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ABSTRACT

During the inversion of discrete linear systems, noise in data can be amplified

and result in meaningless solutions. To combat this effect, characteristics of solutions

that are considered desirable are mathematically implemented during inversion. This

is a process called regularization. The influence of the provided prior information

is controlled by the introduction of non-negative regularization parameter(s). Many

methods are available for both the selection of appropriate regularization parame-

ters and the inversion of the discrete linear system. Generally, for a single problem

there is just one regularization parameter. Here, a learning approach is considered to

identify a single regularization parameter based on the use of multiple data sets de-

scribed by a linear system with a common model matrix. The situation with multiple

regularization parameters that weight different spectral components of the solution

is considered as well. To obtain these multiple parameters, standard methods are

modified for identifying the optimal regularization parameters. Modifications of the

unbiased predictive risk estimation, generalized cross validation, and the discrepancy

principle are derived for finding spectral windowing regularization parameters. These

estimators are extended for finding the regularization parameters when multiple data

sets with common system matrices are available. Statistical analysis of these estima-

tors is conducted for real and complex transformations of data. It is demonstrated

that spectral windowing regularization parameters can be learned from these new esti-

mators applied for multiple data and with multiple windows. Numerical experiments

evaluating these new methods demonstrate that these modified methods, which do

not require the use of true data for learning regularization parameters, are effective

and efficient, and perform comparably to a supervised learning method based on es-

timating the parameters using true data. The theoretical developments are validated

for one and two dimensional image deblurring. It is verified that the obtained es-

i



timates of spectral windowing regularization parameters can be used effectively on

validation data sets that are separate from the training data, and do not require

known data.
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Chapter 1

INTRODUCTION

We consider solutions of linear problems described by

Ax ≈ d, (1.0.1)

where A ∈ Rm×n with m ≥ n and d is known, but represents d = b + η, with

b = Axtrue and η being a realization of a random vector representing errors/noise

in d. Consider the multivariate normal distribution with mean µ ∈ Rm and positive

semidefinite Σ ∈ Rm×m, which is denoted N (µ,Σ). If X is a random vector with this

distribution, which is denoted X ∼ N (µ,Σ), then the probability density function of

X is

fX (x) = 1√
(2π)m det(Σ)

exp
(
−1

2(x− µ)TΣ−1 (x− µ)
)
.

In this work, we primarily consider η being a realization of a random vector X ∼

N (0, σ2Im), in which case η is considered a realization of white noise. Even for

invertible square matrices A, direct matrix inversion of eq. (1.0.1) when A is ill-

conditioned is not recommended due to the noise in the data. Rather, regularization

is imposed in which desired characteristics of a solution are described mathematically

and incorporated into the problem formulation, with the aim to produce a more

well-posed problem.

The generalized Tikhonov regularized solution, x(α), Tikhonov (1963), is

x(α) = arg min
x∈Rn

{
‖Ax− d‖2

2 + α2‖Lx‖2
2

}
, α > 0, L ∈ Rq×n. (1.0.2)

Here, the scalar α > 0 is a regularization parameter and L is a q × n matrix repre-

sentation of a linear operator. The term ‖Lx‖2
2 is an example of a penalty function
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Vogel (2002), and L is called the penalty matrix. If L = In, the n×n identity matrix,

then regularization via eq. (1.0.2) is called standard or zeroth-order Tikhonov regu-

larization Aster et al. (2013). Other standard choices of L include approximations

of first and second order derivative operators Ng et al. (1999); Strang (1999); Vogel

(2002).

The quality of x(α) depends on the choice of both α and L. There are a number

of methods for selecting α when L has been fixed. The Morozov discrepancy principle

Morozov (1966) assumes that the variance of the noise in the data is known and finds

α as the root of a function. The unbiased predictive risk estimator, Mallows (1973),

which also requires knowledge of the variance of the noise distribution of the data,

yields the regularization parameter as the minimizer of a function. The method of

generalized cross validation, Wahba (1977, 1990), which does not require the noise

distribution be known, also yields the regularization parameter as a minimizer of

a function. Some methods do not solve minimization or root-finding problems; for

example, the regularization parameter found using the L-curve method occurs at the

point of maximum curvature of a function Hansen (1992); Hansen and O’Leary (1993).

As noted, many of these techniques, including the unbiased predictive risk, Morozov’s

discrepancy principle, and the generalized cross validation methods, have statistical

foundations James et al. (2013). Throughout this work the 2-norm is utilized, as in

eq. (1.0.2), though other choices of p-norms are possible but not considered here.

There has been a considerable amount of research on finding sets of regularization

parameters for a pre-selected set of penalty matrices, a process called windowed reg-

ularization Brezinski et al. (2003); Chung and Español (2017); Gazzola and Novati

(2013); Lu and Pereverzev (2011); Wood (2002). Approaches to windowed regu-

larization using versions of the L-curve and discrepancy principle methods can be

found in Belge et al. (2002) and Wang (2012), respectively. A windowed generalized
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cross validation method was also considered in Modarresi and Golub (2007a,b). Win-

dowing, either in the data domain or the frequency domain, can also be applied to

determine multiple regularization parameters, and windowing wavelet coefficients was

considered in Easley et al. (2014); Stephanakis and Kollias (1998). Examples of win-

dowed regularization in other frequency domains, such as those generated by discrete

trigonometric transforms or the singular value decomposition, have been presented in

Chung et al. (2011b, 2015) and Kalke and Siltanen (2013). There is also recent work

on learning seminorms as regularization operators Holler and Kunisch (2022).

Techniques for utilizing and analyzing multiple data sets permeate a multitude of

scientific fields as diverse as geoscience Bergen et al. (2019); Zobitz et al. (2020), and

the detection of cancers Sidey-Gibbons and Sidey-Gibbons (2019). A comprehensive

overview of data-driven approaches for finding solutions of inverse problems can be

found in Arridge et al. (2019), while specific examples of applying multiple data

sets for the solution of inverse problems include Afkham et al. (2021); Chung et al.

(2011a); Chung and Español (2017); Haber and Tenorio (2003); Kunisch and Pock

(2013); Taroudaki and O’Leary (2015); Vito et al. (2005).

1.1 Overview

The functions pertaining to new windowed multidata methods are presented in

Chapter 5 and constitute the majority of the main contributions of this document.

The corresponding numerical results are contained in Chapter 6. However, the math-

ematical background must be established not only for the parameter methods but also

for the underlying theory/tools that are utilized in the development of such methods.

We discuss two primary approaches to regularization: a learning approach involving

multiple data sets and the application of spectral windowing. Before these approaches

can be discussed in detail, however, a background on regularization and matrix the-

3



ory is necessary and provided in Chapter 2. The specific type of problems in this

work that are solved using both the learning and windowing approaches to general

Tikhonov regularization involve the deblurring of images. A variety of considerations

are associated with deblurring, both in the continuous and discrete settings: the pro-

cess by which the blurring occurs, the amount of blur, and how blurring applied at

the boundaries of the solutions is handled. In the discrete setting, consideration must

also be given to noise that may be present in the available data, particularly the

distribution of the noise and how the distribution changes under various transforma-

tions. While the generalized singular value decomposition is a powerful technique for

analyzing the conditioning and regularization of a discrete problem (see Section 2.3),

other methods must be used for efficient obtainment of meaningful solutions. All of

these considerations are important for the numerical implementation of the regular-

ization process and will be discussed in Chapter 3. Section 3.5 deviates somewhat

from the rest of Chapter 3 in that the focus shifts to the statistics of noise under

various transformations; the content of Section 3.5 was originally formulated in an

effort to better understand the parameter methods as applied to downsampled data.

The standard parameter methods, meaning the methods used for selecting a scalar

regularization parameter for a single data set, are discussed in Chapter 4. A method

using true solutions to determine parameters, referred to as the mean squared error

method and used as a baseline method from which the other methods are compared,

is discussed first. More discussion is then allocated to the unbiased predictive risk

estimator method than to the generalized cross validation method and discrepancy

principle. The reason for this is twofold: the generalized cross validation method for

spectral windows is fundamentally distinct from the standard version and thus much

of the discussion regarding the generalized cross validation method is presented in

Chapter 5. The other reason is that the discrepancy principle method, when com-
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pared to the unbiased predictive risk estimator method, is considerably more simple;

in fact, the function associated with the unbiased predictive risk estimator method

is the same as the function associated with discrepancy principle method, minus one

term. Some variations of the standard methods, including summation representations

involving spectral data components, are also contained in Chapter 4. As mentioned

previously, the majority of the main contributions are presented in Chapter 5. The

progression of the presentation proceeds by first forming the relevant terms of the

function in the context of spectral windowing and their use with multiple data sets.

Chapter 6 contains the 1D and 2D numerical test problems and corresponding results

from which the new methods are evaluated. Lastly, Chapter 7 introduces the concept

of downsampling in the context of selecting regularization parameters and some re-

sults are presented. Chapter 7 is considerably shorter than Chapter 5 and Chapter 6,

serving mostly to present preliminary results that could serve as a starting point for

future work. Conclusions and closing remarks are finally provided in Chapter 8.

1.2 Main Contributions

A main contribution of this work is demonstrating and validating how to use

standard techniques, in particular the unbiased predictive risk estimator, Morozov’s

discrepancy principle, and the generalized cross validation methods, to learn regular-

ization parameters weighting spectral components given multiple data sets, without

any knowledge of the true solution. These are chosen as representative methods that

either require (unbiased predictive risk estimator), or do not require (generalized cross

validation), prior knowledge of the statistics of the noise in the data. Morozov’s dis-

crepancy principle falls into the former of these categories. In addition to developing

these modified parameter selection methods, results are presented regarding their

relationship(s) with the original method(s) (i.e. the non-modified methods).
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Most significantly, it is demonstrated through this work how multiple data sets

can be used in conjunction with windowed regularization using the windowing for-

mulation introduced in Chung et al. (2011b). Windowed versions of the generalized

cross validation method are presented in Chung et al. (2011b); Modarresi and Golub

(2007b); here these formulations are extended for equivalent versions of the unbiased

predictive risk estimator and discrepancy principle methods. Numerical results for

the restoration of 2D signals demonstrate that these new windowed regularization

parameter estimators can be used for multiple data sets and that their performance

competes with a learning approach in which the training stage requires the knowledge

of true data, which is not the case here. Furthermore, parameters that have been ob-

tained from one set of training images can be used on a separate set of validation

(testing) images distinct from the original set, provided that the signal-to-noise ratios

are close and the data is collected using similar measurement procedures.

1.3 Summary of Notation

Due to the consideration of multiple data sets as well as multiple parameters for

the purpose of regularizing these data sets, the notation in this document is extensive.

Tables containing the notation used throughout this work are found in Appendix A;

these tables also include references to pertinent equations/results where appropriate.
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Chapter 2

MATRIX FACTORIZATIONS AND DECOMPOSITIONS

We begin with the motivation for regularization, namely the concepts of ill-posed

and ill-conditioned problems. The singular value decomposition (SVD) is introduced

in Section 2.1 to illustrate these concepts, and standard Tikhonov regularization is

introduced in Section 2.2. The generalized singular value decomposition (GSVD) is

discussed in Section 2.3, which is used for generalized Tikhonov regularization as the

focus of this work.

The concept of a well-posed problem is due to Hadamard (1904). Given an oper-

ator A : H1 → H2, where H1 and H2 are Hilbert spaces, the equation Af = g is said

to be well-posed if

(i) for each g ∈ H2 there exists a solution f ∈ H1 to Af = g,

(ii) the solution f is unique, and

(iii) if Af∗ = g∗ and Af = g, then ‖f − f∗‖H1 → 0 whenever ‖g − g∗‖H2 → 0,

where ‖·‖H denotes the norm induced by the inner product on H. In order, condition

(i) requires that a solution f exists, condition (ii) requires f be unique, and condition

(iii) requires f to be stable under perturbations in g. If one of these conditions is not

met, then Af = g is said to be an ill-posed problem. The discrete problem Ax = b

(where H1 = Rn and H2 = Rm) can be ill-posed under a number of circumstances:

singularity of A violates conditions (i) and (ii), and a poor condition number of

non-singular A violates condition (iii). If m 6= n, certainly condition (i) is violated.

As suggested by the term “condition number” of A, denoted κ(A) and defined as

7



κ(A) = ‖A‖‖A−1‖ for any consistent matrix norm ‖ · ‖ on Rn×n Leon (2010), discrete

systems that are ill-posed are often considered ill-conditioned.

Even for linear systems that are well-posed, obtaining a solution via direct matrix

inversion (assuming the practicality of forming the inverse A−1) can be problematic

if the data available is flawed in some way. In other words, if the data available is

d ≈ b, then forming A−1d can produce a “solution” that is unlike x in any meaningful

way. Specifically, if d = b + η, then A−1d = x + A−1η and so the obtained solution

differs from x by A−1η. The condition number of A is helpful for quantifying the

ill-posedness of a discrete problem. A lower bound on κ(A) is readily obtained by

noting ‖A‖‖A−1‖ ≥ ‖AA−1‖ = ‖Im‖ = 1. There is no upper bound on κ(A): for

singular A it is the convention that κ(A) =∞, in which case the associated discrete

problem is ill-posed. A matrix with a condition number close to 1 is considered

well-conditioned, while a matrix with a large condition number is considered ill-

conditioned. The difficulty in working with ill-conditioned matrices is that errors

in the data can be amplified to produce erroneous solutions, i.e. ‖A−1η‖ can be

excessively large. Finding a solution of the system Ax ≈ d is considered an ill-

conditioned problem if A is an ill-conditioned matrix.

To combat the difficulties associated with an ill-posed problem, the process of

regularization essentially introduces additional information that is sufficient to make

the problem more tractable. Even if a problem is well-posed yet numerically ill-

conditioned, regularization processes are useful in constructing meaningful solutions.

Perhaps the most famous means of regularization is attributed to Tikhonov (1963).

Tikhonov regularization forms the foundation of the work presented here and will be

introduced in the context of the singular value decomposition of the matrix A.
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2.1 Singular Value Decomposition

To illustrate the discussion we introduce the integral equation

g(x) = (k ∗ f)(x) =:
∫ ∞
−∞

k(x− t)f(t) dt. (2.1.1)

Equation (2.1.1) represents the one-dimensional continuous convolution of functions

k, f ∈ L1(R), where k is called the convolution kernel. The process of determining

f from known g and k is called deconvolution (there are problems where k is un-

known as well, which are examples of blind deconvolution). The convolution integral

eq. (2.1.1) is a specific example of the Fredholm equation of the first kind (Debnath

and Mikusiński, 2005, p. 218):

g(x) =
∫ b

a
k(x, t)f(t) dt. (2.1.2)

Equation (2.1.1) is obtained from eq. (2.1.2) if the kernel is spatially invariant, i.e.

k(x, t) = k(x − t). The properties of the integrands have a direct impact on the

properties of g; for example, if k(x− t) is integrable and f(t) is bounded and locally

integrable then g(x) is a continuous function Debnath and Mikusiński (2005).

Deblurring is often described as a subclass of deconvolution-type problems in

which the effect of convolution by specific kernels is the smoothing or blurring of the

original function f . A Gaussian kernel is common in blurring/deblurring problems

for this reason. The form of a Gaussian kernel comes from the probability density

function of the Gaussian distribution,

k(t) = 1√
2πξ exp

(
−(t− µ)2

2ξ

)
, (2.1.3)

where µ is the mean and ξ is the variance. The mean is the center of the Gaussian

distribution, as well as the abscissa of the absolute maximum of the probability den-

sity function k(t). The variance ξ is a measure of dispersion of the distribution; as

9



ξ increases, the width of the graph of k(t) increases. The standard deviation
√
ξ is

also a measure of dispersion. The scale factor 1/
√

2πξ ensures that
∫
R k(t) dt = 1, an

essential property of a continuous probability distribution defined on the entire real

line. For Gaussian kernels, however, this scale factor may be dropped since having

a unitary integral is not required of kernels in general. The continuous deconvolu-

tion problem can be discretized using a quadrature method to obtain a linear system

eq. (1.0.1). Depending upon the support of the continuous functions, boundary con-

ditions are often necessary to effectively describe the continuous problem in a discrete

setting. Figure 2.1 shows an example of a discretized deconvolution problem which

leads to a problem of the form Ax ≈ d as given in eq. (1.0.1) and where d is the

true data corrupted by noise. An in-depth discussion of translating a continuous

convolution problem to a linear system is given in Chapter 3.
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1D test function (  = 16, SNR: 10)

Figure 2.1: Truncated vectors as part of an example of discretizing a 1D deconvo-
lution problem. The data vector d is the sum of b and η, where η is a realization of
white noise. Quadrature is used with a sampling of the Gaussian kernel eq. (2.1.3)
with ξ = 16 to form the system matrix A. The function f is discretized to form vector
x and b is formed by b = Ax. The full vectors have 256 elements and are truncated
for the sake of visual clarity.
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The singular value decomposition (SVD) is a useful tool for analyzing the proper-

ties of the solutions of eq. (1.0.1), even if it is not used in practice for large scale prob-

lems, Golub and Van Loan (2013). Consider the full SVD of A given by A = USV T,

where the m × m matrix U and the n × n matrix V are orthogonal. The columns

of U and V denoted by U·,j and V·,j, respectively, are known as the left and right

singular vectors of A. S is a m × n matrix with non-zero entries sj on the leading

diagonal ordered by s1 ≥ s2 ≥ . . . ≥ srA
> 0. The sj are the singular values of A,

and rA := rank(A) ≤ min{m,n} is the number of non-zero singular values.

The condition number of a matrix A is unbounded and considered infinite for

singular matrices. This is made clear through the equivalent definition of κ(A):

κ(A) = smax

smin
(2.1.4)

where smax and smin are the largest and smallest singular values of A, respectively.

The condition number of A can be arbitrarily large since smin can be arbitrarily

small. Since smin = 0 for singular A, the convention that κ(A) =∞ in such a case is

appropriate.

If A is square and invertible (rA = m = n), then A−1 = V S−1UT and the solution

A−1d can be written as

A−1d = V S−1UTd =
n∑
j=1

(U·,j)Td
sj

V·,j =
n∑
j=1

d̂j
sj
V·,j, (2.1.5)

where d̂ = UTd is the vector of spectral coefficients of d. When A is not square, or

is square and not invertible, the pseudoinverse A† = V S†UT (also called the Moore-

Penrose inverse Penrose (1955)) can be used where S† ∈ Rn×m is formed by recipro-

cating the nonzero diagonal elements of ST. In such a case, forming A†d is equivalent

to setting the upper limit of summation in eq. (2.1.5) to be rA. Properties of the

pseudoinverse are given in appendix B.
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Generally, the summands in eq. (2.1.5) are numerically unstable for small sj when

the coefficients
∣∣∣d̂j∣∣∣ do not decay as fast as the sj; this describes the discrete Picard

condition Hansen (1998). The discrete Picard condition can be evaluated visually

using a Picard plot that displays the rate of coefficient decay. Figure 2.2 is an example

of a Picard plot that demonstrates the relationship between the noise, the width

of a Gaussian blur, and the resulting numerical instabilities related to obtaining

meaningful solutions. The discretizations used to generate Figure 2.2 are presented

in Figure 2.1. Full details on Picard plots and the associated discrete Picard condition

are given in Hansen (1990).
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Picard plots for data from 1D test function (  = 16, SNR: 10)

Figure 2.2: Picard plots generated from test function shown in fig. 2.1. The right
plot is the same as the left, except limited to the first 100 terms. The terms |d̂j|/sj|
decrease and then increase in magnitude. This is due to the fact that the singular
values sj steadily decrease while the |d̂j| level off just below the noise variance σ2.

For an ill-conditioned matrix A, forming eq. (2.1.5) will often result in a meaning-

less solution. A common approach to overcome numerical instabilities is to multiply

the summands in (2.1.5) by filter functions φj(α) = φ(sj, α) that depend upon sj and

a non-negative regularization parameter α. By doing so, an approximate solution is

12



obtained:

x(α) :=
n∑
j=1

φj(α) d̂j
sj
V·,j = V Φ(α)S†d̂, (2.1.6)

where Φ(α) is diagonal with entries Φj,j(α) = φj(α). The most desired property of

the filter functions is that φj(α)/sj ≈ 1 for large values of sj and φj(α)/sj ≈ 0 for

small values of sj. Perhaps the simplest filter function is

φj(α) =


1, s2

j > α

0, s2
j ≤ α.

Using this function in (2.1.6) gives the approximate solution

x(α) =
∑
s2

j>α

d̂j
sj
V·,j

which corresponds to the solution obtained using a truncated SVD of the matrix A

(Vogel, 2002, p. 3-5).

The use of filter functions φj(α) is in itself a means of regularization: the desire to

overcome the negative effects of small singular values in eq. (2.1.5) is mathematically

accomplished by introducing φj(α) in an effort to obtain meaningful solutions x(α).

By selecting a specific type of filter function, Tikhonov regularization Tikhonov (1963)

is realized.

2.2 Tikhonov Regularization

Using the filter factors

φj(α) =
s2
j

s2
j + α2 , (2.2.7)

which are known as Tikhonov filter factors, eq. (2.1.6) is equivalent to the solution of

the damped least squares problem

x(α) = arg min
x∈Rn

{
‖Ax− d‖2

2 + α2‖x‖2
2

}
, (2.2.8)
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Aster et al. (2013). The solution eq. (2.2.8) is also equivalent to the ordinary least

squares problem

x(α) = min
x∈Rn



∥∥∥∥∥∥∥∥∥∥∥∥


A

αIn

x−


d

0



∥∥∥∥∥∥∥∥∥∥∥∥

2

2


. (2.2.9)

For large values of α, (2.2.7) is close to zero and for small values of α (and nonzero

values of sj), it is close to one. Another property of (2.2.7) is that for fixed nonzero

sj, it is monotone decreasing in α. Since the expression 1− φj(α) arises a number of

times in this work, we introduce

ψj(α) = 1− φj(α) = α2

s2
j + α2 . (2.2.10)

In contrast to eq. (2.2.7), eq. (2.2.10) is close to one for large values of α and is

monotone increasing in α for fixed sj; see fig. 2.3. Notice also that eq. (2.2.10) leads

to the complementary diagonal matrix Ψ(α) = In − Φ(α).

The use of the Tikhonov filter function generates an approximate solution of

eq. (2.2.9). Replacing ‖x‖2
2 with a more general term ‖Lx‖2

2 with L ∈ Rq×n produces

eq. (1.0.2), which is equivalent to

x(α) = arg min
x∈Rn



∥∥∥∥∥∥∥∥∥∥∥∥


A

αL

x−


d

0



∥∥∥∥∥∥∥∥∥∥∥∥

2

2


. (2.2.11)

Equation (2.2.8) follows eq. (1.0.2) by selecting L to be In. From the normal equations

for eq. (2.2.11), we can also write

x(α) = (ATA+ α2LTL)−1
ATd = A](α)d, (2.2.12)

where A](α) is called the generalized inverse matrix Hansen (1998). The notation

A](α) is chosen to indicate the dependence upon α. If the matrix L in eq. (1.0.2) is
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Figure 2.3: The behavior of the Tikhonov filter function φj(α) and corresponding
ψj(α) = 1 − φj(α) is displayed for selected singular values sj = 0.1, 0.5, and 1. For
fixed sj, φj(α)→ 0 and ψj(α)→ 1 as α→∞. Notice also that φj(α) = ψj(α) = 1/2
for α = sj.

non-singular, then the substitutions y = Lx and B = AL−1 give

y(α) = arg min
y∈Rn

‖By− d‖2
2 + α2‖y‖2

2. (2.2.13)

This is known as the standard form of the regularization problem. Once y is obtained

from (2.2.13), the final solution is recovered by x = L−1y.

There are many examples of matrices L that are singular, such as finite difference

matrices that approximate derivative operators. The case with singular L is addressed

by eq. (2.2.15); an extension of the transformation that rendered (2.2.13) is now stated

from (Hansen, 1998, p. 38) by introducing an A-weighted generalized inverse of L:

L†A :=
(
I −

(
A
(
I − L†L

))†
A
)
L†, I ∈ Rn×n. (2.2.14)

The definition of L†A is somewhat natural, as evidenced by Prop. 2.2.1.

Proposition 2.2.1 ((Hansen, 1998, p. 38)) Given A ∈ Rm×n, L ∈ Rq×n, and L†A

15



defined by (2.2.14), if q ≥ n and rank(L) = n then L†A = L†.

Proof. Since rank(L) = n, part (ii) of Prop. B.0.1 gives L† =
(
LTL

)−1
LT. Thus

L†L = In, and so

L†A =
(
In − (A (In − In))†A

)
L† =

(
In − (0m×n)†A

)
L†.

From part (iii) of Prop. B.0.1, (0m×n)† = 0n×m and therefore

L†A = (In − 0n×mA)L† = (In − 0n×n)L† = L†.

�

By letting x0 =
(
A
(
In − L†L

))†
d, we can define

y = Lx, B = AL†A, c = d− Ax0. (2.2.15)

These substitutions transform eq. (1.0.2) into the standard form eq. (2.2.13), while

the solution x can be obtained from

x = L†Ay + x0. (2.2.16)

The transformation proceeds by the simultaneous addition and subtraction of Ax0 as

follows

Ax− d = Ax− Ax0 − d + Ax0 = A (x− x0)− (d− Ax0) = AL†Ay− c = By− c.

Prop. 2.2.2 shows that x0 indeed lies within the nullspace of L. For example, null(L)

is the set of constant vectors x0 ∈ Rn for L ∈ R(n−1)×n defined by

Lj,j = 1, Lj,j+1 = −1, j = 1, . . . , n− 1.

Proposition 2.2.2 ((Hansen, 1998, p. 39)) Given A ∈ Rm×n, L ∈ Rq×n, and

d ∈ Rm, let

x0 =
(
A
(
In − L†L

))†
d.

Then x0 ∈ null(L).
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Proof. Let B = In − L†L. Part (ii) of Prop. B.0.2 states that L†L is the orthog-

onal projection onto range(LT). Thus B is the orthogonal projection onto null(L).

From part (iv) of Prop. B.0.2, we can write Lx0 as Lx0 = L(AB)†d = LB(AB)†d.

Substituting back B = In − L†L into the product LB, we have

LB = L
(
In − L†L

)
= L− LL†L.

L† satisfies Moore-Penrose condition (I) in appendix B, meaning L−LL†L = L−L = 0

where 0 ∈ Rq×n. Therefore

Lx0 = LB(AB)†d = 0(AB)†d = 0 ∈ Rq,

and so x0 ∈ null(L). �

Recasting regularization can also be accomplished in a convenient way using the

generalized singular value decomposition (GSVD). In addition, it is no longer possible

to use the SVD to express the solution eq. (2.2.11); rather, the use of the GSVD is

invoked.

2.3 Generalized Singular Value Decomposition

Assuming null(A) ∩ null(L) = {0} for real matrices A and L of size m × n

and q × n, respectively, which will be subsequently referred to as the invertibility

condition, the decompositions

A = U∆XT, L = V ΛXT (2.3.17)

exist where U is an m×m orthogonal matrix, V is a q×q orthogonal matrix, and X is

an n×n non-singular matrix. Λ is a q×n diagonal matrix with non-negative diagonal

elements in decreasing order on the principal diagonal Λjj, 1 ≤ j ≤ q∗ = min(q, n),

and the only elements of the m× n matrix ∆ that are possibly non-zero are

0 ≤ ∆(1,k+1) ≤ ∆(2,k+2) ≤ . . . ≤ ∆(min (m,n),k+min (m,n)) ≤ 1 (2.3.18)
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with k = max{n−m, 0}. This construction is just one version of the GSVD, Golub

and Van Loan (2013). When m ≥ n, we have k = 0 and eq. (2.3.18) reduces to

the possibly non-zero elements of ∆ being located on the main diagonal. Note that

the invertibility condition is independent of the assumption that m ≥ n. Using the

GSVD with eq. (2.2.12) and the full rank condition yields the solution

x(α) = Y
(
∆T∆ + α2ΛTΛ

)−1
∆Td̂, (2.3.19)

where Y is the inverse of XT and d̂ = UTd.

Certainly ΛTΛ is diagonal, but the structure of ∆T∆ may not be obvious ifm < n.

To explain the structure of ∆T∆, the notion of a k-diagonal matrix is introduced first.

A k-diagonal matrix ∆ ∈ Rm×n with m ≤ n and k = n −m is a matrix whose only

non-zero elements are ∆j,j+k for 1 ≤ j ≤ m; note that when m = n, A is a diagonal

matrix. Lem. 2.3.1 presents some well-known basic properties (see Aster et al. (2013)

for instance) of k-diagonal matrices.

Lemma 2.3.1 For any matrices M ∈ Rm×m and N ∈ Rn×n and any k-diagonal

matrix ∆ ∈ Rm×n with m < n and k = n−m, partition ∆ as ∆ = [0m×k D], where

0m×k is an m× k zero matrix and D is a m×m diagonal matrix. Similarly, partition

N as

M =


Nk×k Nk×m

Nm×k Q

 ,

where F is anm×mmatrix. Then, the structure of the matrix conjugations ∆TM∆ ∈

Rn×n and ∆N∆T ∈ Rm×m are described by the following.
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(a) The matrix ∆TM∆ is block diagonal with

∆TM∆ =


0k×k 0k×m

0m×k DTMD

 .

(b) ∆N∆T = DQDT.

Proof. For part (a), the partitioning of ∆ yields

∆TM∆ =


0k×m

DT

M
0m×k D

 =


0k×m

DT


0m×k MD

 =


0k×k 0k×m

0m×k DTMD

 .

Similarly, the proof of part (b) uses the partitioning of both ∆ and N :

∆N∆T =
0m×k D



Nk×k Nk×m

Nm×k Q




0k×m

DT

 =
0m×k D



Nk×mD

T

QDT

 = DQDT.

�

It then follows from part (a) of Lem. 2.3.1 that ∆T∆ is diagonal, which is stated as

the following corollary.

Corollary 2.3.1 The n× n matrix ∆T∆ in eq. (2.3.19) is diagonal.

Proof. The m×n matrix ∆ is diagonal if m ≥ n, in which case it is immediate that

∆T∆ is diagonal. If m < n, then ∆ is a k-diagonal matrix with k = n−m. Part (a)

of Lem. 2.3.1 can be applied with M = I, which implies that the structure of ∆T∆ is

∆T∆ =


0k×k 0k×m

0m×k DTD


with partition ∆ = [0m×k D] and diagonal matrix D. The matrix DTD is thus

diagonal, and therefore ∆T∆ is diagonal. �
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A convenient property of ΛTΛ and ∆T∆ is that ∆T∆ + ΛTΛ = In (Aster et al., 2013,

p. 104). A consequence of Cor. 2.3.1 is that the matrix ∆T∆ +α2ΛTΛ in eq. (2.3.19)

is diagonal.

Defining δ =
√

diag(∆T∆) and λ =
√

diag(ΛTΛ) (the square roots being applied

element-wise), generalized singular values γj = δj/λj for j = 1, . . . , n can be formed

for non-zero λj. In contrast to the decreasing ordering of the singular values sj,

the γj are ordered in increasing order, γ1 ≤ . . . ≤ γn, which is due to the order of

the diagonal elements of diag(∆T∆) and diag(ΛTΛ). As noted in (Aster et al., 2013,

p. 107), there are situations in which some generalized singular values γj are arbitrarily

small (meaning δj is arbitrarily small). Likewise, γj can be arbitrarily large (occurring

when λj is small). These situations can either be attributed to the actual matrices or

the numerical calculation of the GSVD. In the case where λj = 0, the corresponding

γj is considered infinite; with q∗ = min{q, n}, there are q∗ non-zero λj. To account

for these possibilities, a preset tolerance τ > 0 can be set for the magnitudes of δj and

λj, and the filter factors can be defined appropriately. Specifically, for j = 1, . . . , n

we redefine φj(α) and ψj(α) by

φj(α) =



0, δj < τ

1, λj < τ

γ2
j

γ2
j + α2 , otherwise,

ψj(α) =



1, δj < τ

0, λj < τ

α2

γ2
j + α2 , otherwise.

. (2.3.20)

Note that we retain the definition of the complement ψj(α) = 1−φj(α), as well as the

diagonal matrices Φ(α) and Ψ(α). Assuming that L has full rank q∗, then certainly

φj(α) = 1 for j > q∗. Sums of φj(α) and ψj(α) for j = 1, . . . , n are used repeatedly

in Chapters 4 and 5. It is convenient to note that

n∑
j=1

φj(α) = (n− q∗) +
q∗∑
j=1

φj(α),
n∑
j=1

ψj(α) =
q∗∑
j=1

ψj(α).
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The first derivatives of φj(α) and ψj(α) (used in Chapter 4) are then

dφj
dα

=



0, δj < τ

0, λj < τ

−2αγ2
j

(γ2
j + α2)2 , otherwise,

dψj
dα

=



0, δj < τ

0, λj < τ

2αγ2
j

(γ2
j + α2)2 , otherwise.

(2.3.21)

Using eq. (2.3.20), the generalized Tikhonov regularized solution can be written as

x(α) =
n∑
j=1

δ2
j

δ2
j + α2λ2

j

d̂j
δj
Y·,j =

n∑
j=1

γ2
j

γ2
j + α2

d̂j
δj
Y·,j =

n∑
j=1

φj(α) d̂j
δj
Y·,j, (2.3.22)

where summands with δj < τ are treated as zero.

Returning to matrix form and using ∆T = ∆T∆∆† (see Prop. B.0.3), eq. (2.3.19)

is replaced by

x(α) = Y Φ(α)∆†d̂, (2.3.23)

and by eq. (2.3.20) we have Φ(α) =
(
∆T∆ + α2ΛTΛ

)−1
∆T∆. Note that eq. (2.3.23)

corresponds to eq. (2.1.6) when L = In. Equation (2.3.23) also allows use to write

the generalized inverse as A](α) = Y Φ(α)∆†UT.

2.4 Summary

Tikhonov regularization is an effective means by which solutions can be obtained

from ill-condition linear systems. Tools such as the SVD and GSVD can be used

to analyze and implement the regularization process. While the GSVD is useful for

analyzing problems with a matrix pair (A,L), there are efficient alternatives to the

GSVD if A and L have some special structure. In the context of image deblurring, for

example, the system matrix A often has structure that lends itself to decompositions

related to specific discrete trigonometric transforms; the 2D problems considered in

this work fall into such categories. Chapter 3 presents the numerical background for

such systems.
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Chapter 3

PROBLEM FORMULATIONS

We first discuss some matrix structures and how discretizations of continuous

problems are connected with matrix structure. For image restoration problems, this

involves relationships with the imposed boundary conditions. Some discrete trigono-

metric transforms and related matrix transformation are discussed, and some results

regarding transformations of white noise will be presented in Section 3.5.

3.1 Matrix Structure

Matrices associated with blurring can be uniquely structured based upon which

boundary conditions are imposed. These structures will be discussed in greater depth

since they are used for numerical implementation of later techniques. Versions of such

matrices associated with 1D problems will be presented first, followed by their 2D

analogs.

Toeplitz matrices arise from blurring problems in which zero boundary conditions

are imposed. A matrix T is called a Toeplitz matrix if it is constant along each

diagonal, though by definition Toeplitz matrices need not be square. If a Toeplitz

matrix is square with dimension n × n, then it is uniquely determined by 2n − 1

entries. If a Toeplitz matrix is symmetric, then it is determined by n entries.

Some notation for symmetric Toeplitz matrices will be introduced that will assist

with the later discussion, particularly in Section 3.3. Given a column vector x of

length n, let Toeplitz(x) denote the n × n symmetric Toeplitz matrix with x as its

first column. The discrete convolution x ∗y of x and y of equal length can be cast as

the matrix-vector product Xy using X = Toeplitz(x); this is equivalent to conv(x,y)
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in MATLAB®.

A type of matrix closely related to Toeplitz matrices is a Hankel matrix, which is a

matrix that is constant along each anti-diagonal. Similar to square Toeplitz matrices,

a square Hankel matrix with dimension n × n is uniquely defined by 2n − 1 entries

and symmetric Hankel matrices are determined by n entries. Extending the notation

for symmetric Toeplitz matrices, let Hankel(x) be the n×n symmetric Hankel matrix

with the n-vector x as its first column.

A specific type of square Hankel matrix is the exchange matrix Jn, defined by

the matrix which has ones along the main anti-diagonal and zero elsewhere. The

exchange matrix is so-named for the property that the product of Jn with a vector

x ∈ Cn has the effect of “exchanging” (or “reversing”) the entries of x. For example,

if x = [1, 2, 3]T then J3x = [3, 2, 1]T. As a result of this property, the exchange matrix

is an involution, i.e. J2
n = In. Another useful property of Jn is that the product of a

Toeplitz matrix with the exchange matrix is a Hankel matrix. Lem. 3.1.1 outlines a

specific case where the Toeplitz and Hankel matrices are symmetric.

Lemma 3.1.1 (Ng et al. (1999)) Let x ∈ Rn and let Jn be the n × n exchange

matrix. Then,

Toeplitz(Jnx)Jn = Hankel(x).

Proof. By the symmetry of Toeplitz(Jnx)Jn, it suffices to argue that the first column

of Toeplitz(Jnx)Jn is x. Since Toeplitz(Jnx) is post-multiplied by Jn, the first column

of the product is equal to the last column of Toeplitz(Jnx). By definition, the last

column of Toeplitz(Jnx) is Jn(Jnx) = J2
nx = x. �

Another class of matrices related to Toeplitz matrices are circulant matrices. To

describe a circulant matrix, we first define the circular right shift of a row vector

[x1, x2, . . . , xn] as [xn, x1, . . . , xn−1]. If a matrix X has the property that each row
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is the circular right shift of the components of the preceding row, then X is called

a circulant matrix. From this definition, every circulant matrix is also a Toeplitz

matrix. Another observation regarding circulant matrices can be made about their

indexing. If x = [x1, · · · , xn] is the first row of a circulant matrix X, then

Xj,k = x(k−j mod n)+1 (3.1.1)

for all 1 ≤ j, k ≤ n. A significant property of square circulant matrices discussed in

Section 3.3 is that they are diagonalized by the discrete Fourier transform, which can

be proved using eq. (3.1.1).

As a final point regarding matrix structures, the various matrices discussed in this

section can be extended for use in 2D problems. The linear systems that arise for 2D

problems are more complicated in their structure. Perhaps the easiest approach to

conceptualize these structures is to vectorize both the data and solution and construct

a matrix-vector equation describing the system. To illustrate this process, consider

a matrix X ∈ Cm×n (perhaps an image to be blurred), and create the vector x of

length N = mn defined through the following vectorization operator (Smith, 2007,

p. 71):

vec(X) = [X1,1, X2,1, . . . , X1,2, X2,2, . . . , Xm−1,n, Xm,n]T ∈ CN , (3.1.2)

where Xj,k are the entries of X. After forming x = vec(X), multiplication with

system matrix A ∈ CM×N yields b = Ax. Vectorization can be undone by the array
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operator (Smith, 2007, p. 71) arr : Cmn → Cm×n defined by

arr (x) =



x1 xm+1 . . . x(n−1)m+1

x2 xm+2 . . . x(n−1)m+2

... ... . . . ...

xm x2m . . . xmn



∈ Cm×n. (3.1.3)

Using the array operator, a blurred image B = arr(b) can be produced from a matrix-

vector product.

In many cases, the large system matrix A can be written as the Kronecker product

of two smaller matrices. Given matrices X ∈ Cm×n and Y ∈ Cp×q, the Kronecker

product X ⊗ Y ∈ Cmp×nq is defined by

X ⊗ Y =



x1,1Y x1,2Y . . . x1,nY

x2,1Y x2,2Y . . . x2,nY

... ... . . . ...

xm,1Y xm,2Y . . . xm,nY



. (3.1.4)

In addition to system matrices, the 2D versions of discrete trigonometric transforms

discussed in Section 3.3 can be expressed as Kronecker products of matrices associated

with the 1D transforms. Lem. 3.4.2 in Section 3.4 includes a result that connects

Kronecker product decompositions with the GSVD.

The matrix structures already discussed can be extended to two dimensions for use

with x = vec(X). A block-circulant-circulant-block matrix A, or BCCB matrix for

short Vogel (2002), is a matrix that can be partitioned into blocks where A is circulant
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in regard to these blocks and each block is itself a circulant matrix. Similarly there

are block-Toeplitz-Toeplitz-block (BTTB) matrices; solving a system Ax = b where

A is a BTTB matrix requires O(n4) operations Kalouptsidis et al. (1984) unless

it is embedded within a BCCB matrix. There are also block structures involving

Hankel matrices and ones involving a mix of structures, such as a block-Toeplitz-

Hankel-block (BTHB). BTTB + BTHB + BHTB + BHHB matrices can be used in

conjunction with diagonalization properties of the discrete cosine transform Hansen

et al. (2006) for efficient numerical implementation (discussed here in Section 3.3).

See both (Vogel, 2002, p. 71-75) and Hansen et al. (2006) for in-depth instruction on

how to construct such block matrices explicitly.

Explicit construction and manipulation of such matrices associated with 2D prob-

lem is discouraged, however, due to their computational storage cost. Indeed, the

system matrix to work with the vectorization of a 256 × 256 image would have di-

mension 65,536 × 65,536 (a matrix having potentially 232 non-zero entries, requiring

approximately 34 gigabytes). Fortunately, many of the matrix structures described

in this section benefit from diagonalization properties of matrices associated with dis-

crete trigonometric transforms. Section 3.3 provides background on these transforms

in the 1D setting, which is then tied back to their relevant diagonalization properties

in Section 3.4 and are utilized in the numerical applications of this work.

3.2 Deblurring Background

Here we consider the deconvolution problem that was introduced in Section 2.1 in

more detail. We begin by carefully describing how to obtain a matrix representation

of eq. (2.1.1). To describe deconvolution problem eq. (2.1.1) in a discrete setting, a

starting approach is to consider bi-infinite sequences, which are obtained by sampling
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the functions at a countable number of points in R:

(kn) = (. . . , k−1, k0, k1, . . .), (fn) = (. . . , f−1, f0, f1, . . .).

The convolution (2.1.1) then has an analogous definition for sequences: the jth entry

gj of (gn) is

gj =
∞∑

`=−∞
kj−`f`. (3.2.5)

If the kernel has compact support, then (kn) will have finitely many nonzero terms

and can be expressed as

(kn) = (. . . , 0, k−m+1, . . . , k−1, k0, k1, . . . , km−1, 0, . . .). (3.2.6)

In this representation (kn) has potentially 2m−1 non-zero terms. Furthermore, if the

data vector d has length m, then (3.2.5) can be expressed as a matrix-vector product,

which is efficiently represented as

b = Kleftxleft +Kx +Krightxright. (3.2.7)

Here

xleft =



f−m+3

f−m+4

...

f0



, x =



f1

f2

...

fn



, xright =



fn+1

fn+2

...

fn+m
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and

Kleft =



km−1 · · · k1

. . . . . .

km−1

0



, Kright =



0
k−m+1

... . . .

k−1 · · · k−m+1



,

K =



k0 · · · k−m+1 0
... . . . . . . . . .

km−1
. . . . . . . . . k−m+1

. . . . . . . . . ...

0 km−1 · · · k0



.

Note that Kleft, K, and Kright are Toeplitz matrices, and we use larger 0 symbol to

denote combinations of zero matrices defined by their context. The goal is to obtain

a solution x = [f1, . . . , fn]T. However, it is clear that x depends not only upon the

choice of kernel k but also on the boundaries of f , i.e. the terms fj of (fn) where

j 6∈ {1, . . . , n}. There are a number of ways in which the boundaries can be handled;

for example, zero, periodic, and reflective boundary conditions are considered in Ng

et al. (1999). The most-simplifying condition in terms of the resulting system is

the zero boundary condition, in which it is assumed that xleft = xright = 0. The

resulting system (3.2.7) is Ax = b with A = K being a Toeplitz matrix (discussed in

Section 3.1).
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Analogous to how Toeplitz matrices are connected with the zero boundary con-

dition, circulant matrices arise from the following periodic boundary condition on

eq. (3.2.7): 

f0 = fn

f−1 = fn−1

...

f−m+3 = fn−m

and



fn+1 = f1

fn+2 = f2

...

fn+m = fn

.

The resulting matrix A is circulant and completely determined by the n-vector f =

[f1, . . . , fn]T.

The reflective boundary condition is defined in the context of eq. (3.2.7) by setting

f0 = f1

f−1 = f2

...

f−m+3 = fn

and



fn+1 = fn

fn+2 = fn−1

...

fn+m = fn−m+1

.

Using the exchange matrix Jn, the reflective boundary condition allows for eq. (3.2.7)

to be written as

Af = ([0 | Kleft]Jn +K + [Kright | 0]Jn) f = b, (3.2.8)

where [0 | Kleft] and [Kright | 0] are the n×n Toeplitz matrices formed by augmenting

Kleft and Kright with n −m + 1 zero columns. As a result, the matrices [0 | Kleft]J

and [Kright | 0]Jn are Hankel matrices. Their sum with K is characterized as another

unique matrix structure related to the discrete cosine transform (see Section 3.3).

Up to this point, we have considered problems of the form Ax ≈ d where A ∈

Rm×n, which approximate a deconvolution problem similar to that of eq. (2.1.1). The
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convolution integral in two dimensions is

g(x, y) = (k ∗ f)(x, y) =
∫ ∞
−∞

∫ ∞
−∞

k(x− u, y − v)f(u, v) du dv. (3.2.9)

The more general problem of having k(x, u, y, v) instead of k(x−u, y−v) corresponds

with the 2D analog of eq. (2.1.2) and having k(x, u, y, v) = k(x−u, y−v) means that

the kernel is spatially invariant. The existence of the integral is again predicated upon

the functional characteristics of k and f ; for example, having k and f be compactly

supported results in the existence of g that is continuous and compactly supported.

A connection between eq. (3.2.9) and images is made by Vogel (2002), in which g

represents a continuously blurred image where light (photons) can be counted on

rectangular pixels Ωj,k ⊂ R2 so that

gj,k =
∫ ∫

Ωj,k

g(x, y) dx dy, 1 ≤ k ≤ nx, (3.2.10)

provides a representation of g(x, y) as part of a discrete image for 1 ≤ j ≤ ny and

1 ≤ k ≤ nx. We use ny and nx to denote the number of pixels in the x and y

directions, respectively, and N = nynx is the total number of pixels. Letting Ω be

the union of all of the pixels Ωj,k, eq. (3.2.9) can be truncated to an integral over

Ω. As with the 1D case, numerical quadrature can be used to approximate the

truncation of eq. (3.2.9) as well as eq. (3.2.10) to form a linear system approximating

the continuous problem. For 2D problems, the system matrices are block matrices

which possess special structure, such as being BCCB.

Even from this simple derivation of a discrete problem from a continuous convo-

lution, it becomes clear that the system matrices for deblurring problems can have

special structure. It will be seen later that some structures can be exploited to obtain

regularized solutions that do not rely upon the construction of a GSVD. Now that

the groundwork has been laid for describing deconvolution-type problems and ma-
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trix structures, some discrete trigonometric transforms provide efficiency in numerical

implementation.

3.3 Discrete Trigonometric Transforms

Having presented a number of matrix types in Section 3.1, their use in conjunction

with discrete trigonometric transforms is the next step in formulating a background

for the body of this work. Discrete trigonometric transforms provide efficient means

of dealing with certain matrix types, especially moving from 1D to 2D problems.

The discrete Fourier transform will be discussed first, followed by the discrete cosine

transform and lastly the discrete sine transform. Though these transforms will be

expressed in the 1D setting, their 2D counterparts are used for all 2D problems in

applications of the spectral windowing and learning approaches for regularization.

The discrete Fourier transform (DFT) will be introduced from the perspective of

approximating coefficients of the Fourier series of a 2π-periodic function f (Boggess

and Narcowich, 2009, p. 132-134). On the interval [0, 2π], the jth complex Fourier

coefficient of f(t) is given by

cj = 1
2π

∫ 2π

0
f(t) exp(−ijt) dt,

where i =
√
−1. Applying the trapezoidal rule for approximating this integral with

n points then produces

cj ≈
1
n

n∑
`=1

f

(
2π(`− 1)

n

)
exp

(
−2πij(`− 1)

n

)
.

The DFT is a mapping F : Cn → Cn defined by

F(f)j = 1√
n

n∑
`=1

f` exp
(
−2πi(j − 1)(`− 1)

n

)
, f ∈ Cn, 1 ≤ j ≤ n. (3.3.11)

The inverse DFT of a vector f̂ is given by

F−1
(
f̂
)
j

= 1√
n

n∑
`=1

f̂` exp
(

2πi(j − 1)(`− 1)
n

)
= fj. (3.3.12)
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These definitions are non-standard; typically the factors 1/
√
n in both the forward

and inverse DFT definitions are combined as a single factor of 1/n in the definition

of the forward DFT.

The DFT can also be stated in terms of matrix-vector multiplication. Given an

f ∈ Cn, f̂ can be expressed as F f where the matrix F ∈ Cn×n has components

Fj,k = 1√
n

exp
(
−2πi(j − 1)(k − 1)

n

)
, 1 ≤ j, k ≤ n. (3.3.13)

The matrix representing the inverse DFT is then FH, where H denotes conjugate

transposition. A property of F is that FHF = FFH = (1/n) diag(n) = In, and so

splitting the factor of 1/n as (1/
√
n)(1/

√
n) for the definition of the DFT provides

the benefit of F being a unitary matrix. A direct consequence of the DFT being

unitary is Parseval’s theorem: ‖f‖2 = ‖F f‖2 for any f ∈ Cn.

A significant property of circulant matrices is that they are diagonalized by the

DFT. Using the definition of the n × n unitary Fourier matrix F , the property can

be stated as

C = FH diag(
√
nĉ)F, (3.3.14)

where C is any n×n circulant matrix and ĉ is the DFT of the first row of C (recall that

the rows of a circulant matrix are circulant right shifts of a single row vector of length

n). This property can be shown directly by showing that Cj,k = (FH diag(ĉ)F )j,k for

any 1 ≤ j, k ≤ n. Using the definition of the DFT and (3.1.1), the component of

FH diag(
√
nĉ)F in jth row and kth column is given by

n∑
`=1

[
1√
n

exp
(

2πi(k − 1)(`− 1)
n

)] [√
nĉ`

] [ 1√
n

exp
(
−2πi(j − 1)(`− 1)

n

)]

= 1√
n

n∑
`=1

ĉ` exp
(

2πi(k − j)(`− 1)
n

)

= c(k−j mod n)+1

= Cj,k.
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It should be noted that by defining the DFT with the factor of 1/n as part of the

inverse transformation (while keeping the factor split as (1/
√
n)(1/

√
n) in the matrix

form) allows the property to be stated simply as C = FH diag(ĉ)F .

Analogous to the DFT, the discrete cosine transform (DCT) can be introduced

from the perspective of approximating the coefficients of a cosine series. Given a

function f(t) defined on the interval [0, 1], consider the even extension of fe(t) defined

by

fe(t) =


f(t), 0 ≤ t ≤ 1

f(−t), −1 ≤ t < 0
.

From (Boggess and Narcowich, 2009, p. 49), the Fourier series expansion of fe(t) will

only contain cosine terms and the coefficients of these terms (starting the indexing

at 1) are

a1 =
∫ 1

0
f(t) dt,

aj = 2
∫ 1

0
f(t) cos((j − 1)πt) dt, j ≥ 2.

Approximating the integral for aj with j ≥ 2 using the midpoint rule with n subin-

tervals of [0, 1] gives

aj ≈
2
n

N∑
k=1

f
( 1
n

(
k − 1

2

))
cos

(
jπ

n

(
k − 1

2

))
.

Adjusting the scale factor and rewriting the argument of cosine yields the discrete

transform. Given x ∈ Rn, the DCT of x, denoted x̆, is defined as

x̆j =
√

2− δj,1
n

n∑
k=1

xk cos
(

(j − 1)π(2k − 1)
2n

)
. (3.3.15)

Here δj,1 is the Kronecker delta function

δj,1 =


1, j = 1

0, j 6= 1,
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which in eq. (3.3.15) has the effect of introducing a factor of 1/
√
n in the first com-

ponent of x̆ instead of
√

2/n. The DCT matrix, denoted by C, has entries

Cj,k =
√

2− δj,1
n

cos
(
π(j − 1)(2k − 1)

2n

)
. (3.3.16)

By switching j and k, it is clear that C is not symmetric. However, C is orthogonal

which is analogous to the DFT matrix being unitary. Fortunately, many of the

statistical results in Section 3.5 demonstrate that the statistics of the DCT of white

noise are simpler than those of the DFT. Another benefit of the DCT is that the

implied even boundary conditions ensure continuity at the endpoints in the continuous

setting.

To fully describe the set of matrices diagonalized by the DCT, let the shift operator

σ : Rn → Rn be defined as

σ(x) = [x2, . . . , xn, 0]T, x = [x1, x2 . . . , xn]T ∈ Rn.

The class of matrices diagonalized by the DCT can now be stated.

Theorem 3.3.1 (Chan et al. (1999); Kailath and Olshevsky (1996); Martucci (1994);

Sánchez et al. (1995))

Let C be the set of matrices that can be diagonalized by the DCT matrix C. Then

C = {Toeplitz(x) + Hankel (σ(x)) | x ∈ Rn}.

The diagonalization properties of the DCT in relation to reflective boundary condi-

tions can now be described Ng et al. (1999).

Theorem 3.3.2 (Ng et al. (1999)) Let the kernel sequence (3.2.6) satisfy kj =

k−j for all j ∈ Z. Then, the matrix A in (3.2.8) can be expressed as

A = Toeplitz(k) + Hankel (σ(k)) ,

where k = [k0, k1, . . . , km−1, 0, . . . , 0]T. In other words, A is diagonalized by the DCT.
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Proof. Equation (3.2.8) gives A = [(0 | Tleft)J + K + (Tright | 0)Jn]. Then K =

Toeplitz(k) by the definition of K with kj = k−j, and so it remains to show that

[(0 | Tleft) + (Tright | 0)]Jn = Hankel (σ(k)). From the definitions of Tleft and Tright, the

sum (0 | Tleft) + (Tright | 0) is equal to Toeplitz (Jn σ(k)). Thus by Lem. 3.1.1,

[(0 | Tleft) + (Tright | 0)]Jn = Toeplitz (Jn σ(k)) Jn = Hankel (σ(k)) .

Therefore A = Toeplitz(k) + Hankel (σ(k)), and Thm. 3.3.1 states that A can be

diagonalized by the DCT. �

Next, the DST will be briefly discussed. Given a function f(t) defined on the

interval [0, 1], consider the odd extension of fo(t) defined by

fo(t) =


f(t), 0 ≤ t ≤ 1

−f(−t), −1 ≤ t < 0
.

The Fourier series expansion of fo(t) will only contain sine terms and the coefficients

of these terms are

bj = 2
∫ 1

0
f(t) sin(jπt) dt, j ≥ 1.

The factor j instead of j − 1 is so that the series does not always begin with a zero

term; in other words, b1 is not identically zero. Using the midpoint rule with n

subintervals gives

bj ≈
2
n

n∑
k=1

f
( 1
n

(
k − 1

2

))
sin

(
jπ

n

(
k − 1

2

))
.

Again a modification of the scale factor and rewriting the argument of sine produces

the discrete transform; the factor j in the discrete transform ensures that the first

DCT component b̆1 is not guaranteed to be zero. Unlike the DCT, however, the DST

implies odd boundary conditions that can produce discontinuities at the boundaries

in the continuous setting. For this reason the DST is not widely considered for the

35



numerical experiments, though the DST has been considered, such as by Perrone

(2006) when implemented with anti-reflective boundary conditions.

The 2D DFT or DCT of a matrix X ∈ Cm×n can be written in terms of the

Kronecker products of the associated 1D matrices. For example, let Cm and Cn be

the 1D DCT matrices defined by eq. (3.3.16) of size m ×m and n × n, respectively,

and let C = Cn ⊗ Cm. Then the 2D DCT of X is

X̆ = arr (C vec(X)) . (3.3.17)

Computing 2D transformations using methods similar to eq. (3.3.17) is not practical,

again due to the cost of constructing the matrix C. The matrices and associated

diagonalization properties of 2D transformations are expressed conveniently, however,

using Kronecker product notation.

3.4 Matrix Transformations

Sections 3.2 to 3.3 discuss connections between matrix structures associated with

discrete convolution-type problems and discrete trigonometric transforms. The goal

of Section 3.4 is to show how these concepts can be related back to the concepts

presented in Chapter 2. The theoretical tools shown here, primarily Thm. 3.4.1,

are the foundation of how the spectral windowing and learning results are examined

numerically. Though the results are presented mostly in the context of the DCT, the

DFT is also utilized in some of the numerical results.

Assuming that reflective boundary conditions are applied, then both A and L have

the same block structure (BTTB + BTHB + BHTB + BHHB matrix) and the DCT

can be used to simultaneously diagonalize A and L. A precursor to converting from

a simultaneous diagonalization to the GSVD presented in Section 2.3 is Lem. 3.4.1,

a straightforward result that shows how we can apply a joint transformation of two
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vectors of non-negative numbers to obtain a specific ordering of each new vector.

Lemma 3.4.1 Given two vectors a = [a1, . . . , an]T and b = [b1, . . . , bn]T of non-

negative numbers with aj > 0 or bj > 0 for each j = 1, . . . , n, define two new vectors

x = [x1, . . . , xn]T and y = [y1, . . . , yn]T by

xj = aj√
a2
j + b2

j

, yj = bj√
a2
j + b2

j

.

Then elements of x and y can be ordered such that for all j = 1, . . . , n, if xj is the

kth largest element of x, then yj is the kth smallest element of y. Equivalently, there

exists a permutation matrix P such that the elements of Px and Py are ordered from

largest to smallest and smallest to largest, respectively.

Proof. By construction, 0 < xj, yj ≤ 1 and x2
j + y2

j = 1 for all j = 1, . . . , n. Thus

we can write xj = sin(θj) and yj = cos(θj) with 0 < θj ≤ π
2 for all j = 1, . . . , n.

The desired ordering of xj and yj then follow from the fact that the cosine and sine

functions are strictly decreasing and increasing on
(
0, π2

]
, respectively. �

A technique similar to that of Lem. 3.4.1 is utilized in the cosine sine (CS) de-

composition of an orthogonal matrix; see (Golub and Van Loan, 2013, p. 84-86) for

example. In fact, a conversion from CS decomposition to GSVD is presented in

(Golub and Van Loan, 2013, p. 502-503). Using Lem. 3.4.1, a conversion from any

simultaneous diagonalization of two matrices to the GSVD can be presented in the

form of Thm. 3.4.1.

Theorem 3.4.1 Given the simultaneous diagonalization of the n×n symmetric ma-

trices A = CT∆̃C and L = CTΛ̃C where C is orthogonal and null(A) ∩ null(L) =

{0}, A and L can be expressed as A = U∆XT and L = UΛXT, respectively, where

U is orthogonal, X is invertible, ∆T∆ + ΛTΛ = In, 0 ≤ ∆1,1 ≤ . . . ≤ ∆n,n ≤ 1, and

1 ≥ Λ1,1 ≥ . . . ≥ Λn,n ≥ 0.
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Proof. We begin by setting CT∆̃C = U∆ZT and rearranging terms to obtain

∆ = UTCT∆̃CZ−T. Doing the same for Λ̃, and using ∆T∆ + ΛTΛ = In, we have

Z−1CT∆̃T∆̃CZ−T + Z−1CTΛ̃TΛ̃CZ−T = In

from which we have

∆̃T∆̃ + Λ̃TΛ̃ = CZZTCT. (3.4.18)

Since null(A) ∩ null(L) = {0}, the matrix on the left is diagonal with positive

entries. Thus we can form the (positive) square root S =
√

∆̃T∆̃ + Λ̃TΛ̃, which is

also diagonal with positive entries. Using S we can write S2 = SST = CZZTCT,

which implies that we can set Z = CTS; S is invertible but not necessarily orthogonal,

so Z is only invertible. Using the transpose ZT = SC and inverse S−1, we can then

write

A = CT∆̃S−1SC = CT∆̃S−1ZT,

L = CTΛ̃S−1SC = CTΛ̃S−1ZT.

The last step is to reorder the elements of ∆̃S−1 and Λ̃S−1; fortunately Lem. 3.4.1

shows that they have the opposite order regardless of the order of the elements of ∆̃

and Λ̃. Therefore we can use a permutation matrix P so that ∆ = PT∆̃S−1P and

Λ = PTΛ̃S−1P have the desired ordering. Since permutation matrices are orthogonal,

we finally obtain the GSVD:

A = CT∆̃S−1ZT = CTPPT∆̃S−1PPTZT = U∆XT,

L = CTΛ̃S−1ZT = CTPPTΛ̃S−1PPTZT = UΛXT,

where U = CTP is orthogonal and X = ZP is invertible. We can confirm that

∆T∆ + ΛTΛ = In using the commutability of diagonal matrices and the diagonality
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of S−1:

∆T∆ + ΛTΛ = PTS−T∆̃T∆̃S−1P + PTS−TΛ̃TΛ̃S−1P

= PTS−T
(
∆̃T∆̃ + Λ̃TΛ̃

)
S−1P

= PT
(
S2
)−1 (

∆̃T∆̃ + Λ̃TΛ̃
)
P

= PT
(
∆̃T∆̃ + Λ̃TΛ̃

)−1 (
∆̃T∆̃ + Λ̃TΛ̃

)
P = In.

�

Equipped with Thm. 3.4.1, it is clear that the terms in eq. (2.3.22) can be rewrit-

ten in terms of a DCT simultaneous diagonalization of matrices A and L, which is

particularly relevant for the efficient solution of two-dimensional problems.

The invertibility condition in Thm. 3.4.1 is necessary for the property ∆T∆ +

ΛTΛ = In. If null(A) ∩ null(L) 6= {0}, then the matrix on the left in eq. (3.4.18)

is singular and this contradicts the invertibility of C and Z on the right side. As an

alternative, we could require that ∆T∆ + ΛTΛ = Ĩn where Ĩn is a modified identity

matrix that has some zero diagonal elements. This generalization is described in

Cor. 3.4.1.

Corollary 3.4.1 Given the simultaneous diagonalization of the n × n symmetric

matrices A = CT∆̃C and L = CTΛ̃C where C is orthogonal, A and L can be expressed

as A = U∆XT and L = UΛXT, respectively, where U is orthogonal, X is invertible,

∆T∆ + ΛTΛ = Ĩn, and

0 ≤ ∆1,1 ≤ . . . ≤ ∆n,n ≤ 1,

1 ≥ Λ1,1 ≥ . . . ≥ Λn,n ≥ 0.

Proof. The proof proceeds similarly to that of Thm. 3.4.1 until the construction

of the positive square root of ∆T∆ + ΛTΛ. If null(A) ∩ null(L) 6= {0}, then there
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exist zero elements along the diagonal of ∆T∆+ΛTΛ. We can still define the positive

square root S =
√

∆T∆ + ΛTΛ, except S now has zero elements on the diagonal as

well and is thus a singular matrix. As such, we define a new diagonal matrix S̃ from

S by reassigning the zero diagonal elements to be ones. In this way, S̃ is invertible

but S̃2 6= ∆T∆ + ΛTΛ. However, S̃2 only differs from ∆T∆ + ΛTΛ in the sense that

the zero elements are replaced by ones. Ultimately this is not an issue, since the zero

diagonal elements of the products ∆̃S̃−1 and Λ̃S̃−1 correspond with the zero diagonal

elements of ∆̃ and ∆̃ respectively. Therefore we can write

A = CT∆̃S̃−1S̃C = CT∆̃S̃−1ZT,

L = CTΛ̃S̃−1S̃C = CTΛ̃S̃−1ZT,

where Z = CTS̃T = CTS̃. The remainder of the proof then proceeds identically to

the proof of Thm. 3.4.1. �

Another situation of interest is having a simultaneous diagonalization of matrices

defined by Kronecker products of square matrices with related diagonalizations; the

exact situation is described in Lem. 3.4.2.

Lemma 3.4.2 Given the simultaneous diagonalizations of the m×m matrices A1 =

CT
1 ∆̃1C1 and L1 = CT

1 Λ̃1C1 where C1 is orthogonal, as well as the simultaneous

diagonalizations of the n× n matrices A2 = CT
2 ∆̃2C2 and L2 = CT

2 Λ̃2C2 where C2 is

orthogonal, suppose that A = A1 ⊗ A2 and L = L1 ⊗ L2 (both A and L are N × N

matrices with N = mn). If null(A) ∩ null(L) = {0}, A and L can be expressed

as A = U∆XT and L = UΛXT, respectively, where U is orthogonal, X is invertible,

∆T∆ + ΛTΛ = In, and

0 ≤ ∆1,1 ≤ . . . ≤ ∆N,N ≤ 1,

1 ≥ Λ1,1 ≥ . . . ≥ ΛN,N ≥ 0.

40



Proof. We can expand the Kronecker products defining A and L using their

diagonalizations:

A = A1 ⊗ A2 =
(
CT

1 ∆̃1C1
)
⊗
(
CT

2 ∆̃2C2
)

= (C1 ⊗ C2)T
(
∆̃1 ⊗ ∆̃2

)
(C1 ⊗ C2) ,

L = L1 ⊗ L2 =
(
CT

1 Λ̃1C1
)
⊗
(
CT

2 Λ̃2C2
)

= (C1 ⊗ C2)T
(
Λ̃1 ⊗ Λ̃2

)
(C1 ⊗ C2) .

If we let C = C1⊗C2, ∆̃ = ∆̃1⊗ ∆̃2, and Λ̃ = Λ̃1⊗ Λ̃2, then C is orthogonal and both

∆̃ and Λ̃ are diagonal matrices. The remainder of the proof then proceeds similarly

to that of Thm. 3.4.1. �

Perhaps the simplest situation is converting a single diagonalization to an SVD,

which is presented as a corollary to Thm. 3.4.1.

Corollary 3.4.2 Given the diagonalization of the n × n symmetric matrix A =

CT∆C where C is orthogonal, A can be expressed as the SVD A = UΣV T where U

and V are orthogonal and

Σ1,1 ≥ . . . ≥ Σn,n ≥ 0.

If A is positive semi-definite as well, then A can be written as simply A = UΣUT.

Proof. Let P be the permutation matrix that orders the diagonal elements of ∆ in

decreasing order in regard to their magnitudes (via the product PT∆P ), and define

another matrix S = DP where D is a diagonal matrix with diagonal entries being

±1. In particular, we assign -1 as a diagonal entry of D when the corresponding

diagonal entry of ∆ is negative and assign 1 otherwise. As a result, D is involutary

(D2 = In). The matrix S is therefore a generalized permutation matrix, specifically

a signed permutation matrix, and has the property of orthogonality:

STS = PTDTDP = PTD2P = PTP = In,

SST = DPPTDT = DDT = D2 = In.
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Using P and S, we can then write A as

A = CT∆C = CTPPT∆SSTC = UΣV T,

where U = CTP , Σ = PT∆S, and V = CTS. The positivity of the diagonal elements

of Σ results from the product ∆D in Σ = PT∆DP , and the elements are ordered

using P . Lastly, in the case where A is positive semi-definite, all diagonal elements

of ∆ are non-negative; thus D is reduced to the identity matrix and S = P , which

implies U = V . �

As mentioned at the beginning of this section, Thm. 3.4.1 is used to the greatest

extend in the numerical implementations of the spectral windowing and learning

approaches. Though the property of having ∆T∆ + ΛTΛ = In is part of Thm. 3.4.1,

the property is not used in the primary results of this document but is rather a carry

over from the version of GSVD we use in Section 2.3. The benefit of Thm. 3.4.1 is that

it provides a connection between the GSVD (which is impractical to form numerically

for large scale problems) to the diagonalization of matrices that have the potential for

use with numerically practical algorithms. However, we recall that our overarching

concern is the regularization of problems of the form Ax ≈ d, where the data d is

contaminated by noise η. With these matrix transformations in mind, consideration

is then given to what occurs under these transformations when applied to such noise,

white noise in particular; this is discussed next in Section 3.5.

3.5 Transformations of White Noise

We now examine how linear transformations can alter the distribution of a white

noise vector η ∼ N (0, σ2In). While many of these examinations do not yield much

value in the evaluation of the spectral windowing and learning approaches to regu-

larization, they are useful in realizing the complexity of applying relatively simple
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transformations to white noise.

It is convenient to provide some basic results that are needed in the later discus-

sion. The first results will be in regard to the real and imaginary parts of η̂ = Fη

where F is the unitary n×n DFT matrix given by 3.3.13. Let FR and FI be the real

and imaginary parts, respectively, of F (so that F = FR + iFI). Euler’s identity gives

[FR]j,k = 1√
n

cos
(
−2π(j − 1)(k − 1)

n

)
,

[FI ]j,k = 1√
n

sin
(
−2π(j − 1)(k − 1)

n

) (3.5.19)

for 1 ≤ j, k ≤ n. It is clear from (3.5.19) that the matrices FR and FI are symmetric.

The rows (and by symmetry, columns) of FR and FI have the following orthogonality

properties. For compactness, let ej denote the n-vector with 1 as the jth component

and zeros elsewhere, namely the jth column of the identity matrix In.

Lemma 3.5.1 Let FR and FI be the real and imaginary parts, respectively, of the

n× n DFT matrix, and let 〈·, ·〉 denote standard inner product (dot product) of Rn.

Then for 1 ≤ j, k ≤ n:

1. 〈[FR]j,·, [FI ]k,·〉 = 0.

2. If n is odd, then

〈[FR]j,·, [FR]k,·〉 =



1 j = k = 1

1
2 j = k 6= 1

1
2 j + k − 2 = n

0 otherwise,

〈[FI ]j,·, [FI ]k,·〉 =



0 j = k = 1

1
2 j = k 6= 1

−1
2 j + k − 2 = n

0 otherwise.

Equivalently,

FRFR
T = 1

2In + 1
2
(
e1eT

1 + Jn
)
,

FIFI
T = 1

2In −
1
2
(
e1eT

1 + Jn
)
.
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3. If n is even, then

〈[FR]j,·, [FR]k,·〉 =



1 j = k = 1 or j = k = (n/2) + 1

1
2 j = k 6= 1 or j = k 6= (n/2) + 1

1
2 j 6= k and j + k − 2 = n

0 otherwise

,

〈[FI ]j,·, [FI ]k,·〉 =



0 j = k = 1 or j = k = (n/2) + 1

1
2 j = k 6= 1 or j = k 6= (n/2) + 1

−1
2 j 6= k and j + k − 2 = n

0 otherwise

.

Equivalently,

FRFR
T = 1

2In + 1
2
(
e1eT

1 + en
2 +1eT

n
2 +1 + Jn

)
,

FIFI
T = 1

2In −
1
2
(
e1eT

1 + en
2 +1eT

n
2 +1 + Jn

)
.

Notice that in both the even and odd cases, FRFRT + FIFI
T = I.

Proof. Property (i) will first be established. Letting FR and FI be as required,

(3.5.19) gives

〈[FR]j,·, [FI ]k,·〉 = 1
n

n∑
`=1

cos
(
−2π(j − 1)(`− 1)

n

)
sin

(
−2π(`− 1)(k − 1)

n

)

= 1
n

n∑
`=1

cos (−θj`) sin (−θk`) , (3.5.20)

where θj` = 2π(j − 1)(`− 1)/n. Applying the appropriate product-to-sum trigono-

metric identity and using the fact that sine is an odd function allows for the sum in
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(3.5.20) to be evaluated as

1
n

n∑
`=1

cos (−θj`) sin (−θk`) = 1
2n

n∑
`=1

[
sin

(
−θ(j+k−1)`

)
− sin

(
−θ(j−k+1)`

)]
= 1

2n

n∑
`=1

[
sin

(
θ(j−k+1)`

)
− sin

(
θ(j+k−1)`

)]
= 1

2n (s1 − s2) ,

where

s1 =
n∑
`=1

sin
(
θ(j−k+1)`

)
, s2 =

n∑
`=1

sin
(
θ(j+k−1)`

)
.

Both s1 and s2 are of the form
∑n
`=1 sin(θp`), where p is an integer (either p = j−k+1

or p = j + k − 1). This form can be written as

n∑
`=1

sin (θp`) =
n−1∑
`=0

sin
(
θp(`+1)

)
= Im

(
n−1∑
`=0

exp
(
iθp(`+1)

))
.

If p− 1 is a multiple of n, then p = mn+ 1 for some m ∈ Z. In such a case,

exp(iθp(`+1)) = exp
(

2πi((mn+ 1)− 1)((`+ 1)− 1)
n

)
= exp(2πim`) = 1,

and so

Im
(
n−1∑
`=0

exp
(
iθp(`+1)

))
= Im

(
n−1∑
`=0

1
)

= 0.

If p− 1 is not a multiple of n, then

Im
(
n−1∑
`=0

exp
(
iθp(`+1)

))
= Im

(
1− exp(iθ(n+1)p)

1− exp(iθp)

)
.

However, θ(n+1)p = 2πn(p− 1)/n = 2π(p−1). Since p−1 is an integer, exp(iθ(n+1)p) =

exp(2πi(p− 1)) = 1, meaning that the preceding equation is equal to zero. Therefore

s1 =
n∑
`=1

sin
(
θ(j−k)`

)
= Im

(
n−1∑
`=0

exp
(
iθ(j−k)(`+1)

))
= 0,

s2 =
n∑
`=1

sin
(
θ(j+k−1)`

)
= Im

(
n−1∑
`=0

exp
(
iθ(j+k−1)(`+1)

))
= 0

for all 1 ≤ j, k ≤ n, which implies 〈[FR]j,·, [FI ]k,·〉 = (s1 − s2)/2n = 0.
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The results of properties (ii) and (iii) regarding FR will now be proved; the results

regarding FI will be handled afterwards. Utilizing (3.5.19) again,

〈[FR]j,·, [FR]k,·〉 = 1
n

n∑
`=1

cos
(
−2π(j − 1)(`− 1)

n

)
cos

(
−2π(`− 1)(k − 1)

n

)

= 1
n

n∑
`=1

cos (−θj`) cos (−θk`) .

By the fact that cosine is an even function and applying another product-to-sum

identity gives 〈[FR]j·, [FR]k·〉 = (c1 + c2)/2n, where

c1 =
n∑
`=1

cos
(
θ(j−k+1)`

)
, c2 =

n∑
`=1

cos
(
θ(j+k−1)`

)
. (3.5.21)

Both c1 and c2 are of the form
∑n
`=1 cos(θp`), where p is an integer (either p = j−k+1

or p = j + k − 1). This form can be written as

n∑
`=1

cos (θp`) =
n−1∑
`=0

cos
(
θp(`+1)

)
= Re

(
n−1∑
`=0

exp
(
iθp(`+1)

))
.

If p− 1 is a multiple of n, then p = mn+ 1 for some m ∈ Z. Thus,

exp(iθp(`+1)) = exp
(

2πi((mn+ 1)− 1)((`+ 1)− 1)
n

)
= exp(i2πm`) = 1,

and so

Re
(
n−1∑
`=0

exp
(
iθp(`)

))
= Re

(
n−1∑
`=0

1
)

= n.

If p− 1 is not a multiple of n, then

Re
(
n−1∑
`=0

exp
(
iθp(`+1)

))
= Re

(
1− exp(iθ(n+1)p)

1− exp(iθp)

)
.

However, θ(n+1)p = 2π(p−1). Since p is an integer, exp(iθ(n+1)p) = exp(2πi(p−1)) = 1,

meaning that the preceding equation is equal to zero. Thus 0 and n are the two

possible values of c1 and c2, which depend upon whether or not p − 1 = j − k or

p− 1 = j + k − 2 are multiples of n.

First consider property (ii), the case where n is even.
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• If j = k = 1 or j = k = (n/2) + 1, then j − k = 0 and j + k − 2 is either 0 or

n. In other words, both j − k and j + k are multiples of n, and so c1 = c2 = n.

This implies that 〈[FR]j,·, [FR]k,·〉 = (c1 + c2)/2n = (n+ n)/2n = 1.

• If j = k 6= 1 or j = k 6= (n/2) + 1, then j − k = 0 but j + k − 2 is not a

multiple of n. Thus c1 = n and c2 = 0, and so 〈[FR]j,·, [FR]k,·〉 = (c1 + c2)/2n =

(n+ 0)/2n = 1/2.

• If j 6= k and k = n−j+2, then j−k is not a multiple of n but j+k−2 = n. Thus

c1 = 0 and c2 = n, and so 〈[FR]j,·, [FR]k,·〉 = (c1 + c2)/2n = (0 + n)/2n = 1/2.

• If j 6= k and k 6= n− j + 2, then neither j − k nor j + k − 2 are multiples of n.

Thus c1 = c2 = 0, and so 〈[FR]j,·, [FR]k,·〉 = (c1 + c2)/2n = (0 + 0)/2n = 0.

For property (iii), the case where n is odd, n/2 need not be considered and the

preceding argument holds.

For the results regarding FI ,

〈[FI ]j,·, [FI ]k,·〉 = 1
n

n∑
`=1

sin
(
−2π(j − 1)(`− 1)

n

)
sin

(
−2π(`− 1)(k − 1)

n

)

= 1
n

n∑
`=1

sin (−θj`) sin (−θk`) .

By the fact that sine is an odd function and applying another product-to-sum identity

gives 〈[FI ]j,·, [FI ]k,·〉 = (c1 − c2)/2n, where c1 and c2 are defined by (3.5.21). Again

0 and n are the two possible values of c1 and c2, which depend upon whether or not

j − k and j + k − 2 are multiples of n.

First consider property (ii), the case where n is even.

• If j = k = 1 or j = k = (n/2) + 1, then j − k = 0 and j + k− 2 is either 0 or n.

In other words, both j− k and j + k− 2 are multiples of n, and so c1 = c2 = n.

This implies that 〈[FI ]j,·, [FI ]k,·〉 = (c1 − c2)/2n = (n− n)/2n = 0.
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• If j = k 6= 1 or j = k 6= (n/2) + 1, then j − k = 0 but j + k − 2 is not a

multiple of n. Thus c1 = n and c2 = 0, and so 〈[FI ]j,·, [FI ]k,·〉 = (c1 − c2)/2n =

(n− 0)/2n = 1/2.

• If j 6= k and k = n−j+2, then j−k is not a multiple of n but j+k−2 = n. Thus

c1 = 0 and c2 = n, and so 〈[FI ]j,·, [FI ]k,·〉 = (c1 − c2)/2n = (0− n)/2n = −1/2.

• If j 6= k and k 6= n− j + 2, then neither j − k nor j + k − 2 are multiples of n.

Thus c1 = c2 = 0, and so 〈[FI ]j,·, [FI ]k,·〉 = (c1 − c2)/2n = (0 + 0)/2n = 0.

For property (iii), the case where n is odd, n/2 need not be considered and again the

preceding argument holds. �

There are some important consequences of Lem. 3.5.1. First, it provides a means

to visualize the structure of the matrices F 2
R = FRFR

T and F 2
I = FIFI

T. For example,

if n = 6 then the matrices F 2
R and F 2

I are

F 2
R =



1 0 0 0 0 0

0 1
2 0 0 0 1

2

0 0 1
2 0 1

2 0

0 0 0 1 0 0

0 0 1
2 0 1

2 0

0 1
2 0 0 0 1

2



, F 2
I =



0 0 0 0 0 0

0 1
2 0 0 0 −1

2

0 0 1
2 0 −1

2 0

0 0 0 0 0 0

0 0 −1
2 0 1

2 0

0 −1
2 0 0 0 1

2



.

Second, Lem. 3.5.1 shows that while the rows (and columns) of F form an orthonormal

basis for Cn, the orthogonality of the rows of FR and FI are limited by conditions on

the row indices. Another consequence is that while F is invertible and therefore has
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full rank, the matrices FR and FI are rank-deficient. Just as the components of FR

and FI depend upon the parity of n, Lem. 3.5.2 illustrates that the ranks of FR and

FI depend upon n as well.

Lemma 3.5.2 Let FR and FI be the real and imaginary parts, respectively, of the

n×n DFT matrix. If n is even, then rank(FR) = (n/2)+1 and rank(FI) = (n/2)−1.

If n is odd, then rank(FR) = (n+ 1)/2 and rank(FI) = (n− 1)/2.

Proof. Let the matrices FR, and FI be as required. By applying various properties

of the rank of a matrix, all of the effort can be dedicated to finding the rank of FR.

Since the rank of a matrix is equal to the dimension of the row space (or column

space), the approach that will be taken is to determine the dimension of the row

space of FR using Lem. 3.5.2. The dimension of the row space will be determined by

counting the number of linearly independent rows of FR.

Assuming that n is even, let 1 ≤ j, k ≤ (n/2) + 1 with j 6= k. From Lem. 3.5.1,

〈[FR]j,·, [FR]k,·〉 =


1/2 j + k − 2 = n

0 otherwise
.

Now for 1 ≤ j, ` ≤ (n/2) + 1, we have that j + k − 2 6= n because equality is only

achieved if both j and ` are (n/2)+1 and this would violate the condition that j 6= `.

Thus the first (n/2) + 1 rows of A form an orthogonal set of vectors, and so they are

linearly independent and rank(FR) ≥ n
2 + 1.

It remains to show that the bound is tight, which we do by showing that the

remaining (n/2)−1 rows of FR are copies of the preceding rows. Let 1 ≤ j ≤ (n/2)+1,

and consider row ` = n − j + 2 (assuming ` ≥ 1). From (3.5.19) and the parity of
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cosine, the components of row ` are

[FR]`,k = 1√
n

cos
(
−2π(`− 1)(k − 1)

n

)

= 1√
n

cos
(
−2π(n− j + 1)(k − 1)

n

)

= 1√
n

cos
(
−2π(j − 1)(k − 1)

n
+ 2π(k − 1)

)
.

Since the column index k is an integer, the periodicity of cosine gives [FR]`,k = [FR]j,k.

Thus rows j and n− j + 2 of the matrix FR are the same for all 1 ≤ j ≤ (n/2) + 1,

and therefore rank(FR) = (n/2) + 1. The argument that rank(FR) = (n + 1)/2

for odd n is identical with the exception that j and ` are restricted so j 6= ` and

1 ≤ j, ` ≤ (n+ 1)/2.

A similar argument for the rank of FI could be made, but for the sake of brevity

a different approach can be taken which uses some matrix rank inequalities and the

result from Lem. 3.5.1 that FRFIT is a zero matrix (regardless of the parity of n).

Recalling that an invertible matrix has full rank and using the subadditive property

of rank,

n = rank(F ) = rank(FR + iFI) ≤ rank(FR) + rank(iFI) = rank(FR) + rank(FI).

Applying Sylvester’s rank inequality to the product FRFIT gives

rank(FR) + rank(FI)− n = rank(FR) + rank(FIT)− n ≤ rank(FRFIT) = 0,

which implies that rank(FR) + rank(FI) ≤ n. Thus rank(FR) + rank(FI) = n, and

since the rank of FR has been determined for both even and odd n, the rank of FI

immediately follows. �

The rank deficiency of FR and FI can be used to show, however, that the nullspaces

of FR and FI do not have non-trivial intersection; this is shown by Lem. 3.5.3.
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Lemma 3.5.3 Let FR and FI be the real and imaginary parts, respectively, of the

n× n DFT matrix. Then null(FR) ∩ null(FI) = {0}.

Proof. Regardless of the parity of n, Lem. 3.5.2 implies that both FR and FI are

singular matrices. Suppose there exists some non-zero vector u ∈ null(FR) ∩ null(FI).

Then,

Fu = (FR + iFI) u = FRu + iFIu = 0,

which is a contradiction since the DFT matrix F is non-singular. �

The rank deficiency of FR and FI has statistical significance as well. Given η ∼

N (0, σ2In) and using the properties of the multivariate normal distribution,

Re(η̂) = FRη ∼ N (0, σ2FRFR
T), Im(η̂) = FIη ∼ N (0, σ2FIFI

T). (3.5.22)

FRFR
T and FIFIT are rank-deficient and hence they do not have density functions in

the traditional sense; their density functions exist in rank(FRFRT) and rank(FIFIT)-

dimensional subspaces of Rn. These density functions can be expressed using the

pseudoinverses of the covariance matrices or, equivalently, by defining new transfor-

mations based on the rank of FRFRT and FIFIT (Rao, 1973, p. 527-528).

Instead of dealing with density functions of multivariate distributions, the distri-

bution of the components of Re(η̂) and Im(η̂) will be determined individually. As

a step towards this goal, the independence of the components of Re(η̂) and Im(η̂)

can be established by applying the following result regarding independence of linear

combinations of random variables.

Theorem 3.5.1 (Lukacs & King, 1954) Let Z1, . . . , Zn be independently distri-

buted random variables, and assume that the nth moment of each Z` exists, i.e.

E(Zn
` ) exists for each ` = 1, . . . , n. The necessary and sufficient conditions for the

existence of two statistically independent linear forms ∑n
`=1 a`Z` and

∑n
`=1 b`Z` are:
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1. Each random variable which has a nonzero coefficient in both forms is normally

distributed.

2. ∑n
`=1 a`b`σ

2
` = 0, where σ2

` denotes the variance of Z` (` = 1, . . . , n).

Thm. 3.5.1 can be directly applied to show that the components of η ∼ N (0, σ2In)

retain independence under the DFT, which is stated as Lem. 3.5.4.

Lemma 3.5.4 Let η be a random n-vector with η ∼ N (0, σ2In), X = Re(η̂) and

Y = Im(η̂). Then Xj and Yk are independent random variables for each 1 ≤ j, k ≤ n.

Proof. Let X and Y be as required. For each 1 ≤ j, k ≤ n, the components Xj and

Yk are linear combinations of the components of η, with coefficients given by (3.5.19):

Xj =
n∑
`=1

1√
n

cos
(
−2π(j − 1)(`− 1)

n

)
η`, Yk =

n∑
`=1

1√
n

sin
(
−2π(k − 1)(`− 1)

n

)
η`.

Since the covariance matrix of η is σ2In, the components of η are independent.

Furthermore, η` ∼ N (0, σ2) and so each component has an nth moment. Thus the

first condition of Thm. 3.5.1 is satisfied. As for the final condition, the following sum

must be shown to be equal to zero:

n∑
`=1

[
1√
n

cos
(
−2π(j − 1)(`− 1)

n

)] [
1√
n

sin
(
−2π(k − 1)(`− 1)

n

)]
σ2
` .

The η` are identically distributed with σ2
` = σ2 for all 1 ≤ ` ≤ n. Thus

n∑
`=1

[
1√
n

cos
(
−2π(j − 1)(`− 1)

n

)] [
1√
n

sin
(
−2π(k − 1)(`− 1)

n

)]
σ2
`

= σ2〈[FR]j,·, [FI ]k,·〉

= 0,

where the last equality follows from Lem. 3.5.1. Therefore Xj and Yk are independent

for each 1 ≤ j, k ≤ n. �
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Having established the independence of the components of Re(η̂) and Im(η̂), their

individual distributions will be determined.

Lemma 3.5.5 Let X = Re(η̂) and Y = Im(η̂), where η is a random n-vector with

η ∼ N (0, σ2In). Also let J = {1, n2 + 1} if n is even and J = {1} if n is odd. Then

for 1 ≤ j ≤ n, the distribution of Xj and Yj is as follows.

Xj ∼


N (0, σ2), j ∈ J

N (0, σ2/2), j 6∈ J
, Yj ∼


0, j ∈ J

N (0, σ2/2), j 6∈ J
.

(The notation Yj ∼ 0 means that Yj is a constant random variable with value 0.)

Proof. Let X and Y be as required. Using (3.5.19), Xj can be written as

Xj =
n∑
k=1

1√
n

cos
(
−2π(j − 1)(k − 1)

n

)
ηk.

Since the covariance matrix of η is σ2In, the components of η are independent and

identically distributed N (0, σ2). Thus by the properties of a sum of independent

normal random variables (Casella and Berger, 2002, p. 184),

Xj ∼ N

0, σ2
n∑
k=1

(
1√
n

cos
(
−2π(j − 1)(k − 1)

n

))2


= N
(
0, σ2〈[FR]j,·, [FR]j,·〉

)
.

Lem. 3.5.1 then provides the cases for evaluation of the inner product. Determination

of the distribution of Yk is similar. �

Before discussing the distribution of the components of |η̂|2, distributions other

than the Gaussian distribution will be introduced. First, the gamma distribution

with shape parameter α > 0 and scale parameter β > 0 has the probability density

function

f(x) = 1
Γ(α)βαx

α−1 exp(−x/β), x > 0. (3.5.23)
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A specific case of the gamma distribution is the exponential distribution, for which

α = 1; the probability density function of the exponential distribution is

f(x) = 1
β

exp(−x/β), x > 0, (3.5.24)

where again β is considered the scale parameter. Another specific case of the gamma

distribution occurs when α = p/2 and β = 2, where p is a positive integer. The result-

ing distribution is the chi-squared distribution with p degrees of freedom, commonly

denoted χ2(p). The probability density function of the χ2(p) distribution is

f(x) = 1
Γ(p/2)2p/2x

(p/2)−1 exp(−x/2), x > 0. (3.5.25)

A generalization of the chi-squared distribution is the noncentral chi-squared distribu-

tion. As suggested by the term “noncentral”, the noncentral chi-squared distribution

has a noncentrality parameter λ in addition to p degrees of freedom; the distribution

is denoted by χ′ 2(p, λ). One representation of the probability density function of the

χ′ 2(p, λ) distribution is found in (Casella and Berger, 2002, p. 166), which is

f(x) =
∞∑
`=0

x(p/2)+`−1 exp(−x/2)
Γ((p/2) + `)2(p/2)+`

λ` exp(−λ)
`! , x > 0. (3.5.26)

Here the notation for the noncentrality parameter is not to be confused with λ defined

in Section 2.3. When λ = 0, the term λ` in the series (3.5.26) forces the series to

simplify to the ` = 0 term
x(p/2)−1 exp(−x/2)

Γ(p/2)2p/2 ,

which matches (3.5.25). In other words, a zero noncentrality parameter means that

the noncentral chi-squared distribution is reduced to the (central) chi-squared distri-

bution, and we use in general χ′ 2(p, λ).

With the pertinent probability distributions introduced, Thm. 3.5.2 summarizes

the results regarding the distribution of the components of |η̂|2.

54



Theorem 3.5.2 Let η be a random n-vector with η ∼ N (0, σ2In). Also let J =

{1, n2 + 1} if n is even and J = {1} if n is odd. Then, for 1 ≤ j ≤ n, the distribution

of |η̂j|2 = Re(η̂j)2 + Im(η̂j)2 is as follows.

|η̂j|2 ∼


gamma(1/2, 2σ2), j ∈ J

exponential(σ2), j 6∈ J
.

Proof. Let η ∼ N (0, σ2In), X = Re(η̂), and Y = Im(η̂). The proof relies on

determining the distribution of the components of X2 and Y2 (here the exponent

indicates that the components are individually squared) and then looking at their

sum. Determination of the distribution of the components of X2 and Y2 is carried

out by applying a result regarding univariate one-to-one transformations (Casella and

Berger, 2002, p. 53). Without loss of generality, we assume that n is odd.

First consider the components of X2. Since n is odd, the two cases of X2
j to be

considered are for j = 1 and j 6= 1, both of which are handled by Lem. 3.5.5. If

j = 1, then Xj ∼ N (0, σ2). Letting g(x) = x2, the transformation U = g(Xj) = X2
j

is not one-to-one on the entire sample space R. However, R can be partitioned as

A0 ∪ A1 ∪ A2 with A0 = {0}, A1 = (−∞, 0), and A2 = (0,∞). Defining g1(x) = x2

and g2(x) = x2 with g−1
1 (u) = −

√
u and g−1

2 (u) =
√
u,

1. g(x) = g1(x) = g2(x) for all x ∈ A1 ∪ A2,

2. g1 and g2 are monotone on A1 and A2, respectively,

3. g1(A1) = g2(A2) = (0,∞), and

4. the derivatives g−1
1 and g−1

2 are continuous on (0,∞).

Lastly the set A0 is of no concern since P (Xj ∈ A0) = P (Xj = 0) = 0. Then using

the probability density function of the normal distribution, the density function of U
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is

fU(u) = 1√
2πσ2

[
exp

(
−(g−1

1 (u))2

2σ2

) ∣∣∣∣∣ ddug−1
1 (u)

∣∣∣∣∣+ exp
(
−(g−1

2 (u))2

2σ2

) ∣∣∣∣∣ ddug−1
2 (u)

∣∣∣∣∣
]

= 1√
2πσ2

exp
(−u

2σ2

) ∣∣∣∣∣ −1
2
√
u

∣∣∣∣∣+ 1√
2πσ2

exp
(−u

2σ2

) ∣∣∣∣∣ 1
2
√
u

∣∣∣∣∣
= 1√

2πσ2

1√
u

exp
(−u

2σ2

)
.

This is the probability density function of the gamma distribution with shape param-

eter 1/2 and scale parameter 2σ2. The same argument holds for j 6= 1, with scale

parameter instead being σ2. The argument can also be applied for Y 2
j when j 6= 1

since Xj and Yj are identically distributed in this case. When j = 1, Yj is a constant

random variable with Yj = 0, and so Y 2
j = 0 as well.

Now that the distribution of X2
j and Y 2

j is known, the distribution of their sum

can be established. If j = 1, then X2
j + Y 2

j has the same distribution as just X2
j .

The situation is more interesting when j 6= 1 since Y 2
j is no longer a constant random

variable. By Lem. 3.5.4, Xj and Yj are independent for all 1 ≤ j ≤ n. As a

consequence, X2
j and Y 2

j are independent for all 1 ≤ j ≤ n. Let fX2
j
and fY 2

j
denotes

the probability density functions of X2
j and Y 2

j , respectively. Since the probability

density function of a sum of two independent continuous random variables is equal

to the convolution of their individual density functions (Casella and Berger, 2002,

p. 215), the density function of V = X2
j + Y 2

j is given by

fV (v) =
∫ ∞
−∞

fX2
j
(w)fY 2

j
(v − w) dw.

Fortunately X2
j and Y 2

j are non-negative, meaning that the interval of integration

of the convolution can be reduced; fX2
j
(w) = 0 for w < 0 and fY 2

j
(v − w) = 0 for

w > v implies an interval of integration of [0, v]. Using the density functions and the
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substitution t = w/v then gives

fV (v) =
∫ v

0

[
1√
πσ2

1√
w

exp
(−w
σ2

)] [ 1√
πσ2

1√
v − w

exp
(
−(v − w)

σ2

)]
dw

= 1
πσ2 exp

(−v
σ2

) ∫ v

0

1√
w

1√
v − w

dw

= 1
πσ2 exp

(−v
σ2

) ∫ 1

0

1√
vt

1√
v − vt

v dt

= 1
πσ2 exp

(−v
σ2

) ∫ 1

0

1√
t

1√
1− t

dt.

The last integral represents B(1/2, 1/2), the beta function (Abramowitz and Stegun,

1972, p. 258) evaluated at (1/2, 1/2). Since B(1/2, 1/2) = π, the probability density

function of Vj is

fV (v) = 1
σ2 exp

(−v
σ2

)
.

This is the density function of the exponential distribution with scale parameter σ2.

�

The statistics of the DFT of white noise are now established, which allows the

focus to be shifted towards analyzing the combination b+η = d. By the properties of

the multivariate normal distribution, if η ∼ N (0, σ2In) then d ∼ N (b, σ2In) because

b is a constant vector. Thus, the distribution of the components of Re
(
d̂
)
and Im

(
d̂
)

are readily obtained by extending previous results.

Lemma 3.5.6 (Extension of Lem. 3.5.5) Let X = Re
(
d̂
)

and Y = Im
(
d̂
)
,

where d is a random n-vector with d ∼ N (b, σ2In). Also let J = {1, n2 + 1} if n

is even and J = {1} if n is odd. Then, for 1 ≤ j ≤ n, the distribution of Xj and Yj

is as follows.

Xj ∼


N
(
Re

(
b̂j
)
, σ2

)
, j ∈ J

N
(
Re

(
b̂j
)
, σ2/2

)
, j 6∈ J

, Yj ∼


0, j ∈ J

N
(
Im

(
b̂j
)
, σ2/2

)
, j 6∈ J

.

57



Proof. Let X and Y be as required. Using (3.5.19), Xj can be written as

Xj =
n∑
k=1

1√
n

cos
(
−2π(j − 1)(k − 1)

n

)
dk.

Since the covariance matrix of d is σ2I, the components dk are independent and dis-

tributed N (bk, σ2) for all 1 ≤ k ≤ n. Thus by the properties of a sum of independent

normal random variables (Casella and Berger, 2002, p. 184),

Xj ∼ N

 n∑
k=1

1√
n

cos
(
−2π(j − 1)(k − 1)

n

)
bk,

σ2
n∑
k=1

(
1√
n

cos
(
−2π(j − 1)(k − 1)

n

))2


= N
(
Re

(
b̂j
)
, σ2〈[FR]j·, [FR]j·〉

)
= N

(
Re

(
b̂j
)
, σ2[FRFRT]jj

)
.

Lem. 3.5.1 then provides the cases for evaluation of the inner product. Determination

of the distribution of Yk is similar. �

In contrast, however, to the results regarding the components of |η̂|2, the distribu-

tion of the components of
∣∣∣d̂∣∣∣2 is somewhat complicated. To illustrate this, consider

U = X2
1 , where X = Re

(
d̂
)
for odd-length d distributed N (b, σ2In). To simplify

notation, let µ = Re
(
b̂
)
so that by Lem. 3.5.6, X1 ∼ N (µ1, σ

2). Applying the same

transformation technique from Thm. 3.5.2, the probability density function of U is

fU(u) = 1√
2πσ2

exp
(
−(−
√
u− µ1)2

2σ2

) ∣∣∣∣∣ −1
2
√
u

∣∣∣∣∣+ 1√
2πσ2

exp
(
−(
√
u− µ1)2

2σ2

) ∣∣∣∣∣ 1
2
√
u

∣∣∣∣∣
= 1

2
√

2πσ2

1√
u

[
exp

(
−(
√
u+ µ1)2

2σ2

)
+ exp

(
−(
√
u− µ1)2

2σ2

)]
.

Unfortunately, this density function is not easily identified. However, rescaling X1

as X1/σ before applying the square transformation results in a random variable that

has a more tractable density function. The density function of V = (X1/σ)2 can be
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equated to that of the noncentered chi-squared distribution with 1 degree of freedom

and noncentrality parameter λ = (µ1/σ)2/2.

Before the distribution of the scaled components of d̂ is stated, Lem. 3.5.7 estab-

lishes the independence of the (squared) real and imaginary parts.

Lemma 3.5.7 Let d be a random n-vector with d ∼ N (b, σ2In), J = {1, n2 + 1} if

n is even and J = {1} if n is odd. Define the diagonal matrix M by

Mj,j =


1/σ j ∈ J
√

2/σ j 6∈ J
. (3.5.27)

Then, Re
(
(M d̂)j

)2
and Im

(
(M d̂)k

)2
are independent for all 1 ≤ j, k ≤ n.

Proof. Let d ∼ N (b, σ2I), X = Re
(
M d̂

)
, and Y = Im

(
M d̂

)
. Since d̂ = b̂ + η̂,

X2
j and Y 2

k can be expressed as

X2
j =

[
Mj,j

(
Re(b̂j) + Re(η̂j)

)]2
, Y 2

k =
[
Mk,k

(
Im(b̂k) + Im(η̂k)

)]2
.

X2
j and Y 2

k are thus functions of only the random variables Re(η̂j) and Im(η̂k), re-

spectively. Re(η̂j) and Im(η̂k) are independent by Lem. 3.5.4, and therefore X2
j =

Re
(
(M d̂)j

)2
and Y 2

k = Im
(
(M d̂)k

)2
are independent as well. �

The distribution of the scaled components of d̂ can now be stated.

Theorem 3.5.3 (Extension of Thm. 3.5.2) Let d be a random n-vector with d ∼

N (b, σ2In), J = {1, n2 + 1} if n is even and J = {1} if n is odd. Define the diagonal

matrix M by

Mj,j =


1/σ j ∈ J
√

2/σ j 6∈ J
.
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Then for 1 ≤ j ≤ n, the distribution of
∣∣∣(M d̂)j

∣∣∣2 = Re
(
(M d̂)j

)2
+ Im

(
(M d̂)j

)2
is

∣∣∣(M d̂)j
∣∣∣2 ∼


χ′ 2

1, 1
2

(
Re(b̂j)
σ

)2 , j ∈ J

χ′ 2
(

2, |b̂j|
2

σ2

)
, j 6∈ J

,

where χ′ 2(k, λ) denotes the noncentral chi-squared distribution with k degrees of

freedom and noncentrality parameter λ.

Proof. Let d ∼ N (b, σ2I), X = Re
(
M d̂

)
, and Y = Im

(
M d̂

)
. Again without

loss of generality, we assume that n is odd so that the two cases to be considered are

j = 1 and j 6= 1.

First, the components of X2 will be determined. If j = 1, then Re(d̂j) ∼ N (µj, σ2)

from Lem. 3.5.6, where µ = Re(b̂) for readability. Thus, by the properties of the

normal distribution (Casella and Berger, 2002, p. 184), Re
(
d̂j/σ

)
= Re

(
(M d̂)j

)
=

Xj ∼ N (
√

2λ, 1) where λ = (µj/σ)2/2. Applying the transformation technique used

in Thm. 3.5.2, the probability density function of V = X2
j is

fV (v) = 1
2
√

2π
1√
v

[
exp

(
−(
√
v +
√

2λ)2

2

)
+ exp

(
−(
√
v −
√

2λ)2

2

)]
.

Expanding the arguments of the exponential terms allows for the function to be

rewritten as

fV (v) = 1
2
√

2π
1√
v

[
exp

(
−(
√
v +
√

2λ)2

2

)
+ exp

(
−(
√
v −
√

2λ)2

2

)]

= 1
2
√

2π
1√
v

[
exp

(
−v2 −

√
2λv − λ

)
+ exp

(
−v2 +

√
2λv − λ

)]

= 1√
2π

1√
v

exp
(−v

2 − λ
) [exp(−

√
2λv) + exp(

√
2λv)

2

]

= 1√
2π

1√
v

exp
(−v

2 − λ
)

cosh(
√

2λv).

Hyperbolic cosine is an entire function with cosh(z) = ∑∞
`=0 z

2`/(2`)! as its Taylor
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expansion. From (Abramowitz and Stegun, 1972, p. 255),

Γ
(
`+ 1

2

)
= 1 · 3 · 5 · 7 · · · · · (2`− 1)

2` Γ
(1

2

)
= (2`− 1)!!

2`
√
π (3.5.28)

for all integers `. Thus, as an intermediate step, the double factorial (2`− 1)!! must

be related to (2`)! in order to modify the density function to the desired form. This

is accomplished by using the relation

(2`− 1)!!2``! = (2`)!, (3.5.29)

which is validated by noting that

(2`− 1)!!2``! = [(2`− 1)(2`− 3)(2`− 5) · · · (1)] 2` [(`)(`− 1)(`− 2) · · · (1)]

= [(2`− 1)(2`− 3)(2`− 5) · · · (1)] [(2`)(2(`− 1))(2(`− 2)) · · · (2)]

= [(2`− 1)(2`− 3)(2`− 5) · · · (1)] [(2`)(2`− 2)(2`− 4) · · · (2)]

= (2`)(2`− 1)(2`− 2)(2`− 3)(2`− 4)(2`− 5) · · · (2)(1)

= (2`)!.

In light of (3.5.29), (3.5.28) becomes the identity Γ(` + 1/2) = (2`)!
√
π/4``!. There-

fore,

fV (v) = 1√
2π

1√
v

exp
(−v

2 − λ
) ∞∑
`=0

(
√

2λv)2`

(2`)!

= 1√
2π

1√
v

exp
(−v

2 − λ
) ∞∑
`=0

(2λv)`
√
π

Γ(n+ 1/2)4nn!

=
∞∑
`=0

exp
(−v

2 − λ
) (λv)`v−1/2

Γ(n+ 1/2)2nn!
√

2

=
∞∑
`=0

v`−1/2 exp(−v/2)λ` exp(−λ)
Γ(`+ 1/2)2`+1/2`! ,

matching the probability density function (3.5.26) of the noncentral chi-squared dis-

tribution with 1 degree of freedom and noncentrality parameter λ = (µj/σ)2/2 =(
Re(b̂j)/σ

)2
/2.
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If j 6= 1, then Lem. 3.5.6 gives that Re
(
d̂j
)
∼ N (Re(b̂j), σ2/2). This implies that

Re
(
(
√

2d̂/σ)j
)

= Re
(
(M d̂)j

)
= Xj ∼ N (

√
2λ, 1), now with λ = (µj/σ)2. Thus the

same argument can be applied so that X2
j ∼ χ′ 2(1, (µj/σ)2) = χ′ 2

(
1, (Re(b̂j)/σ)2

)
.

With the components of X2 examined, focus can directed towards the components

of Y2. If j = 1, then Lem. 3.5.6 gives that Im
(
d̂j
)

= 0 (a constant random variable).

This implies that Im
(
d̂j/σ

)
= Im

(
(M d̂)j

)
= Yj = 0, meaning Y 2

j = 0 as well.

If j 6= 1, then Im
(
d̂j
)
∼ N (Im(b̂j), σ2/2). Thus by the argument for Xj, Y 2

j ∼

χ′ 2
(
1, (Im(b̂j)/σ)2

)
.

The final part of the proof is to establish the distribution of X2
j + Y 2

j for the

two cases of j. If j = 1, then Y 2
j = 0 and so X2

j + Y 2
j has the same distribution

of X2
j , which is χ′ 2

(
1, (Re(b̂j)/σ)2/2

)
. If j 6= 1, then X2

j and Y 2
j are distributed

χ′ 2
(
1, (Re(b̂j)/σ)2

)
and χ′ 2

(
1, (Im(b̂j)/σ)2

)
, respectively. Their independence is

given by Lem. 3.5.7, and so the reproductive property of the noncentral chi-squared

distribution (Rao, 1973, p. 182) produces

X2
j + Y 2

j ∼ χ′ 2

1 + 1,
(

Re(b̂j)
σ

)2

+
(

Im(b̂j)
σ

)2 = χ′ 2

2,

∣∣∣b̂j∣∣∣2
σ2

 .
�

From Thm. 3.5.3, there are conditions which simplify the distribution of
∣∣∣(M d̂)j

∣∣∣2.
If j = 1 (or (n/2) + 1 when n is even), the noncentrality parameter of the noncentral

chi-squared distribution is
(
Re(b̂1)

)2
/2σ2. By the definition of the DFT,

Re
(
b̂1
)

= 1√
n

n∑
`=1

cos
(
−2π(1− 1)(`− 1)

n

)
b` = 1√

n

n∑
`=1

b`.

It is certainly possible that ∑n
`=1 b` = 0. A situation that would lend itself to this

possibility would be a function g(t) whose integral over the interval being considered

is zero, e.g. sin(2πt) defined on the interval [0, 1]. Even if Re
(
b̂1
)
is nonzero, λ =(

Re(b̂1)
)2
/2σ2 can be near zero when Re

(
b̂1
)
is small or the variance σ2 is large.
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Extending these observations for general indices j, a zero noncentrality parameter

means
∣∣∣(M d̂)j

∣∣∣2 ∼

χ′ 2 (1, 0) = χ2(1), j = 1

χ′ 2 (2, 0) = χ2(2), otherwise
, (3.5.30)

again for n being even; the same holds for odd n, with the inclusion of the (n/2) + 1

case. Recalling that M in Thm. 3.5.3 is a diagonal matrix, (3.5.30) can be restated

as
∣∣∣(M d̂)j

∣∣∣2 =


|d̂j|2/σ2 ∼ χ2(1), j = 1

2|d̂j|2/σ2 ∼ χ2(2), otherwise
.

Fortunately, this result agrees with Thm. 3.5.2. The connection can be stated as a

lemma.

Lemma 3.5.8 Let σ2 > 0, Z1 ∼ χ2(1), and Z2 ∼ χ2(2). Then V1 = σ2Z1 ∼

gamma(1/2, 2σ2) and V2 = σ2Z1/2 ∼ exponential(σ2).

Proof. Let σ2 > 0, Z1 ∼ χ2(1), Z2 ∼ χ2(2), and define V1 = σ2Z1 and V2 = σ2Z1/2.

In addition, let g1(z) = σ2z and g2(z) = σ2z/2. Then V1 = g1(Z1) and V2 = g2(Z2),

both g1 and g2 are monotone on the sample space (0,∞) of chi-squared random

variables, and g−1
1 (v) = v/σ2 and g−1

2 (v) = 2v/σ2. Using g−1
1 and the probability

density function of the χ2(1) distribution, the density function of V1 is

fV1(v) = 1
Γ(1/2)

√
2

(
v

σ2

)−1/2
exp

(−v
2σ2

) ∣∣∣∣ 1
σ2

∣∣∣∣ = 1
Γ(1/2)

√
2σ2

v−1/2 exp
(−v

2σ2

)
,

which is the density function of the gamma(1/2, 2σ2) distribution. Similarly using g−1
2

and the probability density function of the χ2(2) distribution, the density function of

V2 is

fV2(v) = 1
Γ(1) · 2 exp

(−2v
2σ2

) ∣∣∣∣ 2
σ2

∣∣∣∣ = 1
σ2 exp

(−v
σ2

)
,
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which is the density function of the exponential(σ2) distribution. An alternative

method for showing V2 ∼ exponential(σ2) would be to note that the χ2(2) distri-

bution is the same as the exponential(1/2) distribution and then perform the scalar

transformation. �

Ultimately there is a trade-off between the frequency content of the blurred func-

tion and the variance in the added noise. If the blurred function has a small amount

of high frequency content (relative to the variance of the noise), then the statistics of

corresponding terms
∣∣∣(M d̂)j

∣∣∣2 will resemble those of chi-squared random variables.

Since Thm. 3.5.3 is used in Section 4.1 and Section 4.2, some statistics regarding

the noncentral chi-squared distribution will be stated for later convenience.

Theorem 3.5.4 Let X ∼ χ′ 2(p, λ). Then E(X) = p+ λ and Var(X) = 2p+ 4λ.

Proof. Let X ∼ χ′ 2(p, λ). As noted in (Casella and Berger, 2002, p. 167),

the probability density function (3.5.26) of the noncentral chi-squared distribution

can be considered a mixture distribution; for the hierarchy X|Y ∼ χ2(p + 2Y ) and

Y ∼ Poisson(λ), the marginal distribution of X is (3.5.26). Then by the properties

of expected value and the chi-squared and Poisson distributions,

E(X) = E(E(X|Y )) = E(p+ 2Y ) = p+ 2E(Y ) = p+ 2λ.

The variance of X is calculated in a similar way:

Var(X) = E(Var(X|Y )) + Var(E(X|Y ))

= E(2p) + Var(p+ 2Y )

= 2p+ 4 Var(Y )

= 2p+ 4λ.

�
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Using the results from Thm. 3.5.3, Thm. 3.5.4 has the following corollary.

Corollary 3.5.1 Let d be a random n-vector with d ∼ N (b, σ2In), J = {1, n2 + 1}

if n is even and J = {1} if n is odd. Define the diagonal matrix M by

Mj,j =


1/σ j ∈ J
√

2/σ j 6∈ J
.

Then

E
(∣∣∣(M d̂)j

∣∣∣2) =



1
2

2 +

∣∣∣b̂j∣∣∣2
σ2

 , j ∈ J

2 +

∣∣∣b̂j∣∣∣2
σ2 , j 6∈ J

and

Var
(∣∣∣(M d̂)j

∣∣∣2) =



2

1 +

∣∣∣b̂j∣∣∣2
σ2

 , j ∈ J

4

1 +

∣∣∣b̂j∣∣∣2
σ2

 , j 6∈ J

.

The final statistical result presented here is the covariance of
∣∣∣Mj d̂j

∣∣∣2 and
∣∣∣Mkd̂k

∣∣∣2.
A step in Thm. 3.5.5 is to determine covariances between components of M d̂ =

M b̂ + M η̂. Lem. 3.5.7 establishes that the real and imaginary parts of M η̂ are

independent, but Lem. 3.5.9 establishes the relationship between any two real or

imaginary components of M η̂.

Lemma 3.5.9 Let η ∼ N (0, σ2In), FR and FI be the real and imaginary parts,

respectively, of the n × n DFT matrix, J = {1, n2 + 1} if n is even and J = {1} if n

is odd. Define the diagonal matrix M by

Mj,j =


1/σ j ∈ J
√

2/σ j 6∈ J
.
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Then (MFRη)j and (MFRη)k are independent for all 1 ≤ j < k ≤ n with j+k−2 6= n.

When j+k−2 = n, (MFRη)j = (MFRη)k. The same result holds for the components

of MFIη.

Proof. Let 1 ≤ j < k ≤ n with j + k − 2 6= n. The components (MFRη)j and

(MFRη)k are

(MFRη)j =
n∑
`=1

Mj,j√
n

cos
(
−2π(j − 1)(`− 1)

n

)
η`,

(MFRη)k =
n∑
`=1

Mk,k√
n

cos
(
−2π(k − 1)(`− 1)

n

)
η`.

As stated in Lem. 3.5.4, the η` are independent and their nth moments exist for each

1 ≤ ` ≤ n. Thus the first condition of Thm. 3.5.1 is satisfied. The second condition

follows from

n∑
`=1

[
Mj,j√
n

cos
(
−2π(j − 1)(`− 1)

n

)] [
Mk,k√
n

cos
(
−2π(k − 1)(`− 1)

n

)]

= Mj,jMk,k〈[FR]j,·, [FR]k,·〉

= 0,

where the last equality is given by Lem. 3.5.1. The proof of (MFRη)j = (MFRη)k

when j + k − 2 = n is contained in the proof of Lem. 3.5.2. The same argument

applies to (MFIη)j and (MFIη)k. �

The covariance of |Mj d̂j|2 and |Mkd̂k|2 for 1 ≤ j < k ≤ n can now be determined.

Theorem 3.5.5 Let d be a random n-vector with d ∼ N (b, σ2In), J = {1, n2 + 1} if

n is even and J = {1} if n is odd. Define the diagonal matrix M by

Mj,j =


1/σ j ∈ J
√

2/σ j 6∈ J
.
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Then for 1 ≤ j < k ≤ n,

Cov
(∣∣∣Mj d̂j

∣∣∣2 , ∣∣∣Mkd̂k
∣∣∣2) =


4

1 +

∣∣∣b̂j∣∣∣2
σ2

 , j + k − 2 = n

0, j + k − 2 6= n

.

Proof. By the linearity of covariance and rewriting the magnitudes squared in

terms of real and imaginary parts,

Cov
(
|Mj d̂j|2, |Mkd̂k|2

)
= Cov

(
Re(Mj d̂j)2 + Im(Mj d̂j)2,Re(Mkd̂k)2 + Im(Mkd̂k)2

)
= Cov

(
Re(Mj d̂j)2,Re(Mkd̂k)2

)
+ Cov

(
Re(Mj d̂j)2, Im(Mkd̂k)2

)
+ Cov

(
Im(Mj d̂j)2,Re(Mkd̂k)2

)
+ Cov

(
Im(Mj d̂j)2, Im(Mkd̂k)2

)
.

By Lem. 3.5.7, Re(Mj d̂j)2 and Im(Mkd̂k)2 are independent for all 1 ≤ j, k ≤ n,

meaning that their covariance is zero. Thus, the covariance simplifies to

Cov
(
|Mj d̂j|2, |Mkd̂k|2

)
= Cov

(
Re(Mj d̂j)2,Re(Mkd̂k)2

)
+ Cov

(
Im(Mj d̂j)2, Im(Mkd̂k)2

)
.

A further simplification can be made by using d̂ = b̂ + η̂ and expanding the squared

terms:

Cov
(
Re(Mj d̂j)2,Re(Mkd̂k)2

)
= Cov

(
[Re(Mj b̂j) + Re(Mj η̂j)]2, [Re(Mkb̂k) + Re(Mkη̂k)]2

)
= Cov

(
Re(Mj b̂j)2,Re(Mkb̂k)2

)
+ Cov

(
Re(Mj b̂j)2, 2 Re(Mkb̂k) Re(Mkη̂k)

)
+ Cov

(
Re(Mj b̂j)2,Re(Mkη̂k)2

)
+ Cov

(
2 Re(Mj b̂j) Re(Mj η̂j),Re(Mkb̂k)2)

)
+ Cov

(
2 Re(Mj b̂j) Re(Mj η̂j), 2 Re(Mkb̂k) Re(Mkη̂k)

)
+ Cov

(
2 Re(Mj b̂j) Re(Mj η̂j),Re(Mkη̂k)2)

)
+ Cov

(
Re(Mj η̂j)2,Re(Mkb̂k)2

)
+ Cov

(
Re(Mj η̂j)2, 2 Re(Mkb̂k) Re(Mkη̂k)

)
+ Cov

(
Re(Mj η̂j)2,Re(Mkη̂k)2

)
.
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While this certainly appears to be the opposite of a simplification, any covariance

term with an argument not containing η̂j or η̂k is zero. Five of the nine covariance

terms are thus removed, leaving

Cov
(
Re(Mj d̂j)2,Re(Mkd̂k)2

)
= Cov

(
2 Re(Mj b̂j) Re(Mj η̂j), 2 Re(Mkb̂k) Re(Mkη̂k)

)
+ Cov

(
2 Re(Mj b̂j) Re(Mj η̂j),Re(Mkη̂k)2)

)
+ Cov

(
Re(Mj η̂j)2, 2 Re(Mkb̂k) Re(Mkη̂k)

)
+ Cov

(
Re(Mj η̂j)2,Re(Mkη̂k)2

)
.

The constant coefficients can be factored and combined so that

Cov
(
Re(Mj d̂j)2,Re(Mkd̂k)2

)
= [4 Re(Mj b̂j) Re(Mkb̂k)] Cov (Re(Mj η̂j),Re(Mkη̂k))

+ [2 Re(Mj b̂j)] Cov
(
Re(Mj η̂j),Re(Mkη̂k)2)

)
+ [2 Re(Mkb̂k)] Cov

(
Re(Mj η̂j)2,Re(Mkη̂k)

)
+ Cov

(
Re(Mj η̂j)2,Re(Mkη̂k)2

)
.

Let FR be the real part of the Fourier matrix (3.3.13). Then Re(Mj η̂j) = (MFRη)j

for all 1 ≤ j ≤ n. Lem. 3.5.7 states that (MFRη)j and (MFRη)k are independent for

all 1 ≤ j < k ≤ n with j + k− 2 6= n and (MFRη)j = (MFRη)k when j + k− 2 = n.

Thus all of the covariance terms above are zero when j + k − 2 6= n. As for the

j + k − 2 = n case, Thm. 3.5.3 yields the final result:

Cov
(∣∣∣Mj d̂j

∣∣∣2 , ∣∣∣Mkd̂k
∣∣∣2) = 4

1 +

∣∣∣b̂j∣∣∣2
σ2

 , j + k − 2 = n.

�

The primary challenge in dealing with statistics of the DFT applied to independent

and identically distributed white noise η is that the covariance matrices of FRη and

FIη are singular. Fortunately, this is not the case for an orthogonal transformation

such as the DCT.

68



Let C be an n × n orthogonal matrix, η ∼ N (0, σ2In), and η̆ = Cη. By the

orthogonality of C and properties of the multivariate normal distribution,

η̆ ∼ N (C0, σ2CTC) = N
(
0, σ2In

)
. (3.5.31)

Thus the distribution of η is preserved under C. More generally,

d̆ ∼ N
(
d̆, σ2In

)

where d = b + η. Therefore the orthogonal version of Thm. 3.5.3 is simpler.

Theorem 3.5.6 Let d be a random n-vector with d ∼ N (b, σ2In) and let d̆ = Cd

where C ∈ Rn×n is orthogonal. Then for all 1 ≤ j ≤ n,

1
σ2 d̆

2
j ∼ χ′

(
1, 1

2σ2

(
b̆j
)2
)
.

Proof. For 1 ≤ j ≤ n, the properties of the univariate normal distribution give

1
σ
b̆j ∼ N

(√
2λ, 1

)
, λ = 1

2σ2

(
b̆j
)2
.

The techniques utilized in the proof of Thm. 3.5.2 can now be applied to yield

1
σ2

(
b̆j
)2
∼ χ′ (1, λ) = χ′

(
1, 1

2σ2

(
b̆j
)2
)
.

�

Using Thm. 3.5.6 and the fact that the sum of independent noncentral chi-squared

random variables is also a noncentral chi-squared random variable, Cor. 3.5.2 describes

the distribution of the 2-norm of a Gaussian random vector under an orthogonal

transformation.
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Corollary 3.5.2 Let d be a random n-vector with d ∼ N (b, σ2I) and let d̆ = Cd

where C ∈ Rn×n is orthogonal. Then

∥∥∥d̆∥∥∥2

2
∼ χ′

(
n,

1
2σ2

∥∥∥b̆∥∥∥2

2

)
.

Lastly, the expected value and variance of the components of d̆ then follow directly

from Thm. 3.5.4.

Lemma 3.5.10 Let d be a random n-vector with d ∼ N (b, σ2In) and let d̆ = Cd

where C ∈ Rn×n is orthogonal. Then for all 1 ≤ j ≤ n,

E
( 1
σ2

(
d̆j
)2
)

= 1 + 1
2σ2

(
b̆j
)2
, Var

( 1
σ2

(
d̆j
)2
)

= 2 + 2
σ2

(
b̆j
)2
.

3.6 Summary

In summary, the connections between blurred data, boundary conditions, result-

ing matrix structure, and noise content are important for understanding the numer-

ical implementations and consequence of regularization. These connections allow

for quantitative analysis of the learning and spectral windowing approaches in later

chapters. In addition, matrix decompositions associated with the DFT and DCT are

utilized for efficiency in numerical implementations.
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Chapter 4

PARAMETER ESTIMATION METHODS

Perhaps the simplest method of selecting a regularization parameter is to find α

that minimizes

FMSE(α) = ‖x(α)− x‖2
2, (4.0.1)

where MSE stands for mean squared error. Though a mean is not being taken in

eq. (4.0.1), the use of the broader term MSE becomes apparent once multiple data

sets are considered (Chapter 6). The primary disadvantage of using this method

is that the true solution x must be known, or in other words, this is a supervised

learning method. Not only would knowing the true solution render the process of

finding a regularized solution pointless, but in practice a true solution is not known.

This motivates the use of other methods, which do not rely upon knowledge of a

true solution. The three such methods considered are the unbiased predictive risk

estimator method (Section 4.1), the discrepancy principle method (Section 4.2), and

the generalized cross validation method (Section 4.3). Since true solutions are known

for use in the numerical examples, the method defined using eq. (4.0.1) will be used

as a benchmark for comparing the other three methods. Here we introduce these

methods for the single data set, scalar parameter case; their spectral windowed mul-

tidata extensions are introduced in Chapter 5. Since Chapter 5 contains versions of

the parameter functions in summation notation in addition to matrix-vector notation,

summation forms of the parameter functions are also presented in this chapter. A

summation version of the UPRE function is derived at the end of Section 4.1, and

this derivation is used to form summation version of the MDP and GCV functions in
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their corresponding sections.

4.1 Unbiased Predictive Risk Estimator

The unbiased predictive risk estimator (UPRE) method Mallows (1973) is derived

by considering the quantity

p(α) = A(x(α)− x). (4.1.2)

The quantity p(α) is known as the predictive error, and is an alternative to solution

error defined as x(α)− x. Given the above definition, the mean squared norm of the

predictive error is
1
m
‖p(α)‖2

2 = 1
m
‖A(x(α)− x)‖2

2

which is called the predictive risk. As a first step in deriving the UPRE method, the

noise η is assumed to be a random vector, instead of a realization of a random vector.

Direct consequences of this assumption are that b and x(α) are random vectors and

the predictive risk (1/m)‖p(α)‖2
2 is a random variable.

Next, we assume that the regularized solution x(α) depends linearly on the data.

This means that we can write x(α) = R(α)d, where R(α) is called the regularization

matrix Vogel (2002) that is dependent upon α. Them×m influence matrix A(α), also

called the data resolution matrix Aster et al. (2013), is then defined as A(α) = AR(α).

Using the influence matrix with x(α) = R(α)d, the predictive error can be rewritten:

p(α) = Ax(α)− Ax

= A(α)d− Ax

= A(α)(Ax + η)− Ax

= (A(α)− Im)Ax + A(α)η.

By the assumption that η ∼ N (0, σ2Im), the Trace Lemma (Lem. 4.1.1) can be
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utilized to obtain an expression for the expected value (denoted E(·)) of predictive

risk.

Lemma 4.1.1 (Trace Lemma (Vogel, 2002, p. 98)) Let f ∈ H, where H is a

deterministic real Hilbert space, let η be a discrete noise vector with η ∼ N (0, σ2Im),

and let B : Rm → H be a bounded linear operator. Then

E(‖f +Bη‖2
H) = ‖f‖2

H + σ2 trace(B∗B)

where B∗ denotes the adjoint of B.

Applying the Trace Lemma to the expression for predictive risk yields

E
( 1
m
‖p(α)‖2

2

)
= 1
m

E
(
‖(A(α)− I)Ax + A(α)η‖2

2

)
= 1
m
‖(A(α)− Im)Ax‖2

2 + σ2

m
trace(A(α)TA(α)).

If generalized Tikhonov regularization is used, then the influence matrix is

A(α) = A(ATA+ α2LTL)−1AT = AA](α), (4.1.3)

with A](α) from eq. (2.2.12). In other words, we have R(α) = A](α) for generalized

Tikhonov regularization. The matrix (ATA + α2LTL)−1 is symmetric as a result of

ATA and α2LTL being individually symmetric, and thus A(α) is symmetric. Then,

the expected value of predictive risk is simplified to

E
( 1
m
‖p(α)‖2

2

)
= 1
m
‖(A(α)− Im)Ax‖2

2 + σ2

m
trace(A(α)2). (4.1.4)

The last step in the derivation of the UPRE method is to introduce the regularized

residual, which is defined as r(α) = Ax(α)−d. The regularized residual is important

because it is also used in the generalized cross validation and discrepancy principle

methods. Using A(α), the expression for r(α) can also be written as

r(α) = (A(α)− Im)d = (A(α)− Im)(Ax + η) = (A(α)− Im)Ax + (A(α)− Im)η.
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By the Trace Lemma and the expression for r(α),

E
( 1
m
‖r(α)‖2

2

)
= 1
n
‖(A(α)− Im)Ax‖2

2 + σ2

m
trace((A(α)− Im)T(A(α)− Im)).

For symmetric A(α), the term (A(α)− Im)T(A(α)− Im) becomes

(A(α)− Im)2 = A(α)2 − 2A(α) + Im,

and so by the linearity of the trace operator,

E
( 1
m
‖r(α)‖2

2

)
= 1
m
‖(A(α)− Im)Ax‖2

2 + σ2

n
trace(A(α)2)− 2σ2

m
trace(A(α)) + σ2.

(4.1.5)

By comparing eq. (4.1.4) and eq. (4.1.5),

E
( 1
m
‖p(α)‖2

2

)
= E

( 1
m
‖r(α)‖2

2

)
+ 2σ2

m
trace(A(α))− σ2,

yielding the UPRE function

FUPRE(α) = 1
m
‖r(α)‖2

2 + 2σ2

m
trace(A(α))− σ2. (4.1.6)

The UPRE method finds α such that FUPRE(α) is minimized. Note that the UPRE

method does rely on knowledge of σ2.

To derive a summation form of eq. (4.1.6), we apply the GSVD of (A,L) to the

influence matrix A(α) = A(ATA+ α2LTL)−1AT yielding

A(α) = A
(
ATA+ α2LTL

)−1
AT

= U∆XT
(
X∆TUTU∆XT + α2XΛTV TV ΛXT

)−1
X∆TUT

= U∆XT
[
X
(
∆T∆ + α2ΛTΛ

)
XT

]−1
X∆TUT

= U∆
(
∆T∆ + α2ΛTΛ

)−1
∆TUT.

Using the similarity invariance and cyclic properties of the trace,

trace (A(α)) = trace
(
(∆T∆ + α2ΛTΛ)−1∆T∆

)
= trace (Φ(α)) ,
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expressed in summation notation from eq. (2.3.20) as

trace (A(α)) =
n∑
j=1

φj(α) = (n− q∗) +
q∗∑
j=1

φj(α). (4.1.7)

Note that though A(α) is an m×m diagonal matrix, [A(α)]j,j = 0 for j = n+ 1 : m.

Next, the definition of r(α) with eq. (2.3.23) and d̂ = UTd gives

1
m
‖r(α)‖2

2 = 1
m
‖Ax(α)− d‖2

2 = 1
m

∥∥∥U∆XTY Φ(α)∆†d̂− d
∥∥∥2

2

= 1
m

∥∥∥U∆Φ(α)∆†UTd− UUTd
∥∥∥2

2

= 1
m

∥∥∥(∆Φ(α)∆† − Im
)

d̂
∥∥∥2

2
,

= 1
m

∥∥∥∥∥∥∥∥∥∥∥∥


Φ(α)− In 0n×(m−n)

0(m−n)×n −I(m−n)×(m−n)

 d̂

∥∥∥∥∥∥∥∥∥∥∥∥

2

2

,

which can be written using summation notation as

1
m
‖r(α)‖2

2 = 1
m

n∑
j=1

ψ2
j (α)d̂2

j + 1
m

m∑
j=n+1

d̂2
j . (4.1.8)

Combining eq. (4.1.7) and eq. (4.1.8) produces a summation form of the UPRE func-

tion:

FUPRE(α) = 1
m

n∑
j=1

ψ2
j (α)d̂2

j + 1
m

m∑
j=n+1

d̂2
j + 2σ2

m

n∑
j=1

φj(α)− σ2. (4.1.9)

Since the UPRE method relies on finding a minimum of eq. (4.1.9), the constant

terms 1
m

∑m
j=n+1 d̂

2
j and −σ2 can be ignored during implementation.

The problem of finding a minimizer of eq. (4.1.9) can be recast as a root-finding

problem by using the derivative of the UPRE function, which is

d

dα
FUPRE(α) = 2

m

n∑
j=1

ψj(α)dψj(α)
dα

d̂2
j + 2σ2

m

n∑
j=1

dφj(α)
dα

= 4α
m

 n∑
j=1

ψj(α)
γ2
j

(γ2
j + α2)2 d̂

2
j − σ2

n∑
j=1

γ2
j

(γ2
j + α2)2

 (4.1.10)
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using the derivatives in eq. (2.3.21). It is clear that α = 0 is a root of eq. (4.1.10)

regardless of the data and operator spectra, so this root should be ignored (since a

solution generated for α = 0 is in fact a non-regularized solution).

Alternatively, a form of the UPRE function can also be derived in the case where

a simultaneous diagonalization of A and L is available instead of the GSVD. As the

illustrative example, we assume that A and L can be simultaneously diagonalized by

the DFT, i.e. A = FH∆F and L = FHΛF for the unitary DFT matrix F defined by

eq. (3.3.13). In this new context, d̂ = Fd, though we retain the assumption that d

is a vector of real numbers. We begin with the DFT of the predictive error defined

by eq. (4.1.2):

p̂(α) = FA(x(α)− x) = ∆ (x̂(α)− x̂) .

Since the influence matrix A(α) is defined as A(α) = AR(α) = FH∆FR(α) with

regularization matrix R(α), conjugation of A(α) by F gives FA(α)FH = ∆FR(α)FH.

Combined with x̂(α) = FR(α)d = FR(α)FHd̂ and d̂ = F (Ax + η) = ∆x̂ + η̂, the

predictive error is rewritten as

p̂(α) = ∆x̂(α)−∆x̂

= FA(α)FHd̂−∆x̂

= FA(α)FH(∆x̂ + η̂)−∆x̂

=
[
F (A(α)− Im)FH

]
∆x̂ +

[
FA(α)FH

]
η̂. (4.1.11)

Since the components of x̂ and η̂ are not guaranteed to be real, the Trace Lemma

as previously stated can no longer be directly applied. Instead, Lem. 4.1.1 can be

modified to accommodate the existence of complex components arising from the ap-

plication of the DFT; the proof is a modification of the proof of Lem. 4.1.1 in (Vogel,

2002, p. 98).
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Lemma 4.1.2 (DFT Trace Lemma) Let f ∈ H, where H is a deterministic com-

plex Hilbert space, let η be a discrete white noise vector with η ∼ N (0, σ2Im), and

let B : Cm → H be a bounded linear operator. Furthermore, let η̂ = Fη where F is

the n× n unitary DFT matrix. Then

E(‖f +Bη̂‖2
H) = ‖f‖2

H + σ2 trace(BHB) (4.1.12)

where BH denotes the adjoint of B.

Proof. By the linearity of inner products and the expected value operator,

E(‖f +Bη̂‖2
H) = E(〈f +Bη̂, f +Bη̂〉H)

= E(‖f‖2
H) + E

(
〈f,Bη̂〉H + 〈f,Bη̂〉H

)
+ E(〈Bη̂, Bη̂〉H)

= E(‖f‖2
H) + 2E (Re(〈f,Bη̂〉H)) + E(〈Bη̂, Bη̂〉H).

This difference between the real and DFT versions of the Trace Lemma comes from

the fact that the inner product on a complex Hilbert space is a sesquilinear form

instead of a bilinear form. Again the term E(‖f‖2
H) can be reduced to ‖f‖2

H because

f is an element of a deterministic Hilbert space. The inner products can be rewritten

using the adjoint of B:

E(‖f +Bη̂‖2
H) = ‖f‖2

H + 2E
(
Re

(
(η̂)HBHf

))
+ E

(
η̂HBHBη̂

)
. (4.1.13)

Recall that Lem. 3.5.5 described the distributions of the real and imaginary compo-

nents of η̂. While statistics of the full vector η̂ = Re(η̂) + i Im(η̂) could be utilized

from the distributions described by Lem. 3.5.5, the simpler approach is to write

η̂ = Fη and use the fact that η ∼ N (0, σ2Im) directly. As a result, eq. (4.1.13) can
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be written as

E(‖f +Bη̂‖2
H) = ‖f‖2

H + 2E
(
Re

(
(Fη)HBHf

))
+ E

(
(Fη)HBHBFη

)
= ‖f‖2

H + 2E
(
Re

(
ηHFHBHf

))
+ E(ηHFHBHBFη)

= ‖f‖2
H + 2E

(
Re

(
ηTFHBHf

))
+ E(ηTFHBHBFη)

= ‖f‖2
H + 2

m∑
j=1

E(ηT
j ) Re

(
(FHBHf)j

)
+

m∑
j=1

m∑
k=1

(FHBHBF )j,k E(ηjηk).

Since η ∼ N (0, σ2Im), the expected value of ηj is zero, as is the expected value of

ηjηk when j 6= k. Therefore the second term above is zero and the third term is

a summation expression for σ2 trace(FHBHBF ). Lastly since F is unitary and the

trace operation is invariant under similarity transformations, σ2 trace(FHBHBF ) =

σ2 trace(BHB). �

This DFT version of the Trace Lemma is suited to rewrite eq. (4.1.11) since the first

term of eq. (4.1.11) is deterministic and the second term matches the form Bη̂ where

B = FA(α)FH and η̂ = Fη with DFT matrix F and η ∼ N (0, σ2Im). Applying the

DFT version of the Trace Lemma to eq. (4.1.11) yields

E
( 1
m
‖p̂(α)‖2

2

)
= 1
m

E
(∥∥∥[F (A(α)− Im)FH]∆x̂ + [FA(α)FH]η̂

∥∥∥2

2

)
= E

( 1
m

∥∥∥[F (A(α)− Im)FH]∆x̂
∥∥∥2

2

)
+ σ2

m
trace

(
(FA(α)FH)H

FA(α)FH
)

= E
( 1
m

∥∥∥[F (A(α)− Im)FH]∆x̂
∥∥∥2

2

)
+ σ2

m
trace

(
A(α)HA(α)

)
.

The DFT of the regularized residual r(α) is

r̂(α) = F (Ax(α)− d) = FFH∆Fx(α)− Fd = ∆x̂(α)− d̂,

which is a complex vector. Using FA(α)FH, the expression for r̂(α) can be rewritten

as

r̂(α) = F (A(α)− Im)FH (∆x̂ + η̂) =
[
F (A(α)− Im)FH

]
∆x̂ +

[
F (A(α)− Im)FH

]
η̂.
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Applying the DFT version of the Trace Lemma again produces

E
( 1
m
‖r̂(α)‖2

2

)
= E

( 1
m

∥∥∥[F (A(α)− Im)FH]∆x̂
∥∥∥2

2

)
+ σ2

m
trace

(
F (A(α)− Im)H(A(α)− I)FH

)
= E

( 1
m

∥∥∥[F (A(α)− Im)FH]∆x̂
∥∥∥2

2

)
+ σ2

m
trace

(
F (A(α)HA(α)− (A(α)H + A(α)) + Im)FH

)
= E

( 1
m

∥∥∥[F (A(α)− Im)FH]∆x̂
∥∥∥2

2

)
+ σ2

m
trace

(
A(α)HA(α)

)
− 2σ2

m
trace (Re(A(α))) + σ2.

Thus E( 1
m
‖p̂(α)‖2

2) can again be expressed as

E
( 1
m
‖p̂(α)‖2

2

)
= E

( 1
m
‖r̂(α)‖2

2

)
+ 2σ2

m
trace (Re(A(α)))− σ2. (4.1.14)

Now to obtain a greater understanding of the norm term in eq. (4.1.14) in the DFT

case, we look to the statistics from Chapter 3, specifically Cor. 3.5.1. Though not

immediately needed for either the UPRE or MDP methods, the variance of 1
m
‖r̂(α)‖2

2

can be determined as well using results from Chapter 3. The expectation and variance

of 1
m
‖r̂(α)‖2

2 are provided in Lem. 4.1.3.

Lemma 4.1.3 Let the factors Mj for j = 1, . . . ,m be defined by

Mj =


1/σ j = 1, m2 + 1
√

2/σ otherwise
,

where the condition m
2 +1 is ignored ifm is odd. Then E

(
1
m
‖r̂(α)‖2

2

)
from eq. (4.1.14)

can be written as

E
( 1
m
‖r̂(α)‖2

2

)
=

m∑
j=1

σ2

2

(
2 + |b̂j|

2

σ2

)
(ψj(α))2, (4.1.15)
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and Var
(

1
m
‖r̂(α)‖2

2

)
can be written as

Var
( 1
m
‖r̂(α)‖2

2

)
= 2σ4

m∑
j=1

(
1 + |b̂j|

2

σ2

)
(ψj(α))4 . (4.1.16)

Proof. Using the factors Mj for j = 1, . . . ,m, E
(

1
m
‖r̂(α)‖2

2

)
from eq. (4.1.14) can

be written as

E
( 1
m
‖r̂(α)‖2

2

)
= E

 m∑
j=1
|Mj d̂j|2

(
ψj(α)
Mj

)2


=
m∑
j=1

E
(
|Mj d̂j|2

)(ψj(α)
Mj

)2

,

the last equality having been obtained through the linearity of expectation Casella

and Berger (2002). Cor. 3.5.1 then gives

E
( 1
m
‖r̂(α)‖2

2

)
=

m∑
j=1

σ2

2

(
2 + |b̂j|

2

σ2

)
(ψj(α))2

=
m∑
j=1

σ2

2

(
2 + |b̂j|

2

σ2

)
(ψj(α))2.

From the definition of variance,

Var
( 1
m
‖r̂(α)‖2

2

)
= Var

 m∑
j=1
|Mj d̂j|2

(
ψj(α)
Mj

)2


=
m∑
j=1

m∑
`=1

(
ψj(α)ψ`(α)
MjM`

)2

Cov
(
|Mj d̂j|2, |M`d̂`|2

)
.

(4.1.17)

By Thm. 3.5.5, the covariance terms are only nonzero when j = ` or j + ` − 2 = n.

In either case,(
ψj(α)ψ`(α)
MjM`

)2

Cov
(
|Mj d̂j|2, |M`d̂`|2

)
=
(
ψj(α)
Mj

)4

Var
(
|Mj d̂j|2

)
,

Let J = {1, (n/2) + 1} if n is even and J = {1} if n is odd. Cor. 3.5.1 states that(
ψj(α)
Mj

)4

Var
(
|Mj d̂j|2

)
= 2σ4

(
1 + |b̂j|

2

σ2

)
(ψj(α))4 , j ∈ J
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and similarly(
ψj(α)
Mj

)4

Var
(
|Mj d̂j|2

)
= σ4

(
1 + |b̂j|

2

σ2

)
(ψj(α))4 , j 6∈ J

If j ∈ J , ` = j is the only 1 ≤ ` ≤ n such that j + `− 2 = n. On the other hand, if

j 6∈ J then there are two values of ` such that j + `− 2 = n: ` = j and ` = n− j + 2.

Thus eq. (4.1.17) is

Var
( 1
m
‖r̂(α)‖2

2

)
= 2σ4

m∑
j=1

(
1 + |b̂j|

2

σ2

)
(ψj(α))4 .

�

A similar derivation can be applied to a simultaneous diagonalization by a real

matrix instead of a complex matrix. The illustrative example of this situation is

diagonalization via the DCT, i.e. A = CT∆C and L = CTΛC where C is the

orthogonal DCT matrix defined by eq. (3.3.16). Recall that Thm. 3.3.1 describes the

class of matrices diagonalized by the DCT. Since the DCT maps real vectors to real

vectors, the standard Trace Lemma can be utilized; the DCT version of the UPRE

function is

FUPRE(α) = 1
m
‖r̆(α)‖2

2 + 2σ2

m
trace (A(α))− σ2, (4.1.18)

where r̆(α) = Cr(α) = CAx(α) − d̆ and d̆ = Cd. The corresponding summation

form is

FUPRE(α) = 1
m

n∑
j=1

ψ2
j (α)d̆2

j + 1
m

m∑
j=n+1

d̆2
j + 2σ2

m

n∑
j=1

φj(α)− σ2. (4.1.19)

4.2 Discrepancy Principle

As a start to a stochastic derivation of the discrepancy principle method Morozov

(1966) (for a deterministic derivation, see (Vogel, 2002, p. 8-9)), consider the case

where x(α) ≈ x. Here we first assume in the discussion either the GSVD or some

81



real orthogonal transformation, like the DCT, is used so that the coefficients of the

transformed data is real. In this case,

r(α) = Ax(α)− d ≈ Ax− d = η,

with a direct consequence being that E( 1
m
‖r(α)‖2

2) ≈ E( 1
m
‖η‖2

2) = σ2 when η is real.

Thus using the discrepancy principle we find α such that 1
m
‖r(α)‖2

2 = σ2. A similarity

exists between the discrepancy principle and the UPRE method in that the variance

of the noise in the data must be known for both methods.

Implementation of this method requires finding a solution of FMDP(α) = 0, where

FMDP(α) is defined to be

FMDP(α) = 1
m
‖r(α)‖2

2 − σ2. (4.2.20)

In other words, implementation of the discrepancy principle method is equivalent to

finding a root of FMDP(α). A summation form of the discrepancy principle function

is obtained directly from eq. (4.1.8) by substituting the regularized residual term:

FMDP(α) = 1
m

 n∑
j=1

d̂2
jψ

2
j (α) +

m∑
j=n+1

d̂2
j

− σ2. (4.2.21)

As with the UPREmethod described in Section 4.1, summation versions of eq. (4.2.21)

for the DFT or DCT instead of the GSVD are readily obtained.

Comparing the UPRE function FUPRE(α) on eq. (4.1.9) with FMDP(α), it can be

seen that

FMDP(α) = FUPRE(α)− 2σ2

m

n∑
j=1

φj(α). (4.2.22)

The function FMDP(α) will be near zero when the sum in eq. (4.2.21) is close to

σ2. Furthermore, FMDP(α) is monotone increasing on (0,∞) because for all α > 0,

d

dα
FMDP(α) = 2α

m

n∑
j=1

ψj(α)
γ2
j(

γ2
j + α2

)2 d̂
2
j ≥ 0.
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The monotonicity of 1
m
‖r(α)‖2

2 does not guarantee, however, the existence of a zero of

FMDP(α). If the selected value of σ2 is too large, then it is possible that FMDP(α) < 0

for all α > 0 and a root will not exist. This can be attributed to the well-known

limiting behavior of 1
m
‖r(α)‖2

2, which we present as Lem. 4.2.1 to refer to it later.

Lemma 4.2.1

lim
α→∞

1
m
‖r(α)‖2

2 ≤
1
m
‖d‖2

2.

Proof. Writing 1
m
‖r(α)‖2

2 in terms of filter functions eq. (2.3.20),

lim
α→∞

1
m
‖r(α)‖2

2 = 1
m

m∑
j=n+1

d̂2
j + lim

α→∞

1
m

n∑
j=1

ψ2
j (α)d̂2

j

= 1
m

m∑
j=n+1

d̂2
j + 1

m

n∑
j=1

(
lim
α→∞

ψ2
j (α)

)
d̂2
j .

Expanding the denominator of (ψj(α))2 makes the limit clear:

lim
α→∞

ψ2
j (α) = lim

α→∞



1, δj < τ

0, λj < τ

α4

α4 + 2γ2
jα

2 + γ4
j

, otherwise,

=


0, λj < τ

1, otherwise.

Therefore

lim
α→∞

1
m
‖r(α)‖2

2 = 1
m

m∑
j=n+1

d̂2
j + 1

m

n∑
j=1

(
lim
α→∞

ψ2
j (α)

)
d̂2
j

≤ 1
m

m∑
j=n+1

d̂2
j + 1

m

n∑
j=1

d̂2
j

= 1
m

∥∥∥d̂∥∥∥2

2

= 1
m
‖d‖2

2 ,

with the last equality following from d̂ = UTd with orthogonal U . �

Lem. 4.2.1 implies that if the selected value of σ2 is larger than 1
m
‖d‖2

2, FMDP(α)

will not have a root for α > 0 and the MDP method fails to select a regularization
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parameter. Sometimes a safety parameter ε > 0 is introduced to modify the MDP

function to

FMDP(α) = 1
m
‖r(α)‖2

2 − εσ2. (4.2.23)

to account for root-finding difficulties Aster et al. (2013); Gazzola et al. (2019), though

selecting an appropriate value of ε is an ad hoc process and depends on the confidence

of σ2 as the true noise. The original MDP function is recovered from eq. (4.2.23) when

ε = 1.

4.3 Generalized Cross Validation

The UPRE and MDP methods require knowledge of the variance σ2 of the noise

vector η. In contrast, the generalized cross validation (GCV) method Wahba (1977,

1990) does not require knowledge of σ2. Again assuming real data coefficients, the

GCV function is

FGCV(α) =
1
m
‖r(α)‖2

2[
1
m

trace(Im − A(α))
]2 , (4.3.24)

where r(α) is the regularized residual defined in the derivation of the UPRE method.

Similarities between the GCV and UPRE methods are that both functions are es-

timators of the predictive risk, and the regularization parameter α is chosen as the

minimizers of these functions.

By the linearity of the trace operator,

trace(Im − A(α)) = trace(Im)− trace(A(α)) = m− trace(A(α)).

Then by eq. (4.1.7),

trace(Im − A(α)) = (m− n) +
n∑
j=1

ψj(α) = (m− n) +
q∗∑
j=1

ψj(α). (4.3.25)

Substituting eq. (4.1.8) and eq. (4.3.25) into eq. (4.3.24) produces a summation form
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of the GCV function:

FGCV(α) =
1
m

(∑n
j=1 d̂

2
jψ

2
j (α) +∑m

j=n+1 d̂
2
j

)
[

1
m

((m− n) +∑q∗

j=1 ψj(α))
]2

=
m
(∑n

j=1 d̂
2
jψ

2
j (α) +∑m

j=n+1 d̂
2
j

)
[
(m− n) +∑q∗

j=1 ψj(α)
]2 . (4.3.26)

As with the UPRE and MDP methods, the summation version of eq. (4.3.26) for the

DFT and DCT are of the same form, with the primary differences being whether the

spectral coefficients of the data are real or complex. However, unlike the UPRE and

MDP methods, a rescaling of the data through a diagonal scaling matrix M with

Mj,j = 1/σ as in Lem. 4.1.3 cannot be accomplished for the GCV since that method

assumes that variance of the noise is unknown.

4.4 Summary

There are a variety of methods used to select parameters controlling the amount

of regularization. In general, methods can be assigned to one of two classes: methods

that rely on knowledge of the variance of the noise present in the data, and methods

that do not rely on the variance. Common methods falling into the first class are the

unbiased predictive risk estimator and discrepancy principle, while a method which

falls into the latter class is the generalized cross validation method. Though these

methods are distinct, all three share a common term which is a norm of the regularized

residual.
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Chapter 5

WINDOWED MULTI-DATA FUNCTIONS

The single data set, scalar parameter regularization parameter functions in intro-

duced in Chapter 4 will now be extended to use with multiple data sets and multiple

regularization parameters. This chapter presents the background material for the de-

velopment of these methods, starting with an introduction to windowed regularization

in Section 5.1 in which we use an approach in which the parameters are determined

by windows on the combined spectrum of the operators A and L. The application

of scalar parameter methods to multiple data sets is discussed in Section 5.2, and

the background of the full windowed multidata approach is given in Section 5.3.

Though complex versions of transformed data were considered in Chapter 4 (specifi-

cally d̂ = Fd for the DFT), here and in the remainder of this document we assume

that the components of d̂ are real. For instance, d̂ = UTd for orthogonal U as in the

GSVD.

5.1 Windowed Tikhonov Regularization

A more general approach to regularization replaces the single regularization pa-

rameter by a vector α = [α1, . . . , αp]T. Here, we follow the approach in Chung et al.

(2011b) by defining P vectors w(p) ∈ Rn that contain non-negative weights which

satisfy
P∑
p=1

w
(p)
j = 1, j = 1, . . . , n. (5.1.1)

Defining windows W (p) = diag
(
w(p)

)
for p = 1, . . . , P , we have ∑P

p=1W
(p) = In.

Considering first the Tikhonov regularization with L = In (where we use the SVD

of A which is A = USV T), a regularization parameter αp can be selected for each
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window W (p) so that a windowed regularized solution can be constructed as

xwin(α) =
P∑
p=1

V
[
STS + α2

p

]−1
W (p)STd̂, (5.1.2)

which corresponds to eq. (2.1.6) when P = 1. In this framework, the windows must

be selected before choosing corresponding regularization parameters.

First we consider non-overlapping windows, W (p), for which the components of

their corresponding weight vectors w(p) satisfy

w
(p)
j ∈ {0, 1}, j = 1, . . . , n, p = 1, . . . , P. (5.1.3)

The condition given by eq. (5.1.3) means that for each j = 1, . . . , n, there is exactly

one p ∈ {1, . . . , P} such that w(p)
j = 1. When working with non-overlapping windows,

the pigeonhole principle Dummit and Foote (2004) can be used to show that there

will exist indices p such that w(p) = 0 if P > n. Perhaps the simplest way of choosing

the components of w(p) is to first choose P + 1 partition values ω(0) ≥ . . . ≥ ω(P ) such

that ω(0) ≥ s1 and sn > ω(P ), then for p = 1, . . . , P , we set

w
(p)
j =


1, ω(p−1) ≥ sj > ω(p)

0, otherwise.
(5.1.4)

There are some advantages of using eq. (5.1.4). One advantage is that singular values

of similar magnitude are grouped together. Another advantage is that the windowed

estimation functions to be discussed in Chapter 6 decouple into linear combinations

of functions of single parameters. Choosing ω(1), . . . , ω(P−1) to be the P − 1 linearly

spaced or logarithmically spaced points between s1 and sn and then setting ω(0) = s1

and ω(P ) < sn is an example of how to use eq. (5.1.4).

Partition values ω(0) ≥ . . . ≥ ω(P ) can also be used to generate overlapping win-

dows. For example, cosine windows are defined in Chung et al. (2011b) by using
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midpoints, ω(p)
mid, so that

w
(p)
j =



cos2

 π
2

(
sj − ω(p)

mid

)
ω

(p−1)
mid − ω(p)

mid

 ω
(p−1)
mid ≥ sj > ω

(p)
mid,

cos2

 π
2

(
ω

(p)
mid − sj

)
ω

(p)
mid − ω

(p+1)
mid

 ω
(p)
mid ≥ sj > ω

(p+1)
mid ,

0 otherwise,

(5.1.5)

for p = 2, . . . , P − 1. The first and P th weight vectors can be defined by

w
(1)
j =



1 ω(0) ≥ sj > ω
(1)
mid,

cos2

 π
2

(
ω

(1)
mid − sj

)
ω

(1)
mid − ω

(2)
mid

 ω
(1)
mid ≥ sj > ω

(2)
mid,

0 otherwise

(5.1.6)

and

w
(P )
j =



cos2

 π
2

(
sj − ω(P )

mid

)
ω

(P−1)
mid − ω(P )

mid

 ω
(P−1)
mid ≥ sj > ω

(P )
mid,

1 ω
(P )
mid ≥ sj > ω(P ),

0 otherwise,

(5.1.7)

respectively. Prop. 5.1.1 shows that such cosine windows satisfy eq. (5.1.1).

Proposition 5.1.1 The cosine windows given by Chung et al. (2011b), presented in

eqs. (5.1.5) to (5.1.7), satisfy

P∑
p=1

w
(p)
j = 1, j = 1, . . . , n.

Proof. Let j ∈ {1, . . . , n} be fixed. If either ω(0) ≥ sj > ω
(1)
mid or ω(P )

mid ≥ sj >

ω(P ), the result follows immediately from eq. (5.1.6) or eq. (5.1.7), respectively. Now

suppose that ω(1)
mid ≥ sj > ω

(P )
mid. Then there exists exactly one value p ∈ {1, . . . , P−1}

such that ω(p)
mid ≥ sj > ω

(p+1)
mid . By definition of the cosine windows, w(p) and w(p+1)
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are the only weight vectors such that their jth components are nonzero. It must be

shown that w(p)
j + w

(p+1)
j = 1. From eq. (5.1.5), the jth component of w(p) is

w
(p)
j = cos2

 π
2

(
ω

(p)
mid − sj

)
ω

(p)
mid − ω

(p+1)
mid


and the jth component of w(p+1) is

w
(p+1)
j = cos2

 π
2

(
sj − ω(p+1)

mid

)
ω

(p)
mid − ω

(p+1)
mid

 .
Using the identity cos(θ) = sin

(
π
2 − θ

)
, we have that

w
(p+1)
j = sin2

π
2 −

π
2

(
sj − ω(p+1)

mid

)
ω

(p)
mid − ω

(p+1)
mid


= sin2

 π
2

(
ω

(p)
mid − ω

(p+1)
mid

)
− π

2

(
sj − ω(p+1)

mid

)
ω

(p)
mid − ω

(p+1)
mid


= sin2

 π
2

(
ω

(p)
mid − sj

)
ω

(p)
mid − ω

(p+1)
mid

 .
Therefore,

w
(p)
j + w

(p+1)
j = cos2

 π
2

(
ω

(p)
mid − sj

)
ω

(p)
mid − ω

(p+1)
mid

+ sin2

 π
2

(
ω

(p)
mid − sj

)
ω

(p)
mid − ω

(p+1)
mid

 = 1.

�

For generalized Tikhonov regularization (L 6= In), a windowed regularized solution

similar to eq. (5.1.2) can be obtained using the GSVD,

xwin(α) =
P∑
p=1

Y
[
∆T∆ + α2

pΛTΛ
]−1

W (p)∆Td̂. (5.1.8)

In terms of the filter functions eq. (2.3.20), the windowed solution eq. (5.1.8) can be

written as

xwin(α) =
n∑
j=1

 P∑
p=1

φj (αp)w(p)
j

 d̂j+k
δj

Y·,j.
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Care must be taken when selecting the weight vectors w(p) in light of the fact that the

generalized singular values are arranged in ascending order. We extend the notation

Φ(α) and Ψ(α) introduced in Section 2.3 to define the n×n diagonal matrices Φ(αp)

and Ψ(αp) by

Φj,j (αp) = φj (αp) , Ψj,j (αp) = ψj (αp) , j = 1 : n.

Then by again applying the identity ∆T = ∆T∆∆† with the fact that W (p) is a

diagonal matrix, eq. (5.1.8) is replaced by the general formulation

xwin(α) = Y
P∑
p=1

[
∆T∆ + α2

pΛTΛ
]−1

W (p)∆T∆∆†d̂

= Y
P∑
p=1

W (p)
[
∆T∆ + α2

pΛTΛ
]−1

∆T∆∆†d̂

= Y
P∑
p=1

W (p)Φ (αp) ∆†d̂.

5.2 Multiple Data Sets

We now consider the situation where we have a collection of data sets {d(r)}Rr=1

where

d(r) = b(r) + η(r) = A(r)x(r) + η(r), η(r) ∼ N (0(r),Σ(r)). (5.2.9)

The vectors d(r), b(r), η(r), and 0(r) have length mr, while the vector x(r) has length

nr. The system matrices A(r) and covariance matrices Σ(r) are thus mr × nr and

mr×mr, respectively. We also assume that the random vectors {η(r)}Rr=1 are mutually

independent. For given regularization parameters α(r) and penalty matrices L(r) of

dimension qr × nr, Tikhonov regularization can be performed to produce regularized

solutions x(α(r)) that minimize the functionals T (r)(x;α(r)) := ‖A(r)x − d(r)‖2
2 +(

α(r)
)2
‖L(r)x‖2

2. Typically, a parameter selection method is utilized to select the

regularization parameter for each system. Instead, applying the notation introduced
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in Section 1.3, let d̃ be the vector formed by vertically concatenating the data sets

{d(r)}Rr=1 and define the functional

T̃ (x̃; α̃) = ‖Ãx̃− d̃‖2
2 + α̃2‖L̃x̃‖2

2, (5.2.10)

where α̃ is a single regularization parameter. Notice, by the definition of the 2-norm

and the construction of eq. (5.2.10), we could also write

T̃ (x̃; α̃) =
R∑
r=1

(
‖A(r)x(r) − d(r)‖2

2 + α̃2‖L(r)x(r)‖2
2

)
=

R∑
r=1

T (r)
(
x(r); α̃

)
.

The advantage of regularizing via eq. (5.2.10) is that we only have to select one

parameter instead of R parameters (one for each data set). Assumption 1 summarizes

the set-up established in eq. (5.2.9).

Assumption 1 For r = 1, . . . , R, assume that b(r) = A(r)x(r), d(r) = b(r) + η(r), and

η(r) ∼ N (0(r),Σ(r)) with the η(r) being mutually independent. The vectors b(r), d(r),

and η(r) are of length mr and x(r) is of length nr.

Now using the GSVD of each pair (A(r), L(r)) =
(
U (r)∆(r)

(
X(r)

)T
, V (r)Λ(r)

(
X(r)

)T
)

we obtain
(
Ã, L̃

)
=
(
Ũ∆̃X̃T, Ṽ Λ̃X̃T

)
yielding the solution

x̃(α̃) = Ỹ
(
∆̃T∆̃ + α̃2Λ̃TΛ̃

)−1
∆̃T ̂̃d, (5.2.11)

where Ỹ is the inverse of X̃ and ̂̃d = ŨTd̃, which is analogous to eq. (2.3.19) for a

single system. The filter function notation eq. (2.3.20) can be used to define

φ
(r)
j (α) =



0, δ
(r)
j < τ

1, λ
(r)
j < τ(

γ
(r)
j

)2

(
γ

(r)
j

)2
+ α2

, otherwise,

ψ
(r)
j (α) =



1, δ
(r)
j < τ

0, λ
(r)
j < τ

α2(
γ

(r)
j

)2
+ α2

, otherwise

for r = 1, . . . , R, as well as the nr × nr diagonal matrices

Φ(r)(α) = diag
(
φ

(r)
1 (α), . . . , φ(r)

n (α)
)
, Ψ(r)(α) = diag

(
ψ

(r)
1 (α), . . . , ψ(r)

n (α)
)
.
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Here we are using the same tolerance τ for each data set. Concatenating Φ(r)(α)

and Ψ(r)(α) via the block diagonal representation, eq. (5.2.11) becomes x̃(α̃) =

Ỹ Φ̃(α)∆̃† ̂̃d.
Some of the parameter estimation methods considered in this document rely upon

the statistical properties of the noise in the data, so the statistics of η̃ will be ad-

dressed. Though eq. (5.2.9) indicates that the random vectors {η(r)}Rr=1 are assumed

to have zero mean, we can relax this assumption so that η(r) ∼ N (µ(r),Σ(r)) for all

r = 1, . . . , R. The distribution of η̃ is then given by Lem. 5.2.1, which follows from

the properties of the multivariate normal distribution.

Lemma 5.2.1 Let {η(r)}Rr=1 be a collection of mutually independent random vectors

with η(r) ∼ N (µ(r),Σ(r)) for each r = 1, . . . , R. Then η̃ ∼ N (µ̃, Σ̃).

We conclude Section 5.2 by enumerating and discussing the additional underlying

assumptions that will be utilized in Chapter 6.

Assumption 2 Given η(r) ∼ N (0(r),Σ(r)) for r = 1, . . . , R, we assume Σ(r) = σ2
rImr

(a constant diagonal matrix).

Assumption 3 For all r = 1, . . . , R, we assume that mr = m. In other words, we

assume that the size of each data vector d(r) is the same.

Assumption 4 We assume that there exist matrices ∆ ∈ Rm×n and Λ ∈ Rq×n such

that A(r) = U (r)∆
(
X(r)

)T
and L(r) = V (r)Λ

(
X(r)

)T
for r = 1, . . . , R, where U (r) and

V (r) are orthogonal and X(r) is invertible.

Assumption 5 For r = 1, . . . , R, assume that A(r) = A ∈ Rm×n and L(r) = L ∈

Rq×n.
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It should be noted that Assumption 2 could be relaxed so that Σ(r) is any diagonal

matrix D(r), in which case a whitening transformation C(r) could applied so that

ξ(r) = C(r)η(r) ∼ N (0m×1, Im). For example, one could use the zero-phase component

analysis (ZCA) transformation C(r) =
(
Σ(r)

)−1/2
Bell and Sejnowski (1997).

The strength of the assumptions presented increase in accordance with their num-

bering. Assumption 1 describes the most general situation involving multiple data

sets considered in this document, where the size of each problem and the covariance

of each zero-centered multivariate Gaussian noise vector are potentially distinct. As-

sumption 2 then requires that the covariance matrices be constant diagonal matrices,

though the sizes of the problems remain unrestricted. In contrast, Assumption 3 spec-

ifies that each data set much be the same size m; however, the size of the solutions

may still be district (nr can differ for different values of r). A consequence of As-

sumption 4 is that the pairs (A(r), L(r)) all have the same generalized singular values.

Though Assumption 4 is strong, it is implied by Assumption 5. Assumption 5 is the

strongest, in that it not only implies Assumptions 3 and 4 but demands the solution

size be the same and the system and penalty matrices be the same for all problems.

A useful consequence of Assumption 5 is that Φ(r)(α) = Φ(α) and Ψ(r)(α) = Ψ(α)

for all r = 1, . . . , R and α > 0. As a final note, under Assumption 5 we can form

X = [x(1), . . . ,x(R)] and D = [d(1), . . . ,d(R)] (horizontal concatenations) and write

∥∥∥Ãx̃− d̃
∥∥∥2

2
+ ‖Lx̃‖2

2 =
R∑
r=1

∥∥∥A(r)x(r) − d(r)
∥∥∥2

2
+
∥∥∥L(r)x(r)

∥∥∥2

2

= ‖AX −D‖2
F + ‖LX‖2

F

where ‖ · ‖F denotes the Frobenius norm. Moreover, if we consider the averages

x = 1
R

∑R
r=1 x(r) and d = 1

R

∑R
r=1 d(r) then

∥∥∥Ax− d
∥∥∥2

2
+ ‖Lx‖2

2 ≤
1
R2

(
‖AX −D‖2

F + ‖LX‖2
F

)
.
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5.3 Windowed Regularization for Multiple Data Sets

We now consider the case where windowed regularization is applied to multiple

data sets. Letting α(r) = [α(r)
1 , α

(r)
2 , . . . , α

(r)
Pr

] be the Pr regularization parameters used

for windowed regularization applied to the rth system described by eq. (5.2.9), we

can independently construct regularized solutions

x(r)
win

(
α(r)

)
=

Pr∑
p=1

Y (r)
[(

∆(r)
)T

∆(r) +
(
α(r)
p

)2 (
Λ(r)

)T
Λ(r)

]−1
W (r,p)

(
∆(r)

)T
d̂(r),

(5.3.12)

where W (r,p) is the pth window for the rth system. Each system can have its own

set of windows, meaning that there are a total of ∑R
r=1 Pr regularization parameters.

The primary assumption we make moving forward, however, is that the number of

windows W (r,p) for each system is the same, i.e Pr = P for all r = 1, . . . , R. This

implies that α(r) are all vectors of length P and there are a total of RP parameters.

A stronger assumption would require that the windows are the same across all data

sets, which is described by Assumption 6 and used in Chapter 6.

Assumption 6 For all r = 1, . . . , R and p = 1, . . . , P , assume that W (r,p) = W (p).

Analogous to the single parameter case for MD, we define x̃win(α̃) as the vertical

concatenation of the x(r)
win (α̃) for r = 1, . . . , R, where α̃ ∈ RP is a single vector of

parameters. We then have

x̃win(α̃) =
P∑
p=1

Ỹ
[
∆̃T∆̃ + (α̃p)2 Λ̃TΛ̃

]−1
W̃ (p)∆̃T ̂̃d, (5.3.13)

where W̃ (p) = diag(W (1,p), . . . ,W (R,p)) has R diagonal blocks. As the final extension
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of notation from Section 5.2, we define

φ
(r)
j (αp) =



0, δ
(r)
j < τ

1, λ
(r)
j < τ(

γ
(r)
j

)2

(
γ

(r)
j

)2
+ α2

p

, otherwise,

ψ
(r)
j (αp) =



1, δ
(r)
j < τ

0, λ
(r)
j < τ

α2
p(

γ
(r)
j

)2
+ α2

p

, otherwise

(5.3.14)

for r = 1, . . . , R and p = 1, . . . , P . With the diagonal matrices Φ(r) (α̃p) and Ψ(r) (α̃p)

whose diagonal elements are

Φ(r)
j,j (α̃p) = φ

(r)
j (αp) , Ψ(r)

j,j (α̃p) = ψ
(r)
j (αp) , j = 1 : n

the appropriate block matrices can be formed:

Φ̃ (α̃p) = diag
(
Φ(1) (α̃p) , . . . ,Φ(R) (α̃p)

)
, Ψ̃ (α̃p) = diag

(
Ψ(1) (α̃p) , . . . ,Ψ(R) (α̃p)

)
.

Equation (5.3.13) can then be written as

x̃win(α̃) = Ỹ
P∑
p=1

W̃ (p)Φ̃ (α̃p) ∆̃† ̂̃d. (5.3.15)

In an effort to streamline notation, we use Φ(r)
j (α̃p) and Ψ(r)

j (α̃p) to denote the jth

element along the main diagonal of the matrices Φ(r) (α̃p) and Ψ(r) (α̃p), respectively,

for j = 1 : n.

5.4 Windowed Multi-data Residual and Traces

For the windowed multidata case, we extend the notation introduced in Section 5.1

for windowed regularization involving a single data point to define a windowed regu-

larized residual rwin(α) = Axwin(α) − d where the windowed regularized xwin(α) is

given by eq. (5.1.8) assuming the use of the GSVD presented in Section 2.3. Similarly,
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we generalize the windowed regularization matrix defined in Chung et al. (2011b) so

that for windowed spectral regularization, the influence matrix Awin(α) is

Awin(α) = U∆
P∑
p=1

(
∆T∆ + α2

pΛTΛ
)−1

W (p)∆TUT = U∆
P∑
p=1

W (p)Φ (αp) ∆†UT.

If instead we have multiple data sets but each is used with a scalar α, we apply the

set-up from Section 5.2 to produce expressions extended from the single data case in

Chapter 4 to obtain

r̃(α̃) = Ãx̃(α̃)− d̃, Ã(α̃) = Ũ∆̃
(
∆̃T∆̃ + (α̃)2 Λ̃TΛ̃

)−1
∆̃TŨT = Ũ∆̃Φ̃ (α̃) ∆̃†ŨT,

using the GSVD representation of x̃(α̃) in eq. (5.2.11) and where the diagonal blocks

of Ã(α̃) are

A(r)(α̃) = U (r)∆(r)
((

∆(r)
)T

∆(r) + α̃2
(
Λ(r)

)T
Λ(r)

)−1(
∆(r)

)T(
U (r)

)T

= U (r)∆(r)Φ(r) (α̃)
(
∆(r)

)†(
U (r)

)T
, r = 1, . . . , R.

For the most general windowed multidata case, we combine the notations of Sec-

tions 5.1 to 5.3 to construct a windowed regularized residual r̃win(α̃) = Ãx̃win(α̃)− d̃,

and windowed influence matrix defined by

Ãwin(α̃) = Ũ∆̃
P∑
p=1

(
∆̃T∆̃ + (α̃p)2 Λ̃TΛ̃

)−1
W̃ (p)∆̃TŨT = Ũ∆̃

P∑
p=1

W̃ (p)Φ̃ (α̃p) ∆̃†ŨT.

x̃win(α̃) can be represented by eq. (5.3.13), while the diagonal blocks of Ãwin(α̃) are

A
(r)
win(α̃) = U (r)∆(r)

P∑
p=1

W (r,p)Φ(r) (α̃p)
(
∆(r)

)†(
U (r)

)T
. (5.4.16)

Both W (r,p) and Φ(r)(α̃p) are nr × nr matrices.

We will now present representations of the necessary norm and trace terms that are

used in discussions of the UPRE, MDP, and GCV methods modified for the windowed

multidata case, which is the most general situation. The first representation is given

by Thm. 5.4.1, which concerns the norm of the regularized residual.
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Theorem 5.4.1 (Norm of the windowed residual) Under Assumption 1, the

norm of r̃win(α̃) is

‖r̃win(α̃)‖2
2 =

R∑
r=1

∥∥∥r(r)
win(α̃)

∥∥∥2

2

where for each r = 1, . . . , R we have

∥∥∥r(r)
win(α̃)

∥∥∥2

2
=


∑mr
j=1

([∑P
p=1w

(r,p)
j+kr

Ψ(r)
j+kr

(α̃p)
]
d̂

(r)
j

)2
, mr ≤ nr,

∑nr
j=1

([∑P
p=1w

(r,p)
j Ψ(r)

j (α̃p)
]
d̂

(r)
j

)2
+∑mr

j=nr+1

(
d̂

(r)
j

)2
, mr > nr.

with kr = nr −mr.

Proof. We first let M = ∑R
r=1mr, which is the length of r̃win(α̃). Substituting

eq. (5.3.15) into the definition of r̃win(α̃), we have

r̃win(α̃) = Ũ∆̃
P∑
p=1

W̃ (p)Φ̃ (α̃p) ∆̃† ̂̃d− d̃

=
Ũ∆̃

P∑
p=1

W̃ (p)Φ̃ (α̃p) ∆̃†ŨT − IM

 d̃

= Ũ

∆̃
P∑
p=1

W̃ (p)Φ̃ (α̃p) ∆̃† − IM

 ̂̃d.
Using the 2-norm and the block structure of the matrices, we can then write

‖r̃win(α̃)‖2
2 =

R∑
r=1

∥∥∥r(r)
win(α̃)

∥∥∥2

2

=
R∑
r=1

∥∥∥∥∥∥U (r)

∆(r)
P∑
p=1

W (r,p)Φ(r) (α̃p)
(
∆(r)

)†
− Imr

 d̂(r)

∥∥∥∥∥∥
2

2

=
R∑
r=1

∥∥∥∥∥∥
∆(r)

P∑
p=1

W (r,p)Φ(r) (α̃p)
(
∆(r)

)†
− Imr

 d̂(r)

∥∥∥∥∥∥
2

2

.

We must now consider the two cases for each r = 1, . . . , R. If mr ≤ nr, then let

kr = nr −mr and so that∥∥∥∥∥∥
∆(r)

P∑
p=1

W (r,p)Φ(r) (α̃p)
(
∆(r)

)†
− Imr

 d̂(r)

∥∥∥∥∥∥
2

2

=
mr∑
j=1

 P∑
p=1

w
(r,p)
j+kr

Ψ(r)
j+kr,j+kr

(α̃p)
 d̂(r)

j

2

.
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If mr > nr instead, then let kr = mr−nr. The matrix within the norm has the block

form

∆(r)
P∑
p=1

W (r,p)Φ(r) (α̃p)
(
∆(r)

)†
− Imr =


−∑P

p=1W
(r,p)Ψ(r) (α̃p) 0nr×kr

0kr×nr −Ikr

 .

Thus, the norm becomes∥∥∥∥∥∥∥∥∥∥∥∥


−∑P

p=1W
(r,p)Ψ(r) (α̃p) 0nr×kr

0kr×nr −Ikr

 d̂(r)

∥∥∥∥∥∥∥∥∥∥∥∥

2

2

=
nr∑
j=1

 P∑
p=1

w
(r,p)
j Ψ(r)

j (α̃p)
 d̂(r)

j

2

+
mr∑

j=nr+1

(
d̂

(r)
j

)2
.

�

We can also develop an analog of the windowed regularized residual as applied to

the average d = 1
R

∑R
r=1 d(r) under Assumptions 5 to 6. Defining the windowed regu-

larized residual applied to d as rwin(α) = Axwin(α̃)−d for the windowed regularized

solution xwin(α̃) = Y
∑P
p=1W

(p)Φ (α̃p) ∆†d̂ with d̂ = UTd, the following corollary

then applies.

Corollary 5.4.1 Under Assumptions 1 to 6, for all α ∈ RP
+ we have that

‖rwin(α)‖2
2 ≤

1
R
‖r̃win(α)‖2

2 .

Proof. Under Assumption 5, mr = m, nr = n, and (A(r), L(r)) = (A,L) for all

r = 1, . . . , R. Without loss of generality, suppose that m ≤ n and let k = n − m.

Then we immediately have, by their definitions,

‖rwin(α)‖2
2 =

∥∥∥∥∥∥U
∆

P∑
p=1

W (p)Φ (αp) ∆† − Im

 d̂

∥∥∥∥∥∥
2

2

=
m∑
j=1

 P∑
p=1

w
(p)
j+kΨj+k (αp)

2 (
d̂j

)2
.
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We also have

(
d̂j

)2
=
(

1
R

R∑
r=1

d̂
(r)
j

)2

≤ 1
R

R∑
r=1

(
d̂

(r)
j

)2
, j = 1, . . . ,m.

Thus, through a change of summation

‖rwin(α)‖2
2 ≤

1
R

R∑
r=1

 m∑
j=1

 P∑
p=1

w
(p)
j+kΨj+k (αp)

 d̂(r)
j

2
 = 1

R
‖r̃win(α)‖2

2

where the last equality follows from Thm. 5.4.1 in conjunction with Assumption 6.

�

Prop. 5.4.1 describes how ‖r̃win(α̃)‖2
2 can be decomposed when working with non-

overlapping windows.

Proposition 5.4.1 For a given r ∈ {1, . . . , R}, if the weight vectors {w(r,p)}Pp=1

satisfy eq. (5.1.3), then ‖r(r)
win(α̃)‖2

2 can be written as

∥∥∥r(r)
win(α̃)

∥∥∥2

2
=

P∑
p=1

∥∥∥r(r,p)
win (α̃p)

∥∥∥2

2

where

∥∥∥r(r,p)
win (α̃p)

∥∥∥2

2
=


∑mr
j=1

(
w

(r,p)
j+kr

Ψ(r)
j+kr

(α̃p) d̂(r)
j

)2
, mr ≤ nr,

∑nr
j=1

(
w

(r,p)
j Ψ(r)

j (α̃p) d̂(r)
j

)2
+∑mr

j=nr+1

(
d̂

(r)
j

)2
, mr > nr.

with kr = nr −mr.

Proof. Given r ∈ {1, . . . , R}, we assume without loss of generality that mr ≤ nr.

Using Thm. 5.4.1, we can write ‖r(r)
win(α̃)‖2

2 as

∥∥∥r(r)
win(α̃)

∥∥∥2

2
=

mr∑
j=1

 P∑
p=1

w
(r,p)
j+kr

Ψ(r)
j+kr

(α̃p)
2 (

d̂
(r)
j

)2

with kr = nr−mr. Since the weight vectors {w(r,p)}Pp=1 satisfy (5.1.3), for each index

j there exists exactly one index p such that w(r,p)
j 6= 0. Thus, the sum over p has only
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one nonzero summand for each index j, meaning we can write P∑
p=1

w
(r,p)
j+kr

Ψ(r)
j+kr

(α̃p)
2

=
P∑
p=1

(
w

(r,p)
j+kr

Ψ(r)
j+kr

(α̃p)
)2
.

Therefore ‖r(r)
win(α̃)‖2

2 can be rewritten through a change of summation so that

∥∥∥r(r)
win(α̃)

∥∥∥2

2
=

P∑
p=1

mr∑
j=1

(
w

(r,p)
j+kr

Ψ(r)
j+kr

(α̃p)
)2 (

d̂
(r)
j

)2
 =

P∑
p=1

∥∥∥r(r,p)
win (α̃p)

∥∥∥2

2

with ∥∥∥r(r,p)
win (α̃p)

∥∥∥2

2
=

mr∑
j=1

(
w

(r,p)
j+kr

Ψ(r)
j+kr

(α̃p) d̂(r)
j

)2
.

�

Prop. 5.4.1 means that if regularization is being performed with non-overlapping

windows, then the norm of the regularized residual can be written as a sum of norms

of residuals specific to each window.

As a function of α ∈ RP
+, the limiting behavior of ‖rwin(α)‖2

2 provides insight into

how best to deal with minimizing functions that involve ‖rwin(α)‖2
2. Lem. 5.4.1 shows

that ‖rwin(α)‖2
2 can be bounded above by the scaled norm of the data.

Lemma 5.4.1 Given P ∈ {1, . . . , N} windows,

lim
‖α‖2→∞

‖rwin(α)‖2
2 ≤ P 2 ‖d‖2

2 , α ∈ RP
+.

Proof. From Thm. 5.4.1 with R = 1 and A ∈ Rm×n, we have that

‖rwin(α)‖2
2 =


∑m
j=1

([∑P
p=1w

(p)
j+kψj+k (αp)

]
d̂j
)2
, m ≤ n,

∑n
j=1

([∑P
p=1w

(p)
j ψj (αp)

]
d̂j
)2

+∑m
j=n+1

(
d̂j
)2
, m > n.

with k = n−m. Without loss of generality we assume that m ≤ n, so

‖rwin(α)‖2
2 =

m∑
j=1

 P∑
p=1

w
(p)
j+kψj+k (αp)

 d̂j
2

=
m∑
j=1

 P∑
p=1

w
(p)
j+kψj+k (αp)

2

d̂2
j .
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Applying the Cauchy-Schwarz inequality immediately produces

m∑
j=1

 P∑
p=1

w
(p)
j+kψj+k (αp)

2

d̂2
j ≤

m∑
j=1

 P∑
p=1

(
w

(p)
j+k

)2
 P∑

p=1
ψ2
j+k (αp)

 d̂2
j .

Since 0 ≤ w
(p)
j+k ≤ 1 for all p = 1, . . . , P and ∑P

p=1w
(p)
j+k = 1 by eq. (5.1.1), we can

form the inequality

1
P

= 1
P

 P∑
p=1

w
(p)
j+k

2

≤
P∑
p=1

(
w

(p)
j+k

)2
≤ 1,

where the upper bound is attained for non-overlapping windows. Thus we have

‖rwin(α)‖2
2 ≤

m∑
j=1

 P∑
p=1

ψ2
j+k (αp)

 d̂2
j .

From eq. (5.3.14), we know that limαp→∞ ψ
2
j (αp) ≤ 1 for all j = 1 : n. Therefore we

have

lim
‖α‖2→∞

‖rwin(α)‖2
2 ≤

m∑
j=1

 P∑
p=1

lim
αp→∞

ψ2
j+k (αp)

 d̂2
j ≤ P

m∑
j=1

d̂2
j = P ‖d‖2

2 ,

with the last equality following from d̂ = UTd with orthogonal U . �

In practice, Lem. 5.4.1 does not provide a tight bound in the case of overlapping

windows since there are weight terms in the sum over p that are strictly less than

one. However, Lem. 5.4.1 does provide some insight into the numerical behavior of

the functions using ‖rwin(α)‖2
2.

Next, Thm. 5.4.2 provides a representation of a general trace term that is needed

in Sections 5.5 to 5.7.

Theorem 5.4.2 Under Assumptions 1 to 3, the trace of Σ̃Ãwin(α̃) is

trace
(
Σ̃Ãwin(α̃)

)
=

R∑
r=1

σ2
r

nr∑
j=kr+1

 P∑
p=1

w
(r,p)
j Φ(r)

j (α̃p)


where kr = min{0, nr −mr}.
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Proof. The diagonal block structures of both Σ̃ = diag
(
Σ(1), . . . ,Σ(R)

)
and Ãwin(α̃)

allow the trace to be written as a sum of traces:

trace
(
Σ̃Ãwin(α̃)

)
=

R∑
r=1

trace
(
Σ(r)A

(r)
win (α̃)

)
.

From Assumption 2, we have that Σ(r) = σ2
rImr for all r = 1, . . . , R. Furthermore,

representation eq. (5.4.16) of the diagonal blocks of Ãwin(α̃) and the similarity invari-

ance of the trace operation allow us to write

trace
(
Σ(r)A

(r)
win (α̃)

)
= σ2

r trace
(
A

(r)
win (α̃)

)
= σ2

r trace
∆(r)

P∑
p=1

W (r,p)Φ(r) (α̃p)
(
∆(r)

)† .
Using kr = min{0, nr −mr}, we have

σ2
r trace

∆(r)
P∑
p=1

W (r,p)Φ(r) (α̃p)
(
∆(r)

)† = σ2
r

nr∑
j=kr+1

 P∑
p=1

w
(r,p)
j Φ(r)

j (α̃p)
 .

Therefore,

trace
(
Σ̃Ãwin(α̃)

)
=

R∑
r=1

σ2
r

nr∑
j=kr+1

 P∑
p=1

w
(r,p)
j Φ(r)

j (α̃p)
 .

�

With the inclusion of Assumption 5 and Assumption 6, we can make a statement re-

garding the traces of the covariance and influence matrices similar to that of Cor. 5.4.1.

We first define Σ as the covariance matrix of the averaged noise η = 1
R

∑R
r=1 η(r) for

the averaged data d. Since the random vectors {η(r)}Rr=1 are mutually independent

and have mean zero, E(η) = 0m×1 and the evaluation of Σ is reduced to

Σ = Cov
(
η ηT

)
= 1
R2

∑
r,`

E
(

η(r)
[
η(`)

]T)

= 1
R2

R∑
r=1

E
(

η(r)
[
η(r)

]T)

= 1
R2

R∑
r=1

Σ(r). (5.4.17)

Cor. 5.4.2 describes the analog of Cor. 5.4.1 for matrix traces with averaged noise.
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Corollary 5.4.2 Under Assumptions 1 to 6, we have that

(i) trace
(
ΣAwin (α)

)
= 1

R2 trace
(
Σ̃Ãwin (α)

)
for all α ∈ RP

+,

(ii) trace
(
Σ
)

= 1
R2 trace

(
Σ̃
)
.

Proof. We prove (item i) only, since (item ii) follows directly from eq. (5.4.17) and

the block structure of Σ̃. Using eq. (5.4.17), for all α ∈ RP
+ we have

trace
(
ΣAwin (α)

)
= trace

((
1
R2

R∑
r=1

Σ(r)
)
Awin (α)

)
= 1
R2

R∑
r=1

trace
(
Σ(r)Awin (α)

)
.

Assumption 2 then gives

1
R2

R∑
r=1

trace
(
Σ(r)Awin (α)

)
= 1
R2

R∑
r=1

trace
(
σ2
rAwin (α)

)
= 1
R2 trace (Awin (α))

R∑
r=1

σ2
r .

Shifting to 1
R2 trace

(
Σ̃Ãwin (α)

)
, Assumptions 5 and 6 imply A(r)

win(α) = Awin(α) for

all r = 1, . . . , R. This fact combined with the proof of Thm. 5.4.2 yields

1
R2 trace

(
Σ̃Ãwin (α)

)
= 1
R2

R∑
r=1

trace
(
Σ(r)A

(r)
win (α)

)

= 1
R2 trace (Awin (α))

R∑
r=1

σ2
r

= trace
(
ΣAwin (α)

)
.

�

In contrast to Prop. 5.4.1, it is not necessary to have non-overlapping windows in

order to decompose trace terms into traces for each window. The windowed decom-

position of the trace is described in Prop. 5.4.2.

Proposition 5.4.2 Under Assumptions 1 to 3, for all r = 1, . . . , R the trace of

Σ(r)A
(r)
win (α̃) can be written as

trace
(
Σ(r)A

(r)
win (α̃)

)
= σ2

r

P∑
p=1

trace
(
A

(r,p)
win

(
α̃(p)

))
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where

A
(r,p)
win

(
α̃(p)

)
= U (r)∆(r)W (r,p)Φ(r) (α̃p)

(
∆(r)

)†(
U (r)

)T
.

Proof. From Thm. 5.4.2, we can write trace
(
Σ(r)A

(r)
win (α̃)

)
as

trace
(
Σ(r)A

(r)
win (α̃)

)
= σ2

r

nr∑
j=kr+1

 P∑
p=1

w
(r,p)
j Φ(r)

j (α̃p)


with kr = min{0, nr −mr} for each r = 1, . . . , R. Changing the order of summation

gives

σ2
r

nr∑
j=kr+1

 P∑
p=1

w
(r,p)
j Φ(r)

j (α̃p)
 = σ2

r

P∑
p=1

 nr∑
j=kr+1

w
(r,p)
j Φ(r)

j (α̃p)


= σ2
r

P∑
p=1

trace
(
A

(r,p)
win (α̃p)

)
.

where A(r,p)
win (α̃p) = U (r)∆(r)W (r,p)Φ(r) (α̃p)

(
∆(r)

)†(
U (r)

)T
. �

5.5 Windowed Multi-data UPRE Functions

We first derive the UPRE function for Tikhonov regularization under the more

general condition that η ∼ N (0,Σ). To this end, we use the following lemma, which

is a generalization of the Trace Lemma stated in (Vogel, 2002, p. 98).

Lemma 5.5.1 Let x ∈ Rm be a constant vector, η be a real random n-vector with

η ∼ N (µ,Σ), B ∈ Rm×n, and let 〈·, ·〉 be the standard Euclidean inner product.

Then

E
(
‖x +Bη‖2

2

)
= ‖x‖2

2 + 2
n∑
j=1

(
xTB

)
j
µj + trace

(
BΣBT

)
.

Proof. By the linearity of the expected value operator and inner product,

E
(
‖x +Bη‖2

2

)
= E (〈x +Bη,x +Bη〉) = E

(
‖x‖2

2

)
+ 2E (〈x, Bη〉) + E

(
‖Bη‖2

2

)
.
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E(‖x‖2
2) = ‖x‖2

2 because x is a constant vector. Moreover, the definition of the

Euclidean inner product can be used to write E(〈x, Bη〉) as E(∑n
j=1(xTB)jηj) =∑n

j=1(xTB)j E(ηj). Thus,

E(‖x +Bη‖2
2) = ‖x‖2

2 + 2
n∑
j=1

(xTB)j E(ηj) + E(‖Bη‖2
2)

= ‖x‖2
2 + 2

n∑
j=1

(xTB)jµj + E(‖Bη‖2
2).

Focusing on E(‖Bη‖2
2), we can write

E(‖Bη‖2
2) = E

 n∑
j=1

(Bη)2
j

 =
n∑
j=1

E((Bη)2
j) =

n∑
j=1

E(y2
j )

where y = Bη. Since η ∼ N (µ,Σ), we have y ∼ N (Bµ, BΣBT) Rao (1973).

Lastly, E(y2
j ) = Var(yj) = (BΣBT)j,j for each j = 1, . . . , n. Therefore ∑n

j=1 E(y2
j ) =∑n

j=1 Var(yj) = trace(BΣBT) and

E(‖x +Bη‖2
2) = ‖x‖2

2 + 2
n∑
j=1

(xTB)jµj + trace(BΣBT).

�

Returning to the assumption that η ∼ N (0,Σ), application of Lem. 5.5.1 to the norm

of p(α) and noting that E(η) = µ = 0 yields

E
( 1
m
‖p(α)‖2

2

)
= 1
m
‖(A(α)− Im)Ax‖2

2 + 1
m

trace
(
A(α)ΣAT(α)

)
. (5.5.18)

The regularized residual r(α) can be rewritten as

r(α) = (A(α)− Im)Ax + (A(α)− Im) η, (5.5.19)

and so applying Lem. 5.5.1 to the norm of r(α) yields

E
( 1
m
‖r(α)‖2

2

)
= 1
m
‖(A(α)− Im)Ax‖2

2 + 1
m

trace
(
(A(α)− Im)TΣ (A(α)− Im)

)
.
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The trace term can be expanded as

trace
(
(A(α)− Im)TΣ (A(α)− Im)

)
= trace

(
AT(α)ΣA(α)

)
− trace

(
AT(α)Σ

)
− trace (ΣA(α)) + trace (Σ) .

The cyclic property of the trace operator and the fact that Σ and A(α) = A(ATA +

α2LTL)−1AT are symmetric matrices give

trace
(
(A(α)− Im)TΣ (A(α)− Im)

)
= trace

(
A(α)ΣAT(α)

)
− 2 trace (ΣA(α)) + trace (Σ) ,

and so eq. (5.5.18) can be expressed as

E
( 1
m
‖p(α)‖2

2

)
= E

( 1
m
‖r(α)‖2

2

)
+ 2
m

trace (ΣA(α))− 1
m

trace (Σ) . (5.5.20)

Analogous to the standard UPRE function, we can then redefine FUPRE(α) as

FUPRE(α) = 1
m
‖r(α)‖2

2 + 2
m

trace (ΣA(α))− 1
m

trace (Σ) . (5.5.21)

The standard UPRE function eq. (4.1.6) is recovered from eq. (5.5.21) if Σ = σ2Im

(which is Assumption 2 with R = 1). Lem. 5.5.1 is used in the derivation the main

result as well, described by Prop. 5.5.1.

Proposition 5.5.1 Under Assumption 1, the UPRE function F̃UPRE
win

(α) for the data

sets {d(r)}Rr=1 and windows {{W (r,p)}Pp=1}Rr=1 is

F̃UPRE
win

(α̃) = 1
M

R∑
r=1

mrF
(r)
UPRE

win
(α̃), (5.5.22)

where M = ∑R
r=1mr and

F
(r)
UPRE

win
(α̃) = 1

mr

∥∥∥r(r)
win(α̃)

∥∥∥2

2
+ 2
mr

trace
(
Σ(r)A

(r)
win(α̃)

)
− 1
mr

trace
(
Σ(r)

)
. (5.5.23)
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Proof. Defining the regularization matrix Ãwin(α̃) = ÃỸ Φ̃win(α̃)∆̃†ŨT and M =∑R
r=1mr, we have

r̃win(α̃) =
(
Ãwin(α̃

)
− IM)d̃ =

(
Ãwin(α̃)− IM

)
b̃ +

(
Ãwin(α̃)− IM

)
η̃,

p̃win(α̃) =
(
Ãwin(α̃

)
− IM)b̃ + Ãwin(α̃)η̃.

Both the regularized residual r̃win(α̃) and predictive error p̃win(α̃) are linear com-

binations of a deterministic term f (f =
(
Ãwin(α̃)− IM

)
b̃ in both cases) and a

noise term Bη̃ (where B =
(
Ãwin(α̃)− IM

)
in the case of the regularized residual

and B = Ãwin(α̃) for predictive error). Since Lem. 5.2.1 implies η̃ ∼ N (0̃, Σ̃) with

0̃ ∈ RM , Lem. 5.5.1 can be applied to write the expectations of the squared norms of

r̃win(α̃) and p̃win(α̃). Starting with the predictive error,

E
(
‖p̃win(α̃)‖2

2

)
=
(
Ãwin(α̃)− IM

)
b̃ + trace

(
Ãwin(α̃)Σ̃

(
Ãwin(α̃)

)T
)
. (5.5.24)

Similarly, the regularized residual is expressed as

E
(
‖r̃win(α̃)‖2

2

)
=
(
Ãwin(α̃)− IM

)
b̃ + trace

((
Ãwin(α̃)− IM

)
Σ̃
(
Ãwin(α̃)− IM

)T
)
.

The trace term that makes up part of the norm of the regularized residual can be

expanded as

trace
(
Ãwin(α̃)Σ̃

(
Ãwin(α̃)

)T
)
− 2 trace

(
Σ̃Ãwin(α̃)

)
+ trace

(
Σ̃
)
,

where the cyclic property of the trace and the symmetry of Ãwin(α̃) was utilized.

Combining the expanded trace term with eq. (5.5.24), the predictive risk can be

written as

E
( 1
M
‖p̃win(α̃)‖2

2

)
= 1
M

(
‖r̃win(α̃)‖2

2 + 2 trace
(
Σ̃Ãwin(α̃)

)
− trace

(
Σ̃
))
.

Distributing the scale factor, the windowed multi-data UPRE function is

F̃UPRE
win

(α) = 1
M
‖r̃win(α)‖2

2 + 2
M

trace
(
Σ̃Ãwin(α̃)

)
− 1
M

trace
(
Σ̃
)
. (5.5.25)
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As used in the proofs of Thm. 5.4.1 to 5.4.2, the structure of r̃win(α̃), Σ̃, and Ãwin(α̃)

allow for eq. (5.5.25) to be written in terms of sums over r:

F̃UPRE
win

(α) = 1
M

R∑
r=1

∥∥∥r(r)
win(α̃)

∥∥∥2

2
+ 2
M

R∑
r=1

trace
(
Σ(r)A

(r)
win(α̃)

)
− 1
M

R∑
r=1

trace
(
Σ(r)

)
.

The scale factors can be rewritten so that

F̃UPRE
win

(α) = 1
M

R∑
r=1

∥∥∥r(r)
win(α̃)

∥∥∥2

2
+ 2
M

R∑
r=1

trace
(
Σ(r)A

(r)
win(α̃)

)
− 1
M

R∑
r=1

trace
(
Σ(r)

)

= 1
M

R∑
r=1

(∥∥∥r(r)
win(α̃)

∥∥∥2

2
+ 2 trace

(
Σ(r)A

(r)
win(α̃)

)
− trace

(
Σ(r)

))

= 1
M

R∑
r=1

mrF
(r)
UPRE

win
(α̃),

where for r = 1, . . . , R,

F
(r)
UPRE(α) = 1

mr

∥∥∥r(r)
win(α̃)

∥∥∥2

2
+ 2
mr

trace
(
Σ(r)A

(r)
win(α̃)

)
− 1
mr

trace
(
Σ(r)

)
.

�

The windowed multidata UPRE method for real d̂ = UHd defines

α̃UPRE = arg min
α̃∈RP

+

F̃UPRE
win

(α̃).

Thm. 5.4.1 provides a filter function representation for ‖r(r)
win(α̃)‖2

2, while Thm. 5.4.2

provides a representation for trace(Σ(r)A
(r)
win(α̃)) under Assumption 2. Additionally,

eq. (5.5.23) is equivalent to eq. (4.1.6) under Assumption 2. M = mR under As-

sumption 3, in which case F̃UPRE
win

(α̃) is the average of the functions F (r)
UPRE

win
(α̃).

If the windows being considered for a certain data set are non-overlapping (mean-

ing eq. (5.1.3) is satisfied), then we can write eq. (5.5.23) as a sum of functions of a

scalar argument; this is accomplished using Prop. 5.4.1 and presented as Cor. 5.5.1.

Corollary 5.5.1 Under Assumption 1 with windows {{W (r,p)}Pp=1}Rr=1 which satisfy

Prop. 5.4.1 for some r ∈ {1, . . . , R}, the UPRE function F
(r)
UPRE

win
(α̃) applied to data
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set d(r) can be written as

F
(r)
UPRE

win
(α̃) =

P∑
p=1

(
1
mr

∥∥∥r(r,p)
win (α̃p)

∥∥∥2

2
+ 2σ2

r

mr

trace
(
A

(r,p)
win

(
α̃(p)

)))
, (5.5.26)

where the trailing trace term in eq. (5.5.23) is ignored.

The proof of Cor. 5.5.1 follows via direct application of Prop. 5.4.1 and Prop. 5.4.2

(recall that Prop. 5.4.2 does not rely on having non-overlapping windows). The fact

that the trailing trace term 1
mr

trace
(
Σ(r)

)
from eq. (5.5.23) is ignored does not af-

fect the estimation of parameters α̃p because such terms do not affect minimization.

Attempting to decompose 1
mr

trace
(
Σ(r)

)
as a sum over p raises the question of how

much variance to attribute to the data in the spectral domain for each spectral win-

dow, which is unclear. If the windows {{W (r,p)}Pp=1}Rr=1 satisfy Prop. 5.4.1 for all

r = 1, . . . , R, then we obtain

Corollary 5.5.2 Under Assumption 1 with windows {{W (r,p)}Pp=1}Rr=1 which satisfy

Prop. 5.4.1 for all r = 1, . . . , R, the UPRE function F̃UPRE
win

(α̃) applied to data sets

{d(r)}Rr=1 can be written as

F̃UPRE
win

(α̃) =
P∑
p=1

[
R∑
r=1

(
1
mr

∥∥∥r(r,p)
win (α̃p)

∥∥∥2

2
+ 2σ2

r

mr

trace
(
A

(r,p)
win

(
α̃(p)

)))]
, (5.5.27)

where the trailing trace terms from eq. (5.5.23) is ignored.

The proof of Cor. 5.5.2 follows from using Cor. 5.5.1 for each r = 1, . . . , R and

changing the order of summation. The advantage of having eq. (5.5.27) is that even

in the multidata setting, the components of a parameter vector which minimizes

F̃UPRE
win

(α̃) can be found individually by minimizing P functions of a scalar argument.

We conclude Section 5.5 by showing a relationship between the windowed mul-

tidata UPRE method that uses eq. (5.5.22) and the UPRE method as applied to

averaged data d, denoted FUPRE
win

(α).
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Proposition 5.5.2 Under Assumptions 1 to 6, let

FUPRE
win

(α) = 1
m
‖rwin(α)‖2

2 + 2
m

trace
(
ΣAwin(α)

)
− 1
m

trace
(
Σ
)
.

Then for all α ∈ RP
+,

FUPRE
win

(α) ≤ F̃UPRE
win

(α) +
(
R− 1
RM

)
trace

(
Σ̃
)
. (5.5.28)

Proof. Using Cor. 5.4.2 and M = mR, FUPRE
win

(α) can be written as

FUPRE
win

(α) = 1
m
‖rwin(α)‖2

2 + 2
m

trace
(
ΣAwin(α)

)
− 1
m

trace
(
Σ
)

= 1
m
‖rwin(α)‖2

2 + 2
R2m

trace
(
Σ̃Ãwin(α)

)
− 1
R2m

trace
(
Σ̃
)

= 1
m
‖rwin(α)‖2

2 + 2
RM

trace
(
Σ̃Ãwin(α)

)
− 1
RM

trace
(
Σ̃
)
.

Cor. 5.4.1 is then used to bound the norm of the regularized residual:

FUPRE
win

(α) = 1
m
‖rwin(α)‖2

2 + 2
RM

trace
(
Σ̃Ãwin(α)

)
− 1
RM

trace
(
Σ̃
)

≤ 1
Rm
‖r̃win(α)‖2

2 + 2
RM

trace
(
Σ̃Ãwin(α)

)
− 1
RM

trace
(
Σ̃
)

= 1
M
‖r̃win(α)‖2

2 + 2
RM

trace
(
Σ̃Ãwin(α)

)
− 1
RM

trace
(
Σ̃
)
.

trace
(
Σ̃Ãwin(α)

)
≥ 0 for all α ∈ RP

+ from the representation given by Thm. 5.4.2,

and so we write

2
RM

trace
(
Σ̃Ãwin(α)

)
≤ 2
M

trace
(
Σ̃Ãwin(α)

)
.

As for the term containing trace
(
Σ̃
)
, we subtract and add

(
R−1
RM

)
trace

(
Σ̃
)
so that

− 1
RM

trace
(
Σ̃
)

= − 1
RM

trace
(
Σ̃
)
−
(
R− 1
RM

)
trace

(
Σ̃
)

+
(
R− 1
RM

)
trace

(
Σ̃
)

= − trace
(
Σ̃
) [ 1
RM

+ R− 1
RM

]
+
(
R− 1
RM

)
trace

(
Σ̃
)

= − 1
M

trace
(
Σ̃
)

+
(
R− 1
RM

)
trace

(
Σ̃
)
.
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Finally we can write

FUPRE
win

(α) ≤ 1
M

[
‖r̃win(α)‖2

2 + 2 trace
(
Σ̃Ãwin(α)

)
− trace

(
Σ̃
)]

+
(
R− 1
RM

)
trace

(
Σ̃
)

= F̃UPRE
win

(α) +
(
R− 1
RM

)
trace

(
Σ̃
)
.

�

Prop. 5.5.2 shows that the windowed multidata UPRE function F̃UPRE
win

is truly distinct

from simply applying the UPRE method to the average of the data, and the bound

eq. (5.5.28) provides a description of the relationship between the two modalities.

However, Prop. 5.5.2 does not provide information regarding the parameters found

using FUPRE
win

(α) compared with those found using F̃UPRE
win

(α).

5.6 Windowed Multi-data MDP Functions

The MDP function for the more general assumption that η ∼ N (0,Σ) will first

be presented. Since E( 1
m
‖r(α)‖2

2) = E( 1
m
‖η‖2

2) and E(‖η‖2
2) = trace(Σ), the MDP

function can be redefined to be

FMDP(α) = 1
m
‖r(α)‖2

2 −
1
m

trace (Σ) . (5.6.29)

Equation (5.6.29) can then be applied to data {d(r)}Rr=1 and windows {{W (r,p)}Pp=1}Rr=1

to obtain the main MDP result, which is described by Prop. 5.6.1.

Proposition 5.6.1 Under Assumption 1, the MDP function F̃MDP
win

(α̃) for the data

sets {d(r)}Rr=1 and windows {{W (r,p)}Pp=1}Rr=1 is

F̃MDP
win

(α̃) = 1
M

R∑
r=1

mrF
(r)
MDP
win

(α̃), (5.6.30)

where M = ∑R
r=1mr and

F
(r)
MDP
win

(α̃) = 1
mr

‖r(r)
win(α̃)‖2

2 −
1
mr

trace
(
Σ(r)

)
, r = 1, . . . , R. (5.6.31)
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Proof. Using Lem. 5.2.1 for η̃ with M = ∑R
r=1mr, the MDP function eq. (5.6.29)

can be applied to define

F̃MDP
win

(α̃) = 1
M
‖r̃win(α̃)‖2

2 −
1
M

trace
(
Σ̃
)
. (5.6.32)

Defining the individual MDP functions by eq. (5.6.31), the MDP function eq. (5.6.32)

for the large system can be rewritten by exploiting the block structure of Ã(α) and

Σ̃ as follows:

F̃MDP
win

(α̃) = 1
M

R∑
r=1
‖r(r)

win(α̃)‖2
2 −

1
M

R∑
r=1

trace
(
Σ(r)

)

= 1
M

R∑
r=1

(
‖r(r)

win(α̃)‖2
2 − trace

(
Σ(r)

))

= 1
M

R∑
r=1

mr

( 1
mr

‖r(r)
win(α̃)‖2

2 −
1
mr

trace
(
Σ(r)

))

= 1
R

R∑
r=1

F
(r)
MDP
win

(α̃).

�

The windowed multidata MDP method then defines α̃MDP as the zero of F̃MDP
win

(α̃).

Analogous to the UPRE method, eq. (5.6.31) is equivalent to eq. (4.2.20) under

Assumption 2. A safety parameter ε can also be included in the trace terms of

eq. (5.6.29) and eq. (5.6.32) for more control over selected parameters as described in

Section 4.2. If ε is included in the trace term of eq. (5.6.32), Prop. 5.6.1 suggests a

partition ε = ∑R
r=1 εr among the trace terms of the individual functions in eq. (5.6.31);

however, this situation is not considered here.

As with the windowed multidata UPRE method, the windowed multidata MDP

method is distinct from the MDP method as applied to the averaged data d.

Proposition 5.6.2 Under Assumptions 1 to 6, let

FMDP
win

(α) = 1
m
‖rwin(α)‖2

2 −
1
m

trace
(
Σ
)
.
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Then for all α ∈ RP
+,

FMDP
win

(α) ≤ F̃MDP
win

(α) +
(
R− 1
RM

)
trace

(
Σ̃
)
.

The proof of Prop. 5.6.2 is nearly identical to that of Prop. 5.5.2, with the exclusion

of a term involving trace
(
Σ̃Ãwin(α)

)
.

To conclude the theoretical discussion of the MDP method, we note that it would

be desirable to have results for the MDPmethod analogous to Cor. 5.5.1 and Cor. 5.5.2

when non-overlapping windows are utilized. However, the difference in how these

functions are implemented to estimate regularization parameters (namely, the UPRE

method is a minimization problem and the MDP method is a root-finding problem)

prevents such results from being generated. Indeed, the constant terms that were

ignored in the formulation of Cor. 5.5.1 and Cor. 5.5.2 are the same such terms used

in the windowed multidata MDP function; ignoring these terms would affect the

root-finding process on which the MDP method relies.

5.7 Windowed Multi-data GCV Functions

We first highlight that, in contrast to the UPRE and MDP methods, the windowed

multidata GCV function is distinct in its form from that of the single parameter

version applied to a single data set. The first step in the derivation of a windowed

multidata GCV function is to define ỹ(α̃) = X̃Tx̃(α̃), where 5.2.11 gives

ỹwin(α̃) =
(
∆̃T∆̃ + α̃2Λ̃TΛ̃

)−1
∆̃T ̂̃d. (5.7.33)

Note that eq. (5.7.33) corresponds to the solution of the normal equations
(
∆̃T∆̃ + α̃2Λ̃TΛ̃

)
ỹ = ∆̃T ̂̃d

for the problem

min
ỹ∈RM

∥∥∥∥∆̃ỹ− ̂̃d∥∥∥∥2

2
+ α̃2

∥∥∥Λ̃ỹ
∥∥∥2

2
.
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Following the approaches in Golub et al. (1979) and Chung et al. (2011b), we

introduce the block diagonal matrix C̃ = diag(C(1), . . . , C(R)) where C(r) is the mr ×

mr unitary matrix that diagonalizes the circulants for r = 1, . . . , R. Now considering

the system Gỹ ≈ C̃
̂̃d with G̃ = C̃∆̃, the normal equations are

(
G̃HG̃+ α̃2Λ̃TΛ̃

)
ỹ = G̃HC̃

̂̃d
Note that G̃HG̃ could be written as simply ∆̃T∆̃ since C̃ is itself unitary. Under

Assumption 6, the windowed solution of the new system is

ỹwin (α̃) =
P∑
p=1

(
G̃HG̃+ α̃2

pΛ̃TΛ̃
)−1

W̃ (p)G̃HC̃
̂̃d (5.7.34)

where W̃ (p) = diag(W (p), . . . ,W (p)) has R blocks along the diagonal. As in Chung

et al. (2011b), we introduce the following resolution matrices for p = 1, . . . , P :

G̃ (α̃p) = G̃
(
G̃HG̃+ α̃2

pΛ̃TΛ̃
)−1

G̃H = G̃G̃] (α̃p) ,

G̃win (α̃p) = G̃
(
G̃HG̃+ α̃2

pΛ̃TΛ̃
)−1

W̃ (p)G̃H = G̃G̃]
win (α̃p) .

The difference between G̃ (α̃p) and G̃win (α̃p) is the presence of the window matrix

W̃ (p). The diagonal entries of these resolution matrices will be used later, motivating

Lem. 5.7.1.

Lemma 5.7.1 Under Assumption 1 and Assumption 6, the diagonal entries of the

matrices IM − G̃G̃] (α̃p) and IM − G̃G̃]
win (α̃p), denoted by µp and νp, respectively, are

given by

µp = 1
M

M −N +
N∑
j=1

(
1− Φ̃jj (α̃p)

) ,
νp = 1

M

M −N +
N∑
j=1

(
1−

(
Φ̃win

)
jj

(α̃p)
) ,

where M = ∑R
r=1mr and N = ∑R

r=1 nr.
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Proof. Let M = ∑R
r=1mr and N = ∑R

r=1 nr. Expanding G̃G̃] (α̃p) with the

definition for G̃, we have

G̃G̃] (α̃p) = G̃
(
G̃HG̃+ α̃2

pΛ̃TΛ̃
)−1

G̃H

= C̃∆̃
(
∆̃T∆̃ + α̃2

pΛ̃TΛ̃
)−1

∆̃TC̃H

= C̃


Φ̃ (α̃p) 0

0 0

 C̃
H

where Φ̃ (α̃p) is an N × N matrix. Performing the subtraction IM − G̃G̃] (α̃p) then

yields

IM − G̃G̃] (α̃p) = C̃C̃H − G̃G̃] (α̃p) = C̃


IN − Φ̃ (α̃p) 0

0 IM−N

 C̃
H.

The middle term in this product is diagonal, and thus IM − G̃G̃] (α̃p) is circulant.

Therefore, the diagonal entries of IM − G̃G̃] (α̃p) are constant and we can write

diag
(
IM − G̃G̃] (α̃p)

)
= µpIM .

Since C̃ is unitary,

trace
(
IM − G̃G̃] (α̃p)

)
= trace




IN − Φ̃ (α̃p) 0

0 IM−N




=

N∑
j=1

(
1− Φ̃jj (α̃p)

)
+ (M −N),

and so

µp = 1
M

M −N +
N∑
j=1

(
1− Φ̃jj (α̃p)

) , p = 1, . . . , P.

The process for obtaining the diagonal entries of IM − G̃G̃]
win (α̃p) is similar. �
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The spectral windowed multidata GCV function is at last described by Prop. 5.7.1,

the proof of which utilizes Lem. 5.7.1.

Proposition 5.7.1 Under Assumptions 1 to 5 where m ≥ n and L has full rank q∗,

α̃p > 0, j = 1 : q∗, and 0 = δ1 = · · · = δ` < δ`+1 · · · ≤ δn. The windowed F̃GCV
win

function for the generalized Tikhonov regularization is given by

F̃GCV
win

(α̃) = 1
M

 M∑
j=q∗+1

1 +
 P∑
p=1

1− νp
µp

2 (̂̃d)2

j

+
q∗∑
j=1

1 +
 P∑
p=1

1− νp
µp

−
 P∑
p=1

1
µp

γ2
jw

(p)
j

γ2
j + α̃2

p

2 (̂̃d)2

j


where

µp = 1
M

M −N +
N∑
j=1

(
1− Φ̃jj (α̃p)

) ,
νp = 1

M

M −N +
N∑
j=1

(
1−

(
Φ̃win

)
jj

(α̃p)
) .

Equivalently, F̃GCV
win

can be written in matrix form as

1
M

∥∥∥∥∥∥
IM − P∑

p=1

1
µp

∆̃
(
∆̃T∆̃ + α̃2

pΛ̃TΛ̃
)−1

W̃ (p)∆̃T +
P∑
p=1

1− νp
µp

IM

 ̂̃d
∥∥∥∥∥∥

2

2

. (5.7.35)

Proof. The Allen PRESS estimates Golub et al. (1979) of α̃p minimize

F (α̃) = 1
M

M∑
k=1

((
C̃
̂̃d)

k
−
(
G̃ỹ(k)

win (α̃)
)
k

)2
, (5.7.36)

where ỹ(k)
win (α̃) is ỹwin (α̃) without the kth entry. To obtain ỹ(k)

win (α̃), the kth row of

G̃ is removed in eq. (5.7.34); in Chung et al. (2011a), this is accomplished through

multiplication by the symmetric matrix Ek = IM − ekeT
k as EkG̃. Before expanding

terms of eq. (5.7.34) using the product EkG̃, it will be convenient to define ck = C̃Hek
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which is the kth column of C̃H. Expanding G̃HET
kEkG̃ gives

G̃HET
kEkG̃ = ∆̃TC̃H

(
IM − ekeT

k

) (
IM − ekeT

k

)
C̃∆̃

=
(
∆̃TC̃H − ∆̃TckeT

k

) (
C̃∆̃− ekcT

k ∆̃
)

= ∆̃TC̃HC̃∆̃− ∆̃TckcH
k ∆̃− ∆̃TckcH

k ∆̃ + ∆̃TckeT
k ekcT

k ∆̃

= ∆̃T∆̃− ∆̃TckcH
k ∆̃,

where the final equality is obtained from C̃ being unitary and eT
k ek = 1. Thus the

inverse term in eq. (5.7.34) using EkG̃ can be written as

(
G̃HET

kEkG̃+ α̃2
pΛ̃TΛ̃

)−1
=
(
∆̃T∆̃ + α̃2

pΛ̃TΛ̃− ∆̃TckcH
k ∆̃

)−1
=
(
H(α̃p)− hkhH

k

)−1

with hk = ∆̃Tck and H(α̃p) = ∆̃T∆̃ + α̃2
pΛ̃TΛ̃. The Sherman-Morrison formula Golub

and Van Loan (2013) then gives

(
H(α̃p)− hkhH

k

)−1
= (H(α̃p))−1 + (H(α̃p))−1hkhH

k (H(α̃p))−1

1− hH
k (H(α̃p))−1hk

. (5.7.37)

Expanding the denominator in eq. (5.7.37) using the definitions of H(α̃p), hk, ck, and

subsequently G̃ and G̃] (α̃p), yields

1− hH
k (H(α̃p))−1hk = 1− eT

k C̃∆̃
(
∆̃T∆̃ + α̃2

pΛ̃TΛ̃
)−1

∆̃TC̃Hek

= 1− eT
k G̃
(
G̃HG̃+ α̃2

pΛ̃TΛ̃
)−1

G̃Hek

= eT
k

(
IM − G̃

(
G̃HG̃+ α̃2

pΛ̃TΛ̃
)−1

G̃H
)

ek

= eT
k

(
IM − G̃G̃] (α̃p)

)
ek.

Thus 1− hH
k (H(α̃p))−1hk = µp (independent of k) by Lem. 5.7.1, and so

(
H(α̃p)− hkhH

k

)−1
= (H(α̃p))−1 + 1

µp
(H(α̃p))−1hkhH

k (H(α̃p))−1.

As a final step before fully expanding the expression for (G̃ỹ(k)
win (α̃))k from eq. (5.7.34),
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note that

eT
k G̃
(
G̃HET

kEkG̃+ α̃2
pΛ̃TΛ̃

)−1
= hH

k

(
H(α̃p)− hkhH

k

)−1

= hH
k

(
(H(α̃p))−1 + 1

µp
(H(α̃p))−1hkhH

k (H(α̃p))−1
)

= hH
k (H(α̃p))−1 + 1

µp
hH
k (H(α̃p))−1hkhH

k (H(α̃p))−1

=
(

1 + 1
µp

hH
k (H(α̃p))−1hk

)
hH
k (H(α̃p))−1

= 1
µp

eT
k G̃
(
∆̃T∆̃ + α̃2

pΛ̃TΛ̃
)−1

.

Equation (5.7.34) can now be used to express (G̃ỹ(k)
win (α̃))k as follows:(

G̃ỹ(k)
win (α̃)

)
k

= eT
k G̃ỹ(k)

win (α̃)

=
P∑
p=1

eT
k G̃
(
G̃HET

kEkG̃+ α̃2
pΛ̃TΛ̃

)−1
W̃ (p)G̃HET

kEkC̃
̂̃d

=
P∑
p=1

1
µp

eT
k G̃
(
∆̃T∆̃ + α̃2

pΛ̃TΛ̃
)−1

W̃ (p)G̃HET
kEkC̃

̂̃d
=

P∑
p=1

1
µp

eT
k G̃G̃

]
win (α̃p)

(
IM − ekeT

k

)
C̃
̂̃d

=
P∑
p=1

1
µp

eT
k G̃G̃

]
win (α̃p) C̃

̂̃d− 1
µp

eT
k G̃G̃

]
win (α̃p) ekeT

k C̃
̂̃d.

The term eT
k G̃G̃

]
win (α̃p) ek is the kth diagonal element of G̃G̃]

win (α̃p), which is constant

(independent of k) by Lem. 5.7.1 and equal to 1− νp. Thus(
G̃ỹ(k)

win (α̃)
)
k

=
P∑
p=1

1
µp

eT
k G̃G̃

]
win (α̃p) C̃

̂̃d− 1− νp
µp

eT
k C̃

̂̃d
= eT

k

 P∑
p=1

1
µp
G̃G̃]

win (α̃p)−
1− νp
µp

IM

 C̃ ̂̃d.
Subtracting (G̃ỹ(k)

win (α̃))k from (C̃ ̂̃d)k can now be written as

(C̃ ̂̃d)k −
(
G̃ỹ(k)

win (α̃)
)
k

= eT
k C̃

̂̃d− eT
k

 P∑
p=1

1
µp
G̃G̃]

win (α̃p)−
1− νp
µp

IM

 C̃ ̂̃d
= eT

k

IM − P∑
p=1

1
µp
G̃G̃]

win (α̃p) +
P∑
p=1

1− νp
µp

IM

 C̃ ̂̃d,
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and therefore 5.7.36 is equivalent to

F (α̃) = 1
M

∥∥∥∥∥∥
IM − P∑

p=1

1
µp
G̃G̃]

win (α̃p) +
P∑
p=1

1− νp
µp

IM

 C̃ ̂̃d
∥∥∥∥∥∥

2

2

.

The windowed multidata GCV function is finally obtained by rewriting the norm as

follows:

F (α̃) = 1
M

∥∥∥∥∥∥∥∥∥∥∥∥

C̃C̃
H −

P∑
p=1

1
µp
C̃


Φ̃win (α̃p) 0

0 0

 C̃
H +

P∑
p=1

1− νp
µp

C̃C̃H

 C̃
̂̃d
∥∥∥∥∥∥∥∥∥∥∥∥

2

2

= 1
M

∥∥∥∥∥∥∥∥∥∥∥∥

IM −
P∑
p=1

1
µp


Φ̃win (α̃p) 0

0 0

+
P∑
p=1

1− νp
µp

IM


̂̃d
∥∥∥∥∥∥∥∥∥∥∥∥

2

2

= 1
M

 M∑
j=q∗+1

1 +
 P∑
p=1

1− νp
µp

2

d̂2
j

+
q∗∑
j=1

1 +
 P∑
p=1

1− νp
µp

−
 P∑
p=1

1
µp

γ2
jw

(p)
j

γ2
j + α̃2

p

2

d̂2
j

 .
�

The windowed multidata GCV method defines α̃GCV = arg minα̃>0 F̃GCV
win

(α̃).

However, the single parameter multidata GCV function is analogous to the stan-

dard GCV function eq. (4.3.24) in its form and can be obtained from Prop. 5.7.1 with

P = 1; this is shown by 5.7.2.

Proposition 5.7.2 Under Assumptions 1 to 4, the GCV function F̃GCV(α̃) for the

data sets {d(r)}Rr=1 is

F̃GCV(α̃) =
1
M
‖r̃(α̃)‖2

2[
1− 1

M
trace

(
Ã(α̃)

)]2 , (5.7.38)

where M = ∑R
r=1mr.
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Proof. Using eq. (5.7.35) from Prop. 5.7.1 with P = 1, we have

F̃GCV(α̃) = 1
M

∥∥∥∥∥
(
IM −

1
µ

∆̃
(
∆̃T∆̃ + α̃2Λ̃TΛ̃

)−1
∆̃T + 1− ν

µ
IM

) ̂̃d∥∥∥∥∥
2

2
.

Here W̃ (p) is replaced with IM , as is µp and νp with µ and ν, respectively. Next,

Φ̃win = Φ̃ and so ν = µ; replacing ν with µ allows the function to be written as

F̃GCV(α̃) = 1
M

∥∥∥∥∥
(
IM −

1
µ

∆̃
(
∆̃T∆̃ + α̃2Λ̃TΛ̃

)−1
∆̃T + 1− µ

µ
IM

) ̂̃d∥∥∥∥∥
2

2

= 1
M

∥∥∥∥∥
(

1
µ
IM −

1
µ

∆̃
(
∆̃T∆̃ + α̃2Λ̃TΛ̃

)−1
∆̃T

) ̂̃d∥∥∥∥∥
2

2

= 1
Mµ2

∥∥∥∥(IM − ∆̃
(
∆̃T∆̃ + α̃2Λ̃TΛ̃

)−1
∆̃T

) ̂̃d∥∥∥∥2

2

= 1
Mµ2 ‖r̃(α̃)‖2

2 .

The last step is to rewrite µ2 with regard to matrix traces:

µ2 =
 1
M

M −N +
N∑
j=1

(
1− Φ̃jj (α̃)

)2

=
1 + 1

M

N∑
j=1

Φ̃jj (α̃)
2

=
[
1− 1

M
trace

(
Ã(α̃)

)]2
.

�

Another distinction between the GCV method and the UPRE and MDP methods

is that the single parameter multidata GCV function cannot be readily expresses as

a linear combination of individual single parameter GCV functions

F
(r)
GCV(α) =

1
mr
‖r(r)(α)‖2

2[
1− 1

mr
trace (A(r)(α))

]2 , r = 1, . . . , R (5.7.39)

when only Assumption 1 and Assumption 3 are considered. Assumption 5 is required

to obtain a result similar to Prop. 5.5.1.
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Proposition 5.7.3 Under Assumptions 1 to 5, the GCV function F̃GCV(α̃) for the

data sets {d(r)}Rr=1 is

F̃GCV(α̃) = 1
R

R∑
r=1

F
(r)
GCV(α̃),

where F (r)
GCV(α̃) is defined by eq. (5.7.39).

Proof. Assumption 5 implies that A(r)(α̃) = A(α̃) for each r = 1, . . . , R, as

well as M = ∑R
r=1mr = mR. Having the same influence matrix for each r is crucial

because of the trace term contained in the denominator of the multidata GCV function

eq. (5.7.38). From Thm. 5.4.1 to 5.4.2, we can then write

F̃GCV(α̃) =
1
M

∑R
r=1 ‖r(r)(α̃)‖2

2[
1− 1

M

∑R
r=1 trace (A(α̃))

]2 =
1
R

∑R
r=1

1
m
‖r(r)(α̃)‖2

2[
1− 1

m
trace (A(α̃))

]2
= 1
R

R∑
r=1

F
(r)
GCV(α̃).

�

As with the windowed multidata situations, the single parameter multidata GCV

method defines α̃GCV = arg minα̃>0 F̃GCV(α̃). Note that eq. (5.7.39) is equivalent to

eq. (4.3.24) without Assumption 2, which is to be expected since the GCV method

does not rely on knowledge of the noise variance.

In conclusion, a result analogous to Prop. 5.5.2 and Prop. 5.6.2 can be obtained

for the windowed multidata GCV function using Cor. 5.4.1 and Cor. 5.4.2.

Proposition 5.7.4 Under Assumptions 1 to 6, let

FGCV(α) =
1
m
‖r(α)‖2

2[
1− 1

m
trace (A(α))

]2 .
Then for all α ∈ RP

+,

FGCV(α) ≤ F̃GCV(α).
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Proof. Cor. 5.4.1 provides the bound on the numerator of FGCV(α). Assumption 5

implies M = mR and A(r)(α) = A(α) for all r = 1, . . . , R, and so the denominator of

eq. (5.7.38) becomes

[
1− 1

M
trace

(
Ã(α)

)]2
=
[
1− 1

M

R∑
r=1

trace
(
A(r)(α)

)]2

=
[
1− 1

M

R∑
r=1

trace (A(α))
]2

=
[
1− R

M
trace (A(α))

]2

=
[
1− 1

m
trace (A(α))

]2
.

Combining numerator and denominator yields

FGCV(α) =
1
m
‖r(α)‖2

2[
1− 1

m
trace (A(α))

]2 ≤ 1
mR
‖r̃win(α)‖2

2[
1− 1

m
trace (A(α))

]2 = F̃GCV(α).

�

As a closing remark regarding the single parameter multidata GCV method, it is

important to emphasize that Assumption 5 was needed for result Prop. 5.7.3. In

contrast, no such assumption is necessary for the corresponding multidata UPRE

and MDP results, which are Prop. 5.5.1 and 5.6.1 respectively. For the same reason,

we are unable to separate the windowed multidata GCV function given in Prop. 5.7.3

even for non-overlapping windows. Such a barrier prevents the development of GCV

results analogous to Cor. 5.5.1 and Cor. 5.5.2.

5.8 Summary

In summary, Chapter 5 introduced the backgrounds of both spectral windowing

and multidata approaches independently in Section 5.1 and Section 5.2 respectively.

The two approaches were combined in Section 5.3, though this section is brief. The
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majority of the necessary tools for the development of the windowed multidata meth-

ods are presented in Section 5.4. The new methods were individually presented,

noting various assumptions that are required for each corresponding function.
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Chapter 6

RESULTS FOR WINDOWED MULTI-DATA SETS

To evaluate the effectiveness of the windowed multidata parameter selection meth-

ods, 1D and 2D test problems were considered. Selected 2D results were presented in

Byrne and Renaut (2023). For both problems, data vectors/images were considered

as a set of training data and resulting parameters were then applied to a validation

data set. All numerical results use data where a true solution has been blurred and

white noise has been added to the blurred image. In both the 1D and 2D cases, we

assume that the data is real. In particular, the GSVD is used for the 1D problem.

Reflective boundary conditions are assumed in the case of the 2D problem, and there-

fore the DCT is the primary tool for the 2D results. Details of how the blurring is

accomplished are discussed at the beginnings of Sections 6.1 to 6.2. The construction

of the noise and how the parameters are evaluated is discussed first.

The noise added to all blurred images are realizations of white noise, i.e., the

assumption is that η ∼ N (0, σ2Im). The signal-to-noise ratio (SNR) is used as a

measurement for noise content and is given by

SNR = 10 log10

(Psignal

Pnoise

)
. (6.0.1)

In the discrete setting, the average power P of a vector x of length n is defined as
1
m
‖x‖2

2. Using this definition for vectors b and η, Psignal = 1
m
‖b‖2

2 and Pnoise = 1
m
‖η‖2

2

and so the quotient in the logarithm is ‖b‖2
2/‖η‖2

2. The quotient can also be expressed

as ‖b‖2
2/‖d− b‖2

2, which is the multiplicative inverse of the relative error squared of

d. In the 2D setting, the noise can be considered realizations of a random matrix

instead of a vector; in this case, eq. (6.0.1) can be used where the average power terms
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are written using the Frobenius norm.

In the 1D setting, the noise vector η can be constructed by first taking an n-

vector e drawn from the multivariate standard normal distribution and multiply-

ing the vector by a constant σ. Doing so ensures that η has variance σ2 since

Var(η) = Var(σ e) = σ2 Var(e), and e has unit variance. Thus it is useful to re-

arrange the equation defining SNR into an equation that provides a way of finding

the necessary variance for a given SNR value. The rearrangement is shown below,

with ‖η‖2
2 replaced by E(‖η‖2

2):

E(‖η‖2
2) = ‖b‖2

2
10(SNR/10) .

Using the properties of expected value and the fact that E(‖η‖2
2) = E(‖σe‖2

2), the

term on the left hand side of the equation can be changed as

E(‖η‖2
2) = σ2

n∑
j=1

E(e2
i ) = σ2

n∑
j=1

(
E(ei)2 + Var(ei)

)
= σ2

n∑
j=1

(
02 + 1

)
= σ2 n.

Utilizing this change, the following equation for variance is obtained:

σ2 = ‖b‖2

n · 10(SNR/10) . (6.0.2)

This equation is used for the numerical construction of the noise vectors/matrices.

For a basis of comparison for the parameter estimation methods, parameters were

also selected as minimizers of the supervised learning function

F̃MSE
win

(α) = 1
R
‖x̃win(α)− x̃‖2

2 = 1
R

R∑
r=1

F
(r)
MSE
win

(α), (6.0.3)

where

F
(r)
MSE
win

(α) =
∥∥∥x(r)

win(α)− x(r)
∥∥∥2

2
. (6.0.4)

Equation (6.0.3) is the windowed multidata version of the MSE function given in

eq. (4.0.1), where a mean of the individual squared error terms, given by eq. (6.0.4), is
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being computed. As with eq. (4.0.1), this definition requires that the true solutions,

{x(r)}Rr=1, be known for generating the training data. Regularization parameters

chosen as minimizers of eq. (6.0.3) are optimal in the sense of minimizing the mean

squared error of the regularized solutions x(r)
win(α); the use of eq. (6.0.3) was considered

in Chung and Español (2017). One could also find minimizers α(r) of eq. (6.0.4) for

each r = 1, . . . , R, which would produce parameters that are optimal for their own

data set; this corresponds to using eq. (4.0.1) in the scalar parameter case. In the

results we use MSE to indicate results that are found using the learning function

given by eq. (6.0.4).

6.1 One-dimensional Test Problem

Results for the 1D problem serve as a proof of concept for the multidata windowed

methods and use the MRI data built into MATLAB®, which can be accessed by the

command load mri.mat. Five horizontal slices were selected and reformatted as a

single image (fig. 6.1) of dimensions 256 × 536. The default dimension of each hori-

zontal MRI slice accessible using load mri.mat is 128×128. Linear interpolation was

used to double the number of rows; the number of columns of the concatenated MRI

slices was trimmed to to eliminate leading and trailing zero columns. The columns

of the image were then multiplied by a symmetric Toeplitz matrix, approximating a

Fredholm integral equation of the first kind with the Gaussian kernel eq. (2.1.3). The

resulting MRI image is vertically blurred and realizations of normal noise with the

corresponding variances were added to blurred columns; see fig. 6.1. For the consider-

ation of multiple data sets, the first R = 40 columns of fig. 6.1 served as the training

set, while another 40 columns serve as a validation set. Another validation was gen-

erated from built-in MATLAB® images, shown in fig. 6.2. The images in fig. 6.2 were

horizontally concatenated and the columns blurred in the same way as the training
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set; fig. 6.3 shows an example. The first 40 columns of this second validation set were

used to construct regularized solutions from the parameters obtained via the training

set, and the relative errors were computed against the true solutions.

-0.6
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-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 6.1: MRI data formed by reformatting the MATLAB® built-in MRI data.
Each column was blurred using a Gaussian kernel with ξ = 16. White noise was added
to produce a specific SNR (in this case, an SNR of 10; see eq. (6.0.1)). The resulting
vectors are shown at the bottom. The dimension of all four images is 256× 536.

For the penalty matrix L, the standard one-dimensional first order finite difference

matrix L1 of size 255× 256 was used:

L1 =



−1 1 0
. . . . . .

0 −1 1


,

where the negative ones are positioned along the main diagonal. Left multiplication

of a vector by L1 approximates the computation of a first derivative. The resulting

system matrix in eq. (2.2.11) has full column rank, and so applying the normal equa-

tions in terms of the GSVD results in unique solutions. The identity matrix Im was

also considered as a penalty matrix, though this corresponds to standard Tikhonov

127



Figure 6.2: The second validation set, consisting of built-in MATLAB® images.
From left to right starting in the top row, the images are: rice.png, AT3_1m4_01.tif,
circuit.tif, cameraman.tif, liftingbody.png, westconcordorthophoto.png,
parkavenue.jpg, and llama.jpg.
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Figure 6.3: 1D validation data formed by reformatting the MATLAB® built-in
images from fig. 6.2. Each column was blurred using a Gaussian kernel with ξ = 16.
White noise was added to produce a specific SNR (in this case, an SNR of 10). The
resulting vectors are shown at the bottom. The dimension of all four images is 256
× 2,048.

128



regularization. One and two windows were used and the window types considered

in the two-window case were logarithmic and logarithmic cosine (non-overlapping

and overlapping, respectively). An SNR of 10 and 25 was used in combination with

ξ = 4, 16. An additional blue value of 36 is considered in the 2D problem discussed

in Section 6.2. In regards to the value of ξ, the values ξ = 4, 16, and 36 correspond

to blurring that is referred to as “mild,” “medium,” and “severe” in Gazzola et al.

(2019), respectively. The GSVD was used for all 1D configurations, while the DCT

was used for the 2D results in Section 6.2.

To begin, fig. 6.4 shows the spectral weights for P = 1, 2, 3 with logarithmic

cosine windows (see Section 5.1, specifically eqs. (5.1.5) to (5.1.7)). Regularization

parameters were found using eq. (4.0.1) on data with an SNR of 25 and the identity

as the penalty matrix for only 10 data sets (in this example, parameters are found

for each data set; this is windowed regularization for a single data set instead of

full windowed multidata regularization). Figure 6.5 shows how the parameters are

distributed as the window number changes. The relative errors of the corresponding

regularized solutions are shown in fig. 6.6. The choice to focus on using eq. (4.0.1)

with only 10 data sets initially was motivated to first determine whether windowed

regularization can produce solutions that outperform single parameter regularization.

Figure 6.6 demonstrates that for this example, there is benefit to using two and

three spectral windows. While there is some benefit in using three windows as com-

pared to one window, P = 2 provides the best relative errors; using three windows

does not improve upon the solutions generated from two windows. Furthermore, for

every increase in window size there is additional cost of finding the regularization pa-

rameters because the number of variables contributing to the minimization problem

increases. For these reasons, P = 2 is chosen as the maximum number of spectral

windows in this document, in both the 1D and 2D problems. A plot similar to that
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Figure 6.4: Spectral weights determined using logarithmic cosine windows a sym-
metric Toeplitz system matrix with ξ = 16. The overlap of the windows for P > 1 is
clear.
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Figure 6.5: MSE parameters obtained using a symmetric Toeplitz system matrix
with ξ = 4, data having an SNR of 25, and the identity penalty matrix. See fig. 6.6
for corresponding relative errors.
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Figure 6.6: Relative errors obtained using MSE parameters for a symmetric Toeplitz
system matrix with ξ = 4, data having an SNR of 25, and the identity penalty matrix.

of fig. 6.5 is shown for the 2D problem in Section 6.2.

Moving to all of the parameter selection methods considered in this work, fig. 6.7

illustrates a comparison of the methods in terms of the regularization parameters α

selected as the number of training vectors increases. When the number of training

vectors is small (e.g. between 1 and 10 from fig. 6.7), the parameters determined by

all four methods change significantly. This can be attributed to the fact that all of

the methods find a parameter that is either a root or a minimum of an average of

functions. For a small number of training vectors, each additional vector has more

influence over the behavior of the multidata function. The parameters stabilize as the

number of training vectors reaches a certain point; in the problem being considered

here, the parameters stabilize by about 10 training vectors.

Before looking at the relative errors of the regularized solutions, another obser-

vation regarding fig. 6.7 can be made. While the parameters determined using the

learning function eq. (6.0.3) and multidata MDP method are close (even for safety
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Figure 6.7: Trend of parameters selected by each multidata method as the number
of training vectors (R) increases. The parameters stabilize as the number of training
vectors increases. A safety parameter of ε = 0.95 for the MDP method was chosen
manually to produce results similar to the other methods.

parameter ε = 1), the multidata UPRE and GCV methods produce parameters that

are similar as well. Modification of ε can produce even better parameters, though

this only accomplished for fig. 6.7. For the remainder of the document, the MDP

methods are assumed to use ε = 1.

Figure 6.8 shows the relative errors of the regularized solutions corresponding to

the parameters from each method. The relative errors obtained by the learning and

multidata UPRE and GCV methods are quite similar; the means of the relative errors

are close, and there is a collection of upper outliers. In contrast, the multidata MDP

method better matches the errors produced by the learning method in this case. To

summarize the 1D results, table 6.1 shows a collection of relative errors for multiple

values R, window types/numbers, and each windowed multidata method.

One observation regarding table 6.1 is that the MSE method consistently outper-

forms the other methods, but for this configuration of SNR and blur amount, the
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Table 6.1: Averaged percent relative errors of the multidata windowed regularized
solutions for ξ = 36 and an SNR of 10 with one window, two logarithmically spaced
windows and two logarithmically spaced cosine windows with the L1 penalty matrix.
The result with least error for given R, method, and validation set is highlighted in
bold face.

R Win
Training Validation 1 Validation 2

MSE UPRE GCV MDP MSE UPRE GCV MDP MSE UPRE GCV MDP

1

None 4.41 4.44 4.41 4.62 4.18 4.23 4.19 4.27 3.11 3.24 3.14 2.65

Log 4.41 4.44 4.45 4.62 4.18 4.23 4.24 4.27 3.11 3.24 3.28 2.65

LogCos 4.41 4.44 4.46 4.62 4.18 4.23 4.24 4.27 3.11 3.23 3.28 2.65

10

None 4.62 4.45 4.45 6.32 4.27 4.17 4.16 5.47 2.65 2.77 2.78 2.75

Log 4.62 6.99 8.48 6.32 4.27 7.03 8.71 5.47 2.65 6.04 7.93 2.75

LogCos 4.62 4.45 7.24 6.32 4.27 4.17 7.03 5.47 2.65 2.77 7.07 2.75

20

None 4.62 4.45 4.45 6.32 4.27 4.17 4.16 5.47 2.65 2.77 2.78 2.75

Log 4.41 4.48 4.45 5.37 4.19 4.27 4.24 4.8 3.13 3.33 3.27 2.60

LogCos 4.41 4.48 10.03 5.37 4.19 4.27 9.76 4.8 3.13 3.33 10.26 2.6

30

None 4.39 4.41 4.41 5.47 4.16 4.19 4.19 4.87 3.03 3.13 3.14 2.61

Log 4.41 4.41 4.41 5.37 4.19 4.19 4.19 4.8 3.13 3.13 3.12 2.6

LogCos 4.39 4.41 8.4 5.47 4.16 4.19 8.17 4.87 3.03 3.13 8.41 2.61

40

None 4.39 4.4 4.4 5.81 4.15 4.16 4.17 5.11 2.97 3.04 3.08 2.65

Log 4.41 4.4 4.4 5.37 4.19 4.16 4.16 4.8 3.13 3.04 3.03 2.60

LogCos 4.39 4.4 8.16 5.81 4.15 4.16 7.94 5.11 2.97 3.04 8.15 2.65
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Figure 6.8: Boxplots of the relative errors of the regularized solutions constructed
from parameters selected by each method. The effectiveness of the multidata MDP
method is affected by the choice of safety parameter ε; here ε = 0.95 yields comparable
results to the MSE method.

greater performance is marginal. Another observation is that for the second valida-

tion set, the windowed multidata MDP method produced parameters that resulted

in the lowest relative errors. In general, the relative errors associated with the sec-

ond validation set differ from those of the training set and first validation set. This

phenomenon is investigated further in Section 6.2.

The 1D test problem demonstrates that the multidata methods have potential

for selecting viable regularization parameters that can be applied for multiple sets

of data. In the 1D experiments, the windowed multidata UPRE and GCV methods

performed similarly. The windowed multidata MSE method performs best on average,

which is to be expected since this method relies on knowledge of the true solutions.

The windowed multidata MDP method can also perform competitively, though this

method often requires some fine tuning of the safety parameter ε.
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6.2 Two-dimensional Test Problem

The data sets of the 2D test problem consist of images of size 256 × 256. This

problem utilizes the images in fig. 6.9 of the planet Mercury obtained by the MES-

SENGER space probe 1 . To obtain the 16 images from the 512×512 Mercury images

in fig. 6.9, 8 images were randomly chosen and two 256× 256 subimages of each im-

age were selected as the northwest and southeast corners. A total of 16 images were

used and split into training and validation sets containing 8 images each. The second

validation set is shown in fig. 6.2.

Figure 6.9: Selected Images for the MESSENGER 2D Test Problem. Available
courtesy of NASA/JPL-Caltech NASA and JPL-Caltech (2016).

A 256 × 256 point spread function was formed using a discretization of the zero

centered, circularly symmetric 2D Gaussian kernel,

k(x, y) = exp
(
−x

2 + y2

2ξ

)
. (6.2.5)

1The MESSENGER images are available to the public courtesy of NASA/JPL-Caltech NASA
and JPL-Caltech (2016)
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The scale factor which makes
∫
R2 k(x, y) dx dy = 1 has been omitted since the appro-

priate scaling is accomplished numerically. As with the 1D Gaussian kernel eq. (2.1.3),

the parameter ξ controls the width of the Gaussian kernel. Choosing k(x, y) to be

circularly symmetric is for convenience; a Gaussian kernel with different width pa-

rameters for the x and y directions can still be used to construct a PSF that is doubly

symmetric for diagonalization via the DCT Hansen et al. (2006). The corresponding

PSFs were discretely convolved with each image as a means of blurring. SNR values

of 10 and 25 were used to construct realizations of normal noise that were added to

the blurred images to create the data. For one choice of the penalty matrix L, we

used the appropriately structured version of the discrete negative Laplacian operator,

which is an approximation of the continuous Laplacian operator −∇2 Debnath and

Mikusiński (2005); LeVeque (2007). Given an open subset Ω ⊆ R2 and an integer

k ≥ 2, we can denote Ck as the space of all real-valued functions on Ω that have con-

tinuous partial derivatives of order k Debnath and Mikusiński (2005). The negative

Laplacian operator −∇2 : Ck(Ω)→ Ck−2(Ω) is then defined by

−∇2f = −
(
∂2f

∂x2 + ∂2f

∂y2

)
, f ∈ Ck(Ω). (6.2.6)

However, the derivatives can be approximated by finite differences so that the follow-

ing stencil can be used to represent the effect of −∇2 in a discrete convolution:

0 −1 0

−1 4 −1

0 −1 0


. (6.2.7)

Using eq. (6.2.7), a discrete approximation L2 of eq. (6.2.6) can be constructed using

the process outlined in Vogel (2002). For the second penalty matrix we used L = Im.
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The structure of resulting matrices A and L allows for simultaneous diagonalization

using the DFT/DCT for numerical efficiency (see Section 3.4).

The learning methods were evaluated for both the scalar and spectral windowing

cases using training data sets of sizes R = 1 to 8. The learned parameters in each

case were then used to construct regularized solutions for data from two independent

validation sets. For the windowed regularization we considered both non-overlapping

linear/logarithmic windows and overlapping linear/logarithmic cosine windows. The

decision to use linear spacing for L = Im and logarithmic spacing for L = L2 is

supported by how the ordered spectral components decay; see fig. 6.10. As in Chung

et al. (2011b), the windowed GCV function in Prop. 5.7.1 was replaced by the P inde-

pendent GCV functions eq. (5.7.39) for simplicity when considering non-overlapping

windows. Parameters were also obtained for the separable UPRE method given by

eq. (5.5.27). For the spectral windowing with overlapping windows, the minimiza-

tions were initialized using the parameters obtained by the non-overlapping methods.

Overall, in terms of the choice to initialize the parameters for the overlapping windows

with parameters obtained from the separable case, we note that the windowed UPRE

and GCV methods corresponding to overlapping windows performed better when the

minimizations were initialized using the parameter obtained by the non-overlapping

methods. Results without this initialization are not considered.

Considering first the scalar parameter multidata case, the resulting parameters

appear to stabilize as the number of data sets is increased. Figure 6.11 demonstrates

this effect and shows that the amount of stabilization appears to be connected to the

homogeneity of the training set. Sets constructed from fig. 6.9 are homogeneous in

the sense that they all contain images of the surface of Mercury. In contrast, fig. 6.2

consisted of entirely distinct images. By changing which sets are used for training

or validation influences the resulting parameters as R increases. The corresponding
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(a) L = I
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(b) L = L2

Figure 6.10: Plot of the ratios
∣∣∣d̂j∣∣∣ /γj, j = 1 : 200 : n, for a fixed data set selected

from the first image in fig. 6.9 using L = I and L = L2, in figs. 6.10a and 6.10b,
respectively. Here we assume j increasing corresponds to γj in descending order. The
vertical lines represent the partition points of two (linear or logarithmic) windows,
which depend only on the blur amount ξ.
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relative errors of the regularized solutions are shown in fig. 6.12. While the box plots

in fig. 6.12a and fig. 6.12b simply look as if they are the same but reordered, the box

plots appear similar because the resulting parameters are approximately the same

(α ≈ 0.2). These experiments suggest that it is sufficient to use only a small number

of images, relative to the total available, to obtain meaningful results. The use of

fig. 6.2 as a training set was only considered to produce fig. 6.11 and fig. 6.12; its use

as a validation set is retained through the remainder of the results.

1 2 3 4 5 6 7 8
0.1

0.2

0.3

0.4

0.5
MSE

UPRE

GCV

MDP

(a) Parameters α against R (Set 1)
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(b) Parameters α against R (Set 3)
Figure 6.11: Figure 6.11a illustrates the change in scalar α as the number of data
sets increases, here with Set 1 as the training set and in fig. 6.11b with Set 3 (see
fig. 6.12). Figure 6.11a is an example of how scalar regularization parameters can
stabilize as the number of data sets in the multidata methods increases. In contrast,
fig. 6.11b shows less stabilization with increasing R when the training set is changed.
For both plots, ξ = 16, L = L2, and an SNR of 25 was used.

In regards to the spectral windowing, typically two windows were sufficient (cor-

responding to the use of just two parameters in the windowed estimators) to obtain

meaningful solutions. The observed benefit of using greater than two windows was

minor, an example of which is shown for the windowed UPRE method in fig. 6.13a.

Another advantage of using two windows is that there is a greater computational cost

of finding more parameters than is necessary for meaningful regularized solutions;

this is especially true for overlapping windows where decoupling is not an option.

Extending the number of windows also has the effect of reducing the influence of one

or more parameters. For example, fig. 6.13b shows that one of the three parameters
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Figure 6.12: Relative errors of regularized solutions obtained for scalar α from each
multidata method with R = 5 data sets. Here Set 1 and Set 2 were constructed from
fig. 6.9, while Set 3 was constructed from fig. 6.2. In fig. 6.12a, Set 1 served as the
training set and the resulting parameters were used to construct solutions for the data
from Sets 2 and 3. Figure 6.12b shows results where training was done using Set 3
instead and Sets 1 and 2 served as validation sets. For both plots, ξ = 16, L = L2,
and an SNR of 25 was used.

obtained from the windowed UPRE method with three windows is more variable and

larger in magnitude than that other two parameters.
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(b) Parameters for P = 1 : 3
Figure 6.13: Parameters and corresponding relative errors from the UPRE method
as the number of windows is increased from one to three. Figure 6.13a shows that
there is little benefit in using an increasing number of windows. Figure 6.13b shows
that past two windows, the new regularization parameters are more variable. For
both plots, logarithmically spaced windows were used with ξ = 4, L = L2, and an
SNR of 40.

The results presented in Chung et al. (2011b) also suggested that there is little to be

gained when using more than two windows, even when using the learning approach,

method MSE, to find the parameters. On the other hand, the presented framework is
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valid for more windows, should there be situations in which the use of two windows

seems insufficient based on numerical experiments.

It should be noted also, that when using the windowed multidata MDP method,

there is an additional tuning safety parameter, which is required and makes the

presentation of results for the MDP method much less interesting. In figs. 6.11 to 6.12

the safety parameter is 1, though the MDP results can be altered to better match

those of the MSE error method by adjusting the safety parameter as needed.
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Figure 6.14: Parameters and corresponding relative errors obtained from using
logarithmic vs logarithmic-cosine windows with the MSE, UPRE, and GCV methods.
In the case of the logarithmic (non-overlapping) windows, the independent versions
of the UPRE and GCV functions were used, eqs. (5.5.27) and (5.7.39), respectively.
For both window versions, ξ = 4, L = L2, and an SNR of 10 was used.

The use of overlapping or non-overlapping windows influences the degree of in-

terdependence between the two parameters. Figure 6.14 presents the results of using

overlapping and non-overlapping logarithmic windows with L = L2. When using

non-overlapping windows, the ranges of both parameters are smaller than those for

non-overlapping windows. For overlapping windows, the behavior of α1 exhibited

in fig. 6.14 shows the parameters grouping near 10. The grouping behavior can be
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explained by the choice of an upper bound during the minimization process; in the

case of fig. 6.14, the upper bound was chosen near 10. The calculated gradients of the

FMSE
win

(α), FUPRE
win

(α), and FGCV
win

(α) are too small to resolve a minimum in the direction

of α2 and thus the minimization process determines the minimizers near the specified

boundary. However, using overlapping windows also increased the magnitude of α2,

most significantly in the case of the GCV method.

In regards to the multidata windowed methods, which select P parameters using R

data sets, the parameters converge as R increases. Table 6.2 details the mean percent

relative errors of solutions obtain using parameters from each multidata windowed

method, where one and two (both overlapping and non-overlapping) windows were

used. Even for the limited number of training sets (2 through 8), the errors decrease

as R increases. For most numerical configurations tested, the use of overlapping vs

non-overlapping windows provides minor benefit with regards to the relative errors

of the regularized solutions.

It is interesting to note that the average relative errors of solutions obtained for

parameters applied to the second validation set (fig. 6.2) were less than those of ei-

ther the training or first validation set. The superior (reduced) errors calculated for

the second validation set are consistent throughout most numerical configurations.

Additionally, the relative errors for the second validation set show greater variability

than those for either the training, or first validation, set. Furthermore, the relative

errors are indeed least in each case when training is performed using known data,

namely with the MSE, but the results with both UPRE and GCV learning methods

are not significantly larger when using windowed regularization. This demonstrates

that windowed regularization parameters can be learned from training data without

knowledge of the true solutions. The results obtained using UPRE are in most cases

slightly improved as compared to those using GCV, and hence UPRE would be pre-
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Table 6.2: Averaged percent relative errors of the multidata windowed regularized
solutions for ξ = 36 and an SNR of 10 with one window, two linearly spaced windows
and two linearly spaced cosine windows with the identity penalty matrix. The result
with least error for given R, method, and validation set is highlighted in bold face.

R Win
Training Validation 1 Validation 2

MSE UPRE GCV MSE UPRE GCV MSE UPRE GCV

2

None 21.32 25.83 25.87 23.76 27.58 27.62 17.57 23.27 23.32

Lin 19.64 19.54 19.54 22.85 22.67 22.67 14.94 14.88 14.89

LinCos 19.54 19.93 19.94 22.83 23.38 23.39 14.78 15.10 15.11

4

None 21.29 26.09 26.12 23.71 27.82 27.86 17.58 23.57 23.62

Lin 19.44 19.53 19.55 22.39 22.36 22.37 14.93 15.16 15.17

LinCos 19.32 19.33 19.94 22.32 22.29 23.39 14.75 14.79 15.11

6

None 21.29 26.03 26.07 23.71 27.77 27.81 17.58 23.51 23.56

Lin 19.44 19.49 19.50 22.41 22.36 22.37 14.91 15.05 15.07

LinCos 19.32 19.32 19.94 22.34 22.34 23.39 14.73 14.72 15.11

8

None 21.29 26.02 26.06 23.71 27.76 27.80 17.57 23.50 23.55

Lin 19.44 19.48 19.49 22.41 22.36 22.37 14.90 15.04 15.06

LinCos 19.32 19.32 19.94 22.34 22.34 23.39 14.72 14.72 15.11
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ferred if information about the noise in the data is available. Finally, to illustrate

the performance of the approach, fig. 6.15 presents two examples of images from the

second validation set that have differing relative errors. Examples of results of the

GCV and MDP methods are shown in fig. 6.16 and fig. 6.17, respectively.
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Figure 6.15: Two samples from the second validation set, with ξ = 36, an SNR
of 25, two log cosine windows and the Laplacian penalty matrix. From left to right
for each sample are the true solution, the blurred image, the blurred image after
noise was added, the regularized solution obtained using the multidata windowed
UPRE method with R = 8 (the entire training set), and the regularized solutions
using parameters that are optimal for the individual image. The multidata windowed
UPRE solutions have relative errors of 8.55% and 14.81% for the top and bottom
samples, respectively, while the optimal solutions have relative errors of 8.04% and
14.80%.

6.3 Summary

In both the 1D and 2D cases, the windowed multidata methods can be competitive

with the method of finding parameters using the true solutions. Typically, the benefit

of using multiple windows is maximized after about two or three windows; beyond

that, the benefit is outweighed by the computational cost of minimization/root-finding

problems. The use of overlapping or non-overlapping windows influences the degree

of interdependence between the two parameters. In addition, parameters selected

from different data sets often produce differing amounts of error in their solutions;
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Figure 6.16: Two samples from the second validation set, with ξ = 4, an SNR of
10, two linear cosine windows and the identity penalty matrix. From left to right for
each sample are the true solution, the blurred image, the blurred image after noise
was added, the regularized solution obtained using the multidata windowed GCV
method with R = 8 (the entire training set), and the regularized solutions using
parameters that are optimal for the individual image. The multidata windowed GCV
solutions have relative errors of 14.47% and 16.87% for the top and bottom samples,
respectively.
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Figure 6.17: Two samples from the second validation set, with ξ = 16, an SNR of 40,
two log windows and the Laplacian penalty matrix. From left to right for each sample
are the true solution, the blurred image, the blurred image after noise was added, the
regularized solution obtained using the multidata windowed MDP method (ε = 1)
with R = 8 (the entire training set), and the regularized solutions using parameters
that are optimal for the individual image. The multidata windowed MDP solutions
have relative errors of 10.43% and 7.09% for the top and bottom samples, respectively.
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this is seen by comparing the results of using the second validation set fig. 6.2 versus

the results of using the Mercury images fig. 6.9.

A limitation of the numerical results is that there are better options than the

2-norm regularization term for the process of image deblurring. For example, total

variation regularization is often used to produce deblurred images, though the im-

plementation of this method is iterative in nature. One direction of future work is

then to adapt the windowed multidata methods presented here for use with itera-

tive methods. Another direction of future work could be to fix a parameter in the

windowed framework and determine the other parameters afterwards. Though this

methodology would require a useful estimate of the fixed parameter, it could allow

for fine tuning of remaining parameters to obtain more accurate solutions.
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Chapter 7

DOWNSAMPLING FUNCTIONS

While analysis has been conducted regarding the convergence of predictive and

estimation error for Tikhonov regularization as the number of sample points becomes

large (Vogel, 2002, p. 109-126), efforts to analyze the the effects of reducing the num-

ber of sample points can be expanded. A basic methodology of downsampling for the

selection of regularization parameters has been presented in Hansen (2015); Renaut

et al. (2017). This chapter serves as a bridge between methods discussed in this work

and directions for future investigation. The effectiveness of regularization parame-

ter functions discussed in Chapter 4 and methods introduced in Chapter 5 applied

to downsampled data will be discussed briefly. An introduction to the concept of

downsampling, as well as its effects on noise, are given in Section 7.1. Results from

Chapter 3 are used to suggest specific approaches to expanded work using downsam-

pling. Preliminary numerical results are given in Section 7.2.

7.1 Downsampling Background

To formalize the concept of downsampling, consider z = [z1, z2, . . . , zn]. A vec-

tor y is called a downsampling of z if y = [zI1 , zI2 , . . . , zIm ], where m ≤ n and

Ij : {1, . . . ,m} → {1, . . . , n} is a strictly increasing function. This definition is

analogous to the definition of a subsequence except with a finite number of terms.

Given an n-vector x, an m × n matrix E can be constructed such that Ex is a

downsampling of x. The structure of E is such that

E = [eI1 , eI2 , . . . , eIm ]T (7.1.1)

with columns eIj
∈ Rn and Ij : {1, . . . ,m} → {1, . . . , n} being strictly increasing. In
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other words, E is an identity matrix with rows removed. An immediate consequence

of eq. (7.1.1) is that E is a semi-orthogonal matrix, which is described by Lem. 7.1.1.

Lemma 7.1.1 Let E be an m × n matrix defined by eq. (7.1.1). Then EET = Im

but ETE 6= In.

Proof. Using eq. (7.1.1), for 1 ≤ j, k ≤ m we have

[
EET

]
j,k

= eT
Ij

eIk
=


1, Ij = Ik,

0, Ij 6= Ik.

Since Ij is strictly increasing, Ij = Ik only when j = k. Thus,

[
EET

]
j,k

=


1, j = k,

0, j 6= k,

and so EET = Im. In contrast,

ETE =
m∑
`=1

eI`
eT
I`
.

For each ` = 1, . . . ,m, eI`
eT
I`

is an n × n diagonal matrix of zeros except for entry

(I`, I`), which is a 1. Since m < n, there exists some j ∈ {1, . . . , n} such that[
ETE

]
j,j

= 0. Thus, ETE 6= In. �

If a vector x has n = 2ρ points, a natural downsampling is to select every other

component of x. The resulting downsampled vector would then have length n/2 =

2ρ−1 and the downsampling matrix E would have dimension n/2× n.

For any real m× n matrix M and n-vector η ∼ N (0, σ2In)

Var(Mη) = M Var(η)MT = σ2MIMT = σ2MMT (7.1.2)

whereMMT is an m×m matrix. Certainly for arbitraryM ,MMT can differ from an

m ×m identity matrix, which would mean that the new noise vector Mη no longer
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represents white noise. However, the variance of the noise vector does not change

when the vector is downsampled using an m × n matrix E defined by eq. (7.1.1).

From (7.1.2), the variance of a noise vector Eη downsampled from η is

Var(Eη) = E Var(η)ET = σ2EET = σ2Im.

Therefore theoretical variance is unchanged across downsampling resolutions.

To accomplish a downsampling of an image X ∈ Rn×n instead of a vector, we can

pre- and post-multiply X by E and ET, respectively. The downsampled image EXET

is then of size m×m. Figure 7.1 demonstrates how an image can be downsampled to

reduced image size at the cost of image clarity. The consideration of square images is

simply a convenience; the same downsampling matrix can be applied to downsample

each individual dimension, though distinct matrices could be used to downsample

non-square images.

256 x 256 128 x 128 64 x 64 32 x 32 16 x 16 8 x 8

Figure 7.1: Downsamplings of the lifting body image from MATLAB®. The benefit
of having starting images of size 256×256 is the reductions in problem size by powers
of 2 can be accomplishes all the way down to the extreme of having a single pixel.
Reducing each dimension by a factor of 2 reduces the overall problem size by 4.

While the variance of the noise is preserved across downsampling resolution in the-

ory, numerically there is some fluctuation. As the downsampling resolutions decrease,

i.e. the length of the downsampled vectors decreases, the sample variances differ. Fig-

ure 7.2 demonstrates this phenomenon by showing boxplots of sample variance versus

downsampling resolutions.

Though downsampling of data can be easily explained through the use of a semi-

orthogonal matrix such as E, the same approach cannot be applied to an original
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Figure 7.2: Boxplots generated from the sample variances of downsampled noise vec-
tors. This figure illustrates that as the lengths of the downsampled vectors decrease,
the variance in the computed sample variances increases.

system matrix A. Instead of downsampling A directly, downsampling perhaps should

be applied to the kernel that was used to generate A in order to obtain a system

matrix for the downsampled problem.

One approach to producing useful regularization parameters from downsampled

data could be to analyze statistical term involved in the parameter methods. For

example, both eq. (4.1.15) and (4.1.16) involve b̂j, the DFT components of the blurred

vector/image. Since the UPRE and MDP rely on E
(

1
m
‖r̂(α)‖2

2

)
, perhaps analysis of

eq. (4.1.15) or even (4.1.16) could yield improved methods. Perhaps one description

of the effects of downsampling to be applied is the Downsampling Theorem (Smith,

2007, Ch. 7), which provides a relation between the DFT of a vector with the DFT

of a downsampling. A direction of future research is to determine whether a result

such as the Downsampling Theorem can be used to downsample data to effectively

select regularization parameters.
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7.2 Preliminary Results

We use the same MRI data from Section 6.1 to use as a 1D downsampling test

problem. The 256 × 1 columns of the full MRI image were downsampled by powers

of 2 down to columns of size 8 × 1. Figure 7.3 shows the visual result of this down-

sampling process. As with the 1D problem in section 6.1, the GSVD is utilized in the

regularization process.
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Figure 7.3: Downsampled MRI data formed by reformatting the MATLAB® built-in
MRI data. The columns of each image was downsampled by a factor of 2, starting
with the full columns of length 256. The number of rows in the last image is 8; the
number of columns of all five images is 536.

The kernel associated with the symmetric Toeplitz matrix used in Section 6.1 was

downsampled and system and penalty matrices were constructed for each problem

size to be used with the GSVD. As with the previous 1D problem, a blur amount of

ξ = 4 and an SNR of 25 was considered, as well as the finite-difference matrix L1.

As a selected example, the standard UPRE method eq. (4.1.6) was used to determine

regularization parameters. The primary concern was the stability of the parameters

across downsampling resolutions. The reason for this was that instability in obtained

parameters across downsamplings would almost certainly result in regularized solu-
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Figure 7.4: Parameters obtained using the UPRE method across downsamples.
The increase in parameters stabilizes and reverses around a resolution of 32. A blur
amount of ξ = 4, an SNR of 25, and L = L1 were used to generate the results.

tions having high relative errors. Figure 7.4 shows some of the stabilizing behavior

that is possible in a downsampled setting.

Results such as fig. 7.4 demonstrate the possibility of leveraging downsampling

techniques to reduce problem size (and subsequently computational cost) and still

obtain regularization parameters that produce meaningful solutions. In addition to

applying methods developed in this work to iterative methods, the investigation of

downsampling could prove to be a fruitful direction of future work.

7.3 Summary

Regularization parameters from the methods discussed in this work can be ob-

tained from downsampled data. These parameters are then used to generate regu-

larized solutions of the full (non-downsampled) problems. In certain cases, the pa-

rameters found from downsampled data are competitive with parameters found using
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full data. The competitiveness in parameters found from downsampling motivates fu-

ture application of downsampling to more complex problems, such as iterative-based

methods.
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Chapter 8

CONCLUSIONS AND FUTURE WORK

We have shown that the UPRE, MDP, and GCV methods can be extended to ac-

commodate regularization parameter estimation using multiple data sets and for both

single and multiple parameters, for generalized Tikhonov regularization. The UPRE

and MDP are representative methods that assumes the knowledge of the variance of

mean zero Gaussian noise in the data, while no additional assumptions are required

for the GCV estimator. The most general forms of functions associated with these

methods are eqs. (5.5.25), (5.6.30) and (5.7.38), respectively. While the corresponding

functions for the spectrally windowed multidata UPRE and MDP can be written as

an average of the individual functions associate with each data set, this is not possible

for the spectrally windowed multidata GCV method without stronger assumptions

(see Section 5.7). None of these methods require knowledge of true solutions unlike

the learning approach defined by eq. (6.0.3). The presented numerical experiments

for 2D signal restoration demonstrate that the windowed multidata methods can per-

form competitively with the learning approach that requires knowledge of true signals

for training the data. Further, it is also demonstrated that the parameters obtained

from a specific training set of validation images can also be used for a set of different

testing images, provided that the general noise characteristics are the same.

The spectrally windowed multidata approach extends immediately for any estima-

tor which relies only on an approximation for the regularized residual and the trace

of the influence matrix, and the general idea can be modified to address estimators

requiring other terms, such as an augmented regularized residual use for the χ2 esti-

mator described in Mead (2008); Mead and Renaut (2009). Although the derivations
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are presented for the case in which there is a known mutual decomposition of the

model and penalty matrices (A and L), because it is only needed to obtain estimates

of the required terms, the approach can be extended for any iterative method which

yields suitable estimates, e.g. Chung et al. (2008); Renaut et al. (2018).

Moving beyond the spectrally windowed multidata approach, the method of down-

sampling represents an effort to reduce problem size. The preliminary results in Chap-

ter 7 show that the statistics of the parameter function terms rely on the structure

of the underlying blurred vector/matrix. The DFT and DCT versions of the UPRE,

GCV, and MDP functions in Chapter 4 are useful when the two transforms are to be

used in the inversion process. The corresponding statistical results of the functions

in Chapter 7, such as eq. (4.1.16), could be useful from an analytic standpoint.

There are many possible directions of future work regarding downsampling. One

direction is to further quantify the statistics of the regularization parameters when

downsampling is applied. Fortunately the DFT and DCT are topics which have been

thoroughly investigated in a number of settings. Another means of quantification

could be to utilize the statistics of the parameter estimation functions and try to

estimate intervals in which α will be found for each downsampling level. If some

information about the frequency content (in regard to the GSVD, DFT, or DCT) of

the underlying solution is available, then the information can be used to select an

appropriate downsampling level to capture the overall behavior of the solution; the

ideal result would be to explicitly show how this process effects the resulting value of

α.

As a final and overarching direction for future work, three-dimensional problems

should be considered. Examples of settings that produce three-dimensional inverse

problems include computed tomography and subsurface imaging by gravitational

measurements Aster et al. (2013). The primary challenges of working with three-
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dimensional problems are the numerical structure of the problems themselves, such

as how to correctly express the problems as matrix-vector product, and the computa-

tional costs of solving the problems. However, three-dimensional problems could be

the types of problems where downsampling is most useful. To illustrate this intuition,

suppose a unit cube in R3 is discretized by using 4 sample points in each dimension,

then downsampling to 2-point discetizations reduces the number of total data points

from 64 to 8. While the quantitative effects of downsampling should be determined

before moving to higher-dimensional problems, three-dimensional problems possess

the most potential for demonstrating these effects.
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Table A.1: Abbreviations of methods, decompositions, and transforms used through-
out this work.

Notation Description
UPRE Unbiased predictive risk estimator; see Section 4.1 for

standard UPRE method and Section 5.5 for windowed
multidata UPRE method

MDP Morozov discrepancy principle; see Section 4.2 for stan-
dard MDP method and Section 5.6 for windowed mul-
tidata MDP method

GCV Generalized cross validation; see Section 4.3 for standard
GCV method and Section 5.7 for windowed multidata
GCV method

MSE Mean squared error; see eq. (6.0.3) and eq. (6.0.4)
SVD Singular value decomposition; see Section 2.1
GSVD Singular value decomposition; see Section 2.3
BCCB Block-circulant matrix with circulant blocks; either “C”

can be replaced with “H” or “T”, meaning Hankel and
Toeplitz, respectively, all of which are used in Vogel
(2002)

DFT Discrete Fourier transform; see Section 3.3, specifically
eq. (3.3.11) and eq. (3.3.13)

DCT Discrete cosine transform; see Section 3.3, specifically
eq. (3.3.15) and eq. (3.3.16)

DST Discrete sine transform; see Section 3.3
vec (·) Vectorization function defined by eq. (3.1.2)
arr (·) Array operation defined by eq. (3.1.3)
A⊗B Kronecker product of arbitrary matrices A and B de-

fined by eq. (3.1.4)
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Table A.2: General notation used throughout the work. The superscript (r) can be
dropped when considering a single data set.

Notation Description
A(r) System matrix of size mr × nr of the rth data set
x(r) True solution vector of size nr × 1 of the rth data set
b(r) Product A(r)x(r) of size mr × 1
η(r) Additive noise vector of size mr × 1 associated with the

rth data set
d(r) Data vector of size mr × 1 of the rth data set; result of

the sum b(r) + η(r)

R Maximum number of data sets being considered at one
time, i.e. r = 1, . . . , R

Table A.3: Notation used for general Tikhonov regularization. The superscript (r)
and subscript r can be dropped when considering a single data set.

Notation Description
αr Regularization parameter for the rth data set
r(r) (αr) Regularized residual of size mr × 1 for the rth data set
A(r) (αr) Regularization matrix of size mr ×mr for the rth data

set; see eq. (4.1.3)
x (αr) Regularized solution of size nr × 1 of the rth data set;

see eq. (2.3.19)
L(r) Penalty matrix of size qr × nr of the rth data set
φ

(r)
j (αr), ψ(r)

j (αr) Filter function and complement, respectively, used with
the rth data set (j = 1 : nr); see eq. (2.3.20)

Φ(αr), Ψ(αr) Filter matrix and complement, respectively, of size nr×
nr
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Table A.4: Notation used for spectral windowing applied to general Tikhonov reg-
ularization. The superscript (r) and subscript r can be dropped when considering a
single data set.

Notation Description
w(r,p) Weight vector associated with data set r and window p;

see Section 5.1, eqs. (5.1.1) and (5.1.3)
W (r,p) Window matrix for the rth data set and window p;

W (r,p) = diag
(
w(r,p)

)
; see Section 5.1

x(r)
win

(
α(r)

)
Windowed regularized solution for the rth data set; see
eq. (5.3.12)

Pr Number of windows to be used with the rth data set;
see Section 5.1

Table A.5: Notation for multidata constructions

Notation Description
Ã Block diagonal system matrix of size M × N , where

M = ∑R
r=1mr and N = ∑R

r=1 nr; the rth diagonal block
is A(r) for r = 1, . . . , R.

x̃ Vertical concatenation of the true solutions {x(r)}Rr=1;
the length of x̃ is N

b̃ Vertical concatenation of the vectors {b(r)}Rr=1; the
length of b̃ is M

η̃ Vertical concatenation of the noise vectors {η(r)}Rr=1; the
length of b̃ is M

d̃ Result of the sum b̃ + η̃

x̃(α̃) Regularized solution generated from d̃; see eq. (5.2.11)
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Table A.6: Notation for parameter selection functions

Notation Description
FUPRE, FMDP, FGCV,
FMSE

Single parameter UPRE, MDP, GCV, and MSE func-
tions applied to one data set, all of which are functions
of α; see eq. (4.1.6) for UPRE, eq. (4.2.20) for MDP,
eq. (4.3.24) for GCV, eq. (4.0.1) for MSE

FUPRE, FMDP, FGCV Single parameter UPRE, MDP, and GCV functions ap-
plied to one data set, all of which are functions of α;
see Prop. 5.5.2 for UPRE, Prop. 5.6.2 for MDP, and
Prop. 5.7.4 for GCV

F̃UPRE
win

, F̃MDP
win

, F̃GCV
win

,
F̃MSE

win

Windowed UPRE, MDP, GCV, and MSE functions ap-
plied to R data sets, all of which are functions of α̃;
see Prop. 5.5.1 for UPRE, Prop. 5.6.1 for MDP, and
Prop. 5.7.3 for GCV

Table A.7: List of assumptions used in Chapter 5. See the discussion at the end of
Section 5.2 for how the assumptions relate with one another.

Number Statement
Assumption 1 For r = 1, . . . , R, assume that b(r) = A(r)x(r), d(r) =

b(r) + η(r), and η(r) ∼ N (0(r),Σ(r)) with the η(r) being
mutually independent. The vectors b(r), d(r), and η(r)

are of length mr and x(r) is of length nr.
Assumption 2 Given η(r) ∼ N (0(r),Σ(r)) for r = 1, . . . , R, we assume

Σ(r) = σ2
rImr (a constant diagonal matrix).

Assumption 3 For all r = 1, . . . , R, we assume that mr = m. In other
words, we assume that the size of each data vector d(r)

is the same.
Assumption 4 We assume that there exist matrices ∆ ∈ Rm×n and

Λ ∈ Rq×n such that A(r) = U (r)∆
(
X(r)

)T
and L(r) =

V (r)Λ
(
X(r)

)T
for r = 1, . . . , R, where U (r) and V (r) are

orthogonal and X(r) is invertible.
Assumption 5 For r = 1, . . . , R, assume that A(r) = A ∈ Rm×n and

L(r) = L ∈ Rq×n.
Assumption 6 For all r = 1, . . . , R and p = 1, . . . , P , assume that

W (r,p) = W (p).

166



APPENDIX B

PROPERTIES OF THE PSEUDOINVERSE

167



The pseudoinverse is the unique matrix A† ∈ Rn×m that satisfies the following
Moore-Penrose conditions (Golub and Van Loan, 2013, p. 290):

(I) AA†A = A,
(II) A†AA† = A†,

(III)
(
AA†

)T
= AA†,

(IV)
(
A†A

)T
= A†A.

Prop. B.0.1 describes some special cases of the pseudoinverse.

Proposition B.0.1 Let A ∈ Rm×n and let A† ∈ Rn×m be the pseudoinverse of A.

(i) If rank(A) = m, then A† = AT
(
AAT

)−1
and so A† is the right inverse of A.

(ii) If rank(A) = n, then A† =
(
ATA

)−1
AT and so A† is the left inverse of A.

(iii) If A = 0m×n, then A† = 0n×m.

(iv) If rank(A) = m = n, then A† = A−1.

Proof. We prove part (i). The proofs of parts (ii) and (iii) are analogous to that of
part (i), and part (iv) follows from the definition of S† using A = USV T.

Proof of part (i): Since A has full row rank, AAT is invertible. Let B = AT
(
AAT

)−1
.

The Moore-Penrose conditions are satisfied as follows:

(I): ABA =
(
AAT

) (
AAT

)−1
A = A,

(II): BAB = AT
(
AAT

)−1 (
AAT

) (
AAT

)−1
= AT

(
AAT

)−1
= B,

(III): (AB)T =
((
AAT

) (
AAT

)−1
)T

= Im×m =
(
AAT

) (
AAT

)−1
= AB,

(IV): (BA)T =
(
AT
(
AAT

)−1
A
)T

= AT
(
AAT

)−1
A = BA.

As a final remark regarding part (iii) of Prop. B.0.1, any matrix other than 0n×m
would fail to satisfy (II) of the Moore-Penrose conditions. �

The pseudoinverse can also be used with orthogonal projections onto fundamental
subspaces; some applications are described in Prop. B.0.2.

Proposition B.0.2 Let A ∈ Rm×n, P ∈ Rn×n be an orthogonal projection matrix,
A† ∈ Rn×m be the pseudoinverse of A, and let rA = rank(A).

(i) AA† is the orthogonal projection onto range(A).

(ii) A†A is the orthogonal projection onto range
(
AT
)
.

(iii) P † = P .
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(iv) P (AP )† = (AP )†.

(v) (PA)†P = (PA)†.

Proof. We prove parts (i) and (iv). The proof of part (iii) follows immediately
from the Moore-Penrose conditions and the properties of orthogonal projections. The
proof of parts (ii) and (v) are similar to that of parts (i) and (iv), respectively.

Proof of part (i): Let B = AA†. From (Golub and Van Loan, 2013, p. 82), we
must show that B is idempotent (B2 = B), symmetric, and that range(B) =
range(A). We can use the SVD A = USV T to demonstrate all three properties.
Condition (II) of the Moore-Penrose conditions gives the idempotence of B:

B2 =
(
AA†

) (
AA†

)
= A

(
A†AA†

)
= AA† = B.

For symmetry, we have that

BT =
(
AA†

)T
=
(
USS†UT

)T
= U

(
SS†

)T
UT.

By the definition of S†, the matrix SS† ∈ Rm×m is

SS† =
IrA

0
0 0

 .
Thus SS† is symmetric and

BT = U
(
SS†

)T
UT = USS†UT = B,

showing that B is symmetric. If we carry out the multiplication B = USS†UT,
then

B = UrA
UT
rA

where UrA
consists of the first rA columns of U . Since the first rA columns of

U form an orthonormal basis for range(A) (Leon, 2010, p. 340), B being equal
to UrA

UT
rA

shows that range(B) = range(A). Therefore, B is the orthogonal
projection onto range(A).

Proof of part (iv): Let B = AP and C = P (AP )†. It will be shown that C satisfies
the Moore-Penrose conditions.

(I): Substituting B and C into the product BCB, we have

BCB = APP (AP )†AP = AP (AP )†AP.

By definition, (AP )† satisfies Moore-Penrose condition (I); thus
AP (AP )†AP = AP = B.
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(II): Checking the product CBC, we have
CBC = P (AP )†APP (AP )† = P (AP )†AP (AP )†.

(AP )† satisfies Moore-Penrose condition (II), and so

P
(
(AP )†AP (AP )†

)
= P (AP )† = C.

(III): First, we have that

(BC)T =
(
APP (AP )†

)T
=
(
AP (AP )†

)T
= AP (AP )†,

where the last equality results from the symmetry of AP (AP )†. Writing
P = P 2, we have

(BC)T = AP 2(AP )† = (AP )P (AP )† = BC.

(IV): We begin with

(CB)T =
(
P (AP )†AP

)T
= PAT

(
PAT

)†
P.

Writing the leading P as P = P 2 and noting that PAT
(
PAT

)†
is symmet-

ric, we have

PAT
(
PAT

)†
P = P

(
PAT

(
PAT

)†)T
P = P (AP )†AP 2 = P (AP )†AP

= CB.

Therefore C = P (AP )† satisfies the Moore-Penrose conditions, meaning that
P (AP )† is the pseudoinverse of B = AP .

�

Proposition B.0.3 Let A ∈ Rm×n and A† ∈ Rn×m be the pseudoinverse of A. Then
AT = ATAA†.

Proof. Beginning with condition (III) and using the properties of matrix transpo-
sition, (

AA†
)T

= AA−1(
A†
)T
AT = AA−1

AT
(
A†
)T
AT = ATAA−1(

AA†A
)T

= ATAA−1.

Condition (I) yields the final result:(
AA†A

)T
= ATAA−1

AT = ATAA−1.

�
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APPENDIX C

COMPARISON OF DERIVATIVES OF RESIDUALS
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As with Cor. 5.4.1, a comparison of the norms of rwin(α) and r̃win(α) can be made
with respect to their partial derivatives; this comparison is described in Cor. C.0.1.

Corollary C.0.1 Under Assumptions 1 to 6, for all α ∈ RP
+ we have that

∂

∂α(p) ‖rwin(α)‖2
2 ≤

1
R2

∂

∂α(p) ‖r̃win(α)‖2
2 , p = 1, . . . , P.

Proof. Without loss of generality, suppose that m ≤ n and let k = n−m. By the
definition of rwin(α), for fixed p = 1, . . . , P we have

∂

∂α(p) ‖rwin(α)‖2
2 = ∂

∂α(p)

m∑
j=1

 P∑
p=1

w
(p)
j+kΨj+k

(
α(p)

)2 (
d̂j

)2

= 2
m∑
j=1

 P∑
p=1

w
(p)
j+kΨj+k

(
α(p)

)  P∑
p=1

w
(p)
j+k

∂Ψj+k
(
α(p)

)
∂α(p)

(d̂j)2
.

Similarly, for r(r)
win(α) with r = 1, . . . , R we have

∂

∂α(p)

∥∥∥r(r)
win(α)

∥∥∥2

2
= ∂

∂α(p)

m∑
j=1

 P∑
p=1

w
(p)
j+kΨj+k

(
α(p)

)2 (
d̂

(r)
j

)2

= 2
m∑
j=1

 P∑
p=1

w
(p)
j+kΨj+k

(
α(p)

)  P∑
p=1

w
(p)
j+k

∂Ψj+k
(
α(p)

)
∂α(p)

 (d̂(r)
j

)2
.

Thus, through a change of summation

‖rwin(α)‖2
2 ≤

1
R2

R∑
r=1

 m∑
j=1

 P∑
p=1

w
(p)
j+kΨj+k

(
α(p)

) d̂(r)
j

2
 = 1

R2 ‖r̃win(α)‖2
2

where the last equality follows from Thm. 5.4.1 in conjunction with Assumption 6.
�
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