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ABSTRACT  
   

With the abundance of increasingly large datasets, the ability to predict the phase 

of high-entropy alloys (HEAs) based solely on elemental composition could become a 

reliable tool for the discovery of new HEAs. However, as the amount of data expands so 

does the computational time and resources required to train predictive classical machine 

learning models. Quantum computers, which use quantum bits (qubits), could be the 

solution to overcoming these demands. Their ability to use quantum superposition and 

interference to perform calculations could be the key to handling large amounts of data. 

In this work, a hybrid quantum-classical machine learning algorithm is implemented on 

both quantum simulators and quantum processors to perform the supervised machine 

learning task. Their feasibility as a future tool for HEA discovery is evaluated based on 

the algorithm’s performance. An artificial neural network (ANN), run by classical 

computers, is also trained on the same data for performance comparison. The accuracy of 

the quantum-classical model was found to be comparable to the accuracy achieved by the 

classical ANN with a slight decrease in accuracy when ran on quantum hardware due to 

qubit susceptibility to decoherence. Future developments in the applied quantum machine 

learning method are discussed.  
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CHAPTER 1 

INTRODUCTION 

The content of this work is taken from a previous publishable work completed by 

my thesis committee chair and myself; both works evaluate quantum machine learning as 

a tool for predicting the phase of high-entropy alloys (HEAs). The paper, titled Quantum 

machine-learning phase prediction of high-entropy alloys, makes up the greater part of 

this work and is found in Chapter 2. The subsections of Chapter 2 and their topics are 

introduced in the following paragraphs.   

High-entropy alloys (HEAs) are defined as having four or more constituent 

elements all making up a nearly equal portion of the alloy. The subsection, Introduction, 

further defines HEAs and what makes them unique. It explains why these alloys have 

been the subject of much research and development: due to their superior mechanical and 

thermal properties. With the promise of improved mechanical strength even at high 

temperatures, there are innumerable applications for HEAs (Senkov et al., 

“Development”; Cheng et al.). The introduction goes on to argue that should techniques 

used in exploring new HEAs be limited to laboratory methods, largely trial and error 

based, discovery of HEAs suitable for these applications may be impossible given that as 

the number of constituent elements increases, the number of possible compounds 

increases exponentially. It also introduces computational methods such as machine 

learning as a tool to accelerate the design and discovery of new HEAs (Rickman et al.; 

Huang et al.; Chen et al.; Zhang et al.). The introduction then discusses the challenges 

facing classical machine learning models caused by big data and offers quantum machine 

learning techniques as a solution.   
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Machine learning is a well-known tool for predicting an outcome based on a set of 

input values. There are various types of machine learning, all of which require sufficient 

data. The term sufficient data refers to both the quantity and quality of data. The Methods 

subsection of Chapter 2 describes the dataset used and its characteristics. It describes the 

machine learning task of this paper as a common method known as supervised learning 

which uses a labeled dataset, or data that consists of input values paired with a known 

output value. While this black-box approach is unable to give insight into the physical 

phenomena that determine the outcome, it can be an aid in guiding researchers. The 

Methods section then goes on to describe the artificial neural network (ANN) and hybrid 

quantum-classical models that are trained and evaluated. The hybrid model is to be 

implemented on both quantum simulators and quantum hardware. 

Results and Discussions contains all the graphical results and reports of model 

performance. The performance metrics focuses on accuracy of the models, but other 

metrics such as recall, or sensitivity, are considered. The progress of both accuracy and 

the loss function (upon which optimization is based) as training occurs is analyzed to 

show that the hybrid quantum-classical model learns and performs on the same level as 

the ANN. Alternative quantum machine learning techniques are discussed that have the 

potential to be more efficient than current ANN.   

The Conclusion subsection offers insight into how, despite current limitations in 

quantum processors, quantum machine learning can perform comparably to its classical 

counterpart. It concludes that, while there is no advantage to the hybrid model over the 

ANN, quantum machine learning is a viable tool for the design and discovery of new 

HEAs. Chapter 3 offers a similar discussion with additional discussion of future works.  
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CHAPTER 2 

INVESTIGATION 

Quantum machine-learning phase prediction of high-entropy alloys 
 
Payden Brown and Houlong Zhuang† 
School for Engineering of Matter, Transport and Energy, Arizona State University, 
Tempe, AZ 85287, USA 
†zhuanghl@asu.edu 
 

Abstract 

Discovering new high-entropy alloys (HEAs) in the vast compositional space requires a 

growing power of classical computers for training machine learning models. The 

exponential increase of HEA data will pose a challenge in making the machine learning 

process prohibitively time consuming in the foreseeable future. Quantum computers, 

which use quantum superposition and interference to perform computations, hold great 

potential in handling big data and accelerating the optimization algorithms ubiquitous in 

machine learning models. Here we adopt a quantum computer simulator and quantum 

processors to prepare for the future challenge in new HEA discovery. We first train a 

classical artificial neural network (ANN), which uses HEA composition as inputs and the 

corresponding phases as outputs, to predict phase selection. We then apply a quantum 

computer simulator that implements a hybrid quantum-classical machine learning 

algorithm for accomplishing the same supervised machine learning task. We find that the 

resulting testing accuracy is comparable to that from classical ANN calculations. We 

finally apply quantum processors to perform the hybrid quantum-classical machine 

learning calculations and obtain slightly lower accuracy ascribed to the fragile nature of 

quantum bits in quantum processors. Our work initiates the adoption of fledgling 
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quantum computers in the noisy intermediate-scale quantum (NISQ) era for discovering 

new HEAs. 

Introduction 

There have been four major historical eras: Hunter-Gatherer Age, Agricultural Age, 

Industrial Age, and Information Age according to the way humans work. This history can 

also be defined via representative materials that were invented in each historical period. 

Correspondingly, there have been stone, iron, and bronze ages and so on. Following this 

definition, it may not be exaggerated to claim that we are in the High-Entropy Material 

(HEM) age. For example, many oxides such as the Zr–Sn–Ti–O system with high 

dielectric constants (Van Dover et al.) can be categorized as high-entropy oxides, which 

serve as critical building blocks for complementary-metal-oxide-semiconductor (CMOS) 

transistors that have made the internet of things possible in the Information Age. This 

work centers around the design of HEMs particularly high-entropy alloys (HEAs) in the 

Information Age and beyond.  

HEAs comprise multiple elements, each having the same or nearly the same 

concentration. Many HEAs, for example FeMnNiCoCr (Li et al.), have been found to 

possess distinct properties due to added degrees of freedom from both the number and 

type of elements present. As a result, a wide range of applications have been proposed 

such as turbine engines that require high strengths at extremely high temperatures 

(Senkov et al., “Development”) and high corrosion resistance for surface coatings (Cheng 

et al.). As the number of possible constituent elements of HEAs increases, the number of 

potential HEAs increases exponentially. It is estimated that 25 elements in the periodic 

table can lead to over five billion quinary HEAs (Rickman et al.). The challenge in 
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designing novel HEAs therefore lies in selecting a combination that forms an alloy with 

the desired traits. Depending on which elements are present, the phases of an HEA can 

vary greatly. Common phases in HEAs can be classified into three categories (Senkov et 

al., “Accelerated”): solid solution (SS), intermetallic (IM), and a combination of the two 

(SS+IM). The resulting phase plays key roles in determining the properties of an HEA. 

Thus, the design and selection of an HEA is tantamount to predicting its phase. Obtaining 

a method capable of predetermining the phase of any combination of elements and their 

concentrations will be extremely advantageous in the discovery of new HEAs. 

Classical computers play important roles in HEA design. In particular, a number of 

machine learning models implemented in classical computers have been deployed for this 

purpose (Rickman et al.; Huang et al.; Chen et al.; Zhang et al.) . Although such existing 

classical computational tools for HEA discovery appear to fulfill general needs at present, 

we will inevitably run into dilemmas such as the curse of dimensionality as the three V’s 

of HEA data continues to expand. This situation is actually occurring in other scientific 

fields. For example, the GPT-3 autoregressive language model (Brown et al., 

“Language”), which is able to understand text, respond to questions, and create new 

writing examples, contains 175 billion parameters and results from training 45 terabytes 

of text data for over 30 days using hundreds of GPUs. One promising solution to avoid 

this predicament is to upgrade current classical computation to quantum infrastructures 

via embracing quantum computers and algorithms to process the quantum information.  

As Moore’s law is coming to an end with the size of transistors in classical computers 

approaching the physical limit of an atom, quantum computers hold great potential to 

meet ever-growing computational need by adopting a wide range of hosts (for example, 
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electrons and artificial atoms made of superconducting circuits) for quantum bits instead 

of transistors. Unlike classical computers that provide a deterministic solution to a 

problem (for example, a combinatorial optimization problem in drug discovery), quantum 

computers provide a probabilistic solution via concerted quantum phenomena of 

superposition, entanglement, and interference. Quantum computers are fundamentally 

different from classical computers. Classical computers use classical bits as information 

carriers, each of which is deterministically represented by either 0 or 1. By contrast, 

quantum computers use quantum bits (qubits), each of which is in a superposition state of 

0 and 1 and collapses into only 0 or 1 with a certain probability when the qubit is 

measured. Due to the fragile nature of qubits, all quantum computations currently need to 

be done at a short timescale (e.g., about 100 microseconds for superconducting qubits 

(Wendin)). Steady progress has been made in the hardware of quantum computing over 

the last two decades. We are now in the era of Noisy Intermediate-Scale Quantum 

(NISQ) (Preskill) at our disposal with IBM recently reaching a milestone of over 100 

gate-controllable qubits (Sparkes). Despite such a small number of available qubits, 

quantum computers have shown so-called ‘quantum supremacy’, where the probability 

distribution of bit strings resulted from 53-qubit Google’s Sycamore quantum processor 

cannot be simulated at the same amount of time by the most advanced classical 

computers in the world at the time of experiment (Arute et al.). Quantum computers have 

also been employed to study binding energies of small molecules (Kandala et al.) and 

perform machine learning tasks based on quantum versions of machine learning 

algorithms such as support vector machines (Havlíček et al.). Quantum computing 

algorithms, especially Shor’s integer factorization algorithm (Shor) and Grover’s 
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quantum search algorithm (Grover), have been proven to show quantum speedup over 

classical computers and exhibit practical applications, with the former in breaking current 

cryptography protocols and the latter in unstructured database searches.  

A typical quantum algorithm achieves quantum speedup via two key quantum 

mechanical phenomena: quantum superposition and quantum interference (Nielsen and 

Chuang). The first feature generates a superposition state and therefore enables access to 

the infinitely large Hilbert space with the knowledge of the amplitudes of corresponding 

basis in the space. Using this feature alone is insufficient for quantum speedup, since 

measuring the superposition state destroys the quantum state leading to a random bit 

string of 0s and 1s with a probability equal to a target bit string corresponding to the 

solution (Nielsen and Chuang). This is an unwanted outcome. Instead, we need to apply 

quantum gates with a uniform distribution of the basis. We therefore need to creatively 

use the second feature, quantum interference, which can lead to the targeted bit strings of 

0s and 1s when the quantum state in a quantum circuit is measured and amplify the 

amplitude of targeted bit string combination. Quantum algorithms often fall into two 

categories of extremes in terms of their efficiency and practicality. On one hand, several 

quantum algorithms especially the remarkable Shor’s integer factorization algorithm 

which poses tangible threats to the current protocols of cryptography, have an 

exponential quantum speedup comparing to their classical counterparts, but their practical 

applications heavily depend on millions of qubits, which are not likely to be available in 

the near future. On the other hand, for other quantum algorithms such as Grover’s 

quantum search algorithm, the quantum speedup is not as impressive, but it can be 
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coupled with existing classical algorithms to solve optimization problems that are 

ubiquitous in machine learning algorithms.  

Quantum computers are particularly promising for solving combinatorial optimization 

problems. For example, Grover’s search algorithm forms the basis of implementing 

adaptive global optimization algorithms (Baritompa et al.). Furthermore, the quantum 

approximation optimization algorithm (QAOA) (Farhi et al.) has been developed and 

implemented in a superconducting quantum processor (Harrigan et al.). Examples of 

QAOA applications include solving combinatorial optimization problems such as 

nondeterministic polynomial (NP)-time complete max cut and dominating set problems 

related to graphs (Medvidović and Carleo). Many machine learning problems can be 

reduced to optimization problems. As a result, quantum machine learning (QML), in 

addition to applications in computational chemistry, has naturally become another 

promising application domain of quantum computers in the NISQ era. Nearly all state-of-

the-art machine learning algorithms implemented in classical computers have their 

quantum counterparts (Biamonte et al.). Many classical machine learning algorithms such 

as support vectors machines and generative adversarial networks (GANs) have been 

implemented with quantum computers (Hu et al.; Zoufal et al.; Yang et al.) . QML has 

also recently been used to discover drugs for treating COVID-19 (Batra et al.). A 

significant amount of time reduction in each training epoch was observed and the training 

accuracy was comparable to that from classical machine learning. Designing new HEAs 

belongs to a challenging combinatorial optimization problem in the vast compositional 

space. Here we explore the potential of QML being used to tackle this problem.  
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Currently, there are two main flavors of QML. The first one is completely based on 

quantum algorithms such as quantum Fourier transform (Hales and Hallgren) and 

quantum phase estimation by Harrow, Hassidim, and Lloyd (Harrow et al.), but these 

algorithms require a fault-tolerant quantum computer with a number of physical qubits 

which are currently unavailable. We therefore adopt the second flavor of QML, which is 

using hybrid quantum-classical algorithms such as the aforementioned QAOA, quantum 

variational eigensolver and quantum circuit learning (Kandala et al.; Peruzzo et al.; 

Mitarai et al.) . These hybrid models formalize a machine learning problem as a 

variational optimization problem jointly tackled by a parameterized quantum circuit 

(from available NISQ resources) and classical computers (Benedetti et al.). Several 

advantages of using hybrid over classical models have been shown in the literature. For 

example, a recent report shows that, compared to classical GANs, QuGANs based on 

hybrid quantum-classical modes achieve similar performance to classical GANs but with 

a significant reduction (94.98%) on the parameter set (Stein et al.). The quantum machine 

learning algorithm marries quantum and classical computers and adopts their different 

strengths to perform quantum versions of machine learning algorithms for typical the 

classification task.  

 
Methods 

It has been shown in recent literature that the properties of a compound are strongly 

correlated to its chemical composition (Zhang et al.). For example, the ElemNet, a deep 

neural net used for predicting materials properties, is trained using elemental composition 

as the only input (Jha et al.). We apply this concept in predicting the phase of HEA 
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compounds using classical and quantum-classical deep learning models. The data we use 

is the classical dataset established by Miracle and Senkov, originally containing over 600 

samples of HEA data (Miracle and Senkov). A subset of samples is chosen for training 

and testing including only those samples with relevance to the classifier’s objective. We 

select HEA samples that involve the elements in the first several rows of the periodic 

table as shown in Figure 1(a). Additional data requirements include compounds made 

with the “as cast” synthesis method and listed with a specified phase. This is because 

many properties of HEAs depend on the microstructures obtained from different 

experimental fabrication techniques. We therefore restrict the data by selecting only those 

samples resulting from a specified experimental technique. The 336-sample subset is 

made of ~39% SS phase compounds, ~15% IM phase compounds, and ~46% SS+IM 

phase compounds. When dividing the data for training and evaluation, 70% (~235 

samples) of the data is randomly selected for the training dataset and the remaining 30% 

(~101 samples) become the testing dataset. In order to use chemical composition as input, 

every HEA compound is represented by an array where each member of the array 

corresponds to the molar ratio of an element of the periodic table that exists in the 

compound. Elements that are absent in the compound have a value of 0. For example, 

AlCoCrCu0.5Fe encoded using the following scheme, [‘Li’, ‘Be’, ‘B’, ‘C’, ‘Mg’, ‘Al’, 

‘Si’, ‘Ti’, ‘V’, ‘Cr’, ‘Mn’, ‘Fe’, ‘Co’, ‘Ni’, ‘Cu’, ‘Zn’, ‘Ge’, ‘Y’, ‘Zr’, ‘Nb’, ‘Mo’, ‘Ag’, 

‘Sn’, ‘Hf’, ‘Ta’, ‘W’, ‘Au’] is represented by the array [0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 

0, 0.5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]. This encoding is used for both classical ANN and 

quantum-classical hybrid classifiers.  
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Figure 1. (a) 27 common elements that are involved in forming the high-entropy alloys listed in the dataset 
of Miracle and Senkov (Miracle and Senkov). These alloys exhibit three different phases. (b) Schematic of 
the arrangement of the five qubits in the ibmq_manila IBM quantum processor. The qubits are labeled by 
numerals from 0 to 4 and the circles are color coded by the T2 decoherence with a time scale in the unit of 
microseconds (µs). As can be seen, every qubit is different having different T2 values with the average of 
about 57 µs. 
 

Figure 2(a) displays the classical ANN model used in this work. ANN architecture is 

made up of layers of nodes, represented by circles in Figure 2, each with an activation 

condition and function. Information flows from layer to layer extracting features and 

abstracting the data. Figure 2(a) shows a single-hidden-layer model which was chosen to 

closely match the architecture of the quantum-classical hybrid model for comparison. The 

classical ANN hidden layer uses a rectified linear unit (ReLU) activation function leading 

into the output layer with a SoftMax activation function. The number of nodes in the 

hidden layer are varied to match the complexity of each classification problem. For 

ternary classification problems we use a 7-node hidden layer and for binary classification 

problems we use 4 nodes. Categorical cross-entropy is used for the loss function, 
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accuracy for the performance metric, and Adam optimizer for optimization. Even with 

this simple model, overfitting is expected to be a problem given the small size of the 

dataset and the disparity between the number of samples belonging to each class. To 

ensure that overfitting does not occur, a dropout layer is also included in the ANN model.   

Figure 2. Graphical representations of (a) classical and (b) quantum classifiers. Connections show 
information flow between nodes. Classical neural network nodes in (a) are able to duplicate information 
and send to multiple nodes whereas quantum classifier in (b) must re-upload information for each 
processing node.    
 
The categorical cross-entropy loss function can be written as 

𝐿𝑜𝑠𝑠!"#$$%&'("#)* = −∑ 𝑦+ 	 ∙ log 𝑦-+'
+,-                                             (1) 

where 𝑛 is the number of classes, 𝑦+ is the target value of the 𝑖(.sample, and 𝑦-+ is the 

corresponding model output.  

With current limitations in quantum hardware in addition to information loss due to 

decoherence, circuit depth and complexity were considered when selecting a QML 

model. A quantum-classical, parameterized quantum circuit classifier was chosen 
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because of its small circuit depth. The QML classifier selected to categorize HEA 

compounds is a single qubit classifier with data re-uploading (Pérez-Salinas et al.). In 

classical neural networks, information can flow from one node of a layer to every node in 

a subsequent layer (see Fig. 2a), a process that quantum computers are incapable of 

performing due to the no-cloning theorem (Wootters and Zurek). This quantum classifier, 

inspired by classical neural-networks, overcomes this limitation by simply inputting the 

data multiple times, once for every parameterized node as shown in Fig. 2b. Figure 3 

illustrates the hybrid quantum-classical machine learning model, where classical 

optimization algorithms constantly communicate with the quantum circuit to update the 

unitary operator parameters, which evolve the input quantum states of HEA data and 

minimize the loss function.  

 
 

Figure 3. A hybrid quantum-classical machine learning model, where central processing unit (CPU) of 
classical computers provide optimized parameters resulted from standard gradient descent variants to a 
quantum processing circuit (QPU), in which the quantum state rapidly evolves into the state that minimize 
the defined loss. |0⟩!! denotes the single qubit used for classification and n denotes the number of 
processing nodes (“layers”) or number of times the bracketed steps are repeated in the quantum circuit.  
 

The quantum circuit utilizes the Bloch sphere, more specifically quantum state 

rotations within this space, to input data and introduce optimizable parameters to the 
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circuit, the first two QPU steps seen in Figure 3. The Bloch sphere is a common 

geometric representation of two-level quantum states. Most often the positive and 

negative z directions (i.e., analogous to north and south poles, respectively) correspond to 

the spin-up, |0⟩ and spin-down, |1⟩, states, respectively. The rotation operation with 

which the single qubit classifier operates is a three-parameter unitary operator, 𝑅(𝜙, 𝜃, 𝜆), 

that can be represented in the following forms:  

𝑅(𝜙, 𝜃, 𝜆) = 𝑅𝑍(𝜆)𝑅𝑌(𝜃)𝑅𝑍(𝜙),                                          (2) 

written in unitary matrix form, 

𝑅(𝜙, 𝜃, 𝜆) = 	 =𝑒
%+	(123)/6 cos(𝜃/2) −𝑒+	(1%3)/6 sin(𝜃/2)
𝑒%+	(1%3)/6 sin(𝜃/2) 𝑒+	(123)/6 cos(𝜃/2)

E.                  (3) 

Here, 𝑅𝑍(𝜆) and 𝑅𝑌(𝜃) are rotation functions about the z and y axis, respectively, and 

can be written as  

𝑅𝑍(𝜆) = 	exp	(−𝑖 3
6
𝑍) = I𝑒

%+	3/6 0
0 𝑒+	3/6

J                                    (4) 

and 

𝑅𝑌(𝜃) = 	exp	(−𝑖 7
6
𝑌) = Icos

(𝜃/2) − sin(𝜃/2)
sin(𝜃/2) cos(𝜃/2) J,                              (5) 

where Z and Y represent the Pauli gates that rotate a state about the z and y axis by 𝜋 

radians:  

𝑍 = 	 L1 0
0 −1M                                            (6) 

and 

𝑌 = 	 L0 −𝑖
𝑖 0 M.                                            (7) 
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Here only two axes (Z and Y) of rotation are used for simplicity, as these rotations are 

sufficient to create any state in the Bloch sphere. Figure 4 depicts a quantum state 

initialized at |0⟩ and demonstrates the effects of one rotation function, 𝑅(1	,			1		,			1).   

   

 
 

Figure 4. Visualization of the rotation function in the Bloch sphere. The rotation is applied to a quantum 
state initialized at |0⟩, represented by the orange vector, and ends in the state represented by the green 
vector.  
 

HEA compound information is transferred to a quantum state by inputting its array 

representation, separated into groups of three, with the rotation function. There are a total 

of 27 elements found in the HEA dataset, therefore nine rotations are used to enter a 

compound. The rotation function is also used as the parameterized gate (Figure 3), with 

each layer having three optimizable parameters. The resulting quantum circuit can be 

simplified to the form in Figure 5 (Pérez-Salinas et al.). A single data uploading and 

application of one parameterized gate represent one “layer” or node in the model and can 

be repeated an arbitrary number of times as shown in Figures 3 and 5. Changing the 

number of layers is analogous to changing the number of nodes in a hidden layer of a 
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classical ANN, thus changing the total number of parameters and consequently the 

model’s complexity.  

Just as the number of layers in the quantum circuit is analogous to the number of 

nodes in a classical ANN, additional parameters can be introduced into the quantum 

model to replicate data flow weights between nodes. The dot product of the weights, 𝑤, 

and the compound arrays, 𝑥, are to be used as quantum circuit input. A separate set of 

weights exists for each layer. 

 
Figure 5. Quantum classifier circuit summary. Here 𝑥 = [𝑥", 𝑥#, … , 𝑥$] is an encoded HEA compound 
array and  𝑥%,',( is the vector +𝑥% , 𝑥' , 𝑥(,, 𝑈 is the unitary function chosen to input data and parameterize the 
circuit (rotation function, 𝑅), 𝑛 is the number of layers,  𝑝", 𝑝⃗#, … , 𝑝) are the optimizable parameters in 
form of  𝑝* = (𝑝*", 𝑝*#, 𝑝*+)	where 𝑝⃗* are the parameters for the 𝑖$, layer.    
 

After information passes through the node(s), the next step is the quantum state read-

out (i.e., make the observation) (Figure 3). Before model training takes place, arbitrary 

quantum states are chosen to represent the classification target values, in our case the 

HEA phases. The working principle of the classifier is to align the quantum state 

representing the HEA compound with these arbitrary states corresponding to its phase 

through the use of the parameterized gates. The closeness between the state 

representative of the HEA compound and the arbitrary phase state is determined by 

measuring the Hermitian observable, which indicates overlap between the two states. For 

this reason, we need to choose the most orthogonal arbitrary states and the number of 
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states depends on the number of classes. HEA phase classification was designed for both 

ternary and binary cases. Figure 6 depicts the states chosen for both cases.  

In addition to ternary classification, we perform two types of binary classifications. In 

the first type, we train models to distinguish SS from IM, SS from SS+IM, and IM from 

SS+IM. This type of binary classification is in keeping with a previous work that used 

computed features as inputs for a deep learning neural network. In the second type, we 

merge the SS and IM data to call them pure phase to discern it from the mixed SS+IM 

phase. Furthermore, we combine the IM and SS+IM data to name the resulting data non-

SS phase (denoted as ¬SS) to distinguish it from the SS phase. Similarly, we combine the 

SS and SS+IM data (denoted as ¬IM) to differentiate them from the IM data. These three 

different combinations of data generate another three classification tasks.  

 
Figure 6. Orthogonal states chosen to represent HEA phases. In the figure, SS is solid solution, IM is 
intermetallic, SS+IM is a mixture of the two. States are written in the form 𝜓- = 6

𝛼
𝛽9, where  𝜓- = 𝛼|0⟩ +

𝛽|1⟩. (a) and (b) are used for ternary and binary classifications, respectively.  
 

Once an observation is made, the information is used to either optimize the circuit 

parameters with the loss function if the model is training or make a prediction in the case 

that the model is being tested. These steps make up the classical portion of the hybrid 
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algorithm (Figure 3). The same optimizer and performance metric used in the classical 

ANN are used to perform these tasks to make the models’ performance comparable, 

however, as shown in Figure 3, the hybrid model optimizer must communicate with the 

QPU to compute the quantum gradient. Likewise, once parameters have been changed 

through the optimization process, they must be updated in the QPU, as shown in Figure 3. 

The loss functions also differ since the quantum classifier utilizes quantum observables in 

its loss function. The hybrid loss function is  

𝐿𝑜𝑠𝑠(𝜃, 𝑤) = 	∑ (1 − |⟨𝜓$|𝜓(𝜃, 𝑤, 𝑥+)⟩|6)8
+,-                                             (8) 

where |𝜓$⟩ is the target arbitrary state corresponding to the phase of the 𝑖(. sample, 

|𝜓(𝜃, 𝑤, 𝑥+)⟩ is the resulting state from the parameterized circuit,  |⟨𝜓$|𝜓(𝜃, 𝑤, 𝑥+)⟩|6 is 

the Hermitian observable, 𝜃 represents the optimized parameters, and M is the number of 

training samples. The loss functions are defined differently for classical and quantum 

machine learning according to Equations (1) and (8), we therefore use normalized loss 

function to compare the two losses. We normalized the loss data (y-axis) with respect to 

its initial value before optimization was performed. The accuracy results of the models 

are reported as an average of the data entries from the last 20% of the epochs.    

We first explore results from quantum simulators due to hardware limitations. A 

quantum simulator utilizes classical computers to approximate quantum states created in 

a quantum circuit and the manipulation of those states by quantum gates. This 

approximation is made by using a variety of methods including solving for Schrödinger 

wavefunctions of a qubit’s state vector and can even account for noise present in quantum 

hardware through data modeling. However, even with noise modeling, quantum 

simulator approximations are still considered ideal as they have no decoherence time. 
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While simulations of quantum computers with classical hardware are not computationally 

efficient due to an exponential increase in required resources for each qubit, they allow 

for deeper investigation into the capabilities of parameterized quantum circuit deep 

learning models.   

 

Results and Discussion 

Figure 7(a) shows the machine learning process for the ternary classification task 

using the ANN model. We observe that both the training and testing losses first decrease 

and then converge, however the converged testing loss is larger than the training loss. 

This gap could be due to the high dimensionality and small size of the dataset or an 

imbalanced distribution of the three classes into training and testing datasets. Figure 7(b) 

displays the training and testing accuracy of the ANN model. We also observe similarly 

quick convergence of the two accuracy results. For example, the testing accuracy 

converges to an average value of 60.3% after 200 epochs of training. This resulting 

testing accuracy is smaller than that (74.3%) in previously trained ANN model for ternary 

classification, which used five computed features (e.g., atomic radius difference) (Huang 

et al.). All of these results show that composition information alone as inputs for ANN 

may not be sufficient to lead to similar testing accuracy. Despite this discrepancy, we 

focus on whether the quantum algorithms can reproduce similar predictions from 

classical computers based on the ANN model. 
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Figure 7. Training and testing (a) loss and (b) accuracy resulted from the artificial neural network (ANN) 
model calculations for ternary classifications of phases in high-entropy alloys. (c) and (d): corresponding 
loss and accuracy from quantum simulator calculations. 
 

We now compare the results from quantum simulators to those from the above ANN 

calculations. Figure 7(c) displays the training and testing losses from the calculations 

using quantum simulators. We observe a similar trend in the machine learning process 

manifested by the decreased-and-then-converged training and testing losses. Notably, 

both losses seem to converge much more rapidly than the learning process in the classical 

ANN model. This comparison indicates an advantage of the hybrid quantum-classical 

machine learning model over the classical ANN model in terms of the efficiency of 

simultaneously classifying the three phases. Figure 7(d) shows the training and testing 

accuracy converge to 77.8% and 65.8%, respectively. Both accuracy values are 

comparable to the class ANN counterparts extracted from Fig. 7(b). This compatibility 

suggests that hybrid quantum-classical machine learning model as implemented in the 

quantum simulator can almost reproduce results from the classical ANN model. We can 
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therefore conclude that the hybrid model is well debugged and ready for being deployed 

for test in quantum processors.  

We next replace the quantum simulators with the IBM quantum processors to perform 

the above machine learning task for ternary classification. The number of epochs that can 

be completed by quantum processors is currently still limited because of the small 

number of available qubits. Figure 8(a) shows the training and testing losses after 15 

epochs. As can be seen, despite the small number of machine learning epochs, the trends 

of the two curves are similar to those from ANN and quantum simulators (see e.g., Figs. 

7(a)), which means that learning progress also occurs in the quantum processors. The 

training and testing accuracy values for ternary classification (Fig. 8(b)) are about 59.2% 

and 53.8%, respectively, which are both slightly smaller than those from quantum 

simulator computations. This slight deviation is somewhat expected due to the limited 

number of epochs as well as the unavoidable environmental noises that cause the 

quantum decoherence (see below) and damage the anticipated quantum states. 

 
Figure 8. Quantum machine learning (a) loss and (b) accuracy for classifying the ternary phases of high-
entropy alloys implemented in quantum processors.   
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The relatively low testing accuracy in the ternary classification task, in both quantum 

simulator and quantum processor calculations, may result from different sources, most 

likely the small dataset and imbalanced data (i.e., much less IM data than the other two 

categories). We therefore switch to the two types (and six tasks in total) of binary 

classifications. For each task, we perform the same set of machine learning calculations, 

which are classical ANN model calculations followed by quantum simulator calculations. 

We then test a single case of each binary classification task using quantum processors. 

We begin with the SS vs. IM task in the first type of binary classification. We first 

notice from Figure 9(a) that the training and testing losses using the ANN model in this 

task are much smaller than their corresponding losses (see Fig. 7(a)) in the ternary 

classification task, portending significantly higher testing accuracy, which is 87.5% as 

shown in Fig. 9(b). In the quantum simulator calculations, although the converged 

training and testing losses are higher than their counterparts in the ternary classification 

task (see Fig. 7(c)), the training and testing accuracy values are once again comparable to 

those from ANN calculations and higher than in the ternary classification task. The larger 

accuracy manifests the disparity between the structures of SS and IM phases with the 

former exhibiting random structures whereas the latter show ordered ones. For the SS vs. 

SS+IM classification task (see Fig. 10), it is associated with the lowest testing accuracy 

of 73.3%, so it remains the most challenging among the three binary classification tasks 

(Huang et al.). Regarding the IM vs. SS+IM classification task (see Fig. 11), we observe 

nearly flat curves for the testing loss and testing accuracy because of the small number of 

IM data in the testing dataset. The model’s sensitivity to the minority class, IM, was also 

evaluated to determine its generalizability to outside data. Relatively high recall values 
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(~70%) were found for each case showing that the imbalance did not significantly affect 

the model’s sensitivity to either class. Note that the converged testing accuracy (81.7%) 

lies between that of the other two binary classification tasks, which disagree with the 

previous trained binary model (Huang et al.), implying the importance of including input 

features. Fig. 12 displays the results from quantum processors for the SS vs. SS+IM 

classification task, which consistently reveals the smaller testing accuracy than the ANN 

model or quantum simulator calculations due to quantum decoherence.  

 
Figure 9. Training and testing (a) loss and (b) accuracy resulted from the artificial neural network (ANN) 
model calculations for binary classification of SS vs. IM phases in high-entropy alloys. (c) and (d): 
corresponding loss and accuracy from quantum simulator calculations. 
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Figure 10. Training and testing (a) loss and (b) accuracy resulted from the artificial neural network (ANN) 
model calculations for binary classification of SS vs. SS+IM phases in high-entropy alloys. (c) and (d): 
corresponding loss and accuracy from quantum simulator calculations. 

 
Figure 11. Training and testing (a) loss and (b) accuracy resulted from the artificial neural network (ANN) 
model calculations for binary classification of IM vs. SS+IM phases in high-entropy alloys. (c) and (d): 
corresponding loss and accuracy from quantum simulator calculations. 
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Figure 12. Quantum machine learning (a) loss and (b) accuracy for binary classification of SS vs. SS+IM 
phases in high-entropy alloys implemented in quantum processors. 

 
 

The above three binary classification tasks result in generally higher accuracy than 

that from the ternary classification task. We now perform the second type of binary 

classification task to examine the resulting accuracy. Figure 13 shows that the pure vs. 

mixed task is a challenging one, which is reflected by the large training losses (either 

from ANN or quantum simulator calculations; see Fig. 13 (a) and (c)) and also by the low 

testing accuracy of 65.8% (Fig. 13(b)) and 72.5% (Fig. 13(d)) for ANN and quantum 

simulators, respectively. The challenge of this classification task indicates the absence of 

a clear boundary between the pure and mixed phases. For example, an SS phase may 

exhibit a short-range order to some extent, as a result of which the structure can be 

legitimately labeled as SS+IM. By contrast, Figure 14 reveals that the IM vs. ¬IM task is 

associated with the highest training and testing accuracy (for example, respectively, 

95.4% and 88.6% from the quantum simulator calculations) and low training and testing 

losses. This suggests the distinctive feature (including a fixed stoichiometry along with 
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an ordered structure) of IM phase facilitating the identification of the phase in 

experimental characterization. Figure 15 shows that the SS vs. ¬SS task leads to 

intermediate training and testing losses and accuracy comparing to the other two tasks in 

this type of binary classifications. For example, the testing accuracy from ANN or 

quantum simulator calculations are 76.6% and 79.3%, respectively. Similar to the ternary 

classification, all six binary classifications show that quantum simulator results are 

consistent with the ANN model results. Fig. 16 shows the results of quantum processors 

training the model to classify the SS vs. ¬SS task. Though the processors were able to 

successfully train the model, the converged accuracies are lower than that of the ANN 

and quantum simulation models due to decoherence. 

 

 
Figure 13. Training and testing loss and accuracy in binary classification of pure vs. mixed phases of high-
entropy alloys using (a) and (b) artificial neural network and (c) and (d) quantum machine learning model 
as implemented in quantum simulators. 
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Figure 14. Training and testing loss and accuracy in binary classification of SS vs. ¬SS phases of high-
entropy alloys using (a) and (b) artificial neural network and (c) and (d) quantum machine learning model 
as implemented in quantum simulators. 
 

 
Figure 15. Training and testing loss and accuracy in binary classification of IM vs ¬IM phases of high-
entropy alloys using (a) and (b) artificial neural network and (c) and (d) quantum machine learning model 
as implemented in quantum simulators. 
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Figure 16. Quantum machine learning (a) loss and (b) accuracy for binary classification of SS vs. ¬SS 
phases in high-entropy alloys implemented in quantum processors.   

 

In the above hybrid quantum-machine learning calculations, data encoding allows us 

to use a single qubit to represent each HEA compound. Alternatively, we explore another 

scheme to encode an HEA compound via deploying multiple qubits that are available on 

the IBM quantum processors (e.g., the 5-qubit ibmq_manila quantum hardware). This 

alternative scheme depends on the fact that any material (not limited to HEA compounds 

in the present context) with a specific chemical formula can be represented as a quantum 

superposition state. For example, one of the most well studied HEA, CoCrFeMnNi (Otto 

et al.) can be represented by the ket vector in the Dirac notation: |CoCrFeMnNiñ =1/√5 

|Coñ + 1/√5 |Crñ  + 1/√5 |Feñ + 1/√5 |Mnñ + 1/√5 |Niñ. For a non-equimolar compound 

such as another important HEA, Al0.5CoCrCuFeNi (Hemphill et al.), can be written in a 

similar manner: |Al0.5CoCrCuFeNiñ = 1/√21 |Alñ + 2/√21	|Coñ + 2/√21	|Crñ  + 2/√21 

|Feñ  + 2/√21 |Mnñ + 2/√21	|Niñ. As can be seen, the molar ratio associated with each 

element in the two chemical formulae have been transformed into the information of 
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amplitude for a superposition state and normalized so that the sum of the squared 

amplitudes (i.e., probability) is equal to one. Furthermore, equal molar HEAs have a 

uniform amplitude whereas non-equal molar HEAs have different amplitudes. Following 

this encoding approach, each element in the periodic table constitutes a basis vector (i.e., 

a string of 0s and 1s) in the 2n Hilbert space, where n is the number of qubits used in the 

encoding. For example, if an HEA compound contains eight elements, three qubits are 

needed for the representation. More generally, because there are 118 elements in the 

periodic table, seven qubits (27 = 128) are sufficient to represent the quantum states of 

any existing material and those that await discovery. Returning to the HEA dataset in this 

work, we assign integer decimal numbers from 0 to 26 to the 27 elements from Li to Au 

in the ascending order of the atomic number according to Fig.1(a). We then transform the 

27 decimal numbers to 5-digit binary representations, i.e., from |00000ñ for |Liñ to |11010ñ 

for |Auñ. As a result, the five qubits with a maximum total dimensionality of 32 is 

sufficiently large and only 27 dimensions (basis vectors) are needed to encode all the 336 

compounds in the data set. Each HEA differs from each other in the amplitudes of the 27 

basis vectors.  
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Figure 17. Quantum circuit diagram of five qubits used to encode high-entropy alloys. The diagram 

consists of 204 gates belonging to four types: rotation about the z-axis, controlled X-gate, Sqrt(X) gate, and 
measurement. 

 
With this new HEA data encoding approach, we use CoCrFeMnNi and 

Al0.5CoCrCuFeNi HEAs again as examples to create quantum superposition states in 

quantum circuits and measure these states after these states are prepared. We perform 

such preparation-measurement calculations for 2 × 104 times (each calculation is called a 

“shot” in the quantum processor), which are the maximally available shots for the 

ibmq_manila IBM quantum processor. Each shot corresponds to a full process for the 

quantum processor to implement all the 204 quantum gates illustrated in Fig. 17. We use 

both the quantum computer simulator and IBM quantum processors for the calculations 

and the measured probability distributions are shown in Fig. 18. In the quantum simulator 

calculations, because there is no noise, the heights of the bars, which refer to the 

probability of elements, are nearly uniform for CoCrFeMnNi and non-uniform for 

Al0.5CoCrCuFeNi HEAs. Furthermore, In the Al0.5CoCrCuFeNi HEA, the height for Al is 
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about a quarter of the heights of the other five bars because of its smaller molar ratio 

comparing to other elements (0.5 vs. 1). In the quantum processor calculations, ideally, 

we expect to observe only five bars with non-zero probabilities as in quantum simulators. 

However, since the qubits are fragile and associated with a number of decoherence 

sources caused by the interactions of the qubits with the environment, we observe from 

Fig.18(b) and 18(d) that all the 32 possible strings of 0s and 1s show up with non-zero 

probability magnitudes for the two HEAs. Nevertheless, we can still see the five/six bars 

representing the five/six elements in the two HEAs have dominant heights over the other 

bars. This dominance implies that NISQ quantum computers remain useful to represent 

HEAs.  

 
 
Figure 18. Probability distributions of constituent elements in two high-entropy alloys: (a, c) CoCrFeMnNi 
and (b, d) Al0.5CoCrCuFeNi, which are encoded as quantum superpositions states. The probability is 
measured from (a, b) quantum simulator and (c, d) quantum hardware calculations. 
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In our future work, quantum algorithms will be developed to introduce tricks of 

quantum interference. For example, 5 out of the 32 dimensions in the 5-qubit quantum 

processor have been idle without any encoded information. We can choose three of them, 

for example |11010ñ, and use them to label the three possible phases. The goal of the 

quantum algorithm is efficiently (i.e., using a minimum number of shots) converting the 

quantum superposition states to one of the three target states. Furthermore, the encoding 

scheme can be generalized to any property of HEAs to solve regression problems in 

machine learning. For example, we can represent an HEA in terms of a linear 

combination of its all properties or dependent factors. Therefore, the quantum state of 

HEA’s properties is |HEAñ = a |yield strengthñ + b |hardnessñ + …, where a, b refer to 

the values of the corresponding entries in the databases.  

 
Conclusions 

We have performed quantum machine learning calculations to predict phase selection 

in HEAs. Our trained ANN model and quantum simulator shows that the hybrid 

quantum-classical machine learning calculations performed by quantum simulators nearly 

reproduce the results from the classical ANN model. The algorithm implemented in 

quantum hardware can lead to slightly lower testing accuracy. Finally, we propose an 

alternative data encoding scheme that can be adopted for future studies. We emphasize 

that the test cases in this work undoubtedly can also be handled by classical computers 

and no drastic speed up using quantum hardware is obtained. This is because of the small 

size of the example database we used and also of the limited number of qubits in the 

noisy intermediate-scale quantum (NISQ) era. The trained hybrid quantum-classical 
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machine learning model therefore should be treated as a ‘well-debugged’ model, awaiting 

to be implemented on future generations of quantum hardware that contains millions of 

fault-tolerant qubits. By then, we will most likely be able to take full advantage of these 

quantum algorithms over their classical counterparts. 
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CHAPTER 3 

SUMMARY 

Findings 

 The hybrid quantum-classical machine learning method implemented on quantum 

simulators and quantum processors was able to successfully perform phase prediction of 

HEAs. While this method does not claim to be more efficient than the classical ANN 

model, it is shown that current quantum computers can perform machine learning tasks 

with comparable results. The average difference between ANN testing accuracies and the 

testing accuracies of the hybrid quantum-classical model performed on quantum 

simulators was 3.9%. The average difference between ANN testing accuracies and the 

testing accuracies of the hybrid model performed on quantum processors was 11.6%. 

Unlike the quantum simulator results, where some accuracies outperformed the ANN 

model, quantum processor accuracies were always lower than those of the ANN model. 

As would be expected, the quantum simulator resulted in higher accuracies than the 

quantum processor which can be attributed to the large amount of noise present in current 

qubit technology. Out of the seven classification tasks, the quantum processor performed 

the best on the SS vs. ¬SS task with a training and testing accuracy of 67.5% and 61.3%, 

respectively. With the accuracy of both ANN and hybrid models reaching similar limits, 

we can speculate that these limits may be caused by attributes of the dataset. The 

complexity of the problem, the relatively small size of the dataset, and insufficient input 

features may all be factors limiting the resulting accuracy.     
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Future works 

 As quantum processors increase their number of qubits and become less 

susceptible to decoherence, current quantum machine learning techniques will shed their 

dependence on classical computers and fully utilize the advantages that quantum 

algorithms offer. These advantages, such as increased efficiency, are accomplished 

through the utilization of quantum interference and superposition. This may lead to 

improved machine learning and optimization techniques which could utilize the novel 

encoding method described in the Results and Conclusions subsection of Chapter 2.  

 Another key factor that will affect HEA machine learning tasks in the future is 

increasing amounts of data. Continued collection of quality data will greatly improve the 

performance of machine learning models, making them more accurate and robust. In 

order to investigate the full potential of a machine learning model to classify HEA 

phases, a larger dataset should be established.   

 In addition to the information found in a compound’s chemical formula, there are 

a number of factors that may directly determine the phase of HEA compounds that could 

increase a model’s accuracy when used as input. This additional information includes 

atomic information, such as atomic radius, and formation enthalpy and entropy. A future 

work could investigate the effects of including this information in the input features used 

for model training.    
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Table of accuracies. This table lists all the average accuracies of each model for each of the seven 
machine-learning tasks. ‘ANN’ corresponds to the artificial neural-network model, ‘hybrid QC (simulator)’ 
corresponds to the hybrid quantum-classical model run on a quantum simulator, and ‘hybrid QC 
(processor)’ is the same model run on quantum processors. The average is calculated with the last 20% of 
the epochs’ accuracies.   
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