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ABSTRACT  

   

The prevalence of autonomous technology is advancing at a rapid rate and is 

becoming more sophisticated. As this technology becomes more advanced, humans and 

autonomy may work together as teammates in various settings. A crucial component of 

teaming is trust, but to date, researchers are limited in assessing trust calibration 

dynamically in human-autonomy teams. Traditional methods of measuring trust (e.g., 

Likert scale questionnaires) capture trust after the fact or at a specific time. However, 

trust fluctuates, and determining what causes this might give machine designers insight 

into how machines can be improved upon so that operator’s trust towards the machines is 

more properly calibrated. This thesis aimed to assess the validity of an interaction-based 

metric of trust: anticipatory pushing of information. Anticipatory pushing of information 

refers to teammate A anticipating the needs of teammate B and pushing that information 

to teammate B. It was hypothesized there would be a positive relationship between the 

frequency of anticipatory pushing and self-reported trust scores. To test this hypothesis, 

text chat data and self-reported trust scores were analyzed in a previously conducted 

study in two different sessions (routine and degraded). Findings indicate that the 

anticipatory pushing of information and the self-reported trust scores between the human-

human pairs in the degraded sessions were higher than the routine sessions. In degraded 

sessions, the anticipatory pushing of information between the human-human pairs was 

associated with human-human trust. 
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CHAPTER 1 

INTRODUCTION 

Technology is advancing at a rapid rate. Much of this advancement can be seen in the 

field of machine learning and artificial intelligence (AI) as highly autonomous 

technology (e.g., AI, robots, and synthetic agents) continues to permeate nearly all 

aspects of everyday life. It is not a stretch to say that autonomous technology is 

everywhere. There are many examples of how autonomous technology advances in high-

risk environments, such as the new Mars Perseverance Rover. This new autonomous 

technology differs from its predecessor, Mars Curiosity Rover, in that it has the 

independence to cover ground without consulting human operators on Earth. It also has 

planning features that allow it to shift its daily activities around to be more efficient with 

openings in its daily schedule. The Mars Perseverance and Curiosity Rover are examples 

of advanced autonomous technology that provide opportunities for studying how these 

advanced technologies might assist, collaborate, and even team with humans.  

A team can be defined as a sociotechnical system that contains two or more 

heterogeneous and interdependent team members who interact with each other to 

complete a common goal or task (Cannon-Bowers, Salas, & Converse, 1990). This 

definition is given for human-human teams, but there are also other types of mixed-teams 

such as human-canine teams (Ferworn et al., 2006). In this study, the mixed-teaming 

concept called human-machine teaming (HMT) is considered. An HMT is a 

sociotechnical system in which two or more heterogeneous and interdependent team 
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members (either humans or autonomous technology) interact with one another to 

accomplish a common goal or task (Demir et al., 2017).   

Consequently, the main focus of the current study is trust in a human and 

autonomous teammate in an HMT context. The current study aims to assess whether 

anticipatory pushing of information is a valid metric for measuring trust in a teammate 

using interactions as the unit of measurement. The specific interactions being used as 

units of measurement are interactions in which the pushing of information based on 

anticipated needs occurs. It is hypothesized that as a teammate anticipates another 

teammate’s needs and pushes information to that teammate based on anticipated needs, 

there will be increased trust towards the teammate who pushed the information. This will 

lead to higher levels of interpersonal trust towards that teammate. 
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CHAPTER 2 

BACKGROUND 

Human-Autonomy Teaming 

Automation vs. autonomy. In order to understand how people might team with 

autonomous technology and how trust might be an important cognitive construct to 

consider when studying HMT, it is important to understand what autonomous technology 

is and how a machine can be classified as automation or autonomy. A machine is a 

“device, having a unique purpose, that augments or replaces human or animal effort for 

the accomplishment of physical tasks” (Encyclopedia Britannica). Within the context of 

the machine, Sheridan (2002) underlines a three-part definition of what automation is: 

“(1) the mechanization and integration of the sensing of environmental variables (by 

artificial sensors); (2) data processing and decision making (by computers); and (3) 

mechanical action (by motors or devices that apply forces on the environment)” (p.9). On 

the other hand, autonomy can be thought of as more advanced and sophisticated 

automation that can carry out tasks independently or in conjunction with human input and 

oversight (McNeese et al., 2018). It is important to note, however, that though machines 

may have some autonomous capabilities and functions, some functions of the machine 

may not be autonomous. This may be because in the context of teaming, it may be of 

interest to have the machine interact independently, but also interdependently with other 

team members, therefore, the concept of a fully autonomous machine is not aligned with 

a machine as a teammate. 
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 Beyond definitions, though, the difference between automation and autonomy can 

be thought of as a spectrum with automation being on the low end in which the 

technology is not autonomous and requires human oversight and intervention, and 

autonomy on the high end, in which the technology is independent of human input and 

oversight (Endsley & Kaber, 1999; Endsley & Kiris, 1995; Parasuraman, Sheridan, & 

Wickens, 2000; Sheridan & Verplanck, 1978). Accordingly, the overlap with all of these 

classifications seems to be that: (1) on the low end, the human does everything; (2) in the 

middle, the technology carries out a task or informs the human of certain variables to help 

the human make a decision; and (3) in the higher levels the autonomous technology is 

mostly (but still only partially) autonomous in the sense that it has some autonomous 

capabilities but not all and can work with humans in a team-like setting. 

Autonomy as a team member. Autonomous technology is becoming more 

sophisticated, and thus, closer to teaming with humans in various professional spheres. 

Teaming with humans indicates that autonomy will have to work with humans as a 

teammate and an independent entity fulfilling a role not completed by any other 

teammate(s) on the team (O’Neill et al., 2020). This is important, especially in the 

context of trust, because in a team, team members have “heterogeneous roles,” meaning 

that each team member has a specific role that determines his or her primary 

responsibilities pertaining to their tasks (Cooke & Gorman, 2009). Team members need 

to be able to carry out their responsibilities interdependently so that the team can achieve 

its overall goal. 
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Furthermore, autonomy must be “interdependent” with the team to achieve the 

team’s overall task (Lyons et al., 2019; Lyons et al., 2018; Brill et al., 2018; O’Neill et 

al., 2020; Wynne and Lyons, 2019; Haimson et al., 2019). Research has indicated that 

interdependence with an autonomous agent helps human teammates perceive the 

autonomous agent (technology) as more cooperative, friendlier, and as if the technology 

provided the human teammate with high-quality information (Nass et al., 1996; O’Neill 

et al., 2020). And although these outcomes might seem beneficial in the sense that they 

will make the human trust the autonomy more, they do not necessarily help humans have 

better-calibrated trust toward the autonomy. Nevertheless, teammate interdependence is 

still a necessary aspect for trust development, as explained by Johnson and colleagues 

(2012). The researchers posit that though there might be a consensus that as technology 

becomes more autonomous, the better it will be for people. This is not the case when it 

comes to HMT settings. Johnson and colleagues (2012) conducted a study that showed 

that to the extent that autonomous agents carried out tasks perfectly and independently, it 

was more difficult for the human teammates to understand what was happening and what 

behaviors the agent would act out. Not being aware of teammates’ actions and intentions 

is referred to as opacity which means the inability of team members to realize the current 

state of other team members to maintain effective team performance (Johnson et al., 

2012). Opacity, therefore, is an outcome of teammates not having a sense of 

interdependence towards each other but rather an exaggerated sense of independence. 

Indeed, interdependence of teammates is necessary for effective team performance and is 

connected to benevolence (Johnson & Bradshaw, 2021).  
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The concept of “benevolence” in an autonomous teammate as a necessary 

characteristic has been discussed by many researchers recently (e.g., Brill et al., 2018; 

Lyons et al., 2018; O’Neill et al., 2020; Panganiban et al., 2020; Lyons et al., 2019; 

Wynne and Lyons, 2019). From a teaming point of view, benevolence can be thought of 

as having teammates having each other’s best interest in mind and providing support 

when necessary (Lyons et al., 2019). It can also be thought of in terms of how teammates 

act such that benevolent teammates help each other so that the team can accomplish its 

goal(s) (Brill et al., 2018). Benevolence can lead to the fostering of trust between 

teammates, which would be crucial if teammates found themselves in high-risk and 

highly uncertain situations (Panganiban et al., 2020).  

Trust in Human-Machine Teaming 

Trust as a cognitive construct has been studied for a long period of time in many 

different fields including economics, political science, management, organizational 

psychology, and human factors. Although the origins of trust research can trace back to 

the 50’s when Albert Tucker popularized the prisoner’s dilemma (Tucker, 1950) to more 

recent work done in the human factors sphere (Lee & See, 2004; Hoff & Bashir, 2015), 

one major problem that still remains is that scholars differ on how to define and measure 

trust (Rousseau, Sitkin, Burt, and Camerer, 1998; Lee and See, 2004; Sheridan, 2019) 

which creates issues for conceptualizing and understanding what type of trust is being 

measured. Regardless, there have been some definitions that have been more widely 

accepted than others.  
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In general, trust can be defined as, “the willingness of a party to be vulnerable to 

the actions of another party based on the expectation that the other will perform a 

particular action important to the trustor, irrespective of the ability to monitor or control 

that other party” (Mayer, Davis, & Schoorman, 1995, p. 712). McKnight and Cummings’ 

(1998) define trust as, “to mean that one believes in, and is willing to depend on, another 

party,” (McKnight & Cummings, 1998, p. 474). Das and Teng (1998) define trust as, “the 

degree to which the trustor holds a positive attitude toward the trustee’s goodwill and 

reliability in a risky exchange situation” (Das & Teng, 1998, p. 494). Whereas these 

seminal articles have provided definitions that have been widely used, definitions alone 

do not capture the essence of what trust is. To fully understand trust as a cognitive 

construct, it is important to understand the structural elements of trust. Depending on 

what type of trust is being discussed (e.g., interpersonal trust or trust in automation), it 

may be necessary to assume that different types of trust contain different structural 

elements.  

Interpersonal trust. Interpersonal trust is the “generalized expectancy held by an 

individual that the word, promise, oral or written statement of another individual or group 

can be relied on” (Rotter, 1967, p. 651; Rotter, 1980). One important structural element 

crucial to understanding interpersonal trust is risk. Rousseau and colleagues (1998) argue 

that uncertainty is the source of risk, and only when there is risk can one trust. When one 

chooses to trust, they then engage in risk-taking behavior. This aligns with Mayer et al. 

(1995), who differentiate between risk and risk-taking behaviors as the two relate to trust. 

The authors assert that to trust is not to take a risk, but rather it is a willingness to take a 
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risk. In other words, the willingness to take a risk (trust) precedes the actual taking of risk 

(trusting behavior) as trust (or trusting) is not a behavior but leads to behaviors. Trust 

leading to behaviors was summarized well by Lewis and Weigert (1985), who stated that 

to trust is to act as if you know how others will act even though you do not, and the 

behavioral component of trust that follows is a course of action that is in line with the 

belief that you know how others are going to act. The concept of risk as it pertains to a 

willingness to depend on others and be vulnerable also relates to another structural 

element of trust which is control. 

 

Control is an important structural element of trust because to understand what 

trust is, it is important to understand what it is not. Past research has argued that 

controlling is not trusting (Rousseau et al., 1998; Das & Teng, 1998) and that control 

appears when there is a lack of trust (Rousseau et al., 1998). When control mechanisms 

are put in place, they can hinder progress towards the formation of trust because there 

will not be any perceived risk by any party (Schoorman, Mayer, & Davis, 2007). 

Furthermore, control mechanisms can lead to the false sense that parties trust each other. 

As Mayer et al. (1995) point out, control mechanisms (e.g., punishment for deceitful 

behavior) can bring about cooperative behaviors that make it seem like two parties trust 

each other. However, these behaviors might only respond to the control mechanism, not 

actual trust between two parties. Therefore, for one party to truly trust another party, the 

other party must be seen as trustworthy. It is, however, important to note that control 

mechanisms help people have shared experiences which may help foster trust (Chiou and 
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Lee, 2021). And in the case of autonomy, it may be important to have certain control 

mechanisms in high-risk situations when rapid adapting is required (Chiou & Lee, 2021). 

Trustworthiness is another important structural element of trust. Mayer et al. 

(1995) put forth three factors that they believe explain trustworthiness: ability, 

benevolence, and integrity. For someone to be considered trustworthy, they have to be 

seen as competent (ability), well-intentioned towards the trustor (benevolent), and having 

beliefs and values that are deemed acceptable by the trustor (integrity). Trustworthiness is 

also related to interpersonal trust. Interpersonal trust is the belief that someone will do 

what they say they will do (Rotter, 1967). Interpersonal trust, therefore, not only serves as 

a foundation for being perceived as trustworthy initially, but also for being perceived as 

trustworthy in the future. Indeed, trustworthiness is history-based. For example, one’s 

reputation is based on actions and behaviors one has done in the past. If those actions and 

behaviors lead to one having a positive reputation, they will be perceived as trustworthy. 

This perceived trustworthiness based on a person’s reputation will lead to nonspecific 

others initially having high interpersonal trust towards that person even though they may 

not have previously interacted with that person (McKnight, Cummings, & Chervany, 

1998). 

Although risk, control (or lack thereof), and trustworthiness are indeed structural 

elements that can explain the nature of trust, they are limited in their capacity to define it 

for the current study. One reason for this is that trust, as defined in the organizational 

psychology literature, has been defined in human-human contexts. This is limiting 

because the broad context of the current study is trust in a teammate. Teammates do not 
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necessarily have to be human. Therefore, and because the focus of this study is HMT and 

human-machine trust, a review of the human factors literature on trust in automation is 

needed. 

Trust in a machine. The concept of modern-day machines can be divided into 

two categories, automation (e.g., automated driving system or autopilot) and autonomy 

(e.g., AI, robots, synthetic agents), which are separately defined above. In the following 

section, these two categories are separately discussed in terms of trust in the machine. 

However, only a machine with autonomous functions is considered as a team member 

because of the team definition and the recent trend in the literature. 

Trust in automation. Although a tremendous amount of research conducted in 

human factors pertaining to trust has been produced since the late 80’s, researchers in the 

human factors field differ on a definition of trust in automation (Hoff & Bashir, 2015; 

Sheridan, 2019; Schaefer et al., 2021). The most widely used definition comes from Lee 

and See’s (2004) seminal article in which trust is defined as “the attitude that an agent 

will help achieve an individual’s goals in a situation characterized by uncertainty and 

vulnerability” (Lee & See, 2004, p. 51). This definition is similar to the one provided by 

Mayer et al. (1995) as it mentions how a trustor (in Lee and See’s case, the individual) 

relies on the action of the trustee (in Lee and See’s case, the agent) and believes that the 

trustee will act in a way that benefits, rather than hurts, the trustor. However, the 

difference is that in Mayer et al.’s (1995) definition, the vulnerability of the trustor is 

with the actions of the trustee whereas, in Lee and See’s (2004) definition, vulnerability 

is in relation to the situation, not the trustor or the trustee. Lee and See’s (2004) definition 
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captures the essence of trust in most human-automation dyads, and they define it as an 

agent that can be either automation or another human that interacts with the environment 

on behalf of the person. However, this does not necessarily mean that an agent is a 

teammate.  

The distinction between machine as an agent and machine as a teammate is 

important. A machine might help a human counterpart achieve a goal but a machine that 

is a teammate will work with that person or multiple people to achieve a shared goal too 

big or complex for any one person to achieve. Furthermore, though teammates (whether 

human or autonomy) may step in for each other to reduce cognitive or physical workload, 

they will also have their own heterogenous roles with corresponding responsibilities.  

Trust in autonomy. Autonomy as a teammate has been heavily researched and 

discussed in the studies published by the Cognitive Engineering and Research on Team 

Task (CERTT) lab and with the collaborators (Demir et al., 2021; Grimm et al., 2018; 

Huang et al., 2021; Johnson et al., 2021; McNeese et al., 2018; McNeese et al., 2021; 

Tenhundfeld and Demir, 2020; Tenhundfeld et al., 2021). In those studies, a specific team 

was defined by considering heterogeneous and interdependent task roles with a common 

goal in a specific task context (e.g., Cooke and Shope (2004); Cooke et al. (2021)). Then, 

trust in autonomy was measured by subjective (i.e., self-reports) and objective (i.e., 

behavioral and physiological) measures. To understand the difference between trust in 

automation versus trust in a teammate, the current research discussing the trust 

differences between human-automation (agent; again, not autonomy) dyads (trust in 

automation) versus human-human (teammate) dyads (interpersonal trust) can be 
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reviewed. What are the different attributes of human-autonomy trust and human-human 

trust, and how does trust differ in its development in human-autonomy dyads versus 

human-human dyads?                                                                                                    

 Trust in a Machine as a Teammate. Trust in a machine can be seen as a 

fundamental construct in the trust literature but considering trust in a machine teammate 

might be considered distinct. Demir et al. (2021) discuss this multidimensional 

perspective in the context of taskwork and teamwork, rather than considering trust in the 

machine. In their study there were three team members who interacted with each other to 

complete a dynamic team task. One of the team members is an AI team member played 

by a confederate experimenter. The results of their study were mixed in that the 

researchers found that stable team interactions were negatively associated with trust 

development, but beyond an inflection point, they were positively associated with trust 

development. Results also showed that recovery from machine failures was related to a 

moderate amount of trust, but too little or too much trust led to poorer recovery of the 

human teammates from machine failures. These results indicate that trusting a machine 

teammate is linked to team interactions and recovery from failures of the machine. 

Other researchers have looked at additional factors that influence trust in an 

autonomous teammate. For example, Chen and Barnes (2014) describe multiple factors 

that influence trust in autonomous teammates, such as having a shared cognitive 

architecture; so that the humans and the autonomy’s beliefs, desires, and intentions are 

compatible. The authors further state that an automated system’s performance is linked to 
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trust more so than how it may be perceived (i.e., its personality or human-like 

characteristics).   

Trust Assessments 

Trust in the fields of psychology and management has been measured using 

various metrics, such as questionnaires and surveys which only capture trust at certain 

instances (or even only at one instance) in time depending on how often they are 

administered. These methods use a Likert scale to measure people’s trust towards 

automation using, for example, a score of 1 to indicate low trust or a score of 7 to indicate 

high trust (Gutzwiller et al., 2019). Popular examples of questionnaires used to assess 

trust are Rotter’s (1967) scale that has been used to measure interpersonal trust, Mayer 

and Davis’s (1995) scale to measure managerial/organizational trust, and Jian and 

colleagues’ (1998) scale to measure trust in automated systems.  

Although using questionnaires and scales continues to be popular methods of 

measuring trust, a few issues are worth noting when using scales to measure trust. 

Suppose a trust scale is administered in the middle of a task. In that case, this interruption 

might only be able to capture how a user feels about the automation at the current 

moment, but not in the moments before the interruption or afterward. This is certainly 

problematic as automation researchers should want to know what actions of the 

automation (and by extension what quality or feature of the automation designed by the 

designers of said automation) lead to trust increase or decrease. Another issue of trust 

scales is that depending on the linguistic valence of the questions used, the scale might 

skew results negatively or positively, as was discovered by evaluating the Jian, Bisantz, 
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and Drury (2000) scale by Gutzwiller and colleagues (2019). And finally, the current 

scales that are used in the human factors field are used to measure trust towards 

automation as an agent in a dyad, not as a teammate in a team of three or more 

teammates. A machine that is a teammate would be expected to have more autonomous 

functions, but even more important is that it would be interdependent with other 

teammates. Therefore, the current study aims to validate a novel way of measuring trust 

in a teammate (human or machine) in real-time such that it can capture when trust 

increases or decreases and in a way that is not obtrusive but is observable.  

 A real-time metric for measuring trust in a teammate may have several benefits 

for human-automation and human-robot researchers as well as automation and robot 

designers and engineers. The first would be that a real-time trust metric would allow 

researchers and designers to observe when trust towards the autonomous teammate 

changes (Demir et al., 2021). This observable change in trust could be insightful as it may 

elucidate what quality or feature of the automation led to that change. Secondly, and 

related to the first point, because a real-time trust metric would not be interruptive, 

researchers and designers would observe the fluctuating of trust from the beginning 

through until the end of a task with greater granularity (Huang et al., 2021). Again, this is 

vitally important as observing when trust fluctuates might elucidate what qualities or 

features of the autonomous teammate cause the fluctuations (Tenhundfeld, Demir, & de 

Visser, 2021). As was mentioned earlier, the current study aims to validate a proposed 

real-time trust metric in a teammate that uses interactions as the unit of measure. This is 

discussed further in the next section. 
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 Communication and coordination in Human-Machine Teaming 

As it is indicated in the previous section, real-time objective measures are more 

informative to examine HMT trust. Behavioral and physiological measures play an 

important role in assessing trust from a dynamic perspective. Several studies (Demir et 

al., 2021; Huang et al., 2021; and Tenhundfeld et al., 2021) indicate that team interaction 

based on communication and coordination can give a bigger picture of trust in the light of 

the theory of interactive team cognition (ITC; Cooke et al., 2013). Thus, in the following 

section, first, the importance of ITC is discussed and then talked about the team 

communication and coordination and their connection with trust. 

Interactive-team cognition theory. ITC theory focuses on team interaction 

between the team members (Cooke, Gorman, Myers, & Duran, 2013): from human to 

human and human to technology. ITC is a theory that posits that team cognition is team 

interaction and has three premises: (1) team cognition is a cognitive process, (2) team 

cognition should be measured at the team level, and (3) team cognition is context-

dependent (Cooke et al., 2013). ITC differs from another team cognition theory called 

“Shared Cognition,” which defines the sum of “individual knowledge” as team cognition. 

However, ITC does not use the aggregation of the knowledge of team members as a 

means for producing a team mental model; instead, it analyzes the team cognition at a 

team level using interactions as the unit of analysis, rather than individual team member 

knowledge. Furthermore, as Cooke et al. (2013) point out, there may be other contexts in 

which the shared cognition perspective is more appropriate, such as in smaller teams in 
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which the roles of team members are more homogenous or in team planning and design 

tasks.  

 ITC posits that team cognition is team interaction, and because of this, one could 

logically assume that interactions are important to teams. Indeed, this is the case, and 

historical examples can be cited about what can happen if teammates do not interact 

effectively. For example, groupthink is a psychological phenomenon that encourages 

group members to think collectively rather than individually. This type of thinking can be 

catastrophic, as was demonstrated by the “Challenger Space Shuttle” explosion in 1986 

(Schwartz, 1987; Vaughan, 1990). The explosion was caused by a lack of expansion of 

O-Rings due to below-freezing temperatures causing a leak. Although engineers voiced 

their concerns, the risks were deemed appropriate for launching. Another example of 

groupthink is the failed Bay of Pigs invasion in which Cuban exiles were expecting help 

from U.S. forces against the Cuban army. However, the support never came because of 

miscommunication from President Kennedy’s advisors and a lack of speaking up about 

the dangers of launching an attack. In the end, 200 Cuban exiles were killed, and 1200 

were taken prisoner (Raven, 1998). Clearly, it is not a stretch to say that lack of 

interaction with teammates can lead to death. 

 In the previous studies, team communication and coordination in HAT are 

considered the predictors of team trust, which were briefly discussed above. However, 

the focus of this study is to validate a specific type of communication (anticipatory 

pushing of information) in a team and how it may relate to trust in a team member(s) 

(either from human to human or human to autonomy).  
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Team Communication in human-autonomy teaming. Interactions are vital to 

team success and performance. Because of this, Cooke and colleagues (2010) developed 

metrics based on communication and coordination of team members to assess team 

cognition. These measures will be discussed here briefly. The event-data analysis is a 

measurement that explains the behavioral stream that sets up a chain of events. This 

measurement uses keystrokes, eye/head movements, social interactions, think-aloud 

protocols, and other observable events to explain a series of events. Communication 

analysis looks at who is talking to whom, what is being said, and communication flow to 

reflect interactions within a team. Team situation awareness is a measurement that aims 

to assess the situational awareness of teams by introducing perturbations in a task and 

then seeing how long it takes team members to overcome that perturbation. Cooke and 

colleagues termed their measurement of team situation awareness CAST (Coordinated 

Awareness of Situations by Teams) which is based on the idea that team situation 

awareness is a dynamic process characterized by getting the right information, to the right 

person, at the right time. (Cooke & Gorman, 2009; Gorman, Cooke, & Winner, 2006). 

 Using interactions to measure team cognition is not an entirely new concept. In 

fact, it stems from research done by Cannon-Bowers and colleagues (e.g., Cannon-

Bowers, Salas, & Converse, 1990; Rouse, Cannon-Bowers, & Salas, 1992; Cannon-

Bowers, Salas, & Converse, 1993; Cannon-Bowers & Salas, 2001) regarding shared 

mental models (SMM). SMM can be thought of as shared understanding among 

teammates about their current situation (i.e., the environment, other team members, 

nonspecific others within the shared environment, equipment status, etc.). It is also 
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conceptualized as what each team member’s role and task responsibilities are (Entin & 

Serfaty, 1999). SMM requires team members to be aware of each other’s roles and 

responsibilities as well as what information they require. It is hypothesized that a good 

SMM helps teammates to communicate with each other what resources and information 

they need facilitating good team cohesion and performance (Stout, Cannon-Bowers, 

Salas, & Milanovich, 1999).  

 This anticipation of teammates’ needs regarding information is the independent 

variable of this study. The current study aims to analyze if there exists a correlation 

between anticipatory pushing of information and teammate trust. Anticipatory pushing of 

information is defined as, for the current study, the pushing of information from 

teammate A to teammate B based on teammate A’s anticipation of information that 

teammate B requires. It is hypothesized that the anticipation of information for a 

teammate stems from a good SMM among teammates leading to implicit coordination 

(i.e., coordination that is not preplanned but rather rises out of necessity for a given 

situation). Anticipatory pushing of information can be thought of as an example of 

implicit coordination because one team member is helping another teammate adjust to a 

change, but (1) notifying them of the change in the situation, and (2) possibly 

recommending an action that addresses the change in the situation (McNeese, Demir, 

Cooke, & Myers, 2018). 

Overall, this leads to a better understanding of trust by considering the 

anticipatory pushing of information between the team members. Therefore, the following 

novel definition of trust in a teammate is proposed for the following study in the context 



   

  19 

of action-oriented teams (e.g., command and control): trust in a teammate is the 

expectation that teammates will share anticipated and needed information with each other 

such that the sharing of information facilitates goal accomplishment, safety, and task 

continuation and completion. In a dynamic task environment, it is crucial that teammates 

communicate and coordinate with one another to accomplish the overarching goal(s). 

Teammates in a dynamic task environment need to keep each other safe, not only 

physically but also mentally and emotionally. Sharing information based on anticipated 

needs certainly can help with keeping teammates safe. And finally, information sharing is 

necessary for task continuation as task continuation and completion help the team as a 

whole accomplish its goal(s). And because the current study is focused on information 

sharing as the means by which trust is formed, maintained, and calibrated, a 

corresponding measure of trust has to be implemented. 
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CHAPTER 3 

CURRENT STUDY 

The aim of this thesis is to address the research question, can anticipatory pushing 

be used as a proxy measure for trust during routine and degraded conditions? Traditional 

methods of measuring trust are static, interruptive, and cannot capture fluctuating levels 

of trust in real-time. The experiment discussed later in the methods section in further 

detail mimics a remotely piloted aerial system in a synthetic task environment (RPAS-

STE) to study team communication and other cognitive processes, such as trust in a HAT 

context (Cooke & Shope, 2004). Frequencies of anticipatory pushing captured through 

text-chat in the RPAS-STE are compared against self-reported trust scores. These 

measures are discussed in detail in the data analysis and preliminary results section. The 

hypothesis for this thesis is that higher levels of anticipatory pushing by a teammate will 

positively correlate with a higher level of self-reported trust in that teammate (Weber & 

Aha, 2003). 
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Figure 1. Hypothesis Diagram. Diagram depicting hypothesis that Teammate A pushes 

anticipated information to Teammate B, Teammate B’s trust towards Teammate A will 

increase. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Simulated Testbed and Task Roles 

 The Johnson et al. (2020) study was completed using ground stations in the 

RPAS-STE (Cooke and Shope, 2004). This environment is used to support the roles of 

three heterogenous teammates who have different roles, responsibilities, and have access 

to varied information: (1) a pilot is the synthetic teammate played by a confederate 

experimenter following a script, who is responsible for flying the simulated remotely 

piloted drone (RPA) via monitoring of flight systems and controlling altitude, airspeed, 

and direction of travel; (2) a navigator who is responsible for monitoring and planning 

the route the RPA travels along via waypoints and targets while additionally avoiding 

hazard zones; and (3) the photographer who is responsible for taking good photos of 

targets and monitoring the camera settings. The goal for all three teammates is to work 

Teammate A 

Teammate A pushes anticipated 

information to Teammate B 
Teammate B 

Teammate B Teammate A Teammate B’s trust towards 

Teammate A increases 
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together by communicating with each other in a coordinated manner to take good photos 

of targets similar to a real-life reconnaissance mission that involves using an RPA. In this 

experiment, the wizard of oz paradigm (WoZ) methodology was applied. Accordingly, 

the synthetic teammate in each condition was a trained confederate experimenter, 

meaning that the beliefs of the navigator and photographer about the pilot was the 

synthetic agent and not human. In this case, one synthetic teammate (pilot) 

communicated and coordinated with two human team members in order to achieve the 

team task. Thus, the synthetic teammate was able to communicate via text chat using a 

limited vocabulary. The synthetic teammate followed a script pertaining to behaviors, 

such as piloting the drone and verbal comprehension (Johnson, 2021).  

Figure 2. The Ground Station Consoles in RPAS-STE. Each of the three-team members 

communicated via a touch-screen text-chat interface. 
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Design 

There were three conditions (i.e., between-subjects) and five missions (within-

subjects) in this study. The conditions are coordination training, calibration training, and 

control training. The difference in these conditions is associated with the differences in 

the pre-mission training which is not the focus of this thesis; rather, within-subjects 

manipulation is the main focus of the study The pre-mission training differed in three 

ways: differences in the training slideshow, which provided the participants with 

information regarding the different roles and their respective responsibilities; differences 

in the experimenter’s behavior during a hands-on training mission in which the 

experimenter would use different scripts; and changes in the experimenter playing the 

role of the synthetic teammate (pilot) using the WoZ technique also during the hands-on 

training mission. These differences between the conditions are (Johnson et al., 2020): 

• Coordination Training: The aim of the coordination training condition was to 

train the participants to push information to other teammates in a timely manner. 

Participants were informed about what information they had at their disposal and 

what information the other teammates had during the hands-on training mission 

and the training slideshow. This was the only condition in which the participants 

were informed that the other teammates had access to heterogeneous information 

which means that the three teammates did not have access to the same 

information, so they were reliant on each other to get and provide the information 

that was needed in a timely manner. During the training mission, the synthetic 

teammate (WoZ confederate) would push important information onto a teammate 



   

  24 

earlier than he/she would in other missions and the synthetic teammate would ask 

for information from teammates repeatedly if they failed to deliver it in a timely 

manner. It was believed that this pushing and pulling of information behavior 

exhibited by the synthetic teammate would lead to good coordination because 

previous research (Demir, McNeese, & Cooke, 2017) has indicated that when the 

synthetic teammate stops pushing information, so do the human teammates.  

• Calibration Training: The aim of the calibration training condition was to adjust 

the participant’s trust levels towards the synthetic teammate such that the 

participant would not overtrust the synthetic teammate and would be persistent in 

correcting synthetic teammate failures. The approach during the hands-on training 

mission and the training slideshow was to tell the participant that the synthetic 

teammate was still in the development stage of production and therefore, would 

sometimes malfunction. Examples of malfunctions included delays in responding 

to inquiries made by the participant and completing tasks. During the training, if 

these malfunctions occurred, the experimenter would tell the participant to be 

persistent by, for example, resending the text to the synthetic teammate because 

the synthetic teammate might be undergoing a malfunction at that time. The 

researchers expected the participant to have a calibrated trust level towards the 

synthetic teammate after this training such that the participant would be able to 

identify malfunctions readily and easily in the synthetic teammate’s behaviors. 

This condition is particularly relevant to the current study because in previous 

studies it was observed that human teammates over-trusted the synthetic 
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teammate in the case of autonomy failures (Johnson et al, in press). In the current 

study it may be possible that when anticipatory pushes are not received, instead of 

decreasing trust in the synthetic teammate, it might be given a break and trust may 

not be adjusted. 

• Control Training: The control training was the same training that was used in 

previous research conducted by Demir, McNeese, and Cooke (2019). This 

training included informing the participants of the roles and tasks via the 

interactive training slideshow and a single training mission. A standard script was 

used for the synthetic teammate. Whereas in the other two conditions, there were 

manipulations, there were no such manipulations for the control training 

condition. 

This study consists of between-and within-subjects design manipulations (See 

Appendix A for descriptive statistics for between-subjects effects). However, we only 

consider the within-subjects design manipulations because of the main focus of the current 

study and page limit. There are three between-subjects design effects based on the pre-

mission training, including coordination training, calibration training, and control 

training—all defined by manipulating pre-mission training Demir et., al. 2020). The 

within-subjects design includes routine conditions (i.e., missions with no technology 

failures) and degraded conditions (i.e., missions with technology failures; see Table I). 

Because the focus of this study was to identify the relationship between anticipatory 

pushing of information and trust under routine and degraded conditions in HMT, we 

combined all six types of technology failures together into one condition (see Table 1, 
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Demir et., al. 2020). This allowed us to analyze the data more simply and match the 

dimension of the trust measure, which was obtained via questionnaire once following 

routine conditions and again following degraded conditions (as within-subjects design).  

Table 1  

Technological Failures Within the Degraded Condition (Demir et. al., 2020) 

The current study focuses on trust in a teammate, regardless of whether a teammate 

is a human or machine, and how to measure trust. The goal is to assess whether a proposed 

trust metric is a valid metric for measuring trust in a teammate, using interactions as 

measurement units. The specific interactions being used as the units of measure are 

interactions where information pushing based on anticipated needs occurs. It is assumed 

that as a teammate anticipates another teammates’ needs and pushes information to that 

teammate based on anticipated needs, there will be increased trust towards the teammate 

who pushed the information. This will lead to higher levels of interpersonal trust towards 

that teammate. 

Type Description  

Automation Prevented display of flight information such as airspeed, altitude, or heading to the 

photographer or pilot.  

Automation  A one-way communication cut between photographer and pilot. 

Automation  A gradual power-down and subsequence power-up of all six workstation screens, affecting 

all experimental positions. 

Autonomy Simulated a malfunction in the AI teammate’s capacity for properly responding to messages 

from teammates. 

Autonomy Simulated a hijacking of the RPAS by moving it to an enemy waypoint while the AI agent 

provided deceptive responses. 

Hybrid A combination of both automation and autonomy failures into a single failure. 
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CHAPTER 4 

METHOD 

Participants 

A total of 60 randomly selected participants from Arizona State University and 

surrounding areas completed an approximately 7-hour experiment. The age range of the 

participants was 18 to 33 (Mage = 22.53, SDage = 3.55). The participants were randomly 

assigned into either navigator or photographer roles, and an experimenter played the role 

of the third team member or synthetic pilot. Each team participated in one session that 

lasted for seven hours, and ten teams each participated in one of three experimental 

training conditions: (1) coordination, (2) calibration, and (3) control. 

Procedure 

 Upon arrival to the lab, participants were asked to complete a consent form. 

Afterward, the participants were taken to their workstations, and a partition was used to 

separate the participants. The role of the synthetic teammate (the pilot) was played by a 

trained confederate experimenter who was in a separate room. Next, depending on which 

condition the participants were assigned (calibration training, coordination training, or 

control training) the participants completed a training session which consisted of the 

interactive slideshow explaining the roles and tasks and a 40-minute hands-on training 

mission which helped participants become acquainted with the interface of the 

workstation, their roles, and how to communicate in the RPAS-STE. The experimenter 

used a script to facilitate the participants in their training. A checklist of tasks was also 

given to the participants so they could refer to it regarding their role and how to 
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communicate with the synthetic teammate. To establish a baseline, the first mission did 

not expose the participants to any failures. There was a total of five missions and after the 

first and fifth mission participants were asked to complete questionnaires regarding 

subjective trust and workload. After the fifth mission, the participants were asked to 

complete a demographic questionnaire, they were briefed and monetarily compensated 

for their participation. 

Figure 3. (a) Experimental procedure and (b) WoZ methodology location setting 

(A)       (B) 

Session Order Failure I Failure II 

Training – – 

Mission 1 (Routine) No Failure No Failure 

Pre-Questionnaires (Trust, NASA-TLX Workload) 

Mission 2 (Degraded) Automation Autonomy 

Mission 3 (Degraded) Autonomy Automation 

Mission 4 (Degraded) Hybrid Automation 

Mission 5 (Degraded) Automation Autonomy 

Pre-Questionnaires (Trust, NASA-TLX Workload) 

 

Measures 

 There were several measures used in Johnson et al. (2020), including individual 

and team performance, number of failures overcome, communication flow patterns, team 

coordination, team process ratings, sensor-based metrics (electrocardiogram and facial 

expressions), NASA Task Load Index, task-level modified version of trust, and 

demographic questions. Only the following two measures are considered for this thesis: 

• The trust questionnaire used by Johnson et al. (2020) was a modified version 

of Mayer, Davis, and Schoorman’s (1995) and Mayer and Davis’s (1999) 

questionnaire. The questionnaire used by Johnson et al. (2020) was an 18-item 
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(9-items per teammate) questionnaire that used a 1-5 scoring scale. To obtain 

the means of participants’ reported trust score, 4 of the 18 items were reverse 

scored to align with the scale for the remaining 14 questions. These trust 

scores were compared with frequencies of anticipatory pushing of information 

done by each teammate.  

• Another measure that is used in this study is the anticipatory pushing of 

information. Text-chat data was analyzed to determine how much anticipatory 

pushing of information teammates was doing. Anticipatory pushing of 

information, in this case, refers to text-chat data that shows the pushing of 

information from one teammate to another without it being explicitly asked 

for. As an example of what anticipatory pushing might look like, imagine two 

people moving a couch. The person walking backward might be close to 

running into a wall. The other person might say “Lookout! You’re about to 

run into the wall on your right.” The person walking backward did not ask, but 

the person walking forwards anticipated that the person walking backward 

would need to know that information to avoid injury; therefore, the person 

walking backward might have increased trust in the person walking backward. 

The hypothesis for this thesis is that teammates who exhibit higher 

frequencies of anticipatory pushing of information will have higher reported 

trust scores, given the nature of the task which requires frequent, timely 

communication to succeed. Two experimenters coded 10% of the 

communication behaviors. An interrater reliability test was applied to ensure 
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there was reliability between the 10% data that the two experimenters coded. 

Fleiss’ Kappa showed a good agreement between the experimenters’ 

judgments, κ=0.869 (95% CI, 0.842 to 0.895), p < 0.0001. Therefore, only one 

experimenter coded the rest of the data. 

Table 2  

Example of Anticipatory Pushing 

Sender Message Text Receiver 

Navigator The next waypoint is M-STR after S-

STR. It’s a target waypoint. There is no 

speed restriction, altitude restriction is 

2000-5000, effective radius is 5. 

Pilot 
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CHAPTER 5 

DATA ANALYTICS AND RESULTS 

Pearson Correlation 

A Pearson product-moment correlation coefficient was computed to assess the 

relationship between anticipatory pushing of information and self-reported trust scores in 

the human teammate pairs. From the navigator (DEMPC) to the photographer (PLO) role 

in the routine condition there was no statistical significance (r = - 0.018, n = 28, p = 

0.928). Likewise, from the navigator to the photographer role in the degraded condition 

there was also no statistical significance (r = 0.056, n = 28, p = 0.775). Additionally, 

there was no statistical significance from the photographer to the navigator role in the 

degraded condition (r = 0.165, n = 28, p = 0.402). There was no anticipatory pushing of 

information from the photographer to the navigator in the routine condition thus, no 

correlation coefficient was calculated for this pair. Note, human-autonomy teammate 

pairs were not included in the correlation analysis because there was no anticipatory 

pushing of information from the synthetic teammate pilot to either of the human 

teammates; thus, no correlation coefficient was calculated for these pairs either. Based on 

these findings, the second alternative hypothesis, “as the frequency of anticipatory 

pushing increases from teammate A to teammate B, it will be correlated with an increase 

in trust levels of teammate B towards teammate A” is rejected, and the researcher of the 

current study failed to reject the second null hypothesis “as the frequency of anticipatory 

pushing increases from teammate A to teammate B, it will NOT be correlated with an 

increase in trust levels of teammate B towards teammate A”. Pearson results show some 
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inconsistencies regarding the relationship between anticipatory pushing and trust due to 

the limited modeling because the session was not included in the Pearson correlation. 

Therefore, a stepwise regression analysis was applied to see how the relationships 

between human-human anticipatory pushing of information and trust change across the 

two sessions. 

Stepwise Regression 

Stepwise regression was conducted to predict teammate trust (dependent variable) 

by anticipatory pushing of information (independent variable) in human-human teammate 

pairs under routine to degraded conditions? Stepwise regression with Akaike criteria 

(AIC) was used to determine which teammate pair would be used as a reference variable. 

AIC was chosen for the stepwise regression because it reduces the impact of larger 

models more heavily (e.g., as seen with overfitting data) and tends to prefer smaller 

models. Stepwise regression was chosen because it includes an additional predictor 

variable (i.e., forward selection) and eliminates a predictor variable (i.e., backward 

elimination) already in the model (Weisberg, 2005), thus eliminating the issue regarding 

the accuracy of any individual predictor variable. AIC was also chosen because our 

sample size was limited, and AIC places a moderate penalty on the number of predictor 

variables compared to Bayesian, which places a heavier penalty (Berk, 2008). This 

analysis was calculated in R (R: The R Project for Statistical Computing, n.d.), using the 

MASS packages for stepwise regression (Ripley, 2021) and lm-beta (Behrendt, 2014) for 

adding standardized regression coefficients.  
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In this study, pairs, sessions (degraded and routine), and their interaction with 

each other were used as a set of predictors from which the best subset was obtained for 

predicting a model of trust. Because there is no trust data collected from the “synthetic” 

pilot, only the human teammate pairs (one of our candidate variables) were re-coded 

using dummy variables with four pairs (i.e., the navigator to photographer and vice versa 

for both sessions). In this case, the pair, the navigator to the photographer in Session 2, 

was chosen as a reference group (coded zero, ‘0’) because its mean of anticipatory 

pushing of information (M = 3.54) is the closest mean to the overall mean (M = 3.48, 

which was obtained without the pilot pairs). The closest mean strategy for dummy coding 

was chosen as the reference group because it allows for making statistical comparisons 

with high and low means simpler. Binary coding was used to classify the pairs with their 

respective dummy variables (See Table 3). 

Table 3  

Dummy Coding Sample 

Participant Session 
Anticipatory 

pushing 

Navigator to 

the 

photographer 

in Session 1 

Photographer 

to the 

navigator in 

Session 1 

Navigator to 

photographer 

in Session 2 

(Reference) 

Photographer 

to the 

navigator in 

Session 2 

Trust 

1 1 1 1 0 0 0 3.78 

1 1 0 0 1 0 0 3.67 

1 2 1 0 0 0 0 4.11 

1 2 1 0 0 0 1 3.78 

The model accounted for 10.9% of the variance, F(4, 107) = 3.29, p = 0.013. 

According to these findings, there was a marginal and negative association between 

anticipatory pushing of information from the navigator to the photographer and the 
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photographer’s trust towards the navigator in Session 1, see Table 5.  In Session 2, a 

moderate level of anticipatory pushing of information from the navigator to the 

photographer was positively related to trust from the photographer to navigator (based on 

the model’s significant linear and quadratic terms; 6).  

The reason why there was an opposite association between the anticipatory 

pushing and trust in these two sessions is because of the degraded condition (Session 2) 

had technological failures (i.e., within-subjects effects). That is, Session 2 (i.e., degraded 

condition) had automation failures that required two human team members to interact 

with each other more in comparison to Session 1 to overcome the automation failures. 

Session 1 (i.e., routine condition), however, did not have these failures; thus, there was a 

lesser need for such interactions between the human team members.  

The increase in interaction among the human team members in Session 2 was 

associated with an increase of trust towards the navigator from the photographer, as seen 

by the positive coefficient of the photographer’s trust in the navigator in Session 2. 

However, it is important to note that just because these two factors were observed to be 

correlated with each other in Session 2, it cannot be said that there is a causal relationship 

between anticipatory pushing and trust. 

Table 4 

Stepwise Regression Results 

Variable Term β SE β t p 

Anticipatory pushing from the 

navigator to photographer in 

Session 1 

Linear -0.22 0.13 -1.83 0.069 

Anticipatory pushing from the 

navigator to photographer in 

Session 2  

Linear 0.52 0.15 3.54 0.001 

Quadratic -0.12 0.04 -3.19 0.002 
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The photographer’s trust in the 

navigator in Session 2 
Linear 0.01 0.12 0.07 0.945 
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CHAPTER 6 

DISCUSSION AND LIMITATIONS 

The primary research question of the current study was, can anticipatory pushing 

of information be used as a valid metric to assess trust in a teammate, whether that 

teammate is a human or a machine. This question was further explored by running 

statistical analyses that compared frequencies of anticipatory pushing to self-reported 

trust scores in two different conditions: routine and degraded. The data used for the 

statistical analyses comes from a previous study conducted by Johnson et al. (2020) in 

which the effect of three different training conditions on team communication behaviors 

was examined. Text-chat data from 28 teams across five missions in each team was 

coded to obtain the frequencies of anticipatory pushing of information for each teammate 

pair: the navigator to the photographer, photographer to navigator, photographer to pilot, 

and navigator to pilot. These frequencies of anticipatory pushing of information were 

then compared to self-reported trust scores in two different statistical analyses: Pearson 

product-moment correlation and stepwise regression. The hypothesis for this study was 

that higher levels of anticipatory pushing of information from a teammate would be 

positively correlated with higher levels of self-reported trust in a said teammate. 

The Pearson product-moment correlation was conducted on just the human 

teammate pairs. The correlation analysis results showed no statistically significant 

relationship between anticipatory pushing of information and self-reported trust scores in 

any of the human-teammate pairs. However, in the correlation analysis, the effect of how 

the automation’s failures in the degraded condition might change the relationship of the 
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human teammate pairs was not taken into account. Therefore, a stepwise regression was 

conducted to assess that effect.  

The stepwise regression results show a statistically significant positive correlation 

of anticipatory pushing of information from the navigator to the photographer and the 

photographer’s trust towards the navigator in session two. The stepwise regression results 

also showed a marginally negative correlation of anticipatory pushing of information 

from the navigator to the photographer and the photographer’s trust towards the navigator 

in session one. Overall, the findings from this study support the hypothesis that 

anticipatory pushing of information is positively associated with trust in human-human 

pairs but not human-autonomy pairs. Regarding human-autonomy teams, the possible 

reasons why anticipatory pushing of information might be a valid metric for trust might 

be because of differences in training (i.e., between-subjects effects) and lack of 

anticipation capability of the autonomous pilot. However, there are several limitations to 

consider moving forward with this research. 

  The first limitation to consider is that the data used for the current study came 

from a previous study that was not designed for anticipatory pushing. Although the 

previous study had pushed communications, only some pushes could be considered 

anticipatory. Future research should look at how varying anticipatory pushing levels from 

team members correlate with self-reported trust scores. The other limitation to consider is 

that the AI teammate did not do any anticipatory pushing of information because of its 

scripted role, nor did it contribute any trust-in-human scores. Because of this, it was not 

accounted for in this study. Therefore, it cannot be concluded if there is a difference if the 
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anticipatory pushing of information comes from a human or an autonomous team 

member. Lastly, it is possible that anticipatory pushing of information can have a team-

level effect. In other words, while teammate A might anticipate information that 

teammate B needs and push it to teammate B, teammates C and D might observe this and 

their trust towards teammate A might increase. 

Hence, future research should dig further into how anticipatory pushing of 

information by one team member affects team trust as a whole. In particular, it would be 

interesting to see if anticipatory information pushing from an AI leads to higher trust 

levels in the AI and the other human teammates. 
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Session  Pairs for Anticipatory Pushing Condition Mean Std. Deviation N 

  From navigator to pilot Control 1.0000 1.49071 10 

 Session 1 Calibration .3333 .70711 9 

Coordination 2.1111 2.36878 9 

From navigator to photographer Control .6000 .69921 10 

Calibration .6667 .86603 9 

Coordination 1.1111 1.26930 9 

From photographer to pilot Control .0000 .00000 10 

Calibration .0000 .00000 9 

Coordination .0000 .00000 9 

From photographer to navigator Control .0000 .00000 10 

Calibration .0000 .00000 9 

Coordination .0000 .00000 9 

Session 2 From navigator to pilot Control 2.1740 1.35098 10 

Calibration 1.9900 2.09253 9 

Coordination 4.6111 4.46009 9 

From navigator to photographer Control 1.4500 1.01559 10 

Calibration .7411 .79102 9 

Coordination 2.1667 2.13966 9 

From photographer to pilot Control .0910 .14813 10 

Calibration .0556 .16667 9 

Coordination .5278 .98777 9 

From photographer to navigator Control .5250 .47423 10 

Calibration .0833 .25000 9 

Coordination .5000 1.00000 9 

 

 

Session Pairs Condition Mean Std. Deviation N 

Session 1 Trust from navigator 

toward pilot 

Control 3.1890 .51434 10 

Calibration 3.3078 .45296 9 

Coordination 3.0478 .66537 9 

Trust from navigator 
toward photographer 

Control 3.4180 .44507 10 

Calibration 3.2033 .47721 9 

Coordination 3.1411 .71420 9 

Trust from photographer  Control 3.3970 .76120 10 

toward pilot Calibration 3.2311 .42339 9 

 Coordination 3.2467 .67980 9 

Trust from photographer  Control 3.6000 .50638 10 

toward navigator Calibration 3.4444 .34271 9 

 Coordination 3.5711 .56070 9 

Session 2 Trust from navigator 

toward pilot 

Control 2.8220 .92025 10 

 Calibration 3.3700 .22439 9 

Coordination 2.9511 .67369 9 

Trust from navigator 
toward photographer 

Control 3.6330 .46524 10 

Calibration 3.4867 .36042 9 

Coordination 3.4900 .54072 9 

Trust from photographer  

toward pilot 

Control 2.5580 .86285 10 

Calibration 3.2211 .38322 9 

Coordination 3.0633 .83105 9 

Trust from photographer  

toward navigator 

Control 3.9230 .50897 10 

Calibration 3.1467 .73121 9 

 Coordination 3.6289 .62641 9 
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