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ABSTRACT

In classification applications, such as medical disease diagnosis, the cost of one

type of error (false negative) could greatly outweigh the other (false positive) enabling

the need of asymmetric error control. Due to this unique nature of the problem,

traditional machine learning techniques, even with much improved accuracy, may

not be ideal as they do not provide a way to control the false negatives below a

certain threshold. To address this need, a classification algorithm that can provide

asymmetric error control is proposed. The theoretical foundation for this algorithm is

based on Neyman-Pearson (NP) Lemma and it is complemented with sample splitting

and order statistics to pick a threshold that enables an upper bound on the number

of false negatives. Additionally, this classifier addresses the imbalance of the data,

which is common in medical datasets, by using Hellinger distance as the splitting

criterion. This eliminates the need of sampling methods, which add complexity and

the need for parameter selection. This approach is used to create a novel tree-based

classifier that enables asymmetric error control.

Applications, such as prediction of the severity of cardiac arrhythmia, require

classification over multiple classes. The NP oracle inequalities for binary classes are

not immediately applicable for the multiclass NP classification, leading to a multi-

step procedure proposed in this dissertation to extend the algorithm in the context of

multiple classes. This classifier is used in predicting various forms of cardiac disease for

both binary and multi-class classification problems with not only comparable accuracy

metrics but also with full control over the number of false negatives. Moreover, this

research allows us to pick the threshold for the classifier in a data adaptive way.

This dissertation also shows that this methodology can be extended to non medical

applications that require classification with asymmetric error control.

i



ACKNOWLEDGMENTS

First of all, I would like to thank all of my family for their support and encouragement

throughout this journey. This includes my parents, Dr. Wajahat Bokhari and Fiona

Wajahat, who encouraged me to pursue my research and get enrolled in the PhD

program. I would like to thank my wife, Shumail Abbas, who always supported me

and allowed me to put in the extra hours towards my PhD. Thank you for helping with

everything. I would also like to thank my sister, Shazeen Bokhari, for proofreading

my writing and always being available for support.

Secondly, I would like to thank my committee chair, Dr. Ajay Bansal, who was

always available with his guidance and direction. This research would not have been

possible without his expert guidance throughout the past few years. I would like to

thank my committee members Dr. Yu Zhang and Dr. Yezhou Yang for their super-

vision throughout this process. I would like to specially thank Dr. Faisal Bahadur,

who took time away from his critical role as a cardiologist to guide this research.

Finally, I would like to thank my co-workers and managers at Intel and Citizens

Bank who allowed me to pursue my PhD while still working full time with them.

Thanks a lot for the flexibility that allowed me to pursue my PhD. I would especially

thank Intel for helping me with the tuition costs for most of my courses during my

PhD.

ii



TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

CHAPTER

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 PREDICTING CARDIAC DISEASE WITH ASYMMETRIC ERROR

CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Relevant Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Risk Scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.2 AI Revolutionizing Cardiac Care . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.3 AI and Early Stage Heart Disease . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.4 Code Blue and Resuscitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.5 Machine Learning Challenges in Medical Domain . . . . . . . . . . . 15

2.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 Theoretical Foundation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.2 Sample Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.3 Threshold Search and Order Statistics . . . . . . . . . . . . . . . . . . . . . 22

2.4 Identifying high-risk Features for CVD . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5.1 Dataset and Hyper Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5.2 Class Imbalance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

iii



CHAPTER Page

2.5.3 Missing Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5.4 Type 1 vs Type 2 Error Control . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.6.1 CVD Tree Classifier vs Popular Machine Learning Classifiers 30

2.6.2 CVD Tree Classifier Control Over False Negatives . . . . . . . . . . 33

2.6.3 CVD Tree Classifier vs Current 10-Year CVD Risk Predic-

tion Scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.6.4 CVD Tree Classifier vs Framingham Risk Score on the same

dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.7 Causal Analysis: Identifying high-risk Features for Diabetes . . . . . . . 43

2.8 Summary and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3 ASYMMETRIC ERROR CONTROL FOR BINARY CLASSIFICATION 48

3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.1 Traditional Binary Classifiers and Threshold Moving . . . . . . . 50

3.2.2 Cost Sensitive Learning and ROC Curve . . . . . . . . . . . . . . . . . . . 51

3.2.3 NP Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2.4 Decision Trees in Medical Domain . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2.5 Tree Splitting Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3.1 Traditional vs AEC Tree Classifier . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3.2 Neyman-Pearson Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3.3 AEC Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3.4 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

iv



CHAPTER Page

3.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.5.1 Dataset 1: Predict 10-Year CVD Risk Dataset . . . . . . . . . . . . . 67

3.5.2 Dataset 2: Predict Cardiac Disease . . . . . . . . . . . . . . . . . . . . . . . . 75

3.5.3 Dataset 3: Predict Rain Tomorrow . . . . . . . . . . . . . . . . . . . . . . . . 79

3.6 Discussion and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4 MULTI-CLASS CLASSIFICATION WITH ASYMMETRIC ERROR

CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.1.1 Challenges in Classification for Medical Disease Diagnosis . . . 86

4.1.2 Multi-Class Classification in Cardiac Arrhythmia . . . . . . . . . . . 88

4.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2.1 Asymmetric Error Control in Classification . . . . . . . . . . . . . . . . 91

4.2.2 Multi-Class Classification to Binary Classification . . . . . . . . . . 93

4.2.3 Cardiac Arrhythmia and Machine Learning . . . . . . . . . . . . . . . . 93

4.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.3.1 NP Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.3.2 MCAEC Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.3.3 Hellinger Distance as Splitting Criterion . . . . . . . . . . . . . . . . . . . 97

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.4.1 Results on Cardiac Arrhythmia Dataset . . . . . . . . . . . . . . . . . . . 102

v



CHAPTER Page

4.4.2 Results on Glass Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.5 Summary and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5 HANDLING IMBALANCED DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.1 Imbalanced Dataset Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.2 Performance Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.2.1 Hyper Parameters for Data Imbalance . . . . . . . . . . . . . . . . . . . . . 115

5.2.2 Results on Framingham Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.2.3 Results on Larger Cardiac Disease Dataset . . . . . . . . . . . . . . . . . 124

5.2.4 Results on Australian Weather Dataset . . . . . . . . . . . . . . . . . . . . 126

5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6 CONCLUSION AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

APPENDIX

A NP Lemma Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

A.1 Neyman-Pearson Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

A.2 Neyman-Pearson Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

B Hellinger Distance Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

C Empirical Error vs Population Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

D Hellinger Distance Splitting Criterion Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

vi



LIST OF TABLES

Table Page

2.1 Most Commonly Used 10 year CVD Prediction Scores . . . . . . . . . . . . . . . . 10

2.2 Dataset Features used as input to train the CVD Tree Classifier . . . . . . . 24

2.3 Probability that you have high risk of CVD given the presence or ab-

sence of these attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 CVD Tree Classifier Control Over False Negatives . . . . . . . . . . . . . . . . . . . . 31

2.5 CVD Tree Classifier Control Over False Negatives with Varying values

of alpha (α) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.6 Comparison of CVD Tree Classifier vs Current 10-Year CVD Risk Pre-

diction Scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.7 Framingham Risk Score - Step 1 - Age . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.8 Framingham Risk Score - Step 2 - Total Cholesterol . . . . . . . . . . . . . . . . . . 38

2.9 Framingham Risk Score - Step 3 - HDL Cholesterol . . . . . . . . . . . . . . . . . . 39

2.10 Framingham Risk Score - Step 5 - Diabetes . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.11 Framingham Risk Score - Step 6 - Smoker . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.12 Framingham Risk Score - Step 7 - Adding up the points . . . . . . . . . . . . . . 40

2.13 Framingham Risk Score - Step 8 - CVD Risk. . . . . . . . . . . . . . . . . . . . . . . . . 41

2.14 Framingham Risk Score - Step 9 - Comparative Risk . . . . . . . . . . . . . . . . . 42

2.15 Framingham Risk Score (FRC) Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.16 Probability that you have high risk of Diabetes given the presence or

absence of these attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1 Dataset Features used as input to Predict the 10-year risk of CVD . . . . 62

3.2 Dataset Features used as input to Predict Cardiac Disease . . . . . . . . . . . . 63

3.3 Dataset Features used as input to Predict Rain Tomorrow . . . . . . . . . . . . 64

3.4 Datasets used to evaluate AEC Tree Classifier . . . . . . . . . . . . . . . . . . . . . . . 65

vii



Table Page

3.5 Dataset 1 - AEC Tree Classifier vs ML Classifiers . . . . . . . . . . . . . . . . . . . . 68

3.6 Dataset 1 - AEC Tree Classifier Control Over False Negatives with

Varying values of α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.7 Confusion Matrix of AEC Tree Classifier at threshold of 0.2 . . . . . . . . . . . 74

3.8 Confusion Matrix of AEC Tree Classifier at threshold of 0.4 . . . . . . . . . . . 74

3.9 Confusion Matrix of AEC Tree Classifier at threshold of 0.6 . . . . . . . . . . . 74

3.10 Confusion Matrix of AEC Tree Classifier at threshold of 0.8 . . . . . . . . . . . 74

3.11 Dataset 2 - AEC Tree Classifier vs ML Classifiers . . . . . . . . . . . . . . . . . . . . 76

3.12 Dataset 2 - AEC Tree Classifier Control Over False Negatives with

Varying values of α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.13 Dataset 3 - AEC Tree Classifier vs ML Classifiers . . . . . . . . . . . . . . . . . . . . 80

3.14 Dataset 3 - AEC Tree Classifier Control Over False Negatives with

Varying values of α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.1 Cardiac Arrhythmia Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.2 MCAEC Classifier vs Traditional Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.3 Glass Identification Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.4 MCAEC Classifier vs Traditional Classifiers for glass datasets . . . . . . . . . 110

5.1 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.2 AUC ROC Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.3 Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.4 Recall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.5 Number of False Negatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.6 Dataset 1 - AEC Tree Classifier vs Cost-Sensitive Learning Classifiers . . 123

5.7 Dataset 2 - AEC Tree Classifier vs Cost-Sensitive Learning Classifiers . . 124

viii



Table Page

5.8 Dataset 3 - AEC Tree Classifier vs Cost-Sensitive Learning Classifiers . . 126

D.1 Accuracy of Random Forest on Framingham Dataset . . . . . . . . . . . . . . . . . 150

D.2 Accuracy of Extra Trees on Framingham Dataset . . . . . . . . . . . . . . . . . . . . . 150

D.3 Accuracy of AEC Tree on Framingham Dataset . . . . . . . . . . . . . . . . . . . . . . 150

D.4 Splitting Criterion Performance (Source: Taken directly from Dubov,

Evgeni. ”Classifying Imbalanced Data Using Hellinger Distance.”Mediu.

26 Mar. 2019. Web) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

ix



LIST OF FIGURES

Figure Page

1.1 Overview of Asymmetric Error Control Classifiers . . . . . . . . . . . . . . . . . . . . 7

2.1 Sample Splitting on Framingham Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Percentage Difference (Significance) for each attribute that causes CVD 27

2.3 Accuracy of ML Classifiers vs CVD Tree Classifier . . . . . . . . . . . . . . . . . . . 30

2.4 AUC-ROC of ML Classifiers vs CVD Tree Classifier . . . . . . . . . . . . . . . . . . 32

2.5 Number of False Negatives of ML Classifiers vs CVD Tree Classifier . . . 33

2.6 CVD Tree Classifier Control Over False Negatives with respect to Ac-

curacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.7 Framingham Risk Score Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.8 Framingham Risk Score - Step 4 - Blood Pressure . . . . . . . . . . . . . . . . . . . . 39

2.9 Percentage Difference (Significance) for each attribute that causes Di-

abetes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1 Traditional Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2 AEC Tree Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3 Sample Splitting on Training Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4 Results from Dataset 1 - AEC Tree Classifier versus ML Classifiers to

predict 10 year risk of CVD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.5 Dataset 1 - AEC Tree Classifier Control Over False Negatives . . . . . . . . . 72

3.6 Results from Dataset 2 - AEC Tree Classifier versus ML Classifiers to

predict cardiac disease. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.7 Dataset 2 - AEC Tree Classifier Control Over False Negatives . . . . . . . . . 78

3.8 Results from Dataset 3 - AEC Tree Classifier versus ML Classifiers to

predict rain tomorrow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.9 Dataset 3 - AEC Tree Classifier Control Over False Negatives . . . . . . . . . 82

x



Figure Page

4.1 Accuracy of ML Classifiers vs CVD Tree Classifier . . . . . . . . . . . . . . . . . . . 90

4.2 Multiclass Data Original . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.3 Multiclass Data after OVR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.4 Traditional Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.5 MCAEC Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.6 Splitting on Multi Class Training Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.7 MCAEC Classifier vs Traditional Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.8 Asymmetric Error Control by MCAEC Classifier . . . . . . . . . . . . . . . . . . . . . 106

4.9 Asymmetric Error Control by MCAEC Classifier for glass dataset . . . . . 108

4.10 MCAEC Classifier vs Traditional Classifiers for glass dataset . . . . . . . . . . 109

5.1 Cost-Sensitive Learning and Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.2 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.3 AUC ROC Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.4 Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.5 Recall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.6 Number of False Negatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.7 Results from Dataset 1 - AEC Tree Classifier versus Cost Sensitive

Learning Classifiers to Predict the risk of 10-Year Cardiac Disease . . . . . 123

5.8 Results from Dataset 2 - AEC Tree Classifier versus Cost Sensitive

Learning Classifiers to Predict Cardiac Disease . . . . . . . . . . . . . . . . . . . . . . . 125

5.9 Results from Dataset 3 - AEC Tree Classifier versus ML Classifiers to

Predict Rain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.1 Asymmetric Error Control Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

xi



Figure Page

C.1 Whole Population (Source: taken directly from Summary for Neyman-

Pearson Classification [110]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

C.2 Random Sample from Population (Source: taken directly from Sum-

mary for Neyman-Pearson Classification [110]) . . . . . . . . . . . . . . . . . . . . . . . 148

D.1 Splitting Criterion on Feature X (Source: Taken directly from Dubov,

Evgeni. ”Classifying Imbalanced Data Using Hellinger Distance.”Mediu.

26 Mar. 2019. Web) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

xii



Chapter 1

INTRODUCTION

This chapter starts with the overview of asymmetric error control for classification

in medical disease diagnosis. Next, it discusses the research objectives and challenges

that this dissertation is trying to address. Finally, it goes over the organization of

the rest of the dissertation.

1.1 Overview

Machine learning involves the use of statistics to recognize patterns in data. Data

can include numbers, images, clicks, words, and anything that can be digitally stored

and used as input to a machine learning algorithm [32]. Supervised learning is the

machine learning task where the data is labeled to guide the algorithms on what

patterns it should look for. Classification [44; 45], a part of supervised learning [46],

aims to automatically recognize and predict discrete outcomes for new observations

after being trained on labeled data and patterns. Some of the most well known

examples of classification include disease diagnosis, image classification as well as

recognizing if the email is spam or not. Binary classification [47; 48] is the most

common type of classification, in which the class labels can have only two values

such as 0 or 1. Multi-class classification involves more than 2 class labels. Most

classification models optimize for accuracy without providing control over the number

of false negatives.

However, in medical disease diagnosis [49], where the cost of one error greatly

outweighs the other, there is a need for asymmetric error control. Similarly, predicting

if a patient is going to have a cardiac disease is a binary classification problem, where
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the cost of misclassifying a patient with high risk as no risk (False Negative) has a

much bigger penalty than misclassifying a patient with no risk as high risk (False

Positive). The former could cost a life whereas the latter may only cause medical

costs and stress to the patient.

Traditional machine learning models [51; 52] may not be ideal in this scenario as

they do not provide a mechanism to control the number of false negatives below a

certain threshold. Even if these models result in improved accuracy and reduced clas-

sification error, they may not be optimal since the cost of one error greatly outweighs

the other.

To address this need, we have created a tree-based classifier that can control the

number of false negatives below a specified threshold value. This classifier is able to

provide control over one type of error. The theoretical foundation for this model is

based on Neyman-Pearson (NP) Lemma [53], which shows that the likelihood ratio

test is the most powerful test in hypothesis testing. Based on the NP Classifica-

tion umbrella implementation [13], this concept is expanded to create this tree-based

classifier that can control the false negatives to a given value while still providing

comparable accuracy and F1 score on different datasets [59].

Another challenge in medical disease diagnosis is the uneven distribution of posi-

tive and negative classes. This is because a positive case is typically a rare event com-

pared to a negative test for a particular disease, leading to an imbalanced dataset. To

address this problem without the need of extensive sampling techniques, this disser-

tation proposes the use of Hellinger distance as the tree splitting criterion. Hellinger

distance addresses the imbalance by taking the difference of the two probability dis-

tributions, which is explained later in this dissertation.

Since this classifier can have the biggest impact in medical disease diagnosis, we

use the problem of predicting various aspects of cardiovascular disease (CVD) as our
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case study to test out the classifier. This classifier predicts CVD with asymmetric

error control enabling us to not only limit the number of false negatives for binary

classification, but also for multi-class classification.

1.2 Research Objectives

This dissertation addresses the following research objectives for classification in

medical disease diagnosis with asymmetric error control:

Research Objective 1 (RO1)

To achieve asymmetric error control in binary classification with high probability that

the population false negatives will not exceed a predefined user specified threshold α.

Additionally, this objective seeks a data adaptive way to select this α value.

RO1 Challenges

Controlling the number of false negatives is a common requirement for medical disease

diagnosis. In classification terms, false negative is often referred as type 2 error, and

controlling type 2 error allows asymmetric error control.

The term “high probability” in the research objective implies that the classifier is

able to control the type 2 error below a certain user specified value. For example, we

can specify this value as 95 percent, which means there is a 95 percent probability that

the type 2 error will be controlled. The last part of the research objective mentions

a “predefined threshold”, which implies another user specified value that is referred

as alpha later in this dissertation. This value is the maximum threshold percentage

of false negatives which is acceptable for the classifier. For example, an alpha value

of 0.1 implies that the false negatives will be controlled under 10 percent.

It is important to highlight the differences from cost based learning where we can
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adjust the weights depending on the higher cost of a false negative. The cost based

learning does not provide a consensus way to assign costs, and provides no theoretical

control on the population type 2 error. Moreover, with cost based learning, there is

no easy way to compare population error control of different classifiers.

Another challenge will be in using the Neyman-Pearson (NP) Lemma from hy-

pothesis testing in the classification space and showing how this approach can help

resolve some of these issues. Evaluation of this approach should also include findings

of any new issues that may arise with the use of NP in classification.

Research Objective 2 (RO2)

To choose a classification threshold, independently from the training of the classifier,

that controls the population type 2 error.

RO2 Challenges

This goal of this research objective is to choose a classification threshold that controls

population type 2 error under a user specified value with high probability. One

challenge is to differentiate between population type 2 error versus empirical type 2

error. While controlling the type 2 error, we have to make sure that the control is

being achieved over the population type 2 error. Appendix C provides a simulation

study that showcases how controlling the empirical error does not correspond to

controlling the population error. Additionally, another challenging task is to ensure

that this threshold is not used in training of the resulting classifier to prevent bias

from training data and prevent overfitting.
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Research Objective 3 (RO3)

To extend asymmetric error control for binary classification to multi-class classifi-

cation with high probability that the population false negatives will not exceed a

predefined user specified threshold α.

RO3 Challenges

The challenging tasks here involve ensuring that any theoretical properties on the

type 2 error achieved using NP lemma for binary classification also holds for multi-

class classification, and we still have a suitable method to evaluate our classifier.

The NP oracle inequalities do not directly apply to multi class, so one of the main

challenges is to achieve asymmetric control in multi-class classification problems using

this approach.

Research Objective 4 (RO4)

To improve the quality of prediction of cardiac disease using classification.

RO4 Challenges

The challenge is to outperform the current state of art prediction techniques used in

the hospitals using machine learning. For an accurate evaluation, it is important to

not only get validation from an active cardiologist, but also to perform an evaluation

over the same dataset to compare the results. The motivation of this research objec-

tive arises because in predicting disease, the cost of one error could be much higher

than the other and data imbalance is common. The challenge in disease diagnosis,

where one error outweighs the other and imbalance exists, is to create a classifier

that enables asymmetric error control and allows classification without the need of

extensive sampling.
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1.3 Organization

The main parts of this dissertation are present in the next four chapters. Chapter

2 shows how this research is able to predict cardiac disease better than the current

state of art systems being used in hospital settings. Chapter 3 shows how asymmetric

error control is achieved for binary classification across diverse datasets. Chapter 4

shows how this approach is expanded to multi class classification problems not only in

medical disease diagnosis but also in other domains. Chapter 5 compares asymmetric

error control from handling data imbalance point of view and compares our approach

with the state of art imbalance handling techniques. Chapter 6 summarizes the work

and proposes future research.

Figure 1.1 summarizes the introduction section and shows how different aspects

of asymmetric error control are connected to each other. The figure shows how

imbalanced datasets and unequal cost of the errors led to the creation of AEC tree

classifier, which uses hellinger distance as the tree splitting criterion and NP Lemma

based approach. The figure shows how this is further expanded to predict cardiac

disease and solve multi-class classification problems.
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Figure 1.1: Overview of Asymmetric Error Control Classifiers
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Chapter 2

PREDICTING CARDIAC DISEASE WITH ASYMMETRIC ERROR CONTROL

This chapter goes over how our classifier is able to predict cardiac disease better

than the existing methods being used in the hospital settings. The chapter starts with

some background on this problem followed by the relevant literature in this domain.

This chapter then shows the methodology used to construct the classifier and then

concludes with the evaluation and results.

2.1 Background

Cardiovascular diseases (CVDs) are a group of disorders related to the heart and

blood vessels. CVD is the number one cause of death worldwide as more people die

from CVD than any other cause [2]. Globally, an estimated 17.9 million deaths are

attributable to CVD on average every year [3]. According to the American Health

Association, ”475,000 Americans die from cardiac disease in a given year and glob-

ally, cardiac disease claims more lives than breast cancer, prostate cancer, influenza,

pneumonia, auto accidents, HIV, firearms, and house fires combined [1].”

Despite the alarming numbers, most premature deaths with CVD can be prevented

with early detection. Individuals with high risk of CVD need to be identified early so

they can take necessary preventive measures by addressing behavioural risk factors

such as unhealthy diet, lack of physical activity and excessive use of alcohol and

tobacco [2].

This chapter is focused on predicting the likelihood of a patient developing car-

diovascular disease within the next 10 years accurately using machine learning. It

is inspired by my previous study to improve cardiac resuscitation outcomes at the
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emergency cardiac center, Mayo Clinic (4, 21, 22). During the study, it was alarming

to note that 90% of the patients did not survive the resuscitation attempts during

cardiac arrest. One way to mitigate this is to identify patients who have a high risk

of developing cardiac disease early so they can take preventive measures.

The next section discusses the related work and the existing methods being used

to predict the risk of 10-Year CVD. In this section, the dissertation also covers the

impact machine learning has made on the field of cardiology. Next, we propose

the methodology and the theoretical foundation behind the Neyman Pearson Tree

Classifier that we have created. The evaluation section explains the experimental

setup used to compare our classifier. Finally, the results from the evaluation are

presented and compared with the existing models to conclude that our tree-based

classifier outperforms the current state-of-art 10-Year CVD risk prediction models.

2.2 Relevant Literature

This section is broken down into 5 subsections. Firstly, we discuss the risk scores

that are being used to predict cardiac disease currently. The following two subsections

discuss how AI is revolutionizing cardiac care and how AI can detect early stage heart

disease. Next, this section discusses how machine leaning is used in code blue cardiac

events and then finally concludes by elaborating the challenges for machine learning

in the medical domain.

2.2.1 Risk Scores

The nine most widely used risk models for predicting 10-year risk of CVD are

listed in table 2.1, in order of popularity. The most popular risk model to predict the

risk of cardiac disease is a common scoring mechanism called the Framingham Risk

Score [20]. This is a gender-specific algorithm used to estimate the 10-year cardio-
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vascular risk of an individual. The Framingham Risk Score was first developed based

on data obtained from the Framingham Heart Study, to estimate the 10-year risk

of developing coronary heart disease. This score has an underestimation of over 44

percent according to the Renfrew/Paisley Study [7]. This number worsens if the

participants are chosen from deprived areas.

Table 2.1: Most Commonly Used 10 year CVD Prediction Scores

# CVD Prediction Method

1 Framingham Risk Score

2 Framingham Coronary Heart Disease Risk Score

3 Framingham Atp-III

4 ASCVD Coronary Heart Disease Risk Prediction

5 Reynolds Risk Score

6 Procam Score

7 QRisk Score

8 Cuore

9 Assign

The other score, which is commonly used is called Atherosclerosis Cardiovascular

Disease (ASCVD) Risk score. This risk score takes into consideration different races

and gives 10 year and lifetime risk of cardiovascular death. However, this score

overestimates the risk significantly in adults without diabetes [8].

Many studies have been performed to evaluate the performance of these risk mod-

els. After extensive evaluation by the American College of Cardiology (ACC), it was

concluded that none of the most widely cited Framingham and ASCVD coronary

heart disease risk predictions (table 2.1) are able to predict accurately [5]. Similarly,
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another study on the performance of risk models to predict 10-year CVD risk pub-

lished in BMC Medicine journal last year concluded that all models overestimate the

10-year risk of CVD [6]. These studies also highlighted a need for an accurate pre-

diction model and the massive impact it could have. This research aims to address

this need by proposing a more accurate tree-based classifier that can not only predict

more accurately but also control the number of false negatives under a controlled

threshold value.

2.2.2 AI Revolutionizing Cardiac Care

Cardiovascular diseases are not only the number one cause of death resulting in

31 percent of global deaths but also one of the most expensive medical conditions to

treat, according to Forbes research. There are four main ways Artificial intelligence

(AI) can revolutionize cardiovascular care.

First and foremost, AI can have a big impact on diagnosing cardiovascular diseases.

Typical diagnosis involves three stages. The first stage is measuring ECG at rest and

looking for anomalies. If anomalies are found, it leads to semi-invasive tests such as

stress test, chest CT scan and echo-cardiography. AI is already being used to predict

the anomalies quickly without using the third invasive step. This can be extended to

potentially diagnose diastolic dysfunction in patients [96].

Secondly, AI aided cardiac imaging can enhance live visualization of the heart

and can vastly improve the efficiency of clinical workflow of cardiologists. Zebra [97]

a medical technology company has created a Coronary Calcium Scoring algorithm

which can provide early detection of people at high risk of severe cardiovascular

events based on chest CTs.

Third way involves AI based therapy sessions. KenSci [98] uses machine learning

to predict the risk of a patient acquiring heart disease. “KenSci was built by doctors
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and data scientists to help providers and payers intervene earlier, at lower costs.

KenSci’s risk prediction platform helps uncover clinical, operational and financial

risks by aggregating data from existing sources such as EMR, ADT, Claims and

Financial data.” [98]

Lastly, AI can play an important role in continuous monitoring using devices such

as fitbit to predict early warning signs of lifestyle diseases. For example, Cardio-

gram’s DeepHeart [99] works with Apple Watch as a semi-supervised AI learning

for cardiovascular risk prediction. Consumer wearables generate two trillion health

measurements a year according to research done at the University of California [100]

which is too many for any human doctor to review. However, a novel deep neural net-

work tested in multiple rigorous clinical studies similar to DeepHeart can get trained

with this data.

2.2.3 AI and Early Stage Heart Disease

Artificial intelligence can be used to detect early stage heart disease. “Asymp-

tomatic left ventricular dysfunction (ALVD) is characterised by the presence of a weak

heart pump with a risk of overt heart failure. It is present in three to six percent of

the general population and is associated with reduced quality of life and longevity.

However, it is treatable when found.” [101]

Currently, there is no inexpensive, noninvasive, painless screening tool for ALVD

available for diagnostic use. However, a trained neural network can reliably detect

ALVD with reasonable accuracy rate. Paul Friendman, chair of the Midwestern Car-

diovascular Department at Mayo Clinic, led the research using only 12-lead ECG

and echo-cardiogram data to identify patients with ventricular dysfunction. After

being trained from 45000 patients at Mayo Clinic, the network was tested on an inde-

pendent set of 53000 patients and the algorithm predicted patients with ventricular
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dysfunction with an accuracy of 85 percent.

Deep-learning algorithms can be applied to large datasets of electrocardiograms,

are capable of identifying abnormal heart rhythms and mechanical dysfunction, and

could aid healthcare decisions [102]. Moreover, there are many more aspects or vari-

ables that have a correlation in cardiovascular disease such as: [103]

• Smoking status and lifetime exposure

• Age

• Diet

• Alcohol consumption

• Ethnicity

• Immigration status

• Stress

• Sense of belonging

• Physical activity

• Education

• High blood pressure

• Diabetes

• Socioeconomic status of the neighbourhood

Researchers at the Ottawa Hospital collected this type of data from over 100,000

Canadians from the community health surveys and trained their neural network to
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predict the risk of death or hospitalization from cardiovascular disease within the

next 5 years. Once the danger of CVD has been identified, individuals can work on

their lifestyle factors to help lessen the risk [103].

2.2.4 Code Blue and Resuscitation

Code Blue is an emergency code that is used in hospitals to indicate when a

patient goes into cardiac arrest and needs resuscitation. A medical team is paged and

rushes in to attempt to save the patient’s life when a Code Blue is called. According

to research by NorthShore University HealthSystem, the survival rates are less than

20 percent and it remains a very intense, resource intensive, expensive and chaotic

process. However, medical research shows that the patients actually start displaying

clinical signs of deterioration for some time before actually going into cardiac arrest

which makes early prediction and intervention possible.

Research indicates that patients actually start showing clinical signs of deteriora-

tion some time before going into cardiac arrest, making early prediction, and possibly

intervention, feasible. Researcher at NorthShore University HealthSystem have devel-

oped machine learning classification models using support vector machine (SVM) and

logistical regression, that preemptively flags patients who are likely to go into cardiac

arrest, using signals extracted from demographic information, hospitalization history,

vitals and laboratory measurements in patient-level electronic medical records [104].

They found that early prediction of Code Blue is possible and when compared with

state of the art existing method used by hospitals (MEWS - Modified Early Warning

Score), their methods perform significantly better. Based on these results, this system

is now being considered for deployment in hospital settings in Chicago. [9]

The International Research Journal Of Engineering And Technology also tried to

predict the code blue event specifically cardiac arrhythmia. It was performed using
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tensor flow along with keras for training the neural network. The dataset used was

taken from the UCI machine learning repository [10] and consisted of 452 patient

records and 279 attributes. The dataset was divided into 70 percent training and 30

percent testing set but it only yielded an accuracy of 58 percent. They concluded,

“There exists scope for improvement since the existing system is taking into account

the reading interpreted from ECG ratings. So, better pre-processing techniques will

help us to remove more redundant data plus at the same time more patient records

will be required so as to train the model for various different scenarios”. (11, 23)

This research is motivated by my background in developing software applications

for code blue outcomes for Mayo Clinic. While researching the code blue resuscitation

process, I was amazed to see such a high death rate. Dr Ayan Sen, emergency

care specialist at Mayo Clinic, recommended that an early diagnosis would massively

improve patient outcomes. The current systems used by hospitals(MEWS) are not

very accurate. Machine learning techniques have not been applied extensively in the

cardiac arrest domain for prediction of outcomes. I also observed that at the time

of code blue, it is often too late to save the life of a patient, as resuscitation is not

always successful. This led me to explore ways to improve cardiac care so that cardiac

disease can be identified earlier in the process before it leads to a possible code blue

event.

2.2.5 Machine Learning Challenges in Medical Domain

Modern machine learning is data intensive. For example, to make speech recog-

nition work on a smartphone, Google has to train a deep neural network on over

10k hours of annotated speech. Similarly, ImageNet contains more than a million

hand-annotated images. These labels are the key components to make deep learning

successful.
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In the medical domain, each label represents a human life. An example by the

cardiogram journal states, “In our study with UCSF Cardiology, labeled examples

come from people visiting the hospital for a procedure called cardioversion, a 400-

joule electric shock to the chest that resets your heart rhythm. It can be a scary

experience to go through. Many of these patients are gracious enough to wear a

heart rate sensor (e.g., an Apple Watch) during the whole procedure in the hope of

making life better for the next generation, but we know we’ll never get one million

participants, and it would be unconscionable to ask.” [106]

The challenge here is to make AI work with fewer labels than it is used to. We can

aim to address this problem using unsupervised techniques which can find trends and

structures in unlabelled data. Hybrid techniques such as semi supervised sequence

learning and one shot learning are other techniques that can make fairly accurate

predictions with less labelled data as long as there is a lot of unlabeled data present.

Generation of unlabeled data has become easier now with the advance of sensors and

wearable devices such as Apple Research Kit and Google fit. This allows us to collect

health data at large scale which can be translated to useful data that can enable

clinicians and patients to take real actions based on the results of the deep learning

algorithm.

Other non technical challenges that are unique to the medical domain include

deployment in hospital EMR systems and the many regulations which serve as a

barrier to entry for machine learning to be adopted in mainstream hospitals. For

example, a misdiagnosis in hospitals will lead to follow up tests and visit, which brings

more revenue for the hospital. A better algorithm could actually reduce the revenue of

the hospitals which becomes a bad business decision from return on investment point

of view. The solution to these challenges as mentioned by the cardiogram research

blog states, “Enable outside-in approaches to healthcare: build up a user base outside
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the core of the healthcare system (e.g., outside the EMR), but take on risk for core

problems within the healthcare system, such as re-hospitalizations. Together, these

two factors let startups solve problems end-to-end, much the same way Uber solved

transportation end-to-end rather than trying to sell software to taxi companies.”

To be very specific towards the challenges in Cardiac disease, one big one is that

it remains a very rare event. To account for the imbalance of the two class labels, as

positive cardiac disease is very rare versus non cardiac disease events, we will have to

sample the data to make our training set less skewed. Still the extreme imbalance in

class labels in the data has caused some difficulties in creating test and training sets.

A good plan would be to combine data from different hospital systems, so the system

can be trained on more positive examples, which should improve predictions further.

Another unique challenge in this domain for Code Blue events is identifying the

negative event. The positive event will be when patients go into Code Blue. However,

for patients who do not go into Code Blue, we have their blood level information

at time for admission and time when they were discharged. Most patients will be

healthier at time of discharge compared to time of admission which makes using

time of discharge as a comparable event a bad choice as our classification problem

will become artificially easy. Using time close to discharge will not give us enough

comparable information to build an accurate model. Instead, we can vary the time

of event for control patients, as the 25th, 50th and 75th percentile of their stay time

in the hospital, and select the value that performs best in the training data [104].

Most of AI Success has come from problems where the goal state is easily and

uncontroversial quantified. However, for biomedical domain, the end goal is not

always well defined. Research from University of California, San Diego poses some

interesting questions, “What precisely is the goal of a doctor? How can we distill

success of a medical professional to a single reward that is dolled out as outcomes
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become known? How precisely do we measure quality of life? What is the trade-

off between limbs and longevity? How much should the doctor value revenue vs

patient health (if the value of life is infinite then all patients should be seen for free).

Sometimes the objective function for the doctor might vary from patient to patient

depending on their preferences. Human doctors implicitly evaluate these trade-offs

constantly, but before we learn to canonize our objectives current AI may remain

confined to more isolated, low-level pattern recognition problems.” [105]

Currently, machine learning has been remarkable in recognizing patterns, images

as well as deriving meaning from certain sentences. However, it is not able to show

that it can abstract concepts from limited experience and transferring knowledge

between domains. Both of these traits are very useful in the medical field that requires

diagnosing and treating novel conditions. As the medical futurist remarks, “Although

data, measurements and quantitative analytics are a crucial part of a doctor’s work

setting up a diagnosis and treating a patient are not linear processes where AI is

lacking at the moment.” [106]

Typically, machine learning algorithms are optimized to obtain peak accuracy.

However, in medical diagnosis, the control of false negatives may even be more im-

portant than improving accuracy as a false negative could mean failing to diagnose

a disease that could be life threatening. This is especially important in cardiology as

the heart remains the most important organ in the human body (12, 24). Through

this research, we propose a classifier in the cardiology field that is optimized to control

the false negatives.

2.3 Methodology

Predicting if a patient is going to have cardiac disease is a binary classification

problem, where the cost of misclassifying a patient with high risk as no risk (False
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Negative) has a much bigger penalty than misclassifying a patient with no risk as high

risk (False Positive). This is because the former could cost a life, whereas the latter

may only cause medical costs and stress to the patient. Due to this unique nature

of the problem, where one error greatly outweighs the other, traditional machine

learning techniques, even with much improved accuracy, may not be ideal as they do

not provide a way to control the false negatives below a certain threshold.

The current state of the art binary classifiers algorithms are optimized to minimize

the classification error instead of providing asymmetric error control. The classifica-

tion error [28] is calculated as:

Classification Error = FP + FN ∗ 100/N (2.1)

where,

FP is the number of false positives (type 1 error)

FN is the number of false negatives (type II error)

N is the total number of samples

Equation 2.1 shows that we can control the classification error using the traditional

classification techniques but there is no way to limit one type of error. This is because

the false negatives and false positives are grouped together in this equation.

To address this need, a classification algorithm that can control the false negatives

to a certain threshold is proposed. The theoretical foundation for this algorithm is

based on Neyman-Pearson (NP) Lemma, which shows that the likelihood ratio test is

the most powerful test in hypothesis testing. Based on the NP Classification Umbrella

Implementation [13], this concept is applied to create a tree-based classifier, called

CVD Tree Classifier, that can control the false negatives to a given value while still

providing improved accuracy on the Framingham dataset.
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This CVD Tree Classifier is based on decision tree classifiers [25; 26]. It consists

of a large number of individual decision trees that operate together as an ensemble.

Each tree in the classifier produces a class prediction and the model’s predicted class

is selected based on the class that has received majority of votes.

Similar to popular ensemble decision trees such as Random Forest and extra trees,

our classifier is trained over various sub-samples of the data and each tree is grown

to its largest [27; 28]. However, the most critical point of decision tree induction

algorithms is the choice of the splitting criteria [29] of a node. We use Hellinger

distance as the splitting criteria because it addresses the imbalance in the dataset

by quantifying the difference between two probability distributions. This eliminates

the need of extensive sampling techniques and hyper tuning that are required using

traditional splitting criterion’s such as Gini Index and Entropy [28]. Hellinger distance

as a function is calculated for all attributes and it provides the highest value of split

measure for our feature set. This algorithm is then adapted to control the false

negatives below a certain threshold using the NP classification paradigm.

Specifically, we seek an efficient way to choose a threshold for the classification

scores predicted by our tree classifier so that the threshold leads to classifiers with false

negatives below the user specified upper bound .This algorithm is needed because the

näıve approach, which simply picks a threshold by setting the empirical type I error

to no more than alpha, fails to satisfy the type I error constraint, as demonstrated

in the simulation study [13] conducted by American Association for Sciences. The

major aspects of the NP algorithm are listed below.

2.3.1 Theoretical Foundation

The NP classification is based on the NP Lemma. The lemma states that the

likelihood test is the most powerful hypothesis testing among all other tests [23]. The
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NP Lemma says:

X → X ∼ P (X,H0)

X → X ∼ P (X,H1)

where,

X is the data or the observation

H0 is null hypothesis.

H1 is alternative hypothesis

P(X, H0) is probability distribution of X given H0

P(X, H1) is probability distribution of X given H1.

This leads us to the likelihood ratio test L(X) which states:

L(X) =
P (X1, H1)

P (X1, H0)
> γ

where γ (gamma) is threshold gamma. To maximize PD for given PFA= α where

PD is probability of detection and PFA is probability of false alarm. The given alpha

α is the upper bound threshold value. PFA is then calculated as:

PFA = PrL(X) > γ,H0 = α

which is the probability that the likelihood ratio is greater than gamma under the

null hypothesis H0. These equations show how the NP Lemma is able to bound the

probability of false alarm, which is equivalent to a false negative, with a threshold

value setting the foundation for asymmetric error control.
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Figure 2.1: Sample Splitting on Framingham Data

2.3.2 Sample Splitting

Sample splitting is the first step of incorporating the NP lemma in the classifier.

It involves splitting the training data into three parts as explained in figure 2.1 below.

The figure shows mixed classes of 0 and 1 samples outputting a trained scoring func-

tion and remaining class 0 samples producing our classification scores. The remaining

class 1 samples are evaluated to control false positives error bound.

2.3.3 Threshold Search and Order Statistics

We chose the smallest value of the threshold (alpha) on the classification scores,

that are obtained from previous step, such that violation rate remains minimized. To

find the threshold, brute force and bagging were tried initially but order statistics

was proven to be the best in finding this threshold value from the classification scores
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[16].

The three steps above are incorporated in our decision tree to create the CVD

Tree Classifier that is able to control the false negatives below a certain threshold

with high probability such that the upper bound on the violation rate is:

V (k) =
n∑
j=k

(jn)(1− α)jαn−j

where V(k) is violation rate which is the probability that the false negatives exceed

the threshold value and n is the sample size. α is the threshold which is the upper

bound on the percentage of false negatives.

This produces a classifier that has threshold optimized during learning and train-

ing process. This CVD Tree classifier can be adapted to be used in other areas of

medical diagnosis as well where the cost of one type of error greatly outweighs the

other.

2.4 Identifying high-risk Features for CVD

We have obtained the dataset of the patients involved in the Framingham Heart

Study, which includes patient records of over 4200 patients. The features of this

dataset are shown in table 2.2.
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Attributes Description

Sex Male or Female

Age Age of the patient

Education

1 = Some High School;

2 = High School or GED;

3 = Some College or Vocational School;

4 = College

Current Smoker Whether or not the patient is a current smoker

Cigs Per Day The number of cigarettes that the person

smoked on average in one day

BPMeds Whether or not the patient

was on blood pressure medication

PrevalentStroke Whether or not the patient

had previously had a stroke

PrevalentHyp Whether or not the patient was hypertensive

Diabetes Whether or not the patient had diabetes

TotChol Total cholesterol level

SysBP Systolic blood pressure

DiaBP Diastolic blood pressure

BMI Body Mass Index

HeartRate Heart Rate

Glucose Glucose Level

Table 2.2: Dataset Features used as input to train the CVD Tree Classifier

We have performed a causality analysis on these features to not only identify the
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relations between them but also to gauge which attributes contribute most signifi-

cantly to the onset of CVD. The results from this analysis are shown in table 2.3. This

table shows the difference in percentage of risk of 10-year CVD based on presence

and absence of each attribute. For example, the first row from this table corresponds

to:

P (X = CVD | Y = Diabetes ) = 37%

P (X = CVD | Y 6= Diabetes ) = 14.6%

The last column in the first row from table 2.3 shows the difference between these

two percentages as 22.4 percentage. A larger percentage difference implies that the

attribute is a significant factor leading to CVD. The difference of each attribute is

plotted in figure 2.2.

The first line shows the probability in percentage a person has CVD, given that

they have diabetes as 37 percent. The second line shows the probability that the

person has CVD, given that they do not have diabetes as 14.6 percent.
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Attribute Present Absent Difference

Diabetes 37% 14.6% 22.4%

Male 19% 12.4% 6.6%

Age 27.7% 12.7% 15.0%

Smoker 15.9% 14.5% 1.40%

Smoker with 10+ cigs daily 17.9% 11.6% 6.30%

BP Med 33% 14.6% 18.4%

Prev Stroke 44% 15% 29.0%

Prevalent Hypertension 24.7% 10.9% 13.8%

Cholesterol 18.6% 13.3% 5.30%

Sys BP 18.4% 8.6% 9.80%

Dia BP 18.4% 11.3% 7.10%

BMI >25 17.4% 12.2% 5.20%

BMI >30 19.2% 14.3% 4.90%

Heart Rate >80 16.1% 14.8% 1.30%

Heart Rate >100 19% 15% 4.0%

Glucose >100 24.9% 14.6% 10.30%

Glucose >125 45.3% 14.8% 30.50%

High School 18.6% 15% 3.60%

GED 11.7% 15% -3.30%

Vocational School 14% 15% -1.0%

College 14.8% 15% -0.20%

Table 2.3: Probability that you have high risk of CVD given the presence or absence

of these attributes
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Figure 2.2: Percentage Difference (Significance) for each attribute that causes CVD

Figure 2.2 shows that the highest percentage difference is present for glucose

greater than 125, presence of prevalence stroke and presence of diabetes respectively.

This implies that these three are the most significant attributes for the prediction

of CVD. Education level, which corresponds to the last 4 entries in figure 2.2 and

table 2.3, has low percentage difference, which implies that education level may not

be the most significant metric to predict CVD. This graph allows us to see impact of

different attributes on the risk of 10-year CVD and identify the high risk features.

27



2.5 Evaluation

This sections explains the experimental setup created to evaluate the CVD Tree

Classifier. It is broken down into the following subsections.

2.5.1 Dataset and Hyper Parameters

Using the Framingham heart study dataset, we have trained and optimized our

machine learning model to predict the risk of a ten-year CVD with not only improved

accuracy, but also reduced underestimation. 70 percent of the dataset was used in

training and the remaining 30 percent was used in testing. The number of trees in

each forest was chosen to be 300. The minimum number of samples to split the node

was chosen as 2 and the minimum number of samples required to be at leaf node was

1. The rest of the parameters were kept the same as the default values of decision

tree algorithms.

2.5.2 Class Imbalance

There was an imbalance in the dataset with a lot more negative classes as com-

pared to positive classes. A simple naive model that returns all samples as negative

could have high accuracy. To address this, Synthetic Minority Oversampling Tech-

nique (SMOTE) was used to balance the dataset. With a more balanced dataset, the

accuracies of different models is more meaningful. Extensive use of sampling tech-

niques was not needed due to the use of Hellinger distance as a splitting criterion in

our decision tree.
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2.5.3 Missing Values

There were some values missing from the dataset in certain rows. Typically, rows

with missing values are removed from the dataset. However, in the medical domain,

we often do not have the luxury of massive datasets as each row represents an actual

patient’s medical record. So in order to maintain the row count of the original sample,

the average of each column was calculated. This average was replaced in each column

in place of the missing value to complete the row.

2.5.4 Type 1 vs Type 2 Error Control

The NP classification provides a way for asymmetric error control on type 1 error

which is the number of false positives, However, in the prediction of CVD, we need

to control the type 2 error which is the number of false negatives. Using the same

theoretical foundation based on the np lemma, we flipped our predicted variable

column in the training set. All the 1 classes were changed to 0 and all the 0 classes

were changed to 1. This meant that our null and alternative hypothesis also swapped

which enabled us to use the same algorithm to control the type 2 error instead of

type 1.

2.6 Results

The results can be divided into four main phases. First, we compare our CVD

Tree Classifier with other most common machine learning classifiers and show that

our classifier performs the best. Secondly, we show the control of false negatives using

our CVD Tree Classifier. Next, we compare our classifier with the most cited medical

risk prediction scores. Finally, we perform a comparison of CVD Classifier with the

Framingham risk score on the same dataset.
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2.6.1 CVD Tree Classifier vs Popular Machine Learning Classifiers

We compared the accuracy of our CVD Tree Classifier with other machine learning

classifiers as shown in figure 2.3. CVD Tree Classifier and Random Forest perform

the best with accuracy over 85 percent. These results can be explained by the ability

of decision trees to perform better on an imbalanced dataset by balancing error in

class populations.

Figure 2.3: Accuracy of ML Classifiers vs CVD Tree Classifier

Next, we compare the “Area under Curve Receiver Operating Characteristics”

(AUC-ROC) score. AUC-ROC is explained by the Data Science Journal as “It is a

performance measurement for classification problems at various thresholds settings.

ROC is a probability curve and AUC represents degree or measure of separability.

It tells how much a model is capable of distinguishing between classes. Higher the

AUC, better the model is at predicting 0s as 0s and 1s as 1s. By analogy, Higher

the AUC, better the model is at distinguishing between patients with disease and no

disease.”

Figure 2.4 shows that CVD Tree Classifier outperforms other machine learning
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with a score of 0.82. Random Forest and K-Neighbors have second and third best

AUC scores. This score is especially important validation for our CVD Tree Classifier

because in our dataset with imbalanced classes, accuracy can be a little misleading.

If we have an imbalanced dataset, then any algorithm that returns the majority class

often will have a higher accuracy. This makes the AUC-ROC scores very important.

Table 2.4: CVD Tree Classifier Control Over False Negatives

Accuracy% AUC ROC%

Logistic

Regression
71% 58%

Naive Bayes

Classifier
68% 56%

CVD Tree

Classifier
87% 82%

K-Neighbors

Classifier
78% 77%

Random

Forest
86% 79%

Bagging

Classifier
82% 77%

Table 2.4 shows the values used to plot the figures 2.3 and 2.4. It shows the

accuracy and AUC-ROC scores as percentages. The AUC-ROC typically ranges from

0 to 1 but the percentage has been calculated to normalize it for easier comparison

with accuracy.

Finally, we compare the number of false negatives predicted by each classifier

31



Figure 2.4: AUC-ROC of ML Classifiers vs CVD Tree Classifier

as shown in Figure 2.5 . This is one of the most important metrics for our CVD

prediction as a false negative means that the classifier failed to diagnose a patient

which had a high risk of CVD. This could potentially cause a loss of a human life

as the patient will not get any treatment. Our CVD Tree Classifier was designed to

keep the false negatives minimum using the theoretical approach from the NP Lemma

which was explained previously.

The results in Figure 2.5 show that the CVD Tree Classifier greatly outperforms

all other machine learning classifiers by having false negatives under 50 in a sample

of over 4000 patients. Random Forest Classifier which was comparable to CVD Tree

Classifier in terms of accuracy and AUC-ROC Scores falls behind here with close to

200 false negatives.

The results above clearly show that our CVD Tree Classifier outperforms all other

machine learning classifiers in terms of accuracy, AUC-ROC scores and the least

number of false negatives.
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Figure 2.5: Number of False Negatives of ML Classifiers vs CVD Tree Classifier

2.6.2 CVD Tree Classifier Control Over False Negatives

Figure 2.6 below shows how the accuracy varies with the upper bound on the false

negatives. The graph shows that we are able to get an accuracy of 60 percent with

false negatives close to 0 using our CVD Tree Classifier. Even though an accuracy of

60 percent is very low, it gives us the supreme advantage of keeping false negatives

close to 0 which is not possible using traditional methods.

However, the optimal is achieved with upper bound on false negatives close to 18

percent as it still gives us an accuracy over 80 percent. Table 2.5 shows the exact

values used to plot figure 2.6. As seen from this table, at the threshold value of 0.2,

the accuracy is close to 82 percent and the false negatives are only around 18 percent

which indicates that this threshold is close to the optimal value.

It should be noted that even though we can increase our accuracy close to 86

percent with false negatives at around 40 percent threshold value, this may not be

a good option as we want to minimize the false negatives. In other use cases, the
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Figure 2.6: CVD Tree Classifier Control Over False Negatives with respect to Accu-

racy

threshold value should be chosen carefully depending on the potential consequences of

false negatives. The results here also show that not all classifiers should be designed

to be optimized for accuracy as other metrics such as false negatives may be equally

important.

2.6.3 CVD Tree Classifier vs Current 10-Year CVD Risk Prediction Scores

Based on the previous results, this dissertation has identified our CVD Tree Clas-

sifier as the best machine learning model to be used to predict 10-year CVD risk.

In this section, we compare our classifier to the current state of art medical predic-

tion scores which are not based on machine learning. To address the imbalance of

dataset in the cardiac domain, we use AUC-ROC score for comparison. The AUC-
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Table 2.5: CVD Tree Classifier Control Over False Negatives with Varying values of

alpha (α)

Alpha Accuracy False Negatives

0.05 61.3% 1.7%

0.1 72.1% 5.2%

0.2 81.9% 17.8%

0.3 86.0% 29.1%

0.4 86.3% 39.1%

0.5 85.0% 49.7%

0.6 81.4% 58.5%

0.7 79.1% 68.7%

0.8 75.3% 78.7%

0.9 72.0% 89.1%

1.0 66.2% 96.8%

ROC scores for the medical 10-Year CVD prediction risk scores are obtained from

the Framingham heart study evaluation paper[20].

Table 2.6 shows that CVD Tree Classifier outperforms all the 10-Year CVD Risk

prediction methods in the medical field with a AUC-Roc score of 0.82. Framingham

Score, which is the most commonly used risk prediction score, only averages to about

0.73. Moreover, the biggest advantage of our CVD Tree Classifier over Framingham

Risk Score is that we have full control over the false negatives as shown in figure 2.6

earlier. No other model allows this fine control over the number of false negatives.
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Table 2.6: Comparison of CVD Tree Classifier vs Current 10-Year CVD Risk Predic-

tion Scores

# 10-Year CVD Risk Prediction Models AUC ROC

Score

1 Framingham (Prime Study France) 0.68

2 Framingham(Monica / Procam Study) 0.78

3 Framingham (CUORE Study) 0.72

4 CVD Tree Classifier 0.82

5 Score 0.74

6 Cuore 0.74

7 Assign 0.73

8 Qrisk 0.76

9 Procam(Prime Study France) 0.64

10 ACC/AHA Risk Calculator 0.70

2.6.4 CVD Tree Classifier vs Framingham Risk Score on the same dataset

This section compares the results of our CVD Tree Classifier with the Framingham

risk score on the same dataset. The dataset described in table 2.2 is used to calculate

the Framingham risk score for each row and then the accuracy and false negatives

are calculated. The calculation used is based on the steps described in tables 2.7

through 2.14 [31] along with figure 2.8. These tables shows how each attribute from

this dataset is used to calculate the risk score of a person. The combined steps from

all these table are also listed in figure 2.7.

36



Figure 2.7: Framingham Risk Score Calculations

Table 2.7 is the first step in calculating the Framingham risk score. It shows the

points scored for different age groups. The risk score starts from ages 30 and over as

shown from the table.

Table 2.8 and Table 2.9 correspond to the second and third steps of the risk

score calculation. These two tables show the number of points for different levels of
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Table 2.7: Framingham Risk Score - Step 1 - Age

Age in Years Points

30-34 -1

35-39 0

40-44 1

45-49 2

50-54 3

55-59 4

60-64 5

65-69 6

70-74 7

Table 2.8: Framingham Risk Score - Step 2 - Total Cholesterol

(mg/dl) (mmol/L) Points

<160 <4.14 -3

160-199 4.15-5.17 0

200-239 5.18-6.21 1

240-279 6.22-7.24 2

>280 >7.25 3

cholesterol scores for total and HDL cholesterol levels.

The fourth step is listed in figure 2.8, which shows the points calculations at

different levels of diastolic and systolic blood pressure levels. Table 2.10 and 2.11

show the points total for having diabetes and being a smoker respectively. These

tables shows addition of 2 points each for the presence of diabetes and if the person

is a smoker.
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Table 2.9: Framingham Risk Score - Step 3 - HDL Cholesterol

(mg/dl) (mmol/L) Points

<35 <0.90 2

35-44 0.91-1.16 1

45-49 1.17-1.29 0

50-59 1.30-1.55 0

>60 >1.56 -2

Figure 2.8: Framingham Risk Score - Step 4 - Blood Pressure

The seventh step shown in table 2.12 shows the how all the points from the

previous steps are added to come up with the points total. Table 2.13 shows how

these points total correspond to the risk percentages. Finally, table 2.14 shows the

comparative risk for different age groups for the risk percentage obtained from step

8. These steps are also summarized in figure 2.7.
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Table 2.10: Framingham Risk Score - Step 5 - Diabetes

Diabetes Points

No 0

Yes 2

Table 2.11: Framingham Risk Score - Step 6 - Smoker

Smoker Points

No 0

Yes 2

Table 2.12: Framingham Risk Score - Step 7 - Adding up the points

Age Points from Age (step 1)

Total Cholesterol Points from Total Cholesterol (step 2)

HDL Cholesterol Points from HDL Cholesterol (step 3)

Blood Pressure Points from Blood Pressure (step 4)

Diabetes Points from Diabetes (step 5)

Smoker Points from Smoker (step 6)

Points Total Sum of column (step 7)
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Table 2.13: Framingham Risk Score - Step 8 - CVD Risk

Point Total 10 Yr CHD Risk

<-1 2%

0 3%

1 3%

2 4%

3 5%

4 7%

5 8%

6 10%

7 13%

8 16%

9 20%

10 25%

11 31%

12 37%

13 45%
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Table 2.14: Framingham Risk Score - Step 9 - Comparative Risk

Age (years) Average Risk Low Risk

30-34 3% 2%

35-39 5% 3%

40-44 7% 4%

45-49 11% 4%

50-54 14% 6%

55-59 16% 7%

60-64 21% 9%

65-69 25% 11%

70-74 30% 14%

The steps used to calculate the Framingham risk score explained in the previous

tables were used on the Framingham Dataset. Table 2.15 shows the results from

the current state of art, Framingham risk score, on the same dataset that the CVD

Classifier was tested on. The calculations are performed at four different points total

as shown in table 2.15. Each points total score (7,8,9 or 10) corresponds to a certain

CVD Risk at which the person is predicted as high risk of CVD. This corresponds to

a prediction of ”Yes” for high risk of 10-year CVD by the CVD Classifier.

The results from table 2.15 show that as points total increase, the accuracy in-

creases but so does the number of false negatives. The best control over the number

of false negatives by the Framingham risk score is at 34.3 percent with accuracy of

60.5 percent. The CVD Classifier is able to achieve accuracy of 82 percent at only 5.2

percent of false negatives, which shows it is able to easily outperform the current risk

score setup. Even at points total of 10, the Framingham risk score accuracy is only
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Table 2.15: Framingham Risk Score (FRC) Results

Scoring

Technique

Accuracy

(%)

False

Negatives

Sensitivity

(Recall)

Specificity Precision

FRC at Points

cutoff 10

80.5 483 0.25 0.9 0.32

FRC at Points

cutoff 9

76.5 409 0.36 0.84 0.29

FRC at Points

cutoff 8

70.9 301 0.53 0.74 0.27

FRC at Points

cutoff 7

62.7 205 0.68 0.62 0.24

CVD Classi-

fier

83.8 94 0.9 0.75 0.84

Delta of last 2

rows

21.1 -111 0.22 0.13 0.6

78.8 percent with a huge 80 percent of false negatives, which pales in comparison to

the numbers produced by the CVD Classifier.

2.7 Causal Analysis: Identifying high-risk Features for Diabetes

This section analyses the cause and effect relationship for diabetes using the Fram-

ingham Dataset. Even though this dataset is primarily used to predict cardiac disease,

it can further help advance the medical field by some useful insight into diabetes. The

analysis here includes identifying how different attributes from this data have an effect

on diabetes similar to the analysis performed for cardiac disease in section 2.4.
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Figure 2.9: Percentage Difference (Significance) for each attribute that causes Dia-

betes

Table 2.16 shows the results from this analysis. This table shows that the biggest

factor, as shown from the difference column, is on glucose levels over 100 and 125. The

glucose direct co-relation with diabetes is expected, however it is interesting to see the

jump in percentage difference from 26.94 percent to 73.33 percent as the glucose level

jumps from 100 to 125. The next big attribute is ”smoker” with over 10 cigarettes

per day. It is interesting to note that a smoker who smokes less than 10 cigarettes

per day only has a 1.4 increased risk of diabetes. Another important observation

to notice is that even though the presence of diabetes increased the risk of CVD by
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22.4 percent as observed in table 2.3, the presence of CVD only increased the risk of

diabetes by 4.3 percent. Figure 2.9 represents this visually with bar graphs making

it easier to identify the most significant attributes responsible for diabetes based on

this dataset.
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Table 2.16: Probability that you have high risk of Diabetes given the presence or

absence of these attributes

Attribute Present Absent Difference

CVD 6.2% 1.9% 4.3%

Male 2.86% 2.36% 0.5%

Age >= 60 5.36% 2.06% 3.3%

Smoker 1.86% 3.26% 1.4%

Smoker with 10+ cigs daily 1.95% 12.40% 10.45%

BP Med 7.26% 2.41% 4.85%

Prev Stroke 4.0% 2.56% 1.44%

Prevalent Hypertension 4.40% 1.74% 2.66%

Cholesterol >250 3.11% 2.30% 0.81%

Sys BP >120 3.19% 1.30% 1.89%

Dia BP >80 3.07% 1.97% 1.1%

BMI >25 3.36% 1.56% 1.8%

BMI >30 5.41% 2.12% 3.29%

Heart Rate >80 3.69% 1.85% 1.84%

Heart Rate >100 5.71% 2.49% 3.22%

Glucose >100 27.48% 0.54% 26.94%

Glucose >125 74.42% 1.09% 73.33%

High School 3.49% 2.6% 0.89%

GED 1.84% 2.6% 0.76%

Vocational School 2.23% 2.6% 0.37%

College 1.90% 2.6% 0.7%
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2.8 Summary and Contributions

One of the research objectives (RO4) proposed in this dissertation aimed to im-

prove the quality of prediction of cardiac disease using classification. The discussion

below shows that we have achieved this objective. The prediction results have also

been compared on the same dataset of the CVD Tree Classifier versus Framingham

risk score, which show that our classifier is able to outperform the risk score.

The results show that CVD Tree Classifier outperforms not only other machine

learning classifiers but also all the current state-of-art 10-Year CVD Prediction Risk

scores. We have trained and optimized our CVD tree classifier to predict the risk of a

10-Year CVD with not only improved accuracy and AUC-ROC score, but also reduced

underestimation as compared to other methods. This NP Lemma based approach is

able to predict cardiac disease with over 85 percent accuracy. Additionally, it cuts

down the false negatives to under 10 percent. It also has the ability to easily reduce

the false negatives further at a cost of reduced accuracy, which may be acceptable

depending on this use case.

The methods used to create this CVD Tree Classifier can be easily expanded

to work with any classification problem where there is a need for asymmetric error

control. This approach can have a massive impact in the medical domain, especially

in disease diagnosis, where we typically need to control the number of false negatives.

To conclude, the accurate 10-Year CVD risk predictions by the CVD Tree Classi-

fier can have a massive impact in the cardiac domain, since early prevention can save

a lot of human lives. With an improved accuracy in predicting CVD, this tree-based

classifier model with asymmetric error control can reduce the burden of CVD in pop-

ulations and improve the quality of life as well as life expectancy in individuals with

CVD.
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Chapter 3

ASYMMETRIC ERROR CONTROL FOR BINARY CLASSIFICATION

3.1 Background

Asymmetric error control implies unequal distribution and weights assigned to

each error. False positives and false negatives can have unequal costs based on the

problem. This dissertation builds upon our work [32] on asymmetric error control

with a more detailed evaluation across different large scale data-sets for classification.

Classification [44], is a part of supervised learning [46] that aims to automatically

predict and classify new data samples after training on labelled data. Disease diagno-

sis, image classification and automatically recognizing spam email are some examples

of classification [45]. Binary classification [47], which is the most common sub type

of classification, can only have two values as class labels. Most binary classification

models [48] do not naturally provide control over the number of false negatives, as

they are optimized for accuracy.

The focus of this section is to provide asymmetric error control for binary classifi-

cation applications. There are two main challenges for binary classification in medical

disease diagnosis [49]. Firstly, the cost of one error greatly outweighs the other, high-

lighting the need for asymmetric control. For example, predicting if a patient is going

to have a cardiac disease is a binary classification problem where the cost of mis-

classifying a patient with high risk as no risk (False Negative) has a much bigger

penalty than misclassifying a patient with no risk as high risk (False Positive). The

former could cost a life whereas the latter does not have such severe consequences.

Traditional machine learning models [51] may not be ideal in this scenario as they
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do not provide a mechanism to control the number of false negatives below a certain

threshold with a theoretical guarantee [52]. Even if these models result in improved

accuracy and reduced classification error, they may not be optimal since the cost of

one error greatly outweighs the other.

As a proposed solution to this problem, we have created a tree-based classifier

that can control the number of false negatives below a specified threshold value with a

theoretical guarantee that the false negatives will not exceed this value. We name this

classifier as Asymmetric Error Control (AEC) Tree Classifier as it is able to provide

control over one type of error. The theoretical foundation for this model is based on

Neyman-Pearson (NP) Lemma [53], which shows that the likelihood ratio test is the

most powerful test in hypothesis testing. Based on the NP Classification umbrella

implementation [44], this concept is expanded to create this tree-based classifier that

can control the false negatives to a given value, while still providing comparable

accuracy on different datasets.

The imbalance in the medical disease diagnosis datasets is the second main chal-

lenge for binary classification in medical disease diagnosis. This imbalance arises

because a positive disease diagnosis is typically a rare event compared to a negative

disease diagnosis. This leads to an imbalanced dataset where the negative class out-

weighs the positive class. This problem is usually addressed using Synthetic Minority

Over-sampling Technique (SMOTE) [58] which can balance the dataset. However,

oversampling the minority class can lead to over-fitting as well as increasing the learn-

ing time of an algorithm. Similarly, under sampling of the majority class can lead to

the removal of some important data points. To avoid the overuse of SMOTE, we use

Hellinger distance as the splitting criteria in our decision tree because it addresses

the imbalance in the dataset by quantifying the difference between two probabil-

ity distributions and eliminates the need of extensive sampling techniques in binary
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classification.

To solve these two challenges, greater cost of a false negative compared to false

positive and imbalanced datasets in binary classification is the motivation in the

creation of the AEC Tree classifier. This classifier is able to predict the risk of future

and present cardiac disease with asymmetric error control. This enables us to limit

the number of false negatives, where each false negative could be as costly as a human

life. Moreover, the asymmetric error control is also tested on a large dataset from

a different domain and it is able to achieve the same error control. The classifier is

also comparable to the state of the art classifiers in terms of accuracy and AUC-ROC

scores on these datasets, despite providing control on the number of false negatives.

The next section discusses the related work that has been done to achieve asymmetric

error control. The dissertation, then discusses the methodology behind the creation

of the AEC Classifier and concludes with the evaluation and results on three diverse

applications, and their datasets.

3.2 Related Work

This section has been divided into four main parts. The first part discusses tradi-

tional binary classifiers and how they use threshold moving to adjust the error costs.

The second part goes over cost sensitive learning and ROC curves. Next, this section

discusses NP classification and concludes with decision trees in medical domain.

3.2.1 Traditional Binary Classifiers and Threshold Moving

The current state of the art binary classifiers algorithms are optimized to mini-

mize the classification error [66] instead of providing asymmetric error control. The

classification error [49] is calculated as shown in equation 2.1 in chapter 2.

Equation 2.1 shows that we can control the classification error using the traditional
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classification techniques but there is no way to limit one type of error. This is because

the false negatives and false positives are grouped together in this equation.

The only way to control one type of error with the traditional binary classifiers is

using threshold moving. A classification threshold is the value above which the class

is predicted as positive. The default value of the classification threshold is 0.5 for

values normalized between 0 to 1. This value can be adjusted as part of threshold

moving to a lower value which will reduce the false negatives. However, this approach

is only valid for empirical data as there is no probabilistic guarantee that it will be

valid for population data.

3.2.2 Cost Sensitive Learning and ROC Curve

Currently, the classification algorithms have two other main ways of asymmetric

error control. The first is using cost sensitive learning. In this algorithm, the model

takes the cost of prediction errors into account, while getting trained on the training

dataset. However, this approach has three shortcomings for our purpose. Firstly,

this algorithm does not provide any consensus way to assign the cost of each error.

This leads to a lot of variability and inconsistent results. Secondly, this learning still

does not provide any mechanism for directly controlling the number of false negatives

below a certain threshold. There is no guarantee that the prediction will minimize

the false negatives. Lastly, there is the ethical dilemma, in assigning costs to real

life data samples. For example, some may consider it unethical to assign more value

to the life of a younger person compared to an older person while assigning costs in

cost sensitive learning. Similarly, in disease diagnosis, the life of a patient is priceless

and we never want to cruelly set a value for it and sacrifice potential lives for the

algorithm to maximize its interest [3].

The second way of asymmetric error control is provided using ROC curve [4]. The
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ROC space is defined as a two dimensional space where horizontal and vertical axes

correspond to false positive and false negative errors [2]. The scoring function of a

binary classification model can be estimated using the ROC Curve. This concept has

been extended to control one type of error. However, this has only been successful

to control empirical error and has no success using population error [3]. This means

that for a random sample from the population, there is no guarantee that the false

negatives will be controlled using the ROC curve.

3.2.3 NP Classification

The Neyman-Pearson (NP) classification paradigm is a binary classification paradigm

that aims to address asymmetric errors in machine learning [34]. Their research

explores the practicality of the NP classification paradigm and evaluation of these

classification methods. The main contribution of their research is how to evaluate

and compare the performance of different NP classification methods. It proposes

NP receiver operating characteristic (NP-ROC) bands, a variant of ROC, as a new

visualization tool for NP classification. Some possible use cases of NP-ROC bands in-

clude evaluating the threshold (alpha) in a data adaptive way and comparing different

classifiers.

Another contribution of the NP classification paradigm is that it proposes an um-

brella algorithm, which can help implement some classification methods under the

NP paradigm. However, this implementation has some limitations. Firstly, it only

provides implementation of the three main classification methods (logistic regression

[39], support vector machines [40], and random forests [41]) with no details on how

to make it extensible for other classification models. Secondly, this algorithm does

not provide a way to swap between the control of false negatives and false positives.

Each dataset will be suited to only one type of error control with the other control
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not possible without altering the hypothesis and the dataset. This makes it very dif-

ficult to apply this implementation to multiple datasets. Lastly, another considerable

limitation of this implementation is that it is only valid for population error control

if the dataset and the implementation is truly random, which may not be the case

for all classification models that are made NP compatible by the umbrella algorithm.

3.2.4 Decision Trees in Medical Domain

In medical disease diagnosis, it is difficult to obtain large amounts of data, since

each row could correspond to the actual patient’s medical record. Along with the

scarcity of data, the data imbalance is also very common in disease diagnosis. As

stated in the Journal of Healthcare Engineering, “Identifying rare but significant

healthcare events in massive unstructured datasets has become a common task in

healthcare data analytics. However, imbalanced class distribution in many practical

datasets greatly hampers the detection of rare events, as most classification methods

implicitly assume an equal occurrence of classes and are designed to maximize the

overall classification accuracy” [11]. Similarly, in predicting cardiovascular disease

(CVD), which is the problem chosen for this research, we have a lot more negative

class (No Risk) compared to positive class (High risk of CVD) in our dataset. Another

issue with medical dataset is the handling of missing values. It is challenging to rerun

experiments with patients involved which makes it very difficult to recollect missing

data.

Decision trees [65] are generally considered to perform best with an imbalanced,

small dataset with missing values. Due to the nature of the medical dataset we

decided to proceed with the decision trees. The results section vindicate our decision

as decision tree based classifiers outperform the traditional classification models on

our cardiac patient dataset.
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3.2.5 Tree Splitting Criterion

Np classification umbrella algorithm only implements one decision tree classifier,

which is random forest. However, even though random forest picks random samples

from the dataset to develop each decision tree from a bootstrap sample of the training

dataset [10], it does not choose the splitting criteria of the tree randomly. The splitting

point for the npc implementation of random forest is chosen by Gini impurity [43]

which is defined as:

GiniImpurity =
k∑
i=1

pi(1− pi)

where,

k is the number of classes

pi is the proportion of cases belonging to case i.

This equation shows that Gini Impurity is not optimized for unbalanced datasets

as it is dependant on k and pi. As mentioned earlier, an unbalanced dataset is common

characteristic of a medical dataset. Another tree based splitting criterion, which is

commonly used is called Entropy or information gain. Its equation is calculated as:

Entropy == −
k∑
i=1

pi log(pi)

where,

k is the number of classes

pi is the proportion of cases belonging to case i.

The equation shows that Entropy is also similar to Gini Impurity and does not

account for the data imbalance. The classifier created as part of this research, AEC

Tree Classifier, is optimized to address the imbalance without the need of extensive
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sampling, since it uses Hellinger distance as the splitting criterion. Hellinger distance

is calculated as:

h(P,Q) =
1√
2
· ‖
√
P −

√
Q‖2

where h(P,Q) is the Hellinger distance between 2 probability distributions P and Q.

The complete hellinger distance equation and derivation is listed in Appendix B.

Tree based classifiers typically use Gini Index or Entropy as their splitting crite-

rion. However, both favor splits that can result in an uneven class distribution over

splits which will lead to an even distribution of the classes. This works well for bal-

anced data but is a major problem in an imbalanced dataset. This is because a split,

which will produce 90-10 class balance in the children nodes will get high Gini and

Entropy scores, but it may not improve the class separation in any way. As part of

this research we use Hellinger distance, instead of Gini Index or Entropy Information

Gain, as the tree splitting criterion for the AEC Tree Classifier due to the imbalance

in the dataset. Appendix D shows how Hellinger distance performs compared to Gini

Index and Entropy on balanced and imbalanced datasets for different tree classifiers.

Appendix D also shows how hellinger distance is able to outperform Gini and Entropy

on an imbalanced dataset.

The results from Appendix D show that Hellinger distance accuracy does not drop

much as data gets imbalanced compared to Gini and Entropy. We notice that even

though Gini and Entropy may perform better than Hellinger distance on balanced

data, they may not be the best choice for imbalanced data. Since our original data

is not balanced, Hellinger distance is a better option as it does not require the use of

extensive sampling techniques. These sampling techniques are being used to balance

the data using SMOTE, which requires oversampling the minority class and under

sampling the majority class. Under sampling can cause removal of important data,
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whereas oversampling can lead to overfitting so balancing the datasets with sampling

may not be the best option. The results section later justifies our decision in choosing

Hellinger distance over Gini and Entropy information gain on imbalanced datasets.

3.3 Methodology

The AEC Tree Classifier is based on ensemble [63] decision tree classifiers [56].

It consists of a large number of individual decision trees that operate together as an

ensemble [26]. Each tree in the Classifier produces a class prediction and the model’s

predicted class is selected based on the class that has received majority of votes.

Similar to popular ensemble decision trees, such as Random Forest [28] and extra

trees, our classifier is trained over various sub-samples of the data and each tree is

grown to its largest [57]. However, the most critical point of decision tree induction

algorithms is the choice of the splitting criteria [60] of a node. We use Hellinger

distance as the splitting criteria because it addresses the imbalance in the dataset

by quantifying the difference between two probability distributions. This eliminates

the need of extensive sampling techniques and hyper tuning that are required using

traditional splitting criterion’s such as Gini Index and Entropy. Hellinger distance

as a function is calculated for all attributes and it provides the highest value of split

measure for our feature set.

3.3.1 Traditional vs AEC Tree Classifier

For traditional classifiers, only the scoring function needs to be constructed from

the training data, the threshold is chosen as 0.5 by default. However, for the AEC

Tree Classifier, both the scoring function and the threshold value is constructed from

the training data. Figure 3.1 and 3.2 summarize this for the traditional and AEC

Tree Classifier respectively. Figure 3.1 clearly shows that the training data is being
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used as input only to the scoring function whereas in Figure 3.2, the training data is

being used to calculate the threshold. This classifier is then adapted to control the

false negatives below a certain threshold using the NP classification paradigm.

Figure 3.1: Traditional Classifier

Figure 3.2: AEC Tree Classifier

3.3.2 Neyman-Pearson Lemma

The NP classification is based on the NP Lemma. The complete lemma and it’s

proof is listed in Appendix A. The lemma states that the likelihood test is the most

powerful hypothesis testing among all other tests [54]. Given that X is the data or
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the observation, H0 is null hypothesis and H1 is alternative hypothesis, then P(X, H0)

is probability distribution of X given H0 and P(X, H1) is probability distribution of

X given H1.

This leads us to the likelihood ratio test L(X) which states:

L(X) =
P (X1, H1)

P (X1, H0)
> γ

where γ (gamma) is threshold gamma. To maximize PD for given PFA= α where

PD is probability of detection and PFA is probability of false alarm. The given alpha

α is the upper bound threshold value. PFA is then calculated as:

PFA = PrL(X) > γ,H0 = α

which is the probability that the likelihood ratio is greater than gamma under the

null hypothesis H0.

3.3.3 AEC Classification

The first step is sample splitting which involves splitting the training data into

three parts as explained in figure 3.3 below. The first part consists of mixed classes

of 0 and 1 samples. This data is fed as input to the AEC Tree Classifier to create the

scoring function. This scoring function is then used on the left out class 0 samples to

create a list of classification scores.

From this list of classification scores, a threshold is chosen using Order Statistics,

such that the violation rate (that is, the probability that the type 2 error exceeds

the user-specified upper bound alpha) is minimized. We chose the smallest value of

the threshold (alpha) on the classification scores such that the violation rate remains

minimized. To find the threshold, brute force and bagging were tried initially but

order statistics was proven to be the best in finding this threshold value from the
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Figure 3.3: Sample Splitting on Training Data

classification scores [55]. The probability that the type 2 error exceeds alpha is

controlled by a user specified tolerance parameter δ.

P [R0 (ϕc) > α] ≤ δ

This Equation shows that the probability that the violation rate exceed alpha is

bound by the user specified tolerance parameter. The threshold chosen from the list

of classification scores is chosen from the left-out class 0 samples which was not used

to train the AEC Tree Classifier as we saw during sample splitting in figure 3.3. The

left out class 1 samples are used to limit the false positive error bound. The three

steps above are incorporated in our decision tree classifier to create the AEC Tree

Classifier that is able to control the false negatives below a certain threshold with

high probability.

3.3.4 Constraints

There are three main constraints to the Neyman-Pearson based AEC Tree Clas-

sifier that we created in the previous steps.
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Violation Rate

The upper bound on the type 2 error achieved by our classifier is violated as described

by the violation rate, which is calculated as:

V (k) =
n∑
j=k

(jn)(1− α)jαn−j

where V(k) is violation rate, which is the probability that the false negatives exceed

the threshold value and n is the sample size. α is the threshold which is the upper

bound on the percentage of false negatives and K is the list of threshold scores. The

violation rate only depends on the sample size and the rank threshold K.

Optimal Order

To minimize the number of false positives, such that the false negatives are under

alpha, the optimal order is denoted as shown in the equation below. k* is the minimal

threshold whose violation rate is under δ such that:

k∗ = min{k− > (1, . . . n) : v(k) <= δ}

Sample Size

There is a minimum sample size needed to guarantee the upper bound on false neg-

atives which is:

n ≥ log δ/ log(1− α)

where,

n is the minimum sample size

α is the threshold
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δ is the tolerance parameter

Therefore, as long as the sample size is greater than n, the control can be achieved

on type 2 error control. If the sample size is less than n, then the violation rate can

not be controlled. As long as these constraints are respected, this AEC Tree classifier

can be used in many areas of medical diagnosis [64], where the cost of one type of

error greatly outweighs the other and there is a need for asymmetric error control.

3.4 Evaluation

This section is divided into two main parts: The first part goes over the details

of each dataset used to evaluate the classifier. The second part describes the experi-

mental setup and the range of hyper parameters used to run the classifier.

3.4.1 Datasets

Three different datasets were used as part of the evaluation. Since the best use

case of asymmetric error control is applicable in medical disease diagnosis, two of the

three datasets were related to it. More specifically, the medical datasets focused on

cardiac disease, since it is the leading cause of death worldwide [59].

For the first dataset used in evaluating our classifier, we obtained the publicly

available dataset of the patients involved in the Framingham Heart Study [59]. This

includes patient records of over 4200 patients and 15 attributes. The features of this

dataset are shown in table 3.1. The data obtained is from a cardiovascular study on

the residents in the town of Framingham in Massachusetts. The classification goal

from he dataset is to predict whether the patient has 10-year risk of Cardiovascular

Disease (CVD). Using this dataset, we trained and optimized our machine learning

model to predict the risk of a ten-year CVD, with not only comparable accuracy and
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AUC-ROC score, but also reduced underestimation.

Attributes Value

Sex Male or Female

Age Age of the patient

Education

1 = Some High School;

2 = High School or GED;

3 = Some College or Vocational School;

4 = College

Current Smoker Whether or not the patient is a current smoker

Cigs Per Day The number of cigarettes that the person

smoked on average in one day

BPMeds Whether or not the patient

was on blood pressure medication

PrevalentStroke Whether or not the patient

had previously had a stroke

PrevalentHyp Whether or not the patient was hypertensive

Diabetes Whether or not the patient had diabetes

TotChol Total cholesterol level

SysBP Systolic blood pressure

DiaBP Diastolic blood pressure

BMI Body Mass Index

HeartRate Heart Rate

Glucose Glucose Level

Table 3.1: Dataset Features used as input to Predict the 10-year risk of CVD

The second dataset [61] aims to predict the presence of cardiac disease in the
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patient. The difference from the first dataset is that it predicts the immediate pres-

ence or absence of cardiac disease, rather than predicting the 10-year risk of cardiac

disease. Moreover, this data consists of 70,000 patient records and 11 features. These

features are listed in table 3.2. This dataset allows us to test out the AEC classifier

on a larger cardiac disease dataset to verify how the algorithm results are affected

as the data is increased. The results show that the control over the number of false

negatives is still maintained on the larger cardiac disease dataset.

Attributes Value

Age Number of days (int)

Height Height in cm (int)

Weight Weight in kg (int)

Gender Categorical code

Systolic blood pressure int value

Diastolic blood pressure int value

Cholesterol 1: normal, 2: above normal, 3: well above normal

Glucose 1: normal, 2: above normal, 3: well above normal

Smoking Yes or No (Binary)

Alcohol intake Yes or No (Binary)

Physical activity Yes or No (Binary)

Table 3.2: Dataset Features used as input to Predict Cardiac Disease

The final dataset is used to provide some context to the evaluations outside medical

diagnosis, to ensure that the results remain intact across diverse large scale datasets.

This dataset contains 10 years of daily weather observations from numerous Aus-

tralian weather stations. This is a large scale dataset with over 142,000 records.
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Table 3.3 shows the main attributes used from this weather dataset to train the AEC

Classifier. The classification goal of this dataset is to predict, if it will rain tomorrow.

A successful implementation of asymmetric error control on this dataset demonstrates

the ability of our AEC Classifier to control the number of false negatives across dif-

ferent domains and data samples.

Attributes Value

Date The date of observation

Location The common name of the location of the weather station

MinTemp The minimum temperature in degrees celsius

MaxTemp The maximum temperature in degrees celsius

Rainfall The amount of rainfall recorded for the day in mm

Evaporation The evaporation (mm) in the 24 hours to 9am

Sunshine The number of hours of bright sunshine in the day.

WindGustDir The direction of the strongest wind gust in the 24 hours to

midnight

WindGustSpeed The speed (km/h) of the strongest wind gust in the last 24

hours

Pressure9am Atmospheric pressure (hpa) reduced to mean sea level at

9am

Cloud9am Fraction of sky obscured by cloud at 9am. (oktas)

RainToday Boolean: 1 if precipitation(mm) in the 24 hours exceeds

1mm, else 0

Table 3.3: Dataset Features used as input to Predict Rain Tomorrow
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The three datasets are summarized in table 3.4. Each row corresponds to the

dataset mentioned in the previous three tables and also lists the number of records

found in each dataset. The table shows that the weather dataset is the biggest followed

by the cardiac disease datasets.

Dataset Number of Records

1 Predict 10-Year CVD Risk 4241

2 Predict Cardiac Disease 70,000

3 Predict Rain tomorrow 142,194

Table 3.4: Datasets used to evaluate AEC Tree Classifier

3.4.2 Experimental Setup

We used the latest version of Python to code our classifier with PyCharm as

the integrated development environment (IDE). After construction of our tree-based

classifier, we made it NP lemma compatible by enforcing the restraints as explained

in methodology section.

The NP classification provides a way for asymmetric error control on type 1 error,

which is the number of false positives. However, in the prediction of CVD, we need

to control the type 2 error which is the number of false negatives. Using the same

theoretical foundation based on the NP lemma, we flipped our predicted variable

column in the training set. All the 1 classes were changed to 0 and all the 0 classes

were changed to 1. This meant that our null and alternative hypothesis was also

swapped which enabled us to use the same algorithm to control the type 2 error

instead of type 1. This also meant that we had to adjust the calculation of the

precision and recall from the confusion matrix.
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There were some additional challenges in the first cardiac disease dataset related

to imbalance and missing values. The dataset has a lot more negative classes as

compared to positive classes. A simple naive model that returns all samples as neg-

ative could have high accuracy. To address this, Synthetic Minority Over-sampling

Technique (SMOTE) [58] was used in addition to using hellinger distance as the

tree splitting criterion to balance the dataset. With a more balanced dataset, the

accuracy’s of different models are more meaningful.

There were some values missing from the dataset in certain rows. Typically, rows

with missing values are removed from the dataset. However, in the medical domain,

we often do not have the luxury of a massive dataset, as each row represents an actual

patient’s medical record which makes it very difficult to re-run experiments to fill the

missing value. Therefore, in order to maintain the row count of the original sample,

the average of each column was calculated. This average was replaced in each column

to fill in the missing value in order to complete the row.

70 percent of the dataset was used in training and the remaining 30 percent was

used in testing. The number of trees in each forest was chosen to be 300. The

minimum number of samples to split the node was chosen as 2 and the minimum

number of samples required to be at leaf node was 1. The rest of the parameters were

kept the same as the default values of decision tree algorithms.

The experiment was run multiple times and the average from the results were

plotted to account for any bias. For a comprehensive evaluation, we compared the

accuracy, AUC-ROC score, precision and the recall rate of our classifier versus the

traditional classification models.
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3.5 Results

The results for all the datasets from table 3.4 are provided in this section. For

each dataset, we first show how the AEC Tree Classifier performs in comparison with

the other common machine learning classifiers. Secondly, we show how our classifier

is providing asymmetric error control and how we can control the number of false

negatives using the threshold value.

3.5.1 Dataset 1: Predict 10-Year CVD Risk Dataset

We compared the AEC Tree Classifier performance on the Framingham dataset

with other machine learning classifiers as shown in figure 3.4. We compare the ac-

curacy, AUC-ROC score, precision, recall and the number of false negatives for each

classifier. All the results shown have been adjusted to percentages for simplicity and

table 3.5 shows the exact values used to plot figure 3.4.

Comparison with Traditional Binary Classifiers

Figure 3.4: Results from Dataset 1 - AEC Tree Classifier versus ML Classifiers to

predict 10 year risk of CVD
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Table 3.5: Dataset 1 - AEC Tree Classifier vs ML Classifiers

Classifiers Accuracy AUC-ROC Precision Recall False Negatives

Logistic Regression 69 62 86 71 62

Naive Bayes 66 57 87 68 72

K-Neigbors 77 77 76 86 22

Bagging Classifer 83 82 86 88 22

Random Forest 88 85 95 87 26

AEC Tree Classifier 84 83 85 89 18

Accuracy

For this dataset, the tree based classifiers perform the best in terms of accuracy

with Random Forest Classifier leading the chart with accuracy at 88 percent. The

AEC Tree Classifier and bagging classifier, which is based on decision trees as the

base estimator, follow with accuracy in excess of 80 percent. The traditional non-

tree based classification algorithms fall behind as shown in the figure. These results

can be explained by the ability of decision trees to perform better on an imbalanced

dataset by balancing error in class populations. The results vindicate our decision to

pick a tree based classifier as decision tree based classifiers outperform the traditional

classification models on our 10-years cvd risk dataset.

The accuracy of correct predictions alone may not be a perfect metric to measure

the effectiveness of classifiers. In an imbalanced dataset, the accuracy can be a little

misleading, since any algorithm that returns the majority class could have the highest

accuracy. This makes it essential to compare our classifiers with additional metrics

as shown below.

68



AUC-ROC Score

AUC-ROC is explained by the Data Science Journal as “It is a performance measure-

ment for classification problems at various thresholds settings. ROC is a probability

curve and AUC represents degree or measure of separability. It tells how much a model

is capable of distinguishing between classes. Higher the AUC, better the model is at

predicting 0s as 0s and 1s as 1s. By analogy, higher the AUC, better the model is at

distinguishing between patients with disease and no disease.[50]”.

Figure 3.4 shows that AEC Tree Classifier, along with random forest, outperforms

other machine learning with an AUC-ROC score over 80 percent. The bagging clas-

sifier follows with third best AUC scores also in excess of 80 percent. This score is

an especially important validation for our AEC Tree Classifier because of imbalance

in our first dataset.

Recall and False Negatives

Recall is one of the best measures to calculate how many true positives our models

can capture. This makes recall one of the best metrics, where there is a high cost

associated with a false negative. Recall rate is inversely proportional to the number

of false negatives. This means higher the recall rate, the lower the number of false

negatives. This is one of the most significant metrics for our first two datasets as

they relate to cardiac disease prediction. In this scenario, a false negative means that

the classifier failed to diagnose a patient which had a high risk of cardiac disease.

This could potentially cause a loss of a human life, since the patient will not get any

treatment.

Our AEC Tree Classifier has been designed to keep the false negatives to a min-

imum and recall rate to the maximum, using the theoretical approach from the NP
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Lemma which was explained previously. The recall results from figure 3.4 clearly

show that AEC Tree Classifier outperforms all other classifiers in terms of recall rate

across all the datasets.

Random Forest Classifier, which was exceeding the previous metrics, falls behind

to AEC Tree Classifier in terms of the recall rate, which does not make it a good

fit for control over the number of false negatives. The AEC Tree Classifier is able

to achieve a recall rate close to 90 percent. In other words, it is able to identify 90

percent of the patients with high risk of 10-year CVD. Moreover, the false negatives

of AEC Tree classifier are lowest compared to all other classifier. Random forest has

almost 8 percent more false negatives compared to our classifier, which does not make

it the best fit to predict cardiac disease.

Precision

To fully evaluate the AEC Tree Classifier, it is important to measure both precision

and recall. As we improve recall, precision usually suffers. However, our classifier falls

only behind random forest in terms of precision. The precision of 85 percent from

our classifier can be improved by reducing the bound on the false negatives, which

will decrease the recall rate. However, based on our task to predict cardiac disease,

recall is more important than precision, so we choose the threshold accordingly to

maximize the recall rate.

Asymmetric Error Control by AEC

The ability to control the false negative below a certain threshold is the pivotal part of

our AEC Tree Classifier, since it provides asymmetric error control on our predictions.

figure 3.5 shows how the performance metric varies with the upper bound α on the

false negatives for this dataset. The x-axis show the value of upper bound on false
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negatives, known as the threshold α, varying from 0 to 1. The solid lines in the graph

represent how each metric varies as α is increased. The dashed line in the figure

shows the optimal value of the threshold.

The goal is to select a value of α that minimizes the false negatives and maximizes

the accuracy and AUC-ROC score of the model. This graph allows us to choose α in

a data adaptive way. The exact values used to plot figure 3.5 are listed in table 3.6.

The detailed results are able to provide the exact values of the accuracy, AUC-ROC

score, Precision, Recall and the number of false negatives produced at each threshold

value. figure 3.5 shows that we are able to get an accuracy of 50 percent with false

negatives close to 0 using our AEC Tree Classifier. Even though an accuracy of 50

percent is very low, it gives us the supreme advantage of keeping false negatives close

to 0 which is not possible using traditional methods.

However, the optimal is achieved with upper bound on false negatives close to

0.22, since it still gives us an accuracy and AUC-ROC score over 80 percent. At this

value, the AUC-ROC Scores and Accuracy still exceed 80 percent with recall around

90 percent. The false negatives are also just around 18 percent which may be a good

compromise for the higher numbers in other metrics. The dashed line in figure 3.5

shows the optimal value of the threshold in this use case. This value could change if

other metrics become more important, and this graph allows us to choose the value

visually in a data adaptive way. None of these metrics go wildly out of control as the

upper bound α is loosened, which indicates we can adjust the value according to our

use cases.
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Figure 3.5: Dataset 1 - AEC Tree Classifier Control Over False Negatives
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Table 3.6: Dataset 1 - AEC Tree Classifier Control Over False Negatives with Varying

values of α

Alpha Accuracy AUC-ROC Precision Recall False Negatives

0.02 42.9 55.5 11.4 98.4 0.33

0.1 70.0 75.1 57.5 93.3 7.4

0.2 82.5 82.3 83.1 88.9 18.6

0.3 84.9 82.8 90.2 86.8 24.6

0.4 85.9 81.8 96.1 84.2 32.4

0.5 83.5 77.6 98.3 80.4 43.1

0.6 79.6 71.7 99.3 76.1 55.9

0.7 76.5 67.2 99.8 73.3 65.3

0.8 73.5 62.9 1.0 70.8 74.1

0.9 68.5 55.9 1.0 67.1 88.1

1.0 64.2 0.5 1.0 64.2 99.9

It should be noted that although we can increase our accuracy further and bring

it close to 85 percent at around 0.4 value of α , this may not be a good option, since

we want to keep false negatives low. In other use cases, the threshold value should

be chosen carefully depending on the cost of a false negative. The results here also

show that not all classifiers should be designed to be optimized for accuracy as other

metrics, such as false negatives may be equally important in some cases. Figure 3.5

shows how asymmetric error control is achieved using our AEC Tree Classifier.
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Table 3.7: Confusion Matrix of AEC Tree Classifier at threshold of 0.2

Actual Positive Actual Negative

Predicted Positive 502 235

Predicted Negative 96 839

Table 3.8: Confusion Matrix of AEC Tree Classifier at threshold of 0.4

Actual Positive Actual Negative

Predicted Positive 389 46

Predicted Negative 209 1028

Table 3.9: Confusion Matrix of AEC Tree Classifier at threshold of 0.6

Actual Positive Actual Negative

Predicted Positive 284 7

Predicted Negative 314 1067

Table 3.10: Confusion Matrix of AEC Tree Classifier at threshold of 0.8

Actual Positive Actual Negative

Predicted Positive 133 3

Predicted Negative 465 1071

The confusion matrix is another measure to see the actual number of true positives

and true negatives compared to the number of false positives and false negatives.

Tables 3.7 through 3.10 show how the confusion matrix numbers change with different

threshold values (0.2, 0.4, 0.6 and 0.8) of the upper bound on false negatives. Our
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test data has 1672 records with 1074 as negative class and 598 positive records which

have CVD. We can sum up the values in the confusion matrix to make sure we get

the same numbers. The tables show that as the threshold is increased, the number of

false negatives increase, whereas the number of false positives decrease. The results

show that a high value of threshold may not be suitable due to the high number of

false negatives. This data provides us more insight into choosing the threshold value

that is best suited for the problem.

3.5.2 Dataset 2: Predict Cardiac Disease

For the larger cardiac disease dataset, AEC Tree Classifier is within two percent

of the best performing classifier in terms of both accuracy and AUC-ROC Score.

This data has very balanced overall distribution of the two classes, which means that

accuracy and AUC-ROC scores are very similar for all the classifiers. The complete

results from this dataset can be seen from figure 3.6 with table 3.11 showing the exact

values used to plot the graph.

The results show that our classifier has the best recall rate and the lowest number

of false negative by a significant margin. The number of false negatives are less than

9 percent of the the false negatives by random forest. This means that it will be able

to predict cardiac disease for additional 9 percent of the population, which can be

potentially life saving. This benefit makes up for the loss in precision compared to

other classifiers, given that the accuracy is still reasonably high. Moreover, in the

cardiac disease datasets, the primary focus remains on the controlling the number of

false negatives.

The results from figure 3.6 clearly show that our AEC Tree Classifier outperforms

all other machine learning classifiers in the recall rate and false negatives. Despite

the increased control on the number of false negatives, the AEC Tree Classifier is still
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comparable to the other classifiers in terms of accuracy and AUC-ROC scores. This

implies that our AEC Tree Classifier is the best classifier overall, to predict cardiac

disease.

Figure 3.6: Results from Dataset 2 - AEC Tree Classifier versus ML Classifiers to

predict cardiac disease

Table 3.11: Dataset 2 - AEC Tree Classifier vs ML Classifiers

Classifiers Accuracy AUC-ROC Precision Recall False Negatives

Logistic Regression 70 70 74 69 34

Naive Bayes 56 55 95 53 84

K-Neigbors 56 56 57 56 45

Bagging Classifer 69 69 66 71 26

Random Forest 73 73 75 72 29

AEC Tree Classifier 71 71 62 76 20

Figure 3.7 shows how asymmetric error control is achieved on varying values of the

threshold on the larger cardiac disease dataset. Table 3.12 shows the values used to
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plot the graph in figure 3.7. The figure shows how the classifier is able to control the

false negatives with the value of α. The optimal value is represented by the dashed

line at 0.27 on the x-axis. At this value, the recall rate is still over 75 percent while

still having the accuracy and AUC-ROC scores in excess of 70 percent. This graph

makes it easily to visualize the performance at different values of α, making it easier

to pick the threshold value that guarantees control over the number of false negatives.

The graph in figure 3.7 also shows the recall rate decreasing and the precision

increasing as the upper bound on the number of false negatives is relaxed. F1 score,

which is a measure of the balance of precision and recall, is not the best metric for

asymmetric error control, as the goal is not to strike a balance between precision and

recall, but to increase the recall rate while minimizing the loss to precision as much

as possible. This is why accuracy and AUC ROC score are used along with precision

and recall to evaluate the classifier.
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Figure 3.7: Dataset 2 - AEC Tree Classifier Control Over False Negatives
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Table 3.12: Dataset 2 - AEC Tree Classifier Control Over False Negatives with Vary-

ing values of α

Alpha Accuracy AUC-ROC Precision Recall False Negatives

0.02 54.9 55.2 12.3 87.4 1.8

0.1 64.7 64.9 39.3 80.8 9.4

0.2 70.4 70.5 60.2 76.1 18.9

0.3 72.5 72.5 74.3 71.9 28.9

0.4 72.3 72.2 83.7 68.4 38.7

0.5 70.1 70.0 89.1 64.8 48.5

0.6 66.8 66.6 92.3 61.3 58.4

0.7 62.8 62.6 94.6 58.0 68.5

0.8 58.8 58.5 96.6 55.2 78.6

0.9 54.7 54.4 98.4 52.7 88.5

1.0 50.3 50.0 1.0 50.3 98.8

3.5.3 Dataset 3: Predict Rain Tomorrow

For the Australian rain weather large scale dataset, the AEC Tree classifier is

within three percent of the best performing algorithm in terms of accuracy. Moreover,

in terms of AUC-ROC scores, the AEC classifier exceeds the chart with a score of 71

percent. The results, shown in figure 3.8 and table 3.13, also show that our classifier

again produces, not only the best recall rate, but also keeps false negatives to the

lowest by a big margin of 14 percent. This shows that we are not losing much on

accuracy with an increased control over the number of false negatives. The precision

score is the lowest due to the strong constraints on the recall rate. The results from
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these figures show that even for larger diverse datasets, the AEC Tree Classifier is

able to provide asymmetric error control and produce comparable results.

Figure 3.8: Results from Dataset 3 - AEC Tree Classifier versus ML Classifiers to

predict rain tomorrow

Table 3.13: Dataset 3 - AEC Tree Classifier vs ML Classifiers

Classifiers Accuracy AUC-ROC Precision Recall False Negatives

Logistic Regression 83 68 95 85 58

Naive Bayes 80 66 91 84 58

KNeighbors 82 68 93 85 56

Bagging Classifier 82 67 94 85 59

Random Forest 82 67 94 85 59

AEC Classifier 80 71 88 87 45

Figure 3.9 demonstrates the ability of asymmetric error control by our classifier

for a large-scale non-medical disease dataset. Table 3.14 shows the values used to plot

figure 3.9. The control over this dataset proves the ability of the classifier to work
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across diverse datasets. However, it must be noted that asymmetric error control may

not be as useful in predicting rain, and higher accuracy might be preferred. However,

using our AEC Tree Classifier, we have the option to control the number of false

negatives if needed.

Figure 3.9 shows the dashed line that represents the optimal value. This value is

chosen as 0.47 α, where the accuracy is close to 80 percent and AUC-ROC score over

70 percent. These values are still comparable to other classifiers without asymmetric

error control on this dataset. The graph also shows the recall rate decreasing as the

value of the upper bound is increased. The graphs show how the recall rate and

false negative are controlled using the AEC Tree classifier, allowing asymmetric error

control for diverse binary classification problems.

3.6 Discussion and Contributions

This section discusses how this chapter addresses some of the research objectives

proposed in section 1.2. The research presented in this chapter helps address two

of the four research objectives justified by the results and methodology from this

chapter. This discussion also shows how some of the challenges posed by the research

objectives have been addressed by this research.

The first research objective (RO1) from section 1.2 that aims, “To achieve asym-

metric error control in binary classification with high probability that the population

false negatives will not exceed a predefined threshold.” is met based on the results

section from this chapter. The results section clearly shows that we are able to pro-

vide asymmetric control for binary classification on our AEC Tree Classifier, which is

built based on the NP Lemma. This has been evaluated for three different datasets

and the figures 3.5, 3.7 and 3.9 show the control we have over the number of false

negatives for each classifier. The related works section from this chapter answers the
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Figure 3.9: Dataset 3 - AEC Tree Classifier Control Over False Negatives

differences of this approach from cost based learning.

Another contribution from this dissertation is that it has established a data adap-

tive way to pick the upper bound threshold α value that gives us optimal result

balancing the acceptable number of false negatives with the performance metrics.

This threshold value can easily be adjusted according to our use case of asymmetric

error control. This is shown from the dashed line in figures 3.5, 3.7 and 3.9. De-

spite providing control over the number of false negatives, our classifier is still able

to produce AUC-ROC scores that are comparable with other classifiers. The loss in

precision is acceptable in medical disease diagnosis.

The second research objective (RO2) in section 1.2 aims to choose a classification
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Table 3.14: Dataset 3 - AEC Tree Classifier Control Over False Negatives with Vary-

ing values of α

Alpha Accuracy AUC-ROC Precision Recall False Negatives

0.02 23.4 50.2 2.5 81.8 1.9

0.1 40.3 58.3 26.3 90.6 9.4

0.2 60.8 67.9 55.2 91.1 18.7

0.3 71.7 71.3 72.0 89.7 28.6

0.4 78.3 71.8 83.4 88.2 38.8

0.5 81.3 70.2 89.9 86.6 48.2

0.6 82.5 67.6 94.2 85.0 57.5

0.7 82.3 63.7 96.9 83.2 67.5

0.8 81.5 59.7 98.5 81.6 76.9

0.9 79.9 54.8 99.6 79.8 87.6

1.0 78.4 50.8 99.9 78.3 95.8

threshold, independently from the training of the classifier,that controls the popu-

lation type 2 error. One of the contributions of this dissertation is that it proposes

a way to select a threshold such that the population type 2 error is controlled with

high probability. From the training data of 0 and 1 samples, where 1 represents the

critical class whose error we need to control, we split into mixed classes of 0 and 1

samples and some left out class 1 samples. The scoring function is trained on the

mixed classes of 0 and 1 samples and then it is applied to the left out class 1 samples.

From the classification scores obtained from the left out class 1 samples, we pick a

threshold value using order statistics such that the type 2 error is under alpha with
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high probability. This approach ensures that the threshold search is not biased on the

training data because the threshold selection is based on left-out class 1 data, which

was not used for training. This allows us to interpret the training of the scoring

function and the threshold selection as two independent procedures. The methodol-

ogy section describes this approach in detail with equations based on mathematical

lemma to back this claim.

3.7 Summary

To summarize, the two main problems in binary classification for medical diagnosis

are imbalanced datasets and the uneven distribution of the cost of the two errors.

The AEC Tree Classifier is able to solve the former using Hellinger Distance as the

tree splitting criterion and the latter by using a Neyman Pearson Lemma based

mathematical approach to provide asymmetric error control. This classifier is tested

on diverse datasets to predict the 10-year risk of CVD, the immediate absence or

presence of cardiac disease, and to predict if it will rain tomorrow.

The results show that the AEC Tree Classifier is able to control the number of false

negatives and provide asymmetric error control across different datasets. Although

other tree-based classifiers, such as random forest and bagging tree classifiers, are

able to compete with our AEC Tree Classifier in terms of accuracy and AUC-ROC

score, yet our classifier emerges as the clear winner in predicting cardiac disease by

having the lowest number of false negatives. Furthermore, it also has the ability to

easily reduce the false negatives further at a cost of reduced accuracy, which is often

acceptable in medical disease diagnosis.

To conclude, the AEC Tree Classifier provides full control over the number of false

negatives in binary classification problems, and is able to predict cardiac disease with

full asymmetric error control. The methods used to create this classifier can be easily
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expanded to work with any binary classification problem, where there is a need for

asymmetric error control. This approach can have a massive impact in the medical

domain, especially in disease diagnosis, where we typically need to control the number

of false negatives. Moreover, the results also show that asymmetric error control can

be achieved outside the field of medical disease diagnosis in large diverse datasets.
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Chapter 4

MULTI-CLASS CLASSIFICATION WITH ASYMMETRIC ERROR CONTROL

4.1 Introduction

Classification [67], in machine learning, requires the use of different algorithms

to assign class labels to examples from the dataset. It is a part of supervised learn-

ing, which aims to automatically predict unique outcomes for new observations after

training on the relevant labeled data. Some examples of classification include medi-

cal disease diagnosis, recognizing spam email and image classification. The two main

types of classification include binary classification and multiclass classification. The

former predicts one of two classes whereas the latter involves prediction of more than

two classes. This dissertation aims to improve the classification outcomes for multi-

class classification in medical disease diagnosis.

4.1.1 Challenges in Classification for Medical Disease Diagnosis

There are two main challenges in multiclass classification for medical disease diag-

nosis. Firstly, the cost of a false negative greatly outweighs the cost of a false positive

in medical disease diagnosis. For example, predicting a patient infected with Covid-19

as not positive (false negative) can cause it to spread uncontrollably, whereas mis-

classifying a patient not infected with the novel Covid-19 strains as positive (false

positive) has less serious repercussions, even though not ideal. Similarly, classifying a

patient with cardiac arrhythmia as healthy could mean no treatment for the patient

and could cost a patient their life. Conversely, misdiagnosing a healthy patient as

having cardiac arrhythmia has less severe consequences.
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The imbalance in the cost of a false negative compared to a cost of false positive

in medical disease diagnosis highlights the need for asymmetric error control in clas-

sification. Traditional classification models may not be ideal in this scenario as they

do not provide a mechanism to control the number of false negatives below a certain

threshold with a mathematical guarantee. Even if these models result in improved

accuracy and reduced classification error, they may not be optimal for medical disease

diagnosis, since the cost of one error greatly outweighs the other.

Most classification models optimize for accuracy without providing a mathemat-

ical guaranteed control over the number of false negatives. Our published work [69]

has highlighted ways of providing asymmetric error control for binary classification

using the Neyman Pearson (NP) Lemma. The classification model, proposed in this

dissertation extends that approach, providing asymmetric error control for multiclass

classification, and thus enabling control over the false negatives with a mathematical

guarantee that the false negatives will not exceed a certain user specified threshold.

The second main challenge for classification in medical disease diagnosis is the

data imbalance. Multiclass classification problems with imbalanced dataset present

different challenges compared to a binary classification problem. The skewed dis-

tribution of classes in multiclass classification, makes conventional machine learning

models less reliable in predicting, especially in minority class examples. The imbal-

ance in medical datasets arises because a positive disease diagnosis is typically a rare

event compared to a negative diagnosis, leading to the negative class outweighing the

positive class.

This problem is usually addressed using Synthetic Minority Over-sampling Tech-

nique (SMOTE) [92] which can balance the dataset. However, this technique is not

ideal as extensive use of sampling can distort the results in a couple of ways. Firstly,

oversampling the minority class can lead to overfitting as well as increasing the learn-
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ing time of an algorithm. Secondly, under sampling the majority class can lead to

removal of some important data points. To avoid the overuse of SMOTE, this dis-

sertation proposes the use of Hellinger distance [70] as the splitting criteria, instead

of Gini index and entropy. This splitting criterion in our decision tree addresses

the imbalance in the dataset by quantifying the difference between two probability

distributions and eliminates the need of extensive sampling techniques.

4.1.2 Multi-Class Classification in Cardiac Arrhythmia

Cardiac arrhythmia [68] is a condition in which a person’s heartbeat is irregular

and may beat too quickly, too slowly or just with an irregular rhythm. Even though

some minor heart arrhythmia’s could be harmless, other irregular heartbeats can

result from a weak or damaged heart and can lead to morbidity and mortality. In

other cases, there can be serious complications leading to fatal symptoms. Arrhythmia

is very difficult to diagnose because it might not cause any noticeable symptoms. This

problem is compounded by the fact that not only do some people with life threatening

arrhythmia may have no symptoms, but also some people with symptoms may not

have severe arrhythmia.

Since some types of cardiac arrhythmia are life threatening, their prediction, de-

tection and classification for both diagnosis and treatment, are important issues in

clinical cardiology. Timely treatment is still essential for preventing further complica-

tions, which may include stroke and heart failure. This dissertation proposes the use

of machine learning to determine the type of arrhythmia from the electrocardiogram

(ECG) recordings. The aim is to predict the absence or presence of cardiac arrhyth-

mia and to classify it in one of the 16 groups. Table 4.1 shows the different types of

class codes available in our dataset. Class 01 refers to ‘normal” whereas classes 02 to

15 refer to different types of arrhythmia, and class 16 belongs to unclassified ones.
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Table 4.1: Cardiac Arrhythmia Classes

Code Class

01 Normal

02 Ischemic changes(Coronary Artery Disease)

03 Old Anterior Myocardial Infarction

04 Old Inferior Myocardial Infarction

05 Sinus tachycardy

06 Sinus bradycardy

07 Ventricular Premature Contraction (PVC)

08 Supraventricular Premature Contraction

09 Left bundle branch block

10 Right bundle branch block

11 1st. degree AtrioVentricular block

12 2nd. degree AtrioVentricular block

13 3rd. degree AtrioVentricular block

14 Left ventricule hypertrophy

15 Atrial Fibrillation or Flutter

16 Others

After consulting with four cardiologists as part of this research, the five most

critical or life threatening types of cardiac arrhythmia were identified. They were

then ranked according to their order of severity as shown in figure 4.1. From this list

of hierarchical order (1 ≥ . . . ≥ K ) of severity for misclassification, as listed in figure

4.1, the multiclass classification algorithm was applied such that we have control over

the number of false negatives for the most critical class.
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Figure 4.1: Accuracy of ML Classifiers vs CVD Tree Classifier

The next section discusses the related work in this domain. Next, the disserta-

tion proposes the methodology and the theoretical foundation behind the multiclass

Neyman Pearson Tree Classifier that is created as part of this research. The results

section starts by explaining the experimental setup and hyper parameters used to

compare the classifier. Finally, the results from the evaluation are presented and
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compared with the existing models to conclude that the tree-based classifier is able

to provide asymmetric error control in multiclass classification.

4.2 Related Works

This section discuss discusses the related work and the existing methods being

used to predict different types of cardiac arrhythmia. In this section, the dissertation

also covers the current ways of asymmetric error control for classification followed by

a summary of other techniques, which enable binary classification techniques to be

applied to multi-class problems in classification. Finally, this section discuses machine

learning in cardiac arrhythmia domain.

4.2.1 Asymmetric Error Control in Classification

The two main ways of asymmetric error control in classification algorithms are

cost sensitive learning and ROC Curve. For cost sensitive learning, the model gets

trained on the dataset, while calculating the cost of prediction errors. This approach

can have three shortcomings for error control. Firstly, there is no consensus way to

assign costs of each error, leading to inconsistent and variability in results. Secondly,

the cost sensitive learning does not provide a mathematical guarantee that it will

be able to control the number of false negatives below a certain threshold. Lastly,

there is an ethical dilemma, in assigning costs to human lives. For example, it can be

considered morally unethical to assign more value to one life over another. Similarly,

in disease diagnosis, the patient’s life is of paramount importance and we never want

to cruelly set a value for it, knowing the algorithm could potentially sacrifice lives to

maximize it’s interest [79].

ROC curve [78] is another way for asymmetric error control in classification. The

ROC space is defined as a two dimensional space, where each axis represents the
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false positive and false negative rates respectively [84]. The scoring function of a

binary classification model can be estimated using the ROC curve, and this can be

expanded to control one type of error. However, extending this to multiclass has a

huge challenge in terms of computational complexity, that increases exponentially to

the number of classes, resulting in many problems being intractable [72].

The current state of art classification algorithms are optimized to minimize the

classification error instead of providing asymmetric control over one type of error.

This can be shown from the classification error equation, which has been mentioned

in chapter 2 as well but it is also included here:

Classification Error = FP + FN ∗ 100/N (4.1)

where,

FP is the number of false positives (type 1 error)

FN is the number of false negatives (type II error)

N is the total number of samples

This equation clearly shows that the false negatives and false positives are grouped

together in the classification error equations. The goal of classification algorithms is

to minimize the classification error, which implies that it will be optimized to reduce

both kinds of errors. The only way to control one type of error in this scenario is using

threshold moving. However, that is complicated for multiclass classification as the

classes can start overlapping, as the threshold is moved. Even for binary classification,

this approach is only valid for empirical data and there is no probabilistic guarantee

that for a random sample from the population, the false negatives will be controlled

using this approach.
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4.2.2 Multi-Class Classification to Binary Classification

Error-Correcting Output Codes [74] is a technique that allows a multiclass classifi-

cation problem to be reconstructed as multiple binary classification problems, allowing

the use of native binary classification techniques on multiclass datasets. The error-

correcting output codes technique allows each class to be encoded as an arbitrary

number of binary problems in classification. It allows the extra models to act as error

correction predictions when over determined representation is used [75]. This allows

error control that can result in better predictive performance, however this approach

does not scale as the number of classes increases, as there is no mathematical upper

bound on the number of false negatives for any specific class.

One-Vs-Rest (OVR) and One-Vs-One (OVO) for Multi-Class Classification [73]

are other similar solutions that decompose a multiclass classification problem into

binary classification problems. They allow native binary classification models to be

used in multiclass datasets by converting them into multiple binary problems. How-

ever, even with these models, there exists no mathematical guarantee to control the

false negatives of a particular class.

4.2.3 Cardiac Arrhythmia and Machine Learning

In recent years, there has been an increased interest in the use of machine learning

and artificial methods in the medical domain, in the hope to discover new predictive

and diagnostic tools [71]. Recent research has also focused on the detection and

classification of arrhythmia using machine learning. There have been algorithms im-

plemented to predict the onset of cardiac arrhythmia for patients with Implantable

Cardioverter-Defibrillators (ICD), which is used to treat patients with cardiac ar-

rhythmia’s. However, the study noticed that the prediction of arrhythmia still re-
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mains challenging.

The results obtained from the Computational Science – ICCS 2020 study show

that RR intervals carry the necessary information about the onset of arrhythmia

[71]. Even though the study had some limitations in terms of data size and lack of

clinical input, it showed potential to use machine learning in arrhythmia outcomes.

However, the ability to predict cardiac arrhythmia with asymmetric error control still

lacks in modern research. This dissertation aims to solve this problem following the

methodology described in the next section.

4.3 Methodology

The Neyman-Pearson (NP) [87] classification paradigm aims to enable asymmetric

error control in machine learning for binary classification outcomes. Np classification

is based on hypothesis testing and that requires null hypothesis and alternative hy-

pothesis, which is naturally suited to binary classification. Clearly, NP oracle inequal-

ities are not immediately applicable for multiclass NP classification. This research

proposes a new variant of the algorithm called Multi Class Asymmetric Error Control

Classifier (MCAEC) that is able to provide asymmetric error control for multiclass

classification.

4.3.1 NP Classification

The NP classification is based on the NP Lemma, which states that the likelihood

test is the most powerful hypothesis testing among all other tests [88]. Given that X

is the data or the observation, H0 is null hypothesis and H1 is alternative hypothesis,

then P(X, H0) is probability distribution of X given H0 and P(X, H1) is a probability

distribution of X given H1.

This leads us to the likelihood ratio test L(X) which states:
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L(X) =
P (X1, H1)

P (X1, H0)
> γ

where γ (gamma) is threshold gamma. To maximize PD for given PFA= α where

PD is probability of detection and PFA is the probability of false alarm. The given

alpha α is the upper bound threshold value. PFA is then calculated as:

PFA = PrL(X) > γ,H0 = α

which is the probability that the likelihood ratio is greater than gamma under the

null hypothesis H0.

This dissertation extends the NP umbrella algorithm to the multiclass classifica-

tion problem. A simple use case for multiclass classification outside cardiac arrhyth-

mia is in cancer diagnosis. For example, if we have three classes: class A (cancer

of the most dangerous kind), class B (benign cancer) and class C (no cancer) and

we would first like to control the error of misclassifying class A and then control the

cost of misclassifying class B. In this scenario, we will adapt our algorithm based on

the OVR approach so that NP properties still hold as shown in the following figures.

Figure 4.2 shows how the dataset will appear with three cancer classes A,B and C.

Figure 4.3 shows the resulting dataset after B and C are clumped together using the

OVR approach.

4.3.2 MCAEC Algorithm

The same approach can be extended to more classes including the 16 classes of

cardiac arrhythmia dataset by applying the above technique recursively and incorpo-

rating it with the NP oracle inequalities. The essential idea is to maintain a hierar-

chical order (1 ≥ . . . ≥ K ) of severity for misclassification. First the NP methods

are applied to 1 versus (2 ≥ . . . ≥ K ). If a new observation is assigned to class 1,
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Figure 4.2: Multiclass Data Original

the algorithm is stopped and assigns the class label to class 1. Otherwise, apply NP

methods to 2 versus (3 ≥ . . . ≥ K ) and so on, until the new observation is assigned

a label. The pseudo code of this algorithm is explained in Algorithm 1.

For traditional classifiers, the threshold is chosen as 0.5 by default for binary

classifiers and only the scoring function needs to be calculated from the training

data. Similarly for multiclass classification, the threshold is not calculated as part of

training the algorithm. However, for the MCAEC classifier, both the scoring function

and the threshold is calculated from the training data. This concept is summarized in

figure 4.4 and figure 4.5. Figure 4.4 shows that training data is fed as input only for

the scoring function and the default values of the threshold is being used. Meanwhile,
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Figure 4.3: Multiclass Data after OVR

figure 4.5 shows that the threshold is being trained as well. The training data is used

to calculate the threshold, such that the false negatives are bound by a user specified

value.

4.3.3 Hellinger Distance as Splitting Criterion

The other significant challenge in multiclass classification in medical disease diag-

nosis, apart from asymmetric error control, is the imbalanced datasets. As mentioned

earlier, the imbalance occurs because a positive disease diagnosis is typically a rare

event compared to a negative diagnosis, leading to the negative class outweighing
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Algorithm 1 MCAEC ALGORITHM

Input: data xi, array of order of severity (1 ≥ . . . ≥ k )

Initialize classIndex = 0.

Initialize label = None.

repeat

Initialize criticalClass = array[classIndex].

classIndex+ +

while label != criticalClass do

label = NP (array, classIndex, criticalClass)

if label == criticalClass then

break

else

classIndex+ +

end if

end while

until return label

the positive class. Decision trees are generally considered to be the best with an

imbalanced small scale dataset due to their ensemble capabilities [90]. The MCAEC

classifier is based on ensemble decision tree classifiers [26]. It includes a large number

of individual decision trees that operate together as an ensemble. Each individual

tree predicts a class label and the predicted class is based on majority voting, similar

to random forest [91] and extra tree classifiers [26].

A key differentiation point from MCAEC tree classifier versus the popular ones is

the choice of the splitting criterion [94]. The splitting criteria of the decision tree is

one of the most critical points in decision tree induction algorithms. This dissertation

proposes the use of Hellinger distance as the splitting criterion over more populous
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Figure 4.4: Traditional Classifier

Figure 4.5: MCAEC Classifier

ones such as Gini Index and Entropy. The reason is that hellinger distance addresses

the imbalance between the different classes in a dataset without the need of extensive

sampling techniques. This eliminates the need of extensive sampling techniques,

which have their own downsides. For example, under sampling can remove some

important data, whereas oversampling could lead to overfitting.

The Gini impurity [77] which is used in traditional tree based classification algo-

rithms is calculated as:
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GiniImpurity =
k∑
i=1

pi(1− pi) = −
k∑
i=1

pi log(pi)

where,

k is the number of classes

pi is the proportion of cases belonging to case i.

The equation shows that Gini Impurity is not optimized for unbalanced datasets

as it is dependent on k and p. Hellinger distance, which is used as the splitting

criterion, is calculated as:

h(P,Q) =
1√
2
· ‖
√
P −

√
Q‖2 (4.2)

where h(P,Q) is the Hellinger distance between 2 probability distributions P and

Q. By its very nature, hellinger distance is able to address the imbalance between two

classes by considering them as two different probability distributions.

Figure 4.6 summarizes the steps taken to split the training data into a form where

the MCAEC classifier can provide asymmetric control. The first step in the process

is to identify the most critical classes from our multiclass dataset and record the

hierarchical order of severity of misclassification on these classes. Next, the most

critical class, the first one from the ordered list is chosen as the class whose false

negatives will be controlled. Then using OVR, the training data is divided into 0 and

1 classes as shown in figure 4.6. From this data sample, it is further split into three

parts. The first part consists of mixed samples of 0 and 1 classes, the second part has

the left out class 0 samples and the third part consists of remaining class 1 samples,

as visible in figure 4.6.

The mixed classes of 0 and 1 samples are fed as input to the MCAEC classifier
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Figure 4.6: Splitting on Multi Class Training Data

to create the scoring function. This scoring function is used on the remaining class 0

samples to come up with a list of classification scores. Order statistics is used to find a

threshold from this list, such that the violation rate, which is the probability of type 2

error exceeding the user specified upper bound alpha, is minimized. Order statistics

was proven to be the best in finding the threshold from the list of classifications
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compared to brute force and bagging [88]. The probability that the false negative

error exceeds alpha is controlled by a user specified tolerance parameter δ.

P [R0 (ϕc) > α] ≤ δ (4.3)

This equation shows that the probability that the violation rate exceeds alpha is

bound by a user specified parameter. The threshold chosen from the classification

scores is taken from the left out class 0 samples, which were not used to train the

classifier. The remaining class 1 samples are used to minimize the false positive error

rate as much as possible, with the false negative error fixed. The above steps can

then be repeated for the next class in the order of severity of misclassification to

incorporate the error control for that class. However, there is a constraint that error

control can only be applied to one class in a single run. These steps are incorporated

with the decision tree hellinger distance classifier to create the MCAEC classifier that

is able to achieve asymmetric error control for multiclass classification.

4.4 Results

4.4.1 Results on Cardiac Arrhythmia Dataset

The dataset to test the MCAEC classifier was taken from the proceedings of the

cardiology conference in Sweden published by H. Altay Guvenir [76]. This dataset

consists of 279 attributes of over 450 instances. Even though this is not a massive

dataset, it is one of the largest ones in the cardiac arrhythmia space, as it is difficult

to obtain useful data from cardiac arrhythmia patients. The 16 different classes from

this dataset are mentioned in table 4.1. Class code 02, which is Ischemic changes

(Coronary Artery Disease), is identified as the most critical class from this list followed

by 3rd. degree AV block as shown in figure 4.1 earlier. This section will show

asymmetric error control on class code 02. The same technique can be applied to
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provide error control on any specific class from a multiclass dataset.

The data was split into a 70-30 training-test split with the random state set to 10 to

produce repeatable results. The missing values were replaced with the average of the

columns. The number of trees in the classifier, which is known as n estimators, was set

to 300. The minimum samples required to split was set to 2, and the maximum depth

was left as the default. A hellinger distance probability distribution was implemented

as the splitting criterion for the decision tree instead of using one of the standard

options to account for the data imbalance. All the remaining hyper-parameters were

left as default. The experiment was run multiple times and the average of the results

was taken for each value.

The MCAEC classifier was compared to other popular algorithms in terms of

accuracy, auc roc scores, f1 Score, precision and recall as shown in table 4.2. The

results are also presented in figure 4.7. The values of all these accuracy metrics was

normalized so they all fall in the 0 to 1 range.

The results show that the MCAEC classifier performs the best in terms of recall

rate. The recall rate measures the ratio of patients, with the most critical class of

cardiac arrhythmia, that were correctly identified. In other words, the recall rate

measures the ability to reduce the number of false negatives. This implies that the

MCAEC classifier was able to correctly identify 98 percent of the patients with the

most critical class of cardiac arrhythmia. No other classifier is able to produce such

a high recall rate as visible from table 4.2 and figure 4.7.

In terms of accuracy and F1 score, the MCAEC classifier is outperformed by

the other classifiers. However, that may be acceptable in medical disease diagnosis,

where the onus is on controlling the false negatives while still providing relatively high

accuracy. The MCAEC classifier is still able to produce accuracy of over 80 percent

on this dataset. The AUC ROC score is another important metric in an unbalanced
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Figure 4.7: MCAEC Classifier vs Traditional Classifiers

dataset, as accuracy can be misleading, if the algorithm just predicts the majority

class. The MCAEC classifier performs the best in this metric with a score of 0.78.

All the results are plotted with the threshold value of 0.3, which means at most the

false negatives will not exceed 30 percent for the specified class.

Figure 4.8 shows how the MCAEC classifier accuracy metrics are impacted with

varying the threshold. The x-axis shows the value of α, which is the user specified

upper bound on the number of false negatives. The graph shows that as the value of

the upper bound is increased, which means that the bound is loosened, the accuracy

and f1-score improves. However, as the upper bound exceeds 0.5, the accuracy and

f1-score start flattening out. The number of false negatives is inversely proportional

to the recall rate and as the threshold increases, the false negatives increase causing

the recall rate to decrease.
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Table 4.2: MCAEC Classifier vs Traditional Classifiers

Classifier Accuracy False Neg-

atives

F1 Score Precision Recall

Gaussian NB 25.00% 37.50% 93.00% 22.00% 80.00%

K Neighbors 90.00% 99.00% 94.00% 96.00% 93.00%

Bagging Classifier 93.00% 50.00% 96.00% 95.00% 96.00%

Extra Trees Classifier 92.00% 87.50% 96.00% 97.00% 94.00%

Random Forest 94.00% 62.50% 97.00% 97.00% 96.00%

Logistic Regression 89.00% 62.00% 94.00% 92.00% 95.00%

Linear SVC 90.00% 62.50% 95.00% 94.00% 95.00%

MCAEC Classifier

(alpha=0.2)

81.00% 26.10% 89.00% 81.00% 98.00%

This graph allows us to choose the value of the threshold in a data adaptive

way, such that the recall rate is high enough so that not only our false negatives

are controlled, but also the accuracy metrics are still reasonably high. The dotted

line marked as optimal in figure 4.8, shows the desired value of the threshold for the

cardiac arrhythmia use case. At this value, the MCAEC classifier is able to get a

recall rate of 98 percent with accuracy still exceeding 80 percent. Since, the value

of the threshold is a user specified value to the MCAEC algorithm, we are able to

control the number of false negatives of a specific class with a mathematical guarantee

that it will not exceed this threshold value.

4.4.2 Results on Glass Dataset

To further evaluate the MCAEC Classifier, it was tested on a different glass iden-

tification dataset [95]. This dataset contains 10 attributes and the classification goal
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Figure 4.8: Asymmetric Error Control by MCAEC Classifier

is to predict the glass type. These attributes used to classify the glass type are shown

in table 4.3. The multiple glass types are grouped in three classes (0,1 and 2) and

the asymmetric error control is applied on class 0, as it was identified as the most

critical glass type. Even though in the glass identification dataset, there is not a large

need to control the number of false negatives, it still serves as a suitable multi-class

classification problem to test the MCAEC Algorithm.

The graph from figure 4.9 shows how MCAEC Classifier is able to control the

number of false negatives with varying values of alpha for the glass identification

dataset. The graph shows that the number of false negatives increases and recall rate

decreases as the threshold is increased. The graph also shows precision increasing

with increased threshold, as the number of false positives reduce with a loose bound

on the false negatives.
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Table 4.3: Glass Identification Attributes

Attributes Class

01 RI: refractive index

02 NA: Sodium

03 Al: Aluminum

04 Si: Silicon

05 K: Potassium

06 Ca: Calcium

07 Ba: Barium

08 Fe: Iron

09 Mg: Magnesium

10 Type of glass

The graph also shows how the accuracy and f1 score are affected with different

values of threshold. The optimal value of the threshold is easy to select based on this

figure as shown by the dotted line from this graph at 0.21 on the x-axis. At this value

of the threshold, the false negatives are still under 3 percent with recall rate close

to 98 percent. The accuracy and precision is still exceeding 60 percent, despite the

strong bound on the number of false negatives. With F1 score close to 80 percent,

this threshold value gives a strong control over the number of false negatives and still

reasonably high numbers for the other metrics.

Figure 4.10 shows how the MCAEC Classifier performs on the glass dataset com-

pared to other classifiers. The numbers used to plot figure 4.10 are shown in table

4.4. The results show that even though random forest and bagging classifier are able

to achieve higher accuracy, the MCAEC Classifier is still within 5 to 6 percent range

107



Figure 4.9: Asymmetric Error Control by MCAEC Classifier for glass dataset

in terms of accuracy. Moreover, the MCAEC Classifier greatly out performs all other

classifiers in terms of the highest recall rate and lowest number of false negatives. It

produces recall rate of 98 percent, which is more than 10 percent higher than the

recall rate of random forest and bagging classifier.

If accuracy is the most important metric and the cost of false negatives and false

positives are the same, then other classifiers may be able to out perform the MCAEC

Classifier. However, these results show that MCAEC Classifier is the best option if

there is a need to control the number of false negatives.
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Figure 4.10: MCAEC Classifier vs Traditional Classifiers for glass dataset
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Table 4.4: MCAEC Classifier vs Traditional Classifiers for glass datasets

Classifier Accuracy False Neg-

atives

F1 Score Precision Recall

Gaussian NB 66.00% 52.60% 62.00% 90.00% 47.00%

K Neighbors 68.00% 7.89% 77.00% 66.00% 92.00%

Bagging Classi-

fier

71.00% 15.79% 77.00% 71.00% 84.00%

Extra Trees

Classifier

69.00% 13.15% 77.00% 69.00% 87.00%

Random Forest 72.00% 13.16% 79.00% 72.00% 87.00%

Logistic Re-

gression

60.00% 18.42% 70.00% 62.00% 82.00%

Linear SVC 60.00% 5.63% 74.00% 59.00% 92.00%

MCAEC Clas-

sifier (alpha =

0.21)

66.00% 1.00% 78.00% 63.00% 98.00%

110



4.5 Summary and Contributions

This dissertation proposes a Multi Class Asymmetric Error Control Classifier

(MCAEC) that is able to control the number of false negatives for the most criti-

cal classes in multiclass classification. This classifier is designed with focus on the

two main challenges of multiclass classification in medical disease diagnosis, which

are the high cost of a false negative and data imbalance. The MCAEC classifier is

able to address both the challenges, the former using Np Lemma and the latter using

Hellinger distance as the decision tree splitting criterion. The results show that the

MCAEC classifier is not only able to control the recall rate under a user specified

threshold, but also able to produce acceptable accuracy metrics.

These results also help us achieve one of the research objectives (RO3) from section

1.2 which aimed to extend asymmetric error control for binary classification to multi-

class classification using the Neyman-Pearson (NP) Lemma in hypothesis testing. The

objective also aimed to control the false negatives of the most critical class with high

probability that the population false negatives will not exceed a predefined threshold

and that it has been met based on the results.

As future research, multiclass classification with asymmetric error control should

be explored with different techniques outside the NP lemma domain. This might

allow a more natural extension to binary classification without the need to apply

these techniques in a recursive manner.
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Chapter 5

HANDLING IMBALANCED DATA

Class Imbalance is a common problem in the medical domain as described earlier

in this dissertation. This problem often arises because a positive disease diagnosis is

typically considered a rare event, compared to a negative disease diagnosis. This leads

to an increased number of the majority class compared to the minority class. This

chapter explores this problem from the asymmetric control perspective. Specifically,

it explores data imbalance techniques that can not only address the imbalance of the

data, but also provide control over one type of error.

Moreover, this chapter explores the performance of these approaches on the Fram-

ingham Dataset that was introduced in chapter 2. This dataset serves as a good test to

explore the cardiac disease prediction problem on imbalanced data that also requires

asymmetric error control. The error control is needed because the cost of predicting

a false negative for cardiac disease is much higher than the cost of predicting a false

positive. Section 5.1 describes how the imbalance is handled by other approaches and

how these approaches may also be able to achieve asymmetric error control. Section

5.2 discusses the performance and results of these approaches.

5.1 Imbalanced Dataset Approaches

In this section we will discuss multiple approaches to handle the data imbalance.

The most common approach to handle the data imbalance problem is using sampling.

A common technique for achieving this is using Synthetic Minority Oversampling

Technique (SMOTE). This technique over-samples the minority class as part of its
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data augmentation process. Sampling has the advantage of being used with any

classifier, however it does involve tampering with the actual data. This means that

oversampling could lead to overfitting, whereas under-sampling could lead to loss of

important data.

The use of ensemble classification methods is another natural way to handle the

data imbalance. Recent works [112; 114] have shown that ensemble techniques are

able to handle the data imbalance better than sampling in most cases. The results

from the comparison performed by Florida Atlantic University [111] also indicate that

ensemble learning methods are more efficient in classification of imbalanced data for

bioinformatics data [113] as compared to sampling techniques. The AEC Tree classi-

fier that is proposed in this dissertation is also using ensemble tree-based classification

based on the Hellinger distance splitting criterion to address the data imbalance. The

use of this technique allows a reduced need of sampling techniques for this approach.

Moreover, the threshold chosen using this approach is able to achieve asymmetrical

error control using AEC Tree classifier as shown in chapter 3 of this dissertation.

Cost sensitive learning is the most appropriate comparison to the AEC Classifier

that was described in chapter 3. The reason for this is because cost sensitive learn-

ing not only provides asymmetric error control by adjusting the weights of different

costs, but also provides a way to handle the imbalance as well. In many ways, the

two approaches -handling data imbalance and achieving asymmetric error control-

are analogous for cost sensitive learning. This is explained in figure 5.1, which shows

how under-sampling is similar to down-weighting and oversampling is similar to over-

sampling. The figure shows how the two classes, 0 and 1 have unequal costs, and

are imbalanced. The figure also shows how the two different approaches, cost sensi-

tive learning and sampling, are applied to address the data imbalance problem. The

added advantage of cost sensitive learning compared to sampling is that it is able to
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provide asymmetric error control by adjusting the different cost of errors. However,

this approach has the disadvantage that it is not able to control the number of false

negatives under a user specified percentage.

Figure 5.1: Cost-Sensitive Learning and Sampling

Moreover, there is no confirmation that the error control achieved by cost sensitive

learning on the test data will also hold for the population data. The AEC Tree

classifier provides this assurance with high probability that even if population data is

widely different, the error control will still hold but the number of false positives may

increase a lot. However, on population data that is taken from the same population,

the AEC Tree Classifier is backed by the NP Lemma proof that shows how the bound
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on false negatives will always hold. The next section compares the performance of

the different approaches discussed in this section on the Framingham Heart Study

dataset.

5.2 Performance Results

This section shows the evaluation and results obtained from the comparison of

the above mentioned approaches on imbalanced data. The top performing classifiers

on this dataset were identified in the previous chapters, and their evaluation on the

imbalanced data can be divided into four main areas. Firstly, the classifiers were com-

pared on pure data with no measures taken to address the data imbalance. Secondly,

the classifiers’ results were obtained with the use of sampling techniques. Thirdly,

cost sensitive learning was applied by adjusting the class weights of the two classes to

handle the data imbalance and the results obtained. Lastly, a hybrid of cost sensitive

learning along with sampling was applied to gauge its performance.

5.2.1 Hyper Parameters for Data Imbalance

SMOTE was used for the sampling with a configuration of 0.55 to increase the

minority class sample. Different values for SMOTE were tried. However, the value of

0.55 was identified where the imbalance was decreased but still prevents overfitting as

all the imbalance was not eliminated. The results shown for sampling are performed

at 0.55.

For cost sensitive learning, the class weight of 0.7 was given to the minority class

and 0.3 class weight was given to the majority class. This value was identified as a

balance where the accuracy was reasonably high and the number of false negatives

were reduced.

For the AEC Tree Classifier, the value of alpha, which is a user-specified input
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to the function that controls the number of false negatives, was chosen as 0.22. The

reasoning for selecting the optimal value of alpha is explained in chapter 3. Basically,

at this value the number of false negatives are still controlled and the accuracy remains

relatively high. The results shown in this section are plotted at this value of alpha.

5.2.2 Results on Framingham Dataset

Tables 5.1 to 5.5 along with Figures 5.2 to 5.6 show the comparison of different

classifiers with different ways of data imbalance. The metrics used to compare in

these figures and tables include accuracy, AUC ROC scores, precision, recall and

the number of false negatives. The AEC Tree classifier uses the NP Lemma based

approach to control the false negatives. Therefore, the cost sensitive learning does

not apply to it (indicated by N/A in the table).

The accuracy comparison on pure data is not the best metric, since there is im-

balance on the dataset. This means that a naive algorithm that just predicts the

majority class for all samples can get an accuracy up to 0.85. After sampling, the

accuracy results from table 5.1 and figure 5.2 show that the ensemble tree classifiers

outperform the others. We notice that using cost sensitive learning, along with sam-

pling increases the accuracy of the ensemble tree classifiers slightly. However, this

causes a reduction in accuracy for SVC and logistic regression.

The AUC ROC is a more appropriate measure for an imbalance dataset. The

results from table 5.2 and figure 5.3 show how the AEC Tree classifier is able to

achieve the best score on pure data. The reason for this is that it is using Hellinger

distance as the tree splitting criterion, which can perform better than the splitting

criterion’s chosen for random forest and extra trees classifiers. After sampling, we

notice the improvement in AUC ROC scores for all the classifiers, with the ensemble

tree classifiers performing the best. Using cost sensitive learning on its own is not
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Table 5.1: Accuracy

Classifier On Pure Data Using.

Sampling

Using Cost

Sensitive

Learning

Using Cost

Sensitive with

Sampling

Random Forest 0.850 0.877 0.845 0.860

Extra Trees 0.845 0.880 0.847 0.880

SVC 0.845 0.782 0.845 0.69

Logistic Regression 0.851 0.693 0.823 0.649

AEC Tree Classifier 0.76 0.82 N/A N/A

able to improve this score without the help of sampling.

Table 5.2: AUC ROC Score

Classifier On Pure Data Using.

Sampling

Using Cost

Sensitive

Learning

Using Cost

Sensitive with

Sampling

Random Forest 0.532 0.844 0.519 0.822

Extra Trees 0.531 0.850 0.526 0.848

SVC 0.5 0.695 0.5 0.5

Logistic Regression 0.530 0.625 0.595 0.684

AEC Tree Classifier 0.61 0.83 N/A N/A

The precision results from table 5.3 and figure 5.4 show that the other techniques

are able to outperform the AEC Tree Classifier, which is expected since the AEC

Tree Classifier is built to maximize the recall. However, even with this constraint,

this classifier is still able to obtain a decent precision score of 0.84 without the need
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Figure 5.2: Accuracy

of sampling techniques. From figure 5.4, it seems that the precision is impacted

significantly with the control on the false negatives. However, the Accuracy (Table

5.1) and AUC score (Table 5.2) are not reduced significantly. Moreover, this dataset

used to plot figure 5.4 and figure 5.5 is very imbalanced so precision and recall may

not be the best metrics for comparison without the use of sampling. If we look at the

AUC ROC scores (figure 5.3), we can see that cost sensitive learning with sampling

improves it significantly.

Table 5.4 and figure 5.5 show the recall results. The AEC Tree classifier is able to

outperform all data imbalance handling techniques with a recall score of 0.89 without

sampling, and 0.915 with the use of sampling. It is able to obtain a superior recall rate

by around 5 percent from the next best classifier. Even with the use of cost sensitive

learning and assigning higher class weight to the minority class, it does not lead to a

recall rate that can beat the AEC Tree Classifier. The recall rate is one of the most
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Figure 5.3: AUC ROC Score

important metrics, since it measures the amount of positive patients that the classifier

is able to predict. A naive algorithm that predicts all samples as positive will have a

recall rate of 1, but its accuracy will be around 0.15. The AEC Tree classifier is able

to achieve a higher recall rate without compromising much on the accuracy.

The actual number of false negatives for each classifier are presented in table 5.5

and figure 5.6. The results show that AEC Tree Classifier outperforms the other

methods by having the least amount of false negatives. Each false negative on this

dataset implies that a patient with high risk of cardiac disease is predicted as low

risk, which implies that the patient may not seek treatment and could potentially

cost a life. This shows how critical it is to reduce the number of false negatives in

this problem. On data without sampling, the AEC Tree classifier has almost 50 less

false negatives than the other classifiers. Moreover, the AEC Classifier produces only

around half the number of false negatives, even when compared to sampling and cost
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Table 5.3: Precision

Classifier On Pure Data Using.

Sampling

Using Cost

Sensitive

Learning

Using Cost

Sensitive with

Sampling

Random Forest 0.993 0.960 0.992 0.956

Extra Trees 0.986 0.958 0.991 0.963

SVC 1.0 1.0 1.0 1.0

Logistic Regression 0.995 0.862 0.926 0.562

AEC Tree Classifier 0.84 0.789 N/A N/A

Table 5.4: Recall

Classifier On Pure Data Using.

Sampling

Using Cost

Sensitive

Learning

Using Cost

Sensitive with

Sampling

Random Forest 0.853 0.863 0.850 0.846

Extra Trees 0.853 0.869 0.852 0.866

SVC 0.845 0.746 0.845 0.67

Logistic Regression 0.853 0.717 0.872 0.838

AEC Tree Classifier 0.89 0.915 N/A N/A

sensitive techniques on the imbalanced data.
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Figure 5.4: Precision

Figure 5.5: Recall
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Table 5.5: Number of False Negatives

Classifier On Pure Data Using.

Sampling

Using Cost

Sensitive

Learning

Using Cost

Sensitive with

Sampling

Random Forest 183 163 188 186

Extra Trees 182 154 185 160

SVC 197 364 197 515

Logistic Regression 184 365 145 116

AEC Tree Classifier 128 86 N/A N/A

Figure 5.6: Number of False Negatives
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The consolidated results from these figures and tables are summarized in table

5.6 and figure 5.7. These results show the comparison of AEC Classifier with these

classifiers using cost sensitive learning.

Table 5.6: Dataset 1 - AEC Tree Classifier vs Cost-Sensitive Learning Classifiers

Classifiers Accuracy AUC-ROC Precision Recall False Negatives

Random Forest 84.5 82.2 95.6 84.6 31

Extra Trees 84.7 84.8 96.3 86.6 26.7

SVC 84.5 50.1 99.9 67 86

Logistic Regression 82.3 68.4 56.2 83.8 19.4

AEC Classifier 82 83 78.9 91.5 14.4

Figure 5.7: Results from Dataset 1 - AEC Tree Classifier versus Cost Sensitive Learn-

ing Classifiers to Predict the risk of 10-Year Cardiac Disease
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5.2.3 Results on Larger Cardiac Disease Dataset

The experiments were also performed on the larger cardiac disease dataset that

was introduced in chapter 2. Table 3.11 in chapter 3 showed the comparison between

AEC Classifier and other classifiers with the use of sampling. Table 5.7 shows the

comparison of AEC Classifier with these classifiers using cost sensitive learning. All

the values from this table are listed in percentages. The results from this table are

also plotted in figure 5.8.

Table 5.7: Dataset 2 - AEC Tree Classifier vs Cost-Sensitive Learning Classifiers

Classifiers Accuracy AUC-ROC Precision Recall False Negatives

Random Forest 72.8 72.7 75.9 71.6 30.2

Extra Trees 71.6 71.7 72.6 71.5 29.3

SVC 49.7 51 53 52 42

Logistic Regression 66.9 67 51.6 74.9 17.3

AEC at α=0.05 65 65.2 40.1 80.8 9.3

AEC Tree Classifier 71 71 62 76 19
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Figure 5.8: Results from Dataset 2 - AEC Tree Classifier versus Cost Sensitive Learn-

ing Classifiers to Predict Cardiac Disease

These results show that with the use of cost-sensitive learning, logistic regression’s

recall rate improves significantly with a drop in its accuracy and AUC-ROC score.

The tree classifiers that are already using ensemble do not see much difference with

the use of different class weights. The table shows two different values of AEC in

the last two rows. The first one shows AEC with a strict bound on the number of

false negatives, which is able to control the false negatives to under 10 percent. This

percentage is very less compared to all the other approaches. However, the second

value of the AEC Tree classifier, which was chosen as optimal, is able to produce

a higher accuracy of over 71 percent with false negatives increased to 19 percent.

This shows how AEC Tree classifier allows us to adjust the value of alpha to suit the

classification problem.
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5.2.4 Results on Australian Weather Dataset

This section shows the results from the experiments on the Australian rain dataset.

This dataset was introduced in chapter 3, and table 3.13 showed the results of AEC

Classifier versus the other classifiers on this dataset without the use of cost-sensitive

learning. The results from table 5.8 show the comparison of AEC Classifier with these

classifiers using cost sensitive learning.

Table 5.8: Dataset 3 - AEC Tree Classifier vs Cost-Sensitive Learning Classifiers

Classifiers Accuracy AUC-ROC Precision Recall False Negatives

Random Forest 80.6 70.9 87.9 87.3 42.6

Extra Trees 80.3 71.4 87.1 87.6 44.4

SVC 83.4 69.5 94.4 85.7 54.3

Logistic Regression 82.7 71.8 91.4 86.9 46.9

AEC Classifier 78.3 71.7 83.4 89.3 38.6
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Figure 5.9: Results from Dataset 3 - AEC Tree Classifier versus ML Classifiers to

Predict Rain

These results show that the AEC Classifier is able to produce the lowest percent-

age of false negatives compared to cost-sensitive learning classifiers. Even though the

accuracy of our classifier is around 2 percent lower, it has AUC ROC scores compa-

rable to the top classifiers. We notice that the recall rate is increasing with the use of

class weights at the cost of reduced accuracy, compared to the results from chapter

3. The results from this table are also plotted in figure 5.9.
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5.3 Conclusion

The AEC Tree Classifier seems like the best fit overall to handle data imbalance

with the need of asymmetric error control. The use of limited sampling with this

approach seems to produce the best results. The AEC Tree classifier uses ensemble

techniques and the use of hellinger distance as the tree splitting criterion to handle

the imbalance. Moreover, the use of NP Lemma to help with the threshold picking

to achieve asymmetric error control outperforms the use of cost sensitive learning.

Due to these results, this dissertation recommends the use of AEC Tree Classifier to

predict the risk of cardiac disease.
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Chapter 6

CONCLUSION AND FUTURE WORK

This dissertation can be broadly divided into four main areas. Firstly, it is able

to predict cardiac disease better than the existing methods used in the hospitals as

shown by the testing on the Framingham dataset. The classifier that achieves this

is called CVD Tree Classifier, and is explained in detail in chapter 2. Secondly, this

approach is generalized for different binary classification problems outside the car-

diac disease domain that require asymmetric error control. The resulting classifier

is named AEC Classifier and it is able to provide control over the number of false

negatives with high probability. Chapter 3 discusses this approach in detail. Thirdly,

this research is able to extend the binary classification to multi-class problems to

create the MCAEC Classifier, which is discussed in chapter 4. This is summarized

in figure 6.1. Lastly, Chapter 5 discusses how the AEC Classifier compares to other

approaches that handle data imbalance.

Figure 6.1: Asymmetric Error Control Classification

129



The results from this dissertation show that due to the data imbalance and the

need to control one type of error, the tree-based AEC classifiers outperform the

traditional classification models in predicting the risk of a 10-year CVD. Although

other tree-based classifiers, such as random forest and bagging tree classifiers, are

able to compete with the AEC Tree Classifier in terms of accuracy, AUC-ROC score

and F1 score, yet the classifier proposed in this research emerges as the clear winner

in predicting the risk of 10-year CVD by having the lowest number of false negatives.

Furthermore, it also has the ability to easily reduce the false negatives further at a

cost of reduced accuracy and F1 score, which is often acceptable in disease diagnosis.

Additionally, this dissertation has established a data adaptive way to pick the

upper bound threshold α value that gives us optimal result balancing the acceptable

number of false negatives with the performance metrics. This threshold value can

easily be adjusted according to the use case of asymmetric error control. Despite

providing control over the number of false negatives, this classifier is still able to

produce accuracy scores that are comparable with other classifiers.

To summarize, this research proposes a classifier that provides full control over

the number of false negatives in binary and multi-class classification problems. This

classifier is able to predict the risk of 10-year CVD, not only more accurately, but

also with full asymmetric error control. The methods used to create this classifier can

be easily expanded to work with any classification problem where there is a need for

asymmetric error control. This approach can have a massive impact in the medical

domain, especially in disease diagnosis, where we typically need to control the number

of false negatives.

As future research, multiclass classification with asymmetric error control should

be explored without the use of OVR techniques. This will allow error control over

multiple classes in a single run rather than maintaining the order of severity of mis-
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classification of classes and applying the NP control recursively. Other techniques

beyond NP lemma should also be explored to remove the two-class constraint. Ad-

ditionally, the techniques used to predict cardiac disease should be tested in actual

real world settings backed by comprehensive evaluation.
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A.1 Neyman-Pearson Lemma

Consider the simple null hypothesis

H0 : θ = θ0 (A.1)

versus the simple alternative
HA : θ = θ1 (A.2)

Consider the rejection region R given by size

α = P (X ∈ R | θ0) (A.3)

Let R be any other rejection region of size

α = P (X ∈ R | θ0) (A.4)

Then the likelihood ratio test is more powerful than this other test, that is

P (X ∈ R∗ | θ1) ≤ P (x ∈ R | θ1) (A.5)

Source: Taken directly from Hurvich, Clifford. ”The Neyman Pearson Lemma.”
People.stern.nyu.edu. Web.
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A.2 Neyman-Pearson Proof

This is given in the case of X having a density. For a set A let IA be the indicator
function of this set. Thus we can make a 1 to 1 correspondence between a rejection
region and its indicator function

R↔ IR
R∗ ↔ IR∗

Next notice that
cf (x; θ1)− f (x; θ0) > 0 if IR(x) = 1

cf (x; θ1)− f (x; θ0) ≤ 0 if IR(x) = 0

Thus for every possible value of x we obtain

IR∗(x) (cf (x; θ1)− f (x; θ0)) ≤ IR(x) (cf (x; θ1)− f (x; θ0))

Remark: If we integrate the left hand side with respect to (w.r.t.) x we get∫
IR∗(x) (cf (x; θ1)− f (x; θ0)) dx = cP (R∗ | θ1)− P (R∗ | θ0)

Thus we get c times the power of R∗ minus the size of R∗. The other side will give a
similar term. Integrate both sides w.r.t. x. This gives

cP (R∗ | θ1)− P (R∗ | θ0) ≤ cP (R | θ1)− P (R | θ0)

Rearranging gives

P (R | θ0)− P (R∗ | θ0) ≤ c {P (R | θ1)− P (R∗ | θ1)}

Thus if R∗ is a test (or rejection region) of size ≤ α = P (R | θ0) , the LHS is ≥ 0,
and hence the same is true for the RHS (recall c > 0 ) giving

P (R | θ1)− P (R∗ | θ1) ≥ 0

This later piece says that the power with rejection region R is greater than or equal
to the power with rejection region R∗. Thus the test of hypothesis, of a simple null
versus simple alternative hypothesis, based on the likelihood ratio (1) is more powerful
than any other test of the same or smaller size.

Source: Taken directly from Hurvich, Clifford. ”The Neyman Pearson Lemma.”
People.stern.nyu.edu. Web.
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Let P = {pi}i∈[n] , Q = {qi}i∈[n] be two probability distributions supported on [n]. A
natural way of defining a distance between them is to consider the `1 -distance between
the probability vectors P and Q.

‖P −Q‖1 =
∑
i∈[n]

|pi − qi|

The total variation distance, denoted by ∆(P,Q) (and sometimes by ‖P −Q‖TV ) ,
is half the above quantity. It is an easy exercise to check that

∆(P,Q) = max
S⊆[n]

|P (S)−Q(S)|

Because of the above equality, this is also referred to as the statistical distance.
Taking the `1 norm of the difference made sense because P and Q where unit vectors
according to the `1 norm. Since

√
P =

(√
p1,
√
p2, . . .

√
pn
)

is a unit vector according
to `2 norm, we can also consider the `2 norm of the difference of the square root
vectors.
Definition 12.1 (Hellinger Distance). For probability distributions P = {pi}i∈[n] , Q =

{qi}i∈[n] supported on [n], the Hellinger distance between them is defined as

h(P,Q) =
1√
2
· ‖
√
P −

√
Q‖2

By definition:
h2(P,Q) = 1− F (P,Q)

Lemma 12.2 (Hellinger vs. total variation).

h2(P,Q) ≤ ∆(P,Q) ≤
√
h2(P,Q) (2− h2(P,Q) ≤

√
2h(P,Q)

Proof. For the first inequality,

h2(P,Q) =
1

2

∑
i

|√pi −
√
qi‖
√
pi −
√
qi| ≤

1

2

∑
i

|√pi −
√
qi| (
√
pi +
√
qi)

≤ 1

2

∑
i

|pi − qi| = ∆(P,Q)

For the last two inequalities,

∆2(P,Q) =
1

4

∑
i∈[n]

|pi − qi|

2

=
1

4

∑
i∈[n]

(
√
pi −
√
qi) (
√
pi +
√
qi)

2

Source: Taken directly from ”Communication Complexity.” Hellinger Distance.
TIFR,23 Sept.2011.Web.
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≤ 1
4

(∑
i∈[n]

(√
pi −
√
qi
)2
)(∑

i∈[n]

(√
pi +
√
qi
)2
)

≤ 1
2
· h2(P,Q) ·

(
2 + 2

∑
i∈[n]

√
pi
√
qi

)
≤ h2(P,Q) · (2− h2(P,Q)) ≤

√
2h(P,Q)

Cut and paste property: In the fooling set argument, we saw that if inputs (x, y)
and (x′, y′) have the same transcript in a deterministic communication protocol, then
(x′, y) and (x, y′) must have the same transcript. This rectangle property can be
extended to private coins randomized protocols using Hellinger distance in the follows
sense: if the transcript distributions for inputs (x, y) and (x′, y′) are close in Hellinger
distance, then so are the transcript distributions for (x′, y) and (x, y′)
Lemma 12.3 (Cut-and-Paste). Let P be a randomized private coins protocol and Πx,y

denote the (randomized) transcript on input x, y. Then,

h2 (Πx,y,Πx′,y′) = h2 (Πx′,y,Πx,y′)

Proof. We can think of a randomized private coin protocol working on input (x, y) as a
deterministic protocol on the extended inputs ((x,RA) , (y,RB)) , where the additional
inputs RA and RB are chosen according to the suitable private coins distribution.
From the rectangle property of deterministic protocols, we have that for any fixed
transcript τ the set of extended inputs that gives rise to it form a rectangle, say Rect
τ = Sτ × Tτ . Now, let’s consider the probability that transcript τ arises for inputs x
and y.

PrRA,RB
[Π (x, y, RA, RB) = τ ] = PrRA,RB

[((x,RA) , (y,RB)) ∈ Rectτ ]

= PrRA,RB
[(x,RA) ∈ Sτ and (y,RB) ∈ Tτ ]

= Pr
RA

[(x,RA) ∈ Sτ ] · PrRB
[(y,RB) ∈ Tτ ]

This splitting of probabilities follows from the independence of Alice and Bob’s private
coins RA and RB and is used to proved the lemma as follows.

1− h2 (Πx,y,Πx′,y′)) = F (Πx,y,Πx′,y′)
=
∑

τ

√
Pr [Πx,y = τ ] · Pr [Πx′,y′ = τ ]

The above cut-and-paste lemma can be extended to communication protocols for t
parties. Lemma 12.4 (multiparty cut-and-paste). For any v ∈ {x1, y1}×{x2, y2} · · ·×
{xt, yt}

h2 (Πx1,x2,...xt ,Πy1,y2,...yt) = h2 (Πv,Πv̄)

Lemma 12.5 (Hellinger vs. Information [Lin91]). Let Z be a random variable taking
values in {z1, z2} equally likely and Π a randomized function of Z. Then,

I[Z : Π(Z)] ≥ h2 (Πz1 ,Πz2)

Source: Taken Directly from ”Communication Complexity.” Hellinger Distance.
TIFR,23 Sept.2011.Web.
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APPENDIX C

EMPIRICAL ERROR VS POPULATION ERROR
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This simulation study provides an overview of how controlling the empirical or test
data error does not correspond to controlling the population error. This simulation
and figures C1 and C2 are taken directly from Dong’s published article [110].

In this cartoon at human population, color is used to represent medical test results
indicating the person’s health status. “-” sign indicates the person actually does not
have the disease; while “+” sign indicates the person has the disease.

A very fundamental question for physicians is: where should they set the threshold
on the medical test result so that they can predict weather the patient has the
disease or not. False negative rate is significantly concerned, because mis-predicting
a patient with serious disease as a healthy person will delay the treatment and cause
a life loss.

Setting the threshold is not difficult when observing the whole population. A
threshold that controls the false negative rate under 1 percent while minimizing the
false positive rate as threshold 4 can be easily picked up.

However in reality, we only observe a random sample from the population. A simple
and intuitive way to set the threshold is such that false negative rate on this sample
is under 1 percent. However, it turns out that the population false negative rate
given this threshold is 7 percent.

If another random sample is seen, the threshold picked by controlling false negative
rate (FNR) under 1 percent empirically can cause a population false negative rate
at 17 percent. In fact, as we observe more and more random samples, a distribution
of selected threshold will be seen. For half of the chance, we will choose a threshold
with a false negative rate greater than 1 percent.

Source: Taken directly from Dong, Ruhan. “Summary for Neyman-Pearson Clas-
sification Algorithms.” Medium, Medium, 7 Nov. 2020, medium.com/@ruhandong
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Figure C.1: Whole Population (Source: taken directly from Summary for Neyman-
Pearson Classification [110])

Figure C.2: Random Sample from Population (Source: taken directly from Summary
for Neyman-Pearson Classification [110])
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APPENDIX D

HELLINGER DISTANCE SPLITTING CRITERION STUDY
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These are the results obtained from my cardiac disease dataset.

Table D.1: Accuracy of Random Forest on Framingham Dataset

Splitting Criterion Balanced Data Imbalanced Data
Gini 0.88 0.83
Entropy 0.87 0.83
Hellinger Distance 0.85 0.85

Table D.2: Accuracy of Extra Trees on Framingham Dataset

Splitting Criterion Balanced Data Imbalanced Data
Gini 0.88 0.82
Entropy 0.88 0.82
Hellinger Distance 0.85 0.84

Table D.3: Accuracy of AEC Tree on Framingham Dataset

Splitting Criterion Balanced Data Imbalanced Data
Gini 0.85 0.81
Entropy 0.85 0.80
Hellinger Distance 0.84 0.84

This is a splitting criterion study published in the Data Mining Journal [70] and
performed by Evgeni Dublov [109].

This study performed the following calculations to calculate the Gini, Entropy
and Hellinger distance scores for imbalanced dataset.

Hellinger Distance =

√{√
N left

A

Nparent
A

−
√

N left
B

Nparent
B

}2

+

{√
Nright

A

Nparent
A −

√
Nright

B

Nparent
B

2

N left
A = number of Class A samples in left child

Entropy =
∑c

i=1−pi log2 (pi)

Gini = 1−
∑c

i=1 (pi)
2 Gini drop = Gini parent −Wleft Gini left −Wright Gini right

Entropy drop = Entropy parent −Wleft Entropyleft-Wright EntropyrightWleft =

Population left / Population parent

The results show that hellinger distance performs the best as splitting criterion as

shown in the table C1 and figure C1. The results are compared at the decision tree

split on 0.783 value of the feature X.
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Figure D.1: Splitting Criterion on Feature X (Source: Taken directly from Dubov,

Evgeni. ”Classifying Imbalanced Data Using Hellinger Distance.”Mediu. 26 Mar.

2019. Web)

Table D.4: Splitting Criterion Performance (Source: Taken directly from Dubov,

Evgeni. ”Classifying Imbalanced Data Using Hellinger Distance.”Mediu. 26 Mar.

2019. Web)

Gini drop Entropy drop Hellinger Distance

Example score 0.009 0.053 1.132

Perfect score 0.5 1 1.414

Percent 1.8% 5.3% 80.1%
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