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ABSTRACT

Increase in the usage of Internet of Things(IoT) devices across physical systems has

provided a platform for continuous data collection, real-time monitoring, and extract-

ing useful insights. Limited computing power and constrained resources on the IoT

devices has driven the physical systems to rely on external resources such as cloud

computing for handling compute-intensive and data-intensive processing. Recently,

physical environments have began to explore the usage of edge devices for handling

complex processing. However, these environments may face many challenges such

as uncertainty of device availability, uncertainty of data relevance, and large set of

geographically dispersed devices. This research proposes the design of a reliable dis-

tributed management system that focuses on the following objectives: 1. improving

the success rate of task completion in uncertain environments. 2. enhancing the

reliability of the applications and 3. support latency sensitive applications. Main

modules of the proposed system include:

1. A novel proactive user recruitment approach to improve the success rate of the task

completion. 2.Contextual data acquisition and integration of false data detection for

enhancing the reliability of the applications.3. Novel distributed management of com-

pute resources for achieving real-time monitoring and to support highly responsive

applications. User recruitment approaches select the devices for offloading computa-

tion. Proposed proactive user recruitment module selects an optimized set of devices

that match the resource requirements of the application. Contextual data acquisition

module banks on the contextual requirements for identifying the data sources that

are more useful to the application. Proposed reliable distributed management system

can be used as a framework for offloading the latency sensitive applications across

the volunteer computing edge devices.
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Chapter 1

INTRODUCTION

The proliferation of Internet of Things (IoT) has enabled large number of physical

systems to be connected and monitored in real-time. Different application domains

such as health-care [Doukas and Maglogiannis (2012); Catarinucci et al. (2015); Gope

and Hwang (2016); Elhoseny et al. (2018)], smart grids[Li et al. (2011); Al-Ali and

Aburukba (2015); Tonyali et al. (2018); Hussain et al. (2018)], smart transporta-

tion [Guerrero-Ibanez et al. (2015); Al-Dweik et al. (2017); Ganti et al. (2011)], disas-

ter management [Kamruzzaman et al. (2017); Ray et al. (2017)], smart cities [Zanella

et al. (2014); Sanchez et al. (2014); Centenaro et al. (2016)] have adopted IoT for

designing innovative and real-time applications. Continuous data collection by the

IoT devices may be useful for obtaining meaningful insights and making intelligent

decisions. However, limited computing power and constrained resources on the IoT

devices make it necessary for the physical systems to depend largely on external re-

sources for executing compute and data intensive tasks. Cloud computing has been

the most widely used solution for executing complex application tasks but it may not

always be the feasible solution specially for the applications with low latency con-

straints. IoT environments have began to use Edge computing for such applications

because of its ability to provide low response time services. Figure 1.1 shows the usage

of edge devices and cloud servers for computation offloading in IoT environments.

Many IoT applications are real-time in nature. However, the term real-time may

have different temporal granularity for different applications. For example, missing

child application [Khan et al. (2016)] has high real-time constraints in the order of
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an hour, where as a traffic update [Hu et al. (2015)] application may have relatively

low time constraints in the order of minutes and real-time person tracking [Shi and

Jia (2017)] or real-time video streaming applications have time constraints of few

seconds and some applications such as power grid monitoring may have very low la-

tency constraints typically in milliseconds. Edge computing may be beneficial for the

applications with low latency constraints. Researchers have been exploring different

type of edge computing solutions such as edge servers, mobile base stations, cloudlets,

mobile adhoc networks. These solutions incur additional infrastructure and mainte-

nance cost. This research focuses on designing cost-effective edge computing solution

that does not involve additional infrastructure and also provide results within the

time constraints of the applications.

Volunteer computing may be a desirable choice for designing cost-effective edge com-

puting solutions for executing the real-time applications of IoT environments. Increas-

ing number of computing devices across the population provides a platform to utilize

the idle resources on volunteer devices for executing application tasks. Although there

are large number of devices within the IoT environments, devices, network connectiv-

ity, resource availability and context of data on the volunteer computing devices are

continually changing leading to uncertainty. Providing reliable results may be difficult

due to uncertainty. Additionally, many of the IoT environments are loosely coupled

in nature which exposes them to various challenging issues that might hinder the

real-time monitoring. Some of the key challenges of uncertainty are 1. unavailability

of computing devices, 2. unavailability of relevant data and 3. real-time monitoring.

Affects of these challenges can be explained as follows:

Unavailability of computing devices: Many factors such as low power on the

devices, intermittent network connectivity, human mobility, dynamic resource usage

2



patterns, multipurpose usage of the devices may result in the unavailability of the

computing devices. To analyze the problems caused due to unavailability of com-

puting devices we consider the example of real-time person tracking that uses mobile

crowd sensing for data acquisition and volunteer computing for executing application

tasks. IoT environments may be dynamic in nature, that is devices enter and leave

the environment voluntarily. Also, resources on these devices may become unavail-

able or the device owner may choose to withdraw donating resources. If a voluntary

device executing the application tasks becomes unavailable, it results in application

task failure. To withstand application task failure, every time a device becomes un-

available the task has to be offloaded onto a new device. Unavailability of the device

may decrease the success rate of the application execution and result in data loss.

Also, task reassignment introduces computational overhead. Hence to increase suc-

cess rate of the application execution and reduce the burden of task reassignment it

may be useful to determine the devices that may be available for task completion.

In a real-time person tracking in mobile crowd sensing example if a device that is

assigned face detection task runs out of resources the task assigned to the device may

be incomplete and therefore, has to be assigned to another device for the successful

execution of the application.

Unavailability of relevant data: Dynamic nature of the devices in an uncertain

environment may result in the unavailability of the relevant (required) data. Data

relevance is vital for enriching performance and reliable execution of the application.

Many factors contribute to data relevance. Data context is one such factor that has a

significant impact on data relevance. Data context can be used to extract meaningful

information about an entity [Abowd et al. (1999)]. Data collected without considering

the required context may not be useful for the application. Availability of required

3



Figure 1.1: IoT Environments.

data context may be essential for improving the reliability of the application. An-

other factor that effects data relevance is data correctness. Data correctness improves

reliability of the application. Security attacks may alter data, thereby effecting data

correctness. Uncertain environments are more vulnerable to the security attacks as

there is limited or no control on the devices that connects to the dynamic network.

One of the most common security attacks that results in incorrect data is the false

data injection (FDI) attack. Incorrect data leads to incorrect results thereby degrad-

ing reliability of the application. To improve reliability of the application it may be

beneficial to acquire data from the devices that match the data context of the appli-

cation. Importance of data context during an application execution is demonstrated

using real-time person tracking example that exploits mobile crowd sensing for data

collection. As mentioned earlier, in addition to the data context, data correctness

is also crucial for reliability of the application. Linear state estimation process of

large scale smart grid systems is used to illustrate the effect of incorrect data and

integration of incorrect data detection methods.

Real-time Monitoring: Recent advancements in IoT devices such as faster data
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sensing rates introduce the need for designing highly responsive applications to achieve

real-time monitoring. Besides responsiveness, large number of devices (increased com-

putational burden) and geographical distribution of the devices are major obstacles

for realizing real-time monitoring in uncertain environments. Applications in uncer-

tain environments can take advantage of edge computing solutions to handle highly

responsive applications [Satyanarayanan (2017)]. Additionally, to manage large num-

ber of geographically dispersed devices and minimize the overhead of increased com-

putational burden it may be feasible to design an efficient distributed management

system. The highly responsive and critical process of linear state estimation in large

scale smart grids systems is used to demonstrate the difficulties involved in achieving

real-time monitoring in uncertain environments.

1.1 Solution Approach

Primary objective of this research is to design a system that optimizes for data col-

lection and improves the success rate of task completion while meeting strict time

constraints of real-time monitoring in uncertain environments. Figure 1.2 gives an

overview of the proposed research. From the figure it may be observed that the pro-

posed research consists of four solutions each addressing one fundamental operation

of the IoT application. Fundamental operations of the IoT applications include: data

acquisition, data correctness, computation offloading and real-time monitoring. This

section provides brief description of the proposed solutions.

Data acquisition and data correctness are crucial for reliability of the application.

State of the art systems collects data from all the available devices which results

in large volumes of data. However, all this data may not be useful for application,

and therefore it may be advantageous to collect only the data that is useful for the
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Figure 1.2: Overview of the Proposed Research.

application. To address this, proposed system introduces contextual data acquisition.

Contextual data acquisition selects only the devices that match the required context of

the application. On the other hand, data in uncertain environments are at high risk of

being corrupted due to false data injection (FDI) attacks. To withstand FDI attacks

and ensure data correctness proposed research integrates false data detection (FDD).

FDD methods might increase the computational complexity of the application and

make it challenging to meet the low latency constraints of the application. Parallel

processing methodologies are adopted to address the overhead of the computational

complexity and ensure the reliability of the system.

Real-time monitoring applications of the IoT environments exploit computation of-

floading. Computation offloading in this research is performed on the nearby volunteer

computing devices. Volunteer computing devices are dynamic in nature and therefore
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may face the challenge of tasks disruptions. Task disruptions halt the application

tasks and result in incomplete tasks. Proactive user recruitment of the proposed

research aims to handle the task disruptions and improve the success rate of task

completion. Traditional user recruitment methods consider the current availability of

the devices and offload computation on the available devices. Dynamic device usage

patterns, mobility, and intermittent network connectivity may result in unavailability

of the device thereby halting task execution. Proactive user recruitment approach is

designed to select an optimized set of devices that are likely to complete the task and

improve the reliability and task completion probability.

To, address high responsiveness and scalability of the large systems, proposed solu-

tion adopts a distributed approach. Although distributed solution is most popular

approach to achieve scalability and reduce computational burden it often results in

increased communication cost of the system. To mitigate the communication cost,

the system is divided into sub-regions such that there is minimum connectivity be-

tween the sub-regions. Identifying a distributed solution with reduced communication

cost is designed as a graph partitioning problem. This solution also includes a novel

optimization technique to minimize communication cost. Linear state estimation of

large-scale smart grid systems with stringent time constraints (typically in the order

of milliseconds) is considered to present the challenges associated with the reliable

distributed management in uncertain environments. A container based emulator is

designed to depict distributed management in large scale IoT environments. Main

contributions of this research can be summarized as follows:

1. A novel contextual data acquisition and the integration of false data detection

focus on enhancing reliability of the applications.

2. A novel probabilistic model for resource and device availability prediction.

7



3. Proactive user recruitment module is designed to improve the success rate of the

task completion.

4. A novel distributed management of volunteer compute resources enables real-time

monitoring and support highly responsive applications.

5. A container based test bed to evaluate distributed management in large scale

systems.
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Chapter 2

RELATED WORKS

In this chapter, I present some of the prominent research works in the areas of edge

computing, mobile crowd sensing and computation offloading that are important as-

pects of the proposed research. I discuss about the works that are directed towards

real-time monitoring of large scale systems. Additionally, I present case study applica-

tions evaluated in this research: real-time person tracking, 360◦video construction of

a stadium event and linear state estimation of power grid systems. These applications

are used to demonstrate the affects of key challenges on the IoT environments.

2.1 Edge Computing

Edge computing paradigm aims to move computation and storage closer to the data

sources [Shi et al. (2016); Satyanarayanan (2017)]. Edge computing is gaining accep-

tance due to low latency, high availability and low cost. Real-time and collaborative

applications like grid-monitoring, oil plant monitoring, real-time traffic monitoring,

connected railways and smart grid applications can leverage edge computing for faster

response services. Applications such as autonomous driving [Yuan et al. (2018)], ve-

hicle to vehicle communications [Zhang et al. (2017)], disaster management [Sapienza

et al. (2016); Higashino et al. (2017)] have exploited edge computing for experiencing

reliable real-time monitoring.

Sensors deployed in IoT environments collect data at a very high measurement. For

example, phasor measurements units (PMU’s) installed on the power grids collect

data at 30Hz. Another example for the sensor with high data rate is the mobile
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phone camera. Continuous data collection provides a platform for developing real-

time monitoring applications. Processing this data on the edge environment can help

in achieving real-time monitoring.

Researchers have developed different types of edge computing solutions. Mobile

Edge Computing [Sapienza et al. (2016)], Micro Clouds [Wang et al. (2017)] and

Cloudlets[ Satyanarayanan et al. (2009)] are some of the popular edge computing

approaches. Edge computing solutions are designed to address various objectives

like data management [Song et al. (2017)], energy management [Hou et al. (2018)],

mobility management [Chen and Tsai (2018)].

2.2 Mobile Crowd Sensing

Mobile Crowd Sensing (MCS) has gained significant attention in recent times due to

its capability to obtain contextual information without the need for additional appli-

cation specific infrastructure. MCS is ideal for illustrating the dynamic availability

of sensing devices. Availability of devices is uncertain for various reasons such as de-

vice owner mobility, dynamic resource usage, low power on devices and intermittent

network connectivity.

Collaborative computing applications such as missing child [Satyanarayanan (2010)],

real-time traffic monitoring [Hull et al. (2006)], participatory news reporting [Chen

et al. (2016)], environment monitoring [Saremi et al. (2016)] and health care[ De Rolt

et al. (2016)] exploit MCS for contextual data acquisition. MCS applications can as-

sist in real-time monitoring of the infrastructure. MCS applications listed in Table 2.1

have different contextual requirements and operate in real-time. Real-time operation

of an application depends primarily on its computational complexity. Some of the

MCS applications, such as person tracking presented in [Shi and Jia (2017)] involves
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Table 2.1: MCS Applications.

Application Features

Application Name Contextual

Requirements

Sensed data Computation Require-

ments

Realtime Con-

straints

Traffic Monitoring

[ Hu et al. (2015)]

Location, Accelerometer,

GPS

(≈30KBps)

Feature classification for

stops and driving pattern,

traffic forecasting

≈82s (minutes)

[ Goh et al. (2012)]

Event

Summarization

[ Chen et al. (2016)]

Location,

Orientation

Images, Videos

(≈MB)

Detect event highlights

triggered by increased

photo capture activity

Post event sum-

mary (≈ hours)

Group Event[ Bao

and Roy Choudhury

(2010)]

Location,

Movement,

Audio

Images, Videos

(≈MB)

Event highlight identifi-

cation based on audio

changes

Post event sum-

mary (≈ hours)

Disaster Monitoring

[ Wu et al. (2016)]

Location, Ac-

celerometer,

Gyroscope.

Images (≈MB) Maximum coverage analy-

sis of destruction

Set by rescue per-

sonnel (≈minutes)

Person tracking [ Shi

and Jia (2017)],

ContextAiDe

Location,

Orientation,

Accelerometer

Images (≈ few

MB)

Estimate next location of

person/perpetrator.

(≈few s)

image/video processing tasks which are computationally complex. These tasks need

to process within the real-time constraints of the application. Uncertainty of com-

puting device availability may have a huge impact on the real-time execution of the

application. Therefore, it may be essential to have an optimized set of computing

devices to accomplish real-time application execution.

2.3 Computation Offloading

Computation offloading augments constrained resources of IoT devices by delegating

the compute tasks to external devices. Computation offloading can be used for energy

saving, improve application performance and augment data storage. MAUI [Cuervo
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et al. (2010)] and CloneCloud [Chun et al. (2011)] maximize energy savings on mobile

device through code offload. CloneCloud [Chun et al. (2011)] uses VM images to

optimize energy consumption of mobile device. Tao et al. (2018), use fine grain

offloading to reduce energy consumption and improve application performance.

Performance of the offloading approaches can also affect the application performance.

To handle this, researchers have investigated methods to improve offloading perfor-

mance [Wu et al. (2017); Chen et al. (2018)]. Different type of mobile applications

rely on computation offloading for executing complex tasks. For example, Sadeghi

et al. (2016) offload complex tasks of signal processing to save battery life of the mo-

bile device. Chang et al. (2017) have observed significant performance by offloading

linear regression model training to edge servers. Some works have explored offloading

neural network model inference [Ran et al. (2018)] and deep neural networks between

fog devices and edge server [Teerapittayanon et al. (2017); Hu et al. (2019)]. For

many years, researchers have been using computation offloading to volunteer devices

(desktop clients) for solving complex problems. Seti@home [Anderson et al. (2002)]

has laid the foundation for computation offloading by using the idle resources on

volunteer devices for performing search for radio signals from extraterrestrial civi-

lizations. Folding@home [Larson et al. (2009)] has been offloading computation to

volunteer devices for simulating protein folding. Computation offloading and volun-

teer computing can prove to be an effective solution for disaster management. To deal

with recent outbreak of COVID-19 by understanding the dynamics of the COVID-19

proteins, researchers have called for volunteer compute resources for executing offload

workloads [Chodera (2020)].
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In this research, I intend to utilize volunteer computing devices mainly mobile phones

available on the edge environment to offload computationally complex tasks such as

face detection and data intensive tasks such as linear state estimation to the edge

environment.

2.4 Case Studies

2.4.1 Real-time Perpetrator Tracking

Th real-time perpetrator (i.e., person/s responsible for causing harm to the public) is

used to illustrate the challenges of uncertain environments. Real-time tracking and

identification of the perpetrator can not only lead to the capture of the individual

sooner but may also reduce casualties. This application takes advantage of the widely

available set of devices for obtaining data and executing the application tasks. Users

available within a certain radius of the place of activity can be selected to perform

the application tasks. Image collection, face detection, and face recognition are main

tasks of the applications that can be performed by the selected devices.

Image collection is a sensing task, face detection and face recognition are compute

tasks. Time constraints of this application tasks are relatively low in the order of

seconds. Application tasks requirements are very important to collect data that it is

useful for the application and also to select suitable devices for offloading computation.

Therefore, it may be essential to define the requirements of the application tasks for

this example. Requirements of the image collection task are the location of the event,

battery state, network connectivity, camera availability, accelerometer. Requirements

of the face detection and face recognition tasks are network connectivity, battery

state and compute resources. Real-time perpetrator example is designed as a mobile

application and is executed whenever there is an event of interest. The application
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identifies the location of event and image or silhouette as the initial input. It then

requests information such as camera availability, accelerometer, device orientation,

battery state, compute resources, location is requested from devices that are present

nearby the initial location. The accelerometer is used to minimize movement artifacts

in the image capture. Orientation denotes angle of the device. Location radius defines

the search area of the perpetrator; it is the radial distance in meters from the location

of the event. Figure 2.1 presents a clear view of these requirements.

Executing these application tasks is challenging due to high communication cost and

computation complexity. Application tasks exhibit high communication requirements

as they require images to be transferred to the cloud or edge devices at a very fast

rate. Additionally, application tasks such as face recognition are computationally

complex. The set of user devices may change rapidly following the change in location

of the perpetrator, and the user recruitment algorithm has to be executed more

often. In such a scenario, the operational overhead may interfere with the real-time

operation of the application. A novel user recruitment approach is proposed to select

an optimized set of devices and assign application tasks for execution. Some of the

devices of the selected set are assigned sensing task, and some of the devices are

assigned computing tasks. Devices selected for image collection captures and uploads

pictures to the fog nodes or the volunteer computing devices selected. Fog nodes

and volunteer computing devices use a silhouette matching algorithm to identify

the perpetrator in the images. Details of the proposed approach are discussed in

Chapter 5.
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Figure 2.1: Perpetrator Tracking MCS App.

2.4.2 Real-time 360◦Video of Stadium Event.

Smart Stadium where on entry all individuals are provided with a Google glass, which

connects to their smart phones. The glass has capabilities to record their viewing

space and stream it to their smartphones. A smart application can be envisioned

where any individual can request a real-time 360◦video feed of the playground. This

video stream is composed by capturing video from strategic positions and stitching

them in real time. Video capture and video stitching are the sensing and compute

tasks of this application. Application requirements of video capture tasks is to lo-

cation of the device in the stadium. The application selects candidate individuals

primarily based on their location. The glass of each selected individual captures

video snippets from their viewing space, and sends them to local devices for process-

ing. Using distributed computation offloading a 360◦frame which is further encoded

into a video stream in a cloud server.

2.4.3 Smart Grid Systems

Smart grids systems is a well-known large-scale system with extensive usage. Efficient

and effective real-time monitoring is vital for reliable grid management. State estima-

tion is one of the critical processes for achieving the real-time monitoring of the grid.
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State estimation has significantly evolved over the years and this evolution can be

attributed to the type of sensing devices deployed for acquiring grid measurements.

Traditional state estimation utilizes SCADA measurements collected from the grid

to compute state vector. Deployment of phasor measurement units (PMU) on the

grid has led to the initiation of Linear State Estimation (LSE). There has been con-

siderable growth in the use of PMU data for wide-area monitoring of the grid [NAS

(2016); Yang et al. (2007)]. For example, there are about 2,400 PMUs deployed in

China, 2,000 in North America and 1,800 in India [Nuthalapati and Phadke (2015)].

Also, real-time grid measurements from PMUs facilitate dynamic failure handling

and fault management [Wu and Giri (2006)]. LSE exploits the benefits of PMU data

to present a dynamic picture of the smart grid. As complete observability is a pre-

requisite for LSE, LSE solvers need to process large sets of PMU data. For instance,

an LSE solver for a grid with 100 PMUs and 20 measurements for each PMU at

30Hz sampling rate should handle over 10GB of PMU data in an hour [Patel et al.

(2010)]. Also, LSE solvers operate under strict time constraints typically in the order

of milliseconds (30 times a second) [Jones et al. (2013)]. Increase in the number of

PMUs and the size of grid results in huge data making it challenging for LSE solvers.

Another challenging factor of LSE is the communication latency introduced due to the

geographical dispersion of PMUs. Installing additional communication infrastructures

such as fiber optic networks and high compute capable infrastructures such as fast

processors are a possible solution. However, this may incur large installation and

operation costs.

Recently, researchers have been focusing on the use of inexpensive solutions such as

cloud computing to mitigate the cost and to estimate the state of the power system

in real-time. LSE is therefore ideal for discussing the problems that arise in real-time
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monitoring of large-scale systems. LSE of smart grid systems can also be used to

investigate the effect of data correctness on the reliability of the grid. Chi-square tests

is an important tool for false data detection [Handschin et al. (1975)]. Researchers

have proposed FDD approaches to mitigate the effect of security attacks on the state

estimation process in SCADA based systems [Zhang et al. (2015); Liu et al. (2011)].
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Chapter 3

SYSTEM MODEL

In this chapter, a detailed description of the devices and workflow that enables real-

time monitoring of the IoT environments is provided. IoT environments include

different types of devices: sensors, actuators, smart phones, laptops, servers, fog

nodes. Figure 3.1 gives an overview of the hierarchical events in an IoT environment

and introduces the proposed solutions.

3.1 Devices

1. Sensors measure physical parameters like temperature, pressure, human phys-

iological signals etc., from the physical environment or a person or an object.

Figure 3.1: IoT Architecture.
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Smart phones, ECG sensors, Brain sensors, surveillance cameras, thermostats

are very few of the large number of sensors in use these days.

2. Actuators produce response signal(action) on the environment or on them-

selves. Examples of actuators include an alarm system, movement of robot.

3. Edge nodes: act as intermediary compute resources for data processing and

communication. Smart phones, laptops and other volunteer devices are being

used for data processing.

4. Fog servers: are powerful compute resources that are placed at the edge to

mitigate the latency in data processing.

3.2 Data Collection

Numerous data collection techniques have been investigated to address the chal-

lenges introduced by constrained resources on the sensing devices, to reduce the

communication cost and to improve the data quality generated by the sensing

devices. Contextual data acquisition proposed in this research focuses on enrich-

ing the data quality. Contextual requirements of the application are defined and

the data is collected only from the devices that match these requirements. This

research uses mobile crowd sensing for collecting data, group of sensing devices

present in same area can produce similar sensed data. Proposed data collec-

tion eliminates redundant data through optimized device collection. Contextual

data acquisition not only improves data quality but also reduces processing of

data that is not useful for the application.
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3.3 Data Processing

Continuous data collection results in large volumes of data and the physical

environments depend on powerful compute resources such as cloud servers for

processing this data. In environments where the applications have very low

latency constraints such as linear state estimation of power grid systems and

where the compute infrastructure is sparse like disaster management scenarios

dynamic infrastructures that are close to data sources are needed. This research

aims at using volunteer computing devices to create a dynamic infrastructure

at the edge for data processing. Given the uncertainty of device availability it

is challenging to carry out reliable execution of the application. To address this

we propose proactive user recruitment system.
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Chapter 4

PREDICTIVE MODELING

As discussed in chapter 1 proposed research exploits volunteer devices for ex-

ecuting compute and data intensive tasks. Volunteer devices are dynamic in

nature and can lead to uncertainty. Uncertainty in IoT environments may

have severe effect on the application tasks completion. Incorporating predic-

tive modeling can help in obtaining in device and resource availability. Device

and resource availability information can be used to select devices for offloading

application tasks. Predictive modeling uses mathematical models for predict-

ing future time step values. Time series, statistical, probabilistic and machine

learning models are some of the predictive modeling approaches. To predict

device and resource availability, I analyze usage patterns such as battery level,

network connectivity and human mobility patterns such as device location.

4.1 Usage Model Prediction

Location, network connectivity, and battery state resources are dependent on

user mobility and device usage. LifeMap dataset is used to the evaluate resource

prediction. LifeMap data is fine grained mobility data that is collected for a

period of over two months [Chon et al. (2012)]. It has been observed that

the device resources follow a regular pattern. Various mathematical approaches

such as time series prediction, machine learning techniques, and Markov models

[Gambs et al. (2012); Kostakos et al. (2016); Vanrompay et al. (2007)] can be
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Table 4.1: States of Network Connectivity (ν) and battery (β).

State Network State

ν0 WiFi

ν1 3G

ν2 No Connectivity

Battery State Soc range

β0 0 ≤ Soc ≤ 20

β1 20 < Soc ≤ 40

β2 40 < Soc ≤ 60

β3 60 < Soc ≤ 80

β4 80 < Soc ≤ 100

used for predicting the contexts of location, battery, and network connectivity

respectively. In this work, I have proposed combination of Markov model and

time series prediction for estimating the resource values. Proposed prediction

scheme uses a simple model that can capture different usage patterns changes

in the day. These scheme runs continuously on the user devices. Resource

prediction can improve user recruitment thereby improving the performance of

applications.

4.1.1 Location Prediction

Analyzing user mobility patterns can help in learning about device availability

in dynamic environments. Knowing about device availability can be useful for

reliable execution of contextual applications. History of location data can be

used to learn user mobility patterns. A transition matrix that consists of the

recently visited locations of the user to understand user mobility. Proposed

location model, uses five recent locations that form the transition matrix. GPS

location data used from the database updates the transition matrix every 10

mins updating the probability of transition from the previous location to the

current location. To capture the hourly pattern a separate transition matrix for
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each hour of the day is maintained. This matrix updates the location transitions

of the same hour every day and thus captures the daily pattern of the user. It

also updates the transition matrix for frequently visited set of locations during

the hour. Location for next time step is estimated using the transition matrix,

and the estimated value is considered in the decision of user recruitment. Lo-

cation for the next time step is defined as function of the hourly state and the

current location of the state. Location prediction function is given by equa-

tion 4.1, where Lt+1 is the device location for next time step, λ is the location

state for the given hour and Lt is the current device location. Current location

state is used to lookup the transition matrix and predict the next location state.

Lt+1 = G(λ,Lt). (4.1)

Nt+1 = G(η,Nt). (4.2)

4.1.2 Network State Prediction

Availability of network connectivity on the offload device has huge impact on

the application task completion. Network connectivity can help to communicate

results of the application task to the leader device or the server. Network states

shown in Table 4.1 are used to build a transition model which is updated every

10 mins. A separate transition matrix is used for each hour of the day. These

matrices help to capture the diurnal pattern of network transitions. Network

state is predicted similar to the location state prediction. A matrix for the

given hour and current network state is used to predict the network state in

next window. Network state prediction is given by equation 4.2, Nt+1 is network

state for next time window, η is the network state for the given hour derived

from the daily usage patterns and Nt is the current network state.
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Figure 4.1: Resource Prediction Results.

4.1.3 Battery State Prediction

Prediction model uses different battery states in Table. 4.1 charging status of

the battery for predicting the next state. Further in our model, a separate

transition matrix are constructed for charging and discharging. Battery data

updates the transition matrix at an interval of 10 mins. Current battery level

and the transition matrix that is chosen based on the charging state of the

battery is used to predict battery level in the next time step. Battery level at

the next time step is the function of the current battery state and charging state

of the device and is represented by equation 4.3. In equation 4.3, Bt+1 is the

battery state of next time step, BC is 1 if the phone is connected to charging

and 0 if phone is discharging, Bt is the battery state at time step t. Bt is used

to look up the transition matrix to decide the next battery state.

Bt+1 = G(Bc, Bt). (4.3)
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4.2 Results

LifeMap dataset is loaded on the mobile phones used in the experiments. Pre-

dicted values of the resources are used by the proactive user recruitment al-

gorithm discussed in chapter 5 for optimally selecting the volunteer devices.

Resource prediction can aid proactive user recruitment in selecting optimal of-

fload devices. Optimal device selection can improve the task completion rate

and also help in reducing energy consumption and data transfer. Results of

these metrics are discussed in detail in proactive user recruitment evaluation.

Figure 4.1 presents results of the resource prediction. Proposed prediction mod-

els have achieved an accuracy of 80.8% for battery state, 93.73% for network

state and 91.6% for location.
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Chapter 5

PROACTIVE USER RECRUITMENT FOR UNCERTAIN

ENVIRONMENTS

Mobile crowd sensing and volunteer computing systems are highly dynamic and

may result in uncertainty of device availability. Mobility of device owners, low

power on devices, dynamic resource usage and intermittent network connections

all contribute to the unavailability of devices. Facilitating real-time operation

in such uncertain environments require careful optimization of different compo-

nents of applications such as computing, sensing, communication distribution,

and fault tolerance. This research focuses on the design of optimized user re-

cruitment (device selection) for sensing and computing task called proactive

user recruitment. Fundamental objective of proactive user recruitment is to

improve data relevance and success rate of task completion. Proactive user re-

cruitment is designed as a part of ContextAiDe architecture [Pore et al. (2018)].

Figure 5.1 presents ContextAiDe architecture.

ContextAiDe architecture is a combination of API and middleware that facili-

tates :

a) specification of contextual and computational requirements of application

tasks and task distribution among the volunteer devices, b) continuous context

and resource monitoring on the volunteer devices, c) distributed execution of

application tasks, and d) stochastic optimization of operational and computa-

tional overheads.
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Figure 5.1: ContextAiDe Architecture.

5.1 User Recruitment

User recruitment is crucial for enriching the user experience and improving the

success rate of task completion. Researchers have investigated different aspects

of user recruitment that can aid in improving the performance of mobile crowd

sensing and volunteer computing applications. Reddy et al. focus on time,

location and user behavior for the selection of volunteer devices [Reddy et al.

(2010)]. Liu et al. consider the available energy of the device in the decision of

task assignment [Liu et al. (2017)].

CARDAP [Jayaraman et al. (2013)] uses activity recognition and energy effi-

ciency for sensing task recruitment. A new DSE (Distance, Sociability, Energy)

aware recruitment policy for distributed MCS monitoring apps with relaxed

time constraints [Fiandrino et al. (2017)]. CATA scheme evaluates similarity

in contexts required by applications while recruiting a device [Hassani et al.

(2015)]. Proactive user recruitment selects an optimal set of devices that match

contextual and computational requirements based on predicted resource avail-

ability. Device usage and human mobility patterns are analyzed for predicting

resources. Further, proactive user recruitment approach iteratively revises se-

lected set of devices with dynamically changing device availability.
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Figure 5.2: User Recruitment in (a)State of the art systems,(b)ContextAiDe.

Figure 5.2 gives an overview of user recruitment approaches of the state-of-

art systems and proposed proactive user recruitment. From Figure 5.2, it can

be seen that one of the devices in the edge environment is configured as a

leader device. Leader device hosts application and devices that are ready to do-

nate processing and sensing resources are configured as volunteer devices. User

recruitment of the state-of-art systems recruit all the available devices while

proactive user recruitment recruits only the devices that meet requirements of

the application.

When a leader device is ready to request resources from the volunteer devices, it

communicates through a common channel and establishes a one-one communi-

cation link with the volunteer devices. Smartphones, sensors, personal devices,

and fog nodes may be the different types of volunteer devices available. Leader

device requests for resource information from the available devices and recruits

optimized set of volunteer devices that match the requirements of the applica-

tion.
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Application task type may be necessary for determining the selection of devices.

Smartphones and sensors may be selected for data acquisition. Smartphones or

personal devices may be selected to offload low latency and less complex tasks.

Fog nodes may be utilized for processing delay tolerant or compute intensive or

computationally complex tasks.

5.2 Proactive User Recruitment

Proactive user recruitment approach is designed as a two stage model. As the

availability of resources on volunteer devices is associated with some uncertainty,

stage 1 uses expected values of resources to choose the optimal set of devices.

User recruitment decision is revisited in stage 2 based on the real-time resource

values available on the volunteer devices.

Stage 1: This stage determines the optimized set of volunteer devices using

stochastic models. For this, user recruitment approach computes expected val-

ues of the resources based on usage history and mobility of the user that are

discussed in chapter 4. Expected values are used to reduce the failures in case

of resource unavailability caused due to mobility, network connectivity and bat-

tery level on the device. Expected values are computed using the prediction

models discussed in chapter 4. In this stage, as an initial step, all the devices

with expected values matching the application requirements are selected. To

determine the optimized set of devices from the selected devices that maxi-

mize the success of task completion proposed approach considers the number of

volunteer devices to complete the task and time constraints of the task.

Stage 2: In this stage, the optimization decision of stage 1 is refined based on
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the current resource values available on the devices. The objective function for

device selection is the same as stage 1. However, during this stage, optimized

set of stage 1 is validated with the correct resource values on the selected set

of devices. If all the devices in the selected set are available and executing

the offloaded tasks, then there may not be any task reassignment as it incurs

additional overhead. However, if one or more devices of the optimized set

become unavailable, then the user recruitment approach tries to find a new set

of devices that match the application requirements.

5.2.1 Problem Formulation

This section presents an overview of the formulation of optimization followed by

proactive user recruitment to select the optimized set of devices for executing

the application tasks in uncertain environments. Volunteer devices that are

available for performing application tasks are represented by set X as in Eq.5.1

where, N = |X|. A device xi from set X may or may not be selected by the

proactive user recruitment based on the required resource availability.

X = {x1, x2, x3, . . . , xN}| xi ∈ {0, 1}. (5.1)

As presented in chapter 1, application requirements are the basis for the solu-

tions proposed in this research. In this work, application requirement is referred

to as context and is given by Def. 1. Collection of multiple contexts associated

with the device is referred to as a Context Set and is represented using Ω.

Definition 1 Context: Context is a key-value pair {ψ,C} where ψ is an at-

tribute/resource of the mobile device, and C is a value taken by the attribute ψ

on the device.
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Given a request for S volunteer devices for executing the application tasks, the

user recruitment approach first selects N ′ devices that match the requirements

of the application (N ′ ≤ N and N ′ > S). This set is denoted by XH . Proactive

user recruitment approach selects devices that match the application require-

ments. Application requirement matching and device recruitment are evaluated

using a context matching index (Def.2) and context sense index (Def.3).

Definition 2 Context Matching Index: Context Matching Index I, is de-

fined as the ratio of context distance of a given context to the acceptable deviation

ε.

I =
δ(Cp

d , C
p
r )

ε
. (5.2)

Definition 3 Context Sense Index (CSI): Context Sense Index for a mo-

bile device is defined as the sum of weighted context matching index for each

context Cp
d in Ωd.

Υd =

K∑
k=1

wk.Ik, (5.3)

where wk is the weight associated with the context {ψpk, C
p
k} and is used to set

priorities for the context. Sum of the weights for a given context set is 1.

Proactive user recruitment aims to select an optimized set of devices from the set

XH using two-stage optimization: Stage 1: As mentioned in section 5.2, Stage

1 determines the optimized set of volunteer devices that match the application

requirements by using stochastic models of the historical trends for resource

and operational overheads. Proactive user recruitment approach assumes that

device selection for performing application task is associated with a penalty of
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Pi, given as:

Pi = Υ′i s.t. { δ(E[ri], Cr) ≤ ε ∀ C ⊂ Ω′},

P � 1 Otherwise. (5.4)

where E[ri] and Cr
i are the expected and current values of resource r on device

i. The objective function for finding the optimized set of volunteer devices is

formulated as follows:

min

N ′∑
i=0

xi.Pi, xi ∈ {0, 1}, xi ⊂ XH (5.5)

s.t.
N∑
i=0

xi ≥ S

τ si (t) + τ ti (t) < τT

Ri(t)−RΘ
i (t) > RT

i .

where Pi is the penalty associated with the selection of device as given in Eq. 5.4,

S is the number of devices required for executing the application tasks. τ si (t)

is time taken for task completion and τ ti (t) is the data transfer time and τT is

the execution time constraint. Both τ si (t) and τ ti (t) represent the time varying

operational overheads. Such overheads also vary for different volunteer devices

and can be application specific. A data-driven approach is utilized for modeling

these overheads and is discussed in detail in section 5.4.3. Ri is the current

resource availability, and RΘ
i is the amount of resource usage on the volunteer

device. RT
i is the limit set on the resource usage by the device owner. RΘ

i is

obtained from observing the previous usage history of the person. Stochastic

models are used to estimate resources RΘ
i and are discussed in more detail in

section 4.1.
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Stage 2: In this stage, the optimization decision of stage 1 is refined based

on the actual context and resource values available on the devices. If the re-

sources or context on one or more devices in the optimized set of stage 1 become

unavailable, proactive user tries to find a new set of devices. Unlike stage 1 of

optimization where we use the expected values in stage 2, we use the actual

resource values. The new optimized set of volunteer devices is given by X ′H

from the set XH using the current resource and context values on the device for

assigning the application tasks. The penalty for a device in stage 2 optimization

is given by:

Pi = Υi s.t.{ δ(Cp
i , Cr) ≤ ε ∀ C in Ω},

= P � 1 Otherwise. (5.6)

where Cp
i , Cr are the current and required value of resource on device i and the

objective function is given by

min

N∑
i=0

xi.Pi, | xi ∈ {0, 1}, (5.7)

where xi is device selected for application task and Pi is penalty associated with

device i.

In addition to application requirements, the proposed user recruitment approach

also considers user-defined preferences for selecting devices.

5.3 Implementation

In this section, I present implementation details of the proactive user recruit-

ment approach and MCS application integration into ContextAiDe architecture.

ContextAiDe architecture is designed as an Android application. Application
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requirements, optimization rules and time constraints of an MCS application

are specified. Code offloading is used for distributing the sensing and comput-

ing tasks. All participating devices have the ContextAiDe app installed. The

device hosting the MCS application is configured as a leader. As mentioned

in 5.2 user recruitment module on the leader device discovers available devices

and recruits optimized set of volunteer devices for executing application tasks.

Real-time perpetrator tracking application discussed in section 2.4.1 is used to

illustrate the working of the proactive user recruitment approach.

5.4 User Recruitment Components

In this section, the modules that are used by the proactive user recruitment

algorithm to obtain an optimized set of devices for executing application tasks

are discussed in detail.

5.4.1 MCS Application Requirements

Context and resource requirements of MCS application can be specified through

API. Requirements of the real-time perpetrator tracking application are GPS lo-

cation, orientation, battery level, availability of WiFi, user activity (stationary,

moving). Leader device requests contextual and resource information from the

nearby available devices connected to it. Exchange of Contextual and resource

availability information between the volunteer and leader is designed using a

serialized object.
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Optimization Rules: enable to select the devices that are within a certain radius

of the perpetrator. The real-time requirements such as execution time and

device usage constraints are specified in the optimization rules.

Volunteer Device limits: Device owner can set limits on the resource usage.

User preference limits set on the resources such as battery level, data usage,

and sensors are considered in runtime while matching of context on the device

and execution of the task.

5.4.2 Middleware Functions

Volunteer device discovery discovers nearby available devices and is accom-

plished through the publish-subscribe model. PubNub Java API is used to

implement volunteer device discovery. All the participating devices subscribe

to a common channel. Whenever app request is initiated, the leader device

writes the IP address to the channel. The volunteer devices read this message,

and they connect to the leader device over a TCP socket connection.

Execution Module: Leader device sends the DEX of the sensing and process-

ing task to the devices selected by the user recruitment algorithm. Volunteer

devices start the sensing task by invoking senseData() method. Data collected

is processed locally invoking processData() or it may be sent to the process-

ing/fog/cloud server. In perpetrator tracking example, the sensing task involves

taking pictures in a fixed time interval. The processing task on mobile includes

detecting images with faces while the fog server task is recognition of the per-

petrator.
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Figure 5.3: File Transfer Time

Optimized User Recruitment Algorithm The first step in the user recruitment

process is to obtain the contextual information of the connected volunteer de-

vices. In this step, volunteer devices find the expected values for the user

dependent contexts such as the battery (dependent on usage patterns) and the

location and WiFi (dependent on user mobility). The expected values are based

on a prediction window of 10 minutes as determined by our usage model. For

contexts that are not user dependent such as camera availability volunteer de-

vice obtains the current value.

As the execution progresses, on each device if the context deviation or resource

usage exceeds beyond limits or the context or resources become unavailable,

stage 2 is initiated. Even though stage 1 optimization decision is based on 10

minutes window, in stage 2, optimization is performed with updated actual con-

text values. Optimization algorithm ensures continuous availability of required

context on the devices that are recruited. In both stages, the resource limita-

tions and real-time constraints are obtained by profiling the tasks, data transfer

delays (see section 5.4.3).
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5.4.3 Profiling MCS Application Tasks

This section profiles the sensing, communication, and processing time for Real-

time perpetrator tracking example. The cloud VM is set up in Google Cloud

with 8vCPUs and 32 GB memory. A fog server is setup on the local network

with Intel i7 Desktop 3.5GHZ Quad-core CPU, 16GB RAM.

Profiling File transfer time One of the standard methods to upload camera

images to the server is saving the file on the device before sending it to the

server using multipart file upload. Figure 5.3 shows the time incurred to send

the original camera images to the Cloud and the Fog server. Different file

sizes are obtained by using multiple resolution setting of Camera to capture

images ranging from 500KB to 2MB which are sent using lossless compression.

File transfer time is defined as the time between the start of data transfer and

receipt of the acknowledgment.

Profiling Data Sensing Time The time for sensing is noted on the Android

device from the receipt of sensing request to the time data is available on the

device for transfer. For different file sizes, the sensing time was observed as

2203.9 ± 397 ms.

Profiling Execution Time of MCS Tasks Execution of the perpetrator

tracking MCS application involves running of face detection application on the

mobile device and face recognition application on the Fog/Cloud server. The

time for running the MCS task is time between the start of processing the file

and availability of results. Average time incurred for varying file sizes is 1161

ms with a standard deviation of 331.69 ms for face detection task while face

recognition task requires average 860 ms with a standard deviation of 101.8 ms.
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For evaluation run (Section 5.5.3), we estimate the time starting from request

for image capture to the time when results of face recognition are generated as

a combined time for sensing and data transfer time for a single image. Time

incurred using the file saving method is estimated to be 8.6s for cloud and 4.71s

for Fog server processing.

5.5 Evaluation and Results

Proactive user recruitment approach is evaluated using Real-time perpetrator

tracking application on an edge environment that includes a small group of

mobile devices, local fog server, and a cloud server. Evaluation run uses two

execution environments: 1. It runs on the actual set of mobile devices described

in this section and 2. It is a simulated set of mobile devices that use historical

user data of LifeMap data set collected in a free moving environment [Chon

et al. (2012)] in section 5.6.

5.5.1 Experimentation Setup

For experiment evaluation, we used 14 mobile devices, one notebook, a fog

server, and a cloud server. Specification details of these devices are listed as

follows.

(a) 6 One Plus One phones, Qualcomm Snapdragon 2.5GHz Quad core CPU, 3GB RAM, 64GB Storage,

Android 5.1.1

(b) 4 Nexus 5 phone, Qualcomm Snapdragon 2.3GHz Quad core CPU, 2 GB RAM, 32GB Storage, Android

5.1.1

(c) 2 LG g2 phone, Qualcomm Snapdragon 2.26GHz Quad core CPU, 2 GB RAM, 16GB Storage, Android

5.1.1

(d) 1 Nexus 7 tablet, Qualcomm Snapdragon 1.5GHz CPU, 2 GB RAM, 32GB Storage, Android 5.1.1

(e) 1 Moto G5 plus phone, Qualcomm Snapdragon 2.0GHz CPU, 4 GB RAM, 64GB Storage, Android 7.0
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(f) Fog Server: Intel i7 Desktop 3.5GHZ Quad core CPU, 16GB RAM

(g) Cloud server in GoogleCloud with 8vCPUs and 32 GB memory

All the mobile devices have ContextAiDe App installed. Real-time perpetrator

tracking app is offloaded to the volunteer devices. One of the devices acts as the

leader device and initiates application task request by publishing its IP address

on the ContextAiDe publish-subscribe channel.

5.5.2 Applications on Heterogeneous Devices

As listed in the experimental setup , ContextAiDe architecture uses different

types of devices. From the section 2.4.1 we know that Image collection, Face

detection and Face recognition are the application tasks of Real-time perpetra-

tor tracking example. Based on the task type and the profiling results , image

collection and face detection are assigned to mobile devices and face recognition

is assigned to the Fog or Cloud server to process data from users in the smallest

time to make the results available to the leader device. Image Collection task

captures images at the rate specified in the runtime contextual requirements.

Face Detection is invoked as soon as the file captured is saved and image data

containing faces from the images obtained is sent to the Fog or Cloud. Open

source python based face recognition library which internally uses deep learning

models is used to recognize the perpetrator [King (2009)]. Using the model of

perpetrator’s face application task can detect if any of the volunteer devices

captured the perpetrator’s image.
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Table 5.1: Perpetrator Location Tracking Results

Plot(XS,CA) Value Description

(a) tracked Location Location tracked by both methods indicates perpetrator tracked

within search area

(b) 542,221 Radius plot indicates search radius (here mean).

(c) 86%,31.7% Devices Number of devices (here percentage)

(d)

7.5MB,2.8MB

Data Average data sent by sensing devices to fog server every minute.

(f) 59.6J, 22.6J Energy Average Mobile Energy Consumption every minute.

(g) 17.9s, 14.8s Time Average time incurred for processing a request.

5.5.3 Perpetrator tracking Evaluation

This evaluation is performed using 14 android devices available at a given lo-

cation at the time of the event with changing context values. Initial reference

location and search radius are provided at the beginning of the run. At a given

location, proactive user recruitment optimally selects devices as volunteer de-

vices that acquire images from a camera. MCS app components involve two

processing components, 1. detecting images that contain faces (runs on a mo-

bile device which captures images.) 2. recognize the face in the image sent

(runs on the Fog server).

Once a perpetrator is detected, this app obtains the next reference location and

adjusts the search radius based on movement of the perpetrator (See Figure 2.1).

The devices are chosen optimally based on predicted context and available con-

text abbreviated as CA. This approach is compared to existing strategy (XS)

where devices are selected with optimal context but the search radius is fixed,

and the next location is the last known location of the perpetrator. Figure 5.4

shows 30 mins run of tracking a perpetrator. Table 5.1 compares the perfor-
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Figure 5.4: Perpetrator Tracking Scenario.

mance of contextAiDe and XS for a single request which tracks perpetrator

through location 1 to the 10.

5.6 Proactive User Recruitment Evaluation

This evaluation is designed using real-life mobile device traces from LifeMap

Dataset Chon et al. (2012). 10 requests of Real-time perpetrator tracking app

of an average duration of 30 mins are generated to track a person moving in the

campus area. In this evaluation proactive user recruitment is compared with

user recruitment of prior research works to analyze for different performance

factors like accuracy, energy savings, data transfer, and incomplete requests.

LifeMap Dataset: This dataset has sensor data acquired from 11 people on the

campus of Yonsei University. Data from 11 users is obtained during different

periods; we use data from 8 users for one month when data from maximum

users are available. We obtain a data trace of GPS locations, battery level,

connectivity, and user activity with a time granularity of 2 mins. The user
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recruitment algorithm is evaluated to study different performance aspects like

accuracy, energy savings, data transfer in the following section.

5.6.1 Strategies for User Recruitment

This section presents different user recruitment approaches.

1. Existing Strategy (XS): This user recruitment scheme is similar to Context

Aware Task Allocation (CATA) Hassani et al. (2015) where context optimized

selection is performed for each new task request. Next location is given by one

of the devices that recognize the perpetrator while the search radius is fixed.

2. Ideal (I): This recruitment revises the selection decision by performing op-

timization at fixed time intervals to select optimally context matching devices.

In the evaluation presented, the time interval is set for 2 mins. This recruitment

scheme chooses devices with best CSI in every time step to provide optimal user

selection.

3. ContextAiDe’s Current Available Context (CA): This approach uses cur-

rently available context and resource values on the device. Optimization is

performed for user recruitment when the required context becomes suddenly

unavailable, or context request is initiated.

4. ContextAide’s Stochastic (CAS): This approach employs a proactive

user recruitment scheme discussed in section 5.2. Stage 1 uses the predicted

resource and context values of the device for offload decision. Context and re-

source values are predicted using a stochastic approach.
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5. ContextAiDe’s Cloud(CAC): In this approach, sensing tasks are assigned

to devices that match application requirements, and the processing tasks are

offloaded to cloud.

ContextAiDe’s user recruitment schemes are designed to adapt to dynamically

changing context requirements, e.g., location or search radius may change based

on the movement of the perpetrator at runtime. New location and search radius

are obtained based on the previous evaluation.

Figure 5.5: Performance of Proactive User Recruitment w.r.t. Other

Recruitment Approaches.

5.6.2 Evaluation Using Data Traces.

ContextAiDe user recruitment strategies discussed in Section 5.6.1 are evalu-

ated based on different parameters presented in this section.

(1.) CSI: Lower CSI value indicates that data acquired matches the required

context.
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(2.) Data Usage: Sensed data acquired on the mobile device is data sent to

fog/cloud server for processing after local processing except in CAC where data

is processed in Cloud. Amount of data transferred by different algorithms is

compared.

(3.) Energy: Energy usage is estimated on the basis of data sensing, process-

ing and data transfer that are executed on the mobile device (§5.5.3) while

processing each application request.

(4.) Number of Optimizations: In a given sequence of application requests,

optimization initiated depends on the user recruitment algorithm used. The

number of optimizations indicate the operational overhead of the algorithm.

(5.) Devices switched: Sum of new devices that were recruited during execution.

(6.) Incomplete requests: Context-aware recruitment of devices causes some

of the requests to be incomplete. The total number of requests that remains

incomplete over the sequence of requests.

(7.) Delay: Average time incurred to accomplish the MCS task.

(8.) Accuracy: It shows the distance between the actual and the estimated

location of the perpetrator

Figure 5.5 shows that CA successfully generates context relevant data shown by

lower CSI and accuracy plot. CAS using predicted resources results in better

energy and delay performance. Data used in CAS is 24.8% lesser, and energy is

37.8% lower than existing strategy (XS) for accurately tracking the perpetrator.

Time incurred is improved by 43%. Performance improvement is achieved using

CSI optimization indicated by the accuracy plot. Close monitoring of context

and proactive decision based on expected context values results in savings of
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Figure 5.6: Performance of ContextAiDe in Varying Uncertainty Scenarios.

data usage, energy consumption and time incurred. However, this comes at

the cost of accuracy. Minimum distance achieved in CA, CAS is a little more

than XS and I strategy but the mean value of XS is much higher than CA/CAS.

Alternatively, using the cloud server in CAC strategy incurs much higher energy

(33%) and delay (50%) than CAS.

To evaluate the performance of CAS strategy, we set up a simulation with the

different number of mobile users for executing Real-time perpetrator tracking.

The mobility, WiFi, battery activity are modeled according to the LifeMap us-

age data. Performance of CAS is evaluated for variation in uncertainty that

is associated with Contextual data. Figure 5.6 shows the variation in accu-

racy, percentage of incomplete request (due to unavailability of context) and

average CSI which shows context relevance of data obtained. For lower uncer-

tainty (<20%) accuracy is as desired less than 40 m. Percentage of requests

abandoned, and CSI of devices selected remain steady for lower uncertainty

(<25%). However, as uncertainty increases, higher values of CSI are noted for

high at the cost of increased incomplete requests and lower accuracy.
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5.7 Contact Tracing

In addition to the presented usecases context monitoring and contextual data

acquisition of the ContextAiDe architecture can also be used for disaster man-

agement. In this research mobility patterns of the mobile device owners has

explored for contact tracing of COVID-19 management. Contact tracing of

COVID-19 management is defined as the process of identifying individuals who

may have in contact with the infected persons. Mobility data may be used by

COVID-19 contact tracing for drawing different insights. Insights considered in

this research are as follows:

(a) Identifying if a individual has been in contact with infected persons.

(b) Identifying high risk locations.

(c) Understanding COVID-19 spread map.

The contact tracing usecase is designed as mobile application and workflow

of the application is presented in the figure 5.7. Mobility data is organized

in individual and aggregate granularity for identifying a person’s contact with

infected persons and for identifying high risk locations. Based on the user

mobility patterns user receives an exposure alert or alert if the user is likely

to visit high risk location. Further, the information collected is also used to

analyze the COVID-19 spread. Three different data sets are used for this use

case: 1. LifeMap dataset,2. COVID-19 cases dataset for India and 3. Google

mobility data. LifeMap dataset is used to analyze mobility patterns of the user

and predict if the user has visited any places as the infected personnel at the

same time. This also helps in predicting if the user next visiting location is a
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Figure 5.7: Context Monitoring for COVID-19 Management.

high risk location or not. COVID-19 cases dataset is used to understand the

disease spread map of the given region. Google mobility data is an aggregate

data that helps in finding places visited by large population at the same time.

This places are marked as high risk locations. To understand the COVID-19

spread map graph G(V,E) is constructed with the given dataset where the

nodes(V) represent people contracted with COVID-19, edge is drawn between

patients if the person had come in contact with the already infected person.

Spread map has different metrics: lowest number of infections related to a

person, maximum number of infections related to one person, maximum length

of the contact trace. For a given COVID-19 cases dataset the contact trace path

length is 5 and the maximum number of infections spread by single person is

56. This work has benefited from the context monitoring of the ContextAiDe

architecture by sending alerts to the users based on the location prediction.

5.8 Conclusion

Proposed Proactive user recruitment approach can be used by different MCS

applications. This solution improves the success rate of task completion and

enriches the data obtained through crowd sensing. Results show that data con-
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text optimization based on user recruitment designed reduced the data com-

municated by 25% while there is 43% improvement in time incurred compared

to existing algorithms. The energy requirement is reduced by 37.8% while the

improved contextual content seen by similar accuracy results for perpetrator

tracking. Using continuous monitoring of the context on user devices proactive

user recruitment adapts to the changes of context on devices and improves the

selection of devices. Additionally, learning the behavior of usage dependent

contexts and stochastic optimization gives a desirable performance considering

smaller levels (<20%) of context uncertainty.
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Chapter 6

IMPACT OF FALSE DATA DETECTION ON LATENCY SENSITIVE

APPLICATIONS

This chapter outlines significance of data correctness on real-time applications.

Linear state estimation of power grid systems is considered to understand the

challenges of latency sensitive applications of large scale systems.

6.1 Linear State Estimation Formulation

In this section, the formulation of Linear State Estimation is presented. Linear

state estimation is non-iterative estimator that uses time synchronized complex

voltage and current measurements from PMUs to estimate the states of the grid.

PMU based LSE of the power grid is given by the following equations [Jones

et al. (2013)]:

x̂ = HZ, where Z =

Vm
Im

 , H = (BTW−1B)−1BTW−1. (6.1)

In Eq.6.1, Vm and Im represent voltage and current measurements, Z is called

the measurement vector, x̂ is state vector, B is given by Eq.6.2 and W is the

covariance matrix.

B =

 II

yA+ ys

 , (6.2)

II is voltage incidence matrix, y and ys are series and shunt admittance ma-

trices. A is the current incidence matrix.
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6.2 False Data Detection

In this research, a classical detector is used for incorporating false data detection

into a linear state estimation process [Kosut et al. (2011)]. During an FDI

attack, adversary alters grid measurements by adding an attack vector to the

PMU measurements. Altered grid measurement vector can be represented as:

Za = Z +α, (6.3)

where Za, Z are modified and actual measurement matrices respectively. α is

the attack vector. The classical detector used to incorporate FDD is given by

the following equations.

Ra = Z′ −Za, (6.4)

J(x̂) = RT
a Σ−1

e Ra ≥ τ , (6.5)

where Ra is residual vector, Z′ is obtained from last state estimate, Σe is the

covariance, J(x̂) is the detector and τ is an acceptable threshold of the grid.

False data detection prevents incorrect state estimate computation.

6.3 False Data Detection For Reliability In Uncertain Environments.

As stated in chapter 1, data correctness helps in improving the reliability of

the application. Security attacks often hamper data correctness in uncertain

environments. Like other uncertain environments smart grid systems also suffer

from the security attacks. This work demonstrates the difficulties caused due

to security attacks on PMU measurements in smart grid systems. During a

security attack, attackers compromise the network and inject false data into the

PMU measurements. False data injection (FDI) attacks may cause the Linear

State Estimation (LSE) application to estimate incorrect state. LSE is a crucial
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Figure 6.1: Number of Complex Number Computations for LSE and FDD.

application for reliable grid monitoring and planning. Incorrect state estimate

may degrade the reliability of the power grid and result in sub-optimal power

flow in the grid. Liu et al. show that FDI attacks modify the state estimation

results and have a severe effect on the security of the power grid systems [Liu

et al. (2011)]. Therefore, it may be essential to integrate false data detection

(FDD) in the LSE. However, integrating FDD may increase the computational

overhead of LSE thereby making it difficult to meet the real-time constraints

for larger grid sizes. Figure 6.1 presents a comparison between the number of

complex number computations of LSE and LSE with FDD for different grid

sizes. This work uses the classical detector FDD approach described in[ Kosut

et al. (2011)] to detect FDI attacks on the linear state estimation.

Possible solutions that can be explored to minimize the overhead introduced

by FDD are a) parallel processing and b) distributed LSE. Distributed LSE di-

vides the grid into smaller substations to reduce computation time, aggregating

the result in the control center and then performing FDD. The computation

involved in the LSE problem, in general, may be scalable when implemented in
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a distributed manner. However, in the context of PMU based state estimation,

distributed LSE may require infrastructure upgrades and may have increased

communication cost. Unlike the centralized LSE, distributed LSE may addi-

tionally, require two substations to exchange power flow data in one of the Tie

lines connecting them Chatterjee et al. (2015). This results in increased com-

munication in addition to the time taken to compute the Sub LSE. Additionally,

it is observed that communication latency is exceedingly higher than the LSE

computation time. For a distributed solution to be better than a centralized

approach, we have to derive the optimal number of partitions or sub LSEs.

Further, the partitions cannot be selected randomly. The configuration of each

partition and the order in which sub-LSEs are evaluated affect the communi-

cation latency. Moreover, sharing power flow information between substations

has serious security concerns, which needs to be addressed before a distributed

implementation.

To solve computation overhead and achieve real-time monitoring, a novel Cloud

hosted parallelized LSE-FDD (CLSE-FDD) solver that utilizes fast GPUs to

scale with an increasing number of PMUs is proposed. Main contributions of

CLSE-FDD are: 1. Analysis of the overhead of FDD on the LSE problem, 2.

leveraging parallel processing of GPU to minimize the overhead of FDD and

scale for large grid sizes, and 3. exploiting data level parallelism on the LSE

and FDD operations. CLSE-FDD is evaluated for different test systems using

the CPU and GPU solvers. Results show that the GPU CLSE-FDD solver is

up to 19x faster than the CPU CLSE-FDD for larger test system sizes. GPU

CLSE-FDD application can easily scale in excess of 1,500 PMUs.
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6.4 Cloud hosted LSE-FDD System Model

CLSE-FDD application aggregates data obtained from geographically distributed

PMUs to construct the grid measurement vector. Grid measurement vector is

sent to GPU for computing state estimate and detecting FDI attacks. CLSE-

FDD considers following design assumptions:

(a) Each bus of the grid has a PMU installed that measures bus voltages

and line currents. In practice, to achieve complete observability, all buses

may not need PMUs. However, this assumption allows us to evaluate the

worst-case computational complexity.

(b) PMU data measurement rate is 30 Hz hence introducing a real-time con-

straint of ≈33 ms for LSE.

(c) Communication latency for the CLSE-FDD application is assumed to be

≈10 ms[ Maheshwari et al. (2013)].

6.4.1 Performance overhead of False Data Detection

To explain the overhead introduced by FDD on LSE, consider a power grid

with N buses and M transmission lines. Every bus on the grid has one or

more transmission lines and is associated with one voltage measurement. Each

transmission line has two current measurements. It is also known that for

the power grid N < M . LSE of the grid is given by Eq 6.1, where H is a

matrix of size N × 2M , and Z is the measurement matrix of size 2M × 1.

The complexity of the LSE(x̂) computation, is O(N.M). Time complexities

of individual operations of FDD are given in Table 6.1. From Table 6.1 it is
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Table 6.1: Complexities of LSE & FDD Operations.

Operation LSE FDD

x̂ O(N.M) O(N.M)

Ra NA O(M +N)

RT
a NA O((M +N)2)

Σ−1
e NA O(M3)

J(x̂) NA O(M)

N= Number of buses and M=Number of branches.

MATPOWER Data

Topology 
Processor

Data 
Aggregator

Device Memory 
Allocation

GRID INFORMATION

PMU DATA

CPU MODULE GPU MODULE

CLSE-FDD Application

H

LSE FDDZ

ENERGY 
MANAGEMENT 

SYSTEM
Detector

Alert/ State vector
State vector
& J(x)

INPUT

OUTPUT

ATTACK

Figure 6.2: Architecture of CLSE-FDD.

evident that the complexity of LSE-FDD is more than LSE. This may inhibit

the LSE application from meeting the strict real-time constraints of the state

estimation process.

6.5 Architecture of CLSE-FDD

CLSE-FDD application architecture consists of two modules: the CPU module

and the GPU module. Tasks that cannot be parallelized or the tasks that suffer

from the overhead of CPU-GPU data transfer are executed in CPU module.

Tasks that are compute intensive and can be parallelized are executed in the

GPU module. These tasks leverage parallel processing techniques to meet the

low-latency constraints of LSE and scale with increasing PMU installations.

Detailed representation of the modules is shown in Figure 6.2.

54



6.5.1 CPU Module

Topology Processor processes grid configuration information and computes pseu-

doinverse matrixH in Eq. 6.1 that can be used in state estimation computation.

It also sets Σ−1
e that can be used for FDD.

Data aggregation task is executed every 33 ms after receiving the voltage and

current data of PMU. This task is designed to process data and build measure-

ment matrix Z of Eq. 6.1.

The detector determines the presence of FDI in PMU data and is invoked every

time a new state estimate vector is available. Results of the LSE and FDD

tasks of the GPU module serve as input to this task. The output of this task is

sent to EMS.

6.5.2 GPU Module

Linear State Estimation is invoked every time a new measurement vector is

constructed with a new set of PMU data. This task takes measurement vector

and the topology processor results as input and computes state estimate vector

x̂.

False Data Detection is executed after LSE task of the GPU module. Results of

the topology processor (Σ−1
e , Z) and LSE task (x̂) are used to compute FDD

operations as described in Section 6.2. J(x̂), x̂ are sent to Detector task.
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6.6 Implementation

Cloud hosted LSE is implemented as a ‘C’ application [Chakati et al. (2017)].

As state estimation involves the processing of a large number of measurements

that are usually complex numbers, using regular math library may degrade the

performance. To overcome this and handle complex numbers effortlessly we use

GSL[ Galassi et al. (2007)]. As a first step towards including FDD, Cloud hosted

LSE application implemented in ‘C’ is extended to compute the FDD elements

using GSL [Chakati et al. (2017)]. It has been observed that the execution time

of the CLSE-FDD is increased by 2.4x on an average across different grid sizes as

presented in Figure 6.4a. Increase in execution time may hamper the scalability

of CLSE-FDD application. CLSE-FDD application execution time is minimized

and scalability is achieved by utilizing the parallel processing capabilities of

GPU. GPU module of CLSE-FDD application is implemented using CUDA. To

efficiently process large sets of complex grid measurements on the GPU I use the

CUBLAS library [NVIDIA (2017)]. Test data for different grid configurations

listed in Table 6.2 is obtained from MATPOWER. Tasks described in Section 6.5

can be classified into two phases: 1) Initialization Phase and 2) Computation

Phase. Figure 6.3 lists different computations performed in these phases.

6.6.1 Initialization Phase

This phase is executed first time the CLSE-FDD application starts or if there

is a change in a grid configuration. Current incidence A, admittances Y , Ys

given in Eq. 6.2 are computed in this phase. Also, covariance matrices W and

Σe that are used in computing pseudoinverse matrix H and FDD, respectively
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are set in this phase. H and Σ−1
e are copied to the GPU only once at the

start of the process. To reduce memory allocation time, GPU memory for the

matrices Z, x̂, Ra, Ra
T ,Σ−1

e is allocated only once at the start of the process.

6.6.2 Computation Phase

This phase is invoked for every new set of PMU measurements. PMU data

obtained from MATPOWER is used to construct grid measurement matrix Z.

Pseudoinverse matrix H and grid measurement matrix Z are taken as input

to compute the state estimate vector. H , Z matrices are represented as one-

dimensional row major order cuDoubleComplex vectors on GPU. CUBLAS li-

brary function cublasZgemm is used to achieve data level parallelism. cublasZgemm

computes the state estimate vector x̂.

Z, x̂, Σ−1
e are used for performing FDD operations. Figure 6.3 presents the

workflow of the CLSE-FDD application and demonstrates interdependency be-

tween the FDD operations. Interdependent FDD operations are executed se-

quentially on the GPU. However, individual computations on each of these

operations are optimally parallelized by the cuBLAS routines. Detector vector

J(x̂) is communicated from GPU to CPU host. J(x̂) is compared against the

acceptable threshold set for the grid to detect an FDI attack. If J(x̂) is greater

than τ threshold then attack is detected and the EMS is alarmed, otherwise x̂

is sent to EMS.
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Figure 6.3: Workflow of CLSE-FDD Application.

6.7 Evaluation and Results

CPU and GPU execution times of the CLSE-FDD are compared and it is found

that high data rates of PMU require the data to be processed by the CLSE-

FDD in the order of few milliseconds. Time taken for LSE-FDD is given by T as

shown in Eq. 6.6. Communication time is the time to send PMU data to PDC

plus, the time to send data from PDC to CLSE-FDD application. Execution

time is the time required to complete the LSE and FDD computations.

T = communication time + execution time. (6.6)
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Existing research shows that communication time is the major setback for LSE

solver. However, for larger grid sizes execution time can also become a bot-

tleneck [Chakati et al. (2017)]. CLSE-FDD application is designed to address

execution time bottleneck. As mentioned in Section 6.4 real-time constraint of

LSE is 33 ms, communication time is considered to be ≈10 ms. Therefore, the

execution time constraint may be approximated to be ≈23 ms.

6.7.1 Experiment Set up

CLSE-FDD solution is hosted on a server in ASU data center. CLSE-FDD

described in Section 6.6 utilizes the GPU accelerator GTX 680 available on

the server to achieve additional speedup using parallel processing. PMU data

and grid configuration information obtained from MATPOWER are given as

inputs to the CLSE-FDD application. CLSE-FDD application is evaluated for

different test systems available from MATPOWER. These test systems present

close representation of real grid environments. The test system sizes and the

number of line currents on the test system are listed in 6.2.

6.7.2 Results

Table 6.2 presents speedup of the GPU LSE as compared to the sequential exe-

cution of LSE for different test systems. From the data reported in Table 6.2 it

may be also inferred that for larger grid sizes GPU-LSE gives speedup greater

than 10x. As observed in Figure 6.4a, the CPU implementation of LSE-FDD

shows an increase in execution time which may be attributed to the computa-

tional overhead introduced by the FDD. Speed up achieved by GPU implemen-

tation may aid in meeting the real-time constraints of LSE and LSE-FDD. From
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Table 6.2: GPU-LSE Speedup.

Grid size (N) No of Edges (M) Speed Up of GPU LSE

14 20 2.447

30 41 1.59

57 78 4.359

89 206 6.734

118 186 7.943

145 429 4.032

200 245 4.957

300 409 5.283

1354 1749 11.591

1888 2330 11.835

Figure 6.4a it may be observed that the CPU implementation of CLSE-FDD

can scale up to 300 PMUs on the grid. To scale for larger number of PMUs,

the GPU implementation of CLSE-FDD may be more suitable. Figure 6.4b

presents the execution time of LSE-FDD computation for the CPU and GPU

implementations. For smaller test system sizes CPU CLSE-FDD outperforms

the GPU implementation. However, as the test system size increases, GPU per-

formance becomes better than CPU implementation. For larger systems, GPU

implementation of LSE-FDD achieves a speedup of up to 19x (as observed in

Figure 6.4c). Also, from the figure, it is clear that the GPU implementation of

CLSE-FDD can easily support in excess of 1,500 PMUs installed in the grid.

Figure 6.4c presents the execution times for CPU and GPU implementations of

LSE and LSE-FDD for the different test systems.
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(a) CPU 1.LSE, 2.LSE-FDD. (b) CLSE-FDD 1. CPU, 2.GPU. (c) LSE, LSE-FDD 1.CPU 2.GPU.

6.8 Observations

LSE-FDD detects the FDI attack and notifies the EMS to avoid the sub-optimal

power flows in the grid. LSE-FDD implemented in cloud hosted CPU-GPU

configuration can result in a speedup of 19x and can support 5 times more

PMUs as compared to a CPU only configuration. However, a major bottleneck

is the communication latency between CPU and GPU which needs to be further

optimized. In this solution, I have demonstrated the significance and difficulties

involved in integrating security measures such as false data detection. A GPU

based cloud hosted LSE-FDD application is implemented and its advantages

are presented.

Another potential approach towards fast LSE-FDD computation is to adopt a

distributed architecture. A careful analysis shows that this approach can incur

significant communication cost. Given a grid of size N, centralized LSE solver

may require a total of (N+N/3) communications (N/3 is assumed to be the

number of PDCs on the grid Jones et al. (2013), that is, three PMUs connect

to one PDC). For a distributed LSE with K partitions (Sub LSE stations), the

solver may require N+2K (N communications to send PMU data to Sub LSE

stations, K communications between the Sub LSEs to exchange information

about the Tie-Lines and K communications to send Sub LSE result to the con-
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trol center that merges the Sub LSEs to obtain the final state vector). Finding

the optimal partitions to improve communication cost in distributed LSE is an

open research problem and is explored in the next solution of this thesis.
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Chapter 7

DISTRIBUTED LINEAR STATE ESTIMATION

Achieving real-time monitoring in large scale systems is challenging due to in-

creased computational burden and geographical dispersion of devices. Smart

grid systems are spread across wide geographical area and include large num-

ber of devices that generate large volumes of data. Processing large volumes

of data within strict time constraints may be difficult. This chapter presents

an overview of the Distributed Linear State Estimator (Distributed LSE) that

can aid in achieving real-time monitoring in smart grid systems. This chap-

ter also discusses the design of power grid emulator using dockers to evaluate

Distributed LSE for different test systems.

7.1 Distributed Linear State Estimation for Smart Grid Systems.

Traditional centralized LSE process deployed at the control center receives data

from PMUs and compute the state estimate. To overcome the communication

latency and meet the real-time constraints of LSE and to withstand the faster

data measurement rates of PMU’s centralized LSE systems utilize high-speed

fiber optic networks. Increase in size of the power systems network and increase

in the number of PMUs increases the computational burden of the LSE making

it challenging to meet the real-time constraints. Also, from our earlier works,

it has been observed that the communication latency is a significant bottleneck

for the performance and scalability of LSE. Installing a high-speed fiber optic
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network will result in huge infrastructure costs. To scale with large grid sizes,

to minimize the overhead of communication cost and latency and to adhere to

strict real-time constraints it may be feasible to propose a Distributed Linear

State Estimator.

Reducing the complexity of the problem by dividing it into subproblems is one

of the fundamental approaches of distributed solutions. However, this may

increase communication cost between the distributed entities. Distributed so-

lutions that incur minimum communication cost between the subproblems may

offer better results than the centralized solutions. The primary objective of the

proposed solution is to find optimal divisions of the grid that may be adopted by

the Distributed LSE. To accomplish this, proposed solution uses grid partition

strategies that address the issues of communication cost and optimality of the

distributed LSE.

Design of a distributed solution generally incorporates a pre-processing step of

dividing the centralized problem into subproblems. Many research works have

devised the pre-processing step as graph partitioning problem. I follow a simi-

lar approach in the design of a distributed LSE by considering the smart grid

network as a graph and partition it into sub-networks. These sub-networks

are called as sub-LSE stations in Distributed LSE. As mentioned earlier, Dis-

tributed LSE may have increased communication cost. For example, partitioned

linear state estimation proposed in [Chatterjee et al. (2015)] shows that sub-

LSE stations should exchange the minimum power flow information in at least

one Tie line connecting them to obtain complete state estimation of the grid.

This may be a significant overhead for the adoption of Distributed LSE. For a

Distributed LSE to surpass the centralized LSE, optimal sub-LSE stations that
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have the minimum number of Tie lines needs to be derived. Main contributions

of the proposed work are : 1. An offline grid partitioning algorithm that di-

vides the smart grid network into an optimal number of sub-networks referred

as sub-LSE stations that have minimum Inter Partition Communication (IPC),

2. Distributed LSE that utilizes the result of the partition algorithm to com-

pute the sub-state estimates in parallel at the sub-LSE stations. Performance

of proposed distributed LSE is compared with the traditional centralized LSE

systems for different test systems.

7.2 Problem Formulation

Distributed LSE design is formulated as a graph partitioning problem. In this

work, I aim to efficiently partition the smart grid into sub-networks to minimize

inter-partition communication (IPC). Smart grid is represented as a graph G =

(V,E) where V is the set of nodes on the grid, E is the set of transmission

lines on the grid. Smart grid graph G is divided into K subgraphs where each

subgraph is completely observable and computes local state estimate. Iij gives

the IPC between the partitions Pi and Pj, objective of the partitioning is to

reduce Iij and is given by Eq. 7.1.

Minimize(ΣIij) (7.1)

such that
Vi ⊂ V

Ei = {(vi, vj)|vi, vjεVi}

Vi ≤ c −∀iε1, . . . , k

Iij = {(vi, vj) | (vi, vj)εE, viεVi&vjεVj}

k⋃
i=1

Vi = V
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where Vi, Ei are the set of nodes and edges in subgraph Pi. Iij is the numbers

of edges of the graph that spans between subgraphs Pi an Pj. c is a constraint

on the maximum number of nodes a subgraph Vi can hold.

7.2.1 Sub-Graph Size

As presented in section 7.2, c is the constraint on the size of the subgraph. Par-

titioning algorithm strictly enforces the constraints. Based on the observation

from our previous work that the sequential execution of state estimation sup-

ports up to 300 PMUs, therefore, we set the constraint size c for the subgraph

to be 300 [Chakati et al. (2017)]. For smaller test systems the constraint size

c is determined based on the average degree(aδ) of the graph and is given by

Eq. 7.2

c =
N

aδ
. (7.2)

7.2.2 Communication Cost and Data Transfer

Distributed LSE is compared with traditional centralized LSE based on the

following performance metrics: the size of the data transferred, communication

cost and communication latency.

Size of data transferred is the total number of measurements communicated

across all the levels of the LSE process. Data transferred in a traditional cen-

tralized LSE is the sum of data transferred between PMU and PDC layers and

data transferred between the PDC layer and control center. For a smart grid

of N nodes and M transmission lines, there are N + 2M measurements. The

size of data transferred from PMU to PDC layer is (N + 2M), the same data is
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transferred from the PDC layer to control center. Therefore, the size of the data

transferred in a traditional centralized LSE is given by Eq. 7.3. Data transferred

in a Distributed LSE can be defined as the sum of the data transferred from

the PMU layer to PDC layer, data transferred between sub-LSE stations and

sub-LSE stations to the control center. Size of data transferred from PMU to

PDC layer is N + 2M , size of data transferred between sub-LSE areas is given

by I. Total size of data transferred in a Distributed LSE is given by Eq. 7.4.

Dt = 2(N + 2M) (7.3)

Dd = (N + 2M) + I +N (7.4)

where I is the number of inter partition communications.

Cut Percentage is used to measure the performance of the partitioning algo-

rithm and defined as follows:

cut = I/M (7.5)

Communication cost is the total number of communications required across

different levels of the grid. This work considers following assumptions for tra-

ditional and distributed LSE:

(a) Each bus of the grid has a PMU installed that measures bus voltages and

line currents.

(b) Traditional LSE considers that there are N/3 PDCs.

(c) Distributed LSE considers that the grid is divided into K partitions.

Traditional LSE and Distributed LSE require (N + N/3) and (N + 2K) com-

munications respectively.
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Communication latency is the total time incurred for data transfer and is

given by Eqs. 7.6

Ct = Tp + Tc (7.6)

where Tp is the time to transfer data from PMUs to PDCs and Tc is the time

taken to transfer data from PDC to control center.

7.3 Proposed Solution

This work aims to design an optimal Distributed LSE that scales for larger grid

sizes and minimizes communication overhead. Distributed LSE decomposes

grid into sub-LSE stations and computes the local sub-state estimate at each

of the sub-LSE. Distributed LSE consists of two components: 1. partitioning

algorithm and 2. LSE computation.

7.3.1 Partition Algorithm

Fundamental objective of this partition algorithm is to divide the grid into sub-

networks called the sub-LSE stations, such that there is minimum connectivity

between the sub-LSE stations. Partitioning algorithm is designed as a two-step

model. First step utilizes some of the well-known graph partitioning methods

to divide the large graph into subgraphs. Second step applies optimization

strategies to minimize IPC.

Initial Partitioning

Initial partitioning is the first step of the partition algorithm. During this step,

following methods are used to divide the smart grid: 1) Fiedler Vector based

68



recursive bisection, 2) Kernighan-Lin method based recursive bisection, 3)BFS

Method and 4) Recursive Minimum Cut Method. These methods follow the

constraint size c defined in section 7.2.1 for all the subgraphs.

First method bisects the graph by computing the Fiedler vector for subgraphs

in each iteration [Fiedler (1973)]. Second method recursively bisects the graph

using the Kernighan-Lin method [Kernighan and Lin (1970)]. Third method de-

termines an initial set of sub-LSE based on BFS traversal of the graph starting

at the node with highest betweenness centrality. And the fourth method uses

Stoer Wagner algorithm for obtaining the initial sub-LSE stations [Stoer and

Wagner (1997)]. In the BFS approach, node with maximum betweenness cen-

trality is considered as the starting node for the traversing through the graph.

Current node is added to the existing sub-LSE station if its size is less than

the constraint size. If the size of the partition is greater than or equal to the

constraint size, then the node is added to the new sub-LSE station. All the

methods maintain the constraint size c for sub-LSE stations. IPC of the ini-

tial sub-LSE stations can be reduced by using efficient optimization techniques.

Optimization methods for reducing the IPC are discussed in section 7.3.1.

After obtaining the initial partitions, results of the methods that have the mini-

mum number of inter-partition connections are given to the second step. Fiedler

Vector based recursive bisection method results in minimum inter-partition com-

munication. Results of this method are given to the partition optimization.
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Partition Optimization

Initial partitioning may sometimes result in unbalanced partitions leading to

high IPC and may also degrade the performance of the distributed solution.

Therefore, it may be essential to balance the partitions, thereby reducing IPC.

Additionally, balanced partitions can also be optimized for minimizing IPC. In

this work, two novel optimization methods are proposed. Method I: In this

method, all the vertices that have external connectivity greater than the internal

connectivity are identified. This vertices are called INodes and are represented

by In. Each vertex in In are iteratively moved to a new partition to minimize

the IPC. For every vertex v in In connectivity score cs for all the sub-LSE’s is

computed. Connectivity score is the number of edges the node is connected to

in a given partition. Vertex is moved to a new sub-LSE if the cs of a sub-LSE

Pi is greater than the cs of the current sub-LSE. In the event, where cs of Pi

is the same as the current sub-LSE, the vertex is moved to the new sub-LSE if

the IPC reduces. New set of INodes are obtained after each iteration and this

is repeated until the IPC cannot be further minimized.

Method II: This method focuses on balancing sub-LSE areas by merging any

two unbalanced sub-LSEs. Two sub-LSEs Pi and Pj are unbalanced if ratio of

|Pi| to
∣∣Pj∣∣ is less than the threshold τ , where the number of nodes in Pj is

greater than the number of nodes in Pi. Two sub-LSEs are merged only if they

are connected and if the size of the merged sub-LSE follows the size constraint.

Merging is terminated when there are no more sub-LSEs that are unbalanced

or if all available sub-LSE’s for merge operation violate the constraint size.
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7.3.2 LSE Computation

The second component of Distributed LSE is LSE computation. LSE compu-

tation is performed at each of the sub-LSE stations obtained from the partition

algorithm. Each sub-LSE computes the sub-state estimate and send it to the

control center to obtain complete state vector. Detailed distributed LSE com-

putation is explained in Section 7.4.

7.4 System Architecture

This section presents components of the proposed architecture and the work

flow of the solution. System architecture is divided into two modules: offline

module and online module. Offline module tasks do not have strict real-time

constraints and are executed only when is a change in the grid configuration.

On the other hand, tasks defined in the online module have to be executed for

every new grid measurement, and these tasks have to always ensure that they

meet real-time constraints.

7.4.1 Offline Module

This module is used for setting up the environment and computing the pre-

processing functions. Tasks in this module are executed only once and do not

have strict time constraints. Tasks of the offline module are Partition, Config-

uration and Topology Processor. Partition task takes the network topology of

the system as input and divides the grid into sub-LSE’s using the partitioning

algorithm defined in section 7.3.1. Results of the partitioning algorithm are

sent to the configuration task.
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Configuration task communicates the grid partition information to the PMU

and PDC layers of the Online module. In addition, this task also takes the

network topology information to determine the connectivity of each node on

the system and communicate the same to the PMU layer.

Topology processing task uses the network topology and network parameters to

compute the H matrix of equation 6.1. This H matrix is sent to the PDC layer

of the online module.

7.4.2 Online Module

The online module consists of two layers: PMU layer and PDC layer, PMU

layer is composed of all the PMU’s installed on the grid. PDC layer is the

set of PDC’s on the grid. PMU’s of the PMU layer contact the configuration

module to obtain information about the PDC to which it has to send the data

and establishes a connection to the PDC. PMU’s sense voltage and current

measurements from the grid and send it to the connected PDC.

PDC communicates with configuration module to obtain configuration infor-

mation such as how many and which PMU’s will be connected to it. PDC’s

also communicate with the topology processor to obtain the H matrix and store

it locally. Upon receiving the data from all the PMU’s connected to it, PDC

constructs partial measurement vector(z′) and compute the sub-state estimate.

PDC’s use H and z′ matrix to compute the sub-state estimate vi. PDC’s com-

municate with other PDC’s to send the tie line information and also send the

sub-state estimates to the control center for obtaining the state vector.
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Figure 7.1: Distributed LSE System Model.

7.5 Implementation

This section presents the implementation details of the partitioning algorithm

and Distributed LSE.

7.5.1 Partition Algorithm

Partitioning algorithm is implemented in Python. NetworkX package is used

for implementing the fundamental graph operations [Hagberg et al. (2008)].

Network topology is given as input to the first step of the algorithm; this step

obtains initial partitions using all the three approaches discussed in section 7.3.1.

Partitions are obtained based on the constraint size and partition method re-

quested. After identifying the initial partitions of the grid, IPC across all the
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partitions is computed. Optimization is applied on the initial partitions ob-

tained and the combination of the partition and optimization method that gives

reduced IPC across all the test systems is considered to be the optimal solution.

Partition sets of the methods that have lower IPC are selected as input to the

optimization step.

7.5.2 Distributed-LSE

Distributed LSE is implemented using ’C’. High performance GSL library is

used in the implementation of Distributed LSE for handling complex number

computations [Galassi et al. (2016)]. Distributed LSE application consists of

the following modules: configuration module, topology processor, PMU Mod-

ule and PDC Module. Configuration module uses the grid partition configura-

tion obtained from the partition algorithm. PMU and PDC modules contact

configuration module over TCP sockets and obtain the grid partition configu-

ration. Topology processor uses network topology and network parameters as

input and computes A, y, ys, B and H given by Eqns. 6.1, 6.2. PMU module

connects to the PDC using TCP socket, constructs z′. PDC module receives

z′ from all connected PMU’s, uses the H result of the topology processor and

computes sub-LSE estimate using GSL methods. Sub-LSE estimates are sent

to the control center to merge and obtain the complete state vector.

7.5.3 Docker Container Based Power Grid Emulator

Docker container based power grid emulator is designed to illustrate working

and scalability of the Distributed LSE. This emulator consists of three differ-
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(a) (b)

Figure 7.2: Cut Percent after (a) Initial Partition and (b) Optimization.

ent types of containers: PMU Docker, PDC Docker and the Control Center

Docker. PMU docker container represents the PMU’s of the grid. PMU docker

obtains the configuration information from the offline module and connects to

its respective PDC docker. It then sends voltage and current measurements to

the PDC docker using the socket I/O. PDC dockers represent the PDC on the

grid they are also considered as the sub-LSE stations. PDC dockers obtain the

partition configuration and results of the topology processor from the offline

module. Configuration information is used to validate the PMU connections.

PDC dockers obtain voltage and current measurements from the PMU dockers.

These measurements are used to construct a measurement vector for that par-

tition. Sub-state estimate of a partition is computed within the PDC docker

by multiplying the results of topology processor with the measurement vector.

Control Center docker is used to obtain the global state estimate. Results of

Distributed LSE are presented in section 7.6.
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7.6 Evaluation and Results

This section presents evaluation of the partitioning algorithm and the Dis-

tributed LSE for the standard test systems of the power grid systems. Dis-

tributed LSE is evaluated in comparison with the centralized LSE. Performance

metrics used to evaluated Distributed LSE are data transfer and communica-

tion cost. Memory usage and net I/O on the docker container modules for the

test systems are also evaluated. PMU data used in the execution of Distributed

LSE and centralized LSE is obtained from MATPOWER [Zimmerman et al.

(2011)].

7.6.1 Partition Algorithm

Figure 7.2a shows cut percentage of different methods after initial partition.

From the figure, it may be observed that algorithm 1, Fielder vector based

recursive bisection approach divides the grid into sub-LSE networks that have

minimum IPC. Sub-LSE networks obtained by applying this method are given

as input to the partition optimization module. Figure 7.2b shows cut percentage

for different test systems after partition optimization. Partition optimization is

applied only to larger test systems. From the results, it may be observed that

proposed optimization methods reduce the IPC by 6% and 8% with respect to

the initial partition. Figure 7.3 shows the partition of 14-Bus network before

and after optimization.
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Figure 7.3: 14-Bus Network (a)Complete Graph (b)Sub-LSE after Initial Partition

(c)Sub-LSE after Optimization.

7.6.2 Distributed LSE

Figure 7.4a presents the data measurements transferred in Centralized LSE and

Distributed LSE. It can be observed that data transfer and communication cost

incurred by the Distributed LSE are reduced as compared to the Centralized

LSE. Data transferred in Distributed LSE has reduced by an average of 35%. It

may be further observed that Distributed LSE performance is increasing with

the increase in system size.

(a) Data Transfer (b) Communication Cost

Figure 7.5a and 7.5b present reduced net I/O and number of PDCs in Dis-
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(a) Net IO (b) Number of PDC’s in DLSE

tributed LSE in comparison to centralized LSE for different test systems. Net

I/O of Distributed LSE is reduced by an average of 25%.

7.7 Conclusion

Distributed LSE is designed to scale for large grid sizes. Proposed Distributed

LSE results in reduced the communication cost and data transfer. Data transfer

incurred in Distributed LSE is reduced by 35% compared to the centralized LSE

across all the test systems and communication cost is reduced by an average

of 20% across all the test systems. Another essential objective of the proposed

Distributed LSE is to mitigate latency overhead by moving computation towards

the edge. Docker based power grid emulator designed in this research depicts

the distributed linear state estimation. Power grid emulator implemented in

this research can be used to evaluate different aspects of linear state estimation.
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Chapter 8

CONCLUSION

In this research, a reliable distributed management framework for latency sensi-

tive application in uncertain environments is proposed. Data acquisition module

of the framework is developed to collect contextual data that enables data en-

richment and data reduction. False data detection module of the framework is

used for ensuring data correctness and reliability of the application. Proactive

user recruitment proposed in the framework is designed to find optimal set of

volunteer devices which improves the success rate of task completion. To eval-

uate contextual data acquisition and proactive user recruitment modules of the

proposed framework a real-time perpetrator tracking application is developed.

The application offloads face recognition code to volunteer devices to find the

location of perpetrator. Resource monitoring and prediction can be general-

ized and used for other mobile crowd sensing applications. For example, recent

outbreak of COVID-19 can be controlled by having effective contact tracing ap-

proaches. Location monitoring and prediction proposed for the proactive user

recruitment is extended for COVID-19 contact tracing. Distributed

Expanding use of machine learning models for IoT applications can benefit from

extending ContextAiDe for optimal offloading of pre-trained machine learning

models. Using ContextAiDe for mobile health applications is left as future work.

79



REFERENCES

“ U.S. Department of Energy, North American SynchroPhasor Initiative”,
https://www.naspi.org, [Online; accessed 5-Dec-2016] (2016).

Abowd, G. D., A. K. Dey, P. J. Brown, N. Davies, M. Smith and P. Steggles,
“Towards a better understanding of context and context-awareness”, in
“Handheld and Ubiquitous Computing”, edited by H.-W. Gellersen (Springer
Berlin Heidelberg, 1999).

Al-Ali, A. and R. Aburukba, “Role of internet of things in the smart grid
technology”, Journal of Computer and Communications 3, 05, 229 (2015).

Al-Dweik, A., R. Muresan, M. Mayhew and M. Lieberman, “Iot-based mul-
tifunctional scalable real-time enhanced road side unit for intelligent trans-
portation systems”, in “2017 IEEE 30th Canadian conference on electrical
and computer engineering (CCECE)”, pp. 1–6 (IEEE, 2017).

Anderson, D. P., J. Cobb, E. Korpela, M. Lebofsky and D. Werthimer, “Seti@
home: an experiment in public-resource computing”, Communications of the
ACM 45, 11, 56–61 (2002).

Bao, X. and R. Roy Choudhury, “Movi: mobile phone based video highlights
via collaborative sensing”, in “Proc. of the 8th international conference on
Mobile systems, applications, and services”, pp. 357–370 (ACM, 2010).

Catarinucci, L., D. De Donno, L. Mainetti, L. Palano, L. Patrono, M. L. Ste-
fanizzi and L. Tarricone, “An iot-aware architecture for smart healthcare
systems”, IEEE Internet of Things Journal 2, 6, 515–526 (2015).

Centenaro, M., L. Vangelista, A. Zanella and M. Zorzi, “Long-range commu-
nications in unlicensed bands: The rising stars in the iot and smart city
scenarios”, IEEE Wireless Communications 23, 5, 60–67 (2016).

Chakati, V., M. Pore, A. Pal, A. Banerjee and S. K. Gupta, “Challenges and
trade-offs of a cloud hosted phasor measurement unit-based linear state es-
timator”, in “Power & Energy Society Innovative Smart Grid Technologies
Conference (ISGT), 2017 IEEE”, pp. 1–5 (IEEE, 2017).

Chang, T., L. Zheng, M. Gorlatova, C. Gitau, C. Huang and M. Chiang, “Demo:
Decomposing data analytics in fog networks”, in “Proc. ACM Conference on
Embedded Networked Sensor Systems (ACM SenSys’ 17)”, (2017).

Chatterjee, P., A. Pal, J. S. Thorp and J. De La Ree, “Partitioned linear
state estimation”, in “IEEE PES Innovative Smart Grid Technologies Con-
ference(ISGT),”, pp. 1–5 (IEEE, 2015).

80



Chen, H., B. Guo, Z. Yu and Q. Han, “Toward real-time and cooperative mobile
visual sensing and sharing”, in “IEEE INFOCOM 2016 - The 35th Annual
IEEE Intl. Conf. on Computer Communications”, pp. 1–9 (2016).

Chen, X., H. Zhang, C. Wu, S. Mao, Y. Ji and M. Bennis, “Optimized com-
putation offloading performance in virtual edge computing systems via deep
reinforcement learning”, IEEE Internet of Things Journal 6, 3, 4005–4018
(2018).

Chen, Y.-S. and Y.-T. Tsai, “A mobility management using follow-me cloud-
cloudlet in fog-computing-based rans for smart cities”, in “Sensors”, (2018).

Chodera, J., “Folding@home update on sars-cov-2 (10 mar 2020)”, URL
https://foldingathome.org/2020/03/10/covid19-update/ (2020).

Chon, Y., E. Talipov, H. Shin and H. Cha, “CRAWDAD
dataset yonsei/lifemap (v. 2012-01-03)”, Downloaded from
https://crawdad.org/yonsei/lifemap/20120103 (2012).

Chun, B.-G., S. Ihm, P. Maniatis, M. Naik and A. Patti, “Clonecloud: elastic
execution between mobile device and cloud”, in “Proceedings of the sixth
conference on Computer systems”, pp. 301–314 (2011).

Cuervo, E., A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu, R. Chandra
and P. Bahl, “Maui: making smartphones last longer with code offload”, in
“Proceedings of the 8th international conference on Mobile systems, applica-
tions, and services”, pp. 49–62 (ACM, 2010).

De Rolt, C. R., R. Montanari, M. L. Brocardo, L. Foschini and J. da Silva Dias,
“Collega middleware for the management of participatory mobile health com-
munities”, in “IEEE Symposium on Computers and Communication (ISCC),
2016”, pp. 999–1005 (IEEE, 2016).

Doukas, C. and I. Maglogiannis, “Bringing iot and cloud computing towards
pervasive healthcare”, in “2012 Sixth International Conference on Innovative
Mobile and Internet Services in Ubiquitous Computing”, pp. 922–926 (IEEE,
2012).
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