhibit stronger 

oscillations as coarsening proceeds. It is now clear that the observed pair correlations are 

associated with the emergence of higher order correlations due to coarsening. This example 

illustrates the importance of incorporating higher-order statistics for accurate quantification 

and representation of complex microstructural evolution [55]. 

In this chapter, we have introduced a set of hierarchical statistical descriptors, i.e., the 

n-point polytope functions Pn for quantitative representation of complex heterogeneous 

materials and microstructure evolution. The Pn functions provide the probability of finding 

regular n-polytopes in 2D with vary sizes in the material phase of interest, which are a subset 

of the full n-point correlation function Sn. We have shown that the Pn functions allow one to 

systematically incorporate higher order spatial correlations for microstructure quantification 

in a concise, expressive, and interpretable fashion, and provide an effective decomposition of 

the features of interest into polytope correlations.  

Besides, according to our computational result, we can conclude that if the a particular 

correlation function Pn does not possess significant oscillations beyond the initial decay as the 

distance increases, the system typically does not possess strong n-polytope correlations. 

Therefore, that particular Pn function might not be necessary for quantifying the system. For 

most of material systems studied in the paper (such as the metal-ceramic composite, concrete, 

sandstone and PbeSn alloy), we can see that the octagonal function P8 does not possess 

significant oscillations, which indicates that for these systems, it might not be necessary to go 

up to n=8. However, for the model composite microstructure (i.e., a packing of equal-sized 

spheres in a matrix), P8 clearly shows oscillations for small and intermediate distances, 



  48 

indicating P8 is required in order to accurately capture octagonal correlations on these length 

scales. It manifests that if we can further consider higher order Pn functions into account to 

quantify the microstructure, we can get more overall results of quantification. 

The utility of the Pn functions has been demonstrated by applying them to quantify 

and model a variety of complex heterogeneous material systems as well as microstructural 

evolution. Our results suggest that the n-point polytope functions can offer a practical set of 

basis for quantitative microstructure representation (QMR), for both static 3D complex 

microstructure and 4D microstructural evolution of a wide spectrum of heterogeneous 

material systems.  

3.4 Conclusions and Discussion of Pn Functions 

In our opinion, an ideal set of material representations and quantification shall acquire 

the following crucial properties: (1) conciseness to facilitate tractable sampling and inverse 

design within the low-dimensional representation space; (2) expressiveness to enable high-

fidelity reconstruction of complex microstructures with heterogeneous morphologies, and 

accurate predictions of material properties of interest; (3) universality to allow efficient 

computation from distinct multi-modal imaging data and to enable data fusion for 

microstructure modeling; (4) interpretability to allow easy and intuitive understanding of the 

key morphological features in the material systems and their evolution from the 

representations.  

Actually, according to the computational results and our observation in chapter 3, Pn 

functions which is the subset of the Sn functions do can equip these four significant factors to 

efficiently describe the feature of microstructure and its evolution to provide a valid, and 

reliable algorism of quantification.  
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Additional, In order to let Pn functions can be more efficiently to be utilized, we still 

need to find an easier method to analyze the results of material’s evolution. I believe that some 

people will ask me what do you mean? Actually, from the curves of Figure 3. 13, we can know 

that 3 sample imaging will cause 3 curves for every Pn functions. For the same reason, if we 

extract more imaging, e.g. 1500 imaging, from an evolution processing to analyze, the high-

dimensioned results of total 7500 curves of Pn functions (n=2, 3, 4, 6 and 8) will cause dazzling 

chaos contrarily even Pn functions do can provide the reliable quantification of configuration 

for each evolving imaging. For this circumstance, I will discuss 2 methods named Omega 

Metric and Differential Omega Metric in Chapter 5 to overcome this shortage.   



  50 

CHAPTER 4 

MICROSTRUCTURE RECONSTRUCTION PROCEDURE AND ITS APPLICATION 

BASED-ON GIVEN Pn FUNCTION 

Pn functions are a set of hierarchical statistical descriptors known as the “n-point 

polytope functions” Pn which are subset from the standard n-point correlation functions Sn. 

That is why Pn functions can efficiently include higher-order n-point statistics of the 

morphological and topological features of interested phase in a concise, explainable, and 

expressive manner. In view of above mentioned reasons, I will try to use the given data sets 

of Pn functions to reconstruct its original microstructure in this chapter [59]. Actually this is 

really a challenge to be achieved and realized because reconstructing a complex structure has 

infinite combination and permutation. Although the confirmed information of Pn functions 

are known to realize the reconstruction, the probability of diverse microstructures having same  

Pn functions still exists because their some specific geographic shape of inclusion and the 

related connectivity between every inclusion. To overcome this hindrance, I use the algorism 

of Yeong-Torquato (YT) reconstruction procedure [61][62] to find the optimal results of 

reconstruction which are really converging to the real model. The reliable and valid results of 

reconstruction can be useful for material engineers who analyze, invent and design new 

materials. 

In this chapter, I will introduce the basic algorism of reconstruction and the 

reconstructed results of model with simplified particles, the comparison of schematic with 

arranged spheres and the difference of imaging with real material particle to obtain more 

information content about reconstruction via Pn functions.  
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4.1 Realization Rendering via Stochastic Optimization 

In order to obtain more accurate result of reconstruction. I use the algorism of Yeong-

Torquato (YT) reconstruction procedure to generate virtual 2D microstructures from a 

specific set of Pn functions with n value equals to 2, 3, 4, 6 and 8 in this chapter. Actually, one 

can use YT procedure to generate virtual 3D microstructures as well when one use 3D 

template of Pn functions. For sure, you can collect all the virtual 2D probability map to produce 

virtual 3D reconstruction but it’s result may not so reliable when it compare the result which 

is created by the 3D template of Pn functions [59]. 

When I embark on the research about reconstruction, actually there are a great deal of 

other different microstructure reconstruction procedures, such as the Gaussian random field 

method [63], phase recovery method [64], and the recently developed raster path method [65]. 

These algorisms are reliable but they have some limitation when we want to use these methods 

to reconstruct the virtual model. In order to reconstruct more and more general cases, I adopt 

the YT procedure which enables anyone to incorporate an arbitrary number of correlations of 

any type, while the others require specific structural information as input. Because the YT 

procedure is equipped with such unique, flexible and generalized feature of algorism, it can 

help one to get the more optimal reconstruction results by choosing effective Pn functions. In 

other words, one can sift out some nonobvious Pn functions and consider contributed Pn 

functions to reconstruct the virtual model. I will describe my result of trials about how to find 

the most effective Pn functions to concise all the reconstruction procedure in the later 

paragraphs. 

In the YT procedure, the way to reconstruct the model is formulated as an “energy” 

minimization problem, with the energy functional E defined as follows 
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𝑟𝑟𝛽𝛽𝑛𝑛                                        (4.1) 

Where 𝑃𝑃�𝑛𝑛
𝛽𝛽(𝑟𝑟)is a target polytope function of order n along direction β and 𝑃𝑃𝑛𝑛

𝛽𝛽(𝑟𝑟) is 

the corresponding function associated with a trial realization. In fact, he energy functional 𝐸𝐸 

is also known as least-square error. In this chapter, I incorporated P2, P3, P4, P6, and P8 into 

energy functional 𝐸𝐸 of YT procedure. In order to get the optimum reconstruction results, the 

simulated annealing method [76][77] is usually employed to solve the aforementioned 

minimization problem by switching the pixels to the most ideal reconstruction. Specifically, 

starting from an initial trial microstructure (i.e., old microstructure/randomly arranged 

microstructure) which contains the same number of voxels (3D)/pixels (2D) of target model 

for each phase. Then two randomly chosen voxels/pixels belonged to different phases are 

exchanged to generate a new trial microstructure (Figure 4. 1). This new trial microstructure’s 

relevant correlation functions are computed and its associated energy is evaluated, which 

determines whether the new trial microstructure should be accepted or not via the probability:  

( ) min 1,   exp expold new
acc

E Ep old new
T T

    → =     
    

                         (4.2) 

Where T is a virtual temperature that is chosen to be high initially and slowly decreases 

with the rate of change of T according to a cooling schedule [58][60]. When 𝐸𝐸 new< 𝐸𝐸 old, the 

new trial microstructure is accepted because its value is bigger than 1 when index of 

exponential function is positive. However, when 𝐸𝐸 new> 𝐸𝐸 old, one can determine the new trial 

microstructure will not be accepted but if we use this algorism, its energy may be confines in 

the local energy minima because its energy does have any chance jump to the lower energy 

position. In order to compute more optima reconstruction, I adopt Monte Carlo steps (PM) to 

ensure that the trial microstructure will not be trapped in the local energy minima to obtain 

more accurate results (Figure 4. 2). When PM< exp[(𝐸𝐸 old− 𝐸𝐸 new)/T], I also accept the new trial 
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microstructure to ensure that the trial microstructure will not be trapped in the local energy 

minimum to obtain more accurate results (Figure 4. 2). The aforementioned process is 

repeated until E is smaller than a prescribed tolerance, which we choose to be 10-6 here. 

Generally speaking, several hundred thousand trials need to be made to achieve such a small 

tolerance for a valid case [59]. 

 

Figure 4. 1 Schematic Illustration of the Pixel Exchange Procedure for Generating A New 
Microstructure Based on An Old Microstructure. 

 

Figure 4. 2 Schematic Illustration of the Simulated Annealing Optimization Procedure for 
Reconstruction. The Initial Uphill Moves Allow the System to Escape from Local Energy 
Minimum. 
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According to the reconstruction procedure, it can be clearly seen that the key step in 

the reconstruction process is to efficiently compute the correlation functions and energy E 

from the trial microstructure to decide if the trial microstructure will be accepted or not.  

That is why how to efficiently compute the correlation functions from the trial 

microstructure which is especially crucial for the reconstruction of large-scale 3D/2D 

realizations. The key idea is to only compute the related Pn functions of randomly selected 

pixel pair due to the switch, instead of re-compute the functions from scratch. We can 

implement this ideal by deducting the success number of the black pixels and adding the 

success number of white pixels before pixel pair switch because I only exchange 2 pixels which 

belong different phase. After collecting the all affected numerators of the Pn functions and re-

computing the contributions from these templates after the pixel exchange, we can acquire 

the Pn functions of the randomly selected pixel pair and no one need to recalculate the switched 

structure. It will save tremendous time and computer resource to efficiently compute the trial 

realizations. 

However, we note that when n gets larger, the number of affected n-polygonal 

templates also increases rapidly. Sometimes, how to find the affected pixels due to exchanging 

two pixels belonged to different phase will becomes more difficult and intricate. Since our 

focus in this chapter is to probe the information content of the hierarchical set of Pn functions 

for relatively small 2D systems (e.g., 100 by 100 pixels), we can just re-compute the Pn 

functions from new trial realizations without extremely increasing the computational cost. 

Under this basis, I re-compute all the Pn functions for old trial realizations to decide if it’s 

acceptable to be placed as the new trial or not to proceed the reconstruction procedure.  
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4.2 Realization of Reconstruction of Simplified Model  

In order to verify the reliability of algorism of reconstruction, I first choose directional 

sampling template of n=3, 4, 6 and 8 (shown as Figure 4. 3) to compute relative Pn functions 

(P3, P4, P6 and P8) for simple images which contain single equilateral tringle, square, regular 

hexogen and regular octagon particles separately (shown as Figure 4. 4) and then use the 

computed Pn functions to reconstruct their original structure to compare if the reconstructed 

results are reasonable or not.  

Besides, I also adopt the periodic boundary condition to let the reconstruction 

simulation simplified. Moreover, I utilize the image which only contain “matrix phase” (while 

pixels) and “particle phase” (black pixels) to predigest the whole procedure of getting Pn 

functions and reconstruction, and the size of all imaging is 20 by20 pixels.  

When I compute the Pn function and execute the reconstruction procedure, the whole 

procedure, setting and parameters are the same to ensure the results of reconstruction are 

comparable and interpretable.    

 

 

Figure 4. 3 Illustration of the Different Shapes of the Sampling Templates for the Pn 
Functions With Various Value n. 
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Figure 4. 4 Reconstruction Results of Imaging Which Contain Single (a) Equilateral Tringle, 
(b) Square, (c) Regular Hexogen and (d)Regular Octagon Particles by Using Their Related P3, 
P4, P6, and P8 Separately. 
 

Because Pn functions can provide a systematic “decomposition” of the features of 

interest in the microstructure in terms of a series of polytope basis and effectiveness about 

capturing hidden symmetry/spatial orders in the system, we finally acquire a very solid and 

valid results from reconstruction procedure.  

For single equilateral tringle particle imaging shown as Figure 4. 4 (a), we can easily tell 

that the trial/reconstructed model is pretty similar to its original model because sampling 

template (n=3) can efficiently provide its geometry fitting to the whole reconstruction 

procedure. Besides, the trial model is shifted its location to the upper place a little bit, for I use 

the periodic boundary conditions which are often chosen for approximating a large (infinite) 

system to avoid getting a simulation results affected by boundary interference. Averaging 

speaking, the trial microstructure is valid and reasonable compared to the real model. 

For single square particle imaging shown as Figure 4. 4 (b), we can observer that the 

trial microstructure is also shifted but its overall result is under our expectation. If we imagine 

the trial microstructure is a unit cell and we can use it to make up an infinity plane then we 

can obtain a whole square shown as Figure 4. 5. The most significant character of 
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reconstruction of equilateral triangle and square is that all the pixels can automatically converge 

into connected particles.  

 
Figure 4. 5 Reconstruction Results of Figure 4. 4 (b) Under Periodic Boundary Conditions. 

 

For single regular hexagon and octagon particle imaging shown as Figure 4. 4 (c) and 

Figure 4. 4 (d), we can easily distinguish that the geography results of these two reconstruction 

are not really similar to the original model but the convergent character of their result shows 

that Pn functions which still can be usefully used to sift and restore the critical geometric 

information even the target image has more complex shape of the interested phase. How to 

improve our reconstruction results? Actually, when I choose regular hexagon template (i.e. 

n=6) and I use this template to compute the Pn functions of image which is constructed with 

single hexagon particle, we easily underestimate and neglect some important factors. Form the 

point view of geometry, hexagon can be combined and created with equilateral triangles which 

is the subset unit can more thoroughly describe the connected, dispersed and geometric 

relationship of the ambient interested pixels. The similar result will be obtained when I use 

regular octagon template (i.e. n=8) to compute the Pn functions of image which is constructed 

with single octagon particle The reconstruction result of image which is constructed with 

single octagon particle, i.e. Figure 4. 4(d), under PBC setting is shown as Figure 4. 6.  
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That is why only using the higher rank of Pn functions to compute the image which 

has complex particles sometimes cause distorted reconstruction. One can add lower rank of 

Pn functions to attain more accurate results. In other words, one can cooperate with different 

results of calculated Pn functions to reconstruct the microstructure. That is why I select YT 

reconstruction procedure as my algorism to reconstruct the model because its formula can 

combine the required Pn functions as many as I want. Moreover, when interested particles 

have more complex geometry, one need to consider to add lower Pn functions to compute and 

describe its relationship of configuration according to the different cases.. 

 

Figure 4. 6 Reconstruction Results of Figure 4. 4(d) Under Periodic Boundary Conditions. 
 
4.3 Information Content of Pn Functions via Realization Rendering  

In the last section, I already introduce simplified imaging which only contain single 

particle with different geometric shape and their reconstruction results. In this section, I will 

investigate the information content of the Pn functions using a serious of heterogeneous 

systems, including ordered and disordered particle packings respectively representing 

crystalline and liquid state of matters, overlapping particles with a Poisson distribution of 

particle centers, interpreting microstructure of metal-ceramic composite, and concrete 
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microstructure. This is achieved by incorporating additional Pn functions of successively higher 

orders into the realization reconstructions, starting with the fundamental two-point function 

P2 (or equivalently S2). But the challenging comes, how to decide our reconstruction results are 

valid? The accuracy of the reconstructed realizations are subsequently accessed using statistical 

descriptors that are not used in the reconstruction, such as the lineal-path function L(r) [39] 

[73], which provides the probability that a randomly placed line segment of length r entirely 

lying in the phase of interest. In particular, the lineal-path function L(r) will be computed from 

both the original system and the reconstructed realization. The accuracy metric ψ, defined as 

the sum of the absolute differences of these two functions over all r values, will also be 

computed, i.e., 

ψ = ∑ ⌈𝐿𝐿(𝑟𝑟) − 𝐿𝐿∗(𝑟𝑟)⌉𝑟𝑟                                                    (4.3) 

Where 𝐿𝐿(r) and 𝐿𝐿*(r) are respectively computed from the reconstructed realization and 

the original system. The level of accuracy of the realizations, quantified via ψ, reflects the 

statistical information encoded in the Pn functions. The lesser value ψ is, the higher accuracy 

it has. For example, higher accuracy indicates essential additional structural information is 

encoded in the newly added functions. In the following realization rendering cases, the size of 

the reconstructed system is 80 by 80 pixels without further elaboration, and periodic boundary 

conditions are employed. 
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4.3.1 Ordered Packing of Congruent Spheres 

 

Figure 4. 7 A simple 2D Crystalline Packing of Congruent Spheres on A Square Lattice 
(Left) and the Associated Pn Function for the Particle Phase (Right). 
 

We begin with a simple 2D crystalline packing of congruent spheres on a square lattice 

(see Figure 4. 7(left)) [59]. The volume fraction of the particle phase is phi = 0.14. It can be 

clearly seen from Figure 4. 7(right) that both the P2 (i.e., S2) and P4 functions exhibit strong 

oscillations, which is the manifestation of the underlying 4-fold symmetry of the structure. 

The other Pn functions (i.e., n=3, 6, 8) do not exhibit significant oscillation beyond an initial 

decay, reflecting the fact that the system is composed of compact particles as building blocks, 

but does not possess strong n-point correlations on large length scales. 

 
Figure 4. 8 Realizations of 2D Crystalline Packing of Congruent Spheres on A Square Lattice 
(Upper Panels) and the Associated Lineal-Path Functions (Lower Panels) Obtained via 
Stochastic Reconstruction by Successively Incorporating Higher-Order Pn Functions. The 
Functions Incorporated from Left to Right Are Respectively: P2, {P2, P3}, {P2, P3, P4}, {P2, 
P3, P4, P6}, and {P2, P3, P4, P6, P8}.  
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Figure 4. 8 shows the realizations (upper panels) obtained via stochastic reconstruction 

by successively incorporating higher-order Pn functions [59]. The functions incorporated from 

left to right are respectively: P2, {P2, P3}, {P2, P3, P4}, {P2, P3, P4, P6}, and {P2, P3, P4, P6, P8}. It 

can be seen that the spatial arrangement of the particles on the square lattice is reproduced in 

all cases. This is because the structural information for the highly ordered 4-fold symmetric 

arrangement is already captured by the lowest order function P2, which is further reinforced 

by incorporating P4. Interestingly, the shape of the particle is improved due to incorporation 

of additional functions, i.e., P3, P6, and P8. This is consistent with information content of these 

functions, i.e., P3, P6, and P8 functions do not possess long-range oscillations and thus, only 

encode information on the morphology of the particles. The lineal-path functions 𝐿𝐿  are 

computed from the reconstructed realizations and compared to that of the original system (see 

Figure 4. 8, lower panels). It can be seen as higher order Pn functions are successively 

incorporated, the 𝐿𝐿 function of the reconstructed realizations matches the original system 

better. This is consistent with the quantification using accuracy metric shown in Figure 4. 9 

[59].  

 

 

Figure 4. 9 Accuracy Metric ψ Defined in Eq. (4) Associated with Reconstructions 
Incorporating Different Sets of Pn Functions. The Horizontal Axis Indicates the Number of 
Functions Incorporated in the Reconstruction.  
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4.3.2 Disordered Packing of Congruent Spheres 

 
Figure 4. 10 A 2D Disordered Packing of Congruent Hard Spheres Generated via Monte 
Carlo Simulations (left) and the Associated Pn Function for the Particle Phase (Right). 

 

Figure 4. 10 shows the quantification of a 2D microstructure composed of equal-sized 

hard spheres in a matrix [58], i.e., a packing (see Figure 4. 10, left panel) [59]. The sphere 

packing is generated using Monte Carlo simulations [48]. The Pn functions for the particle 

phase with n =2, 3, 4, 6 and 8 are shown in Figure 4. 10 right panel. Similar to the crystalline 

packing case discussed in Sec. 4.3.1, all Pn functions initially decay from the volume fraction 

𝛷𝛷=0.48 as r increases from 0. The positions of the first minimum in the Pn functions for small 

n values roughly correspond to the linear size of the particle (~ 12 pixels). After the initial 

decay, all Pn functions studied here except for n = 8 exhibit relatively significant oscillations 

and the first peaks in different Pn functions occur at approximately the same r values. These 

oscillations respectively indicate strong pair, triangle, square and hexagonal correlations on 

different length scales in the system. In Figure 4. 10, we illustrate examples of such correlations, 

which are all associated with the mean nearest neighbor separate distance, i.e., the distance 

associated with the first peak in P2. These correlations result from the tendency for the particles 

to self-organize at high densities [59].  
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Figure 4. 11 Realizations of Disordered Packing of Congruent Hard Spheres (Upper Panels) 
and the Associated Lineal-Path Functions (Lower Panels) Obtained via Stochastic 
Reconstruction by Successively Incorporating Higher-Order Pn Functions. The Functions 
Incorporated from Left to Right Are Respectively: P2, {P2, P3}, {P2, P3, P4}, {P2, P3, P4, P6}, 
and {P2, P3, P4, P6, P8}. 
 

Figure 4. 11 shows the realizations (upper panels) obtained via stochastic 

reconstruction by successively incorporating higher-order Pn functions [59]. The functions 

incorporated from left to right are respectively: P2, {P2, P3}, {P2, P3, P4}, {P2, P3, P4, P6}, and 

{P2, P3, P4, P6, P8}. It can be seen that in all reconstructions, the connectivity of the particle 

phase has been significantly overestimated. In particular, instead of reproducing individual 

compact particles, a single connected phase with a characteristic ligament size comparable to 

the sphere diameter is produced. The strong oscillation in the correlation functions is realized 

by the inter-ligament spacing and correlations. This is because the particle volume fraction 

𝛷𝛷=0.48 is close to percolation [78] [79]. These results also indicate that the Pn functions (up 

to n = 8) do not encode topological connectedness information. On the other hand, it has 

been shown that incorporating cluster functions [39][45] can lead to significantly improved 

reconstructions capturing the connectivity information. The lineal-path functions 𝐿𝐿 also are 

computed from the reconstructed realizations and compared to that of the original system (see 

Figure 4. 11 lower panels). Since 𝐿𝐿 is sensitive to clustering, which is overestimated in all 
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realizations, successively incorporating higher-order Pn functions does not lead successively 

more accurate reconstruction. Instead, the more complex energy landscape associated with 

higher-order Pn functions might lead to slower convergence of the reconstruction, and higher 

probability that the system gets stuck in a shallow local minimum [59]. This is consistent with 

the quantification using accuracy metric shown in Figure 4. 12 [59]. 

 
Figure 4. 12 Accuracy Metric ψ Defined in Eq. (4) Associated with Reconstructions 
Incorporating Different Sets of Pn Functions. The Horizontal Axis Indicates the Number of 
Functions Incorporated in the Reconstruction.  
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4.3.3 Overlapping Congruent Spheres 

 
Figure 4. 13 A 2D Disordered Packing of Congruent Overlapping Spheres With a Poisson 
Distribution of the Particle Centers (Left) and the Associated Pn Function for the Particle 
Phase (Right). 
 

Figure 4. 13, shows the quantification of a 2D microstructure composed of equal-sized 

overlapping spheres in a matrix [48][59] (see Figure 4. 13, left panel). The spheres are randomly 

placed in the matrix without any built-in spatial correlations. Figure 4. 13, right panel shows 

the Pn functions for the particle phase with n =2, 3, 4, 6 and 8. Similar to the previous systems, 

all Pn functions initially decay from the volume fraction 𝛷𝛷=0.47 as r increases from 0. After 

the initial decay, the Pn functions are virtually flat, indicating that the particles possess no spatial 

correlations of any symmetry on any length scales beyond the diameter of the particles. We 

note that for the totally random overlapping sphere system, the Pn functions possess the 

analytical expression Pn (r) = exp[-ρvn(r; R)], where ρ is the number density of the spheres in 

the system (i.e., number of spheres per unit volume) and vn(r; R) is the volume of the union of 

n spheres with radius R with centers placed at the vertices of a n-polytope with edge length r.  
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Figure 4. 14 Realizations of Overlapping Sphere Packing (Upper Panels) and the Associated 
Lineal-Path Functions (Lower Panels) Obtained via Stochastic Reconstruction by 
Successively Incorporating Higher-Order Pn Functions. The Functions Incorporated from 
Left to right Are Respectively: P2, {P2, P3}, {P2, P3, P4}, {P2, P3, P4, P6}, and {P2, P3, P4, P6, 
P8}. 
 

Figure 4. 14 shows the realizations (upper panels) obtained via stochastic 

reconstruction by successively incorporating higher-order Pn functions [59]. The functions 

incorporated from left to right are respectively: P2, {P2, P3}, {P2, P3, P4}, {P2, P3, P4, P6}, and 

{P2, P3, P4, P6, P8}. In all the reconstructions, the connectivity of the particle phase has been 

correctly reproduced, as the overlapping particles in the original system form a single 

connected phase, in contrast to the hard sphere packing case. Since all the Pn functions 

contains no essential information beyond the particle diameter (~ 12 pixels), incorporating 

these functions does not lead to improvement of the reconstruction accuracy for the 

overlapping sphere system. This is consistent with the quantification using accuracy metric 

shown in Figure 4. 15 [59]. 
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Figure 4. 15 Accuracy Metric ψ Defined in Eq. (4) Associated with Reconstructions 
Incorporating Different Sets of Pn Functions. The Horizontal Axis Indicates the Number of 
Functions Incorporated in the Reconstruction.  
 
4.3.4 Concrete Microstructure 

 

Figure 4. 16 A 2D Slice of a Concrete Microstructure in Which the Cement Paste Is Shown 
in White and the Rocks Are Shown in Black (Left) and the Associated Pn Function for the 
Rock Phase (Right). 

 

Figure 4. 16 shows the quantification of a 2D concrete microstructure composed of 

reinforcement rocks (shown in black) and the cement paste (shown in white) [52] [59] (see 

Figure 4. 16, left panel). The rock particles possess complex polygonal morphologies and a 

wide size distribution. Figure 4. 16 right panel shows the Pn functions for the rock phase with 

n =2, 3, 4, 6 and 8. All Pn functions initially decay from the volume fraction 𝛷𝛷=0.38 as r 

increases from 0. The r value associated with the first minimum in the functions provides the 

average particle size in the system, i.e., ~ 20 pixels. After the initial decay, the lower-order Pn 
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functions (e.g., n≤4) increase, reflecting the spatial correlations resulted from the mutual 

exclusion effects of the rock particles. The correlations are much weaker compared those in 

hard-sphere systems, mainly due to the anisotropy and size polydispersity of the rock particles.  

 
Figure 4. 17 Realizations of Concrete Microstructures (Upper Panels) and the Associated 
Lineal-Path Functions (Lower Panels) Obtained via Stochastic Reconstruction by 
Successively Incorporating Higher-Order Pn Functions. The Functions Incorporated from 
Left to Right Are respectively: P2, {P2, P3}, {P2, P3, P4}, {P2, P3, P4, P6}, and {P2, P3, P4, P6, 
P8}. 
 

Figure 4. 17 shows the realizations (upper panels) obtained via stochastic 

reconstruction by successively incorporating higher-order Pn functions [59]. The functions 

incorporated from left to right are respectively: P2, {P2, P3}, {P2, P3, P4}, {P2, P3, P4, P6}, and 

{P2, P3, P4, P6, P8}. In the reconstructions, individual rock particles can be clearly distinguished. 

As higher-order Pn functions are successively incorporated, the shape and morphology of the 

rock particles are improved. This can be seen both from visual inspection of the reconstructed 

realizations and the quantitative comparison of the lineal-path functions (Figure 4. 17, right 

lower panels). In the case that a larger number of Pn functions are incorporated, the complexity 

of energy landscape increases dramatically, leading to very slow convergence of the 

reconstruction. This also leads to the slight increase of ψ shown in Figure 4. 18 [59]. 
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Figure 4. 18 Accuracy Metric ψ Defined in Eq. (4) Associated with Reconstructions 
Incorporating Different Sets of Pn Functions. The Horizontal Axis Indicates the Number of 
Functions Incorporated in the Reconstruction.  
 
4.3.5 Interpenetrating Metal-Ceramic Composite  

 

Figure 4. 19 A 2D Slice of A Interpenetrating Microstructure of a Metal-Ceramic Composite 
Composed of the Boron-Carbide Phase (Black) and the Auminum Paste (White) (Left) and 
the Asociated Pn Function for the Boron-Carbide (Ceramic) Paste (Right). 
 

Figure 4. 19 shows the quantification of a 2D an interpenetrating metal-ceramic 

composite composed of the boron-carbide phase (shown in black) and the aluminum phase 

(shown in white) [51][59] (see Figure 4. 13(a)). This system contains “ligaments” of similar 

width instead of “particles”, and possesses connected material phase, in contrast to the hard 

particle packings. Figure 4. 19 right panel shows the Pn functions for the ceramic phase with 

n =2, 3, 4, 6 and 8. Similar to the previous systems, all Pn functions initially decay from the 

volume fraction 𝛷𝛷=0.76 as r increases from 0. The r value associated with the first minimum 
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in the functions provides the average ligament width in the system, i.e., ~ 10 pixels. After the 

initial decay, the Pn functions exhibit weak oscillations for small and intermediate r values, 

characterizing the exclusion effects between the ligaments.  

 

Figure 4. 20 Realizations of the Interpenetrating Microstructure (Upper Panels) and the 
Associated Lineal-Path Functions (Lower Panels) Obtained via Stochastic Reconstruction by 
Successively Incorporating Higher-Order Pn Functions. The Functions Incorporated from 
Left to Right Are Respectively: P2, {P2, P3}, {P2, P3, P4}, {P2, P3, P4, P6}, and {P2, P3, P4, P6, 
P8}.  
 

Figure 4. 20 shows the realizations (upper panels) obtained via stochastic 

reconstruction by successively incorporating higher-order Pn functions [59]. The functions 

incorporated from left to right are respectively: P2, {P2, P3}, {P2, P3, P4}, {P2, P3, P4, P6}, and 

{P2, P3, P4, P6, P8}. In all the reconstructions, the morphology and connectivity of both the 

ceramic and metallic phases have been very well reproduced. As can be seen from the 

comparison of the lineal-path functions (Figure 4. 20, lower panels) and the accuracy 

metric ψ (see Figure 4. 21), including higher-order Pn functions leads to successively improved 

reconstructions. This indicates that the additional morphological information encoded in 

higher-order Pn functions has been efficiently utilized in the reconstructions. We note that it 

is relatively easier for the reconstruction algorithm to converge to a realization with connected 

phase at high volume fractions, as such realizations are more degenerate [37][38]. Therefore, 
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it is common that better reconstruction accuracy can be achieved for systems where the phase 

of interest (i.e., the ceramic phase) is connected [59]. 

 

Figure 4. 21 Accuracy Metric ψ Defined in Eq. (4) Associated With Reconstructions 
Incorporating Different Sets of Pn Functions. The Horizontal Axis Indicates the Number of 
Functions Incorporated in the Reconstruction.  

 

4.4 Conclusions and Discussion of Reconstruction 

In this chapter, we employ stochastic realization reconstruction to probe the level of 

statistical morphological information contained in a recently introduced set of hierarchical 

statistical microstructural descriptors, i.e., the “n-point polytope functions” Pn. The Pn (r) 

function provides the probability of finding a set of n points sitting at the vertices a regular n-

polytope of edge length r in the phase of interest, and thus, is a subset of the corresponding 

standard n-point correlation function Sn. In particular, Pn functions up to n = 8 were 

successively incorporated into the Yeong-Torquato reconstruction procedure and the accuracy 

of the reconstructed systems was quantitatively assessing via the lineal-path function, which 

provides “linear clustering” information. We examined a wide spectrum of representative 

random systems with distinct geometrical and topological features, including representative 

crystalline and disordered particle particles, Poisson distribution of particles, microstructures 

of concrete and interpenetrating metal-ceramic composites.  
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We found that generally, successively incorporating higher order Pn functions which 

encodes essential higher-order morphological information leads to superior accuracy of the 

reconstructions. However, incorporating more Pn functions into the reconstruction also 

significantly increases the complexity and roughness of the associated energy landscape for 

the underlying stochastic optimization, making it difficult to convergence numerically. 

Another observation is that the Pn functions (up to n = 8 studied here) appear to be not 

sensitive to topological connectedness information. This was evidenced by the significant 

overestimation of the clustering in the reconstruction of disordered packings of hard spheres 

near percolation point. These examples indicate that for certain complex systems, successively 

incorporating higher order correlation functions in a linear fashion might not be the best 

practice, as one can significantly increase the computational cost without incorporating too 

much useful additional morphological information. An alternative approach in such cases is 

to utilize non-conventional functions (e.g., those encoding clustering information) or to 

employ machine learning techniques to identify and extract crucial higher order correlations 

that leapfrog unnecessary computation of all the Pn functions[80][81][82].  
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CHAPTER 5 

APPLICATO OF Pn FUNCTIONS FOR VAPOR-DEPOSITION ALLOY FILMS 

With the advent of technology, our life have changed dramatically. The invented 

equipment are manufactured smaller and smaller in size but they contain more and more 

functions. Take the smart phone for example, it can totally substitutes camera, recorder, 

scientific calculator, MP3 player, photo editor, GPS navigation, etc.  

These days, the most popular topics people or TV always discuss are development of 

AI (artificial intelligence), 5G equipment, Autonomous vehicle and HPC (high performance 

computing) which are thoroughly evolving our life. The key factor can let all the virtual 

concepts and ideas to be realized is that the semiconductor has been created and substituted 

for traditional circuit board. That is why more and more people currently focus on the 

manufacture ability of semiconductor in civilian and military industry. 

Can you imagine the first super computer is as big as half football court before 

semiconductor is produced? Why such big equipment can be compacted into nowadays chip 

which has smaller size than your finger nail and more efficient over thousand-times than 

outmoded circuit board? Because semiconductor can be created in nanometer size and 

constructed to form the 3D layered structure to accommodate uncountable circuits. That is 

why multi-functions can easily be equipped to the designed product. 

Under the competitive business environment, how to raise the quality of 

semiconductor becomes more and more significant target for semiconductor engineers and 

manufacturers because it indirectly affects the reliability of the designed product and the 

product’s market share. In fact, the process of vapor deposition of semiconductor 

manufacture plays a decisive role because vapor deposition process usually cause irregular and 

discontinuous film surface such as pothole or hillock which always lower the conductivity, 
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smoothness and light transmittance of films. These surface perturbations are hindrances for 

semiconductor and solar interconnectors. During my search period, I am honor to have 

opportunity to cooperate with professor Ankit and his team to analysis vapor-deposition of 

phase-separating alloy by using Pn functions, Omega Metric and Differential Omega Metric. 

Before I start to calculate and analyze their simulation results, I will brief introduce the main 

process of making the semiconductor in the next paragraph. In such situation, you can 

understand why hillocks growth needs to be eliminated, predicted and studied. 

5.1 The Procedures to Create Semiconductor 

In this paragraph, I will introduce the outline about how to create a semiconductor 

and describe the importance of vapor deposition process. The flow chart of manufacture is 

shown as Figure 5. 1. 

 
 
Figure 5. 1 The Flow Chart of Fabrication of Semiconductor. 
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The first step for creating a semiconductor is that we need a high quality circular silicon 

wafer which is sliced from silicon ingot and then refined/polished in order to provide the best 

possible surface, i.e. substrate, for the following fabrication steps. 

The second step is the vapor deposition. The implementation of vapor deposition is 

characterized by a process in which the material much as Cu, Ta, Mo and Ag goes from a 

condensed/solid phase to a vapor phase and then condenses on the thin film(Figure 5. 2  and 

Figure 5. 3).  

 
Figure 5. 2 Schematic Illustration of Vapor Disposition’ Equipment. 
 

 
Figure 5. 3 Schematic Illustration of the State Cycle of the Vapor-Decomposition Material. 
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Vapor deposition is a widespread commercial applications and extensively used in the 

semiconductor industry to deposit thin films of various materials in integrated circuit 

processing. For optical application, the thin antireflection coatings on glass are also deposited 

by vapor deposition to protect the coated glass. Besides, all the items which require thin films 

for mechanical, chemical or electronic functions can use vapor deposition process to achieve 

their expectation effect. Examples include thin film solar panels, aluminized PET film, food 

packaging bag, coated cutting tool, etc. However, since semiconductor and some optical 

coating are used for precision instrument, the quality of vapor deposition will affect products’ 

life cycle. Take semiconductor for example, the irregular surface will cause potholes and 

hillocks which will cause open circuit because the microstructure of alloys in the film cannot 

continuously connected. Under the situation of Nanometer scales, even a dust will cause 

semiconductor to be broken, not to mention hillock will cause a devastating damage. That is 

why professor Ankit’s work is so important. Besides, if the film’s surface is discontinuous, the 

more error opportunity will be occurred for the next step “the photolithography” because the 

non-smooth surface will randomly reflect and refract. In such situation, the required removed 

or kept part of film may not be eliminated or maintained from the film accurately. 

The third step is photolithography. The main procedure of photolithography is that a 

layer of photoresist is spread thinly across the films and wafer. Then let the wafer expose to a 

UV light mask, which is shaped in the pattern of the designed circuits. Exposed photoresist 

becomes soluble and is washed off by a solvent. Under this step, the chemical protector can 

easily applied on the wafer. 

The forth step is etching. In this step, eroding chemicals are used to remove unwanted 

silicon and vapor-deposition material, leaving the wanted material which is protected by the 

photoresist. 
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The fifth step is Stripping. In this step, we remove the photoresist by using related 

solvent. When this step is finished, the designed circuits are produced. 

The sixth step is to decide if other layers also are needed to be produced. If the answer 

is yes, just repeat the procedures from step 2 to step 5. Otherwise, just enter the next step. 

The seventh step is test and slice die. When all the designed circuits are built, the wafer 

is sliced into dies, and functional dies are now ready to be tested on the test machine to make 

sure all the circuits are well built and functioned. 

The final step is packing. When chips pass all the required tests. The chips will be 

integrated with other chips or parts or circuit board as another assembly. When all the 

integration is finished, the final assembly will be numbered and packaged.  

5.2 The Studies and Important Factors for Phase-Separating Films Making. 

From the last paragraph, we can understand that the hillock growth and microstructure 

of films can directly affect the yield rate of semiconductor’s products. 

 There were lots of researches have studied what mechanisms governing formation of 

hillocks in monolithic films. Especially, some researches have shown how to control and 

prevent the growth of hillock [83]-[86]. Besides, more and more prior works also present that 

thermal stress gradient, temperature, deposition rate, coefficient of thermal expansion and 

dissimilar mobility [83][87]-[89] are all the main factors should be taken into consideration to 

generate film made from different metal ingredients. 

A recent paper [90] theorized that the morphological transitions were a serious 

evolution of system’s need to lower its internal energy as the deposition rate increased under 

the energy equilibrium environment. In fact, the structure of immiscible separating-phase has 

large interface energies compared to the surface energies of alloy components themselves 
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because of the incoherent of nature of interphase boundaries such as Cu-Ta and Ag-W film 

[91]-[93]. To let the simulation result of hillock growth of film more accurate, the interphase 

and phase energy of each phase are all driven into simulation functions of contact angle θf,v 

in order to obtain more precise outcomes. My cooperating team use 3D phase filed approach 

to numerically simulate the formation of vapor deposition of phase-separating alloy films. The 

related basis of its simulation will be introduced in the next paragraph.   

5.2 The Basis of Simulation of Phase-Separating Alloy Films. 

As mentioned before, my cooperating team adopt multi-pronged numerical assesses 

the role of surface and interfacial energies in the formation of hillocks on the film surface. 

They supplement the energetics with adatom kinetics to see hillock growth (shown as Figure 

5. 5) by assigning an initial condition constituting of spherical perturbations to induce hillock 

formation from an early stages of vapor deposition. They assign thermodynamic gradient and 

interaction parameters so as to induce low angles of contact at the film/vapor interface, in 

order to evaluate the physical morphology of the evolving hillocks as a function of the contact 

angles. Moreover, to let the simulation can be more real, they also add random noise to 

simulate the real world vapor-deposition under practically vacuum state. 

After a succession of complex and intricate formula derivation, the formula of contact 

angle, i.e.θf,v, is obtained. 

                                          θ
𝑓𝑓,𝑣𝑣

= 2 cos−1 �σ
𝐴𝐴,𝐵𝐵

2σ𝑓𝑓,𝑣𝑣�                                                  (5.1) 

Where σ𝐴𝐴,𝐵𝐵 is the interfacial energy between the phase separating components A and 

B, while σ𝑓𝑓,𝑣𝑣 is the surface energy of the film surface with respect to the vapor phase. 

                       σ𝐴𝐴,𝐵𝐵 = 2𝑁𝑁𝑣𝑣λ[𝐾𝐾𝐵𝐵𝑇𝑇]1/2 ∫ �𝑓𝑓(∅)�
1/2∅𝐵𝐵

∅𝐴𝐴
d∅                                                  (5.2) 
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Where 𝑁𝑁𝑣𝑣 denotes the number of molecules per unit volume, and λ is the interaction 

distance, which is related to the intermolecular distance and is assumed to be a constant for 

the alloy. 𝐾𝐾𝐵𝐵  is the Boltzmann constant and T is the absolute temperature. ∅  is the 

composition field which varies in value from ∅A within the A-rich phase to ∅B within the B-

rich phase. 

A model using a three-dimensional domain with a maximum of 150x150x150 grid 

points is constructed. We assign a characteristic length-scale, L* equal to 1:1 nm, which is 

calculated based on observed interface widths and morphological phase-separated domains in 

vapor deposited Cu based immiscible alloys with Ta and Mo [94][95]. 

An initial condition reflecting either a characteristic perturbed seed or of Langevin 

noise is given to the system. The top half of the simulation space is assigned as the vapor 

phase, thereby allowing for a 50/50 split in the space by volume. To simulate deposition, a 

layer of Langevin noise is added every few time steps, n△t which leads to a temporal increase 

in the film's thickness. The noisy layer is added at the juncture of the interface between the 

vapor and the film, at ∅v = 0.5. To compensate for loss in relative volume of the vapor phase, 

a layer of thickness △x of vapor phase is also added to the top of the simulation space. A 

schematic of the deposition process is shown in Figure 5. 4 and the simulated structure of 

hillocks under different contact angle and designated location of seeds are shown as from 

Figure 5. 6 to Figure 5. 9. 
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Figure 5. 4 Schematic of Simulated Vapor Deposition of Phase-Separating Alloy Film With 
Steep Protuberances. (a) Protuberances Are Spherical With r = 17∆x. (b) Boundary 
Conditions Assumed Are Periodic Along x and y Axes, and No-Flux Along the Deposition 
Axis. 
 
5.3 The Results and Conclusions of Simulation and Experiment. 

The simulations are execute by 2 parts which are organized arranged seeks and random 

seed with different contact angle at  0◦, 47◦ and 63◦. The simulation results of organized 

arranged seed are present from Figure 5. 6 to Figure 5. 8 and the simulation outcomes of 

random seed is illustrated as Figure 5. 9. The simulation results show that when the contact 

angle between 2 phases is large, the shorter hillocks will be generated because the stronger 

interfacial energy exists. From the simulated images, we also found that the repeated patterns 

are occurred. To extract this hidden information, Pn functions can be utilized to show this 

phenomenon for organized arranged seed simulation. 
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Figure 5. 5 Distinct Hillock Nanostructures that Evolve During Vapor Deposition of Phase 
Separating Alloy Film Depending on the Seed Morphology. (a) A Representative Volume of 
the Film Showing A Disconnected Hillock When Deposition Simulations Are Initialized 
from a Perturbed Seed That Comprises of Vertical Concentration Modulations. (b) 
Connected Hillocks That form When Deposition Simulations Are Initialized from a 
Random Seed, and (c) Segmented Film with Symmetrical Hillocks That form at Narrow 
Contact Angles When the Seed morphology is same as (a). 
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Figure 5. 6 Simulated Vapor Deposition from An Initial Hillock Seed Condition for 
Protuberation Radius of 17 ∆x and a Preset Contact-Angle ≈ 0◦ at Different Time-Steps (a) 
t=12, (b) t=612, (c) t=1212, (d) t=1812, and (e) t=2412. 
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Figure 5. 7 Simulated Vapor Deposition from an Initial Hillock Seed Condition for 
Protuberation Radius of 17 ∆x and a Preset Contact Angle ≈ 47◦ at Different Time-Steps (a) 
t=12, (b) t=612, (c) t=1212, (d) t=1812, and (e) t=2412. 
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Figure 5. 8 Simulated Vapor Deposition from An Initial Hillock Seed Condition for 
Protuberating Radius of 17 ∆x and a Preset Contact Aangle ≈ 63◦ at Different Time-Steps 
(a) t=12, (b) t=612, (c) t=1212, (d) t=1812, and (e) t=2412. 



  85 

 
 

 
Figure 5. 9 Simulated Vapor Deposition from a Random Seed Condition at Contact Angles 
(a)≈0◦, (b)θ≈47◦, and (c) θ≈63◦ 
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5.4 Using Pn Functions to Couple Related Simulations and Experiments. 

In this section, I will directly use Pn functions to analyze the evolving images of 

professor Ankit’s simulation. 

Initially, I employ the polytope functions P2 and P4 to quantify microstructural 

evolution of the deposited thin films. In particular, for a fixed contact angle θ, I first select 

three representative snapshots of the top surface of the deposited film during its growth and 

segment the phase of interest. Without loss of generality, we focus on the blue phase in our 

analysis. Since the blue and red phases are complementary to each other, analyzing one of the 

phases is sufficient to provide statistical quantification of the pattern. 

Figure 5. 10 (a), (b) and (c) shows the computed functions from the simulated thin 

film samples of organized arranged seeds for three contact angles θ≈0◦, θ≈47◦ and θ≈63◦, 

respectively. For different contact angles, the phase morphology exhibits distinct evolution 

pathways. Specifically, for θ≈0 ◦  where the morphology of blue phase varies from an 

interconnected network to compact clusters to connected complex topology. For the other 

two angles, regular patterns of holes develops as the deposition proceeds, which correspond 

to the hillocks. 

Nonetheless, the Pn functions reveal universal hidden correlations across all angles and 

all times. In particular, the peaks in P2 and P4 respectively indicate characteristic length-scales 

associated with strong two-point correlations and 4-point correlations. It can be clearly seen 

that these length scales all coincide with one another, regardless of the underlying geometry 

and topology of the phase microstructure. In addition, the strong peaks in P4 at r≈30 nm and 

60 nm indicates strong 4-fold symmetry, which is inherited from the initial seeds and preserved 

during the film growth process. 
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For the random seeds part, the morphology of the deposited film is also quantified by 

using the 2-point function P2 (see Figure 5. 11). Since the patterns resulted from the random 

seeds do not possess long-range correlations, the associated P2 functions possess the well-

known damped oscillation form [58][60], with the length scale associated with the first local 

minimum and maximum corresponding to the average width of the ligaments and the inter-

ligament spacing. It can be seen that increasing the contact angle leads to decrease of both 

ligament width and spacing at specific time, as manifested as the shifting of the first local 

minimum and maximum to larger distances.  

 
Figure 5. 10 Quantification of Evolving Patterns of the Deposited Thin Film via Polytope 
Functions. The Functions Associated With Segmented Blue Phase Morphologies Are 
Computed from the Simulated Thin Film Samples for Three Contact Angles, (a) θ=0◦, (b) 
θ=47◦ and (c) θ=63◦. The Analyses Reveal Universal Hidden Correlations Across All 
Angles and All Times, Manifested as the Coinciding Length-Scales Associated with Peaks in 
the Functions. 
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Figure 5. 11 Quantification of the Morphology of the Deposited Films Resulted from 
Random Seeds Using the 2-Point Function P2. 
 

5.5 Using Reduced-Dimension Methods to Efficiently Quantify 4D Evolution. 

Form the previous paragraph, we can certainly detect that the Pn functions of evolving 

images of each time internal can be calculated independently under external stimuli. In the 

Figure 5. 10, nine evolving images for P2 and P4 analysis can cause 18 independently curves 

for different contact angle. The quantification ability of Pn function is undeniable. However, 

if the evolution duration is prolonged or the interval between 2 images is shorten, the 

numerous increased images will cause numerous numbers of Pn functions’ curves which will 

be so chaotic and complex to be observed for the selected Pn functions. Or to put it another 

way, if one want to analyze P2, P3, P4, P6, and P8 for 150 evolving images, the final result which 

contains 750 curves will concurrently be revealed in the same coordinate. Not to mention if 

someone want to investigate the huger model.  

Moreover, all the independent Pn functions curves can only present temporal 

microstructure quantification at certain time. By observing the whole Pn functions result, we 
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only can understand the tendency of evolving microstructure for each interval. If we only use 

Pn functions to analyze hillocks of films, we can only obtain the discontinuous results and 

these results can only provide limit insight of the film. That is why from Figure 5. 10(a), we 

only can detect that the morphology is transferred from an interconnected network to 

compact clusters to connected complex topology according the width of peak and the 

oscillation tendency of relating Pn functions curves. In other words, the results of Pn functions 

curve are non-generic and non-feature dependent. 

Obviously, I don’t only need enough database but also a systemic and organized 

method to compare and contrast the consecutive processes of 4D evolution of our target 

object without losing its original microstructure generality.  

5.5.1 The Concept of Omega Metrix 

Under the circumstance we have discussed before, in order to continuously extract the 

characteristic physics and mechanisms from 4D evolution, a more simplified and smart 

method is needed to be utilized for processing-structure-property mapping with a basis of 

reduced-dimension microstructure representation. For 4D evolution analysis, I will use Omega 

Metrix which is a purely concise, concurrently visualized, physically interpretable reduced-

dimension representation for microstructure evolution to overcome all the hindrances of 4D 

analysis.  
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Figure 5. 12 The Concept of Omega Metric 
 

But, what on earth is Omega Metric? The basis of Omega Metric is an effective 

distance from different microstructures compared to the referenced image by using the results 

of Pn functions, and thus, provide a measure for the entire structure of the high-dimensional 

microstructure space (shown as Figure 5. 12). From the value of Omega Metric, we can totally 

differentiate the difference between images captured from different time and if these analyzed 

images are matched or not to the referenced one. Besides, Omega Metric can decompose 

different symmetry features into canonical polytope symmetry groups, allowing one to detect 

potentially distinct convergence and dynamics of evolution of different symmetry groups 

underlying the microstructure. Since Omega Metric is inherited from the Pn functions which 

are continuous and differentiable w.r.t. microstructures, that is why I believe that Omega 

Metric can offer virtual microstructures for microstructural evolution to allow AI-based 

(gradient-based) evolution prediction, 4D material microstructure design and optimization. 

 

 

 

 



  91 

5.5.2 The Formula of Omega Metrix 

The formula of Omega Metric can be written as  

Ωn(t) = Σr| Pn (r; t)- Pn (r; t=0)|                                          (5.3) 

Where the t is represent arbitrary time relative to the reference image, r is the distance 

between vertices of each 2D regular polytope, t=0 is the initial time for the referenced image. 

So, the Omega Metric Ωn(t) is the summation of the absolute value of the distance/difference 

of Pn Functions between analyzed and referenced image under different length scale for 

different time. Developed Omega Metrix can integrate and immerge the same value n of Pn 

functions into a continuous curves. In such situation, if one want to analyze P2, P3, P4, P6, and 

P8 for 150 evolving images, the final result of Omega Metric with 5 curves will concurrently 

be revealed in the same coordinate. Furthermore, since every Omega Metric contains 

continuous status of each evolving image, the curves can contain all the original mechanism 

and structural information of evolution. In the next section, I will use the Omega Metric to 

analyze the 4D results of vapor-deposition of phase-separating alloy film. 

5.5.3 The Analysis Results of Omega Metric of Vapor-Deposition of Phase-

Separating Alloy Film.  

When I use the whole film simulation results of blue phase at contact angle=0 to 

calculate its evolution Omega Metric from n=1, 2, 3, 4, 6 and 8, the results of Omega Metric 

are easily shown that there are so many peaks and oscillation occur in Figure 5. 13. Since the 

definition of the Omega Metric is the summation value of absolute distance from the reference 

image, we can easily realize that the larger value of Omega value means the more different 

image compared with reference configuration will be. To proof this idea, I compare the image 

of reference point which is the start point at the origin when t=0 and the maximum peak point 

in Figure 5. 13. Since the image of reference and the maximum are totally different, this 
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situation induce me to explore the relation between images for every limit point to get more 

detail information. All the comparison are shown as Figure 5. 14. 

 
Figure 5. 13 The Results Shown the Evolution for Theta= 0 case. It Turns Out That the 
Omega n for Different n Yield Consistent Measure of the Microstructural Space.  
 

I enlarge the scope of curve of Figure 5. 13 from t=8 to 80 to have more detailed data 

points to investigate the image of each limit point. From Figure 5. 14, we can detect that every 

lower points near the Omega value=0 have similar microstructure with reference’s one. On 

the country, the peaks’ microstructure are totally opposite to the configuration of reference. 

From this circumstance, I can understand the trend of Omega function is thoroughly depends 

on its reference’s microstructure. If the curves of Omega Metric have decreasing tendency 

with x coordinate (time) shown as Figure 5. 15, the whole evolution system shall has similar 

microstructure with the reference’s configuration vice versa. Since the curves of Figure 5. 15 

have decreasing tendency, so the probability of hillock growth is pretty high because the all 

peak points are not far always from the reference point and all the images’ microstructure shall 

be similar. In the Figure 5. 15, since the reference image we choose has more vacant space, it 

reveals that the whole system must has more opportunity to have vacant space which is also 

known as hillock in the film. In order to research relationship of hillock growth between 
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different angles, I also calculate the results of Omega Metric for these 3 different angles in 

Figure 5. 16. The decreasing tendency is chartered for all the angle but the whole result of 

angle=0 has the lowest orange tendency curve. In other words, the smaller contact angle, the 

more hillock will be produce. 

The conclusion of Omega Metric of Figure 5. 16 can also reflect the conclusion of 

film’s simulation “when the contact angle between 2 phases is large, the shorter hillocks will 

be generated because the stronger interfacial energy exists”. 

 
Figure 5. 14 The Image of Every Limit point at Domain from Time=8 to Time=80. 
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Figure 5. 15 The Tendency of Curves. 
 

 
Figure 5. 16 The Decreasing Tendency of Curves of Film at Different Angles. 
 

From the last paragraph, we realize that the chosen reference image and the tendency 

of its Omega Metric curve play an important role for evolution quantification. In order to 

investigate the relation between reference image and the tendency of its Omega Metric curve, 

I will try to change the reference image to execute Omega Metric calculation to extract the 

characteristics from the evolution process directly and see if its final results can provide us 

more information or not. Take the results of vapor-decomposition film for example, I prefer 

choose the connected microstructure opposite to the reference image of Figure 5. 13 as the 
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reference one because the connectivity of configuration severely affect the yield rate of the 

chip.  

The whole results of curves of Omega Metric shown in Figure 5. 17 which use 

connected image as reference image also correctly corresponds to Figure 5. 16’s result which 

set the sparse phase image as the reference configuration. In Figure 5. 17, you can see the 

tendency of Omega Metric is increasing with respect to x coordinate. In other words, it means 

that the whole system at contact angle=0 rarely contains the connected microstructure.  

 

 
Figure 5. 17 The Curve Tendency Results of Omega Metric Which Use Connected Image as 
the Reference Image 
 

From the process of changing the reference image, its results offer a brand new idea 

and concept about that changing the reference image can help and provide engineers or 

designers a prediction to select the most suitable contact angle to design the chip with the least 

hillocks by reference image’s related curve tendency of Omega Metric. Maybe someone shall 

ask that how can we get the optimal design by using Omega Metric? The suggested procedure 
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is that one can choose the required or wanted pattern as the reference image to substitute the 

Pn (r; t=0) term in Omega Metric formula and use all the calculated Pn functions data from 

different angle to distinguish which angle’s Omega Metric curve has decreasing tendency and 

the angle with the lowest tendency line shall be the best angle for vapor-deposition process.  

For the chip design made from other different material, one can use professor’s 

contact angle formula to get the evolving images and their Pn functions at arbitrary angle. After 

that one select the designed pattern as reference image then repeat the Omega Metric 

procedure, one can get the best contact angle for optimal design. 

5.5.3 Differential Omega Matric.  

Actually, the processes of evolution of vapor-deposition film is a kind of diffusion-

controlled system which contains different drug delivery systems caused by the energy of 

assorted interface and phases. Besides, it predominantly controls the diffusion of vapor-

deposition to let the phases seductively diffuse from one place to other place. That is why the 

vapor-deposition alloy film which is formed by diffusion-controlled system can be classified 

as a product of the heterogeneous material.  

 If the deposition rate of vapor-deposition film is really high, its microstructure will 

also change itself dramatically. Under this circumstance, the curve of Omega Metric may lost 

some characteristic feature of microstructure and cannot easily to reveal more detail 

information of evolution. In order to prevent this issue to be occurred, A Differential Omega 

Metric can be used to exam this exceptional case. The Differential Omega Metric is defined 

as 

DΩn(t) = Σr| Pn (r; t)- Pn (r; t=t-1)|                                       (5.4) 

According to the formula of Differential Omega Metric (DOM), we can obviously 

understand the difference between the Omega Metric and DOM is that the reference point of 
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DOM is its previous stage’ image rather than the fixed reference point which used by the 

Omega Metric formula. The results of DOM will be the absolute distance between every time 

interval. The peak of Differential Omega Metric curves means the changing rate of 

phase/microstructure/volume fraction at the indexed interval. By using the DOM, we can 

decide that if the evolving system is converged to the steady state or not by observing the 

curve of DOM. If the results of DOM’s curve only disclose minor oscillation or repeated 

pattern, the evolving system is under the steady state or periodic pattern and all the outcomes 

and optimal design of Omega Metric are valid and convinced. On the other hand, one need 

to adjust the time interval to put more images into Omega function to obtain more optimal 

curve which can contain more microstructure data. The repeated pattern of DOM is shown 

in Figure 5. 18. 

As I have mentioned before, the vapor-deposition film is only a case of diffusion 

controlled system. Actually, Omega Metric and DOM have significantly potential ability to be 

applied to other diffusion controlled fields for quantification or optimal design purposes. 

 

Figure 5. 18 The Tendency of Curves of DOM for Vapor-Deposition Film at Angle=0. 



  98 

CHAPTER 6 

DISCUSSION AND FUTURE WORK 

After I introduce and review the result of Pn functions’ quantification which is the 

subset of Sn functions, Pn functions’ reconstruction which adopts YT reconstruction 

procedure and Omega Metric/Differential Omega Metric which can be used for analyzing 

material’s evolution more efficiently, we can easily understand that these methods are valid, 

concise, expressive, universal and interpretable for analyzing heterogeneous materials. 

Although these quantification methods are useful, there are some important factors needed to 

be considered. 

The first factor is that when I use Pn functions rather than Sn functions to save 

calculation time and facilitate quantification process for seriously irregular shape of particle, it 

may cause some extended error of quantification. Though the occurred error is existing 

because of the geometric shape of particle, the computed results with this allowable error can 

still help us to analyze the microstructure of heterogeneous materials by checking the Pn vs r 

curve shown in the chapter 3. Actually, according to the computational results and our 

observation in chapter 3, Pn functions which is the subset of the Sn functions do can provide 

a valid, and reliable algorism of quantification.  

The second factor is that when I reconstruct the model from its obtained Pn functions, 

how many Pn functions should I put into YT reconstruction procedure to reconstruct the 

simulated results. According to the conclusion and observation of chapter 4, more involved 

data set of Pn functions doesn’t means the better simulation results we will get.  

In chapter 4, I have examined a wide spectrum of different material with distinct 

geometrical and topological features and found that incorporating more data set into the 

reconstruction calculation also significantly increases the complexity and roughness of Pn 
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functions of the associated energy landscape for the underlying stochastic optimization. Finally, 

it makes the result of simulation is difficult to be converged numerically. It indicates that for 

certain complex systems, successively incorporating higher order correlation functions in a 

linear fashion might not be the best strategy to be executed, as one can significantly increase 

the computational cost without incorporating too much useful additional morphological 

information. In the future work for this concern, one can develop an alternative approach to 

decide how many sensitive and necessary Pn functions should be considered to be put into the 

YT reconstruction procedure to compute the more accurate simulation result.  

The third factor is that I only use 2D model to quantify and reconstruct the cross-

section images in this dissertation to prove that the Pn functions and YT reconstruction 

procedure are practicable. However, actually the reconstruction for 2D and 3D cases for some 

circumstances should need to be more deliberated because 2D reconstruction only includes 

the connectivity of 2 axis. Under some situation, the relationship of connectivity of one plan 

cannot thoroughly describe the features of the structure. Although one can X-ray the object 

of target and get finite 2D images to quantify the materials, the combined results of the total 

2D reconstruction may has error to the real 3D model. In the future work, the best way is to 

X-ray the target and restore the location of all the interested phases as 3D digital matrix and 

create regular 3D templates to compute the related 3D Pn functions which will possesses the 

relationship of special connectivity between each interested phases. Since 3D Pn functions has 

more insight about geometric and connected relationship than 2D Pn functions, it can be 

predictable and reasonable that 3D reconstruction will has more accurate reconstruction 

results.    

The final factor is that if we can obtain the 3D Pn functions results from interesting 

object’s 3D phase matrix, theoretically Omega Metric/Differential Omega Metric can reveal 
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more realistic result. Since this field is still unexplored, it can be further be researched and 

discussed.  

Although I just present several theoretical and real example of Pn function and its 

applied functions such as Pn function’s reconstruction and Omega Metric/Differential Omega 

Metric, all the quantitation methods can be utilized in medical, industrial, educational, military, 

technology field etc. For the future work, one also can execute these methods in different field 

for more sophisticated cases which cannot easily be distinguished by our naked eyes or 

instruments. 
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