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ABSTRACT  
   

High-order Markov Chains are useful in a variety of situations. However, these 

processes are limited in the complexity of the domains they can model. In complex 

domains, Markov models can require 100’s of Gigabytes of ram leading to the need of a 

parsimonious model. In this work, I present the Max Markov Chain (MMC). A robust 

model for estimating high-order datasets using only first-order parameters. High-order 

Markov chains (HMC) and Markov approximations (MTDg) struggle to scale to large 

state spaces due to the exponentially growing number of parameters required to model 

these domains. MMC can accurately approximate these models using only first-order 

parameters given the domain fulfills the MMC assumption. MMC naturally has better 

sample efficiency, and the desired spatial and computational advantages over HMCs and 

approximate HMCs. I will present evidence demonstrating the effectiveness of MMC in a 

variety of domains and compare its performance with HMCs and Markov 

approximations.  

Human behavior is inherently complex and challenging to model. Due to the high 

number of parameters required for traditional Markov models, the excessive computing 

requirements make real-time human simulation computationally expensive and 

impractical. I argue in certain situations, the behavior of humans follows that of a 

sparsely connected Markov model. In this work I focus on the subset of Markov Models 

which are just that, sparsely connected. 
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CHAPTER 1 

INTRODUCTION 

Markov chains can be used to represent a variety of systems. Ranging from 

financial markets to human behavior; These robust models use probability values to 

predict a system’s behavior over time and have a wide assortment of applications. 

Various probability values represent the transition probabilities from one state to another. 

In this work, we will consider discrete time-homogeneous Markov chains in which every 

state is connected to every other via two edges (including itself) allowing any state to 

transition to any other state. 

The limitations of Markov chains become clear when applying them to large 

domains. The space complexity for making predictions grows exponentially. Especially 

as the order of the model increases, let’s say 𝑀	 represents the number of states in a 

domain and K the order. The space required can be notated as 𝑂(𝑀!𝑀). In this domain, 

there exist 𝑂(𝑀!) permutations of states, and for each 𝑀	 p-values. For example, if there 

are 10 states and order 3, a probability table containing 1000 rows and 10 columns must 

be created to predict every combination of any three states. In complicated domains, there 

can exist thousands of states, leading to a Markov chain requiring an excessive number of 

p-values and thus space. A dataset containing 60,000 states of order 3 would require 

1.2744𝑒 + 19	 parameters. A float is represented using 4 bytes thus this domain would 

require a CPT table of 864 terabytes. A Markov chain approximation such as the 

Generalized Mixture Transition Distribution Model (MTDg) can be used to significantly 

reduce the number of parameters required. However, as shown in the experiment section 

the time required to calculate these parameters is excessive and unbound.  
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Our motivation for MMC is to address the limitations of the above models by 

further imposing parsimony on the model structure to expedite learning and make it 

scalable to large domains. For the simplest MMC models that we study here, we assume 

sparse correlations such that only one state (𝑆"#$) in the lags (previous K states) are 

allowed to influence the current state 𝑆"#! . However, MMC allows the influence from 

𝑆"#$ to 𝑆"#! to be affected by the presence of the other states, in contrast to the basic 

MTD models. The MMC has been defined and discussed in detail in the technical report 

on which this thesis is based on (Zhang and Bucklew, 2022).  

In this work, we present a new model able to approximate HMCs using first-order 

parameters necessitating 𝑂(𝑀%) parameters, the Max Markov Chain. Specifically, we 

approximate the subset of HMCs with sparse correlations among states. We define the 

“MMC assumption” as domains in which a state can “generate’ a state according to 

distribution in any future step within the order of the MMC. Where similar models 

struggle, our proposed model can handle similar datasets in linear time. In the results 

section, we demonstrate MMC’s effectiveness even for extremely large domains.  
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Figure 1: Graphical Representations of, from Top to Bottom, First-order Markov 

Chain, High-order Markov Chain, and Max Markov Chain. The Order Is 3 for Both 

MMC and HMC. 

  In a Markov chain, every state in the previous order states influences the 

probability of the next. We make the argument that human behavior follows different 

principles. Our simulation of human multitasking in the results section shows positive 

results affirming our beliefs. A human naturally switches goals, so not all the previous-

order states will be relevant for state prediction. Consider the following example: John 

arrived at the library and is working on his class assignments in the library. An event 

suddenly kicks off in the library which is disrupting to John. However, before John 

leaves, he will need to check out a few textbooks to continue working on the assignments 

at home. Since he will arrive at home earlier today, he may make a quick call before 

leaving and driving home. The correlations among these events are shown in Fig. 1, 

which can be modeled by an MMC. Modeling this scenario with HMC is possible but 

unnecessary while a first-order Markov chain would be insufficient given the long-term 

dependencies. Certain types of human behaviors described as both reactive and 

deliberative may fit the MMC model assumptions well (Schmidt 2000). Such sparse 

correlations between the states in a process is what we strive to model in this work. An 

intuitive way to think about an MMC process is to consider a transition system for which 

any transition may be delayed by an unspecified but bounded amount of time.  
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1.1 Related Works – Approximate Markov Chain 

Markov chain was introduced to model stochastic processes, which has been 

applied to a diverse set of domains including physics (Randall 2006), computer science 

(Stewart 1994), geography (Chin 1977), behavior and social sciences (Benjamin 1979). 

Markov chains rely on the Markov assumption to simplify modeling, learning, and 

inference. Markov models have also been generalized to enable more expressive-ness and 

model complexities, such as the Hidden Markov Model (HMM) (Baum and Petrie 1966; 

Fine, Singer, and Tishby 1998) and factored models (Kearns and Koller 1999). However, 

Markov chains require an exponential number of parameters in the order of the chain, 

which makes them in-tractable to maintain for complex domains. This also makes 

learning very sample inefficient. Approximate HMCs that are more parsimonious and 

quicker to learn are desired. Popular approximate models (Jacobs and Lewis 1978; 

Raftery 1985) use auxiliary variables to combine the influences from each of the previous 

lags for generating the next state. Such models have also been extended to consider 

model mixtures (Berchtold and Raftery 2002) where the influences to combine are 

specified with respect to one or multiple lags for better approximations. There are two 

main limitations of the existing approximate HMC models. While they are more 

parsimonious than HMCs, learning to optimize the parameters is computationally 

challenging, often through complex numerical procedures (Raftery 1985; Berchtold and 

Raftery 2002). Second, learning these models is still inefficient. This is mainly because 

they do not impose parsimony in model structures, which may introduce overfitting for 

domains with sparse correlations among the states. This is because, as shown in Fig. 1, 

not all connections among the states are necessary. Although there are general solutions 
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for addressing overfitting (Ying 2019) such as parameter regularization, the fundamental 

problem remains. Max Markov Chain (MMC) addresses these issues by imposing model 

parsimony while retaining the ability to model long-term dependencies. As we will show 

later in the discussion, the assumption made in MMC can be gradually relaxed to 

converge to the full HMC model, resulting in a spectrum of models that are increasing in 

model complexity. The model structure of MMC may appear like skip-chain sequence 

models (Galley 2006) and variable-order Markov chains (Roucos, Makhoul, and 

Schwartz 1982). However, in these prior models, the skipping structures are assumed to 

be provided a priori or must be learned in a very expensive process. Finally, one may 

view the sparse correlations among the states as discovering causal relationships (Pearl 

2003).  

 Other works propose Markov model variations capable of dynamic temporal 

dynamics similarly to MMC (Petropoulos et al., 2017). A key difference being MMC 

considers a static order whereas the proposed model VDJ-HMM utilizes a variable order 

process. Additionally, VDJ-HMM is for non-homogeneous MC compared to the time-

homogeneous nature of MMCs. Additionally, VDJ-HMM does not follow the assumption 

a single state generates the next but could be modified to behave similarly to MMC. The 

domains for each model vary. The temporal dynamics for VDJ-HMM are decided using a 

first order Markov model. If we represented an MMC using VDJ-HMM a high order 

Markov model would be required to model the temporal dynamics unnecessarily 

increasing complexity.  

 

1.2 Related Works – Bayesian Networks 
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Using a simple Bayesian network (BNs) we can model an MMC as shown below 

in Figure 2. However, the CPT table for the SGO node would require the same number of 

parameters as an order 3 Markov chain defeating the purpose of the model. Similarly, our 

model can be represented as a Hierarchical Bayesian Network (Gyftodimos and Flach, 

2002) demonstrating the relationship between the past k states and the SGO. The 

inference process of a Hierarchical Bayes Nets is the same as a regular BN, in the case 

there are no loops. Again, leading to an unnecessary number of parameters. Although 

useful for demonstrating the relationship among states a BN structure is not parsimonious 

circumventing the advantages of the Max Markov Chain.  

 

 
 

Figure 2: Bayesian Network 

 
 

 
Figure 3: Hierarchical BN 

 

 

Additionally, an MMC can be represented as a Contingent Bayesian Network 

(CBN) (Milch, et el. 2005). Such a structure allows us to add conditions under which 

edges become active as seen in figure 4. Here “>” is used to represent state generation 

order, and only one edge can be true at a time. We represent the inference process for S5 

using a decision tree and the function H(x) which will return true if x is the highest order 
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state in the previous K (order) states. Using this decision tree format inherit to the CBN, 

we can represent the entirety of the MMC logic as is shown in Figure 5. This tree would 

replace the use of a CPT table while also providing the logic for which state to select to 

influence the outcome. A contingent Bayesian network can be trained similarly to an 

MMC, and the problem of training condenses down to selecting an SGO. These model 

structures are useful but do not represent the main innovation presented in MMC, which 

is the SGO. Our work can be represented as a specific configuration of CBN’s as any 

MMC has an associated CBN. Other work proposes similar concepts whereas edges in 

Bayesian networks exist only under certain conditions utilizing decision trees (Boutilier 

et al., 2013). Poole and Zhang utilize parent contexts which describes the fact the parents 

of one variable depend on the values of others. Heckerman et al. proposes a graphical 

language which similarly allows for the conditional existence of edges. The structure of 

an MMC can be expressed using these various concepts and should be considered a 

special case of each. However, in these works it is assumed context is learned through an 

expensive training process which is in stark contrast to MMC’s efficient learning and 

training process.  

 

Figure 4: MMC Contingent Bayesian Network of Order K=4 
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Figure 5: A Decision Tree Showcasing How to Inference S5 
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CHAPTER 2 

MODEL DESCRIPTIONS 

 

Models: Description: 

MTDg Generalized Mixture Transition 
Distribution 

HMC High Order Markov Chain 

FMC First Order Markov Chain 

MMC Max Markov Chain 

Table 1: Descriptions of Models 

 

2.1 Generalized Mixture Transition Distribution Model (MTDg) 

This mixed transition model introduced by Raftery in 1985 is as follows: 

𝑃(𝑆"#!|𝑆":"#!'() = Σ$𝜆$𝑞("#$)("#!) 

Essentially “a weighted average of transition probabilities from subsequent lags” 

(Gabryś, 2020). Where 𝑞("#$)("#!) is a value in an 𝑀 ×𝑀	transition matrix 𝑄	,capturing 

the influence from state 𝑆"#$ to 𝑆"#!; 𝜆$ is a weight parameter associated with lag 𝑙	 and 

satisfies ∑ 𝜆$  
$ = 1. Hence, an MTD model's parameter size is 𝑀(𝑀 − 1) + (𝐾 − 1). 

Even though the MTD model is parsimonious in parameter size, its model structure 

remains the same as that of HMC. It assumes that the same state at the same lag 

contributes the same influence on 𝑆"#!, regardless of the other states. 
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2.2  High Order Markov Chains 

A discrete-time Markov chain as defined below: 

     𝑃(𝑆"#!|𝑆":"#!'() 

Where the current state depends on the previous order (𝐾	) states, thus requiring 

𝑀!(𝑀 − 1) parameters where 𝑀	is the size of the state space. To train the model, we 

simply generate a CPT table with 𝑆 , rows and 𝑆 	columns. We proceed to count the 

occurrences of each output in the training data given all lags of 𝐾	states and normalize the 

rows accordingly resulting in p-values summing to one. During testing, the input is used 

to select a row in the CPT table and predict the state with the highest p-value. 

Specifically: 𝑦  = argmax(𝑃-) 

 

2.3 Max Markov Chain  

 

We formally introduce the Max Markov Chain below: 

 

 

Where  . Traditionally a Markov model utilizes all lags 

(previous order states) to predict the next state. MMC differs because the generation of 

the next state is dominated by a single previous state. Specifically, the highest order state 

is used to predict the next based on the SGO. A State Generation Order (SGO) is 

determined based on the training data decided by each state’s maximum generation 

probability. Thus, the highest-order state will have the highest probability value in its 
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CPT table. In the below example the SGO would be S1 > S2 > S3 based on the maximum 

generation probability of each state (.8 > .7 > .6). 

The highest-order state is selected from the previous order states to predict the 

next state. Consider the simple CPT table below, S1 is the highest-order state. If the order 

is 3 and the previous three states are S3, S2, S2 then the probability distribution from S2 

will be used to predict the next state. Specifically, we will predict the next state as S2 as 

that is the highest probability value for the state S2. 

State \ Prob S1 S2 S3 

S1 .8 .1 .1 

S2 .15 .7 .15 

S3 .2 .6 .2 

Table 2: Example CPT Table 

 

Importantly an SGO must be selected to maximize the data generation probability as 

defined below: 

 

We take the log probability in order to avoid underflow:  

 

where 𝑝. is the generation probability of state 𝑠.   for 𝑠   and 𝑛. is the number of times in  

𝐷/  that 𝑠. is generated by 𝑠. 𝑝.  is the generation probability of state 𝑠.  for 𝑠 and 𝑛. is the 

number of times in 𝐷/  that 𝑠. 		 is generated by 𝑠. The optimal SGO has the highest data 

generation probability out of the set of all possible SGOs. We have developed several 

techniques for effectively determining the SGO from training data when unknown. 
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CHAPTER 3 

TRAINING MMC MODEL 

3.1 Training MMC Process 

 The training process of an MMC model consists of two steps. First selecting an 

SGO and second optimizing the parameters. The problem of training an SGO can be 

expressed by: 

 

 Where  is the space of all MMC’s, and  represents the training dataset. The 

goal of training is to select the MMC which maximizes the probability it was used to 

generate the dataset. Each MMC is differentiated by its SGO. Therefore, the problem 

becomes selecting the SGO which maximizes the data generation probability.  

 

3.1 Full SGO 

In the full SGO identification technique we brute force the solution by iterating 

through every possible SGO. Of which there exists M! combinations. We generate the 

data generation probability for every permutation of the state space and order them, 

accordingly, selecting the highest.  

 

3.2 Greedy SGO 

Greedy works by greedily selecting the highest order states individually and sequentially. 

Each state is considered individually, meaning we count the number of times the 
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considered state “generates” every other state. We consider each state as its own SGO 

and calculate the data generation probability as described above.  

We count the number of times a state exists in the input per output value then find the 

product of each count. We perform this process iteratively excluding the states we have 

already selected into the entire SGO. 

 

3.3 Hillclimb SGO 

 This approach works by first ordering the states randomly creating a random 

SGO. Beginning at the highest order state, we consider switching the current state and 

every subsequent lower order state recalculating the data generation probability. If the 

switch increases the data generation probability the change is made. This process is 

repeated until the lowest order state is reached. Although effective, this process is 

computationally expensive. Each data generation probability calculation requires N 

iterations. In total this process necessitates 𝑂(𝑆% ⋅ 𝑁) iterations. 

 

3.4 SGO Conclusion 

We have performed several small-scale experiments to compare the effectiveness 

of different SGO identification techniques. Although effective, the computational cost of 

hill climb and full is excessive. Our small-scale experiments showed greedy performing 

comparable to hill climb. Greedy was effective in identifying the SGO for smaller MMC 

datasets. Moving forward all experiments and MMC performance demonstrations utilize 

the greedy SGO identification method. In further work it may be useful to further 
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compare the various SGO identification techniques. Although the excessive 

computational cost of hill climbing undermines the advantages of the model.  
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CHAPTER 4 

MMC MISALIGNMENTS 

 

4.1 MMC Misalignment 

 A misalignment occurs when two states 𝑠- and 𝑠0 satisfy that 𝑠- ≻ 𝑠0 in the 

given SGO but 𝑝-⋅1   < 𝑝0⋅1  based on the data. That is, if you order the states in the CPT 

table by their maximum generation probability and the order is not consistent with the 

SGO, misalignments exist. We present a technique for addressing these inconsistencies in 

a dataset.  

Misalignments can occur when the SGO is not perfectly identified. It could be due 

to several reasons, such as a small dataset, inconsistent data, or a dataset simply not 

following the MMC assumption. Using the greedy method will rarely result in a perfect 

SGO particularly in exceptionally large state spaces such as 60,000. In some cases, 

misalignments can occur even when the SGO is accurate, particularly when the training 

dataset size is low. 

Every state can be represented as a node in a graph. Every misaligned state is 

connected via edges and clusters of misaligned states form subgraphs. Every state in a 

subgraph must share the same maximum generation probability but not necessarily the 

most likely generative state.  

Given an SGO with a misalignment, the maximum data likelihood is achieved 

when 𝑝-∗ = 𝑝0∗ where 𝑝-∗ (𝑝0∗) represents the maximum generation probability of state 

𝑠- (𝑠0). 
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4.2 Combining Misalignments 

First compare the SGO to the states ordered by their maximum generation 

probability and find all inconsistencies. Group the misalignments by combining pairs of 

misaligned states with commonalities. Once all misaligned subgraphs are created follow 

the procedure for addressing misalignment graphs:  

1. Calculate the new maximum probability value by summing up each maximum 

probability value and normalizing by the sum of all rows in the sub graphs. Mp 

2. Calculate the remainder which begins as 1 - Mp 

3. Loop through each state in the sub graph ordered by their maximum generation 

probability: 

a. Set the most likely state to the new Mp value 

b. Distribute the remainder amongst the rest of the states by normalizing the 

remaining p values and multiplying each by the remainder  

c. If any p values of 0 remain, equally distribute the remainder among them 
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CHAPTER 5 

DATASET DESCRIPTIONS 

Dataset: Description: 

HMC HMC data generated using a randomly created CPT table. 

MMC HMC data generated using the MMC assumption. Generate a 

first order CPT table randomly, identify the SGO from the CPT 

and generate the data accordingly. 

Casual HMC HMC data but the appearance of a state in the lag increases its 

generation probability. 

Blocksworld 

Domain 

Data generated using an A* planner in Blocksworld predicate 

based domain. 

Financial Asset  A domain generated from the last 6 months of a financial assets 

price action. 

Watch And Help 

Simulator 

A household simulator designed for human assistant action 

simulation 

Table 3: Dataset Descriptions 

 

5.1 Dataset Introduction 

We will now proceed by describing in detail the various datasets used to generate 

and test our various models. First, we will describe some configuration parameters used 

to generate these datasets. 
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Conditional Probability Table (CPT): A table containing rows representing the current 

state and columns with probability values. A row index represents an agent’s current 

state, and each subsequent column the probability of transitioning to that respective state.  

Each row sums to 1.  

 

State Space Size: The amount of possible states. M 

Dataset Size: The total amount of state transitions generated as part of the dataset. S 

Order: The amount of previous states used to generate the next state. K 

Now with these definitions in mind we will move forward describing the datasets.  

 

5.2 High Order Markov Chain 

The HMC dataset represents a traditional Markov model.  A CPT table is 

randomly generated with 𝑀! rows, each row representing a unique permutation of length 

𝐾	 states. A row exists for every permutation of length 𝐾	out of  𝑀	 states. To generate 

this table, the current system time is used as a seed necessary for ensuring truly random 

numbers. The table contains 𝑀! rows but only 𝑀	 columns. Now each value is filled with 

a random number, and each row is normalized to 1 by summing the contents of each row 

and dividing each value by its sum.  

Once created we can use the CPT table to generate a dataset. We proceed by 

generating 𝑆	random sequences of numbers each of length 𝑀	. This represents the input 

or X component of the dataset. We then reference each corresponding row and sample 

from its contents to generate each respective output value or y value for every x value. 
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We then use the sklearn train_test_split to randomly shuffle the data once more and split 

it into training and testing datasets using the default configuration values.  

 

5.3 Casual HMC 

This dataset exists identically to the previously described HMC dataset except for 

one caveat. Once the CPT is generated, loop through each row and if a state appears in 

the state combination that row represents, increase its respective generation probability 

10-fold. The idea being, if a state is present in the previous 𝐾	 states it increases the 

likelihood of the state recurring as the output. Once we 10x the values the probability 

rows are renormalized to sum to one.  

 

5.4 MMC 

Expanding on the previous concepts I have described in the HMC, MMC first 

generates a first order HMC CPT table. The CPT table is perfectly square containing 

just as many rows as columns, specifically the shape is 𝑀  ⋅  𝑀	. A state generation order 

(SGO) is decided by ordering the states’ max generation probability.  

Although it is similar to HMC, MMC differs in several key aspects. This dataset 

is a continuous set of values. To generate the dataset random states are randomly 

generated. We then select the most recent three states and derive from it the highest order 

state. I will provide a quick example to make the concept clear. If the SGO is 2 > 1 > 3, 

the order 3 and the most recent three states are 313, the highest order state in the lags is 1. 

We will now reference the row representing the 1st state and sample from its contents to 

generate the next state. The new state is then appended to the first O and the process is 
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repeated with the most recently generated state at the tail. We continue this process until 

the dataset is of length DS. Now the chain is generated we take the first O states, assign it 

as an x value, then assign the O+1 state as its corresponding y value. Through this 

process a Max Markov Chain is generated. Given the previous O states we can reference 

the corresponding row and use the according probability values to make a prediction.  

 

5.5 Financial Asset Data 

We will get the intraday trading price of each financial asset in various intervals 

using a financial asset API. Then we will compare the change in price and label them in 

accordance to how they lie in the distribution using the standard deviation. Then we will 

use the oldest 85% of data to predict the most recent 15% price action. The motivation 

here is to develop a model to aid in the day trading of financial assets. Traders can make 

either long or shorts, to bet that an asset will rise in value or decrease. By obtaining an 

accuracy of over 50% and spread out over many trades a day trader is likely to turn a 

profit by using our models.  

 

5.6 Blocksworld 

Blocks world is a planning domain in which there are several blocks on a table. 

Specifically, in our case, it is 4. The blocks start in some random configuration and the 

planner must reorder the blocks, stacking them accordingly to reach a goal state. Since 

the domain is deterministic, we have made some changes to make it more appropriate for 

MMC as well as to simulate human multitasking. There is a single set of actions to lead 

from a start state to a goal state. 
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First, we will generate 5,000 random episodes with random start and goal states. 

We will use an A* planner to generate the solutions to each episode. Then to simulate 

human multitasking we will concatenate two episodes together. There is a 70% chance to 

continue working on one episode and a 30% chance it will switch actions to the other 

episode. Our motivation is as follows: there are two separate blocks world instances on 

two tables and a human will randomly switch between the two with the probability 

described above. We randomly select two episodes 2500 times and repeat each pair of 

episodes 40 times. Each time randomly starting an episode and randomly switching 

between either one. 

 

5.7 Watch and Help Simulator 

The household simulator “Watch and Help Challenge” proposed in “Watch-And-

Help: A Challenge for Social Perception and Human-AI Collaboration” r(Puig, 2020) 

provides a helpful domain for testing human-robot interaction. The original challenge 

tasks those undergoing it with reproducing human assistance results in a new 

environment. Agents must first observe a humanesque agent completing tasks alone in an 

environment, then assist the human in a new environment in completing similar goals. 

Although interesting, the specifications of the challenge have been modified to support 

our model.  

    “Virtualhome” is the domain included as part of the Watch and Help challenge. This 

domain includes several interior virtual home designs including a variety of items and 

possible interactions. There are several tasks a humanesque agent can complete in this 
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domain, such as preparing dinner, cleaning up, and more. Agents can walk around and 

manipulate items and their states.  

    The domain includes a Monte Carlo Tree Search Agent (MCTS). Although effective, 

we do not consider this model an accurate representation of human behavior. In order to 

simulate humans, we have utilized a finite state machine alongside the MCTS model to 

create probabilistic goal-changing behavior. There is a certain probability a human will 

continue their task, and the probability it will randomly move on to another. We hope this 

state machine models the somewhat inconsistent behavior of humans. 

Several features of the domain have been selected in order to accurately represent 

it using categorical variables. The household domain is defined as a graph of nodes and 

edges, with edges representing the spatial relationships between the objects as shown in 

the figure below. This graph format is useful for other types of models but is not 

compatible with the MMC model and includes unnecessary information. The information 

provided as input to the MMC Model must be minimized in order to increase 

performance. For this reason, I have selected several state variables which are all that is 

necessary for the MMC to make human decisions. 

 

 

Figure 6: Graphical Representation of Environment Graph 
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CHAPTER 6 

EXPERIMENTAL RESULTS 

6.1 Experiment Configuration  

First, we will present the experiments we conducted using synthetic domains. The 

experiments provided in the paper utilize three datasets: HMM Data, HMM Casual, and 

MMC Data. 

For each of these datasets we select one parameter to vary on the x axis while 

keeping the other static: Order (5 static) Varying from 3 - 10, Dataset Size (5k Static) 

Varying from 2,500 - 20,000 (Step 2,500), State Space Size (7 Static) Varying from 3-15 

(Step 1). Any deviations from these ranges are the result of excessive execution times. 

Each data point on the subsequent 9 graphs represents an average of 30 executions. Each 

experiment was run on a dedicated machine. Each model was run simultaneously and 

multithreaded. The specs used for each configuration were: Paperspace C7 Instances 

including 12 vCPUs and 30GB of RAM.  9 separate machines were used to run each 

experiment simultaneously. Graphs were generated iteratively. Each line is accompanied 

by an error band showing the standard deviation of the results.  

 
6.2 Analysis of Results 

HMC Data: HMC data is high-order Markov data that satisfies the HMC data 

generation assumption. Hence, it is expected that MMC would not be able to handle HMC 

data well. The results are presented in Figs. 3, 5, and 7. First, we can see that HMC model 

performed poorly even after 20k training samples, illustrating its sample inefficiency. MTD 

dominated the others in almost all test cases given its smaller parameter size, which makes 
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it more sample efficient than HMC. However, it also used significantly more time than the 

other models for training. MTD appeared to be running linearly with respect to the data 

size but exponentially in the order and state sizes. MMC performed as badly as FMC model 

(but better than HMC), since each model makes its own assumptions about the data (which 

do not hold here). Even though the MTD model also makes data assumptions, they seem 

to be milder, and the model thus fitted better under randomly generated HMC data. 

 

MMC Data: The results with MMC data are presented in Figs. 9, 11, and 13. 

Results show that MMC indeed outperformed all the other models under MMC data, which 

is one type of HMC data. What is more interesting was that MTD, again, used significantly 

more training time than the other models but achieved a performance similar to FMC: it 

mostly failed to account for the MMC data, which suggested a limitation of MTD models 

for modeling HMC data. Meanwhile, HMC still suffered gravely from sample inefficiency. 

 

Causal Data: A common type of data that we may frequently encounter is causal 

data (see our motivating example). Note that causal data only approximately satisfies the 

MMC data assumptions: it does not restrict that only one lag can generate the current state. 

Hence, it imposes a challenge for MMC. The results with causal data are presented in Figs. 

15, 17, 19. Results show that MMC was able to generalize to this type of data quite well. 

In general, it outperformed the other models on this type of data. In Fig. 15, you can see 

that MTD model caught up toward the end as more data was provided, which showed that 

MMC model was more sample efficient than MTD. This observation was further confirmed 
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in Fig. 17, and 19, where MTD started comparable to MMC but failed behind MMC as the 

state size or order size increased (hence more training data would be needed). 
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Figure 7: Results for HMC Data While Varying the Data Size. 

The State Size Is 7 and Order Size Is 5. 

 
Figure 8: HMC - Data Size T-Test 
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Figure 9: Results for HMC Data While Varying Order Size. 

 The Data Size Is 5k and State Size Is 7. 
 

 
Figure 10: HMC – Order T-Test 

 
 
 
 
  



 28 

 

 
Figure 11: Results for HMC Data While Varying the State Size. 

The State Size Is 7 and Order Size Is 5. 
 

 
Figure 12: HMC - State Size T-Test 
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Figure 13: Results for MMC Data While Varying the Data Size. 

The State Size Is 7 and Order Size Is 5. 

 
Figure 14: MMC - Data Size T-Test 

 
  



 30 

 

 
Figure 15: Results for MMC Data While Varying Order Size. 

The Data Size Is 5k and State Size Is 7. 
 

 
Figure 16: MMC - Order Size T-Test 
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Figure 17: Results for MMC Data While Varying the State 

Space Size. The Data Size Is 5k and Order Size Is 5. 

 
Figure 18: MMC - State Size T-Test 
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Figure 19: Results for causal data while varying the data size. 

The state size is 7 and order size is 5. 

 
Figure 20: Causal - Data State Size T-Test 
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Figure 21: Results for Causal Data While Varying Order Size. 

The Data Size Is 5k and State Size Is 7. 

 
Figure 22: Causal - Order Size T-Test 
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Figure 23: Results for Causal Data While Varying the State 

Space Size. The Data Size Is 5k and Order Size Is 5. 

 
Figure 24: Causal - State Size T-Test 
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6.3 Blocksworld Results 

The results below show MMC greatly outperforming FMC. Although it is 

important to note the changes which have been made to the domain. Blocksworld is 

traditionally deterministic and does not follow the MMC assumption unless heavily 

engineered to be suitable for the MMC model. The configuration for this domain simulates 

a goal changing situation which is common for human behavior. In the case the goal 

remains static MMC performs poorly, as given one state it is easy to determine the 

immediate next state. Our changes enforce the sparse correlation among states required for 

MMC to perform well. The two other models used for testing, HMC & MTDg were 

naturally unable to handle the extremely large state size. In our previous experiments, the 

state space size never exceeded 20. Our blocksworld domain includes over 200,000 

different states.  

 
Episode Size: 100000 
State Size: 205105 
Order: 3 
 
Noise: MMC 

Testing 
(%) 

MMC 
Action 
Prediction 
(%) 

MMC 
Training 
(s) 

FMC 
Testing 
(%) 

FMC 
Action 
Prediction 
(%) 

FMC 
Training 
(s) 

0% 21.44 18% 15.66 1.44 3 .29 

20% 10.88% 
 

13% 12.91s 1.12 
 

4 .21 

Table 4: Blocksworld Results while Varying Noise 
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6.4 Financial Data Results 

These results bode well for the usefulness of the model, as this is real world data 

extracted from the price action of various financial assets such as Bitcoin, Ethereum, and 

Microsoft stock prices. In all cases MMC performs better or comparable to all other 

models. The idea for this dataset was taken from the open source MTDg implementation 

we used (Gabrys, 2020). Although instead of using the outdated USD to EUR data 

Gabrys provided, we used recent real-world data from a variety of assets to demonstrate 

the versatility of the model. Below are the results: 

 

Figure 25: Bitcoin Intraday Price Action 
Using Latest 15% of Data for Testing 

Order 5 

Figure 26: Bitcoin Intraday Price Action 
Split Randomly Order 5 

 

Figure 27: Apple Intraday Price Action 
Split Randomly 1hr Interval Order 5 

 

Figure 28: Apple Intraday Price Action 
Split Randomly 5m Interval Order 5 
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Figure 29: ETH Intraday Price Action 1hr 
Interval Latest 15% Order 3 

 

Figure 30: ETH Intraday Price Action1hr 
Interval Latest 15% Order 5 

 

Figure 31: MSFT Intraday Price Action 1hr 
Interval Latest 15% Order 3 

 

Figure 32: MSFT Intraday Price Action 
1hr Interval Latest 15% Order 5 

 
 

 
 

Figure 33: MSFT Intraday Price Action 1hr Interval Latest 15% Order 7 
 

6.5 Watch and Help Results 

Below are the results for the watch and help domain. These results are less than 

ideal but due to insufficient training data. The simulator is slow, so it is computationally 

expensive to generate training data. Each state occurs about 4 times which is not enough 

to compute accurate probability values. In further work it would be beneficial to develop 
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a more complex human simulator able to change goals in a less primitive manner. Also, 

the tasks designed for the simulator involve merely relocating objects around the 

environment. This results in short plans not suitable for this application.   

 

Dataset Size: 28174 

State Count 8038 

Order 5 

 
Noise: MMC 

Testing (%) 
MMC 
Training 
(s) 

FMC 
Testing 
(%) 

FMC 
Training 
(s) 

0% 0.67 1027s 0.08% 1.18 
Table 5: Watch and Help State Prediction Results 
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CHAPTER 7 

CONCLUSION 

In this paper, we introduced the Max Markov Chain (MMC) as a novel model for 

stochastic processes. The motivation was to construct an efficient model that enforced 

parsimony in model structure to model a subset of high-order processes that were useful.  

The simple model structure also enabled the model to scale to large domains. We 

provided an analytical solution for parameter estimation and formally proved it being a 

local maximum. Approximate solutions were presented based on hill climbing and a 

greedy heuristic. Results verified that MMC was efficient at handling MMC data, able to 

generalizing to causal data (which is a common type of data), and scalable to large 

domains. Results also hinted on other domains (e.g., multi-agent task planning and 

human-robot interaction) where MMC would be expected to excel. 

 

7.1 Applications of MMC 

 In domains necessitating collaboration an important challenge is the ability of an 

agent to maintain models of others. In a partially observable environment such as many 

real-world situations agents have limited knowledge of each other and must observe each 

other’s actions in order to predict their future behavior and provide the most optimal 

assistant action (Zhang, et al 2015). In Collaboratory environments, frequently agents are 

not able to observe the complete plan trace of other agents. Consider the example of 

multiple people working at a restaurant to serve meals. If a cook is in the back, he may 

only be able to observe the actions of the waiting staff while they are in the kitchen. He 

must observe how they act in the kitchen to predict their actions on the restaurant floor. 
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Models of other agents may be expensive to train and require large amounts of complete 

data. Here MMC can be used to quickly generate models of other agents based on their 

actions using little, noisy, or incomplete training data.  

 In real world domains with finite resources, it is important for robot agents to be 

able to accurately model other agents to avoid conflicts (Chakraborti, et al 2016). This 

behavior is required for robotic assistants to be considered “socially acceptable”. Robot 

agents must have some sort of predictive ability in order to not hinder humans and be 

more obnoxious than helpful. Consider a robot is cleaning up the kitchen while a human 

is making coffee. While the mug sits out on the counter, the robot must be able to predict 

the human’s imminent interaction with it to avoid putting it back in the cabinet.  

 In collaboratory environments, agents can use an MMC to predict other agent’s 

actions in real time in order to provide the most optimal assistive action. Models may 

have expensive inference processes incapable of the instant prediction required for 

human interactions. Due to its parsimonious structure MMC can make predictions 

extremely quickly.  

 There may even be cases where interrupting a human’s goal can be beneficial thus 

increasing “Stigmergy”; the ability of agents to improve the efficiency of their plans 

based on the changes to the environment made by the actions of other agents 

(Chakraborti, et al. 2016). Particularly in the case that agents are coinhabitants of the 

same environment as described by Chakraborti and others. MMC can be used not only to 

avoid an interruption of a plan but to strategically interrupt other agents plans. Perhaps in 

the case a robot agent has knowledge not known by a human and can interrupt their plans 

to reveal such information and increase serendipity. 
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 Additionally, it is crucial in human-robot teaming circumstances for a robot’s 

actions to be understood by humans (Gong and Zhang, 2018). Virtue signaling can be 

used by robot assistants in order to signal their intentions and preemptively explain their 

plans. A robot may generate natural language in order to communicate its plan (Gong and 

Zhang, 2018), visual cues (Andersen, et al 2016), or legible motions (Dragan, 2013). In 

order to generate comprehensible plans a robot must model a human’s expectations of its 

own behavior. The proposed CRF model for this purpose can be replaced using an MMC. 

For example, we can ask a human how they expect a robot to behave to generate plan 

traces. Using these plan traces we can create an MMC and supply it to a robot assistant in 

order to model the human’s expectations. If the robot’s plan does not match the human’s 

expectations, it may be inexplicable and virtual signaling will fail.  
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