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ABSTRACT 
   

Traditional public health strategies for assessing human behavior, exposure, and 

activity are considered resource-exhaustive, time-consuming, and expensive, warranting 

a need for alternative methods to enhance data acquisition and subsequent interventions. 

This dissertation critically evaluated the use of wastewater-based epidemiology (WBE) as 

an inclusive and non-invasive tool for conducting near real-time population health 

assessments. A rigorous literature review was performed to gauge the current landscape 

of WBE to monitor for biomarkers indicative of diet, as well as exposure to estrogen-

mimicking endocrine disrupting (EED) chemicals via route of ingestion. Wastewater-

derived measurements of phytoestrogens from August 2017 through July 2019 (n = 156 

samples) in a small sewer catchment revealed seasonal patterns, with highest average per 

capita consumption rates in January through March of each year (2018: 7.0 ± 2.0 mg d-1; 

2019: 8.2 ± 2.3 mg d-1) and statistically significant differences (p = 0.01) between fall and 

winter (3.4 ± 1.2 vs. 6.1 ± 2.9 mg d-1; p ≤ 0.01) and spring and summer (5.6 ± 2.1 vs. 3.4 

± 1.5 mg d-1; p ≤ 0.01). Additional investigations, including a human gut microbial 

composition analysis of community wastewater, were performed to support a 

methodological framework for future implementation of WBE to assess population-level 

dietary behavior. In response to the COVID-19 global pandemic, a high-frequency, high-

resolution sample collection approach with public data sharing was implemented 

throughout the City of Tempe, Arizona, and analyzed for SARS-CoV-2 (E gene) from 

April 2020 through March 2021 (n = 1,556 samples). Results indicate early warning 

capability during the first wave (June 2020) compared to newly reported clinical cases 

(8.5 ± 2.1 days), later transitioning to a slight lagging indicator in December/January 
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2020-21 (-2.0 ± 1.4 days). A viral hotspot from within a larger catchment area was 

detected, prompting targeted interventions to successfully mitigate community spread; 

reinforcing the importance of sample collection within the sewer infrastructure. I 

conclude that by working in tandem with traditional approaches, WBE can enlighten a 

comprehensive understanding of population health, with methods and strategies 

implemented in this work recommended for future expansion to produce timely, 

actionable data in support of public health.  
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CHAPTER 1 

INTRODUCTION 

Conventional strategies for assessing human nutritional intake, exposure routes to 

potentially harmful chemicals, and chronic and infectious disease are understood to be 

time-consuming, expensive, and resource-exhaustive [1, 2]. Diseases and conditions 

indicated to be influenced by environmental factors and/or human behavior and cause 

great healthcare and financial burden, such as obesity, type 2 diabetes, and malnutrition 

could be considered preventable, or long-term adverse effects minimized, if detected 

early  in development [3]. Thus, it is widely encouraged to participate in preventative or 

early-detection public health programs, such as annual visits to see a doctor, however, 

these strategies do not always take consider certain factors such as cultural competence or 

socioeconomic status, and can also become quite labor-intensive. Further, despite efforts 

to make connections between human activity and health outcomes, both at the 

individualized and population-level, disease incidence and healthcare burden continue to 

persist and grow [2, 4]. Thus, this indicates a need for more innovative strategies that 

operate at scale, are contextual across regions, and offers a translational scientific 

advantage in order to achieve a pace comparable with disease prevalence. Wastewater-

based epidemiology (WBE), an emerging scientific discipline that leverages community 

wastewater to gain insight into population-level health, has expanded widely in recent 

years and proposed as a beneficial methodology to be exercised in tandem with current 

methods across a multitude of public health applications [5-8]. Detailed discussion of 

these applications and the role of WBE is provided within.  
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1.1 Current methods for nutrition and disease assessment 
 

The importance of conducting clinical nutrition research in order to draw causal 

links between dietary behavior and human health outcomes has become more widely 

realized and practiced as prevalence of nutrition-related chronic disease continues to 

exacerbate [9]. The gold standard for conducting a clinical trial, whether for nutrition or 

chronic disease, is generally an intervention-based investigation, such as a randomized 

controlled trial (RCT), which can allow for strong causal relationships to be identified 

between an intervention and the observed outcome through randomized selection of 

participant groups [10, 11]. Although these links are highly useful for clinical research, 

especially when applied to chronic disease, challenges such as extended study duration, 

large cohorts or multiple study sites, and strict exclusion criteria should all be carefully 

considered [11]. All of these factors, in addition to personnel time and labor, can 

contribute to costs, which can range anywhere between $4-20 million U.S. dollars per 

study conducted [12]. Predominant methods for assessing nutrient intake at population-

level are survey-based, such as a ‘24-hour food recall or food frequency questionnaires’ 

(Table 1) [1, 13, 14]. While these tools can potentially offer detailed insights into dietary 

patterns and behavior, challenges such as recall bias, participant fatigue, and inability to 

achieve comprehensive cultural competence may exist [4, 15, 16].  

In addition to clinical trials that can aid our understanding of individualized human 

metabolism and response to interventions, there are several nationwide surveillance 

systems that exist as broad-scale tools for understanding population-level disease and 

behavior through both survey-based and selective biomonitoring efforts [3]. The Centers 

for Disease Control and Prevention (CDC)) oversees several disease surveillance systems 
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and programs, including both chronic and infectious diseases, in order to grasp the extent 

of human behavior and connection to health risk, monitor the progress of preventative 

efforts, such as education, and assist public health professionals and policy makers in 

downstream decision-making [3, 17]. However, the limitations experienced by these 

large-scale surveillance methods, are similar to those at the clinical-level, such as 

susceptibility to over- or underreporting, lack of study sample representation, and lag 

times for data turnaround [18]. Each of these systems are also individually managed, 

which could generate gaps across data sets. Thus, these challenges provide the 

opportunity to seek alternative and innovative strategies to continue to bridge gaps in data 

acquisition and reporting that is inclusive, cost-effective, and complementary to existing 

efforts. 

 
Table 1. Definitions, advantages, and limitations for commonly-used conventional 
methods of dietary assessment in nutritional practice.  

 

Tool Purpose Advantages Limitations Ref 

24-Hour 
Recall 

Report foods and 
beverages 
consumed in 
previous 24 hours 

Standardized; 
least biased of all 
survey methods; 
detailed 

Under-/over-estimation; 
misrepresentation of 
portions; often requires 
administration by trained 
professional 

[19, 
20] 

Screener 
Record basic 
information foods 
and beverages 

Cost-effective; 
rapid, can support 
other instruments 

Systematic error, often not 
culturally-relevant  [19] 

Food Diary 
(a.k.a. Food 
Record) 

Records all food 
and beverages 
consumed over one 
or more days 

Long-term 
dietary intake; 
can be used via 
mobile apps 

Thorough description 
required; under-/over-
estimation 

[19-
21] 

Food 
Frequency 
Questionnaire 
(FFQ) 

Reports usual 
frequency of a food 
item for a specified 
period of time 

Can reveal 
frequency 
patterns of 
foods/food 
groups 

Systematic error; requires 
calibration; often excludes 
culturally-relevant foods 

[19, 
22, 
23] 
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1.2 Wastewater-based epidemiology for population-level health assessment 
 

In this thesis, a governing hypothesis is being tested that wastewater-based 

epidemiology (WBE) could serve as a valuable solution to the above-mentioned 

challenges, as it potentially may offer unique insights into population-level behavior, 

activity, and exposure by analyzing human excreted biomarkers in untreated, composited 

municipal wastewater [6, 24-26]. Historically, this methodology has been repeatedly 

implemented at an international level by employing established analytical techniques to 

understand population-level illicit drug use, typically by collecting samples at a 

wastewater treatment plant (WWTP) [27, 28]. Due to the success of this endeavor, 

studies have proposed to branch the field into other applications of human health, with 

few groups who have actively investigated the feasibility of determining specific 

indicators of disease and nutritional status in municipal wastewater [29-31]. While this 

thesis work was conducted, the coronavirus disease 2019 (COVID-19) global pandemic, 

caused by the virus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), 

caused a remarkable interest in, and appreciation for, the benefits of applying WBE as a 

complementary monitoring method for population-level health assessments beyond drug 

use. Consequently, WBE has now been applied in many new locations across the globe, 

and has experienced a rapid shift from almost exclusively focusing on chemical 

biomarkers to targeting biological signatures (i.e., RNA) in order to provide a 

comprehensive analysis of the presence of SARS-CoV-2 in communities [32-36].  

This extended successful application of WBE indicates a much broader future use 

of wastewater analysis to inform our understanding of population health as a function of 

demographics, socioeconomic status, or geographic location. Due to the silent nature of 
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many chronic diseases in terms of noticeable symptoms, it may take the affected 

individual, or physician, if applicable, too long to recognize it early enough in order to 

prevent irreversible damage. In WBE, longitudinal and inclusive measurements of entire 

communities can work to establish baseline values and monitor ongoing trends, thus 

allowing for the early detection of poor human health outcomes at the initial sign of an 

increase beyond the established clinical threshold [18, 37, 38]. This use may promote a 

more targeted approach for public health strategies, enhancing preventative measures and 

allowing the opportunity to test the efficacy of interventions in near real-time; another 

unique quality and benefit to WBE.  

1.2.1 Current gaps in wastewater-based epidemiology data  
 

While there are reports of measuring dietary-relevant compounds in municipal 

wastewater at the city-level [39], there are currently no reports of a longitudinal and high-

resolution (i.e., within sewer network) WBE study to monitor dietary behavior. Sample 

collection at the sewer catchment (i.e., neighborhood) level, may allow for deeper 

insights into consumption variability (daily, weekly, etc.) and could be beneficial for 

assisting current methods to capture dietary patterns and draw links to chronic disease. A 

unique attribute of food consumed by humans are the interactions with the human gut 

microbiome, yielding microbial products that are linked to certain aspects of human 

health and disease risk [40, 41]. As such, the human gut microbiome is increasingly 

gaining more attention within the scientific community, especially for precision nutrition 

and precision health purposes [42]. To date, no studies have explored utilizing WBE to 

understand human gut microbial interactions as it relates to population-level diet, or as a 

method to inform or provide further context to chemical measurements relevant to 
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microbial activity. Information learned from this investigation could unlock even more 

opportunities to broaden the field of WBE and inform targeted population health 

strategies and interventions. 

Longitudinal assessments can allow for the establishment of measuring robust 

baseline values, and combined with neighborhood-level sample collection, it can provide 

a highly contextual assessment of the specific community served. Using this 

methodology, a threat, such as an emerging infectious disease or a rising indicator of poor 

human health, can be detected and subsequently mitigated in near real-time. Further, 

wastewater surveillance from within the community may allow for early warning 

potential of an emerging threat, whether a new infectious disease or rising indicator of 

poor human health, which could be used in tandem with conventional methods to 

strengthen the public health response. While prior studies have explored this early 

warning capability, few, if any, have explored public health outcomes observable by 

WBE as a function of demographics, socioeconomic status, and geographical location, 

which can be crucial to design, implement, and monitor the success of appropriate and 

relevant intervention strategies to properly reduce or eradicate the threat [35, 36, 43]. 

1.3 Dissertation goals and research strategy 
 

Thus, the goal of this dissertation was to explore these broader applications of 

wastewater-based epidemiology (WBE), both theoretically and experimentally, and 

critically evaluate their potential as a complement to current methods for understanding 

the connection between population-level human behavior, exposure, and activity and 

related diseases.  
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In an extensive literature review, I examined the potential for performing WBE to 

understand population-level nutritional status; the ultimate goal being to introduce this 

concept to the field of WBE from the perspective of nutritional science. As mentioned, 

few studies had investigated this new application for WBE, thus it was crucial to explore 

the literature and obtain a list of potential biomarkers deemed feasible for subsequent 

method development and experimentation using liquid chromatography-tandem mass 

spectrometry (LC-MS/MS). This goal was achieved when a short list was created based 

on literature-reported values largely from clinical studies of detectable amounts in human 

excrement, predominately urine, that represented a wide range of food intake (meat, 

plants, whole-grains, etc.). Further, analysis of these biomarkers in terms of their human 

health and physiological relevance was explored by examining accompanied odds ratios 

to specific types of chronic diseases, such as type 2 diabetes. A second in-depth literature 

review was performed that explored exposure to estrogen-mimicking endocrine-

disrupting chemicals exclusively through ingestion of various foods that either naturally 

contain these types of chemicals (phytoestrogens), are indirectly exposed by interactions 

with plasticizers in food packaging, or coated with trace amounts of pesticides. Reported 

estimated ingestion rates for some food sources were comparable to reports of body 

burdens of EEDs when examining causal links to breast cancer incidence. Interactions 

with the estrogen receptor (ER) and physiological disruptions to breast tissue as a 

function of low, chronic exposure to these compounds was also explored. The purpose 

here was to demonstrate the direct link between human dietary behavior and health 

outcomes. 
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The comprehensive information obtained from the previous two literature 

assessments was incorporated to inform subsequent experimentation in a longitudinal 

WBE study. Three phytoestrogens (genistein, daidzein, and enterolactone) that represent 

two major classes of human-consumed phytoestrogens (isoflavones and lignans) were 

monitored for two years in a small catchment within a larger city to understand 

population-level dietary behavior and consumption patterns informed by wastewater 

analysis. A novel microbial metabolite of daidzein (equol) was added later in the study to 

test parent-metabolite behavior and propose feasibility for integrating into future studies. 

Due to human phytoestrogen metabolism involving the human gut microbiome, as proof 

of concept, a microbial composition analysis on a subset of samples was performed using 

WBE, targeting the 16S rRNA bacterial gene. In order to test the ability to investigate 

potential human gut microbiome interactions, relative and semi-quantitative abundances 

of select microbial genera involved in phytoestrogen metabolism was measured and 

calculated. Results suggest this approach to WBE is feasible, however, further 

exploration is much needed as the human gut microbiome is but a small representation of 

the many microbiomes existing within community wastewater (stormwater, animals/pets, 

biofilms within sewage pipe network, etc.). Nonparametric statistical analyses were 

performed to determine significance of changes in consumption patterns. 

Finally, the COVID-19 global pandemic during which this thesis work was 

completed highlighted many challenges and opportunities for improvement in monitoring 

for and management of infectious diseases at population-scale. High-frequency 

(3x/week), high-resolution (multiple collection sites) wastewater sample collection was 

implemented in a year-long study to assess changes in virus presence throughout a 
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southwestern U.S. city in an effort to support public health strategies and inform targeted 

interventions. Population health data informed by wastewater were reported weekly and 

posted to a publicly-facing, online dashboard in order to promote data transparency and 

enhance public health efforts. Statistical analyses were performed to test the early 

warning capability of WBE in comparison to newly reported clinical cases, and COVID-

related hospitalizations and deaths reported at the zip code or county-level. 

1.4 Hypotheses 
 

Overarching research goal: Important determinants of human health, such as 

dietary behavior, and chemical and biological markers linked to acute and chronic 

diseases, are detectable in wastewater at the community level and, therefore, is feasible to 

harness a population-level health assessment to gauge the impact of public health 

interventions implemented. 

Specific hypotheses: 

(i) biomarkers indicative of dietary behavior are detectable in municipal 

wastewater and associated with nutrition-related chronic disease defined by an odds ratio 

(OR) that indicates positive (OR>1), negative (OR<1), or no (OR=1) association; 

(ii) ingestion rates of foods that contain EEDs at increased amounts are associated 

with disease burden in terms of breast cancer incidence than those consumed in lower 

amounts as reported by literature values; 

(iii) per capita consumption (mg d-1 per capita) of isoflavones genistein and 

daidzein and production of enterolignan, enterolactone, measured in wastewater collected 
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from within a small sewer catchment exhibit statistically significant seasonal trends 

(𝛼=0.05); 

(iv) per capita production (mg d-1 per capita) of human gut microbial metabolite, 

equol, measured in wastewater collected from within a small sewer catchment are 

positively correlated (r > 0.50) with daidzein (md-1 per capita); 

(v) measurable signals of the E gene of SARS-CoV-2 detectable in wastewater 

precede newly reported clinical cases, COVID-related hospitalizations, and deaths, 

thereby providing an early-warning capacity useful to inform the public health response.  

1.5 Specific aims 
 
Specific aims of this dissertation were to: 

(i) Determine feasibility of measuring nutrition- and disease-related biomarkers in 

a wastewater matrix through extensive literature analysis and examine possible 

interpretations of those measurements in terms of population health; 

(ii) Measure indicators of a plant-based diet (i.e., phytoestrogens) in a small 

residential population within a southwestern U.S. city over time to discern a relationship 

between wastewater-derived measurements and estimated reports of per capita 

consumption; 

(iii) Monitor SARS-CoV-2, the virus that causes COVID-19, in wastewater at 

neighborhood-level within a southwestern U.S. city to assist current methods for public 

health surveillance, understand viral presence and transmission, and compare trends with 

reported data for new clinical cases and COVID-related hospitalizations and deaths;  
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(iv) Provide a foundation to inform future work for utilizing wastewater-based 

epidemiology to develop population-level health assessments; used in tandem with 

current epidemiological methods. 
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CHAPTER 2 

THEORETICAL EVALUATION OF USING WASTEWATER-BASED 

EPIDEMIOLOGY TO ASSESS THE NUTRITIONAL STATUS OF HUMAN 

POPULATIONS 

 
This chapter was published in an altered format in Current Opinion in Environmental 

Science and Health [44] 

Introduction 
 

This dissertation encompasses the work of individual studies that serve to 

critically examine the employment of wastewater-based epidemiology as a viable and 

complementary tool for population-level health assessments, particularly as it relates to 

nutrition and chronic and infectious disease. 

 In individualized human health studies, clinical trials are typically conducted to 

determine a relationship between a particular behavior, activity, or exposure and an 

outcome, especially when examining links to chronic disease. A randomized controlled 

trial is often used as it serves to reduce bias, isolate the intervention, and determine 

potential causality. While these types of studies provide in-depth insight into human 

disease incidence, study duration may last for several years, which can become quite 

costly. Additionally, results reported in the literature may not always reach the 

appropriate audience that stands to profit from the data collected. Further, clinicians who 

operate in private practice are encouraged to report incidence of new diseases, such as 

type 2 diabetes, however, this is not always enforced which commonly leads to 

underreporting.  
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 National monitoring systems for chronic disease risk and infectious disease exist 

and are mandated predominantly through large government agencies, such as the Centers 

for Disease Control and Prevention (CDC). These systems can serve to fill in gaps where 

clinical studies may be limited, while also providing high-level insight into connections 

between particular behaviors and disease prevalence. Many of these programs operate 

using survey-based methods along with selective participants to undergo more in-depth 

analysis and, at times, biomonitoring. While useful, there are still instances of over- or 

underreporting due to the self-reporting nature of survey-based methods, and some types 

of survey instruments are not culturally competent, which could lead to 

underrepresentation. 

 In Chapter 2, these challenges for conducting human health assessments as it 

relates to nutrition are examined in-depth, with a proposed alternative to understanding 

population-level nutritional status: wastewater-based epidemiology. WBE was 

hypothesized to potentially provide the ability to conduct population-level assessments, 

while providing objective results from the contributing population by analyzing human 

excreted biomarkers indicative of behavior, activity, and exposure in a community 

wastewater sample. In Chapter 2, chemical signatures indicative of dietary behavior were 

identified through extensive literature analysis, including representation of plant, meat, 

and fiber. Their feasibility for detection in a wastewater sample by liquid 

chromatography-tandem mass spectrometry (LC-MS/MS) was assessed based on reports 

of urine and/or fecal analysis at the individual level, and connection to chronic disease 

was determined based on literature-informed odds ratios. A list was compiled and served 

as a foundation for subsequent experimentation using WBE. 
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2.1 Current dietary assessment methods 
 

The predominant method for observing the nutritional history and dietary trends 

of individuals and human populations is to conduct surveys in which respondents self-

report on the type and quantity of food items consumed in a particular timeframe [2, 45]. 

For example, food frequency questionnaires (FFQ), 24-hour recall surveys and food 

diaries may be distributed to recipients for recounting of nutritional intake over a 

specified period of time (e.g., 1-7 days) [1, 2]. This approach has served to observe 

associations between symptoms experienced by humans upon consumption of food items 

either within that same day or over a longer time period [2]. While these modalities may 

be relatively inexpensive and simple to conduct, they are known to suffer from 

limitations associated with participant bias and inaccurate assumptions, such as 

subjective views of food quantities ingested or cooking practices employed [2]. 

Moreover, data obtained from one respondent at a time may or may not be reflective of 

behavior said person in the past, in the future or among other individuals with similar 

demographic characteristics [1, 2]. For this reason, engaging a large number of 

individuals in a given survey may reveal population-level information and would be 

beneficial for deeper analysis of understanding nutritional trends [6]. Furthermore, due to 

the sensitive nature of discussing diet, recalling information in this manner can also 

render surveyed individuals uncomfortable, requiring extra attention and potentially 

lengthy appointments [1]. Additionally, some physicians are not adequately trained in 

specialized nutritional counseling and facilitating behavior modification strategies, 

thereby resulting in an inefficient use of resources and the potential for acquisition of 

inaccurate data [1]. Use of anonymized data may preserve respondents’ anonymity and 
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ultimately may aid in establishing linkages between dietary intake and outcomes in 

individual health and population health. 

2.1.1 Dietary associations to adverse health outcomes in human populations 
 

Chronic diseases, such as Type 2 Diabetes Mellitus, are progressively contributing to 

increased rates of morbidity and mortality globally, thereby exacerbating healthcare costs 

and losses in productivity and quality of life [46]. In 2017, this disease alone affected 425 

million people worldwide, and it is projected to affect nearly 630 million people annually 

by 2045 [1]. This disease may be prevented or managed rather effectively by addressing 

known risk factors, such as adopting a more balanced diet and increasing the frequency 

and duration of physical activity [46]. Yet, it is difficult to implement these adjustments 

in clinical practice, due to biased information from self-reporting patients and differences 

in expectations among physicians and survey participants [1]. 

One health outcome with known linkages to nutrition is cancer. For example, 

several studies have indicated that consumption of red meat is positively linked to the 

onset of several cancers, including those of the colon (odds ratio, OR = 1.17; 95% 

confidence interval, CI: 1.08-1.26) and the rectum (OR= 1.22; 95% CI=1.11-1.33) (Table 

2) [47, 48]. Breast cancer is the second leading cause of death from cancer in female 

populations in the United States [49]. Evidence suggests that soy intake as measured by 

the isoflavones genistein and daidzein (OR= 0.57; 95% CI=0.39-0.84), and that lignans, 

assessed as enterolactone (OR= 0.82; 95% CI=0.69-0.97), exhibit protective effects 

against malignant growth of breast tissue (Table 2) [49, 50]. Interestingly, other evidence 

suggests positive associations between malignant growth of breast tissue and dietary 

consumption of phytoestrogens [51]. The isoflavones genistein and daidzein are 
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understood to act on the estrogen receptor as estrogen mimics at the estrogen receptor 

(ER), and are termed estrogen-mimicking endocrine disruptors or EEDs; however, further 

study is needed to establish the causality between associations observed between dietary 

intake of these food items and incidence of breast cancer in women [51-54]. Reports of 

contrasting associations call for further examination of nutritional choices and prevalence 

of chronic disease [51]. 

 

 

2.2 Wastewater-based epidemiology as a complementary method for assessing 
dietary intake  
 

Wastewater-based epidemiology (WBE) is an inexpensive tool that relies on the 

detection in community wastewater of human metabolites (e.g., biomarkers) excreted by 

local residents into the municipal sewerage system to estimate the per capita consumption 

of chemicals and possibly in the future, of the human diet [6]. Customarily, biomarker 

Table 2. Odds ratios (OR) and 95% confidence intervals observing diet and chronic 
disease.  

Food Human 
Metabolite 

Approximate 
Consumption 

(g/day) 

OR 
(95% CI) Disease Association Source 

Meat 
 1-Methylhistidine 

60-89 1.19 
(1.02-1.38) 

Colon 
Cancer Direct [47] 

60-89 1.25  
(1.04-1.51) 

Rectal 
Cancer Direct [47] 

>85 1.97  
(1.10-3.55) 

Type 2 
Diabete
s 

Direct [48] 

Isoflavones Genistein, 
daidzein, equol 0.008–0.016 0.57 

(0.39-0.84) 
Breast 
Cancer Inverse [49] 

Lignans Enterolactone 0.16 0.82  
(0.69-0.97) 

Breast 
Cancer Inverse [50] 
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concentrations measured in composited community wastewater are multiplied with daily 

flow rates to arrive at an estimated mass load of chemicals per unit time [55]. These mass 

estimates can then be divided by the size of the population served by the wastewater 

treatment plant to obtain estimates of average chemical intake per 1,000 persons [6, 56]. 

Wastewater contains a wide variety of biological and chemical markers excreted in urine 

and feces, thereby presenting a diagnostic matrix that may provide insights into both 

population health status and human activity [6, 56]. In order to quantify estimates of a 

metabolite of interest, the samples typically are collected using automatic samplers over a 

specified period of time, e.g., 24 hours, and are then analyzed using liquid 

chromatography-tandem mass spectrometry [6, 55]. This approach allows for the near 

real-time observation of very large populations of up to a million people or more; with 

processing and analyzing within a short-period of time (e.g., 48 hours) and reported back 

to parties of interest [57]. Thus, population-scale health information may be obtained, 

analyzed, and disseminated in a cost-effective and timely manner [6, 55]. 

The WBE approach has been successfully applied to investigate trends in substance 

use (e.g., illicit drugs), lifestyle risk factors (e.g., consumption of alcohol, nicotine and 

caffeine), exposure to environmental toxicants of concern (e.g., bisphenol-A (BPA), 

pesticides, and parabens), and the assessment of stress levels through hormonal 

fluctuations [6, 55, 57-59]. It has been hypothesized that the WBE approach also could be 

applied to inform on nutritional status; however, further studies demonstrating these 

biomarkers’ stability in wastewater and urinary excretion ratios are needed [57]. Use of 

WBE may enable one to track metabolites as exact indicators of consumption of food 

stuffs known or considered to represent a risk factor for diseases, including the burdening 
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chronic diseases associated with high healthcare costs and significant rises in morbidity 

and mortality rates (Figure 1) [6, 8, 56]. 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

2.2.1 Target analytes 
 
 Current literature documents that the consumption of certain food items and food 

groups is positively associated with the incidence rates of chronic diseases (Table 2) [47-

50]. For example, intake of red meat was found to be correlated with an increase in the 

incidence of certain cancers, including of the colon and rectum, as well as with the onset 

of type 2 diabetes [1, 46, 60]. Anserine is a compound found exclusively in the tissue of 

animals consumed regularly by humans (e.g., chicken, turkey, beef) [61]. Upon ingestion 

by humans, the enzyme carnosinase can break down anserine into two major metabolites, 

Figure 1. Schematic of envisioned use of wastewater-based epidemiology as 
a comprehensive tool for assessing nutritional status of a population.  
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1-methylhistidine and b-alanine[61]. b-Alanine is a naturally occurring amino acid that 

plays a role in many processes of human physiology [61]. Since 1-methylhistidine is not 

utilized further in any metabolic pathway, it is readily excreted in urine; therefore, 1-

methylhistidine would make for a potentially valuable biomarker that is trackable by 

WBE and that potentially could indicate the average consumption in a surveyed 

population of all meats, including red meat, poultry, pork, etc. (Table 3) [8, 62, 63].  

Phytoestrogens are plant-derived compounds belonging to different chemical 

classifications; isoflavones, lignans and coumestans represent three major families of 

phytoestrogens present in the human diet [51, 53, 54]. Collectively, these three subgroups 

exhibit estrogenic as well as anti-estrogenic properties to varying degrees by acting at the 

estrogen receptor as either estrogen inhibitors or estrogen mimics [51, 53, 54]. Genistein 

and daidzein account for approximately 95% of the isoflavone content of soy foods, 

identifying them as potentially valuable analytes for studying the consumption of popular 

food products such as tofu, miso and soymilk (Table 3) [51, 54]. Equol, a metabolite of 

daidzein catalyzed by specialized microbes of the human gut microbiome, is projected to 

be produced in approximately 30-40% of the population [51, 53, 54]. Equol is considered 

to have greater estrogenic potency than genistein or daidzein, possibly due to its 

structural similarity to endogenous estrogen; thereby offering either chemo-protective 

mechanisms or carcinogenic effects to the host [53]. 

Unlike isoflavones, lignans are more ubiquitous throughout various non-soy food 

sources such as seeds, whole-grains, fruits and vegetables (e.g., berries, broccoli, and 

kale) [64]. Enterolactone, a microbial product of the intestinal digestion of matairesinol 

and secoisolariciresinol (two dietary lignans), amongst others, could serve as a biomarker 
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for consumption of these foods, as it presents at high levels in human urine upon habitual 

consumption of foods containing lignans [64].  

Other compounds of interest that could provide more quantitative data on dietary 

consumption patterns include alkyl resorcinols (AR) such as 3,5-dihydroxybenzoic acid 

(DHBA) and 3-(3,5-dihydroxyphenyl-propanoic acid (DHPPA) for whole-grain 

consumption, and allyl isothiocyanates (AITC) for cruciferous vegetable consumption 

(Table 3) [45, 65]. Examining by WBE the excretion patterns of the metabolites DHBA 

and DHPPA for whole-grain consumption would provide complementary qualitative 

measurements alongside traditional FFQs [45]. Whole-grains provide many nutritional 

benefits including contributing to overall daily intake of fiber, which has been shown to 

improve colon function and cardiovascular health [45]. Consumption of cruciferous 

vegetables at notable quantities is part of a healthy, well-balanced diet, as these offer a 

wide variety of essential vitamins and minerals, thereby decreasing risks of developing 

chronic diseases [66, 67]. On many occasions, patients may unintentionally report higher 

intake of vegetables than what other modalities may indicate [67, 68]. It has been stated 

that a lack of knowledge of proper serving sizes of nutritionally dense vegetables 

represents a major barrier to living a healthy lifestyle [66]. Monitoring AITCs as 

biomarkers that are indicative of these nutritionally dense cruciferous vegetables would 

complement the information obtained solely by qualitative surveys. 
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(1) 1-MH: 1-Methylhistidine; (2) DHBA: 3,5-Dihydroxybenzoic acid; (3) DHPPA: 3-3,5-
Dihydroxyphenyl)-propanoic acid; (4) NAC-AITC: N-acetyl-S-(N-allylthiocarbamoyl) cysteine 
 
2.2.2 Potential limitations 
 
 Wastewater-based epidemiology is a tool that may aid in explaining observed 

differences between self-reported dietary intake and actual food consumption [6, 56]. 

Data obtained by WBE are predominantly quantitative, which could serve to complement 

the qualitative outcomes of food diaries and self-reported surveys [1]. Although the use 

of WBE may provide a more comprehensive view of the nutritional status of a given 

population, this approach also has limitations, including a still limited spectrum of 

potentially useful biomarkers (Table 3) and the need to validate these prior to use. Food 

intake markers and metabolites may be subject to in-sewer degradation post excretion, 

such as microbial activity that could break down the parent compounds into the identified 

human metabolites, which would potentially introduce a certain level of bias needed to be 

Table 3. Identified human biomarkers proposed for WBE indicative of various types 
of foods.  

Parent Compound Human metabolite Indicator Source 

Anserine 1-MH1 Total meat intake [8, 62, 
63] 

Daidzein Daidzein (parent) Isoflavone intake [51, 53, 
54] 

Genistein Genistein (parent) Isoflavone intake [51, 53, 
54] 

Matairesinol & 
Secoisolariciresinol Enterolactone Lignan intake [64] 

Daidzein Equol 
Reflect the percentage of 
a population who can 
produce equol 

[53] 

Alkylresorcinols DHBA2, DHPPA3 Whole grain wheat and 
rye intake [45] 

Allyl 
isothiocyanates 
(AITC) 

NAC-AITC4 Cruciferous vegetable 
intake [65] 
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taken into consideration [57]. Furthermore, the parent compounds specifically for the 

intake of the isoflavones genistein and daidzein (Table 3) are measured and accepted as 

compounds of human consumption. It is preferable when utilizing WBE to detect the 

human urinary metabolized compounds in order to prevent overestimation of 

consumption rates; therefore, this poses as a quantification limitation for these analytes 

[6]. By only investigating population-level results, this approach smooths out the maxima 

and minima of individual consumption, allowing only an assessment of the average 

intake, which may not be characteristic for any one of the individuals captured by this 

approach [55]. While representing a limitation on the one hand, this feature also is 

appealing from an economic standpoint and from the vantage point of preserving 

anonymity of those surveyed [56]. Estimated per capita consumption rates of target 

analytes are based on population estimates whose accuracy may differ widely, depending 

on the approach taken (e.g., census data for population size in the sewershed versus mass 

of caffeine as a proxy for the number of individuals represented in a sample) [6, 69].  

It is also important to note that while some metabolites of interest are unique to 

humans, there is also the possibility of capturing metabolites from animal excretion as 

well as runoff from nearby restaurants or related facilities; dietary compounds being 

especially vulnerable. Due to these limitations, analyzing sewage sludge as a diagnostic 

matrix for those dietary markers that are hydrophobic and persist to a sufficient degree to 

get sequestered in sludge could serve as another potential method for quantifying these 

compounds and assessing the human health impact [70]. While WBE has become an 

accepted tool for studying the consumption of licit and illicit drugs, e.g., in major 

European cities, its use for assessing dietary preferences and associated human health 
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status and disease prevalence have yet to be explored [71]. The present theoretical 

analysis points to both the feasibility and potential benefit of such future investigations.  

2.3 Conclusions 
 

Monitoring wastewater-borne human metabolites indicative of dietary trends within a 

population is projected to be both feasible and practical, showing promise to allow for a 

better assessment when used in conjunction with traditional survey tools. Conventional 

methods provide qualitative data whereas WBE may add aggregated quantitative 

information on average consumption. Thus, enahncing the confidence of dietitians when 

assessing dietary habits known or presumed to affect human health status. Chronic 

diseases such as Type 2 Diabetes and various types of cancers place a great burden on the 

healthcare system and on the quality of life of individuals, translating to financial, 

emotional, and mental stress in human populations. Employing WBE as an inexpensive, 

non-invasive and time-efficient tool that preserves the anonymity of those surveyed 

promises to provide valuable information regarding the population observed. Decreased 

ambiguity will allow for elucidating linkages between nutrition-related diseases and their 

dietary sources in addition to prior work focusing on consumption of illicit drugs and 

exposure to contaminants of emerging concern [56, 72]. 
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CHAPTER 3 

BREAST CANCER AND DIETARY INTAKE OF ENDOCRINE DISRUPTING 

CHEMICALS: A REVIEW OF RECENT LITERATURE 

This chapter was published in an altered format in Current Pathobiology Reports [73] 

Introduction 
Assessing trends in human excreted biomarkers indicative of dietary behavior, 

which can also serve as a secondary indicator of links to, or risk factors of, chronic 

diseases such as type 2 diabetes, have only just begun to be explored using WBE. At an 

individual level, biomarkers can be measured by collecting a single biological specimen, 

(e.g., urine, feces, etc.) and tested against established reference ranges to determine if a 

disease or condition may be present. This type of intensive and potentially invasive 

procedure is not performed frequently (i.e., annually), and may deter individuals from 

seeking care. For understanding nutrition, survey-based methods are validated and 

effective when attempting to gain insight into dietary behavior both at the individual- and 

population-level, however, the limitations that exist (recall bias, under- or overreporting) 

can create gaps in data acquisition. Wastewater-based epidemiology is positioned as a 

feasible alternative to understand, at population-level, nutritional status and dietary 

patterns of a community. The proposed biomarkers in the previous chapter create a 

foundation for future investigation for monitoring at any scale (neighborhood-level, 

treatment plant, etc.) in order to understand how this tool can be used as a complementary 

source of information for public health strategies. 

In Chapter 3, I performed an in-depth literature analysis to understand exposure to 

potentially harmful chemicals through consuming foods either naturally containing or 
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contaminated with endocrine-disrupting chemicals that specifically mimic estrogen, 

termed, estrogen-mimicking endocrine disruptors (EEDs). Evidence suggests a link exists 

between exposure to EEDs and breast cancer incidence, however, investigation of the 

ingestion exposure route through food had yet to be explored in detail. I explored the 

recent literature (≤5 years) to identify exposures to EEDs through food consumption. 

Several types of EEDs were identified, including components of plasticizers in food 

packaging, naturally-occurring EEDs, and pesticide residues, and subsequently cross-

examined to determine potential mechanistic behaviors and feasibility of contributing to 

breast cancer incidence. Reported body burdens from studies investigating levels of 

exposure of EEDs to physiological changes either in human or animal studies were 

explored. 

3.1 Estrogen-mimicking endocrine disrupting chemicals and types of breast cancer 
 

Endocrine disrupting chemicals (EDCs) are ubiquitous substances found in our food, 

the environment, and in purchased products that can interfere with hormone signaling, 

metabolism and action, leading to a disruption in hormone homoeostasis and potentially a 

higher incidence of breast cancer [74, 75]. Estrogen-mimicking endocrine disruptors 

(EEDs) found in food and non-food items are a subgroup of EDCs that bind to estrogen 

receptors, despite their low concentrations [76]. Breast cancer is of particular interest 

when studying EEDs due to breast tissue development being heavily reliant upon the 

physiological fluctuations of endogenous estrogens, namely estradiol [77]. There are 

three major types of breast cancer: hormone-responsive (HR+), human epidermal growth 

factor receptor 2 (HER2+), and triple-negative. Regardless of the type, it is estimated that 
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dietary factors may contribute up to 30-35% of incidence [51]. Malignant growth 

classified as HR+ accounts for approximately 80% of all breast cancer cases, in which the 

cancer cells grow in response to estrogen levels [78]. Thus, this type is the most 

concerning in regards to studying exogenous hormone mimics interfering with breast 

tissues’ typical mode of development, posing a high risk for irregular cell growth patterns 

and cancer cell proliferation. Specific EEDs implicated with increased cancer risk include 

Bisphenol A (BPA) [79] several pesticides (notably, dichlorodiphenyltrichloroethane 

(DDT) and atrazine [80, 81] and phytoestrogens (isoflavones genistein and daidzein) [51, 

53] all discussed in the following.  

3.1.1 Identity and potency of EEDs in the human diet 
 

Bisphenol A is a synthetic compound widely used in many dietary consumer 

products including plastic food packaging and canned foods due to its ability to protect 

against corrosion, as well as food items such as cereals, baking powder, and yeast [79] 

(Table 4). BPA has been discovered to migrate into food directly from food packaging as 

a free, unconjugated monomer [82]. Factors such as agitation from heat, such as in the 

microwave, or adding hot water to pre-packaged, dehydrated foods (e.g., soups), can 

encourage chemical migration from the packaging into the food [79, 83]. Due to this 

characteristic, the European Union set a specific migration limit (SML) to 0.6 mg/kg food 

for manufacturers to adhere to when producing products with BPA to ensure a tolerable 

limit is not exceeded [82]. As set by the US EPA, the lowest observable adverse effect 

level (LOAEL) of BPA in humans is set to 50 mg/kg adipose tissue/day with a NOAEL 

(no observable adverse effect level) set to 5 mg/kg adipose tissue/day [84]. It is estimated 

that exposure to BPA via dietary ingestion in adults occurs at a rate of 0.4 - 4.2 µg/kg-
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bw/day [79]. Studies conducted to test the concentrations of BPA in 175 different brands 

and types of canned foods in the US showed a BPA detection frequency of 91%, with 

levels ranging from 0.2-730 µg/kg dry weight of food. Results were highly variable 

among food types (e.g., tuna fish, green beans); however, there appeared to be a 

pronounced difference between brands (e.g., green beans exhibited a 30-fold difference 

(22-730 ng/g) [79].  

Table 4. Dietary exposure of EEDs and estimated ingestion amounts. 

 

Among the many pesticides studied, DDT and atrazine are two that have been 

shown to cause estrogenic dysfunction through various mechanisms. Both are considered 

EEDs and displayed a positive correlation with breast cancer development [80]. Whereas 

DDT has been banned in the US since 1972, the parental compound and its major 

EDC Dietary 
Exposure 

Average 
Ingestion 
(mg d-1) 

Reference 
Dose (mg 

kg-1-bw d-1) 

Contributed 
through diet 

(%) 
Source 

Bisphenol 
A (BPA) 

Canned foods, 
yeast, baking 
powder, cheese, 
breads, cereals 

4.0 x 10-4 
– 4.2 x 10-
3 

5 90% [79, 84] 
 

Parabens 
Cereals, milk, 
fish, seafood, 
beans, fruits 

5 x 10-8 – 
3.6 x 10-3 10 unknown [83, 85] 

Isoflavones 
(Genistein 
and 
daidzein) 

Soybeans, 
cereals, soy-
based formula, 
imitation dairy 
products, meat 
substitutes 

1 – 3 None 100%  [44, 53] 

Pesticides 
(DDT & 
atrazine) 

Fruits, 
vegetables, 
water 

DDT: 3.0 
x 10-5 
Atrazine: 
3.3 x 10-5 
– 
1.2 x 10-5 

DDT: 5.0 x 
10-4 
Atrazine: 3.5 
x 10-2 

unknown 
[86] 
[80] 
[87] 

Phthalates 
Milk, meat, 
fish, seafood, 
eggs, poultry 

6.6 x 10-4 
– 1.6 x 10-
3 

2.0 x 10-2 unknown [81, 83] 
[85] 
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transformation products (DDD, DDE) still remain and persist in the environment, with 

continued use in African countries for managing malaria [88]. In the US, the Agency for 

Toxic Substances and Disease Registry (ATSDR) states that dietary exposure to DDT 

today could result from ingestion of contaminated drinking water, fish and seafood 

containing small amounts in their tissues, as well as consumption of fresh fruits and 

vegetables grown on contaminated soil [87]. For DDT, the average daily intake (ADI) 

was estimated in the early 2000’s to be 0.03 µg/kg/day with a RfD of 0.5 µg/kg/day [87]. 

It is assumed these levels will continue to decrease as time progresses. Atrazine is still in 

use today as an herbicide in some countries and notably the US, with maximum levels for 

food residues tolerated within the range of 0.02-15 ppm and maximum levels allowable 

in drinking water of 3.0 µg/L [87]. The US reference dose for atrazine is 35 µg/kg/day 

[89]. Typically, dietary exposure is attributed to drinking contaminated water from 

personal water wells or ingestion of residues on fresh fruits and vegetables [87]. Human 

data for ingestion rates is sparse; however, the National Institutes of Health Toxicology 

Data Network (NIHTDN) in a study from 1984-1987 reported an intake range of 0.033 – 

0.0123 µg/kg/day [90]. 

Phytoestrogens differ from the aforementioned chemicals since they are naturally 

derived from plant-based foods. While it has been previously thought that phytoestrogens 

only promote the reversal of cancer cell growth and prevent cell proliferation, newer 

studies now suggest that chronic uptake of low amounts of soy, particularly soy 

isoflavones contained therein, could lead to disruption in estrogen levels during breast 

tissue development. This could lead to mutations later in adulthood from exposure during 

specific windows of susceptibility, such as during pre-pubertal stages or infancy from 
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soy-based formula intake [51]. The isoflavones genistein and daidzein, diphenolic non-

steroidal compounds, are one class of phytoestrogens commonly found in soybeans, 

beans, and lentils as well as in products marketed as substitutes for meat and dairy, such 

as tofu, tempeh and soy milk [91] (Table 4). Genistein accounts for approximately 50% 

of isoflavone content in soybeans, daidzein about 40%, for a collective total accounting 

for up to 90% of isoflavone exposure and burden [92]. Isoflavones are known to be 

present in food naturally as inactive glycoside conjugates, typically with a carbohydrate 

such as glucose, and to become unconjugated into the bioactive form, aglycone, after 

interaction with the saliva which hydrolyzes the sugars and interacts with intestinal 

microflora [91, 92]. 

Increased isoflavone content in the human diet in the US could be a result of 

popular dietary trends, making it particularly interesting when examining intake of other 

regions of the world where consumption of isoflavones has been historically higher in 

comparison, however, the dietary sources are slightly different. For example, in countries 

such as Asia, isoflavone intake can range anywhere from 15,000-50,000 µg/person/day 

mostly from fermented soy products, whereas in the US, isoflavone consumption is about 

1,000-3,000 µg/person/day [53, 92]. Each gram of soy protein in soybeans is estimated to 

contribute about 3,500 µg of isoflavones, therefore, 250 mL soymilk may equate to 

approximately 25,000 µg of isoflavone exposure [92]. In a study conducted to determine 

phytoestrogen content of 115 various animal-derived food products, an average of 

approximately 20 µg/100g wet weight comprised of isoflavones (6 µg/100g), lignans (6 

µg/100g), equol (3 µg/100g) and enterolignans (6 µg/100g), were detected [93]. These 
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results indicate the possibility that human ingestion of phytoestrogens is greater than 

previously assumed, prompting further investigation. 

Phthalates are also a major component of plastic food packaging typically used as 

softeners or plasticizers [94]. These chemicals are naturally lipophilic and not covalently 

bound to plastic packaging when present as additives, rendering them susceptible for easy 

migration into food [83]. Foods such as milk, meat, seafood, eggs and poultry (Table 4) 

all contribute to an overall ingestion exposure rate ranging from 0.66-1.61 µg/kg-bw/day 

[83]. These observed levels are much lower than the RfD via ingestion (20 µg/kg-

bw/day) [95]. Exposure to parabens via ingestion is more difficult to delineate. Parabens 

have been used as preservatives in processed foods, such as dried meats, and are also 

naturally found in fresh berries [83] (Table 4). Exposure via ingestion of foodstuff has 

been quantified to an approximate range of 50 – 3,600 µg/g-bw/day, with consumption of 

fatty fish contributing to the larger amounts [83]. There is no RfD listed on the EPA 

regarding parabens, however the European Food Safety Authority (EFSA) has stated that 

an acceptable daily intake (ADI) of parabens is 10,000 µg/kg-bw/day [85] rendering the 

overall consumption generally safe. 

3.1.2 Evidence linking dietary EEDs to breast cancer  
 

In a study that tested the urine of 75 male and female volunteers who consumed 

one serving of canned soup per day during a five-day period, there was a 1200% increase 

in urinary BPA levels compared to concentrations after eating fresh food the previous 

five days. There was a 66% decrease observed after following three days post-canned 

food consumption [79]. This result suggests that there is still a large amount of BPA 

traveling throughout the body even three days after ingestion due to prolonged excretion. 
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BPA has demonstrated a LOAEL in rat studies of 50 µg/kg adipose tissue/day, leading to 

irreversible effects on the reproductive system and reduced body weight (Table 5) [84]. 

Earlier exposure in life corresponds to higher risk of breast cancer in adulthood due to 

breast tissue being particularly sensitive to mutations during puberty [81]. Multiple 

studies demonstrated that fetal exposure to low doses of BPA can cause proliferative 

effects and an increase in estrogen sensitivity [74]. These effects can decrease apoptosis 

and mutate mammary gland tissue. Rodents exposed to low doses of BPA during 

gestation show morphed mammary gland development in utero, leading to increased 

sensitivity to estrogen and progesterone in adulthood [74]. 

 

Table 5. Estimated body burden of estrogen mimicking endocrine disruptors acquired 
primarily by dietary exposure. 

 

 

 

 

 

 

 

 

 

 

 

EED 
Body 

Burden 
(mg/kg/day) 

Study 
Subject Effect Source 

DDT 0.2 Rats 
Liver lesions, hepatocellular 
hypertrophy, peripheral fat 
storage (females) 

[95] 

Atrazine 25 Rats 
Decreased weight gain, 
systemic toxicity, 
reproductive toxicity 

[95] 

BPA 0.05 Rats Irreversible reproduction 
effects [84] 

Isoflavones 0.3 Humans Carcinogenic activity of 
mammary gland [53] 

Parabens 1,000 Humans Irritation to GI tract [90] 

Phthalates 19 
Rats, 
Guinea 
Pigs 

Increased kidney and liver 
weight [95] 
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DDT and atrazine exposures have been historically linked to breast cancer via 

endocrine disrupting mechanisms [80], each having their own unique LOAEL (DDT: 200 

µg/kg adipose tissue/day, atrazine: 25,000 µg/kg adipose tissue/day) observed in both 

humans and animals (Table 5) [95]. Although the LOAEL for atrazine seems high 

compared to other pesticides studied, the NOAEL is 3,500 µg/kg adipose tissue/day [95]. 

In an epidemiological study conducted in Spain between 1999 and 2009, high levels of 

DDT were found in the breast tissue of women who self-reported they were diagnosed 

with breast cancer. Among a total of 2,661 cases of breast cancer reported in this female 

study population, 2,173 (81%) were observed in areas of high DDT and atrazine 

contamination; leading to the conclusion that both pesticides are potentially correlated to 

the development of breast cancer [80]. Atrazine is associated with promoting mammary 

gland malignancies, especially when exposure to women occurs with the compound 

preferentially accumulating in adipose tissue of the breast, resulting in increased estrogen 

levels outside of the homeostatic range [81]. In a two-year study, rats were administered 

atrazine in their diet at varying concentrations in food at the ppm level. In females, after 

dosing of 500 or 1000 ppm, effects observed included bone marrow changes and related 

mammary adenocarcinomas and fibroadenomas [95].  

Contrary to the aforementioned chemicals, phytoestrogens such as soy isoflavones, 

are directly ingested from plant-based foods; warranting the need for further study of 

examining various dosages and their potential effects on the human body. The amount of 

soy isoflavone consumption differs greatly not only amongst humans of different 

cultures, but also amongst those of the same ethnicity. For example, there is a 9-fold 

difference between daily intake of soy isoflavone intake consumed by Chinese-
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Americans (4 g/day) compared to Chinese natives (36 g/day) [96]. These differences 

make it difficult to study the effects of soy isoflavone intake and what amount may pose 

risk of increased cancer incidence. Therefore, collectively, soy isoflavone intake has 

shown to impose adverse effects on the body at levels as low as 300 µg/kg bw/day [53] 

(Table 5). Studies conducted in vitro showed abnormal growth and proliferation after 

100 nM injection of genistein on MCF-7 cells, as well as in mice with MCF-7 tumors in 

mammary glands [51]. Similarly, studies testing effects of daidzein found increased 

amounts of tumor invasion, promotion and proliferation in breast cells as well as weak 

binding to both estrogen receptors (Erα and ERß) [51, 96]. 

3.2 Mechanistic Pathways 
 
3.2.1 Endogenous estrogen normal physiology  
 

Estradiol (E2) undergoes major fluctuations throughout a woman’s lifetime 

during the succession of pre-pubertal, menstrual, and menopausal stages [97]. This 

hormone is ideally kept within a range of 0.02-0.3 µg/L blood in adolescent girls and 

0.03 – 8.0 µg/L blood in menstruating women [97]. In the genomic pathway, estrogen 

binds to the ER and induces conformational changes that accelerate DNA binding 

capability [83]. In the extra-nuclear pathway, rapid estrogen signaling occurs within 

seconds of addition of E2 and is mediated by the ERs that are localized to the cell surface 

membrane [83]. Estrogen response in the breast tissue is mainly considered to be 

mediated by estrogen-receptor alpha (ERα), stimulating cell proliferation, 

communication, apoptosis, etc. [98]. Adipogenesis and adipocyte differentiation is 

regulated in response to this estrogen-mediated mechanism, and therefore any kind of 
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dysregulation or disruption can lead to malformations [77]. EEDs have structures that are 

similar to steroid hormones such as estrogen, giving them the ability to activate or 

antagonize estrogen action at the ER in breast tissue [83] (Table 6).  

Table 6. Mechanism of action of multiple estrogen mimicking endocrine disruptors at the 
estrogen receptor in breast tissue. 
 
 

 

EED: Estrogen-mimicking endocrine disrupting chemical 

 

3.2.2 Disruptive pathways of EEDs 
 

Once BPA is ingested, its conjugated and unconjugated forms enter the metabolic 

pathways which then circulate in the bloodstream where the contaminant eventually 

interacts with the ER in breast tissue [79] working as either an agonist or antagonist. 

Typically, gonadotropin-releasing hormone (GnRH) is released by the hypothalamic-

pituitary-ovarian axis and regulates luteinizing hormone and follicle-stimulating 

hormone, two hormones heavily involved in menstruation, and both of which play a 

major role in breast tissue development [83]. With BPA attached to the ER instead of 

estradiol, this could cause a disruption in the typical cycle of maturation and 

development, leading to mutations. Fluctuations of these hormones can also cause 

irregular cycles, as shown in an animal study conducted on adult mice where in utero 

exposure to BPA increased the duration of the estrous cycle [83].  

EED Mechanism Sources 
BPA, daidzein, DDT, 
genistein Estrogen Mimicry [53, 83, 99] 

Atrazine, daidzein, genistein Estrogen Antagonist [99] [53] [44] 
[80] 

BPA, daidzein, DDT, 
genistein Estrogen Agonist [99] [53] [83] 

[80] 
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Atrazine has the ability to increase the level of estrogen in the body by inducing 

aromatase activity [80]. Aromatase is an enzyme that converts testosterone to estradiol. 

Through this mechanism, estrogen builds up in the body, potentially causing adverse 

developmental effects, specifically in breast tissue [76]. Increased levels of estrogen 

which exceed the typical threshold for a menstruating woman, in the case of atrazine, has 

been linked to cancer of the mammary gland [81]. DDT is a strong estrogen mimic that 

has been linked to several abnormalities due to early exposure, such as premature 

menarche as much as 3-4 years earlier. Earlier menarche can lead to abnormal 

fluctuations of estrogen and other reproductive hormones necessary for breast 

development and therefore increases the risk of breast cancer later in life due to mutations 

in the tissues [76].   

Genistein and daidzein both appear to act directly on the ER due to their structural 

similarities to estradiol [51]. This similarity allows them to act as a ligand, blocking the 

interaction between ER and estradiol, and activate transcription [53]. Genistein tumor 

effects occurred through its unique binding pattern with ERα where it binds with ER and 

triggers estrogen-dependent genes for regulating breast cancer, promoting metastasis 

[51]. ERα is influenced by genistein and daidzein as demonstrated in study where the 

presence of these compounds induces estrogen-receptor beta (ERβ) [53]. Daidzein is 

unique in that when it is digested in the large intestine, it is converted to its metabolite, 

equol [98]. Equol is a non-steroidal anti-androgen, therefore promoting more estrogen to 

accumulate inside the body [92]. Interestingly, only 25% of non-Asians and 50% of 

Asians possess the bacteria necessary to perform this conversion, indicating that some 

individuals may be more likely to benefit from soy consumption than others. 
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Additionally, equol production is largely varied amongst individuals and highly 

dependent on the current status of intestinal microflora [99]. 

Phthalates uphold lipophilic characteristics which strike a concern when studying 

breast cancer since adipose tissue predominantly makes up the breast anatomy [83]. 

While traveling throughout the body after ingestion, studies suggest that the phthalate 

molecule could accumulate in breast tissue and cause modification of mammary gland 

growth [54]. In addition to phthalates, parabens have been found to be more potent when 

administered through dermal exposure, studies have shown that long-term exposure, 

regardless of exposure route, increases the migratory and invasive properties of human 

breast cancer cells in vitro [83]. Due to this effect, parabens should be more closely 

investigated, especially when examining ingestion routes from dietary intake. 

3.3 Conclusions 
 

Exposure of women to multiple EEDs occurs on a daily basis throughout their 

lifespan, with dietary sources playing a prominent role. Although daily intake doses are 

low, the chronic nature of these exposures makes them last for a lifetime and can cause 

detectable steady-state levels of EEDs even in compounds that are fairly rapidly 

metabolized. These life-long, chronic exposures to substances of estrogenic potential 

pose notable threats to the human body and have been associated with an increased risk 

of breast cancer in cell culture [83], animal models [51] [96] [84], and in humans [83] 

[54]. It is evident that, based on the exposure route of dietary ingestion, compounds 

which pose the largest threat of breast cancer incidence are phytoestrogens, most notably 

the isoflavones genistein and daidzein as well as BPA. Isoflavones are consumed at 
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varied rates across ethnicities and dietary preferences, and also are fed at increased 

amounts to livestock consumed by humans [44, 53]. BPA exposures occur primarily as a 

result of migration of the chemical from food packaging and from the lining of cans into 

food; however, the compound also is found at a lesser amount in fresh fruits, vegetables, 

grains and other non-processed foods [79]. Although pesticide exposures are much 

smaller than those of BPA and phytoestrogens, there also is strong evidence that DDT 

and atrazine exert disrupting effects on physiological processes involving estrogen, 

thereby potentially leading to breast cancer [76, 86]. These findings suggest that a diet 

which emphasizes more fresh, unprocessed foods will reduce exposure to EEDs, and with 

it, potentially reduce the risk of breast cancer. Organically grown crops typically contain 

less unwanted agricultural chemicals and should be taken into consideration when 

purchasing foods at the grocery store [66]. In addition, this review identified a need for 

further efforts in examining the affinity of EEDs to the ER, in improving assessments of 

potency, and in studying daily exposures, windows of susceptibility and major exposure 

routes to inform the determination of exposure reference doses.  
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CHAPTER 4 

UNDERSTAND POPULATION-LEVEL DYNAMICS OF DIETARY BEHAVIOR 

INTEGRATING A MULTI-OMIC APPROACH TO WASTEWATER-BASED 

EPIDEMIOLOGY 

Introduction 
 

In the previous two chapters, I explored the feasibility of expanding the use and 

application of wastewater-based epidemiology to other realms of public health beyond 

illicit drug monitoring was explored through the use of rigorous literature reviews with 

the goal of identifying potential new biomarkers indicative of nutritional status and 

chronic disease. Nutritional biomarkers were identified based on specificity of particular 

types of diet as well as connection to chronic disease. Detectability in urine and microbial 

biotransformation products from human gut microbiome interactions were also examined. 

Excreted biomarkers indicative of plant-based dietary behavior, such as the 

phytoestrogens genistein and daidzein, were also identified as potentially linked to breast 

cancer incidence; offering potentially preventative benefits. Additionally, utilizing this 

approach to be integrated into current public health surveillance programs had not been 

investigated more in-depth, allowing the opportunity to explore the potential benefits 

from a nutrition and human health perspective.  

In Chapter 4, I conducted a two-year WBE study in a small catchment within a 

southwestern U.S. city, with the overarching goal to measure biomarkers indicative of 

diet and assess relevance to current measurements for nutritional assessment. Twenty-

four-hour composite wastewater samples were collected for seven consecutive days each 



  39 

month from within the sewer infrastructure and later analyzed by liquid chromatography-

tandem mass spectrometry (LC-MS/MS); compounds measured include genistein, 

daidzein, and enterolactone for the entire study period. Due to both genistein and 

daidzein being parent (ingested) compounds, a microbial metabolite of daidzein, equol, 

was later introduced in the study to test parent-metabolite interactions and determine 

suitability. Wastewater flow measurements and population estimates were used to 

calculate daily per capita phytoestrogen consumption and/or production for each 

individual compound and compared to existing estimates for average consumption of 

phytoestrogens in the U.S. Nonparametric statistical analyses were performed (Mann 

Whitney, Spearman’s rank) to assess variability in consumption patterns between each 

year (year one, year two), seasons (fall, winter, spring, summer), months, and days 

(weekday vs. weekend). As proof of concept, interactions within the human gut 

microbiome were assessed by allocating a subset of samples for 16S rRNA sequencing as 

well as 16S rRNA quantitative polymerase chain reaction (qPCR) to determine microbial 

composition as it is relevant to the human gut, as well as test ability to detect and measure 

bacterial taxa that are reported to play a role in phytoestrogen metabolism. 

4.1 Phytoestrogens and conventional methods of plant-based dietary assessment  
 

Phytoestrogens are plant-derived, naturally occurring chemicals that have the 

ability to mimic estrogen, and/or interfere with the estrogen receptor. [100, 101] Due to 

this characteristic, phytoestrogens have received increasing attention in the clinical realm 

as an alternative to conventional hormone-related drug therapies. [94] More broadly, 

consumption of phytoestrogens suggests plant-based dietary behavior, which has been 
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shown to provide significant human health benefits, particularly for preventing nutrition-

related chronic disease. [53, 94, 102] While survey-based methods have been employed 

to gain insight into dietary behavior, challenges experienced with these methods persist 

[16, 19-23, 103, 104]. For example, a 24-hour food recall survey offers the benefit of 

saving time, while still providing useful information on recent consumption. While it is 

considered the least biased of self-report methods, underestimating intake is possible due 

to the inability to capture the respondent’s day-to-day variability in intake over long 

periods of time. [19, 20] Food diaries, in contrast, are designed to provide insight into 

dietary patterns over time, allowing the ability to make more robust associations between 

diet and disease. Administering this tool on various smartphone apps also makes it more 

accessible compared to other methods, however, ambiguity in describing preparation 

methods and under-/over-reporting can be common. It has been noted that in order to 

gain a comprehensive overview of dietary patterns and behavior, and depending on the 

study design and primary outcomes, multiple instruments may need to be employed, 

which may require a licensed professional to administer and analyze, such as a Registered 

Dietitian (RD), contributing to elevated study costs. [21, 105] 

4.1.1 Wastewater-based epidemiology as a tool for measuring population-level diet  
 

Wastewater-based epidemiology, a rapidly evolving scientific discipline where 

human excreted chemical and biological signatures are analyzed in community 

wastewater, offers a unique perspective into population-level behavior, exposure, and 

activity. Historically implemented at an international scale to monitor illicit drug use 

across cities, [5, 6, 27, 56] WBE has gained much more attention in recent years for its 

potential to expand into other realms of public health. [26, 37, 59]. The COVID-19 global 



  41 

pandemic also highlighted the ability for WBE to transcend disciplines, with many 

groups now investigating viral and biological presence beyond SARS-CoV-2 at multiple 

scales of sample collection resolution [32-35, 43, 106-108]. While these studies have 

proposed dietary behavior as an opportunity for further exploration, few have fully 

investigated this conceivable venture, and none have examined this from a 

multidisciplinary analytical approach. As more evidence supports the need for alternative 

approaches to understanding dietary behavior due to the limitations mentioned above, and 

with many life-threatening diseases and conditions being linked to nutritional habits, it 

appeared prudent to explore this avenue of WBE to evaluate its utility in assessing 

population-level nutritional behavior to support public health interventions.   

4.1.2 Dietary sources and cultural differences in consumption patterns 
 

The most commonly consumed classes of phytoestrogens in the Western diet are 

currently understood to be isoflavones, lignans, and to a lesser extent, coumestans. A 

unique feature of phytoestrogen consumption as a whole are the observed cultural 

differences in consumption rates as it relates to breast cancer incidence. For instance, the 

mean daily phytoestrogen intake, predominantly through isoflavones, in Asian cultures 

can generally range between 25 – >50 mg d-1, whereas in the United States, the per capita 

intake per day ranges between 1 – 3 mg d-1, however, breast cancer incidence is markedly 

lower in the former population. [109, 110] Isoflavones, genistein and daidzein as the two 

primary compounds, are the major family of phytoestrogens that make up soy-based 

foods and food products, such as tofu, tempeh, fermented soybeans (natto), and soymilk, 

but are also found in an assortment of fruits and vegetables as well as processed foods at 

lower concentrations (Appendix A; Table 8) [111, 112]. Lignans are much more 
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ubiquitous in terms of food sources, including nuts, seeds, berries, beer, and a wide range 

of vegetables, with four major lignans commonly consumed: Lariciresinol, Pinoresinol, 

Matairesinol, and Secoisolariciresinol. The greatest concentration of lignan is known to 

be derived from flaxseed in the form of matairesinol and secoisolariciresinol, however, 

flaxseed is not commonly consumed in more Westernized cultures [113-115]. These 

consumed lignans are understood to eventually be transformed via microbial 

communities within the human gut and produce enterolignans, enterodiol and 

enterolactone; the latter being the final end-stage product of both human and microbial 

metabolism as enterodiol can further convert to enterolactone, but not vice versa [114, 

115]. 

4.1.3 Human gut microbiome interactions 
 

Daidzein has specifically been reported to convert to a more estrogenically active 

compound, equol, post-consumption through microbial interactions within the human gut. 

However, it is noted that approximately 25-30% of a Westernized human population (50-

60% Asian population) is understood to contain the microbes necessary for this 

conversion, with so-called “non-producers” to yield O-desmethylangolensin (O-DMA), 

also through microbial interactions [116]. Equol has repeatedly been documented to be 

associated with reduced breast cancer incidence, and is also proposed as an alternative for 

hormone replacement therapy as well as symptom relief due to menopause. Some studies 

have also found positive associations with increased intake of isoflavone-rich foods and 

increased equol production as measured in urine [41, 116-118]. For enterolignans, 

specifically enterolactone, reports have noted increased production, measured through 

elevated urinary output, to be associated with cancer-protective properties as well as 
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support prevention of cardiovascular disease. Reports have also found an increase in use 

of oral antibiotics was associated with decreases in enterolactone in human blood and 

urine, indicating the measured values are predominantly driven by gut microbes [119]. 

Bacterial genera unique to the human gut microbiome and are currently known to play a 

role in either a direct or intermediate conversion to producing equol and enterolactone 

include: Ruminococcus, Streptococcus, Eggerthella, Bacteroides, and Bifidobacterium, 

amongst others [113, 120-122]. It has also been observed that an adoption of a vegetarian 

or vegan diet can promote growth of these beneficial bacteria in the gut [123]. These 

observed individualized human interactions and associated human health benefits 

warrants further exploration at population-scale to assess these links between diet and 

disease. 

Thus, the goals of this study were to (i) investigate longitudinal trends of 

consumption of daidzein and genistein, and enterolactone production in a small sewer 

catchment to determine feasibility and appropriateness for a wastewater-based 

epidemiology study, (ii) assess microbial composition of biologically-relevant taxa 

known to play a role in phytoestrogen consumption and human health, (iii) explore the 

potential of novel biomarkers, such as equol, to enhance insights into isoflavone 

consumption and subsequent gut microbial production, and (iv) discuss opportunities for 

future investigation.  
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4.2 Materials and Methods 
 
4.2.1 Chemicals and reagents 
 

Native analytical standards of genistein, daidzein, and enterolactone were purchased 

from Sigma-Aldrich (St. Louis, MO, USA). Isotopically labeled analytical standard 

genistein-d4 was purchased from Cayman Chemical (Ann Arbor, MI). Native analytical 

standard of equol was purchased from Santa Cruz Biotechnology (Dallas, TX, USA). 

Liquid chromatography-grade (LC-grade) water, methanol, and acetone were obtained 

from Fisher Scientific (Waltham, MA, USA), and LC-grade formic acid was purchased 

from Fluka Chemical Corp (Milwaukee, WI, USA). Stock standard solutions were 

prepared in-house using LC-grade methanol and stored at -20℃. Temporary working 

solutions were prepared by serial dilution of stock solutions with LC-grade methanol and 

stored at -20℃. All glassware used for this study was washed with laboratory-approved 

detergent, rinsed with LC-grade water, capped with aluminum foil, and heated at 550℃ 

for 4 hours with a 12-hour cooling period prior to use. 

4.2.2 Study location 
 

 This study took place in a small sub-catchment of a large urban city located 

immediately south-east to a major public university. This catchment, at the time this 

study took place (August 2017 – July 2019), was comprised of a mix of single-family 

homes, condominiums, apartment complexes, off-campus student housing, a public park, 

restaurants, and hotels. Demographically, the area is comprised of White Non-Hispanic 

(~40%), Asian (~25%), Hispanic or Latino (~21%), African American (~7%), and 

American Indian/Alaska Native (~4%) individuals. The median household income was 

approximately $37,000, with an average household size of 3 and median age of 24 years 
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old. The wastewater collection system drains south-west, with sewage retention times 

ranging between 2 (minimum) and 50 (maximum) minutes, with an average time of 

approximately 20 minutes. Documented historical estimates of wastewater temperatures 

unique to this catchment at time of collection ranged between 20℃ – 30℃ depending on 

time of year. 

4.2.3 Sample collection and transport 
 

Time-weighted, twenty-four (24) hour composite wastewater samples were collected 

over seven (7) consecutive days per month between August of 2017 and July of 2019 (n = 

156). An Avalanche® automated refrigerated sampler (Teledyne, ISCO, Lincoln, NE, 

USA) deployed above ground and maintained inside a permanent cabinet station was set 

to collect 60-100 milliliters (mL) of raw wastewater from within the sewer collection 

system every fifteen minutes; captured in previously acid-washed 10 L glass vessels. 

Each 24-hour composited sample was adequately mixed and transferred to two-liter high-

density polyethylene (HDPE) bottles; immediately placed on ice in designated coolers 

and transported to the nearby laboratory. Typical 24-hour sample collection timeframes 

occurred from 7:00AM-6:59AM; time between sample collection to same-day processing 

did not exceed 1 hour. Wastewater flow measurements were monitored by ISCO 

LaserFlow flow meters (Teledyne, ISCO, Lincoln, NE, USA), located within the 

permanent sample collection station which monitored and recorded flow at 2-minute 

intervals. Flow measurements were obtained through FlowLink online software 

(Teledyne, ISCO, Lincoln, NE, USA).  
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4.2.4 Sample processing and analysis 
 

Methods employed for chemical processing and analysis have been previously 

published. [39, 124] Briefly, duplicated 200 milliliter (mL) aliquots of each raw influent 

wastewater sample were spiked with isotopically-labeled internal standard (1 𝜇g L-1 final 

concentration in sample) and subsequently arranged on a DionexTM AutotraceTM 280 

Solid-Phase Extraction Instrument (SPE) (Thermo Scientific, Waltham, MA) using Oasis 

Hydrophilic-Lipophilic Balance (HLB) cartridges (150mg, 6cc, 30 um particle size) 

(Waters, Milford, MA). Method blanks (deionized water) were extracted and analyzed 

alongside each set of samples to determine potential contamination. Prior to sample 

loading, cartridges underwent conditioning with methanol, followed by a water rinse. 

Post-sample loading, cartridges were dried under a gentle stream of nitrogen for 10 

minutes. Next, gravity drip-wise elutions were performed using a vacuum manifold with 

an in-line HEPA filter using a 1:1 (v:v) methanol and acetone solution with 0.5% formic 

acid until a final volume of 4mL was achieved. Organic extracts were then stored at -

20℃  until further analysis. 

For LC-MS/MS sample extract preparation, 200 microliters (𝜇L) of each organic 

extract was aliquoted into glass amber vials with 350 𝜇L inserts and dried down under a 

gentle stream of nitrogen. Extracts were reconstituted first with 100 𝜇L of LC-MS grade 

methanol, followed by 100 𝜇L of LC-MS grade water, and then lightly vortexed. 

Finalized extracts were analyzed for targeted analytes using a Shimadzu Prominence 

2100 high performance liquid chromatographer (HPLC) (Marlborough, MA) paired to an 

AB Sciex API 4000 triple quadrupole mass spectrometer (Applied Biosystems, 

Framingham, MA) with electrospray ionization (ESI) operating in negative mode. 
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Analyte identification was achieved using compound-specific retention times and ion 

transition from multiple reaction monitoring (MRM) (Appendix A: Table 9). 

Chromatographic separation was attained using a Symmetry C8 column (4.6 x 150 mm, 

3.5 um particle size), followed by a Symmetry VanGuard Cartridge (3.9 x 5 mm, 3.5 um 

particle size) (Waters, Milford, MA). Further specific method details are listed in 

Appendix A: Table 10.  

4.2.5 Quality assurance/quality control 
 
 Negative extraction blanks (deionized water) were incorporated with each SPE 

run alongside samples to identify potential contamination. Reported concentrations were 

determined based on a 14-point standard curve (daidzein, genistein, enterolactone), 

ranging from 0.05 𝜇g L-1 to 2000 𝜇g L-1, and a 12-point standard curve (equol) ranging 

from 0.5 𝜇g L-1 to 2000 𝜇g L-1 with a minimum coefficient of determination of R2 = 0.99. 

Precision was expressed as Relative Percentage Difference (RPD); target precision 

between replicates was <30% (Equation 1). Instrument blanks (50:50 methanol and 

water) were included every six to eight samples to assess analyte carryover, of which no 

carryover was observed in this study. Detailed method validation information including 

method detection limits (MDL) and recoveries are provided in Appendix A: Table 11. 

Chromatograms of select analytes can be found in SI (Appendix A: Figure 17). 

Relative Percentage Difference (RPD) calculated using the following equation: 

𝑅𝑃𝐷	% = 𝐴𝐵𝑆	 .!!""	!!#
!!"$	!!#

/21 × 	100  Eq. 1 

Where CS1 and CS2 are the measured concentrations in the sample and its associated 

duplicate.   
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4.2.6 Data analysis 
 

 LC-MS/MS data were acquired with Analyst 1.5 software (Applied Biosystems, 

Foster City, CA), where concentrations were calculated using isotope-dilution and 

subsequently reported if the signal-to-noise ratio was greater than 10 and concentrations 

were above the MDL. Calculated concentrations (𝜇g L-1) were converted to mass loads (g 

d-1) using flow data provided by the municipality and accessed with FlowLink software 

(Table 7).  

Table 7. Population estimates and flow measurements used for specific time periods throughout 
this study. 

Time Period Population Flow (Liters/day) 
August – May 9,848 2,165,424 
June – July 6,976 1,636,932 

 

Population-normalized mass loads (𝜇g d-1 capita) were produced using population 

estimates as described below and listed in Table 7. Per capita daily genistein 

consumption (GC) was calculated using the following equation: 

𝐺𝐶 = !$∗&%&'
!'$∗()*

    Eq. 2 

Where CG is the measured genistein concentration, QTot is the total daily volumetric flow 

rate, CFG is the correction factor (5; 20% excretion) [125, 126] (Appendix A: Table 12). 

Pop is estimated population. Per capita daily daidzein consumption (DC) was calculated 

using the following equation: 

𝐷𝐶 = !(∗&%&'
!'(∗()*

    Eq. 3 

Where CD is the measured daidzein concentration, QTot is the total daily volumetric flow 

rate, CFD is the correction factor (2.2; 45% excretion) [126, 127] (Appendix A: Table 
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12). Pop is estimated population. Per capita daily lignan consumption (LC) was 

calculated using the following equation: 

𝐿𝐶 =
!)*%∗+

+,-.$
+,)*%

,&%&'

-')*%∗()*
  Eq. 4 

Where CENT is the measured enterolactone concentration, MWLIG / MWENT is the ratio of 

molecular weights with the average of four main parent lignans common in the human 

diet; pinoresinol, lariciresinol, matairesinol, and secoisolariciresinol (LIG) and 

enterolignan metabolite enterolactone (ENT), QTot is the total daily volumetric flow rate, 

EFENT is the urinary excretion of enterolactone (1.1 mg d-1),  previously reported in WBE 

studies (Appendix A: Table 12) [124], and Pop is estimated population. Per capita daily 

equol production (EC) was calculated using the following equation: 

𝐸𝐶 =
!)/∗.

+,(0(
+,)/

/&%&'

-')/∗()*
  Eq. 5 

Where CEQ is the measured equol concentration, MWDAD/MWEQ is the ratio of molecular 

weights of the parent daidzein (DAD) and metabolite equol (EQ), QTot is the total daily 

volumetric flow rate, EFEQ is the urinary excretion of equol (2.7 mg d-1) [121] (Appendix 

A: Table 12), and Pop is estimated population.  

Per person consumption was calculated using previously reported methods with 

slight modification. [128] Resident population estimates were determined using 2010 

census block group data and employment data using Maricopa Association of 

Government (MAG) where resident and non-resident employment was examined. 

Student population estimates were obtained from publicly-available campus resident data 

and estimates using changes in wastewater flow volume (Table 7). [128] 
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 Statistical analyses were performed using Microsoft Excel 2019 where Mann-

Whitney U and Spearman rank-order non-parametric tests were conducted. To control for 

Type I errors and correct for multiple tests, a Benjamini-Hochberg (BH) correction factor 

was applied (false discovery rate (FDR): 0.05) using the following equation: 

𝐵𝐻 =	 0
1
	𝑄    Eq. 6 

Where i is the rank assigned to the p-value in the array, m is the number of comparisons, 

and Q is the FDR. Spearman rank-order correlations were performed to assess 

correlations between parent-metabolite (daidzein, equol) interactions as well as assess in-

sewer degradation.  

 Effect of temperature on in-sewer analyte degradation was assessed through 

statistical analysis. Reported ambient temperatures (average, minimum, maximum) for 

each sample collection day throughout this study were recorded. A Spearman’s rank 

order non-parametric test was first used to compare the recorded daily ambient 

temperature with estimated wastewater temperature previously reported (Appendix A: 

Table 13; Figure 16) [129] based on historical estimates within the study area. Next, the 

relationship between recorded ambient temperatures and measured analyte signal in 

wastewater (𝜇g/L) for each analyte (genistein, daidzein, enterolactone, and equol) was 

also assessed using Spearman’s rank order non-parametric tests (𝜌 < 0.50 = weak; 𝜌 

>0.50 < 0.70 moderately strong; 𝜌 > 0.70 strong).  

4.2.7 Microbiome analysis  
 

As a proof of concept for understanding human gut microbial interactions at 

population-level, a subset of samples (n = 12 months) was allocated for microbiome 

analyses. Approximately 84 previously frozen raw wastewater samples from the entire 
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year of 2018 (Jan through Dec; 7 samples/month) were thawed, gently inverted and well 

mixed, and aliquoted into 100 mL composites representing each month. Next, 

approximately 50 mL of each sample was loaded onto sterile 0.22 µm polycarbonate 

membrane filters (47 mm) (EMD Millipore, Burlington, MA) using a vacuum pump 

apparatus with in-line filter, discarding the filtrate. Each filter was then aseptically 

transferred into an individual bead tube and underwent bead-beating for approximately 

15 minutes using a Vortex Genie 2 with an adapter to secure the tubes (Scientific 

Industries, Bohemia, NY). DNA extractions then were performed using a QIAGEN 

DNeasy Power Soil Pro Kit (Hilden, Germany), following manufacturer’s instructions. 

The extracted DNA (50 uL) was immediately stored at -80°C until further analysis. A 

whole process negative extraction control (deionized water) was incorporated to account 

for potential contamination throughout the extraction process. 

Bacterial community composition analysis was performed with next generation 

sequencing in MiSeq Illumina platform. Amplicon sequencing of the V4 region of the 

16S rRNA gene was performed with the barcoded primer set 515f/806r [130], following 

the protocol by the Earth Microbiome Project (EMP) (www.earthmicrobiome.org) for 

library preparation [131]. PCR amplifications for each sample were performed in 

duplicate, then pooled and quantified using the Accublue® High sensitivity dsDNA 

Quantitation Kit (Biotium, Fremont, CA). A no template control (NTC) sample was 

included during the library preparation as a control for extraneous nucleic acid 

contamination. 200 ng of DNA per sample are pooled and then cleaned using a QIA 

quick PCR purification kit (QIAGEN, Hilden, Germany)). The pool was quantified by 

Illumina library Quantification Kit ABI Prism® (Kapa Biosystems, Wilmington, MA). 
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The DNA pool was then diluted to a final concentration of 4 nM then denatured and 

diluted to a final concentration of 4 pM with 25% of PhiX for quality control. Finally, the 

DNA library was loaded in the MiSeq Illumina and run using the version 2 module (2 x 

250 paired-end) following the directions of the manufacturer. 

Data analysis was achieved using QIIME 2 (version 2021.2) [132] for sequence 

quality control and feature table construction. The DADA2 plugin [133] was used to filter 

and merge the forward and reverse reads. Sequences were then mapped to the Silva 138 

SSURef NR99 Database for microbial community composition analysis. A classifier was 

trained with the forward and reverse primers used in this study. The generated QIIME 2 

files were imported into R using the R phyloseq package (version 1.36.0) [134], and 

contaminating ASVs were identified and removed with the R decontam package (version 

1.12.0) [135]. ASVs were classified as contaminants if identified by either the frequency 

or prevalence methods (method = “either”). Multiple probability thresholds were tested: 0 

(no contaminants), 0.1 (default threshold in decontam), through to 0.5, the most 

aggressive threshold considered. A final threshold of 0.5 was chosen for data 

interpretation due to the low biomass nature of the samples and reduce likelihood of 

interpreting a contaminant as a viable sequence. The relative abundances of individual 

genus relative to the abundances of total genera in each sample were visualized using the 

R ggplot2 package (version 3.3.5). [136] 

Quantitative polymerase chain reaction (qPCR) was then performed using a 

QuantStudio 3 (Applied Biosystems, ThermoFisher Scientific, Waltham, MA) instrument 

to quantify the total 16S rRNA gene as a proxy of bacterial concentration (16S rRNA 

gene copies L-1 wastewater) in each sample. A previously published and validated 
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TaqMan-based assay was employed targeting the 16S rRNA gene using a universal 

primer and probe set [137] (Appendix A: Table 14). All samples were run in triplicate 

along with a standard curve (16S rRNA plasmids) ranging from 107 to 101 copies uL-1 

along with molecular no-template controls (NTC) using RNAse/DNAse-free UltrapureTM 

PCR-grade water (Invitrogen, Waltham, MA). Each reaction contained 300 nM probe and 

300 nM of each primer, 1X concentrated buffer (TakaraBio Inc, Kusatsu, Shiga, Japan), 2 

uL DNA template, and nuclease-free water up to 20 uL final reaction volume. Thermal 

cycling conditions were as follows: Hot start at 95℃ for 2 minutes, followed by 45 cycles 

of 95℃ for 10 seconds, 56℃ for 20 seconds, and 68℃ for 20 seconds.  

Semi-quantitative calculations were achieved by multiplying the relative 

abundance of select genera (%) by the resultant copy numbers of the 16S rRNA gene per 

liter of wastewater informed by qPCR in each corresponding sample, resulting in the 

number of 16S rRNA genes belonging to each selected genera under investigation. 

4.3 Results and discussion 
 

 The goal of this study was to investigate the feasibility of conduct WBE in a sub-

catchment of a southwestern U.S. city from August 2017 through July 2019 to understand 

population-level dynamics of plant-based dietary behavior. A multi-omics approach was 

used in order to gain a comprehensive understanding of dietary consumption patterns in a 

community of interest (Figure 2).   
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Seven sample collection days per month were determined by the city based on 

compliance monitoring; with a total of 168 potential sample collection days. Of those, 12 

samples were lost due to automated sampler malfunction or other related event (i.e., 

clogging of tubing) leaving a final total of 156 samples collected, processed, and 

analyzed; with 100% detection for all phytoestrogens under investigation. Measured 

Figure 2. Visual representation of the various methods and protocols considered and/or employed in 
this study for understanding population-level dynamics of dietary behavior. A two-year case study 
conducted investigating plant-based dietary behavior utilizing wastewater-based epidemiology 
(WBE) to measure phytoestrogens through a multi-omics analytical approach that serve to inform 
considerations for future work. Conventional methods (not used here) include: Individualized human 
biomonitoring, personal app trackers on smart phones, and survey methods such as 24-hour food 
recall or national surveys such as National Health and Nutritional Examination Survey (NHANES). 
Created using BioRender.com. 
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concentrations in raw wastewater, calculated mass loads, and average per capita excretion 

are shown for isoflavones genistein (Figure 3A) and daidzein (Figure 3B), along with 

enterolactone (Figure 4A) and equol (Figure 4B). Calculated average per capita mass 

loads of genistein, daidzein, enterolactone, and equol (avg ± SD 𝜇g d-1 per capita) were 

255 ±106	𝜇g d-1 per capita, 871 ±553	𝜇g d-1 per capita, 1437± 751	𝜇g d-1 per capita, and 

231± 142	𝜇g d-1 per capita, respectively. Measured per capita mass loads reported herein 

are higher in relation to previous WBE studies of measuring genistein, daidzein, and 

enterolactone in raw wastewater: 94± 30, 310 ±79, 349± 57 𝜇g d-1 per capita (City 1) 

and 108 ±45, 490± 216 645± 265 𝜇g d-1 per capita (City 2) [39], however, this could be 

due to sample collection from within the sewer infrastructure as employed here, 

compared to a wastewater treatment plant (WWTP) which could increase risk for analyte 

degradation due to long in-sewer retention times.  
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Figure 3. Measured average concentrations in raw wastewater (𝜇g L-1), 
calculated mass loads incorporating flow estimates (g d-1), and per capita excretion (𝜇g 
d-1 per capita) for isoflavones (A) genistein and (B) daidzein for the entire study period 
beginning August 2017 through July 2019. Error bars represent standard deviation 
between duplicates. 
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Figure 4. Measured concentrations in raw wastewater (𝜇g L-1), calculated mass loads 
incorporating flow estimates (g d-1), and per capita excretion (𝜇g d-1 per capita) for 
(A) enterolactone (August 2017 through July 2019) and (B) equol (January 2019 
through July 2019). Error bars represent standard deviation between duplicates. 
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In the first year of monitoring, total phytoestrogen consumption patterns 

displayed a distinct increase at the start of each new year with a subsequent decline after 

the month of March. This pattern was repeated in the following year (Figure 5A; 

Appendix A: Figure 16). This increase at the beginning of the year could be due to 

lifestyle changes with increased purchasing and consumption of healthier foods after 

making New Years’ resolutions [138]. Comparisons between years (year one vs. year 

two), days of the week (week vs. weekend), and seasons (Fall, Summer, Spring, Summer) 

were assessed, with statistically significant differences between year one and year two 

(p≤0.01), and increased consumption overall in the second year (Figure 5B). While no 

statistically significant difference between weekday and weekend consumption was 

observed, seasonal changes specifically between Fall and Winter and Spring and Summer 

held statistical significance (p≤0.01) (Figure 5C-D). Seasons were determined according 

to the National Geographic Society [139]: Fall (September, October, November); Winter 

(December, January, February); Spring (March, April, May); Summer (June, July, 

August). These changes are in agreement with the overall consumption patterns across 

the year, with large increases occurring at the beginning of the year (winter) and 

declining after March heading into the summer.  
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Figure 5. Calculated per capita consumption of phytoestrogens based on measurements from 
August 2017 through July 2019 all in mg d-1 per capita. Thick dashed lines represent measured 
averages for each analyte or group of analytes in this study. Yellow shading represents literature 
reported estimated range of phytoestrogen consumption in a western society (1-3 mg d-1 per 
person). Box plots show the 25th, 50th (median), and 75th quartiles with minimum and maximum 
error bars. Black diamonds represent the mean for each month and yellow circles are each 
individual points. (A) Total phytoestrogen consumption (sum of genistein, daidzein, and 
enterolactone) measured in raw wastewater (B) Year by year comparison for total phytoestrogen 
consumption showing statistically significant changes (C) Weekday (Wk) versus weekend (Wkd) 
comparison for total phytoestrogen consumption and (D) Seasonal comparison showing total 
phytoestrogen consumption in Fall (F), Winter (W), Spring (Sp), Summer (S) with statistically 
significant changes between F and W and Sp and S. (E) Isoflavone consumption as the sum of 
genistein and daidzein for both years. (F) Lignan consumption indicated by the production of the 
microbial metabolite enterolactone for both years. Statistical significance informed by Mann 
Whitney U nonparametric test of variability with Benjamini Hochberg (BH) correction for false 
discovery (0.05) (*p≤0.01). 
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As previously mentioned, it is estimated that the average consumption rate of 

phytoestrogens in a western society ranges between 1-3 mg d-1 per person, however, 

these estimates can vary depending on life stage, dietary lifestyle preference, and others 

such as demographics or food access. [101, 140] Average total phytoestrogen 

consumption was slightly higher than this estimated range; year one 4.1± 2.2 mg d-1 per 

capita and 5.0 ± 2.3 mg d-1 per capita for year two. However, these estimates reflect 

dietary behavior of a western society, which has decreased representation from minority 

groups than in this study. For example, according to the U.S. Census Bureau, 

demographic populations across the nation consist of 60% White Non-Hispanic, 5% 

Asian, 18% Hispanic or Latino, 13% Black, and 1% American Indian/Alaska Native, 

whereas in this study, White Non-Hispanic is 40% with 25% Asian, 21% Hispanic or 

Latino, 7% Black, and 4% American Indian/Alaska Native. [141] This difference in 

demographic distribution could result in the varied consumption rates. Measured 

isoflavone and lignan consumption informed by wastewater, however, was consistent 

within the 1-3 mg d-1 estimated range, although the isoflavones were closer to the higher 

end (Figure 5E), which could be due to the greater percentage of Asian residents within 

this catchment. Lignans, as described, are much more ubiquitous than isoflavones, and 

found in a wide variety of fruits and vegetables as well as beer. [115] Lignan 

consumption was represented by measuring enterolactone, an end-product microbial 

metabolite of consumed lignans (Figure 5F). [113, 142] Per capita consumption and/or 

production (mg d-1 per capita) for the entire study period for genistein, daidzein, and 

enterolactone can be found in Figure 6A. Statistical assessment to determine 

susceptibility to temperature degradation tested by Spearman’s rank order nonparametric 
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test are displayed in Figure 6B. Full details of associated p-values and Benjamini-

Hochberg (BH) corrections for each analyte are shown in Appendix A: Table 15. 
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Figure 6. (A) Per capita consumption (genistein, daidzein) and production (enterolactone) 
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daily ambient temperature for each sample collection day throughout this study. Tests resulted 
in weak associations (𝜌<0.50) for genistein (𝜌 = 0.22), daidzein (𝜌 = 0.16), and enterolactone (𝜌 
= 0.23).  
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Phytoestrogens are known to have varying degrees interactions within the human 

gut microbiome interactions at the individual level. To investigate potential relationships 

at population-scale, a subset of samples (n = 84; January through December 2018) was 

allocated to test if these interactions identified in the literature are reflected in community 

municipal wastewater. Compositional analysis down to the genus-level of each month 

revealed that specific bacterial taxa that have been isolated from within the human gut 

microbiome, such as Bifidobacterium., Blautia, and Romboutsia, were detectable in a 

community sewage sample (Figure 7A). In more recent studies, these genera have also 

been reported to interact with phytoestrogens and produce metabolites such as 

enterolactone and equol [42, 118]. Few studies investigating at the individual-level have 

also observed anti-cancer properties of these microbial products, as well explore whether 

increases in certain genera would result in greater enterolactone production, begging the 

question of the role of diet in promoting growth of these beneficial microbes [143]. Using 

the measured relative abundance and total 16S rRNA genes (a proxy for bacteria 

concentration as 16S rRNA gene copies L-1 wastewater) (Figure 7B), average semi-

quantitative abundances of the number of 16S rRNA genes belonging to select 

enterolignan- and equol-producing genera were calculated, including: Ruminococcus 

(1.56 x 1010), Clostridium (5.42 x 109), Bacteroides (2.08 x 109), Blautia (1.20 x 1010), 

Bifidobacterium (4.57 x 1010), Romboutsia (1.65 x 1010), Intestinibactre (1.12 x 109), 

Subdoligranulum (1.45 x 1010), Dorea (9.78 x 109), Slackia (1.98 x 107), Prevotella (4.29 

x 108), Roseburia (2.14 x 107), Senegalimassilia (8.66 x 107),  and Eubacterium (1.36 x 

109) (Figure 7A). A detection frequency of 100% in all samples was found for 

Ruminococcus, Blautia, Clostridium, Bifidobacterium, Romboutsia, Dorea, and 
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Subdoligranulum, followed by Intestinibacter (66%), Eubacterium (58%) Bacteroides 

(50%), Prevotella (25%), Senegalimassilia and Roseburia (16%), and Slackia (8%). 

Measured per capita consumption rates (mg d-1 per capita) are shown in Figure 7C to 

visualize trends between chemical and microbial data. Notably, the month with the least 

estimated total phytoestrogen consumption and/or production (June) determined in 

wastewater for the entire study period corresponds to the lowest 16S rRNA bacterial gene 

copies L-1 wastewater measured in June of 2018 determined by qPCR (Figure 7C). In 

general, it could be assumed that a lower amount of 16S rRNA bacterial gene copies L-1 

could indicate a decreased abundance of bacteria in that given sample, leading to 

decreased production of measured enterolignans produced in the gut, however, similar 

trends were not observed when comparing the chemical and biological data for any other 

month under study. Thus, this phenomenon should be further explored as it could be 

utilized in predictive models to inform on anticipated consumption trends and related 

disease incidence patterns. These results suggest the feasibility of observing human gut 

microbiome at community-scale, and further, to interpret results in the context of 

population diet and health. 
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Figure 7. Microbial composition from a subset of wastewater samples investigated in this study 
(January through December 2018) (A) Relative abundance (%) of select bacterial taxa at genus-
level involved in phytoestrogen metabolism within the human gut, (B) Semi-quantitative 
abundance of the same genera (C) Measurement of total bacterial 16S rRNA genes in each sample 
from quantitative polymerase chain reaction (qPCR) ((log) gene copies 16S rRNA L-1 wastewater) 
(D) Total phytoestrogen consumption (mg d-1 per capita) as the sum of genistein, daidzein, and 
enterolactone measured in raw wastewater. Box plots show the 25th, 50th (median), and 75th 
quartiles with minimum and maximum error bars. Black diamonds represent the mean for each 
month and yellow circles are each individual points. 
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It has been previously reported that measuring genistein and daidzein to 

understand human consumption could be a challenge as these are both parent (ingested) 

compounds that could also be measured as a result from industrial or restaurant dumping 

and/or runoff. [24] While this study was conducted from within the sewer network at a 

more granular level than a WWTP, it was important to test the efficacy of using these 

compounds as biomarkers for human consumption by incorporating a metabolite that 

could potentially be used for future study. In an effort to achieve these goals, equol, a 

microbial metabolite of daidzein, was included starting in January of 2019 and measured 

through July 2019 (Figure 8). It is understood that equol is produced by approximately 

30% of populations who live in a western society, with some studies showing that an 

increase in chronic consumption of foods that contain daidzein can promote microbial 

growth amenable for equol production [120, 121]. Due to this distinct attribute, it calls to 

question how this should be interpreted in a WBE study. It is possible that using an 

average per capita estimate to assess equol production in a community would lead to 

underestimation, as shown in Figure 8. Thus, these measurements were corrected to 

account for one-third of the population to have the ability to produce equol, increasing 

the amount produced, and could be a more appropriate way to display equol production at 

population-level. Trends in consumption of daidzein and production of equol were then 

examined, again displaying equol as both a per capita average and 30% population 

corrected (Figure 9A). The trends observed here are in-line with the other phytoestrogens 

investigated in this study; elevated levels at the beginning of the year with a gradual 

decrease thereafter. Spearman’s rank order nonparametric test indicates a strong 
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correlation between daidzein consumption and equol production (Figure 9B) (𝜌 = 0.84) 

with a daidzein to equol ratio of 0.2, corresponding closely to the 30% (i.e., 0.3) 

production rate of a Western society, and suggesting not only that the use of equol serves 

as an ideal candidate for future WBE investigation, but that the use of daidzein is valid as 

a dietary biomarker, depending on the location and resolution of sample collection. 

Overall, due to the selectivity of equol production amongst a population, the connection 

to dietary behavior to promote beneficial microorganisms in the human gut, and the 

associated degree of estrogenic potency of equol that offers potential human health 

benefits, it appears logical to pursue equol for future WBE investigation to determine 

population-level trends in production; later identifying links to associated chronic 

diseases such as breast cancer. Finally, due to these aforementioned qualities, use of 

equol as an alternative for hormone-replace therapy (HRT) as well as symptom relief for 

other hormone-related occurrences such as menopause has gained clinical attention [144]. 

This further strengthens the case to understand these trends using an objective, 

population-level assessment. 
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Figure 9. Understanding daidzein and equol interactions at population-level using 
WBE. (A) Daidzein (parent) consumption, shown in blue, and equol (metabolite) production, 
shown in purple as 30% of population and in pink as average per capita for full population 
under study. Measurements took place from January through July 2019 (7 months) and shown 
in mg d-1 per capita. Trends in daidzein and equol mimic trends shown for genistein, 
daidzein, and enterolactone. Equol production corrected for 30% of the population may 
reflect more accurate measurements rather than for average per capita, which appears to 
underestimate measurements. (B) XY Scatter plot of measured concentration of daidzein and 
equol (𝜇g L-1) in upper right corner displaying strong linear relationship (R2 = 0.80) and 
strong positive association (ρ = 0.84) tested using Spearman’s Rank nonparametric test. 
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For all compounds examined, there was a unique spike in March either on or 

immediately following the holiday, St. Patrick’s Day, in both 2018 and 2019 (March 17th, 

2018 and March 18th, 2019), with the exception of enterolactone in the 2018 

measurement, which could be explained by the extended half-life compared to the other 

measured analytes. This could be from increased consumption of traditional Irish foods in 

celebration of the holiday, such as colcannon or corned beef and cabbage, which all 

contain varied amounts of lignan and isoflavones. However, more likely, this could be 

due to an increase in alcohol consumption, particularly beer, which is known to contain 

certain types of phytoestrogens, including lignans [145]. Interestingly, in 2019, equol 

levels exceeded those of its precursor, daidzein (Figure 9A). Given the nature of the 

holiday, alcohol consumption could be a potentially acceptable explanation, warranting 

further investigation. In a study comparing equol-producers and non-equol-producers, 

those who reported higher alcohol consumption were more likely to be stronger equol 

producers, however, the mechanism behind this is still underdeveloped [146]. Alcohol 

consumption has been indicated to increase over this particular holiday, and was 

measured at elevated levels using WBE in March of 2018 in this general location [124], 

and repeated in 2019 during this study (Figure 19). This could explain the elevated equol 

levels measured in March of 2019 (Figure 8). 

Comparisons with current estimates for phytoestrogen consumption informed by 

conventional methods for nutritional assessment with measurements in this study were 

performed, starting with a cost analysis which resulted in a per person cost of <$1 for a 

WBE study (10,000 population) with existing startup equipment. This number increases 

to just over $2 per person if startup equipment is needed, such as an LC-MS/MS 
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(Appendix A: Table 16). This is considerably less than average cost estimates for 

traditional nutritional assessment, which could cost >$15 per person depending on the 

instrument used [4, 103].  

4.3.1 Limitations  
 
  Comparisons between the measured signal in wastewater for soy isoflavones and 

lignans and reported estimates of consumption based on individual studies and self-

reported survey data were limited largely due to differences in resolution between the two 

sets of data, resulting in varied demographic distributions. Ranges are often provided as a 

result from large-scale survey methods for overall phytoestrogen consumption in a 

western society, however, demographics at a national scale will vary significantly than at 

the sub-city scale. Variations in demographics will also result in interindividual 

variability in consumption patterns, for example, an individual who is not following a 

vegetarian diet will likely receive most of their phytoestrogen intake through lignans, 

however, flaxseed is the densest of lignan sources, and is not a food commonly consumed 

in a western-type of diet. While this poses as a limitation for comparing to international 

estimates, the purpose of conducting WBE from within the sewer catchment was to 

provide contextual information of the study of interest, thereby allowing for targeted and 

relevant public health interventions, if warranted. Thus, this study highlights the 

importance of more alternative approaches to population health as a function of 

demographics. 

 Additionally, loss or reduction of analyte signal during travel time from within the 

sewer pipe were not accounted for in this study. Stability studies specific to these 

compounds have reported that they are relatively stable; noting analyte degradation only 
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at extreme temperatures (70-90℃) that are not typical of a wastewater matrix (30-35℃) 

[147]. Additionally, in-sewer travel times in this study did not exceed 50 minutes (20 

minutes on average); this is significantly shorter than most WBE studies, which can serve 

to enhance the measurements reported herein.  

4.4 Conclusions 
 

This study investigated several aspects of assessing population-level dynamics of 

dietary behavior by integrating a multi-omics approach to wastewater-based 

epidemiology. While previous studies have reported the potential for dietary assessment 

through WBE, the true feasibility had yet to be tested from multiple perspectives and on a 

long-term scale to determine unique, contextually-relevant trends in the study sample. 

Thus, this study offers several lessons learned to inform future studies, as it is the first to 

report (i) long-term (two-year) consumption patterns of a plant-based diet at the 

neighborhood level, (ii) observe an association between wastewater-informed levels of 

phytoestrogens, as well as human health-related biotransformative products and the 

composition of microbial communities presumably associated with human gut 

microbiomes, and (iii) the introduction of equol, a microbial metabolite of daidzein, in 

order to validate the use of daidzein as a dietary biomarker under certain conditions while 

also refining wastewater-derived consumption estimates. Further, the use of equol as a 

clinical intervention for certain types of hormone-related conditions is intriguing to 

explore in future studies, as a population-level health assessment informed by WBE 

could serve to provide a comprehensive understanding of the benefits of equol from a 

holistic model. The data reported here suggest that a comprehensive approach to 
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understanding dietary behavior at population-scale is essential in order to provide the 

most relevant source of data available for any given community. Given the potential for 

WBE to provide actionable and useful information for public health assessment and 

intervention, this study serves as a foundation for future implementation. 
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CHAPTER 5 

UNRESTRICTED, ONLINE SHARING OF HIGH-FREQUENCY, HIGH-

RESOLUTION DATA ON SARS-COV-2 IN WASTEWATER TO INFORM THE 

COVID-19 PUBLIC 

Introduction 
In Chapter 4, I employed WBE to better understand dietary behavior at the 

neighborhood-level by implementing a two-year monitoring study of phytoestrogens 

genistein, daidzein, enterolactone, and equol. An isolated sewage catchment comprised 

predominantly of a residential population was chosen to carry out this novel pilot-level 

study. Statistically significant seasonal changes in consumption (mg d-1 per capita; fall 

and winter; spring and summer) were observed, and average consumption rates for 

isoflavones (genistein and daidzein) were in agreement with current estimates for U.S. 

average consumption. These findings indicate the measured values in wastewater are 

reflective of consumption patterns, however, food consumption and human metabolism 

introduce certain complexities that should be considered for WBE, such as the human gut 

microbiome. Due to the interindividual variability of the human gut microbiome, these 

products may produce different results across communities if not appropriately 

considered during analysis. Further, certain products may also offer unique health 

benefits than their precursors, and thus warrant further investigation for future public 

health applications. Thus, a microbial composition analysis was performed to test if taxa 

exclusive to the human gut responsible for biotransformation of consumed foods could be 

identified in community sewage. Further considerations for dietary analysis by WBE was 

discussed for future study. 
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 In Chapter 5, I explored broader applications of WBE to inform the public health 

response to the COVID-19 global pandemic that manifested in the United States in early 

2020. Challenges experienced early on using traditional methodologies for reporting viral 

presence highlighted the need for alternative surveillance strategies, such as WBE. This 

study adopted a high-resolution, high-frequency approach to sample collection, where 

three samples were collected from eleven catchments per week that encompass the entire 

City of Tempe, AZ. Resultant wastewater data (viral genome copies L-1) were reported 

weekly to city personnel and subsequently shared on a publicly available online 

dashboard. This was employed to test the ability for WBE to identify potential hotspots 

from within the city as well as to provide an early-warning signal compared to 

conventional reports. Results suggest that wastewater surveillance accomplished these 

goals, demonstrating the importance to include WBE for public health surveillance 

strategies. Lessons learned from employing this highly collaborative effort were 

discussed, with suggestions for future investigation. 

5.1 Wastewater-based epidemiology to monitor for SARS-CoV-2 
 
 Triggered by the SARS-CoV-2 pandemic, the use of wastewater-based epidemiology 

(WBE) as a potentially powerful, rapid, and inexpensive tool to inform public health 

decision-making has seen a remarkable increase globally. For decades, WBE has been 

exercised to track chemical and biological threats, with numerous studies underscoring its 

efficacy and usefulness for understanding and managing community health [148-155]. At 

the onset of the SARS-CoV-2 pandemic, significant delays in conventional and 

individualized clinical testing, due in part to an overwhelmed healthcare system and 
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resource limitations [156], positioned WBE as a promising supplemental tool for 

assessing SARS-CoV-2 spread at the population-level, a strategy that soon was adopted 

more broadly [157-160]. Early data showed SARS-CoV-2 levels in wastewater and 

sludge as a concomitant or early indicator of clinical confirmed infections, disease and 

mortality in a community [161, 162]. 

 The City of Tempe, Arizona, residential population ~200,000, had been an early 

adopter of WBE for the purpose of tracking opioid consumption, which began in May of 

2018 and led to the launch of a fully interactive, public-facing, open access WBE 

dashboard in February of 2019 [163]. In a municipal-academic partnership, Tempe and 

Arizona State University (ASU) participated in sharing of monthly wastewater samples, 

subsequent analysis, and to joint reporting of use-trends of opioids within the community 

monthly by displaying the obtained collaborative results for oxycodone, codeine, heroin, 

and fentanyl (and metabolites; µg d-1 per 1,000 people) in five urban sewersheds [164]. 

The City also had established a routine for data analysis and public health response by 

integrating Tempe Fire Medical Rescue, Human Services (e.g., CARE 7 crisis 

intervention organization), and others into a workgroup that relied on WBE data as an 

important and innovative source of information to guide resource deployment by 

community need (Figure 10).  
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Figure 10. Schematic of the ASU/Tempe partnership, demonstrating how the existing 
wastewater monitoring network for opioid use (established in 2018) enabled a rapid 
transition to monitoring SARS-CoV-2 during the COVID-19 global pandemic (2020) 
with work products including the world’s first WBE-informed public interactive online 
dashboards to combat the opioid and COVID-19 epidemics through a data-driven 
targeted public health response. Created with BioRender.com. 

 
 With this existing framework in place, Tempe and ASU were in a unique position at 

the start of the SARS-CoV-2 pandemic to quickly transition into WBE surveillance of 

SARS-CoV-2. Coincidentally, Tempe and the ASU community also had one of the first 

early diagnoses of a positive SARS-CoV-2 patient (26 January 2020)[165]. As the City of 

Tempe and ASU quickly transitioned into molecular-based monitoring, the immediate 

goal was to use previously established expertise in sampling, infrastructure access, and 

WBE-framed public health response to begin quantitative assessments of SARS-CoV-2 
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levels in wastewater. The ultimate objective was to identify hotspots of infection early 

and implement interventions including education, outreach, and targeted clinical testing 

to limit the spread of the virus within the Greater Tempe community. The local health 

department shared data from clinical testing of individuals only at the zip code level, 

[166] a policy intended to protect small communities and personal identifiable 

information, which potentially limited stakeholders’ ability to respond to local virus 

clusters. Unique to the US, zip codes are a series of 5 numbers created by the US postal 

service to delineate small geographical areas within counties to improve mail service, and 

are used extensively by local and state agencies, including public health departments 

[167]. The 5-digit, Tempe, AZ zip codes involved in this study are 85281, 85282, 85283, 

and 85284, and will be referred to here as ZC-1, ZC-2, ZC-3, and ZC-4. The pre-existing, 

neighborhood-level wastewater monitoring network offered an opportunity to test the 

potential of WBE to serve as an early warning system that may reveal virus presence and 

spread prior to clinical case data reported from testing of individuals [168, 169]. Thus, 

important goals of the work were (i) to compare WBE data to newly reported clinical 

cases of SARS-CoV-2, related hospitalizations, and associated deaths at a high temporal 

and geospatial resolution (i.e., county, city, zip code, and neighborhood levels), and (ii) to 

determine whether the concurrent pandemic monitoring by WBE produced data and 

information not available or obvious from clinical testing.  

5.2 Materials and methods 
 
5.2.1 Study Location 
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This study was conducted within the City of Tempe, Arizona and the Town of 

Guadalupe, Arizona, (i.e., Greater Tempe), with an estimated residential population of 

approximately 200,000, and home to Arizona State University, one of the largest public 

universities in the US. The City was divided into nine sewer catchment areas 

predetermined by the City for regulatory compliance monitoring purposes and for ease of 

access in the scale-up of this project. Two additional sampling locations were also 

included to isolate Tempe-only SARS-CoV-2 signals.   

5.2.2 Sample Collection 
 

 Flow- and time-weighted 24-h composite samples of untreated wastewater were 

collected at each sampling location within the wastewater collection system for three 

days each week (Tuesday, Thursday, Saturday), beginning April 2020 (Catchment 7 and 

Tempe St. Luke’s Hospital were added in July 2020). Samples were collected either with 

an Avalanche refrigerated sampler or a portable sampler (Teledyne ISCO, Lincoln, NE) 

using a mixture of wet and dry ice for cooling. Units were equipped with 9 mm inner 

diameter (ID) silicon tubing on the pump head, and silicon PTFE lined tubing of the same 

diameter. Flow was monitored by an ISCO LaserFlow meter (Teledyne ISCO, Lincoln, 

NE), located within a nearby manhole or flow estimated based on historic data. 

Composite samples were collected in acid-washed bottles and transferred to high-density 

polyethylene bottles that were quickly placed on ice in coolers for transport. Samples 

were processed immediately same-day to minimize degradation losses. 

5.2.3 Sample processing and analysis 
 

 Raw wastewater samples were analyzed for SARS-CoV-2 RNA following 

sequential steps of filtration, concentration, nucleic acid extraction, and reverse 
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transcriptase quantitative polymerase chain reaction (RT-qPCR) analysis. Approximately 

150 mL aliquots of raw wastewater samples were filtered through a sterile 0.45 µm 

polyether sulfone (PES) membrane filter unit (Fisher Scientific, Lenexa KS) by vacuum 

for removal of large debris. The filtrate was then loaded onto two Amicon® Ultra 15 

centrifugal filters (Millipore Sigma, Burlington, MA) with a 10,000 molecular weight 

cutoff and centrifuged at ~4,000 RPM for 15 to 20 minutes for five sequential intervals 

with an Eppendorf 5810R swing bucket refrigerated centrifuge (Eppendorf, Enfield, CT). 

The final concentrate was combined into 1.5 mL conical microcentrifuge tubes, and 200 

µL was processed using an RNeasy mini extraction kit from Qiagen (Germantown, MD), 

modified for use with this specific matrix following an animal cells protocol. The 

extracted RNA (50 µL) was stored at -80°C until quantification by RT-qPCR using 

SuperScript III Platinum One-Step qRT-PCR Kit (Invitrogen, Carlsbad, CA). The 

Charité/Berlin (World Health Organization) designed primers and probe for the E 

(envelope) SARS-CoV-2 gene target were purchased from Integrated DNA Technologies 

(Coralville, IA) [170, 171]. For quality assurance and quality control, deionized water 

was used for whole process negative extraction controls for each sample batch and 

RNAase/DNAase free Ultrapure™ water (Invitrogen,Waltham, MA) was used as 

molecular negative template control along with a SARS-CoV-2 positive control in every 

RT-qPCR plate. The positive control was created by in vitro transcription using 

linearized plasmids, with subsequent sequencing to determine validity. Later this 

transitioned to a commercially available synthetic full genome target provided by Twist 

Bioscience (San Francisco, CA). Standard curves ranged from 100 to 106, with a detection 

limit cutoff for quantification based on the standard curve (~100 copies uL-1). Triplicate 
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standard curves were analyzed for each new batch of assay reagents and were used to 

quantify samples. Quantification was performed using an Applied Biosystems 

QuantStudio™ 3 Real-Time PCR System with the QuantStudio Design and Analysis 

Software 1.2 from Thermo Scientific (Waltham, MA). Method details are previously 

published [172]. 

5.2.4 Population estimates 
 

 Resident populations for each sewershed were estimated using 2010 census block 

group data. Employment estimates were obtained from the Maricopa Association of 

Governments (MAG) 2019 employment data and included the following classifications: 

employees living outside of Tempe (non-resident, employed) and Tempe residents 

(resident, employed). To correct for changes in employment numbers during lockdown 

events (commercial closures) and telecommuting activities, we used available MAG 

average weekday traffic volume (compared to normal conditions) in Maricopa County. 

This percentage was used to correct the non-resident (Tempe employed) employment 

numbers. Student population estimates were obtained from publicly-available campus 

resident data and estimates using changes in wastewater flow volume (Appendix B: 

Table 17). 

5.2.5 Clinical data 
 

Newly detected clinical cases by zip code within the City of Tempe, Arizona were 

reported daily by the Arizona Department of Health Services. The City of Tempe began 

extracting and archiving these data on 23 May 2020. Prior to this, daily case data are not 

available (data are in aggregate as total cases from the start of the pandemic). Maricopa 

County-level new positive cases, COVID-related hospitalizations, deaths and long-term 
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care facility deaths per day are publicly available and were collected from the Maricopa 

County Epidemic Curve Dashboard [166]. 

5.2.6 Data and statistical analysis 
 
Measured concentrations in each sewer catchment were transformed to viral load (VL) 

per day (genome copies d-1) using the following equation: 

𝑉𝑖𝑟𝑎𝑙	𝑙𝑜𝑎𝑑	(𝑔𝑒𝑛𝑜𝑚𝑒	𝑐𝑜𝑝𝑖𝑒𝑠	𝑑"2) 	= 𝐶3	𝑥	𝑄3   Eq. 7 

where Cx (genome copies L-1) is the measured concentration in a given catchment, Qx is 

the total daily volumetric flow rate (L d-1). In cases where one sewer catchment flowed 

into another, viral loads were subtracted to isolate the individual catchments.  

Statistical assessments were conducted in MATLAB R2021a (MathWorks, 

Natick, MA). Root mean square error (RMSE) was used to calculate the offset between 

different compared data categories using the following equation: 

𝑅𝑀𝑆𝐸 = 	P∑ (𝑥0 − 𝑦0)4
052

2     Eq. 8 

where n is the number of observations, xi the viral loadings of SARS-CoV-2 in 

wastewater, and yi either the newly detected clinical cases, COVID-related 

hospitalizations, or COVID-related deaths. Data were assessed between 1 April 2020 and 

31 March 2021, using individual waves of infection corresponding to up to three events 

peaking in June/July 2020, August 2020, December/January 2020-21. Data were shifted 

from 0 to 20 days in both directions for each of the comparisons. The data resolution 

between clinical cases and wastewater testing were different (daily vs. 3x per week), so 

clinical results that did not have a corresponding wastewater data point were omitted 

from the assessment, post shift. 
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5.3 Results 
 
5.3.1 Neighborhood-level sampling 
 

At the onset of the pandemic, our team had divided the Greater Tempe area into five 

sewer catchments (Areas 1-5; Figure 11), including two additional, non-published 

locations that received wastewater from adjacent municipalities, which were necessary to 

determine the Tempe-associated sewage signal where wastewater was comingled. The 

neighborhood-level sampling methodology was synchronized with reoccurring 

compliance monitoring of the Sub-Regional Operating Group (SROG), a cohort of five 

municipalities including Phoenix, Tempe, Mesa, Glendale, and Scottsdale, that jointly 

own and operate the 91st Avenue wastewater treatment plant (WWTP) in Phoenix, 

Arizona. The predefined sampling strategy consisted of 7-consecutive days of sample 

collection each month, across variable weeks from permanent, sub-surface sampling 

stations. While this sampling strategy was sufficient for long-term, opioid-related 

monitoring, tracking of SARS-CoV-2 levels required an increased temporal resolution. 

Accordingly, we adopted a high-frequency sampling approach consisting of weekly 

collection on Tuesday, Thursday, and Saturday, in addition to the SROG sampling 

events. To improve spatial resolution, additional sampling locations were also identified 

based on ease of collection (Area 6), while three other permanent locations needed slight 

infrastructure modifications (Area 7) and/or approvals prior to onboarding, including the 

Town of Guadalupe with strong representation by Native American and Hispanic 

residents (Figure 11B), and Tempe St. Luke’s Hospital (not displayed on dashboard). 

Permanent sampling locations outside of the Tempe jurisdiction (necessary for 

eliminating non-Tempe SARS-CoV-2 signals) were available only during the previously 
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referenced week of compliance monitoring. City of Tempe personnel began sampling 

from maintenance holes (also known as manholes) immediately downstream of these 

locations, within the City’s jurisdiction, during the three weeks each month when regular 

compliance sampling was not performed.  
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Figure 11. Publicly accessible, interactive WBE online dashboard showcasing (A) a Map of 
Tempe, Arizona divided into wastewater catchments (Areas 1-7 and Town of Guadalupe) 
alongside one month of SARS-CoV-2 levels in wastewater determined by targeting the E gene, 
with additional data being displayed for (B) The Town of Guadalupe (May 2020 through March 
2020); with local targeted interventions implemented from May 2020 through August 2020 and 
(C) The City of Tempe (May 2020 through March 2020), showing the impact of the initial 
lockdown, and subsequent waves of infection over time (viewable at covid19.tempe.gov). 

 
5.3.2 Determination of SARS-CoV-2 levels in wastewater 
 

Between 1 April 2020 and 31 March 2021, a total of 1,556 samples were collected 

across the Greater Tempe area. Each 24-h composite sample collected represented either 
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a flow-weighted or time-averaged sample (15 min. collection intervals) captured by a 

high-frequency automated sampler. The number of samples collected per catchment 

during the study varied from a high of 155 in Area 1 to lows of 103 (Area 7) and 101 

(Hospital), with observed differences resulting from occasional sampler malfunctioning 

and staggered onboarding of additional sampling locations. The total number of SARS-

CoV-2 detects per catchment throughout the study was on average 66 ± 36, with a 

minimum of 4 (Area 3) to a maximum of 116 (Area 6). On average, when detected, the 

coronavirus concentration was 617,000 ± 2.075 million (M) gene copies L-1 (median of 

251,450 gene copies L-1) indicative of great fluctuations in virus levels over time. 

Detailed concentration information is provided in Figure 12. 
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Figure 12. Measured concentration in target catchments (Areas 1-7; Guadalupe; Hospital) from 1 
April 2020 – 31 March 2021. 



  87 

The SARS-CoV-2 viral load was calculated for each sample at a collection point 

using wastewater flow data provided by Tempe (Appendix B: Figure 18). Flow rates in 

catchment Areas 1-7 had data recorded at 2-min intervals in real-time using permanent 

laser flow meters, while the Town of Guadalupe and the Tempe St. Luke’s Hospital had 

only historical flow data available. Flow varied from a maximum in Area 1 of 54.5 ± 6.6 

million L day-1 (MLD) to a minimum of 0.106 MLD (historical estimate) for the hospital 

location; average flow rates across all catchments were 15.1 ± 21.3 MLD.  

At select collection sites, the corresponding wastewater sample was representative of 

multiple collection catchment areas due to the comingling of wastewater in the collection 

system (Appendix B: Figure 19); this occurred in Areas 1-3. To isolate individual 

catchments and provide a catchment-specific viral load, a mass balance was performed. 

Resultant viral loads in each sewer catchment ranged from 6 x 1010 - 1 x 1013 genome 

copies d-1 (Figure 13). The distributions in viral load varied between each location, with 

Areas 1, 2, and 6 showing smoother distributions in viral load over time, while others 

showed more isolated single-day spikes in activity. Most locations showed two waves in 

viral levels occurring in June 2020 and December/January 20-2021. However, in 

catchments close to ASU, an additional unique wave of viral load was visible (Areas 6 

and 7) in August 2020 (Figure 13).  
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Figure 13. Viral load per day (genome copies d-1) in target catchments (Areas 1-7; Guadalupe; 
Hospital) from 1 April 2020 - 31 March 2021. 
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Understanding the number of people contributing to wastewater in any given 

catchment is critical when working with data generated from within the collection 

system. Estimated Tempe subpopulations ranged from a low of 8,114 ± 848 in Area 5 to 

a high of 132,082 ± 7,374 in Area 1, the largest geographic catchment area (Appendix B: 

Table 17). Variability in Tempe data was a function of the total numbers of residents, 

employed individuals, and the number of students in the contributing area. The 

population of the Town of Guadalupe (6,500) was determined using US census data 

[173]. The hospital location was omitted from this population analysis since the number 

of individuals working or serving as patients was unknown.  

5.3.3 Data usage for public health 
 

The result of these efforts ultimately culminated in eight SARS-CoV-2 collection 

locations viewable online by the public (Areas 1-7 of Tempe and Town of Guadalupe) on 

an interactive dashboard that went live the first week of May 2020 (Figure 11). The 

dashboard displays each catchment area overlain on a street-level city map so users can 

geospatially identify contributing locations in the catchment. In response to a request of 

the impacted communities, the Town of Guadalupe is displayed on a separate tab of the 

dashboard. Data are shown as the logarithm of genome copies L-1 and are presented as a 

weekly average consisting of the Tuesday, Thursday, and Saturday collected samples. 

Since the sewage collection system in Tempe separates stormwater from municipal 

wastewater and the study site is in an arid climate, the use of concentration was 

permissible. Users have the ability to control spatial and temporal parameters to their 

preference; and text and infographics accompany these data, which explain WBE basics, 

how to properly interpret the data, and how data are created and used by the City. 
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Additionally, the SARS-CoV-2 wastewater dashboard is nested in a Community COVID-

19 Health Site that contains information provided by the Centers for Disease Control and 

Prevention (symptoms, prevention, exposure-response), City demographic information, 

and positive clinical cases reported by zip code. To ensure congruency in data 

interpretation between Tempe and ASU, the frequency of joint meetings that began in 

2018 increased from monthly to weekly beginning April, 2020 or biweekly (December, 

2020 and on) to discuss wastewater-derived data, newly reported cases in the community, 

sampling logistics, and targeted mitigation strategies in communities in response to the 

collected data when applicable. Although sewage temperature, travel time, and storage 

are known to influence the stability and signal strength of labile wastewater-borne 

biomarkers such as virus RNA [174], a lack of temperature-specific attenuation rates of 

SARS-CoV-2 did not allow for a confident normalization of data during the time of 

study. However, the short residence times within the various neighborhood-level 

sewersheds in Tempe and use of refrigerated samplers decreased the impact of these 

variables on collected samples. 

Data generated from the SARS-CoV-2 wastewater monitoring revealed 

consistently elevated virus measurements in the Town of Guadalupe during the initial 

lockdown in May to early June 2020, a marked difference compared to the other 

catchments in the area. A targeted approach of implementing face-mask mandates and 

community education in town halls, adding clinical testing sites, in addition to public 

sharing of wastewater data occurred from April through August, 2020, resulting in the 

decline of both viral loading in wastewater and newly reported SARS-CoV-2 positive 

cases. The Town of Guadalupe’s wastewater comingles with Tempe wastewater (and an 
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additional external municipality) and is collected as a composite at Area 3. However, 

Area 3 only had four detects during the entire year-long sampling campaign, implying 

that the elevated SARS-CoV-2 signal originating in the Town of Guadalupe was 

attenuated beyond detectability at the Area 3 sampling location, and was visible only 

through high-resolution monitoring. Whereas clinical testing in theory may have rendered 

the Guadalupe infection hotspot visible, testing was lacking in the area, and newly 

reported case counts from traditional clinical tracking by the county were aggregated at 

the zip code level with that of Tempe, thereby obscuring what may have been happening 

within the community.  

5.4 Discussion 
 

We employed WBE to monitor SARS-CoV-2 in the Greater Tempe, Arizona, 

Southwestern United States by implementing a unique, high-frequency, and 

neighborhood-level sampling approach in conjunction with immediate, open access data 

sharing with the public. The present work illustrates how an established WBE monitoring 

network can be adopted quickly to shift from one public health priority to another, as 

done here by switching from opioid targets to SARS-CoV-2. Measured values in this 

study were in line with those reported from other wastewater monitoring studies; [162, 

175, 176] however, the maximum concentration of 37.6 M gene copies L-1, is among the 

highest recorded measured values to date. This measurement occurred at the hospital 

location, which had an active COVID-19 ward at the time of collection on 11 January 

2021 during peak pandemic conditions (to date). Higher relative standard deviations 

(RSD) in measured SARS-CoV-2 values for a given week (n=3 observations per week), 
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occurred in locations with a higher proportion of commercial businesses, including Areas 

4 and 5 (RSD 83, 93%) as compared to those with largely residential catchments (Areas 1 

[58%] and Area 2 [65%]). This may explain the relatively smoother trends over time in 

Areas 1 and 2, as compared to those with higher transient populations, which showed 

isolated single-day spikes in viral presence. This is plausible given non-ambulatory 

individuals likely would have stayed at home throughout the duration of their illness. 

These results suggest that a high-frequency sample collection approach should be 

considered in catchments with a higher proportion of transient populations, which may be 

susceptible to greater variability in virus occurrence from day to day.  

Estimating population size by study area was challenging due to the unique nature of 

collecting wastewater from within the sewer infrastructure rather than by determining the 

population by counting the residents of local buildings served by a wastewater treatment 

plant as performed in traditional WBE studies [59, 177]. As a net importer of people to 

the City for work, it was important not only to quantify the residents but also the non-

resident employed and transient student populations, a task accomplished by using 

Maricopa Association of Governments (MAG) and on-campus student resident data 

provided by ASU. MAG data needed to be corrected for lockdown activities which 

closed businesses, for which we used Arizona department of transportation arterial traffic 

flow data (e.g., 40% decrease in arterial traffic equated to 40% decreased in employment 

populations). Due to the bulk of student classes moving online, using only campus 

resident data (based on student housing contracts which were updated monthly) was 

appropriate to assess temporal changes in student populations. These numbers did not 

account for changes in resident population during holiday travel or off-campus housing 
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locations; thus, overall percentage changes in wastewater flow were also used to estimate 

population size changes. For instance, wastewater flow from Area 6 increased by 20% 

and was sustained throughout the academic year; therefore, the population in that area 

was assumed to increase proportionally. This increase in total flow in Area 6 also 

coincided with increases in viral load, suggesting that infected students were moving 

back into Tempe for the start of the academic year. Looking ahead to Fall 2021 when 

classes are expected to resume in-person, quantifying that transient population will 

become more important for sewersheds impacted by students. We have therefore begun 

testing the utility of campus Wi-Fi data to better estimate population size as students and 

faculty return to pre-pandemic campus activities [157]. 

The measured viral loads per day of SARS-CoV-2 within each catchment area in 

Tempe were aggregated and partitioned to their respective zip codes (ZC-1 through 4) 

according to their estimated percent contribution (Appendix B: Figure 20). Wastewater-

derived SARS-CoV-2 peaks in activity correlated with newly detected clinical cases per 

day in three distinct waves of activity: June 2020, August 2020, and December/January 

2020-21. ZC-1, home to ASU, was the only zip code that showed viral increases in 

August 2020. Contributions to viral load within a given community by university 

students, however, is not an event isolated to Tempe [178-180]. Comparisons between 

spikes of coronavirus levels in wastewater and clinical case data showed that peaks in 

wastewater preceded positive clinical cases by 7, 6, 11, and 10 days for ZC-1 through 4 

(average of 8.5 ± 2.1 days), during the first wave of the pandemic, and again during the 

isolated university-associated wave, this time by 6 days (Figure 14). These results align 

with preliminary assessments of wastewater and clinical case data that suggested 
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monitoring wastewater provided an early-warning capacity ranging between 2 and 21 

days [162, 175, 181]. Tempe aggregated viral loads were also compared to Maricopa 

County Public Health data (Figure 15). Results again showed peaks in wastewater 

measurements preceded new clinically reported cases, SARS-CoV-2-related 

hospitalizations, and SARS-CoV-2-related deaths by 2, 16, and 18 days during the first 

wave of the pandemic. These results align with prior work demonstrating that wastewater 

can serve as an early indicator of future clinical case load, morbidity, and mortality. 
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Figure 14. SARS-CoV-2 genome copies per day in the four zip codes (ZC-1 through 4) of 
Tempe, AZ and in aggregate, overlaid with newly reported clinical SARS-CoV-2 cases. Boxed 
numbers are the number of days the wastewater signal leads (+) or lags (-) clinical cases, 
determined by root mean square error (RMSE) analysis. 
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Interestingly, four months later during the December/January 2020-21 wave of the 

pandemic, wastewater was no longer a leading indicator in any region in Tempe, AZ. 

Trends either directly aligned with newly reported clinical cases (ZC-1) or lagged behind 

clinical case data by 2 days (ZC-2 & 3), 4 days (ZC-4), and 2 days (aggregate). At the 

county level, wastewater lagged behind clinical results with wastewater peaking 3, 3, and 

1 days behind Maricopa reported cases, SARS-CoV-2-related hospitalizations, and 

deaths, respectively. To our knowledge, no study has reported wastewater as both a 

leading and a lagging indicator to clinical cases or demonstrated such a transition from 

lead to lag at the sub-catchment level within the same community and from within the 

sewer collection system. This consecutive decrease in lead time between wastewater 

measurements and clinical testing may best be explained by notable differences in the 

availability and frequency of clinical testing over the course of this study. Qualitative 

data from Maricopa County shows that access to testing was extremely limited during the 

early stages of the pandemic [182, 183] but increased dramatically subsequently with the 

continuous onboarding of commercial, hospital, and university laboratories, largely 

driven by ASU biomedical screening. Thus, these data strongly suggest that the greatest 

benefits of WBE are to be verified early on during the detection of disease outbreaks 

before health care providers can mount a response. Similar benefits may be reaped late 

into an epidemic, when clinical testing of individuals becomes cost-prohibitive and may 

appear unproductive when generating mostly negative results. 
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Figure 15. Peaks in SARS-CoV-2 viral load (genome copies d-1) in Tempe, AZ wastewater as 
compared to Maricopa County, AZ new clinically detected cases, SARS-CoV-2-related 
hospitalizations, and related deaths. Boxed numbers display days the wastewater signal leads (+) 
or lags (-) clinical cases. 

 
Results of this work show that the greatest benefits of WBE may be early detection of 

disease outbreaks in situations where a significant health care response has not yet been 

mounted, i.e., when clinical testing is still lacking or scarce. Other factors potentially 

impacting the early-warning characteristics of WBE may include testing fatigue, 

widespread use of at-home rapid tests, and vaccination campaigns. Thus, the study 

identified the importance and impact of choosing sampling locations, highlighting that 

high-resolution or neighborhood-level sampling allowed identification of isolated 

hotspots of infections that were not visible at larger catchment levels and within zip code 

level clinical case data. For future investigation, we recommend to conduct sampling, 

where feasible, in locations where wastewater flow is generated exclusively by the 
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community of interest. This study demonstrated that subtracting inputs from non-target 

communities is feasible and can result in unexpected discoveries, as found here with the 

virus cluster originating from the Town of Guadalupe adjacent to Tempe, AZ. In 

summary, neighborhood-level sampling comes with increased costs and significant 

logistic challenges but it also can reveal, as shown here, public health phenomena that are 

not observable at the city- or zip-code level.  

Perhaps most importantly, this study illustrates that a major challenge to neighborhood-

level monitoring by WBE is not about assay development in the laboratory, but rather 

creating the partnerships with city personnel, gaining trust from community members, 

establishing the sampling network and methodology, understanding which establishments 

or buildings are contributing to a given collected sample, and how these populations change 

(e.g., weekdays, weekends, during closures or events). These factors lead to detailing and 

understanding the primary outcomes of this type of investigation; how data should be 

protected, shared, and used to inform public health decision-making. Further, the results 

reported here can inform municipalities interested in adopting and implementing WBE 

programs to monitor already known and newly emerging public health threats, be they of 

chemical (e.g., opioids) or biological (e.g., SARS-CoV-2) origin.  

This long-term study constitutes a powerful demonstration of employing WBE to 

collect open access, actionable data that were shown here to directly help inform and 

shape the public health response. High-throughput monitoring of the E gene of SARS-

CoV-2 in Tempe sewage showed WBE to provide an early-warning benefit, particularly 

in smaller subpopulations, with a temporal and spatial data resolution that exceeded that 

of clinical healthcare data, which are shared only to a limited degree with local 
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stakeholders. Use of WBE may also be important for communities with barriers to testing 

(e.g., lack of access, deficit of testing locations, cost), and testing fear (disbelief), or 

apathy as the duration of the pandemic continues and vaccination levels rise. Most 

importantly, WBE performed with a high spatial resolution was demonstrated to increase 

the ability to identify and localize hotspots of infection, thereby allowing for resources 

and interventions to be implemented in a targeted and more productive fashion.  

Sharing data of significant economic and public health importance in a real time, 

open access format is often considered controversial, potentially leading to apprehension. 

However, leading up to, and during the study, the City’s commitment to open 

communication in town halls and open-attendance meetings increased transparency and 

trust from the community. The actions and public health outcomes achieved with this 

strategy here certainly appear to have outweighed any potential concerns. As such, the 

City of Tempe is now exploring the applicability of this methodology to other general 

markers of community behavior and health status. The lessons reported here may inform 

other communities interested in adopting this new approach, serving as a foundational 

framework for integrating WBE into public health monitoring and the design and 

implementation of intervention strategies. 
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CHAPTER 6 

RESEARCH IMPLICATIONS AND RECOMMENDATION FOR FUTURE WORK 
 
 The work presented here highlights the need for alternative approaches to 

understanding human nutrition, chronic illness, and infectious disease at population-level 

for informing public health strategies and interventions. As reported here, current 

strategies are largely dependent on subjective measurements or individualized 

diagnostics, which could result in generating gaps in data, delayed reporting, or resource 

exhaustion. Population-level assessments that focus on human health, behavior, and 

activity, such as wastewater-based epidemiology (WBE), can assist current 

methodologies by operating in tandem in order to fill in these data gaps, and generate 

community health information in a timely, inexpensive, and culturally competent manner. 

6.1 Nutritional assessment and links to chronic disease 
 
 In Chapter 2, an extensive literature analysis was performed with two major 

objectives: (i) identify links between diet and disease, and (ii) propose a biomarker suite 

for population-level dietary analysis using wastewater-based epidemiology (WBE). Due 

to the success of illicit drug monitoring across populations and cities on a domestic and 

international level, the application of diet had been proposed as a logical next step for 

future investigation and experimentation. With the incidence of chronic disease, 

especially those that are related to nutrition behavior such as obesity and diabetes, there 

has been a greater interest in attempting to define and quantify these links amongst the 

scientific community. Traditional methods that remain dominant in the field of nutrition 

to assess dietary behavior rely on self-reported data by the participant. The use of these 
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methods is informative, validated, and important for gaining an understanding of dietary 

patterns and behaviors, however, limitations experienced such as recall bias are known to 

the field and can serve to create or worsen gaps in data acquisition depending on the 

primary research outcome or experimental design. Investigation of over 30 papers in this 

literature review indicated, however, measurable links specifically between red meat and 

phytoestrogen consumption, with reported odds ratios (OR) as either promoting (red 

meat) or preventing (phytoestrogen) diseases such as cancer and type 2 diabetes. These 

results suggest a greater need to further refine nutritional assessment at population-scale 

in order to operate at a comparable pace as chronic disease incidence. Further it was also 

noted that chronic consumption of a plant-based diet as well as incorporation of whole-

wheat and rye can serve to reduce incidence of obesity as well as prevent development of 

other types of chronic disease, such as cancer. From this analysis, a biomarker suite of the 

following was proposed for future investigation of a WBE study: indicators of 

phytoestrogens (isoflavones genistein and daidzein and lignan metabolite enterolactone), 

red meat (metabolite 1-methylhistidine), whole wheat and rye (alkylresorcinols 3,5-

dihidroxybenzoic acid (DHBA) and 3-(3,5-dihydroxyphenyl)-1-propanoic acid 

(DHPPA)), and cruciferous vegetables (isothiocyanate N-acetyl-S-(N-allylthiocarbamoyl) 

cysteine). While these indicators have been identified in a human urine matrix, it is not 

certain that analyte integrity will remain in a complex matrix such as wastewater. While 

this had yet to be assessed for the majority of the proposed compounds, investigation 

from a small catchment within the sewer infrastructure could improve chances of analyte 

detection by minimizing the potential for compound degradation.  
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Thus, this literature analysis served as a proof of concept to introduce the 

potential for nutritional status to be identified and monitored using an objective 

population-level assessment such as wastewater-based epidemiology. The next steps for 

this chapter would be to test each of the proposed compounds in a WBE study, 

performing method development and quality assurance measures to define parameters for 

reproducible investigation across research groups.  

In Chapter 3, a secondary literature analysis was performed to further examine the 

relationship between dietary ingestion of endocrine disrupting chemicals and breast 

cancer incidence. It was identified in literature in Chapter 2 that there is a peculiar 

association between phytoestrogen consumption and prevention of breast cancer due to 

the ability to mimic estrogen or interact with the receptor. This prompted further 

investigation of exposure to these chemicals referred to as estrogen-mimicking endocrine 

disrupting chemicals (EEDs) and breast cancer incidence. As mentioned, breast cancer 

impacts a significant number of individuals worldwide, with an incidence rate in the 

United States typically impacting approximately one in eight women per year. 

Understanding interactions that cause breast cancer has become of great interest given 

this high incidence rate. A type of breast cancer referred to as Hormone Receptor Positive 

(HR+) is the dominant type, approximately 70-80% of cases, and occurs due to 

sensitivity of changes in estrogen and progesterone levels in the body. Additionally, it 

was noted in literature that approximately one-third of all breast cancer cases are 

considered to be related to dietary behavior. This brought forth the question of dietary 

exposure to EEDs and whether they could potentially play a role in breast cancer 

incidence. It was identified in this literature review that on a regular basis, humans are 
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exposed to EEDs through diet, predominantly through packaged materials, such as 

(bisphenol-A; BPA), pesticide residues on fruits and vegetables, notably 

dichlorodiphenyltrichloroethane (DDT) and atrazine, and phytoestrogens’ daidzein and 

genistein. Interestingly, all have been found to have the ability to interact with the 

estrogen receptor or mimic mammalian estrogen. Estimated ingestion rates, body burden, 

and reference doses were all assessed in the recent literature (<5 years) in order to gain an 

understanding of the degree of exposure, whether acute or chronic, and how this 

information could be relayed to prevent unnecessary exposure. It was determined that the 

rate of exposure per day was far less than the estimated reference dose when there would 

be a potential issue for acute toxicity, however, chronic exposure through constant 

ingestion of these chemicals in low amounts could raise the risk of bioaccumulation and 

warrants further study to understand tissue distribution, length of tissue occupation, and 

how that corresponds to breast cancer incidence. Further study into these areas could help 

to understand the interactions between EEDs, breast tissue disruption, and cancer 

incidence. Further, it would be prudent to further examine time of a woman’s life 

(puberty, menopause, etc.) and time of exposure to assess correlations between these 

drastic changes in estrogen and progesterone that naturally occur in the body, and how 

ingested EEDs could play a role in either exacerbating or preventing unwanted disease. 

6.2 Population-level human health assessments in diet and disease 
 
 In Chapter 4, the potential for understanding population-level dynamics of dietary 

behavior was assessed through a two-year WBE study. To date, prior to the COVID-19 

pandemic, WBE had largely only focused on illicit and licit substance use across 
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populations, although earlier on it was established that WBE could be used for 

surveillance of biological markers of human disease. It was mentioned in several WBE 

studies that embarking on new applications for WBE would be important to establish the 

limitations and ability for WBE to develop population-level health assessments that are 

within the appropriate context of the population served. Given the previous two chapters 

including the peculiar interactions between phytoestrogen consumption and disease 

incidence, it seemed logical and appropriate to begin monitoring phytoestrogens at 

community-level to attempt to deduce patterns of plant-based dietary behavior. Average 

phytoestrogen intake in a western society is estimated to fall between 1-3 mg per day per 

person, however, it is noted there are marked cultural differences in consumption patterns 

that can increase or decrease this range. For example, it had been noted that Asian-

Americans can consume 20 mg or more per day, mostly through isoflavone consumption 

(genistein and daidzein). These differences are notable when referencing the potential 

health benefits in prevention of disease, such as breast cancer. Additionally, 

phytoestrogens are known to interact with microbes that live within the human gut 

microbiome, producing metabolites that have greater health benefits or higher estrogenic 

potency than their precursor, or parent, compounds. Thus, a multi-omics approach to 

understanding these interactions at population-level was employed to gain a holistic view 

of how a population-level assessment of dietary behavior could be practiced within the 

context of WBE. A small-catchment within a city was chosen for this pilot-scale study in 

order to best isolate a community and establish trends. Study duration began in August of 

2017 and lasted through July of 2019. The compounds chosen to monitor represent two 

major classes of phytoestrogens, isoflavones genistein and daidzein, and a metabolite of 
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lignan consumption, enterolactone. Results indicate that average per capita consumption 

(mg d-1 capita) are slightly higher than the estimated average of 1-3 mg reported in 

literature, with 4.1± 2.2 mg d-1 per capita in year one and 5.0 ± 2.3 mg d-1 per capita for 

year two in this study. This is thought to be due to significant differences between 

demographics within this sewer catchment compared to the U.S. as a whole, with the 

Asian population in particular being nearly five times greater in the study reported herein. 

This was also reflected when investigating the difference in lignan consumption and 

isoflavone consumption, with isoflavones being greater; a pattern not typically seen 

across the greater U.S. population. This could also be due to the greater amount of the 

Asian population who consume soy-based foods on a more regular basis than other 

demographics. Finally, distinct and statistically significant seasonal patterns in 

consumption (p ≤	0.01) were measured between Fall and Winter, and Spring and 

Summer.  

 Microbial composition was also assessed through a subset of this data set (January 

through December 2018) to first test the hypothesis that human gut microbiome 

interactions could be reflected in a community sewage sample, and further, to test if 

specific bacterial taxa known to interact with consumed phytoestrogens and produce 

metabolites investigated in this study (enterolactone and equol) could be detected and 

measured. These hypotheses were proven to be true as genera such as Clostridium, 

Blautia, and Bifidobacterium were all detected in at least one sample, and were able to be 

semi-quantified by incorporating 16S rRNA bacterial gene quantitative polymerase chain 

reaction (qPCR) measurements; resulting in a semi-quantitative abundance L-1 of 

wastewater of each identified microbial taxa.  
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This was the first study to report changes in dietary behavior across a longitudinal 

monitoring assessment using WBE, while also the first to detect and attempt to quantify 

human gut microbial interactions at community-level as it pertains to microbially-

relevant taxa that transform consumed phytoestrogens to products that have been shown 

in literature to report greater estrogenic potential and health benefits. Future work to 

expand on this would be to test this in a greater sewer catchment, further refining the 

methods employed and making stronger connections between dietary behavior and 

measured assessments at population-scale. Through a larger-scale assessment, external 

data sets can be more comparably assessed, particularly in validating consumption 

patterns and incidence of relevant diseases such as breast cancer. 

 In Chapter 5, the COVID-19 global pandemic highlighted significant challenges 

in surveillance of SARS-CoV-2 and downstream healthcare capacity.  It was 

established early on that implemented traditional methodologies for individualized 

diagnostics were failing to report new cases at a pace that was comparable to viral 

infectivity within and between communities. Hospital burden and healthcare professional 

burnout was growing progressively worse as more infected individuals flooded 

emergency rooms with little to no warning, and lockdown measures, while necessary to 

prevent viral spread, were implemented with the best sources of information available at 

the time, leading to loss of productivity, loss of employment, ultimately leading to great 

economic burden. Public health strategies were exhausted early on; investing a great deal 

of time and resources to deploy in an untargeted, widescale fashion. This prompted for 

alternative strategies to surveillance of SARS-CoV-2/COVID-19, in order to get ahead of 

viral spread, relieve healthcare operations, and implement targeted interventions. 
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Wastewater-based epidemiology (WBE) was identified as a prime candidate to 

accomplish these goals, and in a rapid fashion. Due to the existing infrastructure within 

the City of Tempe, AZ to monitor for opioid use across the city, laboratory operations 

were able to quickly pivot to be amenable for virus surveillance. The City of Tempe was 

divided by established sewer catchments, resulting in 11 sites monitored across the city 

starting from April, 2020 through March, 2021 (n = 1,556 observations), resulting in a 

high-frequency (high volume of samples collected) and high-resolution (multiple sites) 

approach to WBE. Samples were processed and analyzed for SARS-CoV-2, targeting the 

E gene, and reported to city personnel weekly, with subsequent posting to an unrestricted, 

online dashboard to promote data transparency and an easily-accessible, actionable data 

set for public health professionals. Due to the rapid turnaround times and inherent nature 

of wastewater analysis to be inclusive of all individuals inhabiting any one community, it 

was hypothesized that the weekly wastewater data would precede newly reported clinical 

cases by zip code, and at city-level, as well as county-level reports of COVID-related 

hospitalizations and COVID-related deaths. Additionally, it was hypothesized that 

wastewater monitoring of the virus would enhance the ability to identify infection 

hotspots within any given community, prompting targeted interventions to quickly 

mitigate viral spread and further burden experienced downstream.  

 Results from this study proved these hypotheses to be true as wastewater-derived 

measurements measured at the city and zip-code level preceded newly reported clinical 

cases on average by 8.5 ± 2.1 days during the first wave of the pandemic in June, 2020. 

When compared to county-level reports, wastewater preceded newly reported cases, 

COVID-related hospitalizations and COVID-related deaths by 2, 16, and 18 days, 
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respectively during the same wave of infection. This indicates the true efficacy of the 

ability for WBE to serve as an early warning system for viral presence and spread within 

a community, allowing for greater response and resource capacity. A unique attribute of 

this study population is the switch from wastewater-derived measurements to a lagging 

indicator as the pandemic grew on into the third wave (December/January, 2020-1). This 

is thought to be due to increased testing capacity and efficacy specifically within the City 

of Tempe as it was affiliated with the major university that dominates this city. The 

increased capacity for testing and downstream reporting made the reports comparable to 

one another, however, wastewater data can still provide important information for new 

infection hotspots, as exhibited here in this study as a small community within a larger 

catchment was identified to have much higher amounts of SARS-CoV-2 viral load (gene 

copies d-1 in wastewater) than the neighboring communities. This identification lead to 

near-immediate action in response, with subsequent decrease in viral presence either at or 

below quantifiable levels. These results and corresponding lessons learned are highly 

impactful as they can serve to inform future investigation for detecting, monitoring, and 

responding to future emerging infectious disease outbreaks. Future work could continue 

to assess the changes of SARS-CoV-2 presence over time, while also examining co-

occurrence of other known viruses and diseases (influenza virus). Additionally, 

continuing to test the efficacy of WBE measurements with individualized diagnostics as 

it relates to testing fatigue and/or apathy, as well as vaccine efficacy, would be especially 

prudent as the pandemic grows on into its second year.  

 This critical exploration of novel avenues utilizing WBE suggests that population-

level assessments can serve as a timely, informative, and complementary methodology to 
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be used in tandem with current methods. The discussed limitations should serve as a 

platform to address in future work, in addition to potentially unanticipated opportunities 

in order to continue to innovate within this transdisciplinary space.  
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RESEARCH ETHICS 
 
 The field of wastewater-based epidemiology is currently operating in an exciting 

time as the COVID-19 global pandemic prompted and accelerated the transition from a 

niche scientific discipline to a more universally realized approach for population health 

monitoring. The success of tracking SARS-CoV-2 viral spread in community wastewater 

in order to inform and improve the public health response has now encouraged an even 

greater interest in monitoring for other aspects of human health to determine 

comprehensive population-level health assessments. However, while the use of 

wastewater for public health monitoring can certainly be perceived as beneficial, there is 

currently a lack of structure in practice, particularly in considering ethical implications. 

Thus, these matters are briefly addressed here to continue the conversation in pursuit of 

defining standard of care in this particular arena. 

 Regardless of where the sample is collected from (i.e., wastewater treatment 

plant, catchment-level, building-level, etc.) the field of wastewater-based epidemiology 

has long been recognized for its ability to offer anonymity to the population served, 

resulting in a composited sample of hundreds to thousands or more contributing 

individuals. As the lives of the community members are not disrupted in order to collect 

pertinent population health information, this method of sample collection is also 

considered passive and/or non-invasive, and, consequently, also viewed as a benefit in 

order to capture truer aspects of human daily life. However, the level of sample collection 

resolution brings forth some deeper philosophical questions and concerns in order to 

prevent unanticipated panic or ramifications that could negatively impact the field of 
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WBE; how it is perceived by the community, and thus, determining whether it can 

continue to be used in a responsible fashion as a tool for public health stewardship. 

In Chapter 5, the shift from opioid monitoring to SARS-CoV-2 monitoring within 

the City of Tempe, AZ was discussed. This development in partnership with city 

personnel would not have been possible without significant community engagement 

through several workshops and town halls open to the public. This level of transparency 

allowed the members of the city to trust the partnership, and understand the reasons 

behind the technology’s implementation. Further, for the purpose of opioid monitoring, it 

was decided to maintain sample collection at a lower resolution as it was important to 

prevent unwanted attention or isolation of any one particular community, while still 

allowing the ability to observe use-trends within the city. In the case for SARS-CoV-2 

monitoring, it was imperative to track infection dynamics throughout the city at a pace 

near-comparable to viral spread in order to effectively implement public health 

interventions and to minimize community burden downstream (i.e., mask mandates). 

Therefore, for virus monitoring it was considered more widely acceptable to increase the 

number of catchments, in order to obtain a highly resolved view of COVID-19 infections. 

Finally, wastewater-informed data on both viral presence and opioid usage throughout the 

city are publicly available in an online, interactive dashboard, where community 

members are invited to view and interact with the data. Other strategies such as public 

webinars and luncheons have been implemented in order to continue the dialogue about 

wastewater monitoring throughout the city, allowing the community to be well-informed 

and feel supported by this approach.  



  112 

Another aspect that is not commonly discussed yet in the field is cultural 

competence and sensitivity. Due to the passive and composited nature of sample 

collection, WBE can be seen as a culturally-acceptable approach to obtain human health 

information as opposed to traditional methods that require individual specimens (i.e., 

blood, urine, stool, etc.). However, beyond simply collecting a sample, it is imperative to 

be mindful of how data are interpreted and presented. When samples are collected from 

within the sewer infrastructure, it may provide more contextually-relevant information 

that could be a reflection of specific demographics or socioeconomic status. For public 

health strategies and interventions, this could be seen as a benefit, as the interventions in 

question could be tailored to better-fit the community; this was discussed in more detail 

in Chapter 4 when investigating dietary differences between different cultural groups. 

However, it is important to abstain from taking the information too far out of context or 

to make overreaching or perhaps, misguided assumptions or to draw inconsiderate 

conclusions, which could be viewed as improperly targeting specific subpopulations. 

As the field continues to broaden into novel areas of public health monitoring, 

which may prompt more innovative approaches to sample collection and data 

interpretation, it is important to continue this discourse of considering ethical 

implications in order to configure a framework for future investigation, as educated by 

the lessons learned in the work presented herein. 
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Table 8. Genistein and daidzein content of selected fruits, nuts, cereals, and vegetables 
(ug/kg dry weight) adapted from [111, 112]. 

Food Item Reported Concentration (ug/kg dry wt.) 

 Daidzein 
 

Genistein 
 

Fruits 
Apricots, dried 50 nd 
Clementines 27 270 
Cranberries 51 213 

Currants 560 2167 
Dates, dried 18 54 

Figs, raw 28 77 
Figs, dried 19 45 

Fruit cocktail in syrup nd 17 
Mango, raw 251 212 

Mango in syrup 39 54 
Melon, Canteloupe nd 42 
Melon, Honeydew 151 117 

Passion fruit 245 403 
Peaches in syrup 32 59 

Pears in syrup 10 52 
Plums, raw 5 551 

Prunes, dried, raw 52 104 
Raisins, California 690 1458 

Strawberry, raw 45 457 
Strawberry in syrup nd 223 

Nuts 
Brazil nut 12 nd 

Chestnuts, raw 79 59 
Coconut, fresh 128 185 

Hazelnuts 58 194 
Peanut Butter Nd 98 
Peanuts, fresh 77 158 

Peanuts, dry roasted 37 172 

Sesame seeds 37 17 

Cereals 
Nestle Shredded Wheat 372 760 

Kelloggs Start 101 87 
Crispbread, multigrain 6085 5788 

Crispbread, rye 25 tr 
Crispbread, wheat 66 179 
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Crispbread, wholemeal wheat 92 130 
Biscuits, McVities Chocolate 

Homewheat 165 60 

Biscuits, McVities, Cheddars 5 76 
Biscuits, Jacobs Choice Grain 

Crackers nd 61 

Biscuits, McVities Digestives 259 288 
Biscuits, McVities Ginger 

Nuts 88 41 

Biscuits, Jacobs Fig Rolls 140 167 
Biscuits, Rakusen’s Matzos 4 75 
Biscuits, Custard Creams, 

Golden Biscuit Co. 290 113 

Biscuits, McVities Rich Tea 
Biscuits 132 149 

Vegetables 
Potatoes, new, raw 132 304 

Potatoes, new, cooked 55 147 
Potatoes, old, raw 28 147 

Potatoes, old, cooked 5 37 
Baked beans nd 228 

Baked beans, heated 51 201 
Beansprouts, mung, raw 39x103 68x103 

Broad beans, raw 74 59 
Butter beans, dried, raw 305 847 

Butter beans, dried, cooked 185 65 
Chickpeas, whole, dried, raw 475 766 

Chickpeas, whole, dried, 
cooked nd 578 

French beans, raw 1198 3372 
French beans, cooked 1151 3075 

French sliced beans, frozen, 
cooked 686 1938 

French sliced beans, frozen, 
raw 479 1362 

Haricot beans, raw 131 105 
Haricot beans, cooked 186 173 

Lentils, red, split, dried, raw 139 84 
Lentils, red, split, dried, 

cooked 50 93 

Mung beans, dried, raw 50 106 
Mung beans, dried, cooked 154 399 

Red kidney beans, raw 191 209 
Red kidney beans, cooked 311 221 
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Runner beans, Dunn IHRM, 
raw 23x103 31x103 

Runner beans, raw 13x103 15x103 
Runner beans, cooked 7080 8860 
Soyabeans, dried, raw 583x103 838x103 

Soyabeans, dried, cooked 411x103 839x103 
Miso 594x103 673x103 

Textured vegetable protein, 
raw 248x103 438x103 

Peas, fresh, raw nd 232 
Peas, dried, raw 41 144 

Peas, dried, cooked 32 381 
Peas, frozen, raw nd 268 

Peas, frozen, cooked nd 215 
Peas, processed, tinned nd 70 
Split peas, green, raw 130 347 

Split peas, green, cooked nd 128 
Asparagus, raw 36 79 

Aubergine (eggplant), raw 8 99 
Aubergine (eggplant), cooked 50 105 

Sprouting broccoli, raw 69 29 
Sprouting broccoli, cooked 72 94 

Cabbage, green, raw tr tr 
Cabbage, green, cooked tr tr 

Cabbage, red, raw nd tr 
Cabbage, red, cooked nd 276 
Cabbage, savoy, raw nd 289 
Cabbage, white, raw nd 32 

Cabbage, white, cooked nd 84 
Celeriac, raw nd 442 

Celeriac, cooked nd 420 
Chicory, raw 9 nd 

Cucumber, with skin nd 77 
Cucumber, flesh only nd 62 

Mushroom, common, raw 12 209 
Mushroom, common, cooked nd 182 

Okra, raw 253 112 
Pumpkin 262 nd 

Radish, raw nd 45 
Salad onions nd 187 

Sweetcorn, on cob, raw nd 134 
Sweetcorn, on cob, cooked 29 45 

Sweetcorn, tinned or frozen, 
cooked 40 66 
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Sweetcorn, tinned or frozen, 
raw 74 59 

Tomato, raw nd 480 
Turnip, raw 94 72 

Abbreviations: nd: not detected in food item; tr: detected at unquantifiable trace 
concentration 
 
 
 
 
 
Table 9. Mass spectrometry transitions for measured phytoestrogens. 

*Parent ion > Quantification ion, Confirmation ion; DP: Declustering potential; EP: 
Entrance Potential; CE: Collision Energy; CXP: Collision Cell Exit Potential; DW: Dwell 
Time; V: Volts 
 
 
 
 
 
 
Table 10. Method details for investigated phytoestrogen analytes. 

 
 
 
 
 

 
 
 

Analyte MS/MS 
Transition* 

DW 
(s) 

DP 
 (V) 

EP 
(V) 

CE  
(V) 

CXP 
(V) 

Daidzein 252.7 > 132.3, 90.7 50 -100/-100 -10/-10 -54/-54 -9/-1 
Genistein 268.6 > 132.7, 62.7 50 -90/-90 -10/-10 -44/-60 -5/-9 
Enterolactone 297.0 > 252.9, 106.6 50 -80/-80 -10/-10 -28/-40 -5/-17 
Genistein-d4 272.7 > 136.9, 62.8 150 -80 -10 -44 -5 
Equol 241.1 > 120.8, 118.7 150 -55/-55 -10/-10 -20/-30 -9/-5 

Method 
Duration 

Mobile Phase 
A 

Mobile Phase 
B 

Flow 
Rate 

Injection 
Volume 

12.07 min Water, LC-
grade 

Methanol, LC-
grade 

0.5 
mL/min 10 uL 
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Table 11. Recoveries, method detection limits (MDLs), and concentrations of 
phytoestrogens in raw wastewater. 

*Previously reported and validated [39] 
 
 
 
 
 
 
 
 
 
Table 12. Correction factors and elimination half-lives (hours) for estimating phytoestrogen 
consumption. 

  

Analyte Matrix Spike Recovery  
(Mean ±SD, %)* 

MDL 
(ng/L) 

Concentration in Raw 
Wastewater (this study) 
(ug/L; avg (min, max)) 

 0.5 ug/L 5 ug/L   
Daidzein 69±1 81±13 21 3.94 (0.40, 12.35) 
Genistein 76±5 94±14 38 1.17 (0.32, 2.69) 
Enterolactone 75±6 81±18 49 6.49 (0.44, 17.80) 
Equol -- -- 120 1.04 (0.13, 2.70) 

Analyte Excretion 
Factor 

Correction 
Factor 

Elimination 
Half-Life (hrs) Sources 

Daidzein 45% 2.2 3-10 [126, 127] 
Genistein 20% 5.0 3-10 [126, 184] 

Enterolactone 1.1 mg d-1 1.2 7-17 [142, 185] 

Equol 2.7 mg d-1 1.1 7-8 [98, 121, 
126]  
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Figure 16. Trends in phytoestrogen consumption and/or production per month from 
August 2017 through July 2018 (thick grey dashed line) and August 2018 through July 
2019 (black dotted line). Each month represents the average of the sum of genistein, 
daidzein, and enterolactone for each of the seven sample collection days. Results are 
shown in mg d-1 per capita.  
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Estimated wastewater temperature previously reported. [129] 
 
 
 
 
 
 

Table 13. Monthly wastewater temperatures (oC) shown as minimum, maximum, and 
average (SD) estimated from historical data in 2008-2010 with recorded ambient 
temperature in this study from August 2017 through July 2019 as minimum, maximum, 
and average (SD) for each specific sample collection day per month 
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Figure 17. Correlation between wastewater estimates and ambient temperature showing 
strong linearity and relationship (Spearman’s rank-order)  

 
 
 
 
 
 
 

Table 14. Sequences used for 16S rRNA qPCR 
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Primer and 
Probe Sequence (5’ – 3’) Source 

BAC1055F ATGGYTGTCGTCAGCT  
BAC1392R ACGGGCGGTGTGTAC [186] 
BAC1115Probe FAM-CAACGAGCGCAACCC-

TAMRA 
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10ppb Daidzein

10ppb Enterolactone

10ppb Genistein

10ppb Genistein-d4

10ppb Equol

1ppm Equol
Figure 18. Chromatograms for (top to bottom): Daidzein, Enterolactone, 
Genistein, Genistein-d4, and Equol; all at concentration of 10 ug/L of 
standard in water. 



  138 

Table 15. Calculated p-values using non-parametric Mann Whitney U Test with false 
discovery rate (0.05) corrections using Benjamini-Hochberg Procedure (BH) to test for 
statistical significance between months, both years of study, weekday versus weekend, and 
seasonal variability. Statistically significant values noted as (*) for p≤0.05 or (†) for p≤0.01 
Abbreviations: Gen: Genistein; Daid: Daidzein; Ent: Enterolactone; Eq: Equol; Y1: 
August 2017- July 2018; Y2: August 2018-July 2019; Wk: Weekday (Monday – Friday); 
Wnd: Weekend (Saturday, Sunday); F: Fall; W: Winter; Sp:Spring; S: Summer. 
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Table 16. Cost analysis of conducting a WBE study for 24-months at one location 
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Figure 19 Estimating alcohol consumption over the St. Patrick’s Day holiday, showing 

increases on the 16th (Saturday) and 17th (Sunday). (A) Daily mass loading in raw 
wastewater (g d-1) of ethyl sulfate (EtS). (B) Per capita alcohol consumption (g d-1 per 
person). Error bars represent the minimum and maximum results of duplicate samples. 
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APPENDIX B 

SUPPLEMENTAL MATERIAL FOR CHAPTER 5 
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Table 17. Population estimates for the seven catchments in Tempe and Guadalupe. Tempe 
estimates were based on 2010 census data, employment data from the Maricopa 
Association of Governments, and Arizona State University student population. Note that 
Tempe St. Luke’s Hospital was not included here as patient and provider information were 
not provided. 

 
 
 

Year Month Area 1 Area 2 Area 3 Area 4 Area 5 Area 6 Area 7 Guadalupe

2020

April 117,769 47,882 42,124 10,498 6,322 7,449 9,382 6,500
May 127,137 53,788 47,333 13,582 7,736 7,588 10,763 6,500
June 129,578 55,327 48,690 14,386 8,104 7,624 11,122 6,500
July 127,662 54,119 47,625 13,755 7,815 7,595 10,840 6,500
August 133,533 58,837 48,033 13,997 7,926 9,356 12,372 6,500
September 137,354 61,395 50,076 15,206 8,480 9,423 12,984 6,500
October 138,664 62,272 50,776 15,621 8,670 9,446 13,193 6,500
November 139,537 62,857 51,243 15,898 8,797 9,461 13,333 6,500
December 133,855 63,406 51,068 15,794 8,749 8,686 11,753 6,500

2021
January 138,060 59,551 51,170 15,854 8,777 9,766 11,898 6,500
February 141,574 61,817 53,067 16,978 9,292 9,830 12,406 6,500
March 142,520 64,521 53,578 17,280 9,430 9,848 12,542 6,500
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Figure 20. Daily flow wastewater measurements for Tempe catchments. Data are only 
shown for days when samples were collected. Guadalupe and the Tempe St. Luke’s 
hospital location used historical flow data, 370,000 L d-1 and 105,992 L d-1 respectively 
and are not shown here. 
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Figure 21. Wastewater flow direction in target catchment areas that illustrate the 
comingling of waters either from other Tempe-specific catchments or adjacent city flow. 
Relevant locations include Areas 1, 2, and 3. 
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Figure 22. Wastewater catchment areas overlapped with Tempe, AZ zip codes 85281, 
85282, 85283, and 85284 correspond to ZC-1, ZC-2, ZC-3, ZC-4 informing percent 
contribution. 
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