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ABSTRACT

In this work, I propose to bridge the gap between human users and adaptive control

of robotic systems. The goal is to enable robots to consider user feedback and

adjust their behaviors. A critical challenge with designing such systems is that

users are often non-experts, with limited knowledge about the robot’s hardware and

dynamics. In the domain of human-robot interaction, there exist different modalities

of conveying information regarding the desired behavior of the robot, most commonly

used are demonstrations, and preferences. While it is challenging for non-experts to

provide demonstrations of robot behavior, works that consider preferences expressed as

trajectory rankings lead to users providing noisy and possibly conflicting information,

leading to slow adaptation or system failures. The end user can be expected to be

familiar with the dynamics and how they relate to their desired objectives through

repeated interactions with the system. However, due to inadequate knowledge about

the system dynamics, it is expected that the user would find it challenging to provide

feedback on all dimension’s of the system’s behavior at all times. Thus, the key

innovation of this work is to enable users to provide partial instead of completely

specified preferences as with traditional methods that learn from user preferences. In

particular, I consider partial preferences in the form of preferences over plant dynamic

parameters, for which I propose Adaptive User Control (AUC) of robotic systems. I

leverage the correlations between the observed and hidden parameter preferences to

deal with incompleteness. I use a sparse Gaussian Process Latent Variable Model

formulation to learn hidden variables that represent the relationships between the

observed and hidden preferences over the system parameters. This model is trained

using Stochastic Variational Inference with a distributed loss formulation. I evaluate

AUC in a custom drone-swarm environment and several domains from DeepMind

control suite. I compare AUC with the state-of-the-art preference-based reinforcement
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learning methods that are utilized with user preferences. Results show that AUC

outperforms the baselines substantially in terms of sample and feedback complexity.
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Chapter 1

INTRODUCTION

The integration of robots into human workspace has drawn significant attention due to

their potential of complementing human capabilities, by tackling tasks that are deemed

dull, dirty, or dangerous (i.e., the 3Ds of industry). For successful integration, it is

crucial to ensure that humans perceive the presence of robots as socially responsible .

For example, research in Human-Robot Interaction (HRI) has shown that factors

such as safety, trust, transparency, predictability, and ease of use can significantly

influence the acceptance of robotic technologies de Graaf and Ben Allouch (2013);

Heerink et al. (2010); Shahrdar et al. (2019); de Graaf et al. (2016). A critical

defining capability of such systems is to receive feedback from humans and adapt their

behaviors accordingly Spencer et al. (2020); Sheridan (2016); Mitsunaga et al. (2008).

In the domain of human-robot interaction, there exist different modalities of conveying

information regarding the desired behavior of the robot, most commonly used are

demonstrations , corrections and preferences . While demonstrations provided by an

expert user are a natural way to demonstrate desired behavior to robots without any

programming, methods that use them have limited applicability to tasks that require

a level of expertise or knowledge that typical end users will not posses. Therefore, in

order to implement a user-adaptive control which is generalizable to a variety of users

and task domains, we utilize preferences expressed by non-expert end users as the

basis of our work on Adaptive User Control (AUC). However, the remaining challenges

in using user preferences for learning robot behavior are: 1) costly human feedback,

and 2) noisy and conflicting feedback due to non-expert users, which we address in

our work.
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Control systems are often employed to manipulate the robot’s motions and re-

sponses according to desired objectives in real-world. Behavior generated by such

controllers often provide guarantees of stability, robustness, safety etc. Spielberg et al.

(2019); Wang et al. (2018). Adapting robot control to user feedback is a well-researched

problem in HRI, particularly physical-HRI where this feedback is physically embodied

as force, either through demonstrations or shared human robot control. Contrasted

with such approaches, we work on a user-adaptive control framework which employs

preferences that may not involve physical HRI, which makes approaches relying on

direct force feedback inapplicable.

On the other hand, preference-based learning approaches for behavior generation

have also been studied extensively before Christiano et al. (2023); Warnell et al.

(2018). One particular inspiring line of work is human-aware and explainable behavior

generation Chakraborti et al. (2017); Zhang et al. (2017); Dragan et al. (2013); Hanni

et al. (2023); Zakershahrak et al. (2018), which depends on not only the robot’s

dynamics but also the human’s preferences (which pertain to explainability) for the

robot’s behavior. A mechanism is required to reconcile between the two factors for

better HRI. Preferences may generally arise from multiple sources, such as reward

preferences Gong and Zhang (2022), beliefs of the domain dynamics Gong and Zhang

(2020); Reddy et al. (2018), a limited cognitive ability Choudhury et al. (2019), etc.

Prior research has also studied how these preferences can be biased Gong and Zhang

(2020) and dynamically changing Hanni and Zhang (2021). Our work will focus on the

first two sources, which have been illustrated to be equivalent for behavior generation.

The integration of such a preference-based framework with control theory is lacking.

Model Reference Adaptive Control (MRAC) is a control methodology with the

objective of adapting uncertain plants to dynamic situations, and tracking a reference

plant model, while modelling the uncertainties and disturbances in the system dynamics.
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A possible approach of applying this methodology to user adaptive control with user

preferences, is by treating the user as an environmental disturbance and accordingly

modifying the plant and control system parameters. However, the influence of user

preferences on the system dynamics would be challenging to model as noise. Moreover,

preferences expressed as rankings between trajectories provide an impoverished way

for humans to communicate their desired behavior objectives to the robot. The end

user can be expected to be familiar with the plant dynamics and how they relate to

these objectives through repeated interactions with the system .

The effectiveness of MRAC depends on the predicted system response based on

the reference model, which generally does not consider human preferences adapting

robotic control to user feedback . Therefore, in our work, we derive the reference plant

model from user preferences expressed on the plant dynamic parameters (PDP’s).

There are major limitations when it comes to implementing such an approach with

real-world users. Preferences on robot behavior are hidden in the user’s mind and are

challenging to retrieve accurately. Due to limited knowledge about the system, it is

expected that the user would find it challenging to provide feedback on all dimension’s

of the system’s behavior at all times. Even when assuming that users can fully specify

their own preferences, they lack an adequate understanding of the system’s functioning

and the complexities of the environment to correctly guide the system at all times.

This will likely lead to slow adaptation and sometimes failures. Consider the domain

of autonomous driving. A vehicle initially operates at its manufacturer setting but has

the ability to adapt its behavior based on the user’s feedback. The user might focus

only on a high-speed preference for the vehicle without considering the limitations of

it’s sensing abilities leading to collisions or unsafe movement at high speeds. This is

undesirable for the user as well, but they might not consider this consequence while

expressing their preference. In a similar way, suppose the user wants the vehicle to

3



maintain a larger distance to other vehicles, but does not wish the speed to reduce,

and these behaviors are negatively correlated. However, if the user focuses on only

one attribute, this leads to conflicting information for the learning system when it

considers the human’s feedback as complete. When the users are non-expert users, the

problem only aggravates. Instead, we enable users to specify partial preferences, such

as preferences for only the distance to the front vehicles or the speed in the example

above.

In this work, we propose to bridge the gap between human users and adaptive

control by enabling robots to learn from user preferences to adapt their behaviors.

Applying an adaptive control framework (such as MRAC) will enable us to easily

integrate critical system constraints (e.g., safety) while respecting the human prefer-

ences. We propose to integrate learning from human preferences and adaptive control

while focusing on tackling the aforementioned challenges to ensure the practicality of

such an integration. Our key innovation is to enable users to provide partial instead

of complete preferences that are used in the traditional learning methods based on

preferences Christiano et al. (2023); Warnell et al. (2018); Zhang et al. (2019); Lee et al.

(2021a). Providing complete preferences on trajectories (i.e., deciding whether one

trajectory is better than the other overall) is error-prone and introduces possibility of

misguidance Wirth and Fürnkranz (2013); Chen et al. (2022); Pini et al. (2011) while

providing partial preferences (i.e., feedback on certain PDP’s only) tends to be much

more intuitive Ajzen et al. (2004); Dubra et al. (2004); Cailloux and Destercke (2018).

In our work, we consider partial preferences in the form of attributed preferences

over a set of plant dynamics parameters (PDPs). The updated PDPs can then be

considered in a MRAC framework to produce the final command vectors. There

are major challenges which arise from attempting an integration of learning from

preferences and adaptive control mainly time-delay in the system’s transient response
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and error convergence. However, these are existing challenges in the domain of MRAC

and we present a discussion of how works which try to tackle these issues can be

applied with the proposed AUC.

We represent the evolution of PDPs throughout a task environment using Gaus-

sian Processes (GPs). We apply a sparse Gaussian process latent variable model

(GPLVM) Lawrence (2003) formulation to learn hidden variables that represent the

relationships between the observed and hidden attribute preferences over the PDPs.

Stochastic variational inference (SVI) Hoffman et al. (2013) is used to train the

GPLVM with a loss function distributed across feedback samples and attributes for

expressing preferences. By allowing human users to provide partial preferences on the

attributes, the system acknowledges that preferences may not always be fully specified.

This flexibility enables users to express their preferences to the extent they are able,

and the system can utilize this information to make appropriate modifications to the

plant parameters. This approach enhances user experience and system adaptability,

allowing for personalized adjustments based on individual preferences. The proposed

approach, referred to as adaptive user control (AUC), is evaluated on multiple do-

mains - a custom Drone Swarm environment and domains from DeepMind Control

Suite Tassa et al. (2018). The performance of AUC is compared to the state-of-the-art

preference-based RL methods. Results showed that AUC substantially outperforms

the baselines in terms of sample efficiency. Given that the proposed methodology

entails direct modification of control parameters, we explore how the balance between

user preferences and system safety can be established through the integration of safety

constraints aimed at preventing the system from entering failure states.
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Chapter 2

RELATED WORKS

Adaptive Control

Adaptive control is a control methodology that allows a system to adjust its control

parameters in response to changes in the environment or in the system dynamics itself,

while maintaining stability Åström (1983). Applying this approach to multiple input

multiple output (MIMO) systems faces the challenge of the dynamic coupling among

the input and output signals Tao (2014), which are commonly dealt with by utilizing

decoupling compensators to eliminate the interactions Bayoumi and Mo (1988); Liu

et al. (2019) and then treating the original system as a collection of single input and

single output (SISO) systems. This approach introduces further complexity due to

the addition of the decoupler matrix. We face a similar but more challenging issue

in our problem because of the existence of correlated PDP’s. However, we address it

by introducing hidden variables which represent the underlying correlations between

the parameters and learn the mapping from the hidden variables to the parameters.

Common applications of adaptive control in human-robot interaction include assistive

robots, where adaptation is commonly implemented through iterative methods. Bae

and Tomizuka (2012)proposes an iterative learning algorithm to adaptively learn from

the user’s performance and continuously update the joint impedance parameters to

achieve the desired rehabilitation goal. In Force-controlled rehabilitation Calanca

et al. (2014); Lee et al. (2019), forces are computed by assistive algorithms to achieve

low-level control of human. However, adaptive control of these systems requires

complete error specification and completeness of the reference model specification,
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which is challenging to acquire from end users who are often non-experts in the domain

with limited knowledge of system dynamics and relevant performance objectives.

Reinforcement learning has also been applied to process control to achieve robust

and adaptive control Khan et al. (2012). Spielberg et al. (2019) and Wang et al.

(2018) adapt deep reinforcement learning algorithms to achieve online learning of the

control policy with direct interaction with the process while transfer learning is used in

Petsagkourakis et al. (2019) to adapt a policy trained on a simulation model to novel

environments. Sedighizadeh and Rezazadeh (2008) and Carlucho et al. (2017) train

a controller in a simulation environment using a q-learning strategy to improve the

adaptive performance of a PID controller. While Spielberg et al. (2019), Wang et al.

(2018) and Petsagkourakis et al. (2019) achieve adaptive control in a model-free fashion,

they require a large amount of interaction with the system or previously collected data

to learn an effective control policy, which is infeasible for complex systems. Therefore,

applying reinforcement learning to adaptive process control introduces the problem

of sample inefficiency and the "curse of dimensionality". This problem is tackled by

AUC as it greatly improves on feedback efficiency by utilizing the correlations between

the PDP preferences in the learning process.

2.1 Preference-based Reinforcement Learning

Reinforcement learning (RL) represents a flexible approach for behavior learning

and adaptation. However, the success of such algorithms depends on the accuracy of

reward specification Kober et al. (2013); Mnih et al. (2016). Reward specification is

challenging for domains with tacit-knowledge where the objectives are complex and

difficult to specify Singh et al. (2009). In such cases, inverse reinforcement learning

(IRL) can be used when demonstrations of the desired domain are available to extract

a reward function for training through reinforcement learning Ng and Russell (2000);
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Arora and Doshi (2021); Schaal (1996); Abbeel and Ng (2004). However, this approach

requires the user to possess the necessary knowledge and hardware interface to control

the system effectively to provide demonstrations. A similar issue prevents imitation

learning Ross and Bagnell (2010) to be applied in many domains, even through it

can be very sample efficient. More recently, the difficulty in reward specification is

addressed via preference based learning Christiano et al. (2023); Warnell et al. (2018);

Zhang et al. (2019); Lee et al. (2021a) where a parameterized reward function is

retrieved from preferences over trajectory pairs. However, providing such preferences

is error-prone, which leads to inconsistent or conflicting feedback information. The

result is a learning challenge that is not unlike the temporal credit assignment problem

in RL Wirth et al. (2017). Consequently, these methods often require extensive

training and a large amount of data Wirth et al. (2017); Christiano et al. (2023).

2.2 Human-Robot Interaction

Adaptive control has often been applied in physical HRI Haddadin and Croft (2016),

where the robot works in close contact with a human operator leading to physically

embodied interactions commonly realized as forces. Robots leverage these physical

interactions with the users and learn to improve their behavior De Santis et al. (2008);

Musić and Hirche (2017); Argall and Billard (2010). Admittance control is commonly

applied to ensure that the robot response must be compliant to the forces exerted by

the human Okunev et al. (2012a); Newman (1992); Wang and Kosuge (2012). However,

explicit force control introduces instability in the system Hogan (1985), which led to

the development of impedance control Hogan (1984, 1985); Gonzalez and Widmann

(1995). This method requires a strictly defined prior i.e. robot dynamics model and

interaction model Buerger and Hogan (2007); Kazerooni et al. (1986), which restricts

it’s applications in human-robot interaction. The interaction model needs to consider
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human dynamics as well as their interactions with the robot, which is challenging to

model with a wide range of human users.

Applying admittance/impedance control to cooperative tasks involving humans

is challenging due to constant parameters Okunev et al. (2012b). However, existing

literature in adaptive admittance/impedance control mainly focuses on task-dependent

parameter adaption Tsumugiwa et al. (2002); Tsetserukou et al. (2007); Duchaine

and Gosselin (2007). Significant work has been undertaken to achieve adaptation of

robots to human users by designing a cascaded control system . Following results from

human-factor studies Wolpert et al. (1998); Kleinman et al. (1970); Suzuki and Furuta

(2012), the inner loop handles the robot specific control by utilizing adaptable admit-

tance/impedance control and the outer loop task-specific controller incorporates the

human dynamics by estimating the human–robot transfer characteristics Ranatunga

et al. (2017), reference trajectory adaptation Li et al. (2018) or by adding a system

identifier for human dynamics Alqaudi et al. (2016). However, the major shortcoming

of these approaches is that they adapt to the force/torque applied by the human user,

which introduces the assumption that the user is familiar with the hardware and the

task. Therefore, they are not applicable to tasks which are difficult for humans to

demonstrate. To apply adaptive control to such applications, we introduce partial

user preferences as a modality for human-robot interaction. Since it is not feasible to

learn an analytical model structure for the human from such preferences, we cannot

use adaptive impedance approaches to implement user-adaptive control.
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Chapter 3

METHODOLOGY

To better explain our approach, we provide a running example in a drone swarm

domain, which is implemented via a potential-field based scheme with two levels of

plant behavior. Consider a navigation scenario where the plant dynamics model can

be specified by the parameters corresponding to the following potential fields: centroid

attractive field, centroid repulsive field, and obstacle repulsive field, along with a

separate parameter that determines the number of neighbours in a local cluster (for

determining the centroid). The problem is for us to query the user for their partial

preferences in terms of these or a subset of these plant dynamics parameters (PDPs)

at different parts of the environment. The goal is to learn to dynamically predict

the PDP trajectories throughout the environment from user preferences expressed in

terms of these parameters. In our work, we assume the existence of a plant behavior

model where these plant dynamic parameters are fed back, and the plant output is

modified.

Note that such a process resembles that in adaptive control.

3.1 Preliminaries

Preference-based Reinforcement Learning (PbRL)

PbRL aims to optimize an agent’s behavior by learning from user feedback in the

form of preference rankings between trajectories. Let us consider a Markov Decision

Process (MDP) defined by a tuple (S,A,P ,R), where S is the state space, A is

the action space, P represents the transition dynamics, and R denotes the reward

function. Given user preferences expressed as pairwise rankings τ1 ≻ τ2, where

10



Figure 3.1: Initial System Dynamics Model

τi = (s0, a0), (s1, a1), ....(si, ai) where i is the length of the trajectory, PbRL aim to

learn a preference model P (τ1 ≻ τ2) that estimates the probability of the preference

ranking based on the observed data. Typically, the Bradley-Terry model is used which

captures the idea that the probability of preference is determined by the reward of

the trajectory pair such that;

P (τ1 ≻ τ2) =
erτ1

erτ1 + erτ2
(3.1)

where rτi =
∑

t R(st, at) where [st, at] ∈ τi

Dynamic Model for Drone Swarm Domain

We consider a swarm of N drones, and write the plant dynamics model for each

drone. For each drone, the plant behavior is the linear combination of the following

behaviors: Goal Attractive Force(GAF), Obstacle Repulsive Force(ORF), Centroid

Attractive Force(CAF), and Centroid Repulsive Force(CRF). Each behavior is given

by a potential field, which is further parametrized by the PDP’s: TOR, TCA and TCR

respectively. Each behavior outputs a two dimensional velocity vector along the x
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and y axes. Each drone maintains a minimum altitude z and constant yaw alignment,

according to a predefined setpoint θzdesired
. The state of the plant S can be defined

as :

S =

[
x y

]
where x,y refers to the translation along the x and y axes, and θz refers to the angular

rotation along the z axes. Therefore, from ?, the plant behavior can be denoted as:

Ṡ = ṠGAF + ṠORF + ṠCAF + ṠCRF (3.2)

ẋ = (Dx − x) cos θz + exp (−∥σ∥) cos (θobs) + cx + exp (−∥c∥) cos (θcentroid) ,

ẏ = (Dy − y) sin θz + exp (−∥σ∥) sin (θobs) + cy + exp (−∥c∥) sin (θcentroid)
(3.3)

where D =
√

Dx
2 +Dy

2 denotes the total distance from the goal, σ =
√
σx

2 + σy
2,

c =
√
cx2 + cy2, θobs = atan2(σy, σx) and θcentroid = atan2(cy, cx) . From ?, we can

write:

σx = f (TOR,x) ,σy = f (TOR,y) ,

cx = f (TCA, TCR,x) ,cy = f (TCA, TCR,y)

(3.4)

Using linearization techniques, we can approximate the plant dynamics model for

the drone swarm domain as the model shown below, where r refers to the control

output sent from the controller to the plant. Note that we assume the plant has

no uncertainty. While an important component of MRAC is adapting the control

parameters such that the uncertain plant tracks the reference model, in AUC, we

focus on designing an adaptive control framework with a time-varying reference model

and therefore assume a simpler plant model.

Ṡ(t) = −AS(t) +Bu(t) (3.5)

where A can be expressed as f (TOR, TCA, TCR). Therefore, if the PDP’s are changed,

the plant dynamics model also changes. Here, the reference signal rrm(t) = θzdesired
is
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assumed to be provided to utilize for feedback control. Using linear approximation on

˙S(t) as shown above, we write the control law as:

u(t) ≈ ϕ1rrm − ϕ2S(t) (3.6)

Model Reference Adaptive Control (MRAC) with User Preferences

The objective of MRAC is to make the controlled system behave as closely as

possible to the desired reference model using an adaptive controller that adjusts its

parameters in real-time. The adaptation process uses the error between the states

of the controlled system and the states of the reference model. The objective of the

controller is to track a reference model described as:

Ṡm(t) = −ArmSrm(t) +Brmrrm (3.7)

error(e) = S(t)− Srm(t) (3.8)

In our work, we aim to combine MRAC with PbRL, to create an Adaptive User

Control system that can update the plant parameters of the reference model according

to partial preferences expressed by users. In a similar fashion to PbRL, we model the

drone swarm environment as an MDP. However, contrasted to PbRL, the proposed

system considers a user preference P as: τ1P1
≻ τ2P1

, τ1P2
≻ τ2P2

, . . . , τ1PD
≻ τ2PD

where D is the maximum number of controllable plant parameters : {TOR, TCA, TCR}

for the drone swarm domain. AUC aims to learn the parameters for a reference plant

model from preferences expressed, by utilizing the correlations between the PDP’s and

modelling them as GP’s. In particular, Arm is generated using the set of preferences P .

In our formulation of adaptive control, we assume B to remain unchanged. Therefore,

for AUC, the reference model derived from P can be expressed as :

Ṡm(t) = −ArmSrm(t) +Brrm (3.9)
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The plant should track the reference plant model derived above, and therefore

the adaptive control mechanism should update ϕI to reduce the tracker error e i.e.

achieve stabilization of controller parameters.

Figure 3.2: AUC with Adaptive System Dynamics Model

Derivation of Adaptation Law

From 3.5 and 3.6,

Ṡ(t) = −AS(t) +B(ϕ1rrm − ϕ2S(t)),

Ṡ(t) = (−A−Bϕ2)S(t) +Bϕ1rrm

(3.10)
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To reduce the error e, we derive the expression for the derivative of the error using

3.6, 3.9 and 3.10:

ė = Ṡ− ˙Srm

= (−A−Bϕ2)S(t) +Bϕ1rrm + ArmSrm(t)−Brrm (3.11)

Adding and subtracting ArmS(t) to the above to get ė in terms of e, we get:

ė = Arm(Srm(t)− S(t)) + (Arm − A−Bϕ2)S(t) + (Bϕ1 −B)rrm

= −Arme+ (Arm − A−Bϕ2)S(t) + (Bϕ1 −B)rrm

(3.12)

To derive the adaptive parameter update law using Lyapunov’s Stability Theorem, we

introduce a continuously differentiable positive definite function which can qualify as

a Lyapunov candidate function and sensitivity parameter γ.

V (e, ϕ1, ϕ2) =
e2

2
+

(Arm − A−Bϕ2)
2

2Bγ
+

(Bϕ1 −B)2

2Bγ
(3.13)

The derivative ˙V (e, ϕ1, ϕ2) should be negative semi-definite for the equilibrium point

to be stable.

V̇ = eė− (Arm − A−Bϕ2)Bϕ̇2

Bγ
+

(Bϕ1 −B)Bϕ̇1

Bγ

= e(−Arme+ (Arm − A−Bϕ2)S(t) + (Bϕ1 −B)rrm)−
(Arm − A−Bϕ2)Bϕ̇2

Bγ

+
(Bϕ1 −B)Bϕ̇1

Bγ

= −Arme
2 − (Arm − A−Bϕ2)(ϕ̇2 − γS(t)e)

γ
+

(Bϕ1 −B)(errm + ϕ̇1)

γ

(3.14)

For V̇ ≤ 0 in 3.14, we get the parameter update laws as:

ϕ̇2 = γS(t)e

ϕ̇1 = −errm
(3.15)
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Asymptotic Tracking with time-varying Reference Model

The parameter adaptation laws derived above introduce significant oscillations

in the controller parameters, due to the transient response of the system while the

error converges to zero. Issues such an overshoot or convergence rate during the

transient period are existing challenges in the domain of adaptive control and severely

limit the practical application of such control schemes. As discussed above, while

traditional MRAC approaches use a static reference plant model, AUC utilizes a

learned time-varying reference model derived from human preferences. Consequently,

the aforementioned issues due to the transient response are further exacerbated in our

methodology. Significant research has been conducted to improve the transient system

response in terms of oscillatory behavior and convergence speed of the tracking error

for MRAC systems, such as nonadaptive high gain feedback Datta and Ioannou (1994);

Sun (1991), switching control law Morse (1996) or a parameter dependent persistent

excitation condition Arteaga and Tang (2002). Therefore, utilizing improved adaptive

control schemes with modified adaptive laws and control architecture can help us

improve the transient response time of AUC, thus allowing the system to deal with a

time-varying reference model.

Another viable approach to address the challenges is to discretize the learned

continuous Gaussian Process. By dividing the GP into partitions over time, each with

a duration larger than the transient response period, we can approximate the time-

varying reference model as a sequence of constant reference models. This discretization

allows us to use the adaptive control laws for the reference model over each time period,

facilitating the plant to roughly track the reference model derived from user preferences

while ensuring stability of the control system. Extensive research has been conducted

on the modification of reference models in model-reference adaptive control Stepanyan
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and Krishnakumar (2012); Na et al. (2020); Gibson (2014). However, the aspect of

time-varying modification is commonly overlooked or not adequately addressed in

these investigations. Nguyen (2022) proposes a modified MRAC scheme with real-time

updates to the reference model, to optimize the performance metric of the plant. This

work is the closest in terms of dealing with a time-varying reference model, which is

another novelty of AUC. In their work, the multi-objective performance optimization

problem generates time-varying Riccati and Sylvester equations, the solutions to which

produce time-varying controller parameters. We could integrate a similar approach in

AUC, where a critical performance metric would be safety of the system. Permitting

users to modify the system’s behavior can benefit many applications domains to

achieve the desired flexibility and adaptability of systems that cohabit with human

users in complex environments. However, unrestricted modifications by non-expert

users may inadvertently introduce safety risks. Thus, the pursuit of striking the

delicate balance between user preferences and system safety is crucial to mitigate

risks associated with system misuse, and can be addressed using the method proposed

above.

3.2 GPLVM

We use the GPLVM formulation to represent the human feedback data. In our

formulation, P represents the observed user feedback as P = {Pn}Nn=1 where N

represents the size of the trajectory in the environment, P ∈ RN×In where In ∈ [1, D].

Therefore, for the drone swarm domain, D = 4 and the user can provide preferences

over any of the four controllable plant parameters.

Since these are correlated, we posit the existence of latent variables X = {xn}Nn=1 ∈

RN×Q such that Q < D, that influence the observed plant parameters and represent

the underlying structure in the observed parameter space. The sparse formulation
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of the GPLVM represents the forward mapping (X → P) as a Gaussian Processes

defined independently across D dimensions. Since the latent variables represent the

correlations between the parameters, the independence assumption holds when learning

the forward mapping. The GP describing the dataset would be:

P(P|X) =
N∏

n=1

In∏
i=1

P(pn,i|xn)

where pi represents the ith column of the nth sample. Therefore, if we learn to model

the relationship between the latent variables and the plant parameters as GP’s, we

can assume that human feedback has added noise η. We can represent this as:

pn,i = fi(xn) + η (3.16)

where i represents the parameter we are trying to predict and xn represents the latent

variables for the nth sample

3.3 Sparse GP Formulation

We utilise a variational inference approach to train the GPLVM. In order to design

an analytically tractable framework, we apply the sparse GP formulation Titsias (2009).

We introduce a set of M inducing variables per I thn dimension ui ∈ RM computed on

inducing locations given by Z ∈ RM×Q. The inducing locations live in the input space,

where M represents a subset of the original input data X to reduce the computational

complexity of the GPLVM. We express the feedback data using the Bayesian GPLVM

as presented in Titsias and Lawrence (2010):

P(X) =
N∏

n=1

N (xn|0, IQ)

P(fi|ui, X, Z, θ) = N (fi|αiui, Qnn)

P(P|F,X) =
N∏

n=1

∏
i=1

N (pn,i|fi(xn), η)

(3.17)
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where αi = KnmK
−1
mmui, Qnn = Knn −KnmK

−1
mmKmn, Knn is the covariance matrix

generated by evaluating a kernel function kθ(xn, xm) on latent points {xn}Nn=1. The

kernel hyperparameters θ are common across all {In}Nn=1 dimensions. The inducing

variables for each dimension ui following the GP prior distribution can be formulated

as: p(ui|Z, θ) = N (0, Kmm)

3.4 Doubly Stochastic Variational Inference

In order to compute the distribution of the latent variables given the observations,

we use stochastic variational inference (SVI) Hoffman et al. (2013) with a distributed

loss function to handle partially specified preferences. SVI approximates the posterior

distribution of the model’s latent variables with a tractable variational distribution,

by maximizing the evidence lower bound (ELBO) on the intractable log marginal

likelihood of p(x). Hensman et al. (2013) and Lalchand et al. (2022) showed how

SVI can be applied to GP’s, by utilizing a sparse GP formulation and introducing

a set of global inducing variables, which can be treated as global latent variables.

Doubly stochastic variational inference involves computing stochastic gradients of the

ELBO by sampling from a noisy variational distribution of the latent variables and

a mini-batch of data to obtain a “doubly stochastic” and unbiased estimate of the

gradient. Following this, applying SVI to our formulation, we introduce variational

distributions over the latent variables X and inducing variables UI , and compute the

gradient of the ELBO by sampling from the distribution q(X) We write the expression

for the doubly stochastic ELBO, deriving from basic definition of ELBO as shown

in Lalchand et al. (2022),

q(X) =
N∏
i=1

N (xn|µn, sn)

q(UI) =
In∏
i=1

N (ui|mi, si)
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ELBO = Eq[
∑
n,i

logN (pn,i; fi(xn), η)]−
∑
i

KL(q(ui)||p(ui|Z, θ)) (3.18)

The expected log likelihood for each data point and dimension can be computed by

Monte Carlo Estimation. For each data point, we generate j samples from q(xn) using

the reparametrization trick as introduced in Kingma and Welling (2022). We sample

from the posterior xn using x
(j)
n = µn + sn ⊙ ϵ(j) where ϵ(j) ∼ N (0, I). Following the

formulation of the loss function, we can observe that the loss is distributed along

dimensions as well as samples, enabling us to handle partially specified preferences.

For each sample Pn, the corresponding latent variables xn are determined solely based

on the observed PDPs for which the user provides feedback on. On the other hand,

the M inducing variables per dimension ui are influenced by all the feedback samples

in the dataset that have the observed PDP. By incorporating collective information

from multiple feedback samples, the inducing variables provide a representation of the

PDPs, capturing the global patterns and dependencies that may exist between the

PDPs. Therefore, this combined learning approach enhances the model’s ability to

uncover and model the intricate connections present among the PDPs as well as the

mapping connecting the latent variables to the observed PDPs in the feedback.

Figure 3.3: Network Architecture Implemented in AUC for Controller Adaptation

Since AUC constantly updates the reference model, we need to ensure stability of
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the control system. In adaptive control literature, this is commonly implemented by

updating the control parameters (K) to ensure stability of the dynamic system, using

the adaptation law generated from the Lyapunov stability theorem Åström (1983);

Sastry (1999). After computing the error between the states of the controlled system

and the states of the reference model, it is used to adapt the control parameters in

real time. This can be implemented with AUC as shown in 3.14 and 3.15. In the

current framework of AUC, we approximate the updates to the control parameters by

training an SAC agent to predict the stable control output. The network inputs the

system state, and extracts the state features to approximate the stability conditions.

As shown in Fig. 3.3, we augment the input with the current PDPs to allow the system

to estimate the error.
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Algorithm 1 Sparse GPLVM with Doubly-stochastic Variational Inference

Inputs:

P = {Pn}Nn=1, gradient- based optimizer optim()

Initialize:

- Model Parameters: θ (covariance parameters for describing

GP), η (function approximation noise)

- Variational Parameters:

- Inducing locations : Z

- Local Variational Parameters: ϕ = {µn, sn}Nn=1

- Global Variational Parameters: λ = {mi, si}Di=1

while error converges do

• Sample random minibatch from user preferences data P# ⊆ P

• Sample J samples from noisy latent variable distribution x
(j)
n = µn + sn ⊙ ϵ(j),

ϵ(j) ∼ N (0, I)

• Estimate ELBO Loss for P#: L# = Eq[
∑

#

∑
i logN (p#,i; fi(x#), η)] −∑

i KL(q(ui)||p(ui|Z, θ))

• Gradient Step: update θ, ϕ, λ, Z, η ← optim()

end while

return θ∗, ϕ∗, λ∗, Z∗, η∗
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Chapter 4

EXPERIMENTAL SETUP

In this section, we present a set of experiments to evaluate AUC. Our problem setting

of dealing with unspecified or hard-to-define errors in control tasks is most similar

to preference-based learning. Therefore, we compare our method to the following

state-of-the-art PbRL baselines - Meta-Reward-Net Liu et al. (2022), SURF Park et al.

(2022) and PEBBLE ?.

• Meta-Reward-Net: This algorithm employs bi-level optimization techniques

during the reward learning phase.

• SURF: This method proposes a combination of semi-supervised learning and

data augmentation.

• PEBBLE: This method uses unsupervised pre-training and off-policy learning.

The participants are shown video clips of the robotic agent in the environment (in

simulation) and asked to intervene and modify the controllable parameters (PDPs) at

any moment they deemed necessary. This way of soliciting feedback contrasts with

that in the traditional PbRL methods. However, each partial preference provided by

the user for a subset of the PDPs can be viewed as specifying a complete preference for

some virtual trajectory over the current one. We illustrate the proposed approach with

the example of a Drone Swarm domain, which is implemented as a potential-fields.

The plant model can be defined by the following plant dynamic parameters (PDP’s)

- Attractive Centroid Threshold, Repulsive Centroid Threshold, Repulsive Obstacle

Threshold and number of neighbours in a local cluster. A behavior-based model is
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defined relating the plant parameters and the control parameters. We also consider

continuous tasks from DMControl Suite: Walker-run, Cheetah-run, and Quadruped-

walk, with the plant dynamic parameter (PDP) of velocity of agent in environment.

We query feedback from the user and ask them to judge the trajectories in terms of

these PDP’s.

All the methods are judged on the number of feedback samples required for making

the system reach the target plant behavior from the initial plant behavior, where the

behaviors are described by different plant dynamics parameters (PDPs). However,

evaluating PbRL methods using real human feedback is challenging due to the high

sample complexity and high cost of collecting feedback. B-ref Lee et al. (2021b)

designed a very commonly used benchmark Liu et al. (2022); Park et al. (2022);

Lee et al. (2021a) for PbRL by designing scripted/simulated human teachers that

provide preferences with respect to a ground truth reward function, with added

irrationalities Chan et al. (2021); Chipman (2017). To take advantage of these

scripted teachers, we evaluate in two steps. In the first step, the user preferences

with participants are fed to AUC, which learns the trajectories of the PDPs in the

environment, which are treated as the target plant behavior. These trajectories are

used to “bias” the scripted teacher to provide preferences closer to the preferences

solicited from the participants, by modifying the ground truth return in the following

way:

Ruser = Rtask −
In∑
i=1

∥pn,i − pcurrent∥2

In the second step, the baselines are then trained with the biased script teacher. We

count the average number of pairwise preferences, which is required to train them to

successfully produce the target plant behavior.

• Drone Swarm Domain: For this domain, the initial plant behavior for all the
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methods is generated using a behavior-based control scheme. The “user reward”

is obtained from the biased script teacher as shown above. The baselines optimize

this “user reward” to predict the PDPs throughout the environment. The PDPs

predicted by all the methods are then fed to the behavior schema to produce

the low-level control output for the drones.

• DeepMind Control Suite: For the three domain which are part of this suite,

the initial plant behavior for the baselines is generated by optimizing an initial

reward function, which is learnt from feedback provided by an unbiased scripted

teacher given the reward function, to predict the low-level control output. The

target PDPs, which are predicted by AUC are used to train a biased script

teacher to train the baselines to predict the target plant behavior. For AUC,

SAC as presented in Fig. 3.3 is trained for continuous control Srinivas et al.

(2020) to generate the initial plant behavior, where the input to the network

considers the PDPs. This trained SAC acts as the behavior schema for this

domain. The PDP trajectories generated by AUC is fed to the pre-trained SAC

to produce low-level control for the target plant behavior.
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Chapter 5

RESULTS

We compare the performance of the proposed method against the baseline PbRL

algorithms in terms of sample efficiency. We apply AUC to generate the target PDP

trajectories for each human user. Then, we train the baselines with the biased teacher.

For AUC, we count the average number of feedback samples i.e. human interventions

and modifications required to fit the GP’s and predict the target PDP trajectories. For

the baselines, we count the average number of pairwise preferences, which is required

to train them to successfully produce the target plant behavior. This is determined

by comparing how close the PDPs in the control generated by the different methods

are to the target parameter values at each time-step.

Table 5.1: Average Feedback Required for Achieving Target Parameter Trajectory

Method Drone Swarm Walker-walk Cheetah-run Quadruped-walk

Proposed Method 180.9 59.2 160.3 302.3

MRN 1003.3 182.1 242.5 692.2

SURF 1209.2 559.29 501.4 992.1

PEBBLE 1210.3 602.4 890.3 1030.10

As we can see in Fig. ??, the proposed methodology is able to successfully learn a

hidden variable distribution and learn a Gaussian Process relating the hidden variables

to the target parameter values, which are derived from the human feedback. Moreover,

as seen in Table 5.1, our proposed method is able to achieve similar performance with

much lesser human feedback.

26



(a) (b)

(c) (d)

(e) (f)
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Figure 5.2: Applying AUC to Predict an Instance of Target PDP Trajectories for

DroneSwarm Environment where (a), (d) Show Attractive Centroid Threshold, (b), (e)

Show Repulsive Centroid Threshold, and (c), (f) Show Repulsive Obstacle Threshold.

Second Row shows AUC Prediction with Safety Constraints.

5.1 Control with Safety Constraints

We test out the performance of the proposed approach with safety constraints in

place on the drone swarm environment. To generate safe plant dynamics parameters

for each state, we train the SAC network similar to Fig. 3.3. First, we identify

safety considerations that the drones must adhere to during their operation to avoid

critical system failures - minimum distance from each other and the obstacles, which

are then incorporated into the reward function used by SAC. Therefore, the SAC

approximates the system model from the MDP state using neural networks, and then

learns to predict safe plant parameters for each state in the environment i.e. safe plant

parameter trajectories. The ELBO loss in Eq. (3.18) is augmented with an additional

term to penalize large deviations from the safe values.

Eq[log p(P|F,X)] = Eq[
∑
n,i

logN (pn,i; fi(xn), η)]−
∑
n

KL(q(X)||p(X)

−
∑
i

KL(q(UI)||p(UI)− λg(pn,i, psafen,i
)

where g(pn,i, psafen,i
) = max(ϵ, |pn,i−psafen,i

|), and ϵ is the safety threshold parameter.

As we can observe in Fig2., training the proposed approach with ϵ = 0.5 leads to

smoother PDP trajectories.
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(a) Introduction to Drone Swarm environment (b) Query Process

Figure 5.3: Human Study for Drone Swarm Environment

5.2 Human Study Design

We set up a human study using Qualitrics. The study employed a participant-

centered design aimed at collecting human feedback data. Each participant was
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presented with a selection of the Drone swarm task and DeepMind Control tasks, and

they were given the freedom to choose as many tasks as they desired to participate in.

Prior to providing feedback, participants were provided with a detailed explanation

of the environment. This included an overview of the agent’s goals within that

environment and an understanding of the PDPs involved. To illustrate the potential

impact of these parameters on the agent’s movement, participants were shown a video

featuring the agent operating within the environment along with the trajectories of

these parameters throughout. Then, the participants were shown video clips of the

agent in the environment and were asked to intervene and modify the controllable

parameters at any moment they deemed necessary. We provide an example of the

human study conducted for the drone swarm environment below:

5.2.1 DeepMind PDP Trajectories

We present the PDP trajectories generated using user feedback for the DeepMind

control tasks. The user is asked to provide feedback in terms of desired velocity of the

walker, cheetah and quadruped in the environment. From this feedback data, AUC

successfully learns a Gaussian Process to predict the desired trajectory of the PDPs

over time.

5.3 Ablation Study- Providing Random Trajectory Segments vs Whole Trajectory

We modify critical design choices used in the proposed method and evaluate the

effect on system performance.

Primarily, we explore the effect of using random trajectory segments as done

in traditional PbRL works. We query the user for feedback on randomly selected

trajectories from the intital plant behavior for each domain, and use AUC to generate

the target behavior. As we can see from the Table 2, we see that using random
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trajectories greatly increases the sample complexity of the approach.

Table 5.2: Average Feedback Required for Achieving Target Parameter Trajectory

when Provided Random Trajectories vs AUC Method

Method Drone Swarm Walker-walk Cheetah-run Quadruped-walk

Proposed Method 180.9 59.2 160.3 302.3

Ablation Study 403.2 129.2 281.1 509.3

Figure 5.4: PDP Trajectories for DeepMind Walker-Walk Domain
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Chapter 6

CONCLUSION

In this paper, we propose a novel method to achieve adaptive control from partially

specified attribute preferences. It bridges preference-based learning and adaptive

control to improve the adaptability of robotic systems that cohabit with human users.

Our proposed methodology is able to learn any given target behavior using a lesser

number of human feedback as compared to existing PbRL baselines.

This work is very relevant to the problem of value alignment Soares and Fallenstein

(2015); Russell et al. (2016). Value alignment is the process of ensuring that the values

and goals of an AI or robotic system are aligned with the values and goals of its human

operators, users, and other stakeholders . It is an especially important issue in the

current robotics domain because robots are becoming increasingly autonomous and

capable of making decisions on their own Russell (2019); Bostrom (2014). Therefore, it

is necessary that such they act in ways that are consistent with human preferences to

promote trust and cooperation in shared workspace. However, the important question

is, how can humans express their desired objectives to robotic systems in order to

bridge the gap between the human’s desired model of the robot and the it’s actual

model, where the model can be deemed representative of how the robot behaves and

responds to it’s environment. In recent years, works have tried to solve this problem

using demonstrations or preferences, Ng and Russell (2000); Arora and Doshi (2021);

Schaal (1996,?); Christiano et al. (2023); Warnell et al. (2018); Zhang et al. (2019);

Lee et al. (2021a). However, major issues faced with applying them to real-world

applications is that demonstrations or preferences are expensive to collect, and are not

feasible to be used by non-expert end users. Demonstrations limited applicability for
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tasks beyond the expertise of end users, while methods relying on trajectory rankings

as preferences provide an impoverished way of expressing preferences leading noisy and

conflicting feedback. Considering the non-expertise and limited system knowledge of

the end user, our objective is to develop a methodology that effectively caters to their

requirements and capabilities. As discussed before, the plant model encapsulates the

dynamics, characteristics, and responses of the robot within its environment. Through

repeated interactions, non-expert end users of robotic systems can develop a notable

level of familiarity and intuitive understanding with the plant dynamics. This enables

them to provide valuable feedback about the plant and communicate their objectives

to the robot, however not enough to directly define the plant parameters corresponding

to the desired behavior. Instead, we focus on designing a framework for users to

effectively express their feedback by modifying these parameter, thereby enabling

them to actively participate in shaping and adapting the plant to their needs and

preferences, enhancing their overall interaction and effectiveness with the robot. The

proposed system acknowledges that users may face difficulties in providing feedback

on all aspects of the system’s behavior and correctly guide the system, due to limited

knowledge and understanding of the system’s functioning and complexities. To tackle

these challenges, the proposed approach introduces partially specified preferences over

plant parameters, which is an novel framework for users to express their preferences

and desired objectives to the robot. The question which we then ask is; Given these

partially-specified preferences over the plant parameters, how do we efficiently update

the controller and plant to achieve the desired robot behavior?

The uniqueness of our preference collection method renders past PbRL approaches

inadequate for addressing the problem at hand. These existing methods typically

rely on trajectory-based preferences that pertain to low-level parameters, and use

these preferences to learn the optimal control of the robot. In doing so, they also
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subsequently learn the optimal high-level parameters. Our proposed approach deviates

from this and queries the human to provide on these high-level parameters itself. We

establish that for most existing task domains, we can utilize already existing works to

implement the control of robots in these domains. As a result, our focus lies not in

learning the control of these robots from scratch, but rather in augmenting them with

the capability to modify and adapt based on user preferences. While PbRL aims to

learn optimal control, we aim to learn flexible control. Additionally, approaches that

utilize high-level attribute preferences! depend on complete specifications of these

preferences. Furthermore, these methods focus on learning the desired global behavior

of the robot, whereas our proposal aims to modify the local behavior of the robot

within the given environment.

To develop a versatile control framework that can effectively handle partially-

specified parameter preferences, we employ the Model Reference Adaptive Control

(MRAC) framework. Specifically, we demonstrate its applicability in the drone-swarm

domain by formulating the agent as a controller and plant. Through user interactions,

we solicit their preferences, which are then utilized to derive the reference plant model.

Since we allow the user to modify the local behavior of a robot in it’s environment,

the reference model is time-varying. Recognizing that complete error specification is

essential for adapting the controller parameters, we account for the incompleteness

in the desired plant parameter preferences. In our approach, we assume that the

plant parameters exhibit underlying correlations, and to capture this structural

dependency, we employ a latent variable distribution learning method. This enables

us to effectively represent and model the relationships within the parameters, and

estimate a completely-defined reference model. Subsequently, we derive the controller

adaptation laws utilizing the above framework and show how the proposed approach

can be successfully implemented with standard Model Reference Adaptive Control
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(MRAC) approaches, resulting in the attainment of user-adaptive control, wherein the

plant aka the robot effectively adapts to user preferences.

Future Work

Owing to the novel nature of the proposed approach, there are several areas that

require further exploration and development for the proposed approach to ensure the

viability and effectiveness of the approach in real-world scenarios. Given that the

reference plant in our approach exhibits time-varying characteristics, the standard

MRAC framework needs to be revised with an adaptation mechanism that facili-

tates simultaneous controller adaptation while ensuring stability and expedites error

convergence. This crucial for achieving real-time tracking of the reference plant by

implementing timely response to changes in the reference plant, thereby enabling

real-time modifications to the robot’s behavior in accordance with user preferences.

Furthermore, in the formulation of the proposed approach, we make the assumption

that the plant parameters are known and do not explicitly consider the inherent

uncertainty in the plant as it adapts to the reference model. However, it is crucial to

acknowledge the presence of noise and uncertainty in the plant and design the adapta-

tion mechanism accordingly. By incorporating measures to account for these factors,

the proposed approach can effectively accommodate the variations and uncertainties

that may arise during the adaptation process, resulting in improved performance and

stability. While enabling users to modify the plant parameters can offer significant

advantages across various application domains while facilitating the desired flexibility

and adaptability of robotic systems, unrestricted modifications by non-expert users

can potentially introduce safety risks. Hence, it becomes paramount to carefully navi-

gate the trade-off between accommodating user preferences and maintaining system

safety. In the context of implementing an adaptive control framework, by integrating
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safety measures within the adaptive control framework, the overall system can strike

a delicate balance between user preferences and safety considerations, safeguarding

both users and the system from undesirable outcomes. Utilizing a safety model or

a separate safety analysis module, the behavior of the system can be continuously

compared against safety specifications. This verification process helps identify any

deviations or violations and triggers corrective actions to maintain safety. To further

improve generalizability of the latent variable model, the proposed approach can

also incorporate environmental features as inputs during the prediction of desired

parameters across diverse environmental settings. The desired parameter values can be

augmented with contextual information derived from the environment. This augmen-

tation enables the predictions to generalize across different environment configurations,

thereby reducing the dependence on extensive user feedback. Consequently, the pro-

posed approach will minimizes the feedback requirements by leveraging the inherent

relationships between the environmental features and desired parameter values, leading

to improved generalization and adaptability across varying environmental contexts.

In the proposed approach, the novel concept of directly incorporating user preferences

on plant parameters can be further enhanced by learning a mapping between these

parameters and high-level behaviors. The user can then provide feedback on the

observed behavior of the robot, enabling the derivation of desired plant parameters.

Subsequently, the reference plant model can be constructed based on these desired

parameters. This mapping between user-expressed behavioral preferences and plant

parameters will facilitate a more intuitive and user-friendly interaction, allowing users

to provide feedback on the desired behavior rather than explicitly modifying plant

parameters.
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