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ABSTRACT

As the impacts of climate change worsen in the coming decades, natural hazards are

expected to increase in frequency and intensity, leading to increased loss and risk to human

livelihood. The spatio-temporal statistical approaches developed and applied in this disser-

tation highlight the ways in which hazard data can be leveraged to understand loss trends,

build forecasts, and study societal impacts of losses. Specifically, this work makes use of

the Spatial Hazard Events and Losses Database which is an unparalleled source of loss data

for the United States.

The first portion of this dissertation develops accurate loss baselines that are crucial for

mitigation planning, infrastructure investment, and risk communication. This is accom-

plished thorough a stationarity analysis of county level losses following a normalization

procedure. A wide variety of studies employ loss data without addressing stationarity as-

sumptions or the possibility for spurious regression. This work enables the statistically

rigorous application of such loss time series to modeling applications.

The second portion of this work develops a novel matrix variate dynamic factor model

for spatio-temporal loss data stratified across multiple correlated hazards or perils. The

developed model is employed to analyze and forecast losses from convective storms, which

constitute some of the highest losses covered by insurers. Adopting factor-based approach,

forecasts are achieved despite the complex and often unobserved underlying drivers of

these losses. The developed methodology extends the literature on dynamic factor models

to matrix variate time series. Specifically, a covariance structure is imposed that is well

suited to spatio-temporal problems while significantly reducing model complexity. The

model is fit via the EM algorithm and Kalman filter.

The third and final part of this dissertation investigates the impact of compounding haz-

ard events on state and regional migration in the United States. Any attempt to capture

trends in climate related migration must account for the inherent uncertainties surrounding
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climate change, natural hazard occurrences, and socioeconomic factors. For this reason, I

adopt a Bayesian modeling approach that enables the explicit estimation of the inherent un-

certainty. This work can provide decision-makers with greater clarity regarding the extent

of knowledge on climate trends.
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Chapter 1

INTRODUCTION

1.1 Background

Severe disaster events resulting from natural hazards pose a great risk to life and com-

munities’ well-being worldwide. Over the last decade, a multitude of studies have inves-

tigated trends in losses from natural hazard events, together with their societal implica-

tions. Disaster related losses have multifaceted ramifications, for example on infrastructure

(Boyle, Inanlouganji, et al., 2022), national security (Boyle, Chiaradonna, et al., 2022),

criminal activity (Jevtic and Gall, 2023), and migration patterns (Dodman et al., 2022).

Thus far, despite the high variance and uncertainty of disaster loss datasets, studies agree

that losses have increased over time (Cutter and Emrich, 2005; Dodman et al., 2022; Gall

et al., 2011). There is also strong scientific evidence that climate change will continue to

have significant effects on the frequency and severity of extreme events (Abatzoglou and

Williams, 2016; Knutson et al., 2019). Yet, it is difficult to discern to what degree climate

change has already impacted hazard related losses and their subsequent societal implica-

tions (R. Pielke, 2020; R. A. Pielke and Sarewitz, 2005). There is additional uncertainty

regarding and how these patterns will evolve in the future (R. Pielke, 2020; R. A. Pielke

and Sarewitz, 2005).

Identifying the driving forces of these losses, forecasting, and estimating societal im-

pacts are ongoing statistical endeavors. Disaster loss data is spatio-temporal in nature, and

thus studies that make use of it must apply appropriate spatio-temporal statistical tech-

niques. Misunderstanding of the data nuances, biased modeling assumptions, and inap-

propriate choices of statistical methodology can all lead to inappropriate application of
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these foundational datasets (Gall et al., 2009). Thus, the work in this dissertation aims to

illustrate effective spatio-temporal approaches to model disaster losses and their societal

impacts.

In light of the evolving spatio-temporal patterns of losses resulting from natural hazards

over the last few decades, what statistical methodologies are most effective for forecasting

losses and understanding societal impacts? This dissertation is organized into three chap-

ters that together aim to answer this question. The first section provides background by

conducting a thorough investigation into hazard trends in the United States at the county

level, stratified by hazard type. Normalization techniques and statistical tests are applied to

analyze statistical properties of the observed losses and detect underlying trends, which can

have ramifications for forecasting and application studies. In the second section, a novel

matrix variate dynamic factor model is developed for forecasting losses that is able to ac-

count for both the unobserved underlying drivers of losses, and the high dimensionality of

the data. The final chapter illustrates the strength of Bayesian approaches for application

studies in the presence of uncertainty regarding natural hazards. Specifically, a carefully

constructed Bayesian regression model is chosen to study the impacts of compounding

hazard events on state and regional migration in the United States. Together, these three

avenues of research combine rigorous statistical analysis with advanced forecasting and

modeling methodologies to provide valuable insights into the evolving landscape of natu-

ral hazard losses and their societal impacts. By shedding light on historical trends, current

realities, and potential future scenarios of losses and their societal repercussions, this dis-

sertation provides practical statistical tools for making well-informed decisions regarding

natural hazard preparedness.
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1.2 Data

Throughout this research, the primary data source is The Spatial Hazard Events and

Losses Database Version 21 (SHELDUS V. 21.0) (Cutter et al., 2008; SHELDUS, 2023),

which is the premier database on U.S. hazard losses. SHELDUS V. 21.0 contains hazard

data for the United States from 1960 through 2021, and covers a variety of natural hazards,

such as hurricanes, wildfires, and thunderstorms. SHELDUS contains records of events

that had resulting property losses, crop losses, injuries, and fatalities.

Data in SHELDUS is available for download in two different forms: raw or aggregated.

Raw data records in SHELUDS are county level event records, and give the associated

losses, injuries, and fatalities from a specific hazard event in a given county, along with

the type of hazard(s) that occurred, and the beginning and ending date of the event. Other

details are also available, such as associated perils, whether the event was given a Presi-

dential Disaster Declaration, and other specific notes regard the event. SHELDUS data is

also available in spatio-temporal aggregated form, where records are aggregated spatially

to the county or state level, or to entire U.S. level, for a given time period, such as for a

given month or year. One can also form, for example, a time series of total property losses

associated with hurricanes for each state each year from 1960-2021.

The information in SHELDUS can be leveraged to understand the intensity and evo-

lution of disaster events. For this reason, SHELDUS is a comprehensive and valuable re-

source for researchers, policymakers, and emergency management professionals interested

in understanding and analyzing the impact of natural hazard events in the United States.

SHELDUS is maintained by the ASU Center for Emergency Management and Homeland

Security. Throughout these projects, the data is used according to the terms of the End User

Licence Agreement (“Spatial hazard events and losses database for the United States User

Agreement”, 2023).
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This dissertation exemplifies the usefulness of research databases such as SHELDUS

in a variety of statistical contexts. In particular, this data can be used to understand hazard

trends, create comprehensive predictive models of loss, and discern relationships between

hazards events and other social phenomena. The findings in this work also highlight the

data limitations posed by disaster loss databases, and how to address these complications.

While the SHELDUS database remains among the most comprehensive data sets avail-

able to researchers, there is a great deal of uncertainty surrounding loss estimates in gen-

eral, even in SHELDUS (Cutter et al., 2008). Failing to address these limitations can lead

to biased or misinterpreted results (Gall et al., 2009). Some hazards have more consistent

loss reporting practices than others. For example, prior to 1996, reports from the National

Oceanic and Atmospheric Administration were reported on a logarithmic scale. In SHEL-

DUS, these records were then translated in a conservative manner, likely leading to an

underestimation in losses (Gall et al., 2009). In addition, loss values may be broken down

into multiple separate loss events, even if they resulted from the same overall hazard event

(“Storm Data FAQ Page”, 2023). This suggests that studies relying on raw counts of dis-

aster loss records or that attempt to use these datasets for frequency analysis suffer from

severe biases.

Incorrect assumptions about the impact of climate change on events are also implicitly

included in many models, or at least erroneously implied by the results of such models.

Despite the expectation for increased hazard events, it is difficult to establish if changes in

any of these phenomena have yet occurred (Kossin, 2018; R. Pielke, 2020). Attribution is

a difficult and ongoing endeavor. Thus when it comes to loss estimation, increases cannot

be justifiably attributed solely to climate change. In fact, many studies exemplify that

adjustments of loss estimates to societal changes such as population and wealth eliminate

the statistical significance of the observed loss increases (R. Pielke, 2020; Weinkle et al.,

2018).
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From a modeling perspective, if it is determined that a given time series of losses are

stationary following a normalization procedure, then the dataset can be harnessed with

reduced possibility for spurious regression (Everitt et al., 2010). However, a wide variety

of studies employ these loss datasets without addressing stationarity assumptions or the

possibility for spurious regression.

Thus it is important to develop both appropriate time series of losses, and accurate loss

baselines. One product that aims to estimate baseline losses is the National Risk Index

produced by the Federal Emergency Management Agency (FEMA). This data product is

designed to assess and quantify disaster risk at the national, regional, state, and community

levels in the United States by incorporating information from the SHELDUS database to-

gether with infrastructure, socioeconomic, and demographic variables (Zuzak et al., 2022).

Response to the FEMA risk index is largely positive due to its accessibility and ease of

use, however, it is not static and thus cannot be used to understand underlying trends in

the composite data sources (Zuzak et al., 2022). In addition, as the methodology is not

probabilistic in nature, it cannot be used to make future statements or forecasts. Another

recent publication proposed a disasters index based on the National Oceanic and Atmo-

spheric Administration’s ”Storm Data” product (Mahanama et al., 2021). These types of

tools are crucial for mitigation planning, infrastructure investment, and risk communica-

tion (FEMA, 2023). In fact, in December 2022, U.S. Congress passed The Community

Disaster Resilience Zones Act of 2022, which requires the annual calculation of a national

risk index (Community Disaster Resilience Zones Act, 2022).

To aid in these efforts, the first portion of this dissertation aims to rigorously develop a

variety of adjusted loss datasets that have been appropriately normalized and assessed for

stationarity. This advancement improves on the developed loss baselines, however, it also

extend beyond simple baselines by allowing a more confident application of such loss time

series to modeling applications.
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1.3 Modeling and Forecasting Disaster Losses

Accurate forecasts of expected hazard losses are necessary to develop appropriate in-

vestment in mitigation strategies. In fact, this is the backbone of a billion dollar industry;

companies such as AIR, Verisk, and Aon make use of intricate proprietary datasets and

climate models for use by the insurance and reinsurance industries. These models inform

insurers about the risk of their portfolios based on increased risk to property and life in

certain areas. They also can be used to build specialized insurance products and price

catastrophe bonds (“The Verisk Severe Thunderstorm Model for the United States”, 2022).

Alongside the nuances of employing disaster loss data, a complicating factor in loss

forecasting is the multitude of interdependent driving forces, some of which are unobserv-

able. Such factors include changes in detection and reporting, population and population

density, wealth, building codes, infrastructure resiliency, demographics, social vulnerabil-

ity, and climatic changes (Gall et al., 2009; Martinez, 2020; Weinkle et al., 2018).

Thus the second portion of this dissertation is the development of a factor based fore-

casting model which does not require the explicit modeling of underlying drivers of loss.

As a particular use case, I developed a specialized matrix variate factor analysis model for

time series to forecast losses from severe convective storms. Joint insured losses resulting

from convective storms are nearly as high as those from hurricanes (“Convective Storms:

State of the Risk Triple-I Issues Brief”, 2022). As these storms are becoming more fre-

quent and severe (NASA, 2023; Sander et al., 2013), insurers should be keenly interested

to understand the joint distribution of losses across space and time.

The comprehensive modeling of severe convective storms requires a uniquely tailored

approach to account for complexity of the intertwined perils associated with convective

storms, such as hail, high wind, tornadoes, and lightning. Each of these perils can cause

significant damage, yet they are certainly correlated as they arise from the same phenom-
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ena. To the author’s knowledge, there have been no models in the public literature consid-

ering losses from convective storms stratified by peril. Understanding the emerging spatio-

temporal distributions of losses is necessary for predicting and pricing the risks related to

such events.

Thus, this research aids the understanding of this important phenomena for both the

academic community and practitioners. The developed approach allows for simultaneous

modeling of losses associated with different perils across space and time, while also al-

lowing for correlation in losses. The fit values from this model may be used to identify

overlapping spatial regions with similar underlying drivers of loss behavior.

1.4 Societal Implications

The final project is intended to exemplify the possibilities of using hazard loss data to

study potential societal impacts. This application applies hazard data from SHELDUS to

study the impact of compound hazard events on migration. Compound events consist of

multiple hazards that occur simultaneously or in short succession (Hillier and Dixon, 2020;

Zscheischler et al., 2018), and can lead to disproportionately extreme outcomes (AghaK-

ouchak et al., 2020; Vahedifard et al., 2016).

This study considers some of the most pressing risk categories for compounding disas-

ter losses, such as compounding heat, drought, and wildfire, and compounding wind and

flooding (Zscheischler et al., 2018). Careful selection of appropriate metrics is necessary

to avoid definitional concerns often present in disaster loss databases. Thus, we specifically

consider events in the same year and state that align with the compound hazard categories

defined by (Zscheischler et al., 2018). From this framework, two types of measures are

constructed that attempt to capture the impact of compounding hazard events over time

from the SHELDUS Version 21.0 database: dollar losses and counts. We also incorporate

a minimum cutoff of disaster losses to ensures that the count of loss events is not inflated
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by small entries, but rather focuses on more substantial disasters. This approach serves as

a significant improvement over previous studies of migration and repeated events, which

have simply relied on decadal aggregated data (Boustan et al., 2020; Saldaña-Zorrilla and

Sandberg, 2009).

This analysis takes a Bayesian approach while making use of spatio-temporal panel

data. Previous studies into climate related migration, particularly those aimed at detecting

and forecasting temporal trends, suffer from widely varying results and scientific uncer-

tainty (Beyer et al., 2022). Enhancing comprehension of these trends to the fullest extent

possible would prove immensely valuable from a policy perspective. However, any attempt

to capture such trends must account for the inherent uncertainties surrounding climate

change, natural hazard occurrences, and other contributing factors to migration (Azose

and Raftery, 2015).

By adopting a Bayesian modeling approach, this study enables the estimation of the

inherent uncertainty, providing decision-makers with greater clarity regarding the extent of

knowledge on climate trends. The ability to account for uncertainty is a powerful strength

of Bayesian models, making them an invaluable tool for improving decision-making in the

face of complex, uncertain systems like climate change (Gelman et al., 2013; Gelman and

Hill, 2006).

In the context of hazard related migration, these findings can assist in emergency re-

sponse and disaster management planning for displaced populations, encompassing both

preparation for changes in population as well as provision of aid and resources to affected

communities. This model can additionally be leveraged to identify areas that are partic-

ularly vulnerable to compound hazards. This is especially important given that migration

can be a crucial driver of the nonuniform distribution of climate vulnerability (Cai et al.,

2016; Cattaneo and Peri, 2016; Kaczan and Orgill-Meyer, 2020).
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Chapter 2

DEVELOPMENT AND STATIONARITY ASSESSMENT OF NORMALIZED

COUNTY LEVEL NATURAL HAZARD LOSSES

As climate change unfolds, scientific consensus projects increased frequency and sever-

ity of natural hazards such as hurricanes (Knutson et al., 2019), drought (Spinoni et al.,

2013), and wildfires (Abatzoglou and Williams, 2016; NASA, 2023). In addition, there is

ample evidence that losses from natural hazards have been increasing both globally and in

the US in recent decades (Botzen et al., 2019; Gall et al., 2011). However, determining

whether detectable changes in physical hazard phenomena have already occurred is chal-

lenging (Kossin, 2018), making it difficult to attribute losses to climate change (R. Pielke,

2020).

Despite the frequent reports linking increased disasters to climate change (Gramling,

2022; Lopez, 2022; Milman et al., 2021), some studies suggest that thus far, increased

disaster losses are primarily or even wholly the result of increased exposure due to societal

changes such as increased population, wealth, and infrastructure (R. Pielke, 2020; Weinkle

et al., 2018). It has also been evidenced that the varied vulnerability of communities over

space and time can significantly impact losses from these types of events (Mechler and

Bouwer, 2014).

These underlying factors complicate attribution research aiming to link hazard losses

to changes in climate. However, these confounding factors do not necessarily mean it is

impossible to detect loss trends due to changes in hazard phenomena, whether now or in

the future (R. Pielke, 2020; Sander et al., 2013). The ability to detect these trends will

likely continue to be hazard dependent, as projections for changes in hazard frequency and

severity are not uniform (NASA, 2023; Visser and Petersen, 2012). As climate change does
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begin to have a detectable impact on disaster loss data, there will be strong implications for

risk to human life and property. Thus it is worth continual investigation to assess whether

changes in losses are associated with detected changes in natural hazard phenomena.

This study conducts a thorough investigation into hazard trends in the United States

at the county level, stratified by hazard type. This is the first such study comprehensively

investigating different types of hazards at a local scale across the US. In this analysis, a

spatially disaggregated time series of county level losses is normalized to 2022 U.S. dollars

(USD) by adjusting for inflation and changes in population and wealth. Statistical tests are

then applied to analyze stationarity and detect residual trends in hazard losses at the local

level. This analysis highlights the underlying autocorrelation and growth in variance that

can impact the appropriate use of these time series in future studies.

2.1 Literature Review

The primary methodology that has emerged to investigate trends in hazard losses is the

so called ”normalization” approach, which aims at estimating the loss that a historical event

would cause if it occurred today. This is accomplished by adjusting historical loss values

for changes in inflation, population growth, and wealth (Gall et al., 2009; R. A. Pielke

et al., 2008; Weinkle et al., 2018). After accounting for societal changes driving losses

via normalization, any remaining trend in losses could potentially be driven by changes in

disaster occurrences resulting from climate change. Viewed in this light, any such trends

in loss data should be consistent with trends in related weather extremes (R. Pielke, 2020).

Loss normalization studies thus far have been concentrated on a few types of hazards

such as floods (Downton et al., 2005) and hurricanes (Martinez, 2020; Weinkle et al., 2018),

with very little information available about trends from other hazards, such as wildfires

(Doerr and Santın, 2016). These studies are also typically carried out for a specific region

or country (R. Pielke, 2020), rather than analyzing spatio-temporally stratified data. This is
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in part due to the data limitations posed by many of the available datasets, such as the lack

of spatially disaggregated economic measures (Botzen et al., 2019).

Findings thus far have suggested no upward trend in hurricane losses over the previous

decades (Weinkle et al., 2018). However, there has been a detectable increase in losses

related to convective storms, even after normalization (Sander et al., 2013). Meanwhile,

one study of SHELDUS data from 1960-2009 exemplified that even after adjusting for

inflation, population growth, and wealth, per capita direct losses showed a clear upward

trend (Gall et al., 2011). These varying results, which were also highlighted in a 2020

review of the normalization literature (R. Pielke, 2020), suggest that trends in hazard losses

are not uniform spatio-temporally or across hazard types.

The majority of publications that adopt a normalization approach have the intent of

determining stationarity or trends, which can then be used in future attribution studies re-

garding climate change or vulnerability. However outside of the normalization literature,

there are many studies that make use of hazard loss data without any investigation into

their stationarity. From a modeling perspective, if it is determined that a given time series

of losses are stationary following a normalization procedure, the dataset can be harnessed

with reduced possibility for spurious regression (Everitt et al., 2010). Unfortunately these

datasets are often utilized inappropriately due to a misunderstanding of the data nuances

and inappropriate choices of statistical methodology (Gall et al., 2009).

2.2 Methodology

Past research has typically standardized losses on a per-event basis or on an annual

basis (R. Pielke, 2020; Weinkle et al., 2018). However, using disaster loss databases like

SHELDUS can pose a challenge when it comes to defining what exactly constitutes an

”event.” This is because some loss events are broken down into multiple records in the

database (Gall et al., 2009; “Storm Data FAQ Page”, 2023). For example, if a tornado
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crosses county lines or lifts off the ground for more than a few minutes before touching

back down, it is considered a new tornado (“Storm Data FAQ Page”, 2023). This feature of

the data can make it difficult to determine whether changes in event size are simply due to

changes in reporting. For this reason, this stationary analysis examines losses at the annual

aggregate scale instead of scrutinizing events at the individual level.

Thus in this study, multiple time series of total annual property damage segmented

by location and hazard type are constructed from records in the SHELDUS Version 21.0

database (SHELDUS, 2023). These data series are subsequently normalized to 2022 U.S.

Dollars by adjusting for changes in population and wealth using data from the Bureau

of Economic Analysis and the U.S. Census Bureau. Luckily, increased data availability

in recent years makes localized studies of both hazard trends and socioeconomic trends

possible.

(a) (b)

(c) (d)

Figure 2.1: Property losses in unadjusted U.S. Dollars resulting from (a) all hazards in
SHELDUS (b) floods (c) wind (d) wildfires. Data from SHELDUS V. 21.0 database
(SHELDUS, 2023).
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2.2.1 Normalization

We adopt a well established normalization technique (R. Pielke, 2020; Weinkle et al.,

2018). The method was posed in 2005 by Pielke and Landsea, and adjusts loss values for

inflation, changes in real wealth per capita, and changes in population:

D2022 =Dy × Iy ×RWPCy × P2022/y (2.1)

Here, Dy is the total damage in year y, and D2022 represents the damage adjusted to

2022 U.S. Dollars. Iy is an inflation adjustment, here implemented using the gross domes-

tic product price deflator produced by the Bureau of Economic Analysis. The GDP defla-

tor measures changes in prices paid for goods and services produced in the United States

(“Prices amp; inflation”, n.d.). The RPCWy term stands for ”Real wealth per capita”, and

is intended to adjust loss values to account for the growth in exposure due to increased

material possessions. To represent this wealth, we adopt the current-cost net stock of fixed

assets and consumer durable goods produced by the Bureau of Economic Analysis (“Na-

tional Data Fixed Assets Accounts Tables”, n.d.). Finally, P2022/y adjusts for the change in

population within a given county of interest, using population data from the U.S. Census

Bureau.

2.2.2 Data Selection

The SHELDUS database goes back to 1960, however reporting in some counties is

more consistent than others. Thus for each county and hazard type, a dynamic subset of

the time series is chosen based on data availability. We filtered out all counties that were

formed or dissolved over the course of the study period. Additionally, losses in counties

of Alaska, Hawaii, and Virginia are omitted due to consistent data quality and frequently
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changing county lines. This filtering resulted in 2983 considered counties. All 2983 of

these counties were considered for stationarity tests for the case of all hazards combined.

It is important to note that removing the observations from Alaska, Hawaii, and Virginia

can introduce bias, particularly if the loss trends are very different in those states than

in the rest of the U.S. If these states were able to be including in this stage of the the

analysis, it would increase the number of tests performed. As further detailed in the next

section, performing additional tests could affect statistical significance when adjustments

for multiple comparisons are made. Nevertheless, this work can provide valuable insights

and initial evidence to loss trends across much of the U.S.

Not all hazards are observed in all counties, however, it can be difficult to discern when

zero losses result from truly no events, or from a lack of reporting. For this reason, time

series that began with a series of zeros (leading nulls) were subset to begin at the year of

first reported losses, under the assumption that the given county did not begin reporting

until later in the study period. When the leading nulls were dropped, all counties still had

decades of sufficient data to run the tests for overall losses.

Data for specific hazards is more sparse, in particular because most counties do not

observe all hazard types. For this reason, only regions with least 10 data points of that

particular hazard type were considered for the analysis. In addition, a series of robustness

test were conducted. Data was considered with both dropping all nulls, and setting nulls

equal to zero. In addition, the analysis was repeated with restricted data from 1995 to

present in order to reduce the effects of known historical changes in reporting.

2.2.3 Stationarity Analysis

After normalizing each county level hazard specific time series to current U.S. Dol-

lars, stationarity of the resulting normalized time series is assessed. There are a number of

statistical tests that can be used so assess time series stationarity under different assump-
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tions, such as the Durbin-Watson Test and the Augmented Dickey Fuller Tests (Palma,

2016). However, it is often not realistic to assume normality of hazard loss data. Thus as in

(Weinkle et al., 2018), we first adopt the non-parametric Mann-Kendall statistic (Hollander

et al., 2015) to test for monotonic trend. The Mann-Kendall test is a variant of Kendall’s

Sign test for independence of two random variables. The test statistic based upon pairwise

comparison of each point in the time series to those after it. Consider:

K =
n−1

∑
i=1

n

∑
j=i+1

sign(Yj − Yi)

where

sign(Yj − Yi) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if Yj > Yi

0 if Yj = Yi

−1 if Yj < Yi

If K is positive, this suggests that the later observations of the time series Yj tend to be

larger than the earlier time periods, Yi, and thus a positive trend could be present. Mean-

while, if K is significantly negative, this suggests the sequence is decreasing (Hollander

et al., 2015).

While trend detection has been the primary focus of previous normalization studies

(R. Pielke, 2020; Weinkle et al., 2018), the presence of autocorrelation or heteroskedastic

errors has consequences for studies that aim to make use of SHELDUS derived time series.

Thus, we next fit a simple linear model, with or without trend as suggested by the Mann-

Kendall test. Autocorrelation tests follow from the Durbin-Watson statistic (Durbin and

Watson, 1950):

d = ∑
T
t=2(et − et−1)2
∑T

t−1 e
2
t

(2.2)
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Here, ei are the model residuals and T is the number of observations in the time series.

The statistic d lies between 0 and 4, with a value near 2 suggesting no autocorrelation.

The test against positive serial correlation is most common. In the case of positive serial

correlation, error terms propagate into future observations. Following the Durbin-Watson

test, I analyzed heteroskedasticity using the nonparametric Goldfeld-Quandt test (Goldfeld

and Quandt, 1965). In the nonparametric version of the Goldfeld-Quandt test, ”peaks” in

the model residuals are counted, where a residual ej defined as a peak if ej ≥ ei for all i < j.

It is a form of permutation test, thus the number of peaks is compared to the number of

peaks that would occur under different permutations of the residuals. All of the discussed

tests are implemented in R.

Due to the large number of tests that are run, the significance level for each set of tests

was adjusted for Type 1 error using the Holm–Bonferroni method. In this instance, the

p-values from m tests are sorted in ascending order and then tested against the adjusted

significance level given by:

Pk = α

m + 1 − k . (2.3)

Depending on the application of these results, a more conservative or more strict version

of the tests may be preferred. For example, previous studies regarding climate change have

sometimes prioritized reducing type 1 error in order to illustrate the strong evidence for

changes in climate (Knutson et al., 2019). However some studies instead opt to reduce type

2 error in order to provide a worse case scenario type analysis that may be of interest to

policy makers (Knutson et al., 2019). For this reason, results for the both the un-adjusted

α < .05 confidence level and adjusted confidence levels are reported. In instance where

the un-adjusted tests detected significance but the adjusted tests did not, we report the

findings as weak evidence. In cases where both tests results are significant, we report

strong evidence of the phenomena.
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2.3 Results

Figure 2.2 summarizes the results of the Mann Kendall tests for trend in normalized

losses, where all hazard types in SHELDUS are considered. There were 2983 considered

for analysis, and 823 counties with detected monotonic trends. However after adjusting

for multiple comparisons, only 19 counties remained significant. All of these counties,

reported in Table 2.1, were detected to have a decreased trend in losses.

It is important to note that a detected negative trend in normalized losses does not

necessarily imply decreasing overall dollar losses in an area when adjusted for inflation

only. Rather, a negative trend can result when the growth in population and wealth in an

area outpaces the increased or stationary losses observed. Thus these results reveal that

normalization techniques were able to account for the vast majority of growth in losses

across the counties considered in the U.S over the last 80 years.

Note however the counties in Virginia and elsewhere such as Maimi-Dade that were

excluded from the study shown in white in figure 2.2. These excluded counties may

be a source of unintended bias. In the future, further methodology could be developed

that provides rules for allocating losses in counties with a history of changing boundaries.

For example, losses could be disaggregated to the historical census block level before re-

aggregating to the new county lines.

Figure 2.3 depicts the counties that detected significant autocorrelation in normalized

losses. However, no counties showed evidence of autocorrelation when adjusting for multi-

ple comparisons. Heteroskedasticity is revealed to be more of a concern, as shown in figure

2.4. Here, 281 counties showed evidence of heteroskedasticity (p < .05), and 41 counties

having strong evidence of heteroskedasticity after adjusting for multiple comparisons.
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Figure 2.2: Detected monotonic trends in normalized losses.
White: not considered. Pink: considered for analysis, no evidence of trend.
Grey: weak evidence of decreased trend. Dark grey: strong evidence of decreased trend.
Orange: weak evidence of increased trend.

Table 2.1: Counties with detected decreased trend in normalized losses
after multiple comparisons procedure.

State County State County

CO Hinsdale OH Fairfield

FL Flagler OH Fayette

MA Berkshire OH Henry

MA Dukes OH Madison

MA Nantucket OH Shelby

NY Schuyler OH Union

OH Butler PA Adams

OH Champaign PA Cumberland

OH Delaware PA Juniata

TX Kendall
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Figure 2.3: Detected autocorrelation in normalized losses.
Orange: weak evidence of autocorrelation.
White: no evidence of autocorrelation.

Figure 2.4: Detected heteroskedasticity in normalized losses.
Red: strong evidence of heteroskedasticity.
Orange: weak evidence of heteroskedasticity.
White: no evidence of heteroskedasticity.
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2.3.1 Hazard Specific Results

At the individual hazard level, significant decreasing trends were detected for many of

the hazards, including hail and coastal events. However, after robustness checks and sub-

setting the data from 1995 onward, no strong evidence of trend was detected in any counties

for coastal events, heat, drought or floods. This suggests not only that the normalization

techniques were able to adequately account for the changes in losses, but that they may be

over-emphasizing the trends in population and wealth in light of the conservative estimates

of loss reported in SHELDUS (Gall et al., 2009). The results from the robust tests are given

in tables 2.5 and 2.3.

Table 2.2: Counties with detected trends, autocorrelation, and heteroskedasticity in nor-
malized losses from specific hazards.

Hazard Coastal Drought Flooding Fog Hail Heat

Total Counties 56 397 2,867 202 2,206 171

Negative Trend (p < .05) 16.07% 15.87% 14.79% 8.42% 23.07% 0.00%

Negative Trend (pk < .05) 1.79% 0.00% 0.07% 0.00% 0.45% 0.00%

Postitive Trend (p < .05) 0.00% 0.00% 0.00% 0.00% 0.18% 0.00%

Positive Trend (pk < .05) 0.00% 0.00% 0.42% 0.00% 0.00% 0.00%

Autocorr. (p < .05) 3.57% 7.56% 6.00% 6.44% 6.39% 2.34%

Autocorr. (pk < .05) 0.00% 4.53% 0.91% 0.99% 1.41% 1.17%

Hetero. (p < .05) 7.14% 0.00% 14.4% 0.00% 7.48% 0.58%

Hetero. (pk < .05) 3.57% 0.50% 13.67% 1.49% 6.53% 1.17%
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Table 2.3: Counties with detected trends, autocorrelation, and heteroskedasticity in nor-
malized losses from specific hazards.

Hazard Hurricane Landslide Lightning Severe Storms Tornado Wildfire

Total Counties Considered 797 303 2,038 2,873 2,516 8.96%

Negative Trend (p < .05) 6.65% 5.94% 19.63% 27.98% 12.04% 0.00%

Negative Trend (pk < .05) 0.00% 0.00% 0.05% 0.42% 0.00% 0.00%

Postitive Trend (p < .05) 0.00% 0.00% 0.05% 2.58% 0.20% 0.00%

Positive Trend (pk < .05) 0.00% 0.00% 0.00% 0.00% 0.00% 1.85%

Autocorr. (p < .05) 1.00% 4.29% 6.28% 7.90% 4.81% 0.28%

Autocorr. (pk < .05) 1.00% 1.32% 1.18% 0.52% 0.87% 0.00%

Hetero. (p < .05) 4.14% 3.30% 5.45% 9.29% 11.25% 0.00%

Hetero. (pk < .05) 5.52% 5.94% 1.82% 1.84% 6.40% 0.00%

Figure 2.5: Detected monotonic trends in normalized lightning losses.
Light orange: Considered county. Light Grey: Weak evidence of decreased trend.

21



Autocorrelation and heteroskedasticity continue to have weak evidence at the hazard

level. While these effects are far from universal, the results still suggest that studies mak-

ing use of SHELDUS data should take precaution and adjust for these possibilities. For

example, when analyzing losses from lightning, 11.25% of the counties considered had

weak evidence of heteroskedasticity and 6.4% had strong evidence of heteroskedasticity.

In Chapter 3, this heteroskedasticity in losses from lightning will be adjusted for before

forecast modeling.

2.4 Discussion

The outcomes of our normalization procedure corroborate conclusions drawn from

prior research (R. Pielke, 2020), emphasizing that the increase in losses can predominantly

be ascribed to increases in population and economic affluence. However, our investigation

also highlights the potential for certain normalization procedures to be overly stringent.

Notably, in instances where heightened exposure arises from factors such as population

and wealth, there might simultaneously be a mitigation in exposure due to reinforced struc-

tures and infrastructure (Mechler and Bouwer, 2014). Thus our resulting data and findings

can serve as a building block for more elaborate studies into the role of vulnerability in haz-

ard trends over time (Mechler and Bouwer, 2014). Another avenue for future exploration

might make use of indirect measures of loss such as impacts on the labor market and loss

of ecosystem services (Barbier, 2012; Botzen et al., 2019).

These possibilities highlight that the choice of which measures to include in normaliza-

tion may have a significant impact on trend detection. In particular, an alternative normal-

ization approach was posed by Collins and Lowe (Collins, 2001; Weinkle et al., 2018), and

adopts an alternate metric to account for changing wealth and population:

D2022 =Dy × Iy ×RWPHUy ×HU2022/y (2.4)
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Here, RWPHUy stands for the real wealth per housing unit, and HU2022/y is an adjust-

ment for the change in the number of housing units. In this approach, the current-cost net

stock of fixed assets and consumer durable goods is still used as a base measure of wealth,

but it is adjusted to wealth per-housing unit rather than per-individual. Then, the dam-

ages are adjusted to the current number of housing units as estimated by the U.S. Census

Bureau. This approach was originally suggested because the change in exposed property

has exceeded population growth in certain areas, particularly along coastlines (R. A. Pielke

et al., 2008). However, our results suggest no trend in coastal related losses after normal-

ization for population alone. Future exploration of exposed property would likely benefit

from the inclusion of other metrics to control for vulnerability.

One potential source of bias in this study is the removal of counties that were created,

dissolved, or altered over the course of the study. If these counties were included in the

analysis as they are currently available in SHELDUS, there would likely be significant bias

manifested as idiosyncratic shocks in population, wealth and and losses in the affected lo-

cation. However, if these states were able to be including in this stage of the the analysis,

it would increase the number of tests performed, affecting the significance level when ad-

justing for multiple comparisons. In future work, further methodology could be developed

that provides rules for allocating losses in geographical areas with a history of changing

boundaries in a manner that preserves continuity of the population. For example, losses

could be disaggregated to the historical census block level before re-aggregating to the new

county lines, allowing for analysis over the entire study period within the same geography.

Future studies could also aggregate to a higher level, such as state or U.S. level to see if

similar patterns persist and various levels of analysis.

One specific application of this research is to attribution studies, which aim to link

residual loss trends to changing hazard occurrences. A limitation of these types of studies

is the relatively limited record of loss data on the temporal scale that can be leveraged to
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detect climatic effects (R. Pielke, 2020). A strength of this study is that the loss reports go

back to 1960 for much of the U.S. However this analysis reveals that data quality can still

be a significant concern when trying to detect underlying trends. Robustness checks can

prove beneficial in cases with many zero or missing observations.

This research has important implications for future studies relying on hazard loss data.

Regression type studies that aim to link hazard losses to other phenomena face the possi-

bility for spurious regression if the underlying time series are not stationary (Everitt et al.,

2010). In addition, loss datasets may be highly correlated with socioeconomic variables

corresponding to loss exposure and vulnerability, making it difficult to interpret results

when multiple of such metrics are included (Hoffmann et al., 2021; R. Pielke, 2020). This

analysis suggests that the vast amount of trends in hazard loss can be accounted for via

growing population and wealth. Thus to avoid spurious regression, application studies

need to account for these factors.

However even after accounting for trends in population and wealth, hazard loss datasets

are not necessarily stationary. While autocorrelation and heteroskedasticity were not a sig-

nificant issue for every county, these data anomalies do occur for many subsets of the data.

For this reason, spatio-temporal methodologies adopted in future studies need to account

for these possibilities. In the following two chapters, spatio-temporal models are devel-

oped to forecast trends in losses and study societal impacts. In both chapters, the models

developed accommodate for the underlying socioeconomic factors driving the increase in

losses, while addressing issues of autocorrelation and heteroskedasticity.
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Chapter 3

JOINT LOSS MODEL FOR CONVECTIVE STORM PROPERTY DAMAGE: MATRIX

VARIATE TIME SERIES BILINEAR FACTOR ANALYSIS APPROACH

Property losses associated with natural hazards such as wildfires, hurricanes, and thun-

derstorms are among the most common and expensive losses considered by insurers (“Con-

vective Storms: State of the Risk Triple-I Issues Brief”, 2022; Lyubchich et al., 2019). In

particular, severe convective storms (also known as severe thunderstorms) may result in a

combination of perils at once, such as tornadoes, hail, high wind, and lightning (NOAA,

2022; Thorson, 2020). As figure 3.1 illustrates, in many years, joint insured losses resulting

from convective storms are nearly as high as those from hurricanes (“Convective Storms:

State of the Risk Triple-I Issues Brief”, 2022; Lyubchich et al., 2019). Exposure to these

natural hazards is only expected to increase with climate change (Brooks, 2013; NASA,

2023; Pinto et al., 2012), and with socioeconomic changes (R. Pielke, 2020; Pinto et al.,

2012). Thus, understanding the emerging spatio-temporal distributions of losses will be

Figure 3.1: Blue: property losses from hurricanes.
Red: property losses from convective storms.
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necessary for predicting and pricing the risks related to such events. Yet to the author’s

knowledge, there have been no studies in the public literature considering losses from con-

vective storms stratified by perils such as high wind, tornadoes, lightning, and hail using

one unified model.

The comprehensive modeling of severe convective storm losses requires a uniquely tai-

lored approach to account for complexity of the intertwined perils. Such loss datasets are

stratified in three dimensions: spatially, temporally, and by peril type. Thus, this data form

a so-called three-way dataset, also referred to as a tensor dataset or matrix variate dataset.

Three-way data occurs when variables can be stratified across three different dimensions,

meaning each observation constitutes a realization of a random matrix (Coppi et al., 1989).

For example in this context, losses during a given time period can be aggregated and or-

ganized into a data table with rows representing losses from different perils, and columns

representing spatial regions. The collection of these annual matrix observations form a

matrix variate time series.

In such matrix variate datasets, there is often a complex dependency structure between

the rows and columns. In our application, there may be correlation in losses between the

n spatial locations (rows) and p perils (columns), and T time points. Most univariate and

Figure 3.2: Matrix variate data structure.
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multivariate models are not able to easily capture such a rich dependence structure accom-

panying these datasets, as a common modeling assumption in the univarite and multivarite

context is independent errors. Matrix variate models are well suited to this type of problem

because they are able to account for these correlated responses. The usefulness of ma-

trix variate models in the insurance sector has recently been demonstrated (Boyle et al., in

press, 2023).

The study of this complex phenomena is also impacted by a combination of observed

and unobserved factors, such as climate change and economic factors (R. Pielke, 2020).

Any given model of these losses could attempt to account for some of these complexities

using proxy covariates, such as temperature or GDP. However, the evolution of these con-

vective storm losses over time are also driven by underlying processes that are difficult

to account for, such as changes in loss reporting (Gall et al., 2009) and the state of local

infrastructure (Watson et al., 2021).

The developed methodology in this research addresses these issues through a novel

matrix variate (bilinear) factor analysis model that uses dynamic factor analysis. Such

an approach allows for simultaneous modeling of losses associated with different perils

across space and time, thus allowing for correlation in losses. By adopting a factor based

approach, the model is able to account for unforeseen forces that drive joint losses. By

Figure 3.3: Underlying processes impacting observed matrix variate losses resulting from
convective storms.
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drawing on county level spatio-temporal disaster data going back to 1970, the model is be

able to capture the evolving joint loss patterns over time and forecast future losses.

This approach extends the emerging matrix variate modeling literature (Chen and Lee,

2022; Ding and Dennis Cook, 2018; Viroli, 2012) by developing a dynamic factor anal-

ysis model in the matrix variate context. The developed approach gives significant gains

in fit time by reducing model complexity through parameter count, while maintaining an

appropriate covariance and factor loading structure. This approach is very flexible, and can

be leveraged in a variety of econometric settings. The specific findings from this research

also increase the understanding of the convective storm phenomena for the academic com-

munity and actuarial practitioners, with further implications for infrastructure development

and mitigation planning.

3.1 Literature Review

3.1.1 Convective Storms

Severe thunderstorms occur when air quickly moves upward into the atmosphere, driven

either by rising heat, colliding warm and cool air, or the interaction of the atmosphere with

the surrounding terrain (“How Thunderstorms Form”, 2022). While all thunderstorms re-

sult from convection and have a potential for loss, severe convective storms are significantly

more dangerous with potential for much higher damage, thus we refer here to these phe-

nomena as severe convective storms. Severe convective storms are categorized as “Severe

Thunderstorms” by the National Oceanic and Atmospheric Administration, and are defined

as such when hail is one inch or greater, wind gusts are above 58 mph, and/or a tornado

occurs (NOAA, 2022). Although the presence of lightning is not necessary for a convective

storm to be categorized as a Severe Thunderstorm, lightning may also occur resulting in

direct damage.
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Models that attempt to predict the meteorological aspects of thunderstorms and their

related perils, such as lightning, hail, and heavy rain, are plentiful (Healy et al., 2022;

Schmeits et al., 2008). Such studies of the physical phenomena sometimes rely on insur-

ance loss data to aid their development. For example, both (Kapsch et al., 2012; Kunz

and Kugel, 2015) made use of insurance loss data to verify their models of hailstorms in

southwest Germany.

Alongside these investigations of the physical phenomena are studies of direct losses

from individual perils related to convective storms, typically in an insurance context. For

example (Changnon, 2009) demonstrated a recent increase in losses from major hail events

in the U.S., although the study did not attempt to attribute these losses to any driving fac-

tors such as increased population and wealth or changes to the frequency and severity hail

storms. Meanwhile, (Barredo, 2010) found no trend in windstorm losses in Europe af-

ter adjusting for changes in socioeconomic variables. In another study, wind speed data

was transformed into a time series of losses from windstorms in the Netherlands (Cusack,

2012). They found that while windstorm losses were at a low, the driving climate forces

of these losses had changed over the last few decades. Regarding tornadoes, (Refan et

al., 2020) provided a simulation based study that incorporated tornado climatology, tor-

nado intensity and path of travel, together with an exposure map, fragility and vulnerability

functions, and a financial module. While there are a multitude of models in the literature

to quantify losses due to individual perils, studies focused on joint losses from convective

storms are less common. One study considered census-block-level losses from extreme

cold, hail, lightning, and tornadoes in Louisiana (Mostafiz et al., 2020), albeit the analysis

was statistically independent for each hazard. Many modeling approaches that jointly con-

sider convective storm perils simultaneously while addressing correlation are proprietary

(“The Verisk Severe Thunderstorm Model for the United States”, 2022). This study aims

to provide both a model and results that are publicly available for the research community.

29



3.1.2 Matrix Variate Data and Modeling

Here we give background into the literature regarding the matrix variate modeling

paradigm. Consider a dataset of convective storm losses stratified across n geographical

areas with p different associated perils. This data can naturally be arranged in a single n×p
matrix. Now, if we observe losses stratified in this manner for T consecutive years, the

result is a length T time series of n×p matrices. To account for this three-way stratification

of convective storm loss data, this study makes use of a matrix-variate based model.

A straightforward distributional assumption for matrix variate data is the matrix variate

normal distribution Gupta and Nagar, 2018. A n × p matrix X has a matrix variate normal

distribution given that its probability density function is specified by:

fn,p(X∣M,Σ,Ψ) = (2π)−np/2∣Σ∣−p/2∣Ψ∣−n/2etr(−1
2
Ψ−1(X −M)′Σ−1(X −M)) ,

where etr(⋅) = etr(⋅), M is the mean matrix, and the two matrices Σ and Ψ represent

the within-row covariance and within-column covariance, respectively. This matrix normal

distribution can be seen as a natural extension of the multivariate formulation, or as a

special case of a multivariate normal distribution with a specific added covariance structure.

The relationship between the multivariate and matrix variate normal distributions can be

seen further through the vectorization function, which transforms a matrix into a vector.

Applying the fact that ∣Ψ⊗Σ∣ = ∣Σ∣−p∣Ψ∣−n and

1

2
vec(X −M)′(Ψ⊗Σ)−1vec(X −M) = tr(−1

2
Σ−1(X −M)′Ψ−1(X −M)),

we have the result that vec(X) ∼ Nnp(vec(M),Ψ⊗Σ) where ⊗ represents the Kronecker

product. Thus, if a given matrix X is matrix variate normally distributed, then its vectorized

form is follows the multivariate normal distribution.

One primary benefit of employing the matrix variate distribution within a modeling

context is the imposed structure of the covariance matrix. In this way, separate estimates

30



are obtained for Σ and Ψ rather than solely an estimate of the Kronecker product Ψ ⊗Σ.

This allows the modeler to decompose the associated correlation structure row-wise and

column-wise. In this application, this corresponds to identifying the correlation structure

across the intertwined perils, and the spatial correlation structure. In addition, the imposed

structure reduces the number of parameters from the unrestricted multivariate form.

3.1.3 Dynamic Factor Analysis

By adopting a matrix variate framework, the developed model is better able to account

for the high dimensionality of convective storm data in comparison to its multivariate coun-

terparts, while maintaining the complex correlation structure between losses in all three di-

mensions. However when it comes to modeling losses from any natural hazards, including

convective storms, there are also complex and interrelated underlying socioeconomic and

climatic factors. Socioeconomic forces such as population, wealth, and vulnerability heav-

ily impact losses, and may even be the primary or sole driver of losses (R. Pielke, 2020).

However unlike many hazards for which losses are stationary after normalizing for socioe-

conomic factors (Weinkle et al., 2018), this is not the case with convective storms (Sander

et al., 2013). Considering cumulative losses from all perils related to convective storms, a

landmark study coupled a time series of thunderstorm potential with a time series of losses

from Munich Re’s NatCatService database (Sander et al., 2013). Notably, they found that

recent changing patterns in thunderstorm occurrences can indeed be detected in loss data,

even after accounting for socioeconomic factors.

To account for the complex underlying driving forces of these losses, we adopt a factor

analysis approach. Factor analysis allows for modeling the relationship between a response

variable and unobserved variables called factors. A typical factor analysis model for mul-

tivariate data has the following form:

yi = ZXi + vi where vi ∼ N(0,R).
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Here, yi is a vector of observations, Xi is a vector of q unobserved latent factors, Z

is a matrix of factor loadings, and vi is the vector of model error, which is considered

to be multivariate normally distributed with covariance matrix R (Holmes et al., 2012).

The factor loadings act similarly to coefficients in a regression model, as they quantify

the relative importance of the unseen factors. This approach is particularly well suited to

high dimensional problems, as the underlying factors can be used to extract useful lower

dimensional patterns in large datasets. For example, the fit values of factor loadings may be

used to form overlapping spatial regions with similar underlying drivers of loss behavior.

This can allow insurers to better understand the spatial distribution of risk present in their

current portfolios. Identification of regions with similar drivers of risk may also be used in

the future to aid supplementary models by providing a baseline assumption of similar loss

behavior in those areas.

While factor analysis is a helpful tool for dealing with high dimensional data that has

unseen underlying processes, alone it is not able to account for potential correlation over

time, as seen in time series data. This is because the factor analysis model assumes in-

dependent error terms vi. Dynamic factor analysis is an extension of factor analysis that

explicitly allows for these unseen factors to be evolving over time. The dynamic factor

analysis model is as follows (Holmes et al., 2012):

yt = ZXt + vt where vt ∼ N(0,R)

Xt =Xt−1 +wt where wt ∼ N(0,Q)

Here, we start with the same basic factor analysis model as before, where each obser-

vation comes from a different point in the time series. However, we now allow for the

underlying unseen factors to be evolving in time by following a non-stationary random

walk with error term wt, taken to be multivariate normally distributed with mean vector 0

and covariance matrix Q. Parametric fitting of the dynamic factor analysis model follows
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from the maximum likelihood framework under the multivariate normal assumption. These

parameter estimates are computed using the EM algorithm, making use of the Kalman filter

and smoother common to multivariate state space models (Dempster et al., 1977; Holmes

et al., 2012).

Dynamic factor analysis is a special case of multivariate autoregressive state-space

modeling, and has been an active area of study for many years (Ensor, 2013; Stock and

Watson, 2011), however this approach has been restricted to multivariate datasets. In or-

der to study losses from convective storms, we could simply vectorize our matrix variate

data, and use the already existing dynamic factor analysis models available. However, this

approach suffers in two ways. First, important structural information is held within the

matrix format, as there are latent factors impacting the various perils (rows) and spatial

locations (columns). By using the vector form, all of this structural information is lost.

Yet this model can be viewed as form of the multivariate dynamic factor model with novel

non-linear constraints.

Secondly, the dynamic factor analysis model suffers from the curse of dimensionality

(Holmes et al., 2012; Stock and Watson, 2011), as there are a large number of parameters

to be fit. The matrix variate approach greatly reduces the number of parameters, thus

speeding up time needed to fit the model and stabilizing the estimates. For this reason, this

work extends the dynamic factor analysis approach to allow for modeling of matrix variate

data.

3.2 Methodology

3.2.1 Bilinear Factor Analysis

While factor analysis has been widely used in many applications involving high-dimensional

vector data, matrix variate, or bilinear factor analysis is best suited to handle factor analysis
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of matrix variate data (Xie et al., 2008). Bilinear factor analysis for matrix variate data has

been growing in popularity (Gallaugher and McNicholas, 2017). While factor analysis has

been considered for vector time series data (Ensor, 2013), bilinear factor analysis has not

yet been considered in a time series context.

Our Dynamic Bilinear Factor Analysis model for time series has the form:

Yt = AXtB + Vt where Vt ∼MVN(0,Σ,Ψ) (3.1)

Xt =Xt−1 + diag(wt) where wt ∼ N(0,Q) (3.2)

Here, Yt is an n× p matrix of loss observations in time period t from convective storms

stratified across geographic regions and perils. Xt is a q × q diagonal matrix of unobserved

factors, while A and B are matrices of factor loadings, and Vt is the matrix variate nor-

mally distributed model error with covariance matrices Σ and Ψ. diag(wt) is the error

of the random walk taken by the unseen factors. This error is taken to be multivariate

normally distributed, with mean matrix 0 and covariance matrix Q. Note that in this for-

mulation, there are two factor loading matrices, A and B. A acts as a front loading matrix

that contains factor loadings onto the rows, and thus contains information about the relative

importance of each unseen factor on the different spatial locations. Similarly, B contains

the factor loadings onto the columns, and thus contains information about the relative im-

portance of the unseen factors on each peril associated with convective storms. To develop

Figure 3.4: The matrix variate dynamic factor model as a state space process. Underlying
unobserved forces evolve in time, but only the resulting losses are observed.
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this model, maximum likelihood parameter estimates are here derived. Implementation of

the EM algorithm is given, which can be implemented in any programming language of

choice (Dempster et al., 1977).

The primary intent of the factor analysis approach is to account for the unseen under-

lying forces driving losses. Thus, these factors are extracted from the fit models to reveal

spatio-temporal patterns of losses. Thus the fit factor loading matrices are used to identify

regions and associated perils that have similar unobserved underlying patterns.

3.2.2 Identifiablity

In the multivariate setting, the dynamic factor model is not identifiable without con-

straints. This is because for any non-singular matrix F , the estimates yt = (ZF −1)(Fxt)+vt
give the same model fit as yt = Zxt + vt. It has been shown that q2 total constraints are

needed to ensure identifiability (Bai and Wang, 2014). The typical approach taken in mul-

tivariate dynamic factor analysis is to set the covariance matrix of the factors to the identity

matrix (Q = Iq), and additionally set the ijth element of Z to zero for j > i (Bai and Wang,

2014; Zuur et al., 2003). However, the bilinear dynamic factor model imposes an alternative

parsimonious structure on the multivariate model. The matrix variate loading matrices A

and B have nq and qp free variables, respectively. The corresponding vectorized multivari-

ate model has a loading matrix Z with dimensions np×q. Thus npq−nq−pq = q(np−n−p)
constraints are imposed on the multivariate model by adopting the matrix variate structure.

This means as long as 2np − 2n − 2p + 1 ≥ q with Q = Iq, the model is identified. Alterna-

tively, Q could be allowed to be unconstrained with np − n − p ≥ q.

In the factor analysis literature, it is a common approach to perform a rotation to the

factor and loading matrices after model fitting to simplify interpretation of the factors. The

most popular choice of rotation is the varimax, which aims to express the factor loadings

on each output variable in terms of as few factors as possible (Kaiser, 1958). This rotation
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approach assumes that the factors are orthogonal. To make use of the varimax rotation here

we adopt the identifiability constraint Q = Iq as it implies that the factors are orthogonal.

Setting Q = Iq also allows for more factors to be estimated, which can be helpful for

datasets with smaller response matrices.

One final identifiablity concern comes from the fact that A and B are only defined to

a multiplicative constant, as are Σ and Ψ. This is because if Â and B̂ are estimates of

A and B, then B′ ⊗ A = 1
aB
′ ⊗ aA, meaning aÂ and 1

aB̂ are also estimates. The same

relationship is true between Σ and Ψ. Here we impose that the first entries in A and Σ are

set to 1. Note that this implies the scaled relationships between A and B and Σ and Ψ are

of interest, rather than the absolute values. The nuances of interpreting these values are

further discussed alongside the results in section 3.3.

3.2.3 Model Fitting via EM Algorithm and Kalman Filter

Assume Y1, Y2, ..., YT form a time series of n×p observed random matrices arising from

the factor relationships in (3.1) and (3.2). The complete-data likelihood is given by:

T

∏
t=1

f(Yt∣X,Θ) × f(x0)
T

∏
t=1

f(xt∣xt−1,Θ) (3.3)

Under the assumption of normality, the complete data log likelihood is given by:

L(Θ∣Y1, ..., YT ,X) = −(np + q)T
2

log(2π) − nT

2
log∣Ψ∣ − pT

2
log∣Σ∣ − T

2
log∣Q∣

− 1

2

T

∑
t=1

tr(Ψ−1(Yt −AXtB)′Σ−1(Yt −AXtB)) − 1

2

T

∑
t=1

(xt − xt−1)′Q−1(xt − xt−1)
(3.4)
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Expectation Step

The complete-data expected log-likelihood is given by taking the expected value of the

above:

Q(θ∣θ′) =EX(L(Θ∣Y1, ..., YT ,X1, ...XT )) =

− (np + q)T
2

log(2π) − nT

2
log∣Ψ∣ − pT

2
log∣Σ∣ − T

2
log∣Q∣

− 1

2

T

∑
t=1

EX[tr(Ψ−1(Yt −AXtB)′Σ−1(Yt −AXtB))]

− 1

2

T

∑
t=1

EX[(xt − xt−1)′Q−1(xt − xt−1)]

(3.5)

Expanding, the expected log-likelihood function depends on the following terms:

−1
2

T

∑
t=1

tr(Ψ−1Y ′t Σ−1Yt)

1

2

T

∑
t=1

tr(BΨ−1Y ′t Σ
−1AEX[Xt])

1

2

T

∑
t=1

tr(A′Σ−1YtΨ
−1B′EX[Xt])

−1
2

T

∑
t=1

tr(BΨ−1B′EX[XtA
′Σ−1AXt])

−1
2

T

∑
t=1

tr(EX[xtx
′

t]Q−1)

1

2

T

∑
t=1

tr(EX[xt−1x
′

t]Q−1)

1

2

T

∑
t=1

tr(EX[xtx
′

t−1]Q−1)

−1
2

T

∑
t=1

tr(EX[xt−1x
′

t−1]Q−1)

(3.6)

Now note that for a diagonal matrix X = diag(x), we have that XUX = U○xx′, where ○
denotes the Hadamard (element-wise) product. This means that the term EX[XtA′Σ−1AXt]
can be rewritten as (A′Σ−1A) ○ EX[xtx′t]. Thus in the E step, we need to calculate
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the expected values x̃t = EX[xt] with X̃t = EX[Xt] = diag(x̃t), P̃t = EX[xtx′t], and

P̃t,t−1 = EX[xtx′t−1] with P̃ ′t,t−1 = EX[xt−1x′t] for t = 1, ..., T .

These terms are estimated using the established Kalman filter and smoother for vec-

tor state space models (Holmes et al., 2012; Shumway and Stoffer, 1982). We adopt the

following notation common in the literature (Holmes et al., 2012):

x̃t = xT
t = EX(xt∣Y1, ..., YT ,Θ) (3.7)

Ṽt = V T
t = varX(xt∣Y1, ..., YT ,Θ) (3.8)

Ṽt,t−1 = V T
t,t−1 = covX(xtx

′

t−1∣Y1, ..., YT ,Θ) (3.9)

P̃t = P T
t = EX(xtx

′

t∣Y1, ..., YT ,Θ) = Ṽt + xtx
′

t (3.10)

P̃t,t−1 = P T
t,t−1 = EX(xtx

′

t−1∣Y1, ..., YT ,Θ) = Ṽt,t−1 + xtx
′

t−1 (3.11)

To make use of the Kalman filter and smoother for vector state space models, the model

in equations (3.1) and (3.2) can be expressed in the vectorized form:

vec(Yt) = vec(AXtB) + vec(Vt)

= (B′ ⊗A)vec(Xt) + vec(Vt) =

= (B′ ⊗A)Dxt + vec(Vt)

where Dij =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 i + q = j + qj

0 otherwise

and vec(Vt) ∼ N(0,Ψ⊗Σ)

(3.12)

Letting let Zt = (B′ ⊗A)D, the Kalman filter estimates are:

xt−1
t = xt−1

t−1 (3.13)

V t−1
t = V t−1

t−1 +Q (3.14)

xt
t = xt−1

t +Kt(vec(Yt) −Ztx
t−1
t ) (3.15)
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V t
t = (Iq −KtZt)V t−1

t (3.16)

Kt = V t−1
t Z ′t(ZtV

t−1
t Z ′t +Ψ⊗Σ)−1 (3.17)

The expectations are then computed from the Kalman smoother and lag-1 covariance smoother:

xT
t−1 = xt−1

t−1 + Jt−1(xT
t − xt−1

t ) (3.18)

V T
t−1 = V t−1

t−1 + Jt−1(V T
t − V t−1

t )J ′t−1 (3.19)

Jt−1 = V t−1
t−1 (V t−1

t )−1 (3.20)

V T
T,T−1 = (I −KTZT )V T−1

T−1 (3.21)

V T
t−1,t−2 = V t−1

t−1 J
′

t−2 + Jt−1(V T
t,t−1 − V t−1

t−1 )J ′t−2 (3.22)

Our model fitting and analysis is implemented in R, in order to make use of the Kalman

Filter and smoother provided by the KFAS and MARSS packages (Holmes et al., 2012).

This particular software was chosen due to the speedy implementation of the Kalman filter

in C.

Maximization Step

Next, we seek to maximize the expected log-likelihood with respect to θ. Applying matrix

calculus we arrive at the following estimators:

Â = [
T

∑
i=1

YtΨ̂
−1B̂′X̃t][

T

∑
i=1

(B̂Ψ̂−1B̂′) ○ P̃t]
−1

(3.23)

B̂ = [
T

∑
i=1

(Â′Σ−1Â) ○ P̃t]
−1

[
T

∑
i=1

X̃tÂ
′Σ̂−1Yt] (3.24)

Σ̂ = 1

pT

T

∑
i=1

[(Yt − ÂX̃tB̂)Ψ̂−1Y ′t − YtΨ̂
−1B̂′X̃tÂ

′ + Â[(B̂Ψ̂−1B̂′) ○ P̃t]Â′] (3.25)
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Ψ̂ = 1

nT

T

∑
i=1

[(Yt − ÂX̃tB̂)′Σ̂−1Yt − Y ′t Σ̂−1ÂX̃tB̂ + B̂′[(Â′Ψ̂−1Â) ○ P̃t]B̂] (3.26)

In order to obtain these estimates within the maximization step, we adopt two con-

ditional maximization steps, resulting in an ECM algorithm. Here we partition θ into

θ1 = (A,Σ) and θ2 = (B,Ψ), which are updated iteratively. The E step and two condi-

tional M steps are repeated until a convergence criteria is reached. Here, we we take the

model as converged when the change in log-likelihood is less than 0.001.

Algorithm 1: Matrix Variate Dynamic Factor Model ECM
Result: Obtain estimates for Xt, A, B, Σ and Ψ for t = 1, ..., T
Initialize θ ;

while convergence criteria not met do
E-Step: Compute Q(θ∣θ′) = E(log(f(x∣θ))∣X,θ′) via the Kalman Filter and

Smoother;

M1-Step: Update Â, and Σ̂ according to (3.23) and (3.25) with B̂ and Ψ̂ held

fixed;

M2-Step: Update B̂ and Ψ̂ according to (3.24) and (3.26) using Â, and Σ̂ from

the M1-Step;

end

3.2.4 Data

Loss data for convective storms stratified by peril came from the SHELDUS Version

21.0 database (SHELDUS, 2023). SHELDUS draws its information about severe thunder-

storms from National Climatic Data Center ”Storm Data and Unusual Weather Phenomena”

reports. Thus we queried records from SHELDUS with a hazard type of ”Severe Thunder-

storm”. These records follow the definitions as laid out by the National Weather Service:
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the occurrence of hail at least 1 inch in diameter, wind gusts of at least 58 mph, and/or a

tornado (NOAA, 2022).

It is important to note that these definitions have changed slightly over the last century.

In particular, there were competing definitions for severe weather prior to 1970, before set-

tling on specific wind and hail requirements (Galway, 1989). As such, SHELDUS records

for this study are restricted to 1970 onward. In addition, it is difficult to discern at what date

the NWS began including all tornadoes in reports of severe thunderstorms. Since the cur-

rent definition includes the presence of a tornado as criteria for a severe convective storm,

all records of tornado losses from 1970 onward are also be included in the dataset.

One final data complication is that from 1970 until April 1, 2009, the hail criterion

was set at 3/4 inch hail, as opposed to the current requirement of 1 inch hail. In practice,

these cutoffs are used to specify that the hail was large enough to cause typical damage to

property, as laboratory impact testing for various materials indicate a minimum threshold

for damage of 1 inch (Brown et al., 2015). Unfortunately, hail size in not always reported

along with loss estimates in SHELDUS. However, while smaller hail may be capable of

causing damage to delicate crops, such as wine grapes (Brown et al., 2015), these forms of

loss are not reflected in the property loss data from SHELDUS, but rather in the agricultural

loss data in SHELDUS. Thus we chose to also include all records that result in property

loss from hail.

Note that records labeled only as wind events or flood events were not included, as these

events can be associated with other phenomena, such as hurricanes. However, the queried

Severe Storm events may still result in wind or flood losses. Records associated only with

lightning but not Severe Thunderstorm were also not included, as lightning damage can

result from smaller thunderstorms that are not categorized as Severe. In addition, it is

worth noting that Derechos are included in SHELDUS as both ”Severe Thunderstorm” and

”Wind” events, and thus are included in this study. Derechos are widespread and long-
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lived windstorms resulting from a thunderstorm and are characterized by a line of intense,

damaging straight-line winds NOAA, 2022.

After the event records were selected from SHELDUS, the losses were attributed to

one of the following perils: wind, hail, lightning, tornado, and heavy rain/flooding. If a

given record was associated with more than one peril, losses were split evenly among those

categories. If no details were given other than ”Severe Thunderstorm”, the losses were split

evenly across all 5 categories. After this disaggregation, the losses were aggregated up to

the annual level for the spatial region of interest for each hazard type. Finally, the losses

attributed to heavy rain and flooding as a result of thunderstorms was dropped. Drivers of

flood loss are much more complex and thus are not considered in this study.

3.3 Results

3.3.1 Case Study: State Level Analysis for Southern Climatic Region

Here we apply the matrix variate dynamic factor approach to the three way dataset

of convective storm losses obtained from SHELDUS Version 21.0 stratified by hail, wind,

lightning, and tornado. First, a small observation matrix is considered by aggregating to the

annual state level for the Upper Midwest Climate Region as defined by the U.S. National

Center for Environmental Information. This includes Iowa, Minnesota, Michigan and Wis-

consin. Thus each observation matrix has dimension 4 × 4, where the 4 rows correspond

to the 4 spatial locations, and the 4 columns correspond to the 4 perils. Losses were log

transformed and mean centered before model fitting, as dollar losses typically are heavy

tailed.

A series of models were fit with varying numbers of underlying factors and different

random initializations of the parameter estimates. In all iterations, the initial values for the

unobserved factors were fixed at 0. The use of random initializations can help prevent the
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EM algorithm from converging to a local maximum of the likelihood function rather than

the global maximum. Thus 50 random initializations were considered for each number of

factors. Convergence was excepted after the change in absolute log-likelihood was less

than 0.001.

In line with previous studies of bilinear factor analysis (Gallaugher and McNicholas,

2017), we select the model with the lowest Bayesian Information Criterion (BIC) for com-

parison. The BIC is preferred in this context as it gives a higher penalty to models with a

large number of parameters, while both AIC and AICc can still give too much preference

overly complex models in the state space modeling context (Cavanaugh and Shumway,

1997). This is in part due to the small sample size relative to the number of parameters.

The BIC is given by:

BIC = klog(N) − 2L(Θ̂) (3.27)

where k is the number of parameters in the model and N is the number of observations

(in this case, N = n × p × T ). A summary of each optimal model fit is given in Table 3.1.

The BIC indicates that the model with 2 factors is preferred to reduce complexity. The

resulting parameter estimates for this model are given in Tables 3.2 - 3.5, both before and

after performing a varimax rotation. The varimax rotated factor loadings can be used to

identify which variables each factor is most associated with.

Table 3.1: Convective storms model comparison.

Factors Iterations Parameters Log-likelihood BIC

1 32 28 -1256 2701

2 63 48 -1250 2639

3 77 56 -1250 2663

4 60 64 -1246 2678

5 189 72 -1244 2676

43



Table 3.2: Matrix variate factor loading matrix A, before performing a varimax rotation.
State Loadings on Factor 1 Loadings on Factor 2

Iowa 1.00 0.33

Michigan 0.02 0.39

Minnesota -0.07 -0.08

Wisconsin -0.27 0.31

Table 3.3: Matrix variate factor loading matrix A, after performing a varimax rotation.
Gives the effects of factors on spatial locations.

State Loadings on Factor 1 Loadings on Factor 2

Iowa 1.032 -0.221

Michigan 0.216 0.323

Minnesota -0.103 0.00

Wisconsin 0.00 0.403

The fits suggest that the first factor is most associated with losses in Iowa (1.032), with

some effect on Michigan and Minnesota as well. The second factor is most associated

with losses in Wisconsin, with smaller impacts on Iowa and Michigan. Note that in this

model, the two factors are able to detect different driving forces impacting Minnesota and

Wisconsin independently. When it comes to the different perils considered, after rotating

the factors, the first factor is found to be most associated with hail and wind. Meanwhile,

the second factor has no effect on wind, and is most closely associated with lightning. In

this instance, the two factors were able to separate out underlying factors driving wind

completely from the second factor. Together, these fits suggest that the two factors are

picking up two major underlying trends: underlying unobserved factors driving losses from

hail and wind in Iowa, and factors driving losses lighting in Iowa, Michigan and Wisconsin.

In factor analysis studies, using the varimax rotation both imposes necessary identifia-

bility constraints, and also aids in model interpretability. However, recall that in addition in
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Table 3.4: Matrix variate factor loading matrix B, before performing a varimax rotation.

Factor Hail Lightning Tornado Wind

1 0.68 0.42 -0.44 0.48

2 -0.09 0.37 0.03 -0.19

Table 3.5: Matrix variate factor loading matrix B after performing a varimax rotation.
Gives the effects of factors on perils.

Factor Hail Lightning Tornado Wind

1 0.624 0.166 -0.395 0.510

2 0.277 0.540 -0.208 0.00

this application, the first entry of A was set to 1 in order to impose identifiability between

the A and B matrices. The solution Â and B̂ can be re-scaled to any equally valid solution

aÂ and 1
aB̂. If we chose to do so for any a, the magnitude of the entries of would change,

but the interpreted relative importance of the locations for each of the factors would not.

Similarly, any alternative solution would preserve the relative importance of each of the

hazard types for each of the factors as given in 3.5.

However, because the identifiability constraint inherently affects the magnitude of the

loadings in both the A and B matrices, care must be taken when comparing the entries

between Â and B̂. For example, it might be tempting to conclude from Tables 3.3 and

3.5 that Iowa is more important to factor 1 than hail is. However, consider the fact that

B′ ⊗ A = 1
√

.624/1.032
B′ ⊗

√
.624/1.032A. Thus

√
.624/1.032Â and 1

√

.624/1.032
B̂ are an

equally valid solution, and under this solution the factor loadings on Factor 1 for Iowa

and Hail are identical. For this reason, the obtained Â and B̂ matrices are most useful

in separately providing information about the importance of each location relative to the

others, and each hazard relative to the others. If a specific combination of hazard and

location is of interest, the entries of the matrix B̂ ⊗ Â can easily be calculated through
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simple multiplication. For example, we could compute the loading on first factor for hail

in Iowa using 1.032×0.624 = 0.644. The location-hazard pair loadings are not impacted by

the identifiability constraint, as the choice of scaling factor a is moot after multiplication.

Aside from the magnitude of the values, the sign of each factor loading does not have

inherent meaning on its own, due to the identifiability constraint, transformation of the data,

and changing sign of the evolving factor states. However, they can be used to compare

effects within the factors. Thus, for example, both factors indicate inverse relationships

between hail and tornadoes. Meanwhile, the first and second factors have inverse effects

on losses in Iowa.

Tables 3.6 and 3.7 give the estimates for the fit covariance matrices. Note that Σ and

Ψ provide estimates of the remaining model error after accounting for the factors. For ex-

ample, comparing Σ(1,2) = 0.25 to Σ(1,3) = 0.43, we see that the residual covariance

between Iowa and Michigan is lower than the residual covariance between Iowa and Min-

nesota. The fact that all signs are positive across both matrices indicates that the residual

errors are all positively correlated with each other. This structure suggests that for future

analysis, it may be worth considering additional factors in order to reduce the residual

correlations. This would however come at the price of increasing model complexity.

Next we illustrate the use of the matrix variate dynamic factor model in the context of

forecasting. Using the fit parameters, 50,000 random walks of the factors were initialized

Table 3.6: Covariance matrix of observation error Σ.
Gives the variance and covariances of spatial locations.

State Iowa Michigan Minnesota Wisconsin

Iowa 1.00 0.25 0.43 0.40

Michigan 0.25 2.02 0.40 0.44

Minnesota 0.43 0.40 3.41 0.63

Wisconsin 0.40 0.44 0.63 2.29
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Table 3.7: Covariance matrix of observation error Ψ.
Gives the variance and covariances of perils.

Hazard Hail Lightning Tornado Wind

Hail 1.39 0.69 0.54 0.67

Lightning 0.69 0.96 0.44 0.82

Tornado 0.54 0.44 1.00 0.43

Wind 0.67 0.82 0.43 0.87

starting at the time T smoothed estimate of the factors. These simulated factor states were

then used to create simulated loss states at time T + h given by AXT+hB. These estimates

were then used to construct a 95% bootstrap confidence interval. Figures 3.5 -3.8 illustrates

these forecast intervals for the four perils in Iowa. Notice that the correlations between

hazard types are positive, and thus forecasts for the different hazards are heavily correlated

as well. In particular, these results suggest a similar pattern of losses from hail, wind, and

lightning, but a slight increase in losses from tornado. This type of analysis can be used by

insurers to understand future losses of a portfolio containing multiple related hazards.

Figure 3.5: Forecast of loss from hail in Iowa.
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Figure 3.6: Forecast of loss from wind in Iowa.

Figure 3.7: Forecast of loss from tornadoes in Iowa.
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Figure 3.8: Forecast of loss from lightning in Iowa.

3.3.2 Case Study: County Level Analysis in Ohio

As the number of spatial locations increases, the feasibility of the multivariate approach

reduces drastically due to the extended compute time. To illustrate this, a matrix variate

model was fit for the 88 counties in Ohio. In this instance, the multivariate model would

have 62,128 covariance parameters alone, with an additional 352q factor loading parame-

ters for a model with q factors. The MARSS package estimated 57.4 Gb of memory needed

to fit the model. However, the matrix variate model with 2 factors was able to converge in

903 iterations.

The raw loss data for the beginning and end of the study period are given in Figures

1 and 2. Early on in the study period, losses are reported in more regional patterns, while

more recent years of data have more fine grained reports of losses. In addition, the vari-

ance of annual estimates are much larger toward the end of the study in 2020 than at the

beginning of the study in 1970. Dollar losses were log transformed to reduce this het-

eroskedasticity.
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This case study illustrates the manner in which the factor loadings can detect underlying

patterns as losses evolve over time. The resulting factor loadings, following a varimax

rotation, are presenting in Figure 3.9 and Table 3.8. The factor matrix A gives the loadings

onto the rows, which represent the 88 spatial locations shown in Figure 3.9. Each factor

identifies clustering regions with similar underlying structure. The first factor focuses on

the northeast and southwest corners of the state. The second factor is most associated with

a cluster in the southeast. This diverging pattern is due to the varimax rotation, which aims

to associate as many of the loadings with one factor or the other as possible.

To emphasize that the factor loadings onto the first factor are all positive, and the load-

ings onto the second factor are all negative, the two maps are depicted in different color

schemes. However, is important to note that the sign of these factor loadings do not have

meaning on their own due to the identifiability constraint, the centering of the data, and the

sign of the evolving factors. They do however imply an inverse relationship with the other

factor effects in the matrix.

Figure 3.9: Factor loadings (A matrix) fit from the matrix variate dynamic factor model.
Factors have been rotated using varimax.
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Table 3.8: Factor loading matrix B fit from the matrix variate dynamic factor model.
Factors have been rotated using varimax.

Factor Hail Lightning Tornado Wind

1 -2.0600 -2.044 -2.190 -2.407

2 -2.0165 -2.033 -1.839 -2.010

Table 3.8 gives the loadings of these same factors on the different hazard types. The first

factor is evenly spread among the 4 hazard types. Thus the first factor seems to suggest that

the losses within the first spatial cluster are fairly evenly spread among the hazard types.

The second factor in Table 3.8 is also fairly evenly spread, except with a lower impact on

losses from Tornadoes. These results can be used by insurers to understand the spatio-

temporal patterns of losses in their portfolio, and form insurance products that adequately

account for the correlation in losses from multiple perils.

In future work, it would be of interest to refit this model for varying numbers of un-

derlying factors, which would lead to detection of more spatial clusters. The ideal number

of clusters could then be chosen using methods such as AIC or BIC. However, for each

additional factor included in the model with a large number of spatial locations, the com-

putation time increases significantly. For this reason, an area of future work would be to

adapt the EM algorithm to a quasi-maximum likelihood approach (Doz et al., 2012) to

reduce fit time.

3.4 Discussion

From a technological standpoint, this modeling approach expands upon recent devel-

opments in the statistical literature (Ensor, 2013; Gallaugher and McNicholas, 2017; Xie et

al., 2008) to develop a bilinear factor analysis model for matrix variate data. The developed

methodology allows for sophisticated modeling and forecasting of convective storm losses
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by simultaneously accounting for spatial correlation, correlation across different perils, and

the evolution of unobserved latent variables over time. The fit values from this model may

be used to identify overlapping spatial regions with similar underlying drivers of loss be-

havior.

The likelihood approach to factor analysis, while computationally intensive, has some

benefits over component based methods, such as interpretability of the model and the abil-

ity to impose various constraints and derive estimates for missing data. This matrix variate

dynamic factor model is a flexible framework and could be adapted in many ways for

future use. For example, a loading matrix could be imposed on the evolving factors in or-

der to account for known changes in the underlying factors, or expected structural breaks.

The model could also be adapted to allow for maximum likelihood fitting of missing ob-

servation data. One final area of future work would be to adapt the EM algorithm to a

quasi-maximum likelihood approach (Doz et al., 2012) in order to reduce fit time. Such

an approach would be able to retain the benefits and flexibility of this likelihood approach,

while speeding up fit time.

This work has value for policy makers, risk managers, and insurers in their develop-

ment of new approaches for convective storm resilience. For insurers, the detected spatial

patterns can bring insight to the spatial distribution of risk present across their portfolios.

This may lead to new products such as parametric insurance and increased risk-sharing

through deductibles. For policy makers, these findings will aid in development of effec-

tive response strategies to allocate disaster resilience and recovery resources. Identification

of regions with similar drivers of risk may also be used to aid supplementary models by

providing a baseline assumption of similar loss behavior in those areas.
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Chapter 4

NATURAL HAZARDS AND MIGRATION IN THE UNITED STATES

The complex yet well established relationship between climate and migration was re-

cently highlighted in the 2022 Assessment Report from the Intergovernmental Panel on

Climate Change (Dodman et al., 2022). In particular, there is an overwhelming consensus

that both long run climatic conditions (Backhaus et al., 2015; Cattaneo and Peri, 2016)

as well as acute hazard events (Gröschl and Steinwachs, 2017) are important factors for

migration worldwide (Dodman et al., 2022; Hoffmann et al., 2020; Šedová et al., 2021).

Empirical research into the evolution of these effects in the United States is sparse (Hoff-

mann et al., 2020; Hoffmann et al., 2021; Šedová et al., 2021). In addition, there are few

studies into the impacts of accumulated shocks over time (Hoffmann et al., 2021).

Events that consist of multiple hazards that occur simultaneously or in short succession

are referred to as compound hazards (Hillier and Dixon, 2020; Zscheischler et al., 2018).

Often times, the underlying hazards may have a relatively low impact if occurring in isola-

tion, however the interaction of these events can create extreme outcomes (AghaKouchak

et al., 2020; Vahedifard et al., 2016). One example of this phenomena was the 2010 heat-

wave in Russia that was intensified by co-occurring drought, heat, fire and air pollution

(Zscheischler et al., 2018), resulting in nearly 5,000 deaths (Met Office, 2023). Another

example was the deadly 2018 debris flow event in California which killed 23 people and

damaged over 400 homes (Kean et al., 2019). The event was heavily impacted by preceding

drought, wildfire, and heavy precipitation (AghaKouchak et al., 2020).

There is reason to suspect that repeated hazards over time could have a different impact

on migration patterns than isolated acute events. For example, some studies suggest that
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psychological drivers, such as fear and perceived risk, can greatly influence individual’s

migration choices (Shukla et al., 2018).

This study investigates the effect of compound hazard events on regional migration

patterns in the U.S., adopting the established and well-suited panel approach (Hoffmann et

al., 2020; Hoffmann et al., 2021). We hypothesize persistent, cumulative, and compounding

hazards may instigate migration into different areas of the country with varying climate and

hazard exposure. In addition, our choice of study design is able to effectively address some

of the data and modeling complications that have affected climate and migration papers in

the past, which have lead to highly variable results (Beyer et al., 2022; Hoffmann et al.,

2021).

Specifically, this study investigates two different categories of hazard events: the oc-

currence of significant large events, and compounding hazard events over time. Databases

of disaster losses often have definitional concerns, whereby the same climate-related or

geophysical event is entered as multiple separate loss events (Gall et al., 2009). By care-

fully choosing spatio-temporal co-occurrence of events in time, we develop a data-driven

definition of what constitutes a compound hazard event.

From a methodological perspective, in this work, we adopt a Bayesian spatio-temporal

panel approach, with the varying measures of hazard events as regressors. Bayesian models

have recently been suggested as a potential solution to the shortcomings of previous migra-

tion modeling attempts (Beyer et al., 2022). Previous studies have emphasized detection

of temporal trends, but the chosen models have failed to adequately capture the temporal

variation in the data (Beyer et al., 2022), leading to widely varying results (Hoffmann et al.,

2021). In the Bayesian modeling approach, rather than attempting to discern the true value

of the parameter estimates with an accompanying confidence interval, a probability interval

for the unknown quantity is calculated. This interval thus has a clear interpretation
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as having a high probability of containing the parameter value of interest (Gelman et al.,

2013).

As there are still many aspects of climate-related migration that are not well understood,

many authors have called for more nuanced research into the effects in different spatial

regions over time (Hoffmann et al., 2020; Kaczan and Orgill-Meyer, 2020; Klepp, 2017).

Thus, this study extends current findings of climate-related migration to address the varying

effects of acute and compounding events on regional migration, while also exemplifying

use of Bayesian models for future migration related studies.

4.1 Literature Review

Broad view studies of migration patterns typically consider migration rates or counts

between geographical regions, such as countries or states. In these instances, the data forms

a spatio-temporal panel, with migration counts or rates observed annually. Thus, panel

data approaches are typically employed (Hoffmann et al., 2020; Hoffmann et al., 2021;

Šedová et al., 2021), with the aim to estimate the impact of changes in climatic variables

over time (Beyer et al., 2022). These types of longitudinal studies can be broken down

into those that consider slow-onset events, such as drought (Cattaneo and Peri, 2016), and

acute events such as severe storms or wildfires (Gröschl and Steinwachs, 2017). Overall,

previous meta-analyses suggest that climatic events are more likely to lead to internal rather

than international migration (Hoffmann et al., 2020; Šedová et al., 2021).

The majority of literature has focused on slow onset events, such as sea level rise and

desertification (Hoffmann et al., 2021). Such studies tend to make use of long term climate

variables, such as precipitation levels and temperature (Hoffmann et al., 2020). In the

studies looking at quick onset events, the choice of metric to describe events vary widely

(Hoffmann et al., 2021). Some studies include metrics to estimate severity of events in

a region. For example, (Gröschl and Steinwachs, 2017) considered maximum observed
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values, such as maximum earthquake intensity and maximum wind speed. More commonly

considered is a simple count of the number of events during a given time period (Beine

and Parsons, 2014; Cattaneo and Peri, 2016; Neumann et al., 2015; Saldaña-Zorrilla and

Sandberg, 2009). One study in Mexico considered the number of regional disaster events

between 1990 and 2000 as a predictor in a spatial regression model (Saldaña-Zorrilla and

Sandberg, 2009). Their model suggested that regions with a higher frequency of disasters

have higher rates of out-migration. Another study of international migration at the decade

level considered the count of total disasters in a given decade (Beine and Parsons, 2014),

and found no evidence of impact between 1960 and 2000. While these types of studies do

consider metrics of repeated events, it is difficult to discern how truly compounding these

events are at such a large spatio-temporal scale.

Studies of climate-related migration specifically in the U.S. have not addressed the

year to year impacts of natural hazards in the United States. Studies that have focused

on climate-related variables, such as temperature and precipitation, have found significant

effects of climate on U.S. migration patterns (Poston et al., 2009). Studies regarding acute

events have been limited in scope. In one study (Boustan et al., 2020), the authors analyzed

federally designated disasters on the decadal level in the United States from 1920 to 2010

to see impacts to the economy. This study was thus conducted at a fine spatial resolution,

but a broad temporal resolution. Over the span of the study, they found that severe disasters

increased out-migration rates at the county level by 1.5 percentage points. The migration

response to milder disasters is smaller but has been increasing over time.

Another approach at the county level is to fit separate bilateral models for migration

each year, with a focus on understanding income inequality in tandem with climate-related

migration (Chen and Lee, 2022). This study focused on detecting spatial patterns, rather

than temporal patterns. Other studies have focused solely on migration patterns following

specific large events, such Hurricanes Katrina and Rita (Myers et al., 2008).
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Unfortunately, the use of raw disaster counts in migration studies without careful data

cleaning is not ideal. This is because many databases of disaster events have definitions that

make the count of disasters difficult to interpret (Gall et al., 2009). For example, the U.S.

Storm Data product, maintained by the National Oceanic and Atmospheric Administration,

distinguishes between episodes, which includes an entire storm system, and events, which

may occur as part of the same storm system (“Storm Data FAQ Page”, 2023). In addition,

in this database, a single tornado is counted as multiple separate events if it lifts off the

ground for more than 4 minutes or 2 miles (“Storm Data FAQ Page”, 2023). Any attempt

to catalogue disaster occurrences must address such definitions in one way or another. Thus

when aggregating the count of events over a time period that come from such databases, it

may not be clear what the count truly represents.

It is not surprising then that migration studies that include metrics of event intensity, in-

stead of simple event occurrence, are more likely to detect a signal (Hoffmann et al., 2021;

Šedová et al., 2021). For example, these studies might include dollar losses associated with

an event, the length of the event, or the number of people effected as a measure of inten-

sity. When it comes to compound events, the associated hazards can be interrelated. This

implies that assessing the risk of each event individually may not provide the same level of

information regarding the compounded catastrophic impacts (Zscheischler et al., 2018).

In many studies, long run climatalogical variables like temperature and precipitation are

considered alongside measurements of hazard occurrence (Beine and Parsons, 2014; Cat-

taneo and Peri, 2016). In addition, these studies often include other control variables, such

as GDP. Overall, the choice of which variables to include in migration models is highly

dependent on the spatio-temporal area of interest, and the intention of the study (Hoffmann

et al., 2021). Because climate metrics such as precipitation, temperature, and disaster oc-

currence are not independent, there is the possibility for omitted variable bias. In addition,

previous studies have also suggested that climate and hazards can impact migration not only
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directly, but through socioeconomic or agricultural channels (Beine and Parsons, 2014; Cai

et al., 2016). Thus, it is common to include dummy variable fixed-effect terms to control

for time-invariant factors that affect migration flows, which may be difficult to explicitly

measure (Cai et al., 2016; Hoffmann et al., 2021).

One specific type of panel data model employed is the so-called gravity model, which

assumes that bilateral migration is proportional the population sizes of the starting and

ending location, and the distance between them (Backhaus et al., 2015; Beine and Parsons,

2014; Beyer et al., 2022). They often take on a log-log form, and are fit using OLS (Beyer

et al., 2022; Hoffmann et al., 2021), although some studies have used Poisson regression

or negative binomial regression to account for zero-inflated data (Beyer et al., 2022).

Gravity models attempt to deal with the spatial nature of the data by considering phys-

ical distance between locations, or if two locations share a common border (Beine and

Parsons, 2014). However, these studies rarely take an overtly spatial approach, or test for

spatial auto-correlation in the model residuals (Hoffmann et al., 2021; Saldaña-Zorrilla and

Sandberg, 2009). Due to the large panel sizes, these types of models typically are able to

capture the vast majority of spatial variation (Beyer et al., 2022). However, these models

do not typically allow for temporal auto-correlation, and have recently been criticized for

their inability to explain temporal variation, leading to highly variable results (Beyer et al.,

2022; Hoffmann et al., 2020). In addition, climactic shocks may have longer term impacts

on migration, necessitating temporal lags (Hoffmann et al., 2021).

Bayesian models have been proposed as an alternative approach to effectively model

temporal variation in a stochastic manner (Abel et al., 2013; Azose and Raftery, 2015;

Beyer et al., 2022; Bijak, 2011). Despite the complexity and uncertainty of climate, hazard,

and migration patterns, Bayesian approaches can be used to identify climate-related trends

and make reasonable projections while acknowledging the inherent uncertainty (Abel et al.,

2013).
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4.2 Methodology

4.2.1 Data

This study makes use of the Census Bureau’s state to state migration flow datasets

(Be, 2021) from state to state. These are annual bilateral flows both to and from a given

state and are estimated from the American Community Survey. Estimates of GDP come

from the Bureau of Economic Analysis (Bureau of Economic Analysis, 2022). In addition,

we consider the climate regions defined by NOAA (Karl and Koss, 1984) to investigate

regional trends.

We adopt the definition of compound events as events that are co-occurring in space and

time. We specifically consider events in the same year and state that align with the com-

pound hazard categories defined by (Zscheischler et al., 2018), given in Table 4.1. From

this framework, two types of measures are constructed that attempt to capture the impact of

compounding hazard events over time from the SHELDUS Version 21.0 database: dollar

losses and counts. First, we consider a time series of total dollar losses arising from each

compound hazard category in each state and region. Next we count the number of county

level events in SHELDUS causing over a specific threshold of losses. Here, we consider a

cutoff of $10,000. Filtering through a minimum cutoff of disaster losses ensures that the

count of loss events is not inflated by small entries, but rather focuses on more substantial

disasters.

Note that the category ”Flooding” is included, despite only consisting of a single haz-

ard. This is because flooding is inherently a compound phenomena, impacted by features

such as river flow and coastal water level Zscheischler et al., 2018. Flood events are may

subsequently result from heavy precipitation or storm surge. For this reason, we consider

both flooding as an independent category, as well as flooding that occurs together with high

wind.
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4.2.2 Bayesian Panel Model

In this study, a series of Bayesian spatio-temporal panel models are considered with

different metrics for the number and severity of compound hazard events as covariates.

Macro studies of migration tend to adopt either raw migration counts or migration rates as

the outcome variable of interest for modeling purposes (Beyer et al., 2022; Hoffmann et al.,

2021). Because the variability in migration counts grows proportionally with population

size, dividing by population in some instances can help to stabilize the variance of the

estimates (Azose and Raftery, 2015). In this application, the count of migrants cijt from

location i to location j in year t are be considered. We also investigate the migration rates,

where the migration count is divided by the population of the originating country during the

year of outward migration pit. The resulting rate mijt = cijt/pit in effect gives the fraction

of the population in location i that moved from location i to location j that year.

By definition, observable migration rates are bound in the interval [0,1], which has

implications for the distributional assumptions of regression approaches. In addition, mi-

gration data are often zero inflated. Despite these data properties, many studies still adopt

a standard OLS model for bilateral migration with normal errors, although, Poisson and

Negative Binomial models are at times adopted for migration count data (Hoffmann et al.,

Table 4.1: Compound hazard categories considered.
Compound Hazard Category SHELDUS Records Model Alias

Wildfire Heat, Drought, Wildfire, Lightning fire

Convective Storm Severe Storms, Lightning, Hail, Wind storm

Wind with Severe Precipitation Wind, Flooding wind flood

Flooding Flooding flood

Coastal Coastal, Hurricane coastal

Heat Drought, Heat heat drought
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2021). In this work, we address the distributional concerns by considering a panel of state

and region level aggregates. Because we are interested in detecting regional trends in mi-

gration, our primary model aggregates migration flows to the state-region pair. This forms

a bilateral dataset capturing information about state of origin and region of destination. Af-

ter assessing the distribution of the aggregated data, we decided not to form a migration

rate, but to normalize using the log transform.

We also considered for each state the out migration rate, in migration rate, and net

migration rate. These choice of models are well suited to our key interest of understanding

the effects of compound hazard events on in and out migration. In addition, this choice

greatly stabilizes the dataset and speeds fitting via Markov Chain Monte Carlo.

At the suggestion of Beyer et al., 2022 and Hoffmann et al., 2021, we begin with a

simple regression structure with few controls taking the form:

ln(mit) =αij + β0 + β1Sit + β2Popit + β3Popjt

+ β4GDPjt/Popit + β5GDPjt/Popjt + ϵit
(4.1)

Here, Sit is a measure of the severity of compound hazard category in location i.

Meanwhile, GDPit/Popit gross domestic product per-capita of the originating state, and

GDPjt/Popjt is the gross domestic product per-capita of the destination region. GDP per

capita as a metric of wealth is a well established confounding factor in studies of haz-

ards and migration (Hoffmann et al., 2021). The αij term controls for other unobserved

time-invariant state confounding affects. In Bayesian regression approach, each of the pa-

rameters are assigned a prior distribution. As a first step, we assume normal priors for all

regression variables. The model error ϵit is also taken to be normally distributed, with mean

0. Each model was fit using the brms package in R, which fits via Markov Chain Monte

Carlo sampling using the NUTS sampler in Stan.
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Figure 4.1: Migration flows considered between originating state and destination region.
Climate regions defined by NOAA (NCEI, 2023).

4.3 Results

4.3.1 Bilateral Model

First we consider the bilateral model, which facilitates the identification of spatial pat-

terns and effects for both origins and destinations of migration. In this instance, we consider

migration from each state to each climate region of the U.S., as defined by NOAA (Karl

and Koss, 1984) and as seen in figure 4.1. Typically in the non-Bayesian approach, fixed

effects are included for spatial location pairs. In our Bayesian approach, we allow for vary-

ing intercepts. These varying intercepts capture the effects of time-invariant factors specific

to each state-region pair, such as their geographical distance, political leaning, climate, and

culture (Beyer et al., 2022).

A second approach sometimes taken in the literature is to allow for two separate fixed

effect terms, one to account for effect of the origin location, and one for destination lo-

cation. These fixed effects are more general and capture the standard migration patterns

to and from each location. However, they are not able to account for ongoing migration

relationships between the regions.

62



First, a null model was fit only employing the varying intercept terms. The Bayesian

model was fit using 4 chains, and all parameters converged with an R̂ of 1. The findings in

Table 4.2 reveal that the model utilizing paired effects comprehensively captures the ma-

jority of the variability. We report the Bayesian R2 metric, which attempts to measure the

portion of the variability accounted for by the model. This finding is in line with previous

studies containing pairwise fixed effects (Beyer et al., 2022). Meanwhile, the model em-

ploying separate fixed effects fails to adequately explain much of the observed variability

in the data. This suggests the presence of latent, consistent factors influencing migration

across each state-region pair over time. Models without these state-region pair effects

might suffer from omitted variable bias due to the many complicating factors impacting

migration, unless these factors are accounted for explicitly in the model.

Next we considered a baseline model incorporating the two most commonly consid-

ered covariates in migration studies: population and GDP per capita (Beyer et al., 2022).

Including just these two additional covariates raised the R2 significantly to 0.94 for the

pairwise model. However, the R2 estimate hardly changed for the separate state and region

varying effect model. These results are confirmed by their density vs posterior fit plots,

shown in Figure 4.2. This suggests that the vast majority of the variation in the data is due

to state-region pair effects, population and wealth.

Next, we fit a series of models for each considered hazard metric with varying intercepts

for each state pair. For each model fit, none of the metrics for hazards were significant, both

in the compound models and general hazard metric models. In part this is not surprising, as

the varying intercepts explain the majority of the observed variance. These results suggest

minimal to no impact of hazard losses over the pairwise effects. However, if the level of

hazards are fairly stable over the study period, it is possible that any effects of hazards on

migration are being accounted for in the pairwise effects. Thus we next considered models

with varying effects for state and region only, in a cross study design.
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Table 4.2: Fit of baseline bilateral models with varying intercepts.

Varying Intercepts Model Terms R2

Pairwise αij + β0 0.78

Pairwise αij + β0 + β1Popit + β2Popjt + β3GDPit/Popit + β4GDPjt/Popjt 0.94

State and Region αi + γj+ β0 0.39

State and Region αi+γj +β0+β1Popit+β2Popjt+β3GDPit/Popit+β4GDPjt/Popjt 0.39

Results from the cross study design again suggested no significant effect of hazards

above the pairwise effects. Moreover, these models were not able to account for the major-

ity of the variation in the data, with R2 remaining below 0.4 in all instances. Thus for a final

comparison, the models were refit using more general metrics of hazards. These metrics

included a time series of total dollar losses in each state and region, as well as counts of

reported hazard events with losses above various thresholds: $100K, $1M,$10M, $100M,

and $1B. As one final alternative, the count of Presidential Disaster Declarations in each

state was considered, as these events are likely to cause significant hardship to the effected

communities. None of these approaches showed significant effects.

These comprehensive results suggest that at this time, there is little detectable affect

of hazard events on regional migration. Previous studies have demonstrated the impact of

hazards on migration at a local level (Boustan et al., 2020; Chen and Lee, 2022; Myers

et al., 2008), however we notably find these patterns do not persist to regional migration

levels. These results suggest that individuals and households are not choosing migration

as their primary adaptation strategy to deal with increased hazards in their climate region

and the imposing psychological concerns regarding climate change. Instead, families in

exposed areas may simply choose to invest in hardening their home in preparation for

inclement hazard events (Donner and Rodriguez, 2008).
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Figure 4.2: Data density (black) and model posterior distribution (blue).
Top left: State-region pair varying intercept.
Bottom left: State-region pair varying intercept with population and GDP per capita.
Top right: Separate origin state and destination region varying intercepts.
Bottom right: Separate state and region varying intercepts with covariates.

4.3.2 Bayesian Perspective of Temporal Trends in U.S. Migration

One advantage of the Bayesian approach is the formation of a probability distribution

for the fit parameters. While our migration models did not find significance of the climate-

related variables, we illustrate here how the Bayesian modeling approach can be used to

understand temporal trends in migration.

We refit the basic migration model that incorporated pairwise fixed effects, population,

and GDP, but included a trend term. The results showed a small but statistically significant
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Figure 4.3: Left: Posterior distribution of the trend term.
Right: Trace of the MCMC chains, indicating convergence.

decrease in out of state migration overall after accounting for pairwise effects, population,

and GDP. In contrast, the state and region varying intercepts model did not detect significant

trend.

The posterior distribution for the identified trend term in the pairwise varying intercept

model is given in figure 4.3. To anticipate forthcoming trends, future projections of popu-

lation and GDP can be incorporated along with the trend to generate the marginal posterior

in distribution for migration between each state region pair.

4.3.3 State Level Models

With the limited findings in the bilateral model, we subsequently explored distinct mod-

els for aggregate inflow, aggregate outflow, and net flow for each state. In each model, vary-

ing intercepts were included for the state in order to account for the baseline migration rate

within the respective state over the 15 year study period. These models give surprising re-

sults. The resulting coefficients for compound hazards in Table 4.3 measure the nationwide

effect of each compound hazard category above baselines.

After inspecting the outflow and inflow data, migration rate per 10,000 was chosen as

the outcome variable for each. However, the net flow data had a different structure, being

inherently centered around zero. Normalization by population would result in a more
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complex bimodal distribution. Thus instead, the raw net flow data was assumed to come

from a shifted log normal distribution.

For all models among the count related measures of hazards, the convective storm cat-

egory was the only compound hazard type that was significant. For every additional con-

vective storm related event the migration rate increased by about 0.02%.

The most substantial effect seen from dollar losses is from coastal events. Every addi-

tional million dollar in losses from coastal related events was associated with a decrease in

the outward migration rate by approximately 1.2%. This finding, while counter-intuitive,

is actually supported by previous studies (Boustan et al., 2020; Donner and Rodriguez,

2008). The population in coastal regions have increased dramatically over the last few

decades (Nicholls, 1995), and while these populations are at an increased risk to coastal re-

lated hazards and flooding (Klein et al., 2003), previous experts indicate that homeowners

in these areas are reluctant to relocate. This is largely due to strong individual, market, and

regulatory incentives that encourage oceanfront property owners to stay in place (Donner

and Rodriguez, 2008).

Furthermore, movement of displaced populations following the largest coastal hazard

events, such as hurricanes Katrina and Rita, are not spatially random (Myers et al., 2008).

Migration in these instances tends to be to neighboring counties, reducing the effect of

state to state migration (Myers et al., 2008). Interestingly, while coastal events were found

to be associated with decreased out-migration, they also were found to be associated with

decreased in-migration. The suggests that overall mobility following severe coastal events

is reduced.

Meanwhile, each additional million dollar in fire related hazards was found to corre-

spond to a modest 0.02% increase in outward migration rate, and an increase of one million

dollar in losses from combined wind and floods was associated with 0.07% increase in out

migration rate.
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Table 4.3: Marginal effects of compound hazards.

Covariate Outflow Inflow Net Outflow

count fire 0.0003 0.0003 0.0427

count storm 0.0003* 0.0002 -0.0131

count windflood -0.0003 -0.0003 0.0264

count flood 0.0003 0.0002 -0.0316

count coastal -0.0004 -0.0003 -0.0692

count heatdrought 0.0004 0.0004 -0.0397

loss fire 0.0021* 0.0010 1.2700

loss storm 0.0012 0.0013 -1.9700

loss windflood 0.0007* 0.0005 -0.2430

loss flood -0.0002 -0.0002 -0.0815

loss coastal -0.0118* -0.0121* 0.2400

loss heatdrought 0.0811 0.1380 -0.9950

Losses are reported at the million dollar scale.

* Indicates that the 95% probability interval for the parameter did not contain zero.

4.4 Discussion

Overall, these results suggest that at this time, there is little detectable affect of haz-

ard events on regional migration. This is an unexpected finding in the context of climate

change. While previous studies have demonstrated the impact of hazards on migration at

a local level (Boustan et al., 2020; Chen and Lee, 2022; Myers et al., 2008), we find these

patterns do not persist to interstate and inter regional migration levels.

Various additional factors could contribute to these observed outcomes. As observed

in previous studies, the limited time series duration of the available migration data may

hinder the identification of long term trends. In addition, the choice of dataset could have

significant impacts on results. For example, the Census Bureau solely provides county-to-
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county migration data at five-year intervals, thus making the choice of dataset a trade off

between temporal and spatial scale. For this reason, it may prove valuable in future work

to make use of data over a longer time period at varying levels of spatial granularity. The

inclusion of supplementary datasets, such as IRS migration data (IRS, 2023), could aid in

this type of future analysis.

The evidence provided from this study is that individuals and households are not choos-

ing migration as their primary adaptation strategy to deal with increased hazards and the

imposing psychological concerns regarding climate change. For example, families in ex-

posed areas may simply choose to invest in hardening their home in preparation for in-

clement hazard events (Donner and Rodriguez, 2008). However, many experts question the

sustainability of remaining in areas particularly prone to future hazards, such as coastal re-

gions (Donner and Rodriguez, 2008). Previous studies suggests that involuntary migration

is both economically and psychologically costlier than voluntary migration (Partridge et al.,

2017). Future research in this regard might explore questions such as who among a popu-

lation are more likely to move or stay, and how moving might affect migrants’ well-being

(Belasen and Polachek, n.d.).

Studies into climate-related migration, particularly those aimed at detecting and fore-

casting temporal trends, suffer from widely varying results and a great deal of scientific

uncertainty (Beyer et al., 2022). Enhancing comprehension of these trends to the fullest

extent possible would prove immensely valuable from a policy perspective. However, any

attempt to capture such trends must account for the inherent data limitations and uncertain-

ties surrounding climate change, natural hazard occurrences, and other contributing factors

to migration (Azose and Raftery, 2015).

This study illustrates the manner in which a Bayesian modeling approach can estimate

the inherent uncertainty in migration modeling, providing decision-makers with greater

clarity regarding the extent of knowledge on migration trends. The ability to account for
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uncertainty is a powerful strength of Bayesian models, making them an invaluable tool for

improving decision-making in the face of complex, uncertain systems like climate change

(Gelman et al., 2013; Gelman and Hill, 2006).
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Chapter 5

CONCLUDING REMARKS

As the impacts of climate change worsen in the coming decades, natural hazards are

expected to increase in frequency and intensity, leading to increased loss (Gall et al., 2011)

and risk to human livelihood (Devkota et al., 2016). While exact estimates are unclear,

climate events are projected to lead to the displacement of a significant number of people

in the coming decades (Hoffmann et al., 2021; Islam and Khan, 2018). This dissertation

aimed to develop effective statistical methodologies for forecasting losses from natural

hazards and understanding their societal impacts in light of the evolving spatio-temporal

patterns of losses over the last few decades. The developed spatio-temporal statistical ap-

proaches highlight the ways in which hazard databases can be leveraged in these endeav-

ours.

The analysis carried out in Chapter 2 provides relevant background information for

modeling hazard losses by suggesting that trends in hazard losses can predominantly be

ascribed to growing population and wealth. These findings corroborate conclusions drawn

from prior research (R. Pielke, 2020). Importantly, these results indicate that to avoid spuri-

ous regression, application studies must account for these socioeconomic factors. However,

even after accounting for trends in population and wealth, our results show that hazard loss

datasets are not necessarily stationary. While autocorrelation and heteroskedasticity were

not a significant issue for every county in the study, these data anomalies did occur for many

subsets of the data. Thus studies making use of hazard loss data must apply appropriate

spatio-temporal techniques to account for these possible data features.

In light of these features of the data, Chapter 3 introduces a novel bilinear factor analysis

model for matrix variate data that allows for sophisticated modeling and forecasting of
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convective storm losses by simultaneously accounting for spatial correlation, correlation

across different perils, and the evolution of unobserved latent variables over time. Two

case studies were considered to exemplify use of the model. The first study was for the

4 states in the Upper Midwest climate region, and the second for the 88 counties in the

state of Ohio. In the first case study, the model highlighted two major underlying factors

driving losses in the Upper Midwest climate region: one most associated with hail and

wind in Iowa, and one most associated with lightning in Iowa, Michigan, and Wisconsin.

These estimated factors were then used to forecast by creating confidence intervals of future

losses. In the second case study modeling losses from convective storms in the counties of

Ohio, the model identified two major clusters with different underlying loss structures: one

in the northeast part of Ohio, and one in the southwest portion. These findings highlight the

value of the developed model to identify overlapping spatial regions with similar underlying

drivers of loss behavior, and leverage these for forecasting.

Finally, Chapter 4 turns to the study of societal impacts of natural hazards by inves-

tigating their relationship with migration in the United States. In particular, this research

illustrates how Bayesian approaches can be used to estimate the inherent uncertainty in

such application studies. Overall, these results suggest that at this time, there is little de-

tectable affect of hazard events on regional migration. While previous studies have demon-

strated the impact of hazards on migration at a local level (Boustan et al., 2020; Chen and

Lee, 2022; Myers et al., 2008), we find these patterns do not persist to interstate and inter

regional migration levels.

From a methodological standpoint, the models developed in Chapters 3 and 4 make sig-

nificant contributions to the relevant established literature. The model developed in Chapter

3 expands upon recent statistical developments (Ensor, 2013; Gallaugher and McNicholas,

2017; Xie et al., 2008) to derive a bilinear factor analysis model for matrix variate data.

This developed methodology allows for sophisticated modeling and forecasting of convec-
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tive storm losses by simultaneously accounting for spatial correlation, correlation across

different perils, and the evolution of unobserved latent variables over time. Further, Chap-

ter 4 extends the methodological approaches taken in the literature on migration and haz-

ards by adopting a Bayesian modeling framework, which has recently been suggested as

a potential solution to the shortcomings of previous migration modeling attempts (Beyer

et al., 2022). The resulting model can be used to estimate the inherent uncertainty present

in natural hazard related migration studies.

Together, these three avenues of research combine rigorous statistical analysis with

advanced forecasting and modeling methodologies to provide valuable insights into the

evolving landscape of natural hazard losses and their societal impacts. For example, each

of the proposed spatio-temporal strategies can be used to identify areas that are particularly

vulnerable to specific types of hazards. On its own, this information can be used to inform

mitigation strategies through insurance products, infrastructure development, and alloca-

tion of disaster response resources. Appropriate forecasting models can particularly influ-

ence development of insurance products to account for both spatial heterogeneity and loss

trends. In the context of hazard related migration, these findings can assist in emergency

response and disaster management planning for displaced populations, encompassing both

preparation for changes in population as well as provision of aid and resources to affected

communities (Cai et al., 2016; Cattaneo and Peri, 2016; Kaczan and Orgill-Meyer, 2020).
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ronmental migration to the united kingdom: An exploration using bayesian models.
Population and Environment, 35(2), 183–203. https://doi.org/10.1007/s11111-013-
0186-8

AghaKouchak, A., Chiang, F., Huning, L. S., Love, C. A., Mallakpour, I., Mazdiyasni, O.,
Moftakhari, H., Papalexiou, S. M., Ragno, E., & Sadegh, M. (2020). Climate ex-
tremes and compound hazards in a warming world. Annual Review of Earth and
Planetary Sciences, 48(1), 519–548. https : / / doi . org / 10 . 1146 / annurev - earth -
071719-055228

Azose, J. J., & Raftery, A. E. (2015). Bayesian probabilistic projection of international
migration. Demography, 52(5), 1627–1650. https://doi.org/10.1007/s13524-015-
0415-0

Backhaus, A., Martinez-Zarzoso, I., & Muris, C. (2015). Do climate variations explain
bilateral migration? a gravity model analysis. IZA Journal of Migration, 4(1). https:
//doi.org/10.1186/s40176-014-0026-3

Bai, J., & Wang, P. (2014). Identification and bayesian estimation of dynamic factor models.
Journal of Business &amp Economic Statistics, 33(2), 221–240. https://doi.org/10.
1080/07350015.2014.941467

Barbier, E. B. (2012). Progress and challenges in valuing coastal and marine ecosystem
services. Review of Environmental Economics and Policy, 6(1), 1–19.

Barredo, J. I. (2010). No upward trend in normalised windstorm losses in europe: 1970–2008.
Natural Hazards and Earth System Sciences, 10(1), 97–104. https: / /doi .org/10.
5194/nhess-10-97-2010

Be, U. C. (2021). State-to-state migration flows. https://www.census.gov/data/tables/time-
series/demo/geographic-mobility/state-to-state-migration.html

74

https://doi.org/10.1073/pnas.1607171113
https://doi.org/10.1007/s11111-013-0186-8
https://doi.org/10.1007/s11111-013-0186-8
https://doi.org/10.1146/annurev-earth-071719-055228
https://doi.org/10.1146/annurev-earth-071719-055228
https://doi.org/10.1007/s13524-015-0415-0
https://doi.org/10.1007/s13524-015-0415-0
https://doi.org/10.1186/s40176-014-0026-3
https://doi.org/10.1186/s40176-014-0026-3
https://doi.org/10.1080/07350015.2014.941467
https://doi.org/10.1080/07350015.2014.941467
https://doi.org/10.5194/nhess-10-97-2010
https://doi.org/10.5194/nhess-10-97-2010
https://www.census.gov/data/tables/time-series/demo/geographic-mobility/state-to-state-migration.html
https://www.census.gov/data/tables/time-series/demo/geographic-mobility/state-to-state-migration.html


Beine, M., & Parsons, C. (2014). Climatic factors as determinants of international migra-
tion. The Scandinavian Journal of Economics, 117(2), 723–767. https://doi.org/10.
1111/sjoe.12098

Belasen, A. R., & Polachek, S. W. (n.d.). Natural disasters and migration. https://doi.org/
10.4337/9781782546078.00026

Beyer, R. M., Schewe, J., & Lotze-Campen, H. (2022). Gravity models do not explain, and
cannot predict, international migration dynamics. Humanities and Social Sciences
Communications, 9(1). https://doi.org/10.1057/s41599-022-01067-x

Bijak, J. (2011). Forecasting international migration in europe: A bayesian view. Springer
Netherlands. https://doi.org/10.1007/978-90-481-8897-0

Botzen, W. J. W., Deschenes, O., & Sanders, M. (2019). The economic impacts of natu-
ral disasters: A review of models and empirical studies. Review of Environmental
Economics and Policy, 13(2), 167–188. https://doi.org/10.1093/reep/rez004

Boustan, L. P., Kahn, M. E., Rhode, P. W., & Yanguas, M. L. (2020). The effect of natural
disasters on economic activity in US counties: A century of data. Journal of Urban
Economics, 118, 103257. https://doi.org/10.1016/j.jue.2020.103257

Boyle, E., Chiaradonna, S., & Jevtic, P. (2022). A stochastic assessment of service loss
due to cyber vulnerabilities of power network infrastructure: A case study of puerto
rico. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4234702

Boyle, E., Inanlouganji, A., Carvalhaes, T., Jevtić, P., Pedrielli, G., & Reddy, T. A. (2022).
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APPENDIX A

CONVECTIVE STORM LOSSES 1970 AND 2020 BY HAZARD TYPE
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Figure 1: Convective storm losses in Ohio, reported in 2020 U.S. Dollars (SHELDUS,
2023 Version 21).
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Figure 2: Convective storm related losses in 2020 U.S. Dollars SHELDUS, 2023.
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