
Identifying Sources of Anomalies in Complex Networks

by

Kaustav Basu

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved June 2022 by the
Graduate Supervisory Committee:

Arunabha Sen, Chair
Hasan Davulcu

Huan Liu
Guoliang Xue

ARIZONA STATE UNIVERSITY

August 2022

©2022 Kaustav Basu

All Rights Reserved

ABSTRACT

The problem of monitoring complex networks for the detection of anomalous

behavior is well known. Sensors are usually deployed for the purpose of monitoring

these networks for anomalies and Sensor Placement Optimization (SPO) is the problem

of determining where these sensors should be placed (deployed) in the network. Prior

works have utilized the well known Set Cover formulation in order to determine the

locations where sensors should be placed in the network, so that anomalies can be

effectively detected. However, such works cannot be utilized to address the problem

when the objective is to not only detect the presence of anomalies, but also to detect

(distinguish) the source(s) of the detected anomalies, i.e., uniquely monitoring the

network.

In this dissertation, I attempt to fill in this gap by utilizing the mathematical

concept of Identifying Codes and illustrating how it not only can overcome the

aforementioned limitation, but also it, and its variants, can be utilized to monitor

complex networks modeled from multiple domains. Over the course of this dissertation,

I make key contributions which further enhance the efficacy and applicability of

Identifying Codes as a monitoring strategy. First, I show how Identifying Codes are

superior to not only the Set Cover formulation but also standard graph centrality

metrics, for the purpose of uniquely monitoring complex networks. Second, I study

novel problems such as the budget constrained Identifying Code, scalable Identifying

Code, robust Identifying Code etc., and present algorithms and results for the respective

problems. Third, I present useful Identifying Code results for restricted graph classes

such as Unit Interval Bigraphs and Unit Disc Bigraphs. Finally, I show the universality

of Identifying Codes by applying it to multiple domains.

i

DEDICATION

To my late grandfathers, who would have enjoyed reading this thesis the most.

ii

ACKNOWLEDGMENTS

I am sincerely grateful to my advisor, Prof. Arunabha Sen, for giving me the

opportunity to work with him. His thought clarity, knack of dissecting complex real

world problems into simple mathematical abstractions and patience, are some of the

many attributes of his, which has influenced me greatly over the years. I will always

cherish our countless hours of fruitful discussions (research and non research based)

and looking back, I can clearly see how working closely with Dr. Sen has not only

enhanced my research capabilities, but also made me an overall better person. I am

truly honored to have Profs. Hasan Davulcu, Huan Liu and Guoliang Xue as my

committee members. I am thankful to them for their insights, feedback and their

overall support towards my research. Every interaction with them, be it in class

or during meetings, has been enriching and always left me with means to further

enhance the problems studied in this dissertation. Finally, to Monica, Pamela, Jaya

and Arzuhan, for every way in which you helped me over the past 6 years, thank you.

I had extremely helpful (ex) senior PhD students, none more than Dr. Arindam

Mitra, Dr. Sailik Sengupta and Mr. Sandipan Choudhuri, who have continuously

supported, pushed and critiqued me in equal measures, throughout my arduous PhD

journey. Drs. Anisha Mazumder, Arun Das, Joydeep Banerjee and Chenyang Zhou

were my initial collaborators and working with them was a memorable experience,

albeit included a steep learning curve. Sohini, Suli and Ali all made our weekly

research meetings insightful and I look forward to collaborating with them in the

future. Personally, I was truly fortunate to have an amazing set of friends. Anket,

Anoop and Vinay were the first friends I had in Tempe and they were kind, patient,

made me feel at home and played a major hand in moulding me to be the independent

person I am today. Parijat, Jayeeta, Debatrayee, Srijita, Sanghita and Somnath, made

iii

me realize that even though I was far away from home, there was still something from

home to look forward to in Tempe.

Sumon Chaudhuri, Proyag Pal and Arjunil Pathak have been my brothers-in-arms

and my support system for more than a decade now. They have celebrated with me

at my best, and they have commiserated with me during my worst. Their unwavering

support and friendship was even more appreciated during the pandemic years, when

we came together virtually every weekend, to talk about everything and also nothing.

No amount of thanks will ever be sufficient for these three brilliant, wonderful, kind

hearted and sometimes irritating brothers.

Initially, my parents did not want me to pursue higher studies on the other side

of the planet. They were naturally worried but nonetheless, they acknowledged and

supported my choice. I cannot begin to truly comprehend their sacrifice which allowed

me to pursue my own dreams in a distant foreign land. I could see age catching up

with them, whenever I saw them on a yearly basis, and all of its related hardships,

which made me question my choice to leave them behind on numerous occasions.

Whenever I voiced these concerns to them, they countered with the fact that nothing

would make them happier to see me succeed in life. As I wrap up my PhD career, I

only hope that I have managed to live up to their expectations and made them proud.

I could not have asked for a more understanding, loving, supporting and sometimes

irrational set of parents. Ma and Baba, thank you. To my extended family, I love you

all and thank you for everything that you have done for me over the years.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . ix

LIST OF FIGURES . xi

CHAPTER

1 INTRODUCTION . 1

1.1 Motivation . 2

1.1.1 SRP Transformer Failure . 2

1.1.2 Contamination of Water Distribution Networks 3

1.2 Contributions . 6

1.3 Dissertation Outline . 11

2 BACKGROUND . 15

2.1 Preliminaries . 15

2.1.1 Identifying Codes . 16

2.1.2 Discriminating Codes . 18

2.1.3 Graph Coloring with Seepage . 20

2.1.4 Transformation to Minimum Hitting Set Problem 22

2.2 Why Identifying Codes? . 24

3 HUMAN-HUMAN INTERACTION NETWORKS . 28

3.1 Related Work . 33

3.2 Utilizing Identifying Codes for Resource Reduction 36

3.2.1 Problem Formulation . 36

3.2.2 Problem Solution . 38

3.2.3 Experimental Results and Discussions . 41

3.2.3.1 Datasets . 41

v

CHAPTER Page

3.2.3.2 Results . 43

3.3 Lower Bound for Fault Tolerant Identifying Codes 45

3.3.1 Lower Bound on the Size of k Fault-tolerant Identifying Codes 47

3.4 Multiple Simultaneous Node Activations . 48

3.5 Superiority over Standard Graph Centrality Metrics 51

3.6 Augmented Identifying Codes (AIC) . 57

3.7 Discussions . 61

3.8 Future Research Directions . 62

4 CRITICAL INFRASTRUCTURE NETWORKS . 65

4.1 Related Work . 69

4.2 Monitoring the Health of Critical Power System Equipments 71

4.2.1 Problem Formulation . 76

4.2.2 Problem Solution . 80

4.2.3 Experimental Results and Discussion . 81

4.3 Robust Monitoring of Electric Grid Transformers in Adversarial

Environments . 83

4.3.1 K Differentially Immune MDCS (K-δMDCS) 84

4.3.2 Finding max K for K-δMDCS. 86

4.3.3 Game Theoretic Formulation . 89

4.3.4 Experimental Simulation . 91

4.3.4.1 Effectiveness of Game-Theoretic Equilibrium 92

4.3.4.2 Computational Time for finding C 93

4.4 Future Research Directions . 94

5 ONLINE SOCIAL NETWORKS . 96

vi

CHAPTER Page

5.1 Related Work . 98

5.1.1 Detection Sensors . 98

5.1.2 Epidemiological Models for Source Detection 99

5.1.3 Identifying Codes . 100

5.2 Problem Formulation . 101

5.3 Problem Solution . 104

5.3.1 Optimal Solution . 105

5.3.2 Approximate Solution . 106

5.3.3 Minimal Solution . 106

5.4 Experimental Results . 107

5.4.1 Datasets . 108

5.4.2 Analyses . 109

5.5 Conclusion and Future Research Directions . 115

6 WATER DISTRIBUTION NETWORKS . 118

6.1 Related Work . 120

6.2 From Points on the Plane to Graphs . 123

6.3 Solutions for BCICS Problem . 124

6.3.1 Maximum Set-Group Cover Formulation of BCICS Problem 124

6.3.2 Optimal Solution for the BCICS Problem with ILP 129

6.4 Experimental Results . 131

6.5 Conclusion and Future Directions . 133

7 IDENTIFYING CODE PROBLEMS FOR RESTRICTED GRAPH

CLASSES . 135

7.1 Structural Health Monitoring . 135

vii

CHAPTER Page

7.1.1 Related Work . 141

7.1.2 Problem Formulation . 143

7.1.3 Problem Solution . 148

7.1.3.1 One Dimensional Case . 148

7.1.3.2 Two Dimensional Case . 154

7.1.4 Experimental Results . 156

7.2 Soccer Ball Graph Analysis . 156

7.2.1 Problem Formulation . 160

7.2.2 Upper Bound of MICS of SBG . 162

7.2.3 Lower Bound of MICS of SBG. 169

7.3 Conclusion . 174

8 CONCLUSION . 175

REFERENCES . 178

APPENDIX

A OTHER RESEARCH COLLABORATIONS . 192

viii

LIST OF TABLES

Table Page

1. Table of Notations . 14

2. Nodes with Unique Signatures . 17

3. Nodes with Unique Signatures . 18

4. Nodes with Unique Signatures . 19

5. Sensors Covering Individuals . 26

6. Individual Monitoring by Set Cover Approach . 26

7. Sensors Covering Individuals . 26

8. Individual Monitoring by Identifying Codes . 27

9. MICS Cardinalities for Drug Networks . 44

10. MICS Cardinalities for Terror Networks . 44

11. MDCS Cardinalities for Drug and Terror Bipartite Graphs 45

12. Results for Multiple Simultaneous Activations . 51

13. MICS Cardinalities for Drug Networks . 54

14. MICS Cardinalities for Terror Networks . 54

15. Comparison of MICS with KPP-Neg . 54

16. Comparison of MICS with KPP-Pos . 55

17. Augmented MICS Cardinalities for Drug Networks Corresponding to Various

Centrality Measures . 59

18. Augmented MICS Cardinalities for Terror Networks Corresponding to Vari-

ous Centrality Measures . 59

19. No. of Sensors Needed in IEEE, PEGASE, and Polish Systems for k = 1, 2. 82

20. Game Parameters and Defender’s Reward for Playing the Different Cs and

Ms for the Various Power-Grid Networks. 91

ix

Table Page

21. Minimum (Minimal) Detection Sensors Required. − Indicates that the

Algorithm Did Not Finish Computation within a Specific Time Frame. The

Best Performing MAX and MIN Approach Has Been Marked in Blue and

Purple Respectively. 108

22. CN(Vi) and DS(Vi, Vj) Table for All i, J, 1 ≤ i, J ≤ n; A = {A1, . . . , A55} 124

23. PS(Vi) Table for All i, 1 ≤ i ≤ n . 124

24. IS(Vi) Table for All i, 1 ≤ i ≤ n . 125

25. Example of Creation of an Instance of Maximum Set-Group Cover Problem

from an Instance of Set Cover Problem . 128

26. Optimal BCICS Results for Water Distribution Network Systems 131

27. Points Covered by Each Sensor . 139

28. Sensors Covering Each Point Following Set Cover . 139

29. Sensors Covering Each Point Following Identifying Code 140

30. Computation of the Entries of the Table . 151

31. Table Entries For the Figure . 151

32. 2D MDCS Computation Results . 157

33. Color Assignment at Nodes after Seepage for Class IV ICS 162

34. Color Assignment at Nodes after Seepage in the SBG . 164

35. Color Assignment at Nodes after Seepage for Class II ICS 165

36. Color Assignment at Nodes after Seepage for Class III ICS 168

x

LIST OF FIGURES

Figure Page

1. Transformer Fire at Salt River Project’s Rudd Substation in Avondale, AZ . 3

2. Variation in Width of SNR of SRP Data. 4

3. An Example Undirected Graph . 17

4. An Example Directed Graph . 18

5. An Example Bipartite Graph . 19

6. Identifying Code Overcoming The Limitations of Set Cover 23

7. International Criminal Police Organization . 30

8. Transformer Fire at Salt River Project’s Rudd Substation in Avondale, AZ . 71

9. Variation in Width of SNR as One Moves Closer (in Time) to Instant of

Failure. 73

10. Standard Deviation of Width of SNR as One Moves (Spatially) Away from

the Failing Equipment . 74

11. IEEE 14 Bus Test System . 77

12. Potential Sensor Placement Locations in IEEE 14 Bus Test System 77

13. Bipartite Graph Corresponding to IEEE 14 Bus System with for K = 1 78

14. Bipartite Graph Corresponding to IEEE 14 Bus System with for K = 2 78

15. The IEEE 14-Bus Power Grid Graph Has 4− δMCDS Solutions. 85

16. Game-Matrix for the Dynamic Sensor Activation Problem. 90

17. Time Taken by the Optimal vs. the Greedy Approach for Finding (the K

Values Are Shown above the Plot Points). 93

18. Visual Analysis of The ILP, LPs and Approximation Performances For

FB1-FB10 . 111

xi

Figure Page

19. Visual Analysis of The ILP, Approximation and Minimal Algorithm (MAX)

Performances For FB1-FB10 . 112

20. Visual Analysis of The ILP, Approximation and Minimal Algorithm (MIN)

Performances For FB1-FB10 . 112

21. Visual Analysis of The Approximation and The Two Minimal Approaches

For FB1-FB19 . 113

22. Budgeted Identifying Code Example . 126

23. BCICS Computational Run Time . 133

24. Structural Monitoring of Bridges . 136

25. Potential Sensors and Sensing Locations . 138

26. Bipartite Graph Corresponding to Potential Sensors and Sensing Locations . 139

27. Golden Gate Wireless Sensor Network . 147

28. Bipartite Graph Generated From One Dimensional Points 148

29. Satellites as Sensors and Soccer Ball as a Model of Planet Earth 158

30. Soccer Ball and the Corresponding Graph . 160

31. Examples of Color Assignments Using Motif IIA. 163

32. Examples of Color Assignments Using Motifs IIIA and IV 167

xii

Chapter 1

INTRODUCTION

Complex interactive systems are often modeled as networks (or graphs), such

as the critical infrastructure networks, human-human interaction networks, online

social networks, etc. These “complex networks” are ubiquitous and often require

efficient strategies to monitor its operational behavior. For instance, law enforcement

agencies monitor networks of suspect individuals in order to prevent any terror/drug

related activities, power utility companies monitor their network (or grid) continuously

in order to quickly detect any kind of fault(s), online social networking platforms

religiously monitor user content to quickly detect fake news/cyber bullying/hate speech

propagation, etc. Depending on the domain from which the complex network has been

modeled from, the term “anomalous behavior” can refer to - (i) suspect individuals

becoming active in plotting terror attacks or dealing and distributing drugs, in the

case of human-human interaction networks, (ii) propagation of the fault signals from

power grid entities (substations, buses, transformers, etc.) in critical infrastructure

networks, (iii) propagation of fake news/cyber bullying/hate speech, etc. from users

on social networking platforms. If allowed to manifest for a certain period of time

in the complex network, the anomaly may cause large scale disruption and harm to

society in general. Therefore, it is a fundamental undertaking to not only detect the

manifestations of anomalous behavior(s) in such networks, but also to identify its

source(s), in order to correct the sequence of events that started this anomaly, i.e.,

take preventive measures. Over the course of this thesis, we show how sensors can

be optimally deployed in order to monitor a particular complex network, such that,

1

if any node or entity in the network were to behave anomalously, then the deployed

sensors can uniquely identify which node (entity) triggered the anomalous behavior.

Note that, certain assumptions have been made in most of the problems addressed in

this thesis. Firstly, only one node (or entity) can become active in anomalous behavior

at a given instance of time. Secondly, the signal or “cues” of the activation of a node,

is propagated to all of its neighbors, reasons for which will be detailed for each domain

under study.

1.1 Motivation

Certain real world incidences motivated the work which resulted in the chapters

presented as a part of this thesis. We refer to two incidences - (i) a transformer failure

on Salt River Project’s (SRP) network, and (ii) contamination of water distribution

networks in the United States, Canada and Finland.

1.1.1 SRP Transformer Failure

In the early hours of June 1, 2016, a large power transformer at the Rudd substation

of Salt River Project (SRP), a large utility company in Arizona, suddenly caught

fire (News 2016). A 27,000-gallon tank of mineral oil used as a transformer coolant,

burned and spewed thick smoke over a large area. A few snapshots are illustrated in

Figure 1. The cause of the failure was identified to be bushing failure. Due to the

redundancy present in the system design, as well as the fact that the fire broke out

during low-load conditions (system load is small in early morning), no power outages

2

Figure 1. Transformer fire at Salt River Project’s Rudd substation in Avondale, AZ

occurred. This incident highlights the need for better monitoring techniques for the

critical entities in the network.

SRP shared their operational data leading up to the failure of this transformer for

analysis. A snapshot of the operational data is presented in Figure 2. This snapshot

is a visualization of the variation in the Signal to Noise Ratio (SNR) and it can be

observed that the width of the ratio increased as the transformer headed to failure.

Since causes of such failures gradually build-up over time, the signs of an impending

failure may be observable “days” before the actual failure event. Phasor Measurement

Units (or PMUs in short), are sensors deployed on entities in the power grid and they

continuously produce outputs at a very fast rate (typically 30 samples per second).

When placed near transformers, PMUs, through their measurements, can serve as

sensors to monitor the behavior of the transformer, and capture the anomalous signals

of anomalies before it causes large scale failure(s).

1.1.2 Contamination of Water Distribution Networks

Accidental or incidental contamination of water distribution networks may cause

severe harm to it’s direct consumers. For instance, the spread of contaminated

3

Figure 2. Variation in width of SNR of SRP Data.

4

water affected more than 400,000 residents in Milwaukee in 1993. This was caused

by a microorganism which was transported through the distribution system. In

another incident, contaminated drinking water affected over 2000 people in Walkerton,

Ontario, Canada. Moreover, in 2007, 8,500 people were ill in Nokia, Finland due to a

cross-connection of wastewater into the distribution network (Kauppinen et al. 2019).

Sensors are usually placed in water distribution networks to not only monitor the flow

of water, but also to monitor the presence of contaminants and leaks in the system.

Such anomalies in the water distribution network must quickly be detected and its

origin accurately identified in order to mitigate the spread of contaminants or leaks.

Since complex networks can be modeled as a graph, unique monitoring of nodes in

the network can be accomplished by deploying sensors on all the nodes of the network,

provided the graph admits an Identifying Code (the necessary and sufficient condition

for the same are discussed later). However, each sensor has a cost associated with it

and as a result, it is important to determine the minimum number of entities where

sensors can be placed. Further, given that the anomalous behavior of an entity can

be observed by sensors located within a certain distance of the entity in question,

the propagation of signals (indicating the anomalous behavior), can be utilized to

deploy effective monitoring strategies, so that an alarm is generated before an entity

reaches a critical state. Identifying Code is a mathematical tool that can be used

for monitoring entities in complex network systems. Using this technique, the fewest

number of sensors needed, to enable an operator to uniquely identify the abnormal

entity, can be determined and deployed in the network.

5

1.2 Contributions

The contributions of this dissertation can be summarized below:

• Human-Human Interaction Network Research: In this domain, we show how

the notion of Identifying Codes can be effectively utilized for monitoring illicit

networks such as Drug Trafficking and Terror networks. Here, the sensors are

law enforcement agents who have to be deployed to monitor certain suspect

individuals. Additionally, we provide a lower bound for the robust Identifying

Code problem, specifically targeted for the scenario where the sensors can fail.

Next, we address the problem where we allow multiple simultaneous nodes

to become active in anomalous behavior. Finally, we present a more realistic

version of the Identifying Code problem, called the Augmented Identifying Code

problem and show how our approaches are superior to standard graph centrality

metrics, which have been used in prior studies for monitoring suspect individuals.

• Critical Infrastructure Network Research: A variant of Identifying Code, called

Discriminating Code, is utilized for the problems in this domain. This variant

allows the monitoring of only a subset of the nodes in the network, as opposed

to all the nodes in the network. We show how this approach can be utilized to

uniquely monitor the health of critical power system equipments (High Voltage

Transformers, Generating Stations, Transmission Lines, etc.). Moreover, we

study an adversarial scenario, where we assume the presence of an attacker,

who is trying to prevent the unique monitoring of the critical infrastructure

equipments by disabling a sensor.

• Online Social Network Research: In this domain, we study the long standing

problem of misinformation propagation. In our previous works, we utilized an

6

Integer Linear Program to determine the optimal number of sensors required

for uniquely monitoring the network. However, such approaches fail in this

context due to the sheer size of the online social network. As a result, novel

approximation algorithms and heuristics were designed and presented. We

showed that our heuristics provided results which were comparable to the

approximation algorithm, all the while taking a fraction of the time taken by

the approximation algorithm.

• Water Distribution Network Research: Here, we address the problem of moni-

toring the water distribution network for contamination and leaks. Our study

was inspired from the Battle of the Water Sensor Networks challenge (Ostfeld

et al. 2008). We present a novel budget constraint version of the Identifying

Code problem, where the operator of the complex network cannot place more

than k sensors in the network. The goal here is to maximize the number of

nodes being uniquely monitored, as uniquely monitoring the entire network is

not possible. Moreover, we show that a constant factor approximation algorithm

is not possible for the problem unless P = NP.

• Identifying Code Problems for Restricted Graph Classes : We study the problem

of monitoring points of interest in one and two dimensions. We show how this

can be modeled by Unit Interval Bigraphs and Unit Disc Bigraphs respectively.

For the former, we provide a novel polynomial time optimal algorithm utilizing

Dynamic Programming. For the latter we provide an Integer Linear Program

for the optimal computation for the minimum number of sensors required to

uniquely monitor the points of interest. Additionally, we study the problem of

monitoring the surface of the earth, via satellites, in this section. We model the

7

earth using a soccer ball and present various results, such as upper and lower

bounds for the graph created from this soccer ball.

Several studies from the aforementioned research resulted in publications in peer

reviewed workshops/conferences/journals and are listed below:

• Human-Human Interaction Network Research:

1. Arunabha Sen et al. 2018. “Terrorist Network Monitoring with Identify-

ing Code.” In International Conference on Social Computing, Behavioral-

Cultural Modeling and Prediction and Behavior Representation in Modeling

and Simulation, 329–339. Springer

2. Kaustav Basu, Chenyang Zhou, et al. 2018. “A novel graph analytic ap-

proach to monitor terrorist networks.” In 2018 IEEE International Confer-

ence on Social Computing & Networking (SocialCom), 1159–1166. IEEE

3. Kaustav Basu and Arunabha Sen. 2019a. “Monitoring individuals in drug

trafficking organizations: a social network analysis.” In 2019 IEEE/ACM

International Conference on Advances in Social Networks Analysis and

Mining (ASONAM), 480–483. IEEE

4. Kaustav Basu and Arunabha Sen. 2019b. “On augmented identifying codes

for monitoring drug trafficking organizations.” In 2019 IEEE/ACM Inter-

national Conference on Advances in Social Networks Analysis and Mining

(ASONAM), 1136–1139. IEEE

5. Kaustav Basu and Arunabha Sen. 2021b. “Identifying individuals associ-

ated with organized criminal networks: a social network analysis.” Social

Networks 64:42–54

• Critical Infrastructure Network Research:

8

1. Kaustav Basu, Malhar Padhee, et al. 2018. “Health Monitoring of Critical

Power System Equipments Using Identifying Codes.” In International

Conference on Critical Information Infrastructures Security, 29–41. Springer

2. Sailik Sengupta, Kaustav Basu, et al. 2020. “Moving target defense for

robust monitoring of electric grid transformers in adversarial environments.”

In International Conference on Decision and Game Theory for Security,

241–253. Springer

• Online Social Network Research:

1. Kaustav Basu. 2019. “Identification of the Source (s) of Misinformation

Propagation Utilizing Identifying Codes.” In Companion Proceedings of

The 2019 World Wide Web Conference, 7–11

2. Kaustav Basu and Arunabha Sen. 2021a. “Epidemiological Model Indepen-

dent Misinformation Source Identification”

• Water Distribution Network Research:

1. Kaustav Basu and Arunabha Sen. 2022. “Sensor Network Design for

Uniquely Identifying Sources of Contamination in Water Distribution Net-

works”

• Identifying Code Problems for Restricted Graph Classes :

1. Kaustav Basu et al. 2019. “Sensor Networks for Structural Health Moni-

toring of Critical Infrastructures Using Identifying Codes.” In 2019 15th

International Conference on the Design of Reliable Communication Net-

works (DRCN), 43–50. IEEE

2. Arunabha Sen et al. 2019. “On upper and lower bounds of identifying

code set for soccer ball graph with application to satellite deployment.” In

9

Proceedings of the 20th International Conference on Distributed Computing

and Networking, 307–316. ACM

I was fortunate to have collaborated on other studies during my time as PhD

student at ASU. Some of them are presented below:

1. Joydeep Banerjee et al. 2017. “Finding K Contingency List in Power Networks

using a New Model of Dependency.” arXiv preprint arXiv:1705.07410

2. Joydeep Banerjee, Kaustav Basu, and Arunabha Sen. 2018a. “Analysing ro-

bustness in intra-dependent and inter-dependent networks using a new model

of interdependency.” International Journal of Critical Infrastructures 14 (2):

156–181

3. Joydeep Banerjee, Kaustav Basu, and Arunabha Sen. 2018b. “On hardening

problems in critical infrastructure systems.” International Journal of Critical

Infrastructure Protection 23:49–67

4. Malhar Padhee et al. 2018. “A new model to analyze power system dependencies.”

In 2018 IEEE Texas Power and Energy Conference (TPEC), 1–6. IEEE

5. Chenyang Zhou et al. 2018. “Relay node placement under budget constraint.”

In Proceedings of the 19th International Conference on Distributed Computing

and Networking, 1–11

6. Kaustav Basu, Sandipan Choudhuri, et al. 2018. “Insights from statistical analysis

of opioid data.” arXiv preprint arXiv:1805.05509

7. Sandipan Choudhuri et al. 2019. “Predicting Future Opioid Incidences Today.”

arXiv preprint arXiv:1906.08891

8. Arunabha Sen and Kaustav Basu. 2019. “On connectivity of interdependent

networks.” In 2019 IEEE Global Communications Conference (GLOBECOM),

1–6. IEEE

10

9. Arunabha Sen, Sandipan Choudhuri, and Kaustav Basu. 2020. “Structural

Dependency Aware Service Chain Mapping for Network Function Virtualization.”

In 2020 16th International Conference on the Design of Reliable Communication

Networks DRCN 2020, 1–6. IEEE

10. Arunaba Sen et al. 2020. “On the Number of Steiner Trees in a Graph.” In

2020 16th International Conference on the Design of Reliable Communication

Networks DRCN 2020, 1–5. IEEE

11. Malhar Padhee et al. 2020. “Identifying Unique Power System Signatures for

Determining Vulnerability of Critical Power System Assets.” ACM SIGMETRICS

Performance Evaluation Review 47 (4): 8–11

12. A Sen et al. 2021. “Optimal Cost Network Design for Bounded Delay Data

Transfer from PMU to Control Center.” In 2021 IEEE Global Communications

Conference (GLOBECOM), 1–6. IEEE

1.3 Dissertation Outline

The chapters presented in this thesis broadly covers four application domain areas

– human-human interaction networks, critical infrastructure networks, online social

networks and water distribution networks. Apart from these broad domains, we also

study the Identifying Code problem for restricted graph classes. More specifically, the

organization of the chapters are as follows.

Chapter 2 covers the mathematical formulations of the Identifying Code problem

and its variant, the Discriminating Code problem. The necessary and sufficient

conditions for a graph to exhibit an Identifying Code is also discussed. Two approaches

are presented which have been used in the later chapters to determine the minimum

11

Identifying Code set of a network (or graph). Finally, the rationale for utilizing

Identifying Code, as opposed to other monitoring strategies such as the Set Cover

based formulation, is provided.

The analyses on Human-Human Interaction Networks are present in Chapter 3.

Here, we not only show how Identifying Codes can be utilized for uniquely monitoring

the network of suspect individuals but also provide useful results such as the lower

bound of k-fault tolerant Identifying Codes. Moreover, we present algorithms to

identify two nodes engaging in simultaneous anomalous behavior. We discuss a novel

variant of the Identifying Codes problem, called the Augmented Identifying Codes,

and show how all our approaches are superior than standard graph centrality metrics,

in the case of uniquely monitoring a given network.

Chapter 4 discusses the problem of uniquely monitoring critical power system

equipments. The equipment of interest in our study is the High Voltage Transformer.

We show how the power grid system can be modeled as a graph and utilize the

Discriminating Code problem, a variant of Identifying Codes, for uniquely monitoring

the operational health of the transformers. Additionally, we consider an adversarial

scenario, where an attacker tries to disable the sensors deployed in the network so

that the defender (the power utility companies) cannot uniquely monitor the network

for anomalous behavior.

Misinformation propagation and identifying users engaged in such activities has

been an important research topic over the past decade. In Chapter 5, we show how

Identifying Codes can be utilized for identifying such users. We base our work on

epidemiological models, which have been used in order to deploy sensors in the social

network graph. We illustrate how our approach is independent of underlying models

(such as SI, SIR, SIRS, etc.) and present a novel transformation of the Identifying

12

Code problem to the Hitting Set problem. Finally, we present a scalable heuristic

which scales better than the approximation algorithm, in order to handle the larger

graph instances in the social network domain.

Chapter 6 studies identifying locations of contamination and leaks in water distribu-

tion networks. Here, we present a novel budget constrained version of the Identifying

Code problem, show how this problem is a generalization of the Max k-Cover problem

and that no constant factor approximation algorithm can exist for this problem, unless

P = NP.

We study the Identifying Code problem for restricted graph classes (Unit Interval

Bigraph, Unit Disc Bigraph and Soccer Ball Graph) in Chapter 7, with regards to

monitoring points/locations of interest. We present optimal solution techniques and

discuss the upper and lower bounds of the minimum Identifying Code set in the case

of the soccer ball graph.

Chapter 8 concludes this thesis and discusses the overall objectives of the problems

addressed in it. Moreover, we highlight certain problems which can be examined and

further pursed.

The following table highlights the numerous notations utilized in this dissertation,

for the ease of understanding.

13

G = (V,E) A graph with the vertex set as V and edge set as E
N(v) Neighborhood set of node v
N+[v] Closed neighborhood set of node v, i.e., N(v) ∪ v
N out(v) Out-neighborhood set of node v
N out[v] Closed out-neighborhood set of node v, i.e., N out(v) ∪ v⊕

Symmetric difference operator
µ Mean or expected value
σ Standard deviation

Nk(v) k-hop neighbors of node v
D Defender
A Attacker
AD Pure strategy or the defender’s set of actions
AA Pure strategy or the attacker’s set of actions
RD Defender’s utility or rewards
RA Attacker’s utility or rewards
Gudg A unit disc graph
Gcbp A complete bipartite graph
Gig An interval graph
Pi,j j-th pentagonal node on Layer i
Hi,j j-th hexagonal node on Layer i

Table 1. Table of Notations

14

Chapter 2

BACKGROUND

This chapter aims to present to the reader the notion of Identifying Codes and

how it can be utilized to uniquely identify anomalies in a complex network. The

mathematical concepts of Identifying Codes and its variant, Discriminating Codes,

are defined and the necessary and sufficient conditions for the existence of both, are

discussed. Moreover, two novel approaches are presented, which have been utilized

in later chapters, to determine the Minimum Identifying Code Set (MICS), and the

Minimum Discriminating Code Set (MDCS), for a given graph, which admitted an

Identifying Code (or a Discriminating Code). Finally, to conclude this chapter, the

necessity of Identifying Codes for uniquely monitoring a complex network is presented.

2.1 Preliminaries

A majority of the research done on Identifying Codes is analytical in nature

(Karpovsky, Chakrabarty, and Levitin 1998; Laifenfeld and Trachtenberg 2008; Irene

Charon, Hudry, and Lobstein 2002; Irène Charon, Hudry, and Lobstein 2003). Sensor

placement optimization for the unique identification of the nodes in a graph was first

introduced as Identifying Codes in (Karpovsky, Chakrabarty, and Levitin 1998), and

provided results for special types of graphs, such as binary cube graphs and trees.

The NP Completeness for the MICS problem was proved in (Irène Charon, Hudry,

and Lobstein 2003), following a reduction from the 3-SAT problem. Polynomial

time approximation algorithms were provided in (Laifenfeld and Trachtenberg 2008;

15

Gravier, Klasing, and Moncel 2008; Suomela 2007) were it was shown that the MICS

problem cannot be approximated to a better factor than O(log n), where n denotes

the number of vertices in the graph.

2.1.1 Identifying Codes

Throughout the subsequent chapters in the thesis, the Identifying Code problem

has been defined, for both undirected and directed graphs, as follows -

Definition 2.1.1. A vertex set V ′ of an undirected graph G = (V,E) is defined as

the Identifying Code Set (ICS) for the vertex set V , if for all v ∈ V , N+[v] ∩ V ′ is

unique where, N+[v] = v ∪N(v) and N(v) represents the set of nodes adjacent to v

in G = (V,E). The Minimum Identifying Code Set (MICS) problem is to find the

Identifying Code Set of smallest cardinality.

The vertices of the set V ′ may be viewed as alphabets of the code, and the string

made up by the concatenation of the alphabets of N+[v] ∩ V ′, may be viewed as the

unique “code” (or signature) for the node v. This can be better understood with the

help of the following example. Consider the graph illustrated in Figure 3. In this

graph V ′ = {v1, v2, v3, v4} is an ICS, as it can be seen from Table 2 that N+[v] ∩ V ′

is unique for all v ∈ V . From the table, it can be seen that the code for node v1 is

v1, the code for v5 is v1, v2, the code for v10 is v3, v4, etc. In other words, if node v5

were to engage in anomalous behavior, then sensors placed at v1, v2 will “sense” this

anomaly and uniquely identify node v5.

16

Figure 3. An example undirected graph

N+[v1] ∩ V ′ = {v1} N+[v2] ∩ V ′ = {v2}
N+[v3] ∩ V ′ = {v3} N+[v4] ∩ V ′ = {v4}

N+[v5] ∩ V ′ = {v1, v2} N+[v6] ∩ V ′ = {v1, v3}
N+[v7] ∩ V ′ = {v1, v4} N+[v8] ∩ V ′ = {v2, v3}
N+[v9] ∩ V ′ = {v2, v4} N+[v10] ∩ V ′ = {v3, v4}

Table 2. Nodes with unique signatures

Definition 2.1.2. Two nodes u, v ∈ V are said to be “twins” if N+[u] = N+[v] in an

undirected graph.

Observation: Identifying Code Set (ICS) of an undirected graph G = (V,E) does not

exist, if for any two nodes u, v ∈ V , N+[u] = N+[v]. This phenomenon is popularly

known as “twin” vertices, in standard graph theoretical literature (Charon et al. 2007).

In other words, the necessary and sufficient condition for an undirected network to

have an Identifying Code is that the network be “twin-free”.

Definition 2.1.3. A vertex set V ′ of a directed graph G = (V,E) is defined as the

Identifying Code Set (ICS) for the vertex set V , if for all v ∈ V , N out[v]∩V ′ is unique

where, N out[v] = v ∪N out(v) and N out(v) represents the set of out-neighbors of v in

G = (V,E). As before, the Minimum Identifying Code Set (MICS) problem is to find

the Identifying Code Set of smallest cardinality.

17

Figure 4. An example directed graph

N out[v1] ∩ V ′ = {v3, v4} N out[v2] ∩ V ′ = {v2}
N out[v3] ∩ V ′ = {v2, v3} N out[v4] ∩ V ′ = {v4, v5}
N out[v5] ∩ V ′ = {v5}

Table 3. Nodes with unique signatures

Definition 2.1.4. Two nodes u, v ∈ V are said to be “twins” if N out[v] = N out[u] in a

directed graph.

Observation: Similar to the case of undirected graphs, Identifying Code Set (ICS)

of a directed graph G = (V,E) does not exist, if any two nodes u, v ∈ V are “twins”.

Consider the graph illustrated in Figure 4. In this graph V ′ = {v2, v3, v4, v5} is an

ICS, as it can be seen from Table 3 that N out[v] ∩ V ′ is unique for all v ∈ V .

2.1.2 Discriminating Codes

The Discriminating Code problem was first studied in (Charbit et al. 2006; Charbit

et al. 2008; Charon et al. 2008) and can be defined as follows -

Definition 2.1.5. Given a bipartite graph G = (V1 ∪ V2, E), the subset V ′
2 ⊆ V2, is

defined as a Discriminating Code Set (DCS) for the vertex set V1, if ∀v ∈ V1, N(v)∩V ′
2

18

Figure 5. An example bipartite graph

N(v1) ∩ V ′
2 = {v5}

N(v2) ∩ V ′
2 = {v5, v7}

N(v3) ∩ V ′
2 = {v7}

Table 4. Nodes with unique signatures

is unique where, N(v) ⊆ V2 represents the set of nodes adjacent to v ∈ V1. The

Minimum Discriminating Code Set (MDCS) problem is to find the DCS of smallest

cardinality.

Thus, the Discriminating Code problem is a restricted version of the Identifying

Code problem, where the graph is bipartite. Simply stated, the monitoring problem in

such a scenario, is to obtain unique signatures for nodes in V1 using a subset of the

nodes in V2 as potential locations for sensor placement. We illustrate this with the help

of the an example, shown in Figure 5. Here, V1 = {v1, v2, v3}, V2 = {v4, v5, v6, v7, v8}

and the DCS V ′
2 = {v5, v7}, as ∀v ∈ V1, N(v) ∩ V ′

2 is unique, as shown in Table 4.

Observation: Discriminating Code Set (DCS) of a bipartite graph G = (V1 ∪ V2, E)

does not exist if any two nodes u, v ∈ V1 are “twins”. As mentioned previously, the

necessary and sufficient condition for a bipartite network to have a Discriminating

Code is that the network be “twin-free”.

19

2.1.3 Graph Coloring with Seepage

The MICS and MDCS computation problem can be viewed as a variation of the

standard Graph Coloring problem. We will refer to this version as the Graph Coloring

with Seepage (GCS) problem. In the standard graph coloring problem, when a color is

assigned (or injected) to a node, only that node is colored. The goal of the standard

graph coloring problem to use as few distinct colors as possible such that (i) every

node receives a color, and (ii) no two adjacent nodes of the graph have the same color.

In the GCS problem, when a color is assigned (or injected) to a node, not only that

node receives the color, the color also seeps into all the adjoining nodes. As a node vi

may be adjacent to two other nodes vj and vk in the graph, if the color red is injected

to vj, not only will vj become red, but also vi will become red as it is adjacent to vj.

Now if the color blue is injected to vk, not only will vk become blue, but also, the

color blue will seep in to vi as it is adjacent vk. Since vi was already colored red (due

to seepage from vj), after color seepage (blue) from vk, its color will be a combination

of red and blue, i.e., purple. At this point all three nodes vi, vj and vk have a color

and all of them have distinct colors (purple, red and blue respectively). The goal of

the GCS problem is to inject colors to as few nodes as possible, such that (i) every

node receives a color, and (ii) no two nodes of the graph have the same color.

Suppose that the node set V ′ is an ICS of of a graph G = (V,E) and |V ′| = p. If

p distinct colors are injected to the nodes of V ′ (one distinct color to one node of V ′),

then as by the definition of ICS for all v ∈ V , if N+[v] ∩ V ′ is unique, all nodes of

G = (V,E) will be colored and no two nodes will have the same color. Accordingly,

computation of the MICS problem is equivalent to computation of the GCS problem.

Similar arguments also hold for computation of the MDCS problem. Assume that

20

the node set V ′
2 is a DCS of of a graph G = (V1 ∪ V2, E) and |V ′

2 | = p. In this case, if

p distinct colors are injected to the nodes of V ′
2 (one distinct color to one node of V ′

2),

then as by the definition of DCS for all v ∈ V1 if N(v)∩ V ′
2 is unique, all nodes v ∈ V1

will be colored and no two nodes will have the same color.

To compute the MICS using GCS, we must first understand the subtle difference

between the flow of “active” signals (or information) and color seepage. The direc-

tion of color seepage is opposite to the direction of the flow of “active” signals (or

information). For instance, consider the undirected graph in Figure 3. Following the

GCS methodology, colors are injected in nodes v1, v2, v3, v4 (deploying law enforcement

agents to monitor these individuals). The injection of colors in these four nodes

ensures that all the ten nodes in the graph receive a unique color via seepage, as is

observed in Table 2. For example, colors injected at nodes v1, v2 seep into v5, color

injected at v3 seeps into v6, v8, v10, and so on, resulting in unique colors for all the

nodes in the graph. Now, if v5 becomes “active”, then the signal of such activity would

flow to all the neighbors of v5. In other words, the neighbors of v5 would become

aware of v5’s activity (which includes v1, v2), and v5 would be uniquely identified,

when the signal reaches nodes v1 and v2.

In the case of a directed graph, the direction of the edge signifies the direction

of “active” signal flow, and as before, the direction of color seepage is opposite to

that of signal flow. For instance, consider the directed graph in Figure 4. The

MICS is v2, v3, v4, v5. The activity signal of v1 would flow from v1 to v3 and v4 (the

out-neighbors of v1). Colors injected at nodes v3 and v4 would seep into node v1, and

thus nodes v3 and v4 would enable the unique identification of v1, from which the

signal originated. The unique identification of all the other nodes in the graph can be

seen in the Table 3.

21

2.1.4 Transformation to Minimum Hitting Set Problem

Apart from the GCS viewpoint discussed previously, we can also view the MICS

problem as a Minimum Hitting Set (MHS) problem. This transformation allows us

to utilize the well known greedy algorithm of the MHS problem in order to provide

the approximation bound for the MICS problem. Interestingly, previous research

efforts which determined the approximation bounds for the MICS problem explored

convoluted routes, such as determining entropy, disjoint sets, etc. (Xiao, Hadjicostis,

and Thulasiraman 2006; Gravier, Klasing, and Moncel 2008). The greedy MHS

approximation algorithm, on the other hand, is easier to understand and implement.

It may be noted that the greedy heuristic for the HS problem provides a O(log m)

factor performance bound, where m is the number of elements in the collection set

(Vazirani 2013). In the following, we define the minimum HS problem -

Definition 2.1.6. Given a universal set U = {u1, ..., un}, and a collection set S =

{S1, ...,Sm}, where Si ∈ U , find the smallest subset U ′ ⊆ U , which hits every set

Si ∈ S.

Definition 2.1.7. Closed Neighborhood of vi = CN(vi) = N+(vi), where N+(vi) =

N(vi) ∪ {vi}, where N(vi) denotes the neighborhood of the node vi.

Definition 2.1.8. Distinguishing Set for vi and vj = DS(vi, vj) = CN(vi)
⊕

CN(vj).
⊕

denotes the symmetric difference operation between the closed neighborhood sets

CN(vi) and CNv(j). In other words, picking at least one element from the set

DS(vi, vj) will distinguish between nodes vi and vj.

Definition 2.1.9. Universal Set U = {v1, ..., vn}, where each element vi is a node in

the complex network graph and Collection Set S = ∪n
i=1[CN(vi) ∪n

j=1 {DS(vi, vj)}].

22

(a) Suspect Individual Network (b) Detection Sensors to Detect Anomaly

(c) Set Cover Based Covering Fails to Distin-
guish Between Users u5 and u8

(d) Identifying Code Based Covering Distin-
guishes Each Node in The Graph

Figure 6. Identifying Code Overcoming The Limitations of Set Cover

Our objective is to select the minimum number of elements from U , such that all

the elements in S are hit. Hitting all the elements in S ensures that, (i) all CN(vi) sets

are hit, which in turn ensures that all nodes in the graph are monitored (a detection

sensor has been placed in the closed neighborhood of vi), and (ii) all DS(vi, vj) sets

are hit, which in turn ensures that all the nodes in the graph are uniquely monitored.

Thus the computation of this variant of the minimum HS problem is equivalent to

solving the MICS problem.

23

2.2 Why Identifying Codes?

The research objective of this thesis is to determine a subset of the nodes of

the graph, on which detection sensors can be placed, using which we can uniquely

monitor all the nodes in the graph for anomalous behaviors. Essentially, our problem

is a coverage problem and in order to uniquely cover all the nodes in the graph, we

need to optimize the locations (or nodes) where we can deploy or place the detection

sensors, i.e., in other words, sensor placement optimization. Numerous studies on

sensor placement optimization problem follow the Set Cover (SC) formulation to find

a solution (Wang 2011; Cardei and Wu 2006; Kleinberg and Tardos 2006). The SC

approach in this domain can be modeled as follows

Definition 2.2.1. The universal set U = {u1, u2, ..., un}, in which each ui corresponds

to a node in the graph. The collection set S = {U ′
1,U ′

2, ...,U ′
n} contains n subsets

of the universal set where each subset Ui corresponds to the closed neighborhood of

the node i (closed neighborhood includes the node i in its neighborhood set). The

objective here is to select a subset S ′ ⊆ S of minimum cardinality, which covers all

the elements in the universal set.

Consider the following example, where law enforcement agents are tracking a

given network of suspect individuals. A human-human interaction network, with

8 individuals is illustrated in Figure 6a. Edges signify friendship. The objective

here is to monitor all the 8 individuals, and identify those engaging in suspected

terror related activities. One trivial approach to realize this goal is to monitor the

behavior of all the individuals, as shown in Figure 6b. As mentioned previously, for an

individual ui in the network, if ui were to become active in terror related activities, its

24

friends/associates would have some idea about it. Generally speaking, if a node in the

network were to behave anomalously, then it’s neighborhood would be “aware” of this

anomaly. Moreover, only one individual can become active in anomalous activities at

a given time step.

In this example, it can be verified that if the law enforcement agency monitoring

or tracking this network, deploys detection sensors (law enforcement agents) on

individuals u3, u7, u8 (an optimal set cover for this graph), all the individuals can be

monitored for anomalous behavior by least one sensor (agent), as is illustrated in

Table 5. In Table 6, we present the sensors that are actually monitoring the individuals

u1 − u8, an inverse of Table 5. The drawback of the SC approach for the optimal

sensor placement problem is that, it may fail to uniquely identify an individual, who

initiated the anomalous behavior. From Figure 6c it is evident that if individual u5

were to become active in anomalous behavior, then the sensor placed on u8 would be

activated as, users u5 and u8 are friends with each other. Additionally, it is trivial

to note that if u8 behaves anomalously, then the sensor placed at u8 will also get

triggered. Note that, the sensor gets triggered if, (i) u5 engages in anomalous behavior,

(ii) u8 engages in anomalous behavior, and (iii) both u5 and u8 engage in anomalous

behavior. In other words, following the SC approach and placing detection sensors on

u3, u7, u8, the law enforcement agency will not be able to uniquely distinguish between

u5 and u8. More such violations (denoted by *) are presented in Table 6. It can be

seen that u1 and u6 are sensed by sensors placed at u7 and u8, and u2 and u4 are

sensed by sensors placed at u3 and u8. The implication of this is that if sensors u7

and u8 get triggered, then u1 and u6 cannot be distinguished.

25

Sensor Individuals
Location Sensed

u3 u2, u3, u4

u7 u1, u6, u7

u8 u1, u2, u4, u5, u6, u8

Table 5. Sensors Covering Individuals

Individuals Sensor Individuals Sensor
Sensed Location Sensed Location
u1 u7, u8* u5 u8***
u2 u3, u8** u6 u7, u8*
u3 u3 u7 u7

u4 u3, u8** u8 u8***

Table 6. Individual Monitoring by Set Cover Approach

Sensor Individuals
Location Sensed

u4 u3, u4, u8

u6 u5, u6, u7, u8

u7 u1, u6, u7

u8 u1, u2, u4, u5, u6, u8

Table 7. Sensors Covering Individuals

This failure to uniquely identify an individual, can be overcome by deployment

of additional detection sensors. Suppose that detection sensors are now deployed to

u4, u6, u7, u8 instead of u3, u7, u8. Again, this placement covers all of the nodes in the

graph, as is illustrated in Table 7. Now, if u5 or u8 engage in anomalous behavior, then

their behavior would disseminate to sensors placed at u8 and u4, u6, u8 respectively.

Thus, the law enforcement agency can now uniquely distinguish between the two

individuals. This new sensor deployment strategy ensures that the violations listed in

Table 6 can be overcome, and can be verified with the help of Table 8. Observe that

the deployment of four sensors, instead of three, alleviates the problem encountered

26

Individuals Sensor Individuals Sensor
Sensed Location Sensed Location
u1 u7, u8 u5 u6, u8

u2 u8 u6 u6, u7, u8

u3 u4 u7 u6, u7

u4 u4, u8 u8 u4, u6, u8

Table 8. Individual Monitoring by Identifying Codes

in the previous deployment, by ensuring unique identification of individuals behaving

anomalously, as illustrated in Figure 6d.

To conclude, Identifying Codes based monitoring strategies deploy more sensors

than its Set Cover counterpart. This not only ensures monitoring coverage of the

entire network, but also unique coverage, which allows complex network operators to

uniquely identify nodes in the network, who initiate anomalous behavior.

27

Chapter 3

HUMAN-HUMAN INTERACTION NETWORKS

The past couple of decades has witnessed an unprecedented rise in organized crime.

This rise, coupled with increasing intricacies of organized crime, poses significant and

evolving challenges for international law enforcement authorities. With the passage of

time, authorities such as Interpol, have discovered that modern criminal organizations

have adopted a networked structure, a shift away from the traditional hierarchical

structure. Fluid networked structures make it difficult for the authorities to apprehend

individuals associated with each network, and consequently, to disrupt the operations

of the network. Various research groups have analyzed prison/courtroom transcripts,

to create an organizational structure of known individuals, or a social network of

individuals, suspected to be a part of a major drug/terrorist organization. These social

networks have been studied fairly extensively from network centrality perspectives,

to understand the role of suspect individuals in the network. With drug and terror

offenses increasing globally, the list of suspect individuals has also been growing over

the past decade. As it takes significant amount of technical and human resources to

monitor a suspect, an increasing list entails higher resource requirements on the part

of the authorities, and monitoring all the suspects soon becomes an impossible task.

In this chapter, the primary focus is on two types of networks - (i) Drug Trafficking

Organizations (DTOs), and (ii) Terrorist Organizations (TOs).

In this chapter, we elaborate on five novel sub-problems pertaining to the problem

of uniquely monitoring such networks. We first show how Identifying Codes can

be utilized for monitoring such networks as well as achieve significant reduction in

28

resources (for e.g., the number of agents deployed to monitor the network). Next,

we address the problem of sensor failure and present results for k-Fault Tolerant

Identifying Codes. Recall that, one assumption made thus far, was that we only

considered single node activations at a given instance of time. In other words, the

scenario of simultaneous multiple nodes being active in anomalous behavior was

not considered. Here, we present approaches for the case where two nodes can

simultaneously become active in anomalous behavior. Prior works focused on using

graph centrality metrics as a means to monitor the “important” individuals in the

network. In this chapter, we show how Identifying Codes based monitoring strategies

are superior to those based on the standard graph centrality metrics. Finally, we

present the Augmented Identifying Code problem, which follows from the standard

Identifying Code problem, and which is more realistic in nature.

The International Criminal Police Organization, or more popularly known as

Interpol, is an inter-governmental organization established to counter three broad types

of transnational organized crime, as illustrated in Figure 7a and Figure 7b. Organized

criminal networks are usually involved in multiple types of criminal activities, spanning

several countries, such as drug trafficking, terrorism, human trafficking, counterfeiting,

etc. It is widely known that organized criminal organizations flourish due to their

significantly high revenues since their criminal businesses resemble those of legitimate

international businesses (Interpol, n.d.). The ultimate goal of such organizations is to

generate the maximum profits with minimum risks. On the other hand, the objective of

Interpol is to disrupt the operations of such organizations. This task is far from trivial,

as Interpol agencies conduct significant amount of criminal analysis based on numerous

sources of intelligence, in order to link different organizational members - financiers,

recruiters, distributors, etc. and create an organizational network. Furthermore,

29

(a) Interpol Model (b) Interpol’s Broad Criminal Divisions

Figure 7. International Criminal Police Organization

additional human resources (field agents) are required by the agencies, to monitor

these organizational members (Fooner 1985).

The United Nations Office on Drugs and Crime (UNODC), a partner of Interpol,

is a global authority in the fight against illicit drugs and international crime. The

UNODC defines drug trafficking as “a global illicit trade involving the cultivation,

manufacture, distribution and sale of substances, which are subject to drug prohibition

laws” (UNODC, n.d.). About 450,000 people died as a consequence of drug use in 2015,

according to the World Health Organization. About 168,000 of these deaths were

directly associated with drug overdoses. The 2018 World Drug Report released by the

UNODC (UNODC 2018) continued to highlight several grave statistics pertaining to

global drug use. 5.6% of the global population belonging to the 15-64 age group (about

275 million people worldwide), consumed drugs at least once in 2016. The 15-16 age

group (almost 14 million individuals) was responsible for the highest consumption of

Cannabis globally.

These recorded numbers, in a way, are indicative of the ever growing demand

for illicit drug consumption, and various Drug Trafficking Organizations (DTOs) are

responding by increasing the production rates of their respective drugs. To counter

30

the activities of DTOs, law enforcement agencies are spending significant amounts

of money to just monitor individuals associated with DTOs. The US alone spends

about $40 billion a year investigating drug offenses (Law 2013). The investigation of

drug offenses usually generates a list of suspects. With drug offenses increasing by the

passing year, the suspect database also continues to grow. As a result, the amount

of technical and human resources required to monitor a suspect in the database also

grows. After a certain point of time, monitoring all the suspects in the database may

become an impossible task.

On the other hand, global terrorism is a major source of concern for not only

Interpol, but also national level and state level governments as well. The Interpol

Terror Watch List is one such database keeping track of terrorist organizations and

individuals involved with these organizations. Similar to monitoring drug networks,

actively monitoring such organizational networks is a considerable challenge on the

part of law enforcement agencies in the sense that, significant amount of resources

must be utilized to monitor these networks. Oftentimes, the law enforcement agencies

do not have sufficient resources to monitor these organizations and their members

effectively. It has been reported that the French Centre for the Analysis of Terrorism

has determined that it takes as many as 20 agents per suspect to conduct 24-hour

surveillance. On multiple incidences of terrorist attacks in recent times across Europe,

it has been observed that the perpetrators of the attack were in the suspect databases

of the law enforcement authorities, but weren’t under active surveillance at the time

of the attack due to resource limitations on the part of the authorities (Bernstein

2017). The news organization Politico (Cooper 2016), reported in October 2016 that

the French authorities were monitoring around 15,000 individuals who were suspected

of being radical Islamists. The Politico report was based on an earlier publication in

31

the French journal, La Journal du Dimanche. The ABC news affiliated TV station

WJLA in Washington D.C., reported in 2017 that, the list has tripled over the last

two years (Bernstein 2017). The database is managed by France’s Counter-Terrorism

Coordination Unit. Obviously, the resources and manpower needed to keep all the

terror suspects under surveillance is enormous and often are way beyond the available

resources of any local law enforcement authority.

According to reports, the two suspects in the attack against French police on April

20, 2017, on the Champs-Elysees, were known to French anti-terrorism authorities.

The November 2015 attacks in Paris that claimed a total of 130 lives, involved a

small network of ISIS-linked terrorists in France and Belgium. Of the 10 individuals

involved, several were known to authorities. When 12 people were killed at the Paris

headquarters of Charlie Hebdo, a satirical magazine, all three of the terrorists had

been under close watch. Cherif Kouachi, Said Kouachi and Amedy Coulibaly were

under police surveillance for three years, but eventually dropped in the summer of

2014, only months before the deadly January 2015 attack (Wikipedia 2022).

That being said however, over the past couple of decades, law enforcement agencies

have managed to disrupt the organization of numerous DTOs/TOs, by deploying

various surveillance strategies such as wiretaps, cameras, GPS trackers, etc. (Law 2013).

Authorities analyzed transcripts obtained from the interrogation of suspect individuals,

to identify key actors and their relationships, to create a social network (Law 2013;

Natarajan 2000, 2006). These constructed social networks have been extensively

studied by researchers, utilizing standard centrality metrics, to realize particular

objectives such as, to determine the importance of network members, presence of sub

groups, number and nature of key facilitators, etc. In this chapter, we propose novel

Drug Network Monitoring (DNM) and Terror Network Monitoring (TNM) approaches,

32

based on the mathematical concept of Identifying Codes and its extensions, that not

only reduces resource requirements on the part of law enforcement agencies (reduction

in the number of agents required to monitor these organizations), but also provides the

capability of uniquely identifying a suspect, when the suspect becomes “active” in drug

trafficking related activities. Our approach has the following assumption: when an

individual in a DTO/TO becomes “active” in drug trafficking related activities, his/her

friends/associates will have some knowledge of the individual’s plan. Accordingly, even

if the individual is not under direct surveillance by the law enforcement authorities

(recording phone calls, movement, social interactions with other individuals), but

the individual’s friends/associates are, then the individual involved in drug related

activities can be uniquely identified. Most importantly, we compare our approach

with other approaches utilizing standard centrality metrics, and show that standard

centrality based approaches- (i) do not necessarily guarantee unique identification of

every individual, and (ii) lead to a wastage of resources on the part of the authorities.

3.1 Related Work

In the past few years, significant research on DTO and TO networks have been

conducted utilizing Social Network Analysis (SNA). Fooner in (Fooner 1985), was one

of the first to illustrate the networked structure of organized crime and highlighted

the changes in the behaviour of the network, with the advancement of technology.

Natarajan in (Natarajan 2000), analyzed wiretap data to create an organizational

structure and studied the roles of particular individuals. She analyzed over 2000

wiretap conversations and performed SNA of phone contacts, to reveal a large and

loosely structured group of 294 individuals in (Natarajan 2006). Bright and Delaney

33

in (Bright, Hughes, and Chalmers 2012), utilized SNA to study the evolution of a

drug trafficking network, based in Australia. They observed changes in centrality

scores and the roles performed by particular individuals. (Bright and Delaney 2013)

utilized individual attributes coupled with centrality measures to identify key actors in

a drug trafficking network. (Bright et al. 2015) analyzed judges’ sentencing comments

to create a network of individuals involved in the distribution of methamphetamine

in Australia during the 1990s. (Heber 2009) studied the network of drug offenders

in Sweden to analyze the types of criminal activity they were involved. (Hughes,

Bright, and Chalmers 2017) analyzed court transcripts and identified key actors

to create a social network. They analyzed this social network to explore product

diversification in three drug syndicates in Australia. (Ressler 2006) investigated the

suitability of social network analysis for studying terrorist networks. (Krebs 2002)

mapped the 9/11 terror network from articles in leading newspapers. (Carley, Lee,

and Krackhardt 2002) and (Carley et al. 2003) explored the potential of using social

network analysis and multi-agent modeling for the purpose of destabilizing terrorist

networks. (Fu et al. 2014) studied the bipartite networks of terrorist organizations in

East Turkestan. (Borgatti 2006) showed the ineffectiveness of the standard centrality

metrics in identifying “key actors” in terror networks and introduced two new metrics

Key Player Problem Negative (KPP-Neg) and Key Player Problem Positive (KPP-Pos)

and showed that these two were superior to the standard centrality measures.

In addition to research on DTOs and TOs through SNA, the last few years

have seen a significant amount of research on Identifying Codes and its applications

to networks. Karpovsky et. al. introduced the concept of Identifying Codes in

(Karpovsky, Chakrabarty, and Levitin 1998) and provided results for Identifying

Codes for graphs with specific topologies, such as binary cubes and trees. Using

34

Identifying Codes, Laifenfeld et. al. studied joint monitoring and routing in wireless

sensor networks in (Laifenfeld and Trachtenberg 2008). (Irene Charon, Hudry, and

Lobstein 2002; Irène Charon, Hudry, and Lobstein 2003) studied complexity issues

related to computation of minimum Identifying Codes for graphs and showed that

in several types of graphs, the problem is NP-hard. (Ray et al. 2004) generalized

the concept of Identifying Codes, to incorporate robustness properties to deal with

faults in sensor networks. Suomela and Gravier, in (Suomela 2007; Gravier, Klasing,

and Moncel 2008) determined that the Identifying Code problem had a O(log n) -

approximation factor.

A special case, where only a subset of nodes needs a unique code, can be modeled

with a bipartite graph, and this version of Identifying Codes is called “Discriminating

Codes” and was studied in (Charbit et al. 2006; Charbit et al. 2008). This special case

is relevant for our study as, our problem formulation of bipartite networks requires

us to find the unique signatures of all the nodes in one side of the bi-partition of a

bipartite graph, by selecting only a subset of the nodes in the other side of bi-partition.

This formulation corresponds directly to the “Discriminating Codes” problem.

It may be noted that Drug and Terror related SNA studies have usually utilized

network centrality measures to identify key actors in the network (Bright and Delaney

2013; Gialampoukidis et al. 2016; Berzinji, Kaati, and Rezine 2012). However, in this

chapter, our objective is different in the sense that, we aim to uniquely identify every

actor in the network, should they become active in drug/terror related activities, and

not just the “key actors”. Additionally, we show that if popular centrality metrics were

utilized for realizing our objective, then the law enforcement agencies would end up

wasting their resources. In other words, simply monitoring “important” individuals

would lead to a wastage in resources.

35

3.2 Utilizing Identifying Codes for Resource Reduction

We formalize both the Drug Network Monitoring (DNM) and Terrorist Network

Monitoring (TNM) problems, utilizing three types of networks - undirected, directed

and bipartite. It may be noted that, for the three types of networks, the nodes are

either individuals or organizations (based on the dataset), and the edges represent the

relationship between the individuals or organizations.

3.2.1 Problem Formulation

If the network can be represented as an undirected graph G = (V,E), the objective

is to monitor (surveillance of the suspected individual) a subset of the nodes V ′ ⊆ V ,

so that each and every node v ∈ V , can be uniquely identified, in case the individual

represented by v becomes active in drug/terror related activities. As mentioned

previously, we assume that only one node v becomes active at a time and each and

every node v ∈ V can be monitored.

Formally stated, the objective of undirected networks version of DNM and TNM is

to monitor the least number of suspect individuals, in order to uniquely identify any

one of the suspect individuals, should they become active in drug trafficking or terror

related activities. Recalling the objective of the GCS problem described in chapter 2,

a natural connection between the GCS problem and the DNM and TNM problems

can be made. The suspect individuals who have to be monitored, can be thought of

as nodes in the network, where colors have to be injected in the GCS problem. In

the GCS problem, injection of colors in a subset of nodes in the network (or graph),

ensures that each node in the network receives a unique color. Thus, monitoring

36

(assigning law enforcement authorities to) this subset of suspect individuals will result

in the unique identification (or signature) for all of the suspect individuals (or all

the nodes) in the network. In other words, the unique identification of a suspect

individual (or node) corresponds to the unique color associated with that individual

(or node). Note that, in chapter 2, the GCS problem was shown to be equivalent to the

computation of the MICS problem. By transitivity, it is evident that the undirected

DNM and TNM problems are equivalent to solving the MICS of the corresponding

undirected DTO or TO network.

As is the case for undirected graphs, the objective for directed graphs is to monitor

the subset of the nodes V ′ ⊆ V , so that each and every node v ∈ V can be uniquely

identified, in case the individual represented v becomes active in drug or terror related

activities. Additionally, we assume that only one node can become “active” at a time.

Since the objective here is similar to that of the undirected networks scenario, similar

equivalences can be constructed for the directed networks and it can be easily shown

that the directed DNM and TNM problems are equivalent to solving the MICS of the

corresponding directed DTO or TO network.

For bipartite drug/terror networks, represented by G = (V1 ∪ V2, E), V1 represents

the set of individuals who may become “active” in drug or terror related activities, and

V2 represents the set of individuals who can be actually monitored by law enforcement

authorities. The objective of this version of the problem is to inject colors in the

fewest number of nodes in V2, such that every node in V1 receives a unique color.

Oftentimes, assigning law enforcement authorities to monitor certain individuals in

the drug or terror networks may be difficult (for instance, monitoring individuals

belonging to the higher echelons of the organization), and this set of individuals is

denoted by the node set V1. In such scenarios, it may be easier to assign authorities

37

to and monitor the individuals who are in contact with individuals denoted by nodes

in V1. In other words, only nodes in V1 may become “active” and can be monitored

by monitoring nodes in V2, in contrast to the previous two subsections, where it was

assumed that any node v ∈ V , may become active and can be monitored. It is evident

that the bipartite DNM and TNM problems are equivalent to solving the MDCS of

the corresponding DTO or TO network.

3.2.2 Problem Solution

In this section, we provide solution techniques for the three different types of

networks, utilizing Integer Linear Programs (ILPs).

Instance: G = (V,E), an undirected graph.

Problem : Find the smallest subset V ′ ⊆ V , such that injection of colors at these

nodes, ensures that each node v ∈ V , receives a unique color (atomic/composite)

through seepage.

We use the notation N+[vi] to denote the closed neighborhood of vi, ∀vi ∈ V . Corre-

sponding to each vi ∈ V , we use an indicator variable xi,

xi =

1, if a color is injected at node vi,

0, otherwise

Objective Function: Minimize
∑

vi∈V xi

Coloring Constraint:
∑

vi∈N+[vj]
xi ≥ 1, ∀vj ∈ V

Unique Coloring Constraint:

38

∑
vi∈{N+[vj]

⊕
N+[vk]} xi ≥ 1, ∀vj ̸= vk,∈ V

N+[vj]
⊕

N+[vk] denotes the Exclusive-OR of the node sets N+[vj] and N+[vk]. It

may be noted that the objective function ensures that the fewest number of nodes

in V are assigned a color. The Coloring Constraint ensures that every node in V

receives at least one color through seepage from the colors injected at nodes in its

closed neighborhood. A consequence of the Coloring Constraint is that, a node in

V may receive more than one color through seepage from the colors injected at its

neighborhood. The Unique Coloring Constraint ensures that, for every pair of nodes

(vj, vk) in V , at least one node in the node set N+[vj]
⊕

N+[vk] ⊆ V is injected with

a color. This guarantees that vj and vk will not receive identical colors.

Instance: G = (V,E), a directed graph.

Problem : Find the smallest subset V ′ ⊆ V , such that injection of colors at these

nodes, ensures that each node v ∈ V , receives a unique color (atomic/composite)

through seepage.

We use the notation N out[vi] to denote the closed out-neighborhood of vi, for any

vi ∈ V . Corresponding to each vi ∈ V , we use an indicator variable xi,

xi =

1, if a color is injected at node vi,

0, otherwise

Objective Function: Minimize
∑

vi∈V xi

Coloring Constraint:
∑

vi∈Nout[vj]
xi ≥ 1, ∀vj ∈ V

Unique Coloring Constraint:

39

∑
vi∈{Nout[vj]

⊕
Nout[vk]} xi ≥ 1, ∀vj ̸= vk,∈ V

The objective function and constraints for this ILP are almost identical to the one

presented in the previous subsection.

Instance: G = (V1 ∪ V2, E), an undirected bipartite graph.

Problem : Find the smallest subset V ′
2 ⊆ V2, such that injection of colors at these

nodes, ensures that ∀vi ∈ V1, receives a unique color (atomic/composite) through

seepage.

We use the notation N(vi) to denote the neighborhood of vi, for all vi ∈ V1 ∪ V2.

Corresponding to each vi ∈ V2, we use an indicator variable xi,

xi =

1, if a color is injected at node vi,

0, otherwise

Objective Function: Minimize
∑

vi∈V2
xi

Coloring Constraint:
∑

vi∈N(vj)
xi ≥ 1, ∀vj ∈ V1

Unique Coloring Constraint:
∑

vi∈{N(vj)
⊕

N(vk)} xi ≥ 1, ∀vj ̸= vk,∈ V1

The notations and their explanations in this ILP is identical to the earlier two ILPs.

It can be easily verified that the solution to the ILP finds the smallest subset V ′
2 ⊆ V2,

such that injection of colors at these nodes, ensures that each node vi ∈ V1, receives a

unique color.

40

3.2.3 Experimental Results and Discussions

To highlight the effectiveness of our algorithms in the reduction of resources without

compromising the ability of unique identification of a suspect, we executed the ILPs

on various real world drug and terror network datasets (UCINET 2022). It may be

recalled that for a network to have an Identifying Code, it must be “twin-free”. In

other words, the necessary and sufficient condition for a network to have an ICS is that

the network be “twin-free”. For “twin-free” networks G = (V,E), one trivial Identifying

Code set solution is the node set V , although, V may not be the Identifying Code set

of minimum cardinality. This implies that, if monitors were placed on every node in

the network, then all the nodes in the network would receive a unique identification.

However, our algorithms show that unique identification for all the nodes in the

network can be obtained by deploying agents to monitor a subset V ′ ⊆ V . Since no

additional benefits are realized by deploying additional agents, there is absolutely no

reason to deploy a larger number of monitors. In Table 9, Table 10 and Table 11, we

highlight on the reduction in resource requirements brought about by our methods.

As monitoring suspect individuals in drug networks can be a costly affair on the part

of law enforcement authorities (Law 2013), a significant reduction in resources will be

of great interest to the respective authorities.

3.2.3.1 Datasets

The datasets used for evaluating the efficacy of our approach were obtained from

(UCINET 2022). In each dataset, the nodes represent individuals and the edges

represent the relationship between these individuals. Natarajan in (Natarajan 2000)

41

analyzed wiretaps and created a social network of Cocaine dealers in New York City.

The second dataset, Cocaine Smuggling, contains four social networks unearthed by

four investigative operations carried out by law enforcement agencies, involved in

smuggling Cocaine from Colombia to Spain. Operation Mambo identified 31 suspect

individuals based in Colombia, Operation Juanes identified 51 suspect individuals

based in Mexico and Operations Jake and Acero identified 38 and 25 suspect individuals

respectively, based in Madrid. The third dataset, Drug Net is a social network of 294

drug users in Hartford. (Natarajan 2006) uncovered a Heroin trafficking organization

based in New York City consisting of 38 suspect individuals, which is the fourth

dataset. The fifth dataset is the Montreal Street Gang dataset, reconstructed from

the drug-distribution operations in Montreal North and contains 35 organizations.

Our final dataset is a bipartite network of athletic trainers/health clinics and their

associations with MLB athletes, based on the Mitchell Report (Mitchell 2007), which

uncovered the illegal uses of steroids in the sport of baseball.

The first terror network on which we applied our technique is the network of the

individuals involved in the terror attack in Paris in November 2015. This network

consisted of 10 individuals. The Rizal Day bombings of 2000, which occurred in

Manila, Philippines, forms our second network. 16 individuals were involved in this

attack. The third terror network in our study is the IS-Europe network (or the Zerkani

Network), consisting of 39 individuals. The Madrid train bombings network of 2004

is the fourth network in our analysis. The fifth network is the Noordin Mohammed

Top network. (Liebig and Rao 2014) identified four individuals, Noordin Top, Azhari

Husin, Purnama Putra and Ahmad Ridho, as the key individuals of this network. In

our analysis, we view these four individuals as layer 1 individuals, and the remaining

as layer 2 individuals. As monitoring the key players (layer 1 individuals) is often

42

significantly more difficult than monitoring layer 2 individuals, we focus on monitoring

the layer 1 individuals in an indirect manner, by directly monitoring layer 2 individuals

who are interacting with the layer 1 individuals. To capture this mechanism, we

construct a bipartite graph G = (V1 ∪ V2, E), where the nodes in V1 represent the

individuals in layer 1 and the nodes in V2 represent the individuals in layer 2. An edge

e ∈ E connects a node u ∈ V1 with a node v ∈ V2, if u interacts with v. In this network

|V1| = 4 and |V2| = 15. We next analyze a network of terrorist organizations and their

members, based in East Turkestan. This is a bipartite graph G = (V1 ∪ V2, E), where

V1 represents the organizations and V2 represents the individuals. An edge e ∈ E

connects a node u ∈ V1 with a node v ∈ V2, if v is a member of u.

3.2.3.2 Results

In this subsection, we present the results of our analyses on undirected and directed

drug networks. It may be noted that some networks in our study were not initially

“twin-free”. Drug networks such as Juanes, Mambo, Heroin and DrugNet, and terror

networks such as Philippines, IS-E Zerkani and East Turkestan contained twins. By

combining the nodes which form “twins” into super-nodes, one can ensure that the

network becomes “twin-free” and subsequently ensure the computation of Identifying

Codes. If the nodes u, v ∈ V form “twins” we can create a super node (u, v) by

condensing (combining) nodes u and v. However, as the modified network does not

contain either u or v (it has the super node (u, v)), if the individual corresponding to

nodes u or v were to become “active”, Identifying Code will not be able to distinguish

between these two individuals. Hence, further (lower level) analysis will be needed

to find out whether node u or v is in the process of being “active”. All six networks

43

Drug Network Number of MICS Reduction in
Networks Type Nodes Cardinality Resources

Operation Juanes Undirected 50 22 56%
Operation Acero Undirected 25 13 48%

Operation Mambo Undirected 30 16 46.66%
Heroin Dealing Undirected 37 15 59.46%

Montreal Street Gangs Undirected 35 16 54.28%
Cocaine Dealers Directed 28 23 17.85%
Operation Jake Directed 38 29 23.68%

DrugNet Directed 281 207 26.33%

Table 9. MICS Cardinalities for Drug Networks

Terror Network Number of MICS Reduction in
Networks Type Nodes Cardinality Resources

Paris Undirected 10 5 50%
Philippine Undirected 14 6 57.14%

IS-E Zerkani Undirected 39 17 56.41%
Madrid Undirected 54 17 68.52%

Table 10. MICS Cardinalities for Terror Networks

had only a pair of nodes which formed “twins” (apart from the Philippine network,

which two pairs of nodes which formed “twins”). Thus, the modified network had one

less node (two in case of the Philippine network), as shown in Table 9 and Table 10.

The East Turkestan network had multiple nodes which formed “twins” and a total of

7 nodes were condensed into a super node.

For the ease of understanding, we describe the results of the Operation Juanes

drug network in detail. Out of 50 nodes in the network, if colors were injected in only

22 nodes, then all the nodes in the network would receive a unique identification. In

other words, if authorities monitored just 22 individuals, then all the individuals in

the network, could be uniquely identified. This indicates a reduction of (50−22)
50

× 100

= 56% in resource requirements. Results for the other undirected drug networks are

44

Network Domain |V1| |V2| MDCS Reduction in
Cardinality Resources

MLB Drug 12 83 11 8.33%
Noordin Top Terror 4 15 3 25%

East Turkestan Terror 20 64 15 25%

Table 11. MDCS Cardinalities for Drug and Terror Bipartite Graphs

presented in Table 9. The average reduction of resources is 52.92% for the first five

networks (undirected) and 22.62% for the last three networks (directed). Similar

results were obtained for the undirected terror networks. The Paris network is fairly

small, hence the benefits of our approach aren’t highlighted as much as the other

networks. The average resource reduction, utilizing our approach, is 58.01%.

Next, we analyze the bipartite network G = (V1 ∪ V2, E), where the node set V1

represents the set of athletic trainers and health clinics suspected of providing steroid

to the nodes in V2, which represents the node set of MLB players. The cardinality

of V1 is 12 and that of V2 is 83. Our objective is to monitor a subset of the 83 MLB

athletes (by analyzing the drug test reports), so that all of the 12 drug providers

would be uniquely monitored. Our analysis finds that if 11 athletes (out of 83) were

monitored, then all 12 drug providers could have been exposed, resulting in a resource

reduction of 8.33%. The results for other bipartite graphs are presented in Table 11.

The average reduction of resources utilizing the MDCS approach is 19.44%.

3.3 Lower Bound for Fault Tolerant Identifying Codes

In prior discussions, we assumed that when a suspect becomes active in anomalous

behavior, all of suspects’ friends/associates will have some inkling of the intent of

the suspect. Based on this assumption, we decided on the individuals to monitor so

45

that if any one in the network is planning to behave anomalously, that individual can

be uniquely identified. However, this assumption may be too strong and in reality

may not always be true. If a signal (intent of anomalous behavior) does not reach

the monitor (sensor monitoring a friend/associate) and as a consequence, the monitor

cannot convey the information to the control center, the individual planning an attack

cannot be uniquely identified. This scenario is equivalent to the scenario where the

signal correctly reaches the monitor, but the monitor (due to some malfunction) fails

to convey the information to the control center. Accordingly, it can be concluded

that the system discussed previously does not have any fault-tolerant capability, in

the sense that if a monitor (sensor) fails to convey any suspicious behavior to the

control center, the individual planning to behave anomalously cannot be uniquely

identified. However, the problem of inability to uniquely identify such an individual

can be overcome by designing a more robust or fault-tolerant system. In this context,

a system will be considered more robust if it can uniquely identify the individual, in

spite of failure of one or more monitors to report any suspicious activity to the control

center. An Identifying Code set that can tolerate up to k monitor failures will be

referred to as k− Fault-tolerant (or Robust) Identifying Code. In the following, we

will establish a lower bound on the number of monitors that will be needed to design a

k− Fault-tolerant Identifying Code based system. It may be noted that although the

authors in (Ray et al. 2004) also considered a robustness issues in Identifying Code

context, the results presented in this chapter are completely different from the ones

presented in (Ray et al. 2004).

46

3.3.1 Lower Bound on the Size of k Fault-tolerant Identifying Codes

Suppose that the graph contains N nodes. In order to be uniquely identifiable,

each node must have a unique signature/code (or color/string) associated with it.

With n bits, 2n unique bit strings can be generated. However, one of these string

comprises of all 0 bits, which cannot be the valid signature for a node, as a string

comprising of all 0s also represents a scenario where no node is producing a signal.

Accordingly, a lower bound on the size of Identifying Code for a N node system

will be the smallest n such that 2n ≥ N + 1 or n ≥ ⌈log (N + 1)⌉. Although with

n = ⌈log (N +1)⌉, unique codes for all N nodes can be generated, minimum Hamming

Distance between a pair of codes in this case will be 1. However, with minimum code

separation distance being equal to 1, it may be impossible to distinguish between two

nodes, even when just one monitor is faulty. Consider two nodes v1 and v2 whose

unique code/signature are the strings/colors A and AB. In this scenario, if the monitor

B malfunctions, there will be no way for the control center to distinguish between

the nodes v1 and v2. In order to be able to distinguish between two nodes when at

most one monitor is faulty, the minimum code separation distance must be equal to 3.

This is true as the minimum code separation distance being equal to 2 will also not

be sufficient to distinguish between two nodes. Consider two nodes v1 and v2 whose

unique code/signature are the strings/colors AB and AC. The Hamming distance

between the codes is 2. However, in this case, if the control center receives a signal

A, it will not be able to distinguish if its for node v1 with monitor B being faulty or

v2 with monitor C being faulty. In order to design a k− fault tolerant system, the

minimum separation (Hamming) distance d between a pair of codes must be at least

2k + 1, i.e., d ≥ 2k + 1, or k ≤ ⌊(d− 1)/2⌋.

47

Theorem 1. A lower bound on the size of Identifying Code for a N node system that

guarantees the minimum code separation distance of at least d is the smallest nk, such

that nk ≥ ⌈log (N + 1)⌉+ d− 1.

Proof. Suppose that to uniquely distinguish N nodes in a k− fault tolerant system,

each node must have a unique signature/code (or color/string) of nk bits. Suppose that

the bit string is represented by bnk−1, bnk−2, . . . , b1, b0. With string length nk, 2nk strings

can be generated, but their minimum code separation distance will not be d (it will be

1). Two strings (codes) associated with two nodes will be at least distance d apart, only

if at least in d positions of the corresponding strings, the bits are inverse of one another.

One example of two such strings will be bnk−1, bnk−2, . . . , bd, bd−1, bd−2, . . . , b1, b0 and

bnk−1, bnk−2, . . . , bd, b̄d−1, b̄d−2, . . . , b̄1, b̄0. By plugging-in any value (0 or 1), in the

partial string bnk−1, bnk−2, . . . , bd (partial string of length nk − 1 − d + 1 = nk − d),

2nk−d string can be generated. Each such string when concatenated with partial

strings bd−1, bd−2, . . . , b1, b0 and b̄d−1, b̄d−2, . . . , b̄1, b̄0, will create 2nk−d × 2 = 2nk−d+1

strings of length nk, whose minimum code separation distance will be d. Accordingly,

a lower bound on the size of Identifying Code for a N node system that guarantees

the minimum code separation distance at least d, will be the smallest nk, such that

2nk−d+1 ≥ N + 1 or nk − d + 1 ≥ ⌈log (N + 1)⌉, or nk ≥ ⌈log (N + 1)⌉ + d − 1, or

nk ≥ ⌈log (N + 1)⌉+ 2k.

3.4 Multiple Simultaneous Node Activations

Here, we consider the scenario where two nodes simultaneously become active in

anomalous behavior. We present an Integer Linear Program (ILP) for determining

the unique signatures for pairs of nodes. In this variant, not only individual nodes are

48

required to have unique signatures, but also every pair of nodes are also required to

have unique signatures. This additional requirement (with respect to the requirements

seen thus far) necessitates that the ILP ensures that (i) a single node and a node pair

do not end up having a identical signature, and (ii) two node pairs do not end up

having a identical signature. Accordingly, the ILP is required to have four constraints:

(i) coloring constraint (same as before), (ii) unique coloring 1-1 constraint (same as

unique coloring constraint as before), (iii) unique coloring 1-2 constraint, and (iv)

unique coloring 2-2 constraint. The 1-2 constraint ensures that the signature received

by a single node cannot be the same as the signature received by a pair of nodes. In

the following, we present the ILP for an undirected graph, as the ILPs for the directed

and bipartite graphs will be similar to that of the ILP for the undirected graph.

Instance: G = (V,E), an undirected graph.

Problem : Find the smallest subset V ′ ⊆ V , such that injection of colors at these

nodes, ensures that each node vi and each node pair (vj, vk) ∈ V , receive a unique

color (either atomic or composite) through seepage.

We use the notation N+[vi] to denote the closed neighborhood of vi, for any vi ∈ V .

Corresponding to each vi ∈ V , we use an indicator variable xi,

xi =

1, if a color is injected at node vi,

0, otherwise

Objective Function: Minimize
∑

vi∈V xi

Coloring Constraint:
∑

vi∈N+[vj]
xi ≥ 1, ∀vj ∈ V

Unique Coloring 1-1 Constraint:
∑

vi∈{N+[vj]
⊕

N+[vk]} xi ≥ 1, ∀vj ̸= vk,∈ V

49

Unique Coloring 1-2 Const.:
∑

vi∈{N+[vj]
⊕

(N+[vk]∪N+[vl]}) xi ≥ 1, ∀vj ̸= vk ̸= vl,∈ V

Unique Coloring 2-2 Constraint:
∑

vi∈{(N+[vj]∪N+[vk])
⊕

(N+[vl]∪N+[vm])} xi ≥ 1, ∀vj ̸= vk ̸= vl ̸= vm,∈ V

The role of coloring constraint and unique coloring 1-1 constraint in this variant,

is identical to the role of the coloring constraint and unique coloring constraint seen

previously. These constraints ensure that no two nodes in the graph will have identical

color. This variant, however, has two additional constraints.

Color assigned to a pair of nodes (vk, vl) is the union of the colors assigned to

nodes vk and vl. The Unique Coloring 1-2 Constraint ensures that, for every pair of

(vj, (vk, vl)) in V , at least one node in the node set N+[vj]
⊕

(N+[vk] ∪N+[vl]) ⊆ V

is injected with a color. This guarantees that vj and (vk, vl) will not receive identical

colors. In other words, this constraint ensures that for all combinations of distinct

nodes u, v, w ∈ V , the node u will not have identical color as the node pair (v, w).

The Unique Coloring 2-2 Constraint ensures that, for every pair of ((vj, vk), (vl, vm))

in V , at least one node in the node set (N+[vj] ∪N+[vk])
⊕

(N+[vl] ∪N+[vm]) ⊆ V

is injected with a color. This guarantees that (vj, vk) and (vl, vm) will not receive

identical colors. In other words, this constraint ensures that for all combinations of

distinct nodes u, v, w, x ∈ V , the node pair (u, v) will not have identical color as the

node pair (w, x).

For the multiple activation scenario, we primarily focus on terrorist networks.

We present the results of our approach when the simultaneous activation of two

nodes is allowed. The ICS obtained for the Paris network, in this version, is V ′ =

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. In this network, there are 10 nodes (individuals) and
(
10
2

)
=

50

Network Num. Num. Colors Total Num. of Num. of Unique
Nodes Injected Signatures Reqd. Signatures Produced

Paris 10 10 55 42
Philippines 14 14 105 37

Zerkani 39 39 780 692
Madrid 54 54 1485 1155

Table 12. Results for Multiple Simultaneous Activations

45 possible ordering of node pairs. Thus to have unique signatures for single nodes

and node pairs, there must be a total of 10 + 45 = 55 unique signatures. Our analysis

for this network shows that, even if colors are injected in all 10 nodes of the network,

it creates only 42 unique signatures. This happens because five node pairs ((2, 6),

(5, 6), (6, 7), (6, 9) and (6, 10)) receive the same color. Moreover, there are four

instances where two node pairs ((1, 8), (4, 8)), ((2, 7), (2, 10)), ((3, 6), (6, 8)) and ((7,

8), (8, 10)) produce the same signature. These 13 non-unique signatures are a result

of the topology of the network, i.e., the network is not “twin-free” for the multiple

simultaneous activation scenario. This implies that, in the Paris network, further

analysis is needed to uniquely identify the node pairs that becomes active. The results

for the other three networks are tabulated in Table 12.

3.5 Superiority over Standard Graph Centrality Metrics

Note that, prior Drug and Terror related Social Network Analysis (SNA) studies

have usually utilized network centrality measures to identify key actors in the network

(Bright and Delaney 2013; Gialampoukidis et al. 2016; Berzinji, Kaati, and Rezine

2012). However, in this chapter, our objective is different in the sense that, we aim to

uniquely identify every actor in the network, should they become active in drug/terror

related activities, and not just the “key actors”. Additionally, we show that if popular

51

centrality metrics were utilized for realizing our objective, then the law enforcement

agencies would end up wasting their resources. In the following, a brief description

of the common social network centrality metrics is provided, before we present the

results of our approach.

Centrality metrics have played a significant role in drug/terror SNA analysis (Bright

and Delaney 2013; Gialampoukidis et al. 2016; Berzinji, Kaati, and Rezine 2012).

These metrics have been primarily utilized in order to identify “key players/actors” in

a network. However, as mentioned previously, the goal of this paper is not to identify

only key players, but to uniquely identify all the players in a network. In other words,

we claim that all the actors in the network are “key”, in the sense that, all of them

should be uniquely monitored. In order to show the efficacy of our Identifying Code

based approach, we utilize the following standard centrality metrics for comparison

namely, degree, betweenness, eigenvector, KPP-Neg (Borgatti 2006) and KPP-Pos

(Borgatti 2006), as they have been extensively used in identifying key players in a

network (Bright and Delaney 2013; Gialampoukidis et al. 2016; Berzinji, Kaati, and

Rezine 2012; Borgatti 2006). In the following, we briefly describe the metrics that

have been used in this chapter:

• Degree Centrality (DC): The Degree Centrality is the ratio of the number of

neighbors of a node and the total number of edges in the graph/network (Freeman

1978). This fractional value lies in the interval [0, 1]. This metric is useful in the

sense that, higher the DC value of a node, the more nodes it is connected to. In

other words, a higher DC value of a particular node (player/actor) indicates that

the player/actor is “important” since it is connected (friends) to (with) many

nodes.

• Betweenness Centrality (BC): The Betweenness Centrality measures the extent

52

to which a node lies on paths between other nodes. Nodes with high betweenness

may have considerable influence within a network by virtue of their control over

information passing between others. They are also the ones whose removal from

the network will most disrupt communications between other nodes because

they lie on the largest number of paths taken by messages (Freeman 1978).

• Eigenvector Centrality (EV): Since some of the networks under study were

directed networks, we decided to utilize the EC metric, as this is a natural

extension of the DC metric. It may be noted that a node with a high in-degree

does not necessarily have a high EC. Additionally, a node with high EC is not

necessarily highly linked. In other words, a node is important if it is linked to

by other important nodes (Bonacich 1972).

• Key Player Problem Negative (KPP-Neg): Borgatti in (Borgatti 2006) illustrated

how standard centrality metrics described above failed in the identification of

key players in the network. He defines KPP-Neg as the removal of the key player

set that would result in a residual network with the least possible cohesion.

• Key Player Problem Positive (KPP-Pos): Borgatti in (Borgatti 2006) defined

KPP-Pos as the key player set that is maximally connected to all other nodes.

We show that if law enforcement agencies utilized these five metrics to deploy agents

in order to uniquely identify a player/actor in a network, as opposed to just identifying

key players/actors, then they would end up wasting their resources (additional agents

would be required to realize the objective), when compared to our Identifying Code

based approach.

Now, we present the results of our analyses on undirected and directed drug/terror

53

Drug Network Number of MICS Reduction in DC Resource BC Resource EV Resource
Networks Type Nodes Cardinality Resources MICS Wastage MICS Wastage MICS Wastage

Operation Juanes Undirected 50 22 56% 45 104.54% 45 104.54% 45 104.54%
Operation Acero Undirected 25 13 48% 23 76.92% 23 76.92% 23 76.92%

Operation Mambo Undirected 30 16 46.66% 29 81.25% 29 81.25% 29 81.25%
Heroin Dealing Undirected 37 15 59.46% 36 140% 36 140% 36 140%

Montreal Street Gangs Undirected 35 16 54.28% 35 118.75% 35 118.75% 35 118.75%
Cocaine Dealers Directed 28 23 17.85% 25 8.69% 28 21.74% 25 8.69%
Operation Jake Directed 38 29 23.68% 36 24.13% 36 24.13% 36 24.13%

DrugNet Directed 281 207 26.33% 281 35.75% 281 35.75% 281 35.75%

Table 13. MICS Cardinalities for Drug Networks

Terror Network Number of MICS Reduction in DC Resource BC Resource EV Resource
Networks Type Nodes Cardinality Resources MICS Wastage MICS Wastage MICS Wastage

Paris Undirected 10 5 50% 5 0% 5 0% 5 0%
Philippine Undirected 14 6 57.14% 12 100.00% 12 100.00% 12 100.00%

IS-E Zerkani Undirected 39 17 56.41% 33 94.12% 33 94.12% 33 94.12%
Madrid Undirected 54 17 68.52% 51 200.00% 51 200.00% 51 200.00%

Table 14. MICS Cardinalities for Terror Networks

Drug/Terror MICS KPPNeg Resource
Networks Cardinality MICS Wastage

Operation Juanes 22 48 118.18%
Operation Acero 13 22 69.23%

Operation Mambo 16 28 75%
Heroin Dealing 15 33 120%

Montreal Street Gangs 16 35 118.75%
Cocaine Dealers 23 28 21.74%
Operation Jake 29 37 27.58%

DrugNet 207 281 35.75%
Paris 5 5 0%

Philippine 6 12 100%
IS-E Zerkani 17 33 94.12%

Madrid 17 49 188.23%

Table 15. Comparison of MICS with KPP-Neg

networks. Recall that, some of the networks under study were not “twin-free”. For the

ease of understanding, we describe the results of the Operation Juanes drug network

in detail. Out of 50 nodes in the network, if colors were injected in only 22 nodes, then

all the nodes in the network would receive a unique identification. In other words,

if authorities monitored just 22 individuals, then all the individuals in the network,

could be uniquely identified. This indicates a reduction of (50−22)
50

× 100 = 56% in

54

Drug/Terror MICS Number of Nodes KPPPos Number of Nodes % of Individuals
Networks Cardinality Uniquely Monitored K Values Uniquely Monitored Uniquely Monitored

Operation Juanes 22 50 22 38 38/50 = 76%
Operation Acero 13 25 13 15 15/25 = 60%

Operation Mambo 16 30 16 20 20/30 = 66.66%
Heroin Dealing 15 37 15 29 29/37 = 78.37%

Montreal Street Gangs 16 35 16 21 21/35 = 60%
Cocaine Dealers 23 28 23 22 22/28 = 78.57%
Operation Jake 29 38 29 34 34/38 = 89.47%

DrugNet 207 281 207 213 213/281 = 75.80%
Paris 5 10 5 10 10/10 = 100%

Philippine 6 14 6 7 7/14 = 50%
IS-E Zerkani 17 39 17 25 25/39 = 64.10%

Madrid 17 54 17 37 37/54 = 68.52%

Table 16. Comparison of MICS with KPP-Pos

resource requirements. Furthermore, we compare the MICS cardinality following the

Identifying Code approach with the MICS cardinalities obtained by following the

standard SNA centrality approaches - degree centrality (DC), betweenness centrality

(BC) and eigen vector centrality (EV). We observe that if we were to adopt these

standard SNA metrics as monitoring strategies, then law enforcement agents will

need to monitor 45 individuals with the highest centrality scores, to ensure that

each node in the network has unique identification. Individuals with the highest

centrality scores are an indication of the importance of the individual to the respective

drug network (Bright, Hughes, and Chalmers 2012; Bright and Delaney 2013; Bright

et al. 2015). Requiring 45 nodes instead of the MICS solution of 22, clearly results

in wastage of resources. For this network, the wastage amounts to (45−22)
22

× 100 =

104.54%. This is somewhat counter-intuitive in the sense that, authorities would

waste resources if they were to monitor only important individuals. Identifying Code

saves resources as it takes the entire network (a global view) into account rather

than the individual importance of respective nodes (a local view). In other words,

for optimal resource allocation for unique monitoring of individuals associated with

55

DTOs/TOs, the law enforcement authorities must consider a combination of important

as well as unimportant individuals.

Results for the other undirected drug networks are presented in Table 13. The

average reduction of resources is 52.92% for the first five networks (undirected) and

22.62% for the last three networks (directed). The average resource wastage, by

following the DC strategy, for both undirected and directed drug graphs are 104.29%

and 22.86% respectively. Finally, the average resource wastage for undirected and

directed drug graphs, by following the BC and EV strategies, are 104.29%, 27.21%

and 104.29%, 22.86%, respectively.

Similar results were obtained for the undirected terror networks and is presented

in Table 14. The Paris network is fairly small, hence the benefits of our approach

aren’t highlighted as much as the other networks. The average resource reduction,

utilizing our approach, is 58.01%. The average resource wastage for the undirected

terror graphs, by following the three common centrality strategies, is 98.53%.

Having shown the superiority of the Identifying Codes approach over the standard

centrality metrics, we next compared our approach with the metrics provided by

(Borgatti 2006). This is because, (Borgatti 2006) showed how his metrics, KKP-Neg

and KPP-Pos, are superior than the standard centrality metrics when monitoring

“key” players in a network. In Table 15, we compare the cardinality of the MICS based

approach with the cardinality of the KPP-Neg based approach. In other words, for

the 50 individual Operation Juanes network, simply monitoring 22 individuals results

in unique monitoring of all the individuals in the network. However, following the

KPP-Neg metric, the law enforcement agencies must monitor 48 individuals in order

to ensure that all the nodes in the network are uniquely monitored. This results in

a staggering 118.18% wastage in resources. The results for the other drug/terror

56

networks are presented in Table 15. The average resource wastage of the KPP-Neg

metric for undirected drug and terror networks is 98.16% and that for directed drug

networks is 28.36%.

For the KPP-Pos metric, we set the value of K to be equal to the cardinality

of the MICS solution for the corresponding network, and proceeded to compute the

percentage of the nodes which would be uniquely monitored, by assigning K law

enforcement agents to the network. It is trivial to note that for the MICS solution,

100% of the individuals in the network will be uniquely monitored. In Table 16, for

the Operation Juanes network, monitoring K = 22 nodes results in the network being

76% uniquely monitored by following the KPP-Pos metric. This implies that by

following the KPP-Pos metric, we are unable to uniquely monitor the entire network.

The results for the other drug/terror networks are presented in Table 16. The average

% of the individuals uniquely monitored following the KPP-Pos metric for undirected

drug and terror networks is 69.29% and that for directed drug networks is 81.28%.

3.6 Augmented Identifying Codes (AIC)

In this variant of the Identifying Code problem, we have assumed that there are

already certain law enforcement authorities assigned to monitor certain individuals in

the respective drug or terror networks. We have further assumed that this assignment

does not uniquely identify all the individuals in the network. In other words, following

the Identifying Code strategy, law enforcement agencies had the complete freedom to

deploy agents to ensure that all the individuals in the network were uniquely monitored,

in a sense, a clean slate approach. The AIC strategy restricts this freedom in the

sense that, there are already a certain number of agents deployed to monitor certain

57

individuals, but additional agents are required to ensure unique monitoring of all

individuals in the network. This is a more realistic version in the sense that, as law

enforcement agencies have already deployed agents in the field to monitor individuals

associated with DTOs and TOs. For undirected and directed graphs, the general

objective of the AIC problem is to determine the smallest set of individuals to monitor,

V2, in addition to the individuals currently being monitored, V1, in order to ensure

that each node in V can be uniquely monitored.

Instance: G = (V,E), an undirected graph and a set V1 ⊆ V , the set of nodes

currently being monitored.

Problem : Find the smallest subset V2 ⊆ V , such that N+[v] ∩ V3 is unique for each

node v ∈ V (each node receives a unique color, either atomic/composite, through

seepage), and V3 = V1 ∪ V2.

We use the notation N+[vi] to denote the closed neighborhood of vi, ∀vi ∈ V . Corre-

sponding to each vi ∈ V , we use an indicator variable xi,

xi =

1, if a color is injected at node vi,

0, otherwise

Objective Function: Minimize
∑

vi∈V xi

Coloring Constraint:
∑

vi∈N+[vj]
xi ≥ 1, ∀vj ∈ V

Unique Coloring Constraint:
∑

vi∈{N+[vj]
⊕

N+[vk]} xi ≥ 1, ∀vj ̸= vk,∈ V

Initial Set Constraint: xi = 1,∀vi ∈ V1

58

Centrality Measure
Network Num. MICS Degree Betweenness Eigen Vector

Nodes k = 25% k = 50% k = 75% k = 100% k = 25% k = 50% k = 75% k = 100% k = 25% k = 50% k = 75% k = 100%
Op. Juanes 50 22 12 + 15 25 + 9.5 38 + 8.77 45 + 0 12 + 15 25 + 9.5 38 + 8.77 45 + 0 12 + 15 25 + 9.5 38 + 8.77 45 + 0
Op. Acero 25 13 6 + 9 12 + 6 18 + 5 23 + 0 6 + 9 12 + 6 18 + 5 23 + 0 6 + 9 12 + 4 18 + 5 23 + 0

Op. Mambo 30 16 7 + 11 15 + 7.5 22 + 6.33 29 + 0 7 + 11 15 + 7.5 22 + 6.33 29 + 0 7 + 11 15 + 7.5 22 + 6.33 29 + 0
H. Dealing 37 15 9 + 10 18 + 8.6 27 + 4.5 36 + 0 9 + 10 18 + 8.6 27 + 4.5 36 + 0 9 + 10 18 + 8.6 27 + 4.5 36 + 0
M. Gangs 35 16 9 + 9 18 + 8.8 27 + 6.28 35 + 0 9 + 9 18 + 8.8 27 + 6.28 35 + 0 9 + 9 18 + 8.8 27 + 6.28 35 + 0
C. Dealers 28 23 7 + 20 14 + 14 21 + 7 25 + 0 7 + 20 14 + 14 21 + 7 25 + 0 7 + 20 14 + 14 21 + 7 25 + 0
Op. Jake 38 29 9 + 22 20 + 15.16 29 + 7.2 36 + 0 9 + 22 20 + 15.16 29 + 7.2 36 + 0 9 + 22 20 + 15.16 29 + 7.2 36 + 0
Drugnet 281 207 70 + 162.48 140 + 131.76 210 + 71 281 + 0 70 + 162.47 140 + 131.76 210 + 71 281 + 0 70 + 162.47 140 + 131.76 210 + 71 281 + 0

Table 17. Augmented MICS Cardinalities for Drug Networks Corresponding to Various
Centrality Measures

Centrality Measure
Network Num. MICS Degree Betweenness Eigen Vector

Nodes k = 25% k = 50% k = 75% k = 100% k = 25% k = 50% k = 75% k = 100% k = 25% k = 50% k = 75% k = 100%
Paris 10 5 2 + 4 5 + 1.67 7 + 0 5 + 0 2 + 4 5 + 1.67 7 + 0 5 + 0 2 + 4 5 + 1.67 7 + 0 5 + 0

Philippine 14 6 3 + 11 7 + 7 10 + 4 12 + 0 3 + 11 7 + 7 10 + 4 12 + 0 3 + 11 7 + 7 10 + 4 12 + 0
IS-E Zerkani 39 17 10 + 15 20 + 10 30 + 7.5 33 + 0 10 + 15 20 + 10 30 + 7.5 33 + 0 10 + 15 20 + 10 30 + 7.5 33 + 0

Madrid 54 17 13 + 23 27 + 17 40 + 13 51 + 0 13 + 23 27 + 17 40 + 13 51 + 0 13 + 23 27 + 17 40 + 13 51 + 0

Table 18. Augmented MICS Cardinalities for Terror Networks Corresponding to
Various Centrality Measures

For simulation purposes, we assumed that the Initial Set of nodes being currently

monitored are the k−nodes with the highest degree, betweenness and eigen vector

centrality scores, i.e., the k most important nodes (individuals) in the network. For

each drug/terror network, we present the number of nodes in the network, the MICS

cardinality of the network and the cardinality of the AIC set, if k−nodes were currently

monitored (where k is varied from 25%, 50%, 75% and 100% of the total nodes in

the network), for each centrality metric. It may be noted that some nodes in Initial

Set may have equal centrality scores with the nodes not present in the Initial Set.

For example, consider the following centrality score sequence of 6 nodes, ordered

descendingly: 0.88, 0.88, 0.88, 0.85, 0.77, 0.77. The top 25% of these nodes would

comprise of nodes 1 and 2 which have 0.88 as their centrality scores. It can be

seen that node 3 also has a score of 0.88. The AIC solution cardinality obtained by

initially monitoring nodes 1 and 2 may be different from the AIC solution cardinalities

obtained by monitoring nodes 1 and 3, and nodes 2 and 3 respectively. As a result, all

such combinations should be considered and the AIC solution cardinality should be

averaged over the number of combinations considered. It should be noted that for the

59

k = 100% scenario, we have assumed that authorities can deploy at most n number

of agents, for the unique monitoring of n individuals in the network. The Operation

Juanes drug network has 50 nodes in the network and the MICS cardinality of such a

network is 22. For k = 25% of degree centrality, we considered the top 25% nodes

with the highest degree centrality score which turns out to be 12. Furthermore, an

additional 15 nodes have to be monitored to ensure that every node in the network

has a unique identification, resulting in an AIC cardinality of 27. As all 12 nodes

in the Initial Set had unique degree centrality scores when compared to the nodes

not in the Initial Set, only 15 additional individuals have to be monitored for unique

identification of all the nodes in the network. For k = 50% we observe that some

of the 25 nodes in the Initial Set had the same degree centrality with nodes not in

the Initial Set. As described previously, all such combinations were generated and

the average cardinality of the additional set of monitors required turns out to be

9.5, resulting in the average AIC cardinality of 34.5. Similarly, the cardinality of the

additional set of monitors for k = 75% turns out to be 8.77, resulting in the average

AIC cardinality of 46.77. For k = 100%, we observe that the law enforcement agencies

will need to monitor 45 individuals with the highest centrality scores, to ensure that

each node in the network has unique identification.The results for other centrality

metrics of other drug networks are shown in Table 17.

It can be observed that the AIC cardinality is greater than the MICS cardinality for

all the drug networks. Ideally, in the Operation Juanes network, for k = 25%, 50%, 75%

and 100%, if the nodes in the Initial Set were a subset of the MICS, then the authorities

would only need to monitor an additional 10, 0, 0 and 0 individuals respectively, to get

unique identifications for all the nodes in the network. The fact that the authorities

require an additional 15, 9.5 and 8.77 individuals (on average), indicate that there

60

was some sub-optimal initial monitoring of individuals (Initial Set), essentially leading

to a wastage in resources. Only for the k = 100% scenario (when they have complete

freedom of deploying agents) do the agencies not require any additional resources, but

such a scenario directly corresponds to the MICS strategy, where we have shown that

far lesser resources are required for unique monitoring of individuals associated with

DTOs/TOs. Finally, similar to our MICS approach, these results are counter-intuitive

in the sense that the Initial Set consists of the top k important individuals. In other

words, if the law enforcement authorities were to monitor only important individuals,

then they would require additional resources, for unique monitoring of the entire

network of individuals. Hence, it can be said that our approach provides an optimal

balance between monitoring important as well as unimportant individuals. The AIC

results for the TOs are presented in Table 18.

3.7 Discussions

Here, we provide some insights into scenarios where there may be fundamental

issues with the underlying datasets. Broadly speaking, there may be two such scenarios:

• Omission Errors: In this scenario, the entire drug or terror network has not been

completely identified. In other words, not all actors and/or the relationships

between actors are known. If such a scenario were to arise, then the law

enforcement agency can do the following. For the network that is known (a sub

graph of the actual graph), the agency can utilize our Identifying Code based

approach and optimally monitor that network. However, as additional actors

and relationships are discovered by agents and other sources, the agency can

61

utilize our AIC based approach to deploy additional sensors, in order to uniquely

monitor the newly identified actors.

• Commission Errors: In this scenario, actors and relationships that have been

reported, are not actually present in reality. In such errors, the law enforcement

agency can either, (i) decide to deploy agents on actors who are not present (inject

colors to nodes which do not exist) or, (ii) decide to monitor the neighbor(s) of

the actors who are not present (inject colors to the nodes which exist, and are

adjacent to nodes which have been falsely reported to exist). In the former, if

the node on which a color is to be injected (place an agent on) does not exist,

then the resulting graph (after the removal of the node and edges incident to it),

will have twin vertices (nodes), and hence, two or more nodes may end up with

the same color. In such cases, we have to condense the twin vertices (nodes), as

explained earlier, and the agency can utilize the Identifying Code based strategy

to effectively monitor the network. In the latter, it is trivial to note that if a

node other than a coloring node (node on which color is injected) is removed

from the network, then we do not end up with “twins” in the network, and each

and every node in the network retains its unique identification, after the removal

of the non-coloring node. Hence, the agency does not have to do any additional

computation.

3.8 Future Research Directions

All of the works presented as a part of this chapter all aim to disrupt the operations

of criminal organizations by identifying individuals who engage in anomalous behaviors.

62

That being said, however, there are multiple research avenues which could be examined

in this domain. To highlight a few,

• Generalize Multiple Simultaneous Activations : In this chapter, we introduced a

novel concept where two nodes could simultaneously become active in anomalous

behavior. For our approach to be applicable to the real world setting, it would be

interesting to develop algorithms for the scenario where k multiple simultaneously

activations can be effectively handled. In other words, this implies a need for

the development of a generalized approach to detect multiple simultaneous

activations as opposed to the much more restrictive approach presented in this

chapter.

• Probabilistic Identifying Codes : One key assumption made in our problem setup

is that, when an individual (or a node) engages in anomalous behavior, all

of its friends/associates (neighbors) become aware of it. Generally speaking,

this is a purely deterministic setting and may not be a valid assumption in

the real world. A probabilistic setting may be even more appropriate, where

there is a probability value associated with each edge in the network. These

probability values would indicate the probabilities of the signal (anomalous

behavior) reaching the neighbors of the node engaging in anomalous behavior.

• Game Theoretic Monitoring Strategies : This problem could be setup as a two

player attacker-defender game where the attackers are the suspect individuals

in the network and the defender is the network operator. The MICS problem

discussed thus far is a static placement of sensors. As a result, the attackers could

learn the placement of these sensors and modify their behaviors accordingly.

Game theory can be introduced to determine a moving placement strategy which

would ensure unique identification of the suspect individuals, thereby making it

63

even more difficult for the attackers to evade capture when they become engaged

in anomalous behavior.

64

Chapter 4

CRITICAL INFRASTRUCTURE NETWORKS

The electric power grid is arguably the most critical of all the infrastructures as

other infrastructures, such as, communication, transportation and finance are heavily

dependent on it. Similarly, High Voltage (HV) power transformers, generators, and

transmission lines are the most critical components of the electric power grid. The

large generators are located inside enclosed structures, and are constantly (and often

redundantly) monitored by a multitude of dedicated instruments. On the other hand,

the power transformers are typically located in open-air switch-yards, where they are

at the mercy of nature’s elements as well as (more recently) trigger-happy humans

(Wikipedia, n.d.). Therefore, an untimely loss of HV transformers can be catastrophic

for not only the electrical infrastructure, but also the other critical infrastructures

that depend on it. Accordingly, it will be helpful if it can be recognized before the

event, that a transformer is heading towards a failure, so that corrective measures

can be undertaken. Fortunately, before a transformer reaches its critical failure state,

there are “cues”(or indicators) which, if monitored periodically, can alert an operator

that the transformer is heading towards a failure. One of the indicators is the Signal

to Noise Ratio (SNR) of the voltage and current signals in substations located in the

vicinity of the transformer. During normal operations, the width of the SNR bands

are small. However, when the transformer heads towards a failure, the widths of the

bands increase, reaching their maximum just before the failure actually occurs. This

change in width of the SNR can be observed by Phasor Measurement Units (PMUs)

located nearby.

65

PMU is a device that can be utilized as a “sensor” for monitoring the health of

transformers. When placed on a generator, load, or zero injection bus, in the power

grid, PMUs give the voltage of that particular bus, as well as the currents flowing in

the branches (lines or transformers) incident on that bus (while being subjected to

the PMU’s measurement channel limitations). Since a power transformer can only

be placed between two buses, a judicious placement of a few PMUs (sensors) can

effectively monitor health of all the transformers, and in case of a transformer heading

towards a failure, the sensors can create a unique fault signature that enables the

operator to identify the troubled transformer.

It may be noted that a variety of devices such as (a) Buchholz relay, (b) Pressure

relay, (c) Oil level monitor device, (d) Winding thermometer, (e) Differential relay, (f)

Overcurrent relay, and (g) Ground current relay are available to monitor the health of

transformers. However, these devices are unable to provide unique identification of a

failing transformer, as was indicated by the Rudd power transformer failure incident

(News 2016). Devices (a)-(d) monitor the mechanical properties, while (e)-(g) oversee

the electrical properties of the transformer. The Buchholz relay detects mechanical

faults that are induced by electrical faults in oil-immersed transformers. The pressure

relay detects sudden rate-of-increase of pressure inside the tap changer oil enclosure.

The oil level monitor and winding thermometer detect increased temperatures inside

the oil and windings of the transformer, respectively. The differential relay checks for

faults inside the transformer by comparing the currents flowing through its primary

and secondary windings. The overcurrent and ground current relays look for abnormal

currents in the transformer under special conditions (in-rush currents during energizing,

ground currents during faults, etc.). However, incidents such as the Rudd power

66

transformer failure indicate that these devices alone may not be always effective in

monitoring a power transformer’s health.

The problem of placing these sensors, for monitoring the power grid, has been

studied by multiple researchers over the past decade (Salehi et al. 2012; Pal, Vullikanti,

and Ravi 2016). Additionally, with the continuous discovery of real-world attacks

such as Stuxnet (Karnouskos 2011), Dragonfly (Team 2017) and a wide range of

cyberattacks– jamming, Denial of Service, packet dropping, false-data injection and

compromise of data integrity (Nandanoori et al. 2020; Niu and Clark 2019)– robustness

of existing sensor placement mechanisms becomes critical. Thus, in this chapter, we

leverage the ideas of Minimum Discriminating Code Set (MDCS) based PMU placement

(Basu et al. 2019; Basu, Padhee, et al. 2018) and Moving Target Defense (MTD) in

cybersecurity (Jajodia et al. 2011; Sengupta et al. 2017) to build a defense-in-depth

solution.

Such solutions continuously move the detection surface to make it challenging for

an adversary to impede the unique identification of failure signals of HVTs. While

PMUs are difficult to move, as opposed to the movement of physical resources in

security games (Paruchuri et al. 2008), once placed, they can be efficiently activated

and deactivated, similar to the dynamic movement in intrusion detection systems

(Sengupta et al. 2018). While one may choose to activate all the PMUs placed upfront,

the cost of maintaining them can become an impediment. Hence, the periodic use of

a smaller subset (that still ensures unique identification) of the sensors placed upfront

can be considered. Further, work in MTD has relied solely on heuristic guidance when

constructing the configuration set that can result in all defenses being vulnerable to one

attack, i.e. it is not differentially immune (Sengupta, Chakraborti, and Kambhampati

2019).

67

Identifying Code is a mathematical tool that enables one to uniquely identify one

or more objects of interest, by generating a unique signature corresponding to those

objects, which can then be detected by a sensor. In this chapter, the objects of interest

are HV transformers. When a transformer is heading towards failure, it generates

“indicators”, which, if monitored by some “sensors”, may provide information to an

operator in the control center about the impending failure of the transformer. Since

the number of transformers in the grid is large, and the sensors are expensive, one

would like to deploy as few sensors as possible (fewer than the number of transformers)

and yet retain the capability that, when a transformer is heading towards a failure, it

can be uniquely identified.

In this chapter, we first describe how Identifying Codes and its special variant,

called the Discriminating Codes, can be utilized for unique identification of the

transformers that are heading towards a failure. We show how a power grid can be

modeled as a graph and how entities of interest (HV Transformers in this case) can

be modeled as a bipartite graph. Next, we provide a solution technique to solve the

problem of uniquely monitoring the transformers. In the second half of the chapter,

we focus primarily on the adversarial scenario. First, we define a novel variant of the

problem discussed in the first part of the chapter, called the K−differentially Immune

MDCS (hereafter K-δMDCS). We find K MDCSs of a graph, in which all K solutions

can uniquely identify failing HVTs, with the added constraint that no two MDCSs

share a common vertex; thus resulting in a differentially immune configuration set

for the MTD. Given that the original MDCS problem is NP-Complete, we show that

K-δMDCS is also NP-Complete and provide an optimal Quadratically Constrained

Integer Linear Programming (QC-ILP) approach to find the Kmax-MDCS of a graph.

While our approach proves scalable for large power networks (MATPOWER IEEE test

68

cases), we also propose a greedy approach that is computationally faster but trades-off

on finding the largest K value. Second, we model the interaction between the power

utility company (hereafter, the defender) and the adversary, as a normal-form game.

The notion of Strong Stackelberg equilibrium used in this game-theoretic formulation,

popular in existing literature (Sinha et al. 2015; Sengupta et al. 2017), assumes a

strong-threat model and aids in finding a good sensor activation strategy for the

defender. Finally, we conclude the chapter with a brief discussion about future research

directions.

4.1 Related Work

With regards to PMUs, research on maintenance has primarily been restricted

to the reliability of the PMU device itself. (Murthy et al. 2014) used fuzzy logic to

perform reliability assessment of PMUs. In (Becejac, Dehghanian, and Kezunovic

2016), the authors analyzed how maintenance schedule of the PMU device itself can

be updated based on its outputs. An example depicting the use of SNR in predicting

actual equipment failure was presented in (Jones, Pal, and Thorp 2014). However,

the equipment whose failure was demonstrated in (Jones, Pal, and Thorp 2014) was a

single-phase potential transformer, and not three-phase power transformers which are

the focus of the study here. Although researchers have analyzed causes of blackouts

and outages from an operational failure perspective, not much significance has been

attributed to the role that critical equipments can play in alleviating or exacerbating a

given contingency. The failure of a vital equipment at a crucial time may considerably

worsen system stress. Therefore, real-time health monitoring of critical power system

assets is a task worth undertaking.

69

Prior research on health monitoring using PMUs have been mostly directed towards

improving security and stability of the power system (Salehi et al. 2012). In addition,

a number of studies have focused on placement of PMUs (Pal, Vullikanti, and Ravi

2016; Pal et al. 2017) to realize a variety of objectives. The problems under study in

this chapter can also be viewed as a PMU placement problem as it computes the fewest

number of PMUs and their locations, so that the unique identification capability is

realized. It is important to highlight here that none of the PMU placement strategies

proposed so far had the unique identification capability as the objective for PMU

deployment.

Adversarial attacks on power grids comprise of false-data injection, jamming, DoS

and packet-dropping attacks (Deka, Baldick, and Vishwanath 2015; Deng et al. 2016;

Nandanoori et al. 2020). While researchers have proposed a multitude of defense

mechanisms (Tan et al. 2017), including Moving Target Defense (MTDs) (Chatfield

and Haddad, n.d.; Potteiger et al. 2020), they do not consider the problem of sensor

placement to monitor HVTs. On the other hand, works that leverage the formalism

of Discriminating Code Sets (Charbit et al. 2006) to optimize sensor placement (Basu,

Padhee, et al. 2018), have focused on scalability issues and provided theoretical bounds

in these settings (Basu et al. 2019); completely ignoring the issue of robustness to

adversarial intent.

While an array of research work has formally investigated the notion of finding

an optimal movement function M for MTDs, the configuration set C is pre-decided

based on heuristic guidance from security experts (Sengupta, Chowdhary, Sabur, et

al. 2020). While some works consider the aspect of differential immunity by analyzing

code overlap for cyber systems (Carter, Riordan, and Okhravi 2014) or Jacobians of

gradients for deep neural networks (Adam et al. 2018), these measures have no way

70

Figure 8. Transformer fire at Salt River Project’s Rudd substation in Avondale, AZ

of ensuring differential immunity. The notion of k-set diverse solutions in Constraint

Satisfaction Programming (CSP) (Hebrard et al. 2005), although conceptually similar

to our notion of differential immunity, does not have the added constraint of finding a

minimum sized solution (as in the case of MDCS). In adversarial scenarios, our work is

the first to formalize the notion of diversity in graphs and propose linear programming

methods to find them.

4.2 Monitoring the Health of Critical Power System Equipments

During the early hours of June 1, 2016, a large power transformer at the Rudd

substation of Salt River Project (SRP), a large utility company in Arizona, suddenly

caught fire. A 27,000-gallon tank of mineral oil used as a transformer coolant, burned,

and spewed thick smoke over a large area. A few snapshots are illustrated in Figure 8

(News 2016). The cause of the failure was identified to be bushing failure. Due to the

redundancy present in the system design as well as the fact that the fire broke out

during low-load conditions (system load is small in early morning), no power outages

occurred. This incident highlights the need for better monitoring techniques for these

critical and expensive equipments.

71

SRP shared their operational data leading up to the failure of this transformer

with us for analysis. Since causes of such failures gradually build-up over time, if

one is paying attention, the signs of an impending failure may be observable “days”

before the actual failure event. PMUs continuously produce outputs at a very fast rate

(typically 30 samples per second). When placed near transformers, PMUs, through

their measurements, can serve as sensors to monitor the health of the transformer,

and capture degradation in the health of a transformer over time. It may be noted

that a PMU provides complex voltage and current measurements at the bus where it is

placed. If the PMU has to serve as a sensor for monitoring transformer health, it must

have a way to measure it with a “cue” (or indicator or metric). This metric should be

independent of the “unit” of the measured quantity (either voltage or current), so that

a proper comparison can be made. Signal to noise ratio (SNR), a classical measure

of the quality of a signal, can serve as this desired metric. It compares the level of

a signal to the level of background noise that is present in it. Mathematically, the

SNR of a signal can be expressed as a reciprocal of the coefficient of variation, i.e.,

the ratio of its mean to its standard deviation, as shown in Equation 4.1.

SNR (in dB) = 10 ∗ logµ
σ

(4.1)

In Equation 4.1, µ is the signal mean or expected value and σ is the standard

deviation, or an estimate thereof. It is difficult to directly compare different signals

(such as voltages and currents). However, SNR (in decibels) is a relative metric

and therefore, it can be used to compare diverse signals and create alerts/alarms.

The Rudd transformer failure data obtained from SRP, comprises of PMU readings

(voltages and currents) one year away from the day of the failure (June 1, 2016) up to

the data collected only a few hours prior to the actual failure event.

72

Figure 9. Variation in width of SNR as one moves closer (in time) to instant of failure.

Two important pieces of observation were made from the SRP data.

Observation 1: A steady growth in the width of the SNR bands (computed from

the voltage magnitude measurements obtained from neighboring substations), was

observed over a period of time, till the transformer failed. The observations for three

73

Figure 10. Standard deviation of width of SNR as one moves (spatially) away from
the failing equipment

instances of time, as it approached the actual time of failure, are shown in Figure 9.

Since the growth was similar in all three phases, it was concluded that the SNRs were

capturing an event that was affecting all three phases, and not due to a single phase

failure event, contributed by a current or a potential transformer failure. Moreover,

as the width was uniform over the observed time period (an hour worth of data), it is

clear that the captured event was not a random transient event.

Observation 2: In observation 1, we noted that the width of the SNR band at a

specific PMU (sensor) location, increases as time approaches the actual failure event.

From the data it was also clear that, as the distance of the PMU (sensor/monitoring

device), from the transformer (monitored device) increased, the width of the observed

SNR decreased. Figure 10 shows the decrease in the width of the SNR bands as a

function of the electrical distance (termed as hops) from the Rudd transformer. The

data was collected from eight substations (S1, ..., S8) that neighbor Rudd, and had

74

PMUs placed on them. It may be noted that the Rudd substation itself did not have

a PMU on it during the time of failure.

Given that the deteriorating condition of a transformer can be noticed by PMUs

located within a certain distance of the transformer, signals indicating the deteriorating

condition, can be utilized to deploy effective monitoring strategies, so that an alarm

is generated before a transformer reaches a critical failure state. Identifying Code is a

mathematical tool that can be used for monitoring transformers in the power grid.

Using this technique, the fewest number of sensors needed to enable an operator to

uniquely identify the failing transformer before it reaches a critical failure state can

be computed.

Identifying Code is useful when the goal is to monitor all nodes of the graph (i.e.,

each node is required to have a unique signature). However, in this chapter our focus

is on monitoring the health of only power transformers. Moreover, in Identifying

Codes, a color can be injected at any node of the graph (i.e., a sensor can be placed at

any node of the graph). However, in the health monitoring problem, a sensor placed

far away from the equipment to be monitored, may not be useful as “cues” (signals)

indicating failing state of the equipment, may not even reach this sensor because of its

distance from the equipment. Accordingly, some modification to the original concept

of Identification is needed. The following modifications are sufficient to capture the

new scenario: (i) We identify a subset V ′ ⊆ V that needs to receive a unique color;

(ii) For each node v ∈ V ′, we compute Nk(v), where Nk(v) represents the k-hop

neighbors of v (i.e., the set of nodes in the graph whose shortest path distance to v

is at most k); (iii). We construct a Bipartite graph G′ = (V1 ∪ V2, E) such that (a)

V1 = V ′, (b) V2 = ∪v∈V1 Nk(v), and (iii) for nodes vi ∈ V1 and vj ∈ V2, there is an

edge e ∈ E, if and only if vj ∈ Nk(vi). With this modification, the transformer health

75

monitoring problem with the fewest number of sensors is equivalent to computation

of the smallest subset V ′
2 ∈ V2 such that injection of colors to this set of nodes ensures

that each node in V1 receives a unique color through seepage. In this study, we restrict

our attention to k = 1 or k = 2 only, as cues of deteriorating health of transformer

may not be observable at distances k ≥ 3 (See Figure 10).

A variation of Identification Code when restricted to Bipartite graphs is known as

Discriminating Code (Charon et al. 2008; Charbit et al. 2006; Charbit et al. 2008),

and is defined as follows: Let G = (V1 ∪ V2, E) be an undirected bipartite graph

and let N(v), denote the neighborhood of v, for any v ∈ V2, a subset V ′
2 ⊆ V2 is

called the Discriminating Code of G if ∀v ∈ V1, N(v) ∩ V ′
2 is unique. The problem of

determining the minimum cardinality Discriminating Code Set is called the Minimum

Discriminating Code Set (MDCS) problem. We will refer to critical equipment health

monitoring problem, with the fewest number of sensors, as the Monitoring Critical

Equipment (MCE) problem, which may be stated formally in the following way:

MCE Problem: Find the smallest subset V ′
2 ⊆ V2, such that injection of colors at

these nodes, ensures that each node v ∈ V1, receives a unique color through seepage.

4.2.1 Problem Formulation

In this section, we formalize the problem of computing the fewest number of sensors

to be deployed to monitor all critical equipments (HV transformers) in the power

grid, so that, if they show signs of potential failure, then an operator in the control

room, can uniquely identify them. Once the failing equipment is identified, corrective

measures can be undertaken, such as a planned shutdown.

76

Figure 11. IEEE 14 Bus Test System

Figure 12. Potential Sensor Placement Locations in IEEE 14 Bus Test System

77

Figure 13. Bipartite Graph corresponding to IEEE 14 bus system with for k = 1

Figure 14. Bipartite Graph corresponding to IEEE 14 bus system with for k = 2

From our prior discussions, it is clear that Identifying Code relates to an underlying

graph. In order to use Identifying Code to find the fewest number of sensors to be

deployed to monitor critical equipments, we first have to construct a graph from the

single line diagram (SLD) of the power system. Consider the IEEE 14 Bus System

shown in Figure 11. We construct a graph G = (V,E) from the SLD, where each node

represents either a bus or a transformer, and two nodes are connected by an edge if

the corresponding buses, or bus and transformer are connected. The Figure 12 shows

the graph G = (V,E) constructed from the IEEE 14 Bus SLD, shown in Figure 11.

In Figure 12, the buses are represented by black circular nodes and the transformers

by red square nodes. In power systems, the monitoring devices (such as the PMUs)

can be placed on the ends of the transmission lines, next to the buses (Pal, Vullikanti,

and Ravi 2016). In Figure 12, the potential locations where a monitoring device can

be deployed are shown by small green squares.

78

The objective here is to determine the health of the red squares (transformers)

before they reach a critical state. Signal of failing health of a red square reaches

only up to a certain distance from the location of the red square, where distance is

measured in terms of number of hops. The monitoring devices can only be placed

at the green squares. If we assume that the signal of failing health of a red square

can reach k hops, then all green squares within k hop distance of the red square

will recognize that that particular red square (transformer) is failing. This can be

captured in a bipartite graph G = (V1 ∪ V2, E), where each node v ∈ V1 represents

a red square and each node v ∈ V2 represents a green square. There is an edge

e ∈ E connecting nodes vi ∈ V1 and vj ∈ V2 if the signal from the red square ri,

represented by node vi in Figure 12, can reach the green square gj, represented by

node vj in Figure 12. Such graphs corresponding to the IEEE 14 Bus System, with

k = 1 and k = 2, are shown in Figure 13 and Figure 14, respectively. Since the IEEE

14 Bus System has 5 transformers (red squares in Figure 12), the vertex set V1 in the

bipartite graphs shown in Figure 13 and Figure 14 has 5 nodes. Additionally, in the

IEEE 14 Bus System, there are 40 potential locations for placement of sensors (green

squares), in Figure 12, the vertex set V2, in the bipartite graphs shown in Figure 13

and Figure 14, has 40 nodes (numbered from 6-45), denoted by green circles. It may

be noted that when k = 1, only 21 out of 40 potential locations are viable locations for

placement of sensors as the other 19 locations are not within 1-hop neighborhood of

the transformers. However, when k = 2, all 40 nodes are viable locations for placement

of sensors, as all of them are within the 2-hop neighborhood of the transformers. It

may be noted that some of the nodes in Figure 13 and Figure 14, are labeled with

strings such as “A”, “AC”, etc. The explanation and significance of these strings are

given in the experimental section.

79

4.2.2 Problem Solution

In this section, we provide an Integer Linear Programming (ILP) formulation for

solving the MCE problem, as stated below.

Instance : G = (V1 ∪ V2, E), an undirected bipartite graph.

Problem : Find the smallest subset V ′
2 ⊆ V2, such that injection of colors at these

nodes, ensures that each node vi ∈ V1, receives a unique color (either atomic or

composite) through seepage.

We use the notation N(vi) to denote the neighborhood of vi, for any vi ∈ V1 ∪ V2.

Corresponding to each vi ∈ V2, we use an indicator variable xi,

xi =

1, if a color is injected at node vi,

0, otherwise

Objective Function: Minimize
∑

vi∈V2
xi

Coloring Constraint:
∑

vi∈N(vj)
xi ≥ 1, ∀vj ∈ V1

Unique Coloring Constraint:
∑

vi∈{N(vj)
⊕

N(vk)} xi ≥ 1, ∀vj ̸= vk,∈ V1

N(vj)
⊕

N(vk) denotes the Exclusive-OR (symmetric set difference) of the node sets

N(vj) and N(vk). It may be noted that the objective function ensures that the fewest

number of nodes in V2 are assigned a color. The Coloring Constraint ensures that

every node in V1 receives at least one color through seepage from the colors injected

at nodes in V2. A consequence of the Coloring Constraint is that, a node in V1 may

receive more than one color through seepage from the colors injected at nodes in V2.

80

The Unique Coloring Constraint ensures that, for every pair of nodes (vj, vk) in V1,

at least one node in the node set N(vj)
⊕

N(vk) ⊆ V2 is injected with a color. This

guarantees that vj and vk will not receive identical colors through the color seepage

from the nodes in V2.

4.2.3 Experimental Results and Discussion

Here, we present the results of of our technique on standard power system test

cases, such as IEEE 14, 30, 57, 118, PEGASE 89 bus, and Polish 2383 bus systems.

As discussed previously, the IEEE 14 bus system has 5 transformers and 40 potential

locations for placement of sensors. The bipartite graphs for the IEEE 14 bus system

for k = 1 and k = 2 are shown in Figure 13 and Figure 14. Our results obtained

from the solution to the ILP show that the 5 transformers can be monitored with 4

sensors when k = 1, and 3 sensors when k = 2. As shown in Figure 13, for k = 1,

if 4 sensors are deployed at nodes 14, 19, 27, and 30 (equivalently 4 colors A, B,

C, and D are injected at these nodes, shown in Figure 13 by A*, B*, C*, and D*),

the 5 transformers T1 through T5 will receive unique colors AC, A, B, CD, and D,

respectively. Similarly, for k = 2, if 3 sensors are deployed at nodes 8, 27, and 35

(equivalently 3 colors A, B, and C are injected at these nodes, shown in Figure 14 by

A*, B*, and C*), the 5 transformers T1 through T5 will receive unique colors AB,

ABC, A, B, and BC respectively.

The significance of each transformer receiving a unique color (or a unique signature),

is the following. In the example shown in Figure 14, if colors A, B and C are injected

at nodes 8, 27 and 35 (i.e., PMUs A, B, and C are placed at these locations, among

the 40 (6-45) potential locations), the transformers T1-T5 will receive colors AB, ABC,

81

A, B, and BC, respectively. Suppose that the control room has three indicator lamps,

1, 2, and 3, corresponding to PMUs A, B, and C, respectively. As long as the width of

the SNR ratio is within the normal range, the lamps are green. As soon as the width

of the SNR ratio exceeds the normal range, the corresponding lamps turn red. An

operator, at the control room, can interpret the status of the five transformers, in the

following way: (i) The transformer T1 is failing if only lamps 1 and 2 turn red, (ii) T2

is failing if lamps 1, 2 and 3 turn red, (iii) T3 is failing if lamp 1 turns red, and so on.

Bus System No. of Transformers No. of Sensors
k = 1 k = 2

IEEE 14 5 4 3
IEEE 30 7 6 4
IEEE 57 14 13 10

PEGASE 89 10 10 6
IEEE 118 9 9 5

Polish 2383 155 155 106

Table 19. No. of sensors needed in IEEE, PEGASE, and Polish systems for k = 1, 2.

Our results for power system test cases are tabulated in Table 19. The results

show that the number of sensors needed to monitor all the transformers are fewer

than the number of transformers. On an average there were 6.90% and 37.90% savings

in the number of sensors using our technique for k = 1 and k = 2, respectively. From

Figure 10, it can be seen that the difference in the width of the SNR band in dB at

substations S1 and S2 (1 and 2 hop distance away respectively, from the transformer)

is minimal. Accordingly, we can use k = 2 results, which implies that significant

savings (37.90%) can be realized using our technique. The ILPs for the test cases

were computed using GUROBI for python. An Intel Core i5-6300HQ CPU with 2.30

GHz and 32 GB RAM was used for our experiments. The computation time varied

from 0.17 seconds, for the smallest test case (|V1| = 5, |V2| = 40, |E| = 36, k = 1),

82

to 25.18 seconds (|V1| = 155, |V2| = 5,772, |E| = 3,655, k = 2) for the largest. As

the computation times for these test cases were only a few seconds, we expect that

for larger systems involving thousands of buses and hundreds of transformers, the

problem can still be solved within a short period of time.

4.3 Robust Monitoring of Electric Grid Transformers in Adversarial Environments

Conceptually, Moving Target Defense (MTD), popular in cyber-security, seeks

to continuously move between a set of system configurations available to a defender,

to take away the attacker’s advantage of reconnaissance (Jajodia et al. 2011). The

key idea is that the attacker may not encounter the expected system configuration

at the time of the attack, thereby being rendered ineffective. Formally, an MTD

system can be described using the three-tuple ⟨C, T,M⟩, where C represents the

set of system configurations a defender can move between, T represents a timing

function that describes when the defender moves and M represents the movement

strategy (Sengupta, Chowdhary, Sabur, et al. 2020). The goal of this work is two-

fold– (i) to construct a desirable set C (for which we define the K-δMDCS problem

in subsection 4.3.1) and (ii) an optimal movement strategy M (by modeling the

interaction as a game in subsection 4.3.3).

Note that, when a single attack can cripple all the defense configurations ∈ C,

MTD cannot aid in improving the robustness. In (Sengupta, Chakraborti, and

Kambhampati 2019), the authors introduce the notion of differential immunity that

aims at measuring the amount of diversity between configurations ∈ C. In this work,

we consider a C that is differentially immune (denoted as δ), i.e. each attack, allowed

by the threat model defined later, can only cripple one defense configuration. This

83

ensures maximum diversity of C and implies the highest robustness gains for the

formulated MTD.

4.3.1 K Differentially Immune MDCS (K-δMDCS)

To design the configuration set C for an MTD system, we first need to find multiple

MDCS sets of a bipartite graph. For this purpose, we desire K differentially immune

MDCS (K-δMDCS) where no two MDCS solutions share a common sensor placement

point. Formally,

Definition 4.3.1. (K-δMDCS) Given a Bipartite Graph, G = (T ∪ S,E), K vertex

sets Si ⊆ S, i ∈ {1, . . . , K} are defined to be K-δMDCS of G, if the following conditions

hold– (1) all the sets Si are MDCSs of graph G and (2) for all possible pairs of sets

(Si, Sj), Si ∩ Sj = ∅.

First, we want to activate the minimum number of sensors placed in the network,

for unique monitoring of HVTs, at any point in time. Hence, we use K sets, all of

which are MDCS, i.e. have the smallest cardinality. Second, the use of differentially

immune MDCS attempts to optimize for robustness in adversarial settings. If an

attacker were to attack a particular sensor s ∈ S, it can hope to, at best, cripple

a singular MDCS Si ∈ C, from uniquely identifying HVT failure. If the defender

selects an MDCS Sj ∈ C(j ≠ i), then the attacker will not succeed in affecting the

functionality of the power grid sensors. We will now show that the decision problem

corresponding to K-δMDCS is NP-complete.

Lemma 2. K-δMDCS is NP-Complete, given K is an integer and K > 0.

84

t1 t2 t3 t4 t5V1/T =

V2/S =

Figure 15. The IEEE 14-bus power grid graph has 4− δMCDS solutions.

Proof. We note that the original MDCS problem, which is known to be NP-

Complete (Charbit et al. 2006), is a special case (when K = 1).

Corollary 2.1. K-δ Graph Problems such as K-δMinimum Identifying Code Set

(MICS), K-δMinimum Set Cover (MSC), K-δMinimum Vertex Cover (MVC) is at

least NP-Hard when K is an integer and K > 0.1

Let us denote the size of an MDCS for a bipartite graph G as m. In K-δMDCS,

the goal of the defender is to find K MDCSs each of size m. Then, the defender needs

to place K ∗m sensors in the power grid and, at any point in time, activate an MDCS

set (of size m) to uniquely identify failures in T . While a large number of defender

strategies (i.e. larger values of K) helps to increase their options for sensor activation,

in turn reducing the success rate for the attacker, it also incurs the cost of placing

K ∗ m sensors. Thus, the ideal choice of K should trade-off robustness vs. sensor

costs (note that, when K = 1, robustness using MTD is impossible to achieve).

In cases where the defender has sufficient resources, one might ask what is the

maximum size of K? Depending on the structure of the underlying graph, this

question may have a trivial answer. For example, if the bipartite graph has a t ∈ T

1Note that in the context of these problems, the distinction between the node sets T and S in
MDCS are unnecessary and one can view the graphs as G = (V,E).

85

and N(t) = {s}, s ∈ S, any MDCS of G needs to place a sensor on s to uniquely

detect a fault in t. Hence, there can exist no two MDCSs that do not share a common

node since s has to be a part of both. In such cases, the max value of K, denoted as

Kmax, is 1. Beyond such cases, similar to the problem of finding the maximum value

of K in the K-clique problem, finding Kmax demands a search procedure over the

search space of K that we now describe.

4.3.2 Finding max K for K-δMDCS

We first propose a Quadratically Constrained Integer Linear Program (QCILP)

that given a value of K, finds K Discriminating Code Sets (DCSs). We then showcase

the algorithm for searching over possible values of k ∈ {1, . . . , |S|} to find the largest

K. To define the QCILP for G = (T ∪ S,E), we first consider |S| ∗ k binary variables

where, xsk = 1 if a sensor is placed in node s ∈ S for the kth DCS, and 0 otherwise.

We also use a variable l that denotes the size of the DCSs found. We can now describe

our QCILP, presented below.

min
l,x

l (4.2)

s.t. l =
∑

s

xsk ∀k All k DCS has the same size l.

∑

s∈S

(xsk − xsk′)
2 = 2l ∀(k, k′) No two DCSs should have a common sensor.

∑

s∈N(t)

xsk ≥ 1 ∀t, ∀k All t ∈ T has a sensor monitoring them for all the k solutions.

∑

s∈N(t)
⊕

N(t′)

xsk ≥ 1 ∀(t, t′), ∀k t and t′ trigger unique sensors for the k-th DCS.

xsk ∈ 0, 1∀s,∀k

86

The last two constraints ensure that each of the K solutions are Discriminating

Code Sets where, (i) all t ∈ T trigger at least one sensor s ∈ S and, (ii) for all pairs

of t and t′ (both ∈ T), there exists at least one sensor in the symmetric difference set

of t and t′ that is a part of the DCS, which in turn uniquely distinguishes between t

and t′. The first two constraints ensure that all k DCSs are of equal size and no two

DCSs shares a common sensor. We can now ask the question as to whether the DCSs

found by Equation 4.2 is indeed the Minimum DCSs (MDCSs) for the graph G. In

this regard, we now show the following.

Theorem 3. For all values K ≤ Kmax, the optimization problem in Equation 4.2

returns K-δMDCS.

Proof. We consider proof by contradiction. Given the value of K(≤ Kmax), let us

assume that the solution returned by Equation 4.2 is not the K-δMDCS for the graph

G. If this is the case, at least one of the two properties in the definition of K-δMDCS

is violated. Thus, either (i) the returned solution consists of a DCS that is not the

Minimum DCS, or (ii) there exists a sub-set (of size greater than one) among the set

of DCSs that share a common node.

Owing to the third and fourth constraints, all the solutions constitute a DCS. Now,

if (i) is violated, all the DCSs returned by the QCILP, of length l, are not the MDCS

for G. Thus, the MDCS must have a DCS of size l′ ≤ l. Given that the minimization

objective finds the smallest DCS and K ≤ Kmax, this cannot be possible. Hence, (i)

does not hold.

For (ii), let us say that there exists a subset of the DCSs returned that share a

common node. If this was the case, then at least one solution pair has to share a

common node. If this node is denoted as s∗ and the two solutions are termed as k

and k′, then for the second constraint, given xs∗k = xs∗k′ = 1, the term for s∗ is zero.

87

Algorithm 1 Finding Kmax − δMDCS.
1: In: G = (T ∪ S,E)
2: Out: Kmax − δMDCS
3: solutions ← ∅
4: K ← 1
5: while K ≤ |S| do
6: solutionsK ← Solve Equation 4.2 with K
7: if solutionsK == ∅ then
8: break Infeasible for K > Kmax

9: end if
10: if solutions ! = ∅ and |solutions(l)| < |solutionsK(l)| then
11: break DCS returned is not MDCS for K > Kmax

12: end if
13: solutions ← solutionsK
14: K ← K + 1
15: end while
16: return solutions

Even if the other l − 1 nodes in the solutions k and k′ are unique, the terms will add

up to 2 ∗ (l− 1) thereby violating the second constraint. This is not possible and as a

consequence, (ii) does not hold.

Given this, we can now consider cases where K > Kmax. When K > Kmax, the

optimization problem in Equation 4.2 is either infeasible or returns K DCSs that

are not MDCS for graph G. This condition holds by the definition of Kmax (proof by

contradiction ensues if neither of the two cases holds). With these conditions in mind,

we can design an iterative approach, shown in Algorithm 1, to find the Kmax−δMDCS

of a given graph.

Figure 15 showcases the 4 − δMDCS solutions returned by Algorithm 1 for the

14-bus power grid network. The different colors indicate the different MDCSs found

for G and the shades of the same color indicate an MDCS set. As shown, each of the

four MDCS has a size of l = 3 and uniquely identifies all the transformers T . The

lack of overlapping colors in the bottom set of nodes indicates that no two MDCS

share a common s ∈ S.

While the procedure in Algorithm 1 finds the Kmax − δMDCS, it can be time-

consuming for the largest networks (although it works well on large power-grids as

88

shown in the experimental section). Thus, one can consider a greedy approach in

which, one solves the MDCS problem using (Basu, Padhee, et al. 2018). We then

solve this ILP with the additional constraints that xs = 0 for all the sensors found

in the current solution and keep doing so until (i) the ILP becomes infeasible or

(ii) results in DCS that does not have minimum cardinality. In the experimental

section, we will see that although this approach is faster, it can output K-δMDCS

where K < Kmax. The sub-optimality is a result of the ordering “enforced” by the

current optimal MDCSs which in turn, proves to be infeasible constraints for the latter

iterations of the problem.

4.3.3 Game Theoretic Formulation

The defender’s goal is to maintain the unique identifying capability of HVTs at

all times. Conversely, the attacker tries to prevent this capability, thereby making it

harder for the defender to effectively monitor the HVTs. Here, we seek to find the

optimal movement function M for the sensor activation MTD to aid the defender to

realize its objective. To do so, we consider a strong threat-model where the attacker

A with recon, is aware of the defender D’s (probabilistic) sensor activation strategy,

thereby making the Stackelberg Equilibrium an appropriate solution concept for our

setting. We use a polynomial-time approach to find the Strong Stackelberg Equilibrium

of the game (Conitzer and Sandholm 2006). We now briefly describe the various

parameters of the formulated game (see Figure 16).

Defense Actions: The defender has Kmax pure strategies and the configuration set

C = Kmax− δMDCS. If one uses the greedy algorithm instead of the optimal approach

89

↓ AD | AA → . . .

0,

UD(
(
t1
t4

)
,
(
t2
t5

)
, t3)− CA(•)

+
∑

t∈T
UD(t),

−CA(•)

+
∑

t∈T
UD(t),

−CA(•)

UD(t3),

UD(
(
t1
t2

)
,
(
t4
t5

)
)− CA(•)

. . .

.

. . .

Figure 16. Game-matrix for the dynamic sensor activation problem.

(both described in the previous section), the number of pure strategies obtained may

be less than Kmax.

Attack Actions: We assume that an attacker can spend reconnaissance effort in

figuring out the sensor placement point. Thus, its action set includes attacking a

sensor that may be considered for activation (instead of all nodes in |S|). While

one can consider attackers with the capability to attack multiple sensor activation

points, it is often too expensive a cost model as it demands resource procurement and

distribution over a wide geographic area.

Player Utilities: The game has two different kinds of utilities that are used to

calculate the rewards. First, the defender receives the utility associated with uniquely

identifying a transformer t ∈ T in the case of anomalous spikes indicative of failure

(to occur). We assume that a transformer supplying power to an important building

(eg. the White House or the Pentagon) is considered to be more important than

one supplying power to a residential area. Second, the attacker’s cost for attacking

a particular sensor needs to be considered. While some sensors may be placed in

high-security areas, others may be easier to access. We conduct randomized trials

90

C Movement Function M

Graph |S|+ |T | |AD|
(K/Kmax)

|AA|
(K/Kmax)

URS
(K)

URS
(Kmax)

SSE
(K)

SSE
(Kmax)

14 Bus 45 4/4 12/12 18.5±4.7 18.65±4.7 20.62±4.6 20.72±4.6
30 Bus 89 4/4 16/16 26.45±5.7 27.25±5.6 29.44±6 29.9±5.8
39 Bus 96 7/9 28/36 18.7±5 19.24±5.2 19.8±5.3 19.73±5.3
57 Bus 170 6/6 60/60 70.76±10.8 70.88±11.1 73.5±10.6 73.07±10.7
89 Bus 422 16/21 96/126 50.67±8.9 51±9 52.2±9.2 52.2±9.2
118 Bus 367 2/2 10/10 31.35 ±6 31.6 ± 6 32.45±6.4 32.61±6.1
2383 Bus 5927 2/3 212/318 832.7±38.7 836.16±36.7 835.34±39 842.34±39.4

Table 20. Game parameters and defender’s reward for playing the different Cs and
Ms for the various power-grid networks.

with both these values ∈ [0, 10], with 10 indicating the HVT/sensor most important

to protect/difficult to attack.

In the bottom right corner of Figure 16, the defender, owing to the attacker

attacking a sensor, is only able to uniquely identify t3 and thus, only gets reward

proportional to it. Conversely, the attacker, due to attacking a sensor, can make

failures of t1 and t2 (and t4 and t5) indistinguishable and receives the corresponding

utilities, minus the cost of attacking the sensor denoted by the light blue node (∈ S,

Figure 15). Similarly, if the attacker selects the attack represented by the first attack

column (sensor denoted by the dark brown node), the defender cannot identify any

HVT and thus, gets a utility of zero.

4.3.4 Experimental Simulation

In this section, we conduct simulation studies on seven IEEE test graphs popular in

the power domain (Zimmerman, Murillo-Sánchez, and Thomas 2010). Characteristics

of these graphs such as the total number of nodes (i.e. |S|+ |T |) are shown in Table 20.

The table further lists the K values for the K-δMDCS found by the greedy and the

91

optimal Algorithm 1, and is denoted by K and Kmax respectively. The number of

attacker strategies is listed in the fourth column. This value can be obtained by

multiplying the corresponding K value with the size of an MDCS for graph G, since

none of the K-δMDCS share a common node. We now discuss two results– (i) the

effectiveness of the game-theoretic equilibrium compared to the Uniform Random

Strategy baseline (which chooses to activate a particular MDCS with equal probability)

and (ii) the time is taken by the greedy and the optimal algorithm and their respective

solution quality. 2

4.3.4.1 Effectiveness of Game-Theoretic Equilibrium

In Table 20, we show that in all test cases, the optimal movement strategy at

the Strong Stackelberg Equilibrium (SSE) gives the defender a higher reward than

choosing Uniform Random Strategy (URS). When using URS or SSE, in most cases

we see higher gains when the construction of the MTD configuration set C is optimal

(URS(Kmax) obtained from Algorithm 1) as opposed to using a greedy algorithm

(URS(K)). We expected this as the higher number of differentially immune options

(as Kmax > K) chosen with equal probability reduces the probability of picking the

weakest strategy. When the value of Kmax = K, such as for 14, 30, 57 and 118 buses,

we see that the difference between the two versions of URS (or two versions of SSE)

are negligible. A reason for the non-zero difference between the rewards values arises

because of the MDCS sets chosen, although the total number of sets chosen are the

same. We also see that the difference in defender rewards can be large even when

the difference between K and Kmax is small in the case of larger networks (eg. 2383

2The code for the experiments can be found at https://github.com/kaustav-basu/Robust-MICS

92

https://github.com/kaustav-basu/Robust-MICS

Figure 17. Time taken by the optimal vs. the greedy approach for finding (the K
values are shown above the plot points).

bus). Thus, without finding the Kmax and the SSE for the optimal C, it is hard to

establish the loss in rewards. Given that these strategies are pre-computed, the power

grid utility operator should not consider the greedy strategy unless the time required

becomes prohibitive.

4.3.4.2 Computational Time for finding C

In Figure 17, we compare the time taken for finding the configuration set C using

the optimal vs. the greedy approach. We choose the logarithmic scale for the y-axis

because the computational time of the optimal and greedy approaches for the 14,

30, 39, 57, and 118 buses was less than a second, and thus difficult to distinguish

93

between on a linear scale. The largest disparity occurs when the size of the optimal

set Kmax is greater than the K-sized set found by the greedy approach (39/89/2383

Bus). In other cases, while the optimal approach is slower, it provides the guarantee

that no solution with a greater K exists, which is absent in the greedy case. A case

where the logarithmic scale, from a visualization perspective, does not do justice is

the 2383-Bus. The time taken by the greedy approach is 15s compared to 291s taken

by the optimal approach. While the K value differs by a factor of one, the resultant

gain in defender’s game value, as shown in Table 20, is relatively large. Thus, the

added time in generating the optimal configuration set needs to be criticized based on

the gain obtained in the underlying game.

We also consider the pragmatic scenario when the K value is fixed by the defender

up-front owing to budget restrictions of sensors that can be placed in the power

network. In this case, the greedy approach has to iteratively find one solution at

a time, adding them to the constraint set of future iterations until the desired k is

reached. On the other hand, the iterative procedure in Algorithm 1 can be altogether

ignored and one can simply return the solution found by the optimization problem in

Equation 4.2.

4.4 Future Research Directions

This chapter dealt with the objective of monitoring critical entities (High Voltage

Transformers) in a power grid system. We showed how a variant of the Identifying Code,

called the Discriminating Code, can be effectively utilized for uniquely monitoring

these critical entities. Moreover, we considered the adversarial scenario, where the

94

attacker can attack at most one entity. That being said, however, there are multiple

avenues which could be examined further in this domain. To highlight a few:

• Generalized Adversarial Scenario: In this chapter, we analyzed the scenario

where the attacker can attack only one target sensor. However, with increasing

computational power, it has become feasible for attackers to launch simultaneous

attacks. Therefore, a more realistic and generalized approach is necessary to

accurately model such a scenario.

• Fault Tolerance: In this chapter, we examined robustness in terms of immunity

from adversarial attacks. However, we have not considered the scenario where,

(i) the deployed sensors in the power grid fail (either due to adversarial attack or

mechanical failure), or (ii) the components in the power grid (buses, transmission

lines) fail. Such a setting dictates the deployment of additional sensors in the

power grid, thereby increasing redundancy in the system. As a result, the

development of algorithms for such fault tolerance is necessary.

• Budget Constraints : For both the problems addressed in this chapter, we have

neglected a real world constraint, the budget of the power grid utility operator.

For certain cases, it may not be feasible to procure and deploy all the sensors

necessary for unique monitoring of the entities. Therefore, the problem of

determining the judicious placement of k sensors (k < m, where m is the

cardinality of the MDCS solution), such that the maximum number of entities

are uniquely monitored, should be explored.

95

Chapter 5

ONLINE SOCIAL NETWORKS

In this chapter, we focus on the identification of the sources of anomalies propagat-

ing on online social networks. The anomaly studied here is misinformation propagation,

however, it should be noted that any anomaly which can propagate in a social network

can be uniquely monitored using our approach. Researchers have studied the dissemi-

nation of misinformation on social networks and attempted to identify its source(s)

for the better part of the last decade. Numerous studies assumed that misinformation

disseminated in a manner similar to that of infectious diseases and, as a result, utilized

models such as SI, SIR, SEIS, etc. in order to place sensors and identify the source

of the dissemination (Shah and Zaman 2011; Zhu, Chen, and Ying 2016; Y. Zhou

et al. 2019). However, these approaches suffer from certain drawbacks. Firstly, these

works assume the existence of an underlying spreading model. In the real world,

each misinformation may disseminate differently and the selection of an appropriate

model may become difficult, thereby hindering the task of successfully identifying

the source of the dissemination (Z. Wang et al. 2017; Dong et al. 2019). Secondly,

even if we assume the existence of an underlying spreading model, these works further

assume that at the end of the spreading process, all the nodes in the network have the

capability to declare if they have been infected with misinformation or not (Spinelli,

Celis, and Thiran 2017). This is only possible if the nodes themselves are fact checkers,

which is not the case on social networks. Finally, even if one may correctly assume

a dissemination model, it is hard to estimate the values of the parameters of the

model (Z. Wang et al. 2017; Dong et al. 2019). Thus, there is clearly a need for the

96

development of misinformation source detection algorithms which do not rely heavily

on an underlying dissemination model.

In this chapter, we attempt to fill in this gap by presenting an approach based solely

on the topological structure of a social network. We assume that we have complete

knowledge of the social network under study and our graph theoretical framework

utilizes this in order to place the “sensors” 3 on a minimum subset of the nodes in the

graph, to accurately identify the users engaging in misinformation dissemination. We

show that by following our approach, there is no need to actively monitor each and

every user, but only a subset of the total users set, which could be as low as O(log n).

In other words, unlike the epidemiological models, only a small subset of the users have

to be fact-checked, as opposed to everyone in the network. Moreover, we show that by

monitoring the users (nodes) in this subset, our approach can still uniquely identify

any user in the social network, who engages in misinformation dissemination. Our

resource optimized approach exploits a common characteristic of social networking

platforms: social network posts/comments of an individual are “visible” to his/her

immediate friends (assuming that the post does not have custom visibility settings).

We show that our approach, based on the mathematical concept of Identifying Codes,

reduces the resource requirements (fewer number of users to be monitored and as a

direct consequence, lesser computational time) significantly for the platforms, with

the help of extensive experimentation on anonymous real world Facebook datasets.

3We would like to point out here that, in this chapter, we focus primarily on the placement of
these detection sensors and not on their development.

97

5.1 Related Work

Here, we highlight the motivating studies behind our work in three broad areas -

development of the detection sensors, epidemiological model based misinformation

source identification and the unique identification capabilities of Identifying Codes.

5.1.1 Detection Sensors

Preliminary research on misinformation detection was primarily unimodal (either

textual or visual). Textual approaches, by (Potthast et al. 2017), considered features

such as headlines, lexical, syntactic, semantic, writing style etc. of social media posts

to determine if the content was information or misinformation. (Gupta et al. 2013)

studied visual approaches and tried to identify certain features which can be utilized

for the classification of images as information or misinformation. Recently, (Jin et

al. 2017; Y. Wang et al. 2018; Khattar et al. 2019; Qi et al. 2019) utilized deep neural

networks to classify multi-modal social media posts (textual + visual). Further studies

focused on the social context aspect to determine the authenticity of social media

posts. (Shu, Wang, and Liu 2018) analyzed user profiles, (Yang et al. 2019) analyzed

user opinions in an unsupervised manner and (Jin et al. 2016) studied the user opinions

towards social media posts to determine the veracity of the post. The problem of

fake news mitigation was mapped to the reinforcement learning framework, with the

goal of optimizing the actions for maximal total reward under budget constraints by

(Farajtabar et al. 2017). (Shi and Weninger 2016), viewed link-prediction task in a

knowledge graph to accurately determine the veracity of a fact. (Shu et al. 2017)

presented a survey of detecting fake news on social media. Real-world datasets

98

measuring users’ trust level on fake news was constructed by (Shu, Wang, and Liu

2018). (Tacchini et al. 2017) showed that Facebook posts can be classified with high

accuracy as hoaxes or non-hoaxes on the basis of the users who “liked” them.

5.1.2 Epidemiological Models for Source Detection

The seminal work of (Shah and Zaman 2011) paved the foundation for the rumor

source detection problem. In their work, they assumed that rumors spread according

to the SI model on social networks and that they had complete information about

all the states of the nodes (including network parameters) in the network. (Zhu and

Ying 2014) also assumed that they had complete information about all the node

states but assumed that rumors spread according to the SIR model for detecting

single rumor sources. In their follow up work, (Zhu, Chen, and Ying 2016) swapped

their assumption of the complete network snapshot with that of the partial network

snapshot and present two algorithms to detect multiple diffusion sources. (Spinelli,

Celis, and Thiran 2017) presented static and dynamic sensor placement approaches

for rumor source detection, wherein the rumor disseminates following the SI model.

(Paluch et al. 2020) go one step further and assume that each node has the capability

of reporting which neighboring node sent the virus (misinformation). (Tang 2020)

argued that it is difficult to know the topology of the network in advance and utilized

network topology inference and epidemiological models for the detection of the sources

of misinformation. (Racz and Richey 2020) studied the problem of robust rumor

source identification problem in the face of adversaries, who can perturb the original

misinformation in order to shield the source. Even though there exists numerous

works on epidemiological model based rumor source(s) identification, authors in (Dong

99

et al. 2019; Z. Wang et al. 2017) criticized the epidemiological model assumptions

and stated that knowing the underlying model beforehand is infeasible. (Z. Wang

et al. 2017) presented an approach to propagate (without knowing the underlying

model) the infection label throughout the network and use peaks to identify the

source nodes. (Dong et al. 2019) builds on (Z. Wang et al. 2017) and utilizes Graph

Convolutional Neural Networks to identify sources based on non-integral node infection

labels.

5.1.3 Identifying Codes

Sensor placement optimization for the unique identification of the nodes in a graph

was first introduced as Identifying Codes by (Karpovsky, Chakrabarty, and Levitin

1998) and provided results for a class of graphs. (Irène Charon, Hudry, and Lobstein

2003) proved the NP Completeness for the minimum Identifying Code problem based

on a reduction from the 3-SAT problem. (Ray et al. 2003) introduced the concept

of robust Identifying Codes to deal with faults in sensor networks. The Identifying

Code problem was approximated to an approximation factor of O(log n) in (Gravier,

Klasing, and Moncel 2008; Suomela 2007) by utilizing the notions of entropy and

disjoint unions. It was shown in (Moncel 2006) that for a particular class of graphs,

the cardinality of the Identifying Code solution could be as low as log2 n+ 1. Integer

Linear Programs to compute the Minimum Identifying Code Set (MICS) for a given

graph was presented in (Basu, Padhee, et al. 2018; Basu, Zhou, et al. 2018; Basu

and Sen 2019a, 2019b, 2021b; Basu et al. 2019) for monitoring networks obtained

from numerous domains such as terrorism, drug and critical infrastructures. A lower

bound on the MICS for a k-fault tolerant system was presented in (Arunabha Sen

100

et al. 2018). It was shown in (Basu 2019) how the same ILPs can be utilized for

the computation of the minimum number of users in order to uniquely identify users

engaging in misinformation dissemination.

Here, we show that the ILP based approaches fail in case of social networks and

accordingly, present approximation and scalable minimal algorithms. Additionally, our

work is different from the motivating works of (Z. Wang et al. 2017; Dong et al. 2019)

in the sense that both works take as input a set of nodes who have already been

infected and make a reasonable assumption that the nodes surrounded by infected

nodes are more likely to be the source nodes. In this chapter, however, we do not need

to keep track of individual labels of each node in the network and can simply identify

the sources of misinformation by triangulating the classification outputs of the detection

sensors placed in the network. Finally and more importantly, our approach does not

take into account any prior information regarding the nodes which have already been

infected.

5.2 Problem Formulation

In this section, we formalize our problem of finding the minimum number of users,

on whom detection sensors must be placed to ensure unique identification of all the

users in the network, in case the user represented by v, engages in misinformation

dissemination. In this effort, we assume that only one node v becomes active at a

time step and each and every node v ∈ V can be monitored.

Graph Construction Rules: A graph representing a social network can be con-

structed as follows: we can denote each registered user on the social networking

platform by a node. If a user u is friends with another user v and posts shared by u

101

shows up on v’s timeline and vice versa, then there is an edge between the two. If, for

some reason, u and v are friends but u’s posts do not show up on v’s timeline due to

u’s custom visibility settings, then, in our work, we do not consider an edge to exist

between them.

As evident, our approach does not assume the existence of an underlying epidemi-

ological model for the dissemination of misinformation. We utilize the connections

between users on the social network in order to determine the source of misinformation

dissemination. Our approach relies on the social network property that posts made by

a user’s connections will be visible (or available) on the timeline of the user in question.

Moreover, we do not assume that the nodes in our network have the capability to

reveal their state (either infected with misinformation or not) after misinformation

dissemination, as is evidenced by prior approaches. As mentioned previously, this

assumption limits the applicability of prior approaches. In our work, we place detection

sensors, which do have the capability to distinguish between real and fake content, on

a small subset of the users in the network. One critical aspect of misinformation

detection on social networks is to monitor all the unique posts generated by users on

the platform. Thus far we have discussed the placement of a minimum number of

sensors in order to uniquely monitor all the nodes in the graph. We have to guarantee

that by monitoring the content of this subset of the nodes ensures that we monitor

all the unique posts generated on the social networking platform. It is trivial to note

that, if we place detection sensors on all the nodes of the graph, then all the posts

generated on the platform will be definitely monitored. We now argue that even

with the monitoring of a small subset of users (provided there are no custom post

settings which prevent the post from propagating to all the friends), we still retain

the capability of monitoring each and every unique post generated on the platform.

102

Theorem 4. Given a graph G = (V,E) corresponding to a social network, in which V ′

is an MICS, by placing detection sensors on every node v′ ∈ V ′, our approach monitors

all unique posts generated by users on the platform for misinformative content.

Proof. Assume that the detection sensors have been placed on a subset V ′ of a graph

G = (V,E), where V ′ is an MICS of the graph. It is trivial to note that these sensors

can monitor the content generated by the users they have been placed on. By the

definition of ICS, at least one detection sensor has been placed in the neighborhood

of each and every v ∈ V − V ′. If this wasn’t the case then we would have nodes in

the graph which would not have been monitored. Therefore, if any user u, were to

post any content on their timeline, then the post would appear on the timelines of

a set of users V on which the detection sensors have been placed, where V ⊆ N+[u]

and V ⊂ V ′. Thus we can guarantee that all the unique posts on the platform are

monitored.

Hitting Set (HS) Formulation: We now provide a novel transformation where,

we view the MICS problem as a Minimum Hitting Set (MHS) problem. This trans-

formation allows us to utilize the well known greedy algorithm of the MHS problem

in order to provide the approximation bound for the MICS problem. Interestingly,

previous research efforts which determined the approximation bounds for the MICS

problem explored convoluted routes, such as determining entropy, disjoint sets, etc.

(Xiao, Hadjicostis, and Thulasiraman 2006; Gravier, Klasing, and Moncel 2008). It

may be noted that the greedy heuristic for the HS problem provides a O(log m) factor

performance bound, where m is the number of elements in the collection set (Vazirani

2013). In the following, we define the minimum HS problem:

103

Definition 5.2.1. Given a universal set U = {u1, ..., un}, and a collection set S =

{S1, ...,Sm}, where Si ∈ U , find the smallest subset U ′ ⊆ U , which hits every set

Si ∈ S.

Definition 5.2.2. Closed Neighborhood of vi = CN(vi) = N+(vi), where N+(vi) =

N(vi) ∪ {vi}, where N(vi) denotes the neighborhood of the node vi.

Definition 5.2.3. Distinguishing Set for vi and vj = DS(vi, vj) = CN(vi)
⊕

CN(vj).
⊕

denotes the symmetric difference operation between the closed neighborhood sets

CN(vi) and CNv(j). In other words, picking at least one element from the set

DS(vi, vj) will distinguish between nodes vi and vj.

Definition 5.2.4. Universal Set U = {v1, ..., vn}, where each element vi is a node in

the social network graph and Collection Set S = ∪n
i=1[CN(vi) ∪n

j=1 {DS(vi, vj)}].

Our objective is to select the minimum number of elements from U , such that all

the elements in S are hit. Hitting all the elements in S ensures that, (i) all CN(vi) sets

are hit, which in turn ensures that all nodes in the graph are monitored (a detection

sensor has been placed in the closed neighborhood of vi), and (ii) all DS(vi, vj) sets

are hit, which in turn ensures that all the nodes in the graph are uniquely monitored.

Thus the computation of this variant of the minimum HS problem is equivalent to

solving the MICS problem.

5.3 Problem Solution

Here, we provide (i) optimal solution for the MICS problem utilizing an Integer

Linear Program, based on the HS approach, (ii) heuristic solutions for the MICS

problem, by relaxing the integrality constraints of the HS ILP, (iii) an approximation

104

algorithm for the MICS problem with guaranteed performance bound, by utilizing

the greedy HS approximation algorithm, and (iv) two minimal heuristics.

5.3.1 Optimal Solution

Instance : A universal set U = {u1, ..., un} and a collection set S = {S1, ...,Sm},

where ∀i,Si ⊂ U .

Problem : Find the smallest subset U ′ ⊆ U , which intersects or hits every set Si ∈ S,

where S = {S1, ...,Sm}.

Corresponding to each ui ∈ U , we use a variable xi,

xi =

1, if xi is included in U ′,

0, otherwise

Objective Function: Minimize
∑

ui∈U xi

Hitting Constraint:
∑

ui∈Si
xi ≥ 1, ∀Si ∈ S

The objective function ensures that a minimum number of elements are selected

from U . The Hitting Constraint ensures that all the sets in S, are hit. We design

two heuristics from the LP relaxations from the above ILP. Heuristic 1 (or LP1HS) is

the relaxed solution where we select the highest fractional values in the LP solution,

in descending order, till the graph is uniquely monitored. Heuristic 2 (or LP2HS) is

the relaxed solution where we select indicator variables independently at random, via

randomized rounding, till the graph is uniquely monitored. LP2 has a guaranteed

error bound of (1 - 1/e) ∼ 63% of the optimal (Vazirani 2013).

105

Algorithm 2 Greedy Hitting Set Approximation Algorithm
1: Input: U and S, the Universal and Collection Sets
2: Output: Return smallest set U ′ that hits every element in S
3: U ′ = ∅
4: while S ≠ ∅ do
5: x = argmaxx∈U |{Si ∈ S|x ∈ Si}|
6: S = S \ {Si ∈ S|x ∈ Si}
7: U ′ = U ′ ∪ x
8: end while
9: return U ′

5.3.2 Approximate Solution

We can now utilize the well known greedy approximation algorithm for HS as

an approximation algorithm (Algorithm 2) for the MICS problem (Vazirani 2013).

The performance bound for our HS approximation algorithm is O(log n2), since we

have a quadratic number of sets in the collection set as a function of the number of

elements in the universe. That being said, however, O(log n2) = O(log n). Thus,

our HS based approach has a performance bound of O(log n) and we can claim

that the MICS problem also has an O(log n) approximation bound. Prior works

have already established the O(log n) bound for the MICS approximation, utilizing

minimizing entropy and computation of disjoint sets (Gravier, Klasing, and Moncel

2008). However, we believe that our transformation is much simpler and easier to

implement.

5.3.3 Minimal Solution

In order to make our approach scalable compared to the ILP and approximation

algorithm, we present two minimal Identifying Code approaches. We hypothesize that

sacrificing a little on the optimality will lead to greater benefits on the computational

side. Our minimal algorithms takes as input the graph and a graph centrality based

106

Algorithm 3 Minimal Algorithm
1: Input: G = (V,E), and a node sequence S
2: Output: Return the minimal Identifying Code C of G
3: C = S
4: Place sensors on all nodes in C
5: while S ̸= ∅ do
6: node ← Select the first node in S
7: NewC = C \ {node}
8: Place sensors on all nodes in NewC
9: if Each node in G is uniquely identifiable then
10: C = NewC
11: else
12: C = C
13: end if
14: Remove node from S
15: end while
16: return C

node sequence. Here, we consider two types of node sequences - (i) nodes arranged in

decreasing centrality scores, which we refer to as the MAX approach and, (ii) nodes

arranged in increasing centrality scores, which we refer to as the MIN approach. One

minimal algorithm takes the graph and MAX node sequence as input and the other

takes the graph and MIN node sequence as input. The overall generalized minimal

algorithm is presented in Algorithm 3. Further, we have considered four standard

graph centrality measures - degree (DC), betweenness (BC), eigenvector (EC) and

pagerank (PR) for comparison in the experimental section.

5.4 Experimental Results

We implemented our approaches on various real world undirected social network

datasets obtained from (Leskovec and Krevl 2014; Rossi and Ahmed 2016). For a

network to have an Identifying Code, it must be “twin-free” and, one trivial Identifying

Code set solution is the set V itself, although, V may not be the Identifying Code

set of minimum/minimal cardinality. However, our algorithms show that unique

107

Network Num. Num. Num. Nodes Num. Edges ILP LP1 LP2 HS MAX MAX MAX MAX MIN MIN MIN MIN
ID Nodes Edges Post Twin Post Twin HS HS HS APP DC BC EC PR DC BC EC PR

Removal Removal
FB1 52 198 46 181 18 23 25 19 23 25 23 24 18 18 18 18
FB2 61 331 56 299 18 31 23 26 25 26 25 26 24 24 24 24
FB3 150 1843 144 1731 32 46 45 34 46 47 45 45 38 36 38 38
FB4 168 1824 166 1817 30 53 49 32 60 57 52 57 32 32 33 32
FB5 224 3416 220 3393 40 63 59 44 68 67 62 69 46 44 46 47
FB6 333 2852 312 2730 85 119 128 93 125 124 120 128 88 89 90 88
FB7 534 5347 517 5203 113 167 206 127 174 179 169 177 126 130 134 125
FB8 747 30772 744 30756 82 149 157 95 139 140 125 146 114 102 113 112
FB9 786 14810 767 14702 105 176 188 120 196 204 190 204 112 123 127 120
FB10 1034 27783 1026 27742 126 234 237 143 238 232 217 241 153 148 160 153
FB11 4039 92273 3951 91577 − − − 766 1128 1143 1081 1150 788 787 810 789
FB12 6386 224048 6374 224014 − − − − 1560 1593 1471 1580 764 748 779 752
FB13 8600 393126 8590 393102 − − − − 1837 1863 1729 1888 839 811 853 826
FB14 11247 362605 11245 362601 − − − − 2789 2820 2604 2844 1274 1232 1300 1257
FB15 18448 992366 18448 992366 − − − − 3763 3826 3512 3832 1525 1470 1592 1506
FB16 22900 875319 22894 875295 − − − − 5629 5699 5255 5763 2603 − 2648 2569
FB17 27737 1062539 27730 1062518 − − − − 6566 − 6137 6680 3016 − 3108 2968
FB18 29747 1335512 29738 1335487 − − − − 6448 − 5977 5977 2801 − 2884 2757
FB19 32375 1151149 32361 1151102 − − − − 7659 − 6819 7788 3476 − 3565 3397

Table 21. Minimum (Minimal) detection sensors required. − indicates that the
algorithm did not finish computation within a specific time frame. The Best performing
MAX and MIN approach has been marked in Blue and Purple respectively.

identification for all the nodes in the network can be obtained by monitoring a subset

V ′ ⊆ V .

5.4.1 Datasets

The instances of the Facebook networks varied from 52 nodes to 32375 nodes, and

are denoted as FB1-FB19 in Table 21. However, due to computational limitations of the

laptop on which our methods were implemented, we were not able to consider graphs

larger than 32000 nodes. Observe that, almost all of the networks initially contained

“twins” in Table 21. For instance, FB1 had 52 nodes initially and after a simple

“twin” removal procedure, where “twins” were condensed into a single node (super

node), was left with 46 “twin” free nodes. Since “twins” were condensed into a single

node, if the condensed node were to become active in misinformation dissemination,

then additional lower level analysis would be required to distinguish between the

108

“twins”. Table 21 presents the various datasets considered for our experimentation and

corresponding network statistics with results.

5.4.2 Analyses

Our objective was two-fold - (i) to show that Integer Linear Programs cannot

be utilized for unique coverage (unique monitoring) apart from fairly small problem

instances, and (ii) the minimal algorithm, which we presented in this chapter, not

only scales well, but also provides similar quality solutions as that of the ILPs. All

the experiments were executed on a 5th generation Intel Core i-5 processor with 2.30

GHz and 64GB RAM. We present the results of our analyses in Table 21 and as plots,

illustrated in Figure 18 - Figure 21.

We present the number of sensors required to uniquely monitor the corresponding

social networks in Table 214. The first column in the table indicates the unique ID of

the network. The following two columns report the original number of nodes and edges

in the social network (graph), before “twin” removal. The subsequent two columns

records the number of nodes and edges post “twin” removal. The next columns indicate

the minimum number of sensors required following the various approaches outlined

previously. Note that the ILPs and its linear relaxations did not finish computing the

number of sensors required for networks FB11 - FB19, within 12 hours of CPU clock

time. The HS Approximation algorithm also, could not finish the computation of the

number of sensors required for networks FB12 - FB19, within 16 hours. Finally, the

MAX BC and MIN BC approaches could not finish the computations for FB17-FB19

and FB16-FB19 respectively, within 16 hours, as the worst case computation of the

4Best Viewed In Color

109

betweenness centrality is ∼ O(n2) time (Brandes 2001), where n denotes the number

of nodes. The computation times of 12 and 16 hours were determined based on the

computation times of the other approaches on the corresponding graphs. All of the

unfinished computations are denoted by − in Table 21.

In our experimentation, we use two notions extensively, quality and cost. We define

quality as the “goodness” of a solution, which can be mathematically represented as,

Q = (Num.Nodes− Solution Cardinality)/Num.Nodes (5.1)

The value of Q lies in the interval [0, 1], where 1 represents a high quality solution,

or in other words, a solution with high reduction in resources. Lower the value of the

solution cardinality, higher the value of Q and higher is the quality of an approach.

Next, we define cost as the computational time spent in order to attain the respective

quality. Figure 18a5 illustrates the quality of the ILP, LPs and approximation

approaches outlined previously, for FB1-FB10. This is because, FB10 is the largest

instance which we could provide as input to the ILP. Hence, for initial comparison, we

plot the quality and cost results of the ILPs, LPs and HS approximation as obtained

from FB1-FB10. As expected, the quality of the ILP is the best. In this figure, we can

see that our Hitting Set (HS) approximation approach produces near optimal solution

quality. The qualities of the linear relaxations of the ILP are also presented in the

figure, but are not as high as the quality of the approximation algorithm. Figure 18b

illustrates the cost associated with the approaches for obtaining the corresponding

quality. It should be observed that the y-axis in Figure 18b is in the log-scale because -

(i) the quality of the smaller networks (FB1-FB2) was computed in less than a second,

and (ii) to make the plot more visually more understandable. The cost of the ILP

5Images Best Viewed in Color

110

(a) Quality Analysis (b) Cost Analysis

Figure 18. Visual Analysis of The ILP, LPs and Approximation Performances For
FB1-FB10

approach tends to grow exponentially with an increase in the problem instance. The

growth curves of the other approaches, including the approximation algorithm, are

not as extreme as that of the ILP. There are a few takeaways from these two plots, (i)

the cost of the approximation algorithm, while producing near optimal solution, also

tends to grow exponentially with an increase in the size of the problem instance (a

linear growth in log-scale implies exponential growth in normal scale), (ii) it is due

to such growth in the cost that, we could only implement these approaches on small

graphs/networks, more specifically FB1-FB10.

Having established the fact that the optimal approach and our approximation

approach do not scale well, we sacrifice on the objective of attaining the minimum (or

even approximate) solution and settle for the minimal solution, and present the results

of our analyses utilizing the minimal algorithm (with its two node sequence orderings).

It may be recalled that we considered two groups of node sequence orderings based on

111

(a) Quality Analysis (b) Cost Analysis

Figure 19. Visual Analysis of The ILP, Approximation and Minimal Algorithm (MAX)
Performances For FB1-FB10

(a) Quality Analysis (b) Cost Analysis

Figure 20. Visual Analysis of The ILP, Approximation and Minimal Algorithm (MIN)
Performances For FB1-FB10

common centrality measures, the maximum ordering with MAX DC, MAX BC, MAX

EC and MAX PR, and the minimum ordering with MIN DC, MIN BC, MIN EC

and MIN PR. To show the efficacy of our minimal approach, we compare the quality

and cost of each variation with the ILPs and approximation algorithm for smaller

networks, before moving on to larger networks. Figure 19 illustrates the comparison

of the qualities and costs of MAX DC, MAX BC, MAX EC and MAX PR with the

quality and cost of the ILPs and approximation algorithm respectively, for FB1- FB10.

112

(a) Quality Analysis (b) Cost Analysis

Figure 21. Visual Analysis of The Approximation and The Two Minimal Approaches
For FB1-FB19

Figure 19 illustrates that the maximum ordering attains comparatively high quality

(greater than 0.65 on average) with MAX EC providing the best quality. Our minimal

approach, based on MAX ordering, approximately attains at least 10x scalability,

when compared to the approximation algorithm, as the sizes of the networks keep

increasing. It can also be observed that the MAX BC approach is the most expensive

approach, among the four maximum orderings, whereas the MAX DC approach is

the least expensive. Overall, in terms of quality, the approaches MAX EC and MAX

DC do not vary much, but in terms of cost, the MAX DC is more efficient than the

MAX EC approach. Figure 20 illustrates the comparison of the qualities and costs

of MIN DC, MIN BC, MIN EC and MIN PR with the quality and cost of the ILPs

and approximation algorithm respectively, for FB1 - FB10. Figure 20 illustrates that

the MIN ordering attains almost the same quality, if not better, when compared to

the approximation algorithm (averaging greater than 0.75). Among the minimum

orderings, MIN BC provides the best quality, whereas the MIN PR and MIN DC are

the most efficient. Overall, the difference in cost between the MIN BC and MIN PR /

113

MIN DC is significantly larger than difference in quality between the two, and hence,

one may opt for the more efficient MIN PR/ MIN DC approach.

Now, we compare the performances of the minimal algorithm following the MAX

ordering sequence with those following the MIN ordering sequence. Note that, MAX

BC and MIN BC failed to execute on larger graphs, and hence, we do not consider

these two approaches going forward. We include the HS Approximation algorithm

for instances it managed to finish its execution (FB1-FB11). Figure 21 illustrates

the quality and cost performances of the minimal and approximation algorithms. In

Figure 21, it can be seen that the quality of the minimal algorithms following the MIN

ordering sequence is almost identical to that of the HS Approximation algorithm and

the quality of the minimal algorithms following the MAX ordering sequence is slightly

lower. In Figure 21, we see that both the minimal approaches grow at a smaller rate as

compared to the HS Approximation algorithm. In fact, both the minimal approaches

are at least 10x faster than the approximation algorithm. As the size of the instances

increases, this gap widens to almost 100x. The minimal algorithms following the MAX

ordering are computationally more efficient than those of the MIN ordering.

It can be observed that the quality of the minimal approach following the MIN

ordering is as good as the quality of the approximation algorithm, if not better, while

bearing only a fraction of the cost. Moreover, the quality achieved by the minimal

algorithm following MIN ordering is far superior to that achieved by MAX ordering

as, in the case of MAX ordering, nodes removed from consideration (i.e., step 5 of

Algorithm 3) are the nodes with higher centrality scores. If such central or important

nodes are not considered for sensor placement, then the effect of reach of that highly

central node is lost, in the sense that, placing a monitor at a more central node would

monitor more nodes than that of placing a monitor at a lesser central node. Thus,

114

removing highly central nodes from consideration at every iteration would result in

the selection of additional nodes to make up for this loss, resulting in the higher

solution cardinality. This is not the case for the MIN ordering, where nodes with low

scores are removed from consideration first, thus resulting in a smaller loss in effect as

opposed to the MAX ordering based approach. Thus, the cost associated with the

MIN ordering is higher as a larger set of nodes are being removed from consideration

when compared to the MAX ordering.

Following our experimentation, it can be seen that MIN DC, MIN EC and MIN

PR all provide near identical quality and cost. MAX EC provides the best quality

and has equivalent cost to the other MAX approaches. A key point which we want to

make here is that, all of these experiments were conducted on a laptop. We believe

that with better computing resources, our MIN and MAX ordering based minimal

algorithms could be scaled even further.

5.5 Conclusion and Future Research Directions

In this chapter, we have shown how Identifying Code trumps prior studies which

focused on an underlying epidemiological model. Firstly, our framework does not

assume any underlying epidemiological model for dissemination and secondly, does

not know in advance, the set of users (nodes) who have been already infected with

misinformation. Another major advantage of our framework is the universality - by

changing the objective of the detection sensor, one can monitor any objectionable

content propagating on an online social network (for e.g., cyber bullying, hate speeches,

discriminations, etc.). Moreover, an approximation algorithm with guaranteed perfor-

mance bound was utilized, along with a minimal algorithm with varying input node

115

sequences. We compared our approaches with ILPs and showed that the ILPs as well

as their linear relaxations and the approximation algorithm, do not scale particularly

well. However, we showed that our minimal algorithms not only scaled well, but also

provided solution quality almost as good as the approximation algorithm, if not better,

while only being fractionally costly.

It may be argued that our approach needs to be implemented every time the graph

changes. This is not necessarily true as one might incorporate a simple augmenting

approach to handle cases where new users join the platform, similar to the approach

discussed in Chapter 3. Since the locations of the sensor deployment are known, we

can easily check if the new node(s) will be uniquely monitored and accordingly, we can

monitor the appropriate node(s). Since the number of new nodes joining the platform

will be significantly lesser than those who are already present, this augmenting task

will not be computationally expensive. Finally, it may be noted that our approach is

not robust (unique identification is lost due to sensor failures or adversarial attacks).

That being said however, we have identified certain future directions for this domain:

• Bot Identification: Nowadays, bots are rampant on social networks and spread

curated propaganda at a high volume. The approach presented in this chapter

does not deal with the presence of bots in the social network. For the analysis

of a realistic scenario, the approach must be modified in order to accurately and

quickly identify these bots before falsehoods can be propagated to a large part

of the network.

• Examining Lagrangian Relaxation: The minimal approach presented in this

chapter has achieved a certain scalability factor when compared to the approxi-

mation algorithm and the ILP. Even then, the graph instances studied are no

where close to the actual sizes of a social network graph. Consequently, it could

116

be of note to examine the sophisticated Lagrangian relaxation technique, which

have been used in other studies to attain appreciable factors of scalability.

117

Chapter 6

WATER DISTRIBUTION NETWORKS

Water Distribution Networks (WDNs) form one of the many critical infrastructure

of a modern day city. Such networks are built to purify, regulate and supply a large

metropolitan area with water. However, it has been seen over the past couple of

decades that such networks need to be continuously monitored. For instance, a spread

of a contaminant in Milwaukee’s WDN affected more than 400,000 people. The

cause was later determined to be a microorganism which was transported throughout

the system. Around 8500 were taken ill after a cross connection of the WDN with

wastewater occurred in Nokia, Finland (Kauppinen et al. 2019). Consequently, it has

become critical to monitor the WDNs for any contaminants and/or leaks (anomalous

behavior). In this chapter, inspired by the problem studied at The Battle of the

Water Sensor Networks (BWSN, Ostfeld et al. 2008), we present a novel variant of the

Identifying Code problem which overcomes a limitation of the approach presented at

BWSN. A modified Max k-Cover approach was designed as a solution technique during

BWSN. We show, in this chapter, that our novel Budget Constrained Identifying Code

Set (BCICS) problem can be utilized to overcome this limitation.

Sensors are used extensively for monitoring various parameters so that any anoma-

lous behaviour can easily be detected (Noel et al. 2017; Bhuiyan et al. 2014; Basu

et al. 2019; Krause et al. 2008). Sensors in a deployment area have two functions,

(i) sensing/coverage of target parameters such as temperature, pressure, vibration,

etc., and (ii) to transmit the sensed data either directly or through multiple other

sensor nodes (which serves as relays) to the control station for the analysis of the

118

sensed data. Over the years several coverage models have been proposed, where the

underlying assumption is that a sensor placed in a certain location, can sense its

environment up to a certain distance. In other words, the sensors have a specific

sensing range associated with it. This assumption often leads to a Set Cover based

problem formulation (Wang 2011; Liang, Shen, and Chen 2021), which unfortunately

has a serious limitation, in the sense that it lacks unique identification capability for

the location where anomalous behavior is sensed. We have elaborated this limitation

in detail in Chapter 2. This point can be summarized in the following way. Assume

that a set of sensors, S = {S1, ..., Sn}, is placed in a deployment area to monitor a set

of Points-of-Interest, P = {p1, ..., pm}. Suppose that a subset P ′ ⊆ P is within the

sensing range of a specific sensor Si, Si ∈ S. In this situation, if any point pj ∈ P ′

starts behaving anomalously, this behavior will be registered by sensor Si. However,

Si will not be able to determine whether the misbehaving device is at point pj or any

other point pk, as long as pk is also within the sensing range of Si, i.e., pk ∈ P ′. This

limitation also exists in the max k-cover problem, a variation of Set Cover.

This limitation can be overcome through utilization of Identifying Code (IC). The

optimal solution of the IC problem provides the minimum number of sensors that will

be needed to uniquely identify the location where anomalous behavior is sensed. In

this chapter, we introduce a budget constrained version of the problem, whose goal

is to find the largest number of locations that can be uniquely identified with the

sensors that can be deployed within the specified budget. To the best of our knowledge,

the budget constrained version of the IC problem has not been studied before. We

provide an Integer Linear Programming formulation and a Maximum Set-Group Cover

(MSGC) formulation (a generalized version of the Max k-Cover) for the problem.

We prove that the MSGC problem cannot have a polynomial time approximation

119

algorithm with a 1/k factor performance guarantee unless P = NP. Our experiments

focuses on detecting sources of contaminants in Water Distribution Networks (WDNs).

We chose WDNs because of (i) its obvious importance as a critical infrastructure to

smart cities; (ii) it has been extensively studied by other researchers (Eliades and

Polycarpou 2009; Krause et al. 2008; Hart and Murray 2010; Lee and Deininger

1992); and (iii) synthetic and real WDN graphs are readily available in the public

domain (Kentucky 2001) for conducting experiments. Prior works have primarily

utilized budgeted sensor placement approaches (max k-cover) for the detection of

contaminants in such networks (Krause et al. 2008). In this chapter, we take this one

step further and propose an approach which can not only detect contaminants but

also identify its sources, utilizing the concept of ICs.

6.1 Related Work

The coverage aspect of sensor networks alone has been studied extensively (Wang

2011; Cardei and Wu 2004). The survey on Coverage Problems in Sensor Networks

(Wang 2011), references close to 200 papers. Thus, a multitude of sensor coverage

models, such as (i) Boolean Sector Coverage Model, (ii) Boolean Disc Coverage Model,

(iii) Attenuated Disc Coverage Model, (iv) Truncated Attenuated Disc Models, (v)

Estimation Coverage Models, etc. have been studied by various research groups (Wang

2011). A more recent survey (Tripathi et al. 2018) lists additional studies on the topic.

Cardei and Wu in (Cardei and Wu 2004), classified coverage problems into three broad

classes, (i) Point Coverage, (ii) Area Coverage, and (iii) Barrier Coverage. While in

the area coverage problem, an entire area (in two or three dimensional space) has to be

sensed (monitored), in the point coverage problem, only a specified set of points (points

120

of interest) in 2D or 3D space, has to be monitored. Oftentimes, there are restrictions

on the locations (in 2D/3D space), where the sensors can be deployed (cost, terrain,

natural elements, etc.), thereby reducing the number of available placement locations.

For example, in case of earthquake monitoring, regions where some fault line passes,

are more important from the points of interest perspective than regions where there

are no such fault lines. Similarly, sensors such as seismometers or accelerometers

cannot be deployed in any arbitrary location, due to various constraints such as, cost

of deployment, access difficulty, property rights, etc. Accordingly, sensor coverage

problems can be classified in the following way.

Sensor coverage problems have a deployment area, where the Points of Interest

(PoI) are located and the sensors have to be deployed. A deployment area can be

thought of as an (infinite) set of points in a two or three dimensional space. If R, P and

Q denote the (infinite) set of points in the deployment area, PoIs in the deployment

area and potential locations for sensor placement respectively, then four different case

scenarios can be considered, (i) R = P = Q, (ii) R = P and Q ⊂ R, (iii) P = Q and

P,Q ⊂ R, and (iv) P ̸= Q and P,Q ⊂ R. The cases 1 and 2 are considered as Area

Coverage problem whereas cases 3 and 4 are considered as Point Coverage problem

(according to (Cardei and Wu 2004)), which is the focus of this chapter.

The most frequent studied problem in this context is the Sensor Placement Opti-

mization, whose goal is to find the smallest set of locations to deploy sensors, so that

all the points of interest can be monitored. If a Boolean disc coverage model (Wang

2011) is used for sensor coverage, the Sensor Placement Optimization problem can

be formulated as a Set Cover problem (Kleinberg and Tardos 2006) and a number

of studies using this model are available in the literature (Wang 2011; Cardei and

Wu 2004). Sensor placement for the detection of anomalies in smart cities has been

121

previously studied in (Hancke, Hancke Jr, et al. 2013; Quadar et al. 2021), where the

latter work describes technologies utilized in sensing locations of interest in smart

cities (with a case study on a water distribution network).

Identifying Codes (IC) was introduced by Karpovsky et al. in (Karpovsky,

Chakrabarty, and Levitin 1998) and other researchers have followed up by studying it

both from a theoretical and applicative perspective (Foucaud 2015; Ray et al. 2003).

Laifenfeld et al. studied joint monitoring and routing in wireless sensor networks

with IC in (Laifenfeld et al. 2009). Ray et al. studied location detection problem in

emergency sensor networks, using IC (Ray et al. 2003) and presented an algorithm

for generating irreducible IC in polynomial time. Note that irreducible IC is only a

minimal IC and may not be the minimum (or optimal) IC. Basu et al. presented

Integer Linear Programs for the computation of the minimum IC set in (Basu, Zhou, et

al. 2018; Basu, Padhee, et al. 2018; Basu and Sen 2019a, 2019b, 2021b; Arunabha Sen

et al. 2018) for problems arising from multiple domains, varying from drug/terrorist

network monitoring to monitoring critical infrastructures. Sengupta et al. utilized

Moving Target Defense and IC to present an approach which prevented cyber attacks

on sensors placed in critical infrastructures in (Sengupta, Basu, et al. 2020). The

problem of identifying misinformation spreaders in social networks was studied in

(Basu 2019; Basu and Sen 2021a). Padhee et al. utilized ICs for identifying vulnerable

assets in critical power systems in (Padhee et al. 2020).

While the goal of all these studies was to find the minimum number of sensors

to monitor all PoIs, we consider a budget constrained version, where the number

of sensors that can be deployed is limited by a pre-approved budget. Our aim is to

maximize the number of PoIs that can be monitored with the limited number of

sensors that can be procured and deployed. Moreover, we show how our approach can

122

help with the monitoring of Smart Cities, as technologies continue to develop for the

same (Anthopoulos 2017).

6.2 From Points on the Plane to Graphs

Previously, we described the sensor placement problem in terms of two sets of

points in a plane, whereas the Minimum Identifying Code Set (MICS) problem is

described in terms of a graph. From the set of points S and P , we can construct

a graph using the following construction rules: (i) For each point Si ∈ S and each

point pi ∈ P , we create node in the graph. Thus the node set V in the G = (V,E), is

VS ∪ VP . If a point pi ∈ P is within the sensing range of a sensor Sj, then there is an

edge in the graph connecting the nodes vpi and vSj
, where vpi and vSj

are the nodes

corresponding to the points pi and Sj respectively.

Budget Constrained Identifying Code Set (BCICS) Problem: Given a

graph G = (V,E) and an integer B, a subset V ′ ⊆ V of cardinality at most B is called

the Budget Constrained Identifying Code Set of G = (V,E), if it maximizes |V ′′|,

where V ′′ ⊆ V and for no two nodes vi, vj , such that vi ∈ V ′′ and vj ∈ V,N+(vi)∩V ′ ≠

N+(vj) ∩ V ′.

It may be recalled that the main objective of this study is to deploy the sensors

that can be procured within the specified budget, as judiciously as possible, so as

to maximize the number of locations (points of interest) that can have unique fault

identification signature. Moreover, in this study we focus our attention only to the

scenario where abnormality (or failure) is restricted to only one point. As mentioned

previously, in this chapter, we do not consider multiple simultaneous failure.

123

6.3 Solutions for BCICS Problem

In this section, we first show that BCICS can be set up as a generalization of the

well studied Maximum Set Cover (MSC) problem (Khuller, Moss, and Naor 1999),

referred in this chapter as Maximum Set-Group Cover (MSGC) problem. Next, we

present an optimal solution to the BCICS problem.

6.3.1 Maximum Set-Group Cover Formulation of BCICS Problem

For convenience, we first state the MSC and then the MSGC problems. Then, we

explain with the help of an example how the generalization of MSC to MSGC can be

used to solve the BCICS problem.

a1 = CN(1) = {1, 5, 6, 7} a2 = CN(2) = {2, 5, 8, 9} a3 = CN(3) = {3, 6, 8, 10} a4 = CN(4) = {4, 7, 9, 10}
a5 = CN(5) = {1, 2, 5} a6 = CN(6) = {1, 3, 6} a7 = CN(7) = {1, 4, 7} a8 = CN(8) = {2, 3, 8}
a9 = CN(9) = {2, 4, 9} a10 = CN(10) = {3, 4, 10} a11 = DS(1, 2) = {1, 2, 6, 7, 8, 9} a12 = DS(1, 3) = {1, 3, 5, 7, 8, 10}
a13 = DS(1, 4) = {1, 4, 5, 6, 9, 10} a14 = DS(1, 5) = {2, 6, 7} a15 = DS(1, 6) = {3, 5, 7} a16 = DS(1, 7) = {4, 5, 6}
a17 = DS(1, 8) = {1, 2, 3, 5, 6, 7, 8} a18 = DS(1, 9) = {1, 2, 4, 5, 6, 7, 9} a19 = DS(1, 10) = {1, 3, 4, 5, 6, 7, 10} a20 = DS(2, 3) = {2, 3, 5, 6, 9, 10}
a21 = DS(2, 4) = {2, 4, 5, 7, 8, 10} a22 = DS(2, 5) = {1, 8, 9} a23 = DS(2, 6) = {1, 2, 3, 5, 6, 8, 9} a24 = DS(2, 7) = {1, 2, 4, 5, 7, 8, 9}
a25 = DS(2, 8) = {3, 5, 9} a26 = DS(2, 9) = {4, 5, 8} a27 = DS(2, 10) = {2, 3, 4, 5, 8, 9, 10} a28 = DS(3, 4) = {3, 4, 6, 7, 8, 9}
a29 = DS(3, 5) = {1, 2, 3, 5, 6, 8, 10} a30 = DS(3, 6) = {1, 8, 10} a31 = DS(3, 7) = {1, 3, 4, 6, 7, 8, 10} a32 = DS(3, 8) = {10, 2, 6}
a33 = DS(3, 9) = {2, 3, 4, 6, 8, 9, 10} a34 = DS(3, 10) = {4, 6, 8} a35 = DS(4, 5) = {1, 2, 4, 5, 7, 9, 10} a36 = DS(4, 6) = {1, 3, 4, 6, 7, 9, 10}
a37 = DS(4, 7) = {1, 9, 10} a38 = DS(4, 8) = {2, 3, 4, 7, 8, 9, 10} a39 = DS(4, 9) = {2, 7, 10} a40 = DS(4, 10) = {3, 7, 9}
a41 = DS(5, 6) = {2, 3, 5, 6} a42 = DS(5, 7) = {2, 4, 5, 7} a43 = DS(5, 8) = {1, 3, 5, 8} a44 = DS(5, 9) = {1, 4, 5, 9}
a45 = DS(5, 10) = {1, 2, 3, 4, 5, 10} a46 = DS(6, 7) = {3, 4, 6, 7} a47 = DS(6, 8) = {1, 2, 6, 8} a48 = DS(6, 9) = {1, 2, 3, 4, 6, 9}
a49 = DS(6, 10) = {1, 4, 6, 10} a50 = DS(7, 8) = {1, 2, 3, 4, 7, 8} a51 = DS(7, 9) = {1, 2, 7, 9} a52 = DS(7, 10) = {1, 3, 7, 10}
a53 = DS(8, 9) = {3, 4, 8, 9} a54 = DS(8, 10) = {2, 4, 8, 10} a55 = DS(9, 10) = {2, 3, 9, 10}

Table 22. CN(vi) and DS(vi, vj) Table for all i, j, 1 ≤ i, j ≤ n; A = {a1, . . . , a55}

A′
1 = PS(1) = {a1, a5, a6, a7, a11, a12, a13, a17, a18, a19, a22, a23, a24, a29, a30, a31, a35, a36, a37, a43, a44, a45, a47, a48, a49, a50, a51, a52}

A′
2 = PS(2) = {a2, a5, a8, a9, a11, a14, a17, a18, a20, a21, a23, a24, a27, a29, a32, a33, a35, a38, a39, a41, a42, a45, a47, a48, a50, a51, a54, a55}

A′
3 = PS(3) = {a3, a6, a8, a10, a12, a15, a17, a19, a20, a23, a25, a27, a28, a29, a31, a33, a36, a38, a40, a41, a43, a45, a46, a48, a50, a52, a53, a55}

A′
4 = PS(4) = {a4, a7, a9, a10, a13, a16, a18, a19, a21, a24, a26, a27, a28, a31, a33, a34, a35, a36, a38, a42, a44, a45, a46, a48, a49, a50, a53, a54}

A′
5 = PS(5) = {a1, a2, a5, a12, a13, a15, a16, a17, a18, a19, a20, a21, a23, a24, a25, a26, a27, a29, a35, a41, a42, a43, a44, a45}

A′
6 = PS(6) = {a1, a3, a6, a11, a13, a14, a16, a17, a18, a19, a20, a23, a28, a29, a31, a32, a33, a34, a36, a41, a46, a47, a48, a49}

A′
7 = PS(7) = {a1, a4, a7, a11, a12, a14, a15, a17, a18, a19, a21, a24, a28, a31, a35, a36, a38, a39, a40, a42, a46, a50, a51, a52}

A′
8 = PS(8) = {a2, a3, a8, a11, a12, a17, a21, a22, a23, a24, a26, a27, a28, a29, a30, a31, a33, a34, a38, a43, a47, a50, a53, a54}

A′
9 = PS(9) = {a2, a4, a9, a11, a13, a18, a20, a22, a23, a24, a25, a27, a28, a33, a35, a36, a37, a38, a40, a44, a48, a51, a53, a55}

A′
10 = PS(10) = {a3, a4, a10, a12, a13, a19, a20, a21, a27, a29, a30, a31, a32, a33, a35, a36, a37, a38, a39, a45, a49, a52, a54, a55}

Table 23. PS(vi) Table for all i, 1 ≤ i ≤ n

124

G1 = IS(1) = {a1, a11, a12, a13, a14, a15, a16, a17, a18, a19}
G2 = IS(2) = {a2, a11, a20, a21, a22, a23, a24, a25, a26, a27}
G3 = IS(3) = {a3, a12, a20, a28, a29, a30, a31, a32, a33, a34}
G4 = IS(4) = {a4, a13, a21, a28,a35, a36, a37, a38, a39, a40}
G5 = IS(5) = {a5, a14, a22, a29, a35, a41, a42, a43, a44, a45}
G6 = IS(6) = {a6, a15, a23, a30, a36, a41, a46, a47, a48, a49}
G7 = IS(7) = {a7, a16, a24, a31, a37, a42, a46, a50, a51, a52}
G8 = IS(8) = {a8, a17, a25, a32, a38, a43, a47, a50, a53, a54}
G9 = IS(9) = {a9, a18, a26, a33, a39, a44, a48, a51, a53, a55}
G10 = IS(10) = {a10, a19, a27, a34, a40, a45, a49, a52, a54, a55}

Table 24. IS(vi) Table for all i, 1 ≤ i ≤ n

Definition 6.3.1. Set Cover (SC) Problem: Given a set A = {a1, ..., an} and A′ =

{A′
1, ..., A

′
m} (A′

i ⊆ A, 1 ≤ i ≤ m), find the smallest subset A′′ ⊆ A′ such that all

the elements in the set A is covered, i,e., every element of A belong to at least one

member of A′′.

Definition 6.3.2. Maximum Set Cover (MSC) Problem: Given a set A = {a1, ..., an}

and subsets A′ = {A′
1, ..., A

′
m} (A′

i ⊆ A, 1 ≤ i ≤ m) and an integer B, find the largest

subset A′′ ⊆ A that can be covered by using a subset A′′′ ⊆ A′, where |A′′′| ≤ B.

Definition 6.3.3. Maximum Set-Group Cover (MSGC) Problem: Given a set A =

{a1, ..., an} and subsets A′ = {A′
1, ..., A

′
m} (A′

i ⊆ A, 1 ≤ i ≤ m) and G = {G1, ..., Gp}

(Gi ⊆ A, 1 ≤ i ≤ p) and an integer B, find the subset A′′ ⊆ A′ with |A′′| = B that

maximizes the number of groups completely “covered” by A′′, i.e., it finds the largest

cardinality subset G′ ⊆ G that satisfies the condition that ∀Gj ∈ G′, ∪A′
i∈A′′A′

i∩Gj =

Gj.

We elaborate the formulation of the BCICS problem as a MSGC problem with

the help of the example shown in Figure 22. We introduce a few definitions before the

explanation.

125

Figure 22. Budgeted Identifying Code Example

Definition 6.3.4. Closed Neighborhood of vi = CN(vi) = N+(vi), where N+(vi) =

N(vi) ∪ {v}, and N(vi) is the set of nodes adjacent to vi.

Definition 6.3.5. Distinguishing Set for vi and vj = DS(vi, vj) = CN(vi)
⊕

CN(vj),

where
⊕

denotes Exclusive-OR operation. At least one element of the set must be

selected to distinguish between the nodes vi and vj.

Definition 6.3.6. Isolation Set for vi = IS(vi) = ∪n
j=1{vij : vij ∈ DS(vi, vj)}, j ̸= i.

This is the set of sets, such that if all nodes in a set is selected, it will distinguish

(isolate/uniquely identify) vi from all other nodes of the graph.

Definition 6.3.7. Presence Set for vi, PS(vi) = {CN(vj) : vi ∈ CN(vj)} ∪

{DS(vj, vk) : vi ∈ DS(vj, vk)},∀vi, vj, vk, 1 ≤ vi, vj, vk ≤ n. PS(vi) is the set of

all CN(vj)s and DS(vi, vj)s, where vi is present.

The number of nodes in the graph in Figure 22 is 10, i.e., n = 10. Accordingly,

there will be 10 CN(vi) sets and corresponding to each vi, there will be 9 DS(vi, vj)

sets, (∀vi, vj ≠ vi). Hence, there will be 100 sets altogether. However, it may be noted

that these 100 sets will not be distinct, as DS(vi, vj) = DS(vj, vi). Thus, the total

number of distinct DS(vi, vj) sets in this example will be
∑n−1

i=1 i = 45 (as n = 10).

126

These 10 CN(vi) and 45 DS(vi, vj) sets are shown in Table 22, and are marked as a1

through a55. The Presence Sets for nodes 1 through 10 for the example graph, are

shown in Table 23. The Isolation Sets for nodes 1 through 10 for the example graph,

are shown in Table 24.

The BCICS problems can be viewed as an MSGC problem in the following way. We

say PS(vi) “hits” CN(vj) if PS(vi) ∩CN(vj) ̸= ∅. Similarly, PS(vi) “hits” DS(vj, vk)

if PS(vi)∩DS(vj, vk) ̸= ∅. With slight misuse of the language, we use the term “cover”

instead of “hit”, i.e., we will say PS(vi) “covers” CN(vj) if PS(vi) ∩ CN(vj) ̸= ∅

and “covers” DS(vj, vk) if PS(vi) ∩ DS(vj, vk) ̸= ∅. In Table 22, the CN(vj) and

DS(vj, vk) sets are numbered from a1 through a10 and a11 through a55 respectively

(A = {a1, . . . , a55}) . Each PS(vi) is a subset of the set A, and is denoted as A′(vi)

in Table 23. We define the set A′ = {A′
1, . . . , A

′
10}. From Table 22 and Table 23, it

can be seen that A′(1) = PS(1) covers a1 = CN(1), a5 = CN(9), a37 = DS(4, 7) and

25 other CN(vi) or DS(vj, vk) sets shown in the first row of Table 23. The set G is

defined as the IS(vi), 1 ≤ i ≤ 10, i.e., G = {G1, . . . , G10}. Hence, the BCICS problem

can be formulated as a MSGC problem.

It may be noted that the MSC problem is a generalization of the SC problem and

the MSGC problem is a generalization of the MSC problem. As SC is a well known

NP-complete problem (Kleinberg and Tardos 2006), it can easily verified that both

MSC and MSGC problems are NP-Complete. However, unlike the SC problem for

which a log n factor approximation algorithm exists, and for the MSC problem for

which a (1− 1/e) factor approximation algorithm exists, in the following, we show

that 1/k factor approximation algorithm (k > 1) for the MSGC problem cannot exist

unless P = NP .

Theorem 5. Unless P = NP, there cannot be a polynomial time approximation

127

Set Cover Maximum Set Group Cover
1. ASC = {a1, a2, a3} 1. AMSGC = {a11, a12, a13, a21, a22, a23, a31, a32, a33}
2. A′ = {A1, A2} 2. A′ = {A1

1, A
2
1, A

3
1, A

1
2, A

2
2, A

3
2}

3. A1 = {a1, a2} 3. A1
1 = {a11, a12}, A2

1 = {a21, a22}, A3
1 = {a31, a32}

4. A2 = {a2, a3} 4. A1
2 = {a12, a13}, A2

2 = {a22, a23}, A3
2 = {a32, a33}

5. G = {G1, G2, G3}, G1 = {a11, a12, a13}, G2 = {a21, a22, a23},
G3 = {a31, a32, a33}

Table 25. Example of creation of an instance of Maximum Set-Group Cover Problem
from an instance of Set Cover Problem

algorithm for the MSGC problem with a performance factor that guarantees for every

instance I of the MSGC problem APP (I) ≥ ⌈OPT (I)/k⌉, where APP (I) and OPT (I)

represents the approximate and optimal solutions respectively for the MSGC problem

instance I and k is a real number with k > 1.

Proof: We claim that if such an algorithm existed, the Set Cover problem, which

is known to be NP-complete, could have been solved in polynomial time. Suppose if

possible, such an algorithm APPMSGC exists. From an instance of the SC problem,

given as ASC = {a1, ..., an} and A′
SC = {A′

1, ..., A
′
m} (A′

i ⊆ ASC , 1 ≤ i ≤ m), we create

an instance of the MSGC problem, by making n copies of the instance of the SC

problem. Thus,

AMSGC = {a11, . . . , a1n, a21, . . . , a2n, . . . , an1 , . . . , ann} (6.1)

A′
MSGC = {A′1

1 , ..., A
′n
1 , A

′1
2 , ..., A

′n
2 , . . . , A

′1
m, ..., A

′m
n } (6.2)

(A′i
j ⊆ AMSGC , 1 ≤ i ≤ n, 1 ≤ j ≤ n), A

′i
j = {aik|ak ∈ Aj, ∀i, 1 ≤ i ≤ n, 1 ≤

j ≤ m), GMSGC = {GMSGC
1 , ..., GMSGC

n }, and GMSGC
i = {ai1, . . . , ain},∀i, 1 ≤ i ≤ n).

(GMSGC
i ⊆ AMSGC , 1 ≤ i ≤ n).

An example of construction of an instance of the MSGC problem from an instance

of the SC problem is shown in Table 25. Given an instance of the SC problem, using

128

the MSGC instance creation rules above, we can create the corresponding instance

of the MSGC problem. If there is a polynomial time algorithm APPMSGC with

APP (I) ≥ ⌈OPT (I)/k)⌉, performance guarantee, we can apply it to the instance of

the MSGC problem created from the instance of the SC problem. The algorithm will

either return zero, implying that no group can be completely covered, or a non-zero

number, implying that at least one group can be completely covered. If the algorithm

returns zero, we can conclude that the SC problem has no solution. If the algorithm

returns a non-zero number, it implies that the SC problem has a solution. Thus, we

can conclude that if there exists a polynomial time approximation algorithm for the

MSGC problem with a performance guarantee of APP (I) ≥ ⌈OPT (I)/k⌉, for some

real number k, k ≥ 1, then the SC problem, which is known to be NP-complete, can

be solved in polynomial time. This implies that unless P = NP , no such polynomial

time approximation algorithm can exist for the MSGC problem.

6.3.2 Optimal Solution for the BCICS Problem with ILP

The goal of BCICS is to have unique signature for as many nodes as possible,

subject to the constraint that the number of nodes where sensor is placed does not

exceed the specified budget, B.

Instance: A graph G = (V,E) and an integer B.

Problem : Find a subset V ′ ⊆ V of cardinality B (i.e., |V ′| = B such that placement

of sensors at these nodes ensures that a largest subset of nodes V ′′ of V has a unique

signature associated with it.

For each vi ∈ V , we use an indicator variable xi, such that

129

xi =

1, if a sensor is placed at node vi,

0, otherwise

Also, for each vi ∈ V , we use an indicator variable yi, such that

yj =

1, if a vj ends up having a unique signature,

0, otherwise

Objective Function: Maximize
∑

vj∈V yj

Budget Constraint:
∑

vi∈V xi ≤ B,

In addition to the Budget Constraint, we introduce two additional constraints,

Coverage Constraint and Unique Coverage Constraint. Before we introduce the

constraints, we first define the terms Coverage and Unique Coverage.

Definition 6.3.8. Coverage of a node vi is the Closed Neighborhood Set of node vi,

and is denoted by Cov(vi) = {vi ∪N+(vi)}.

Definition 6.3.9. Unique Coverage of a node pair (vi, vj) is the Exclusive-OR of the

Closed Neighborhood Set of the nodes vi and vj and is denoted by Uni_Cov(vi, vj) =

N+(vj)
⊕

N+(vk)

The Coverage and the Unique Coverage constraints are:

Coverage Constraint: ∀vj ∈ V

M1 × (1− yj) +
∑

vi∈N+(vj)
xi ≥ 1,

Unique Coverage Constraint: ∀vj, vk ∈ V, vj ̸= vk

M2 × (2− yj − yk) +
∑

vi∈{N+(vj)
⊕

N+(vk)} xi ≥ 1

Note that the objective function ensures that the largest number of nodes in V receives

a unique signature. The budget constraint ensures that not more than B nodes in V

130

can be selected for sensor placement. The Coverage Constraint ensures that if node vi

has a unique signature (i.e., yi = 1), a sensor must be placed in at least one node in its

closed neighborhood (as otherwise vi will not have any signature, let alone a unique

signature). The Unique Coverage Constraint ensures that for every pair of nodes

(vj, vk) in V to have unique signatures associated with them, (i.e., yj = 1 and yk = 1),

a sensor must have been placed in at least one node in the node set N+(vj)
⊕

N+(vk).

This guarantees that vj and vk will not have identical signatures. The parameters M1

and M2 in the constraints are two large constants.

Dataset Num Num MICS k = 25% k = 50% k = 75%
Nodes Edges Solution OPT Cov. % OPT Cov. % OPT Cov. %

Fourteen Pipes 12 26 8 3 25% 7 58.33% 10 83.33%
Modified 19 Pipe 14 35 9 6 42.85% 9 64.28% 12 85.71%

Hanoi 32 66 21 10 31.25% 18 56.25% 25 78.12%
FOWM 45 94 30 14 31.11% 25 55.55% 37 82.22%

Kentucky 3 275 646 161 83 30.18% 160 58.18% 227 82.54%
Calibration 396 840 257 119 30.05% 228 57.57% 327 82.57%
Long Term 407 866 263 121 29.73% 234 57.49% 336 82.55%
Kentucky 2 812 1927 485 250 30.78% 476 58.62% 672 82.75%
Kentucky 1 859 1844 548 257 29.91% 496 57.74% 710 82.65%
Kentucky 4 962 2103 619 294 30.56% 561 58.31% 795 82.64%
Kentucky 8 1329 2936 826 412 31% 786 59.14% 1113 83.74%
Kentucky 12 2355 4810 1583 686 29.12% 1296 55.03% 1890 80.25%

Table 26. Optimal BCICS Results for Water Distribution Network Systems

6.4 Experimental Results

The datasets used in our experimentation were obtained from the Kentucky Water

Resources Research Institute (Kentucky 2001). Each dataset contains information

regarding the collection of pipes, pumps, valves, junctions, tanks, and reservoirs that

make up a water distribution system. For our study, the points of interest are the

131

nodes which represent junctions, tanks, and reservoirs whereas the edges represent

pipes, pumps, and valves.

The results of our experimentation on the datasets are presented in Table 26. For

the ease of understanding, we will describe in detail the result for the first row, i.e., the

Fourteen Pipes dataset. This dataset has 12 nodes and 26 edges. The third column

denotes the MICS cardinality for this graph. The rationale for computing the MICS

for the datasets was to ensure that we varied the budget parameter according to the

MICS cardinality. In our setup, we have considered three different budget parameters,

k = 25%, 50% and 75% of the MICS cardinality. For instance, in the Fourteen Pipes

dataset, the MICS solution is 8 and the budget parameters are k = 25% of 8 = 2,

k = 50% of 8 = 4 and k = 75% of 8 = 6. Now, the task is to identify the locations

for sensor placement which maximizes the number of nodes which would be uniquely

covered (i.e., will have a unique fault signature). For the Fourteen Pipes dataset,

with at most 2 sensors (k = 25%), we see that the optimal number of nodes uniquely

covered is 3, for which the coverage % (% of nodes uniquely covered with the budget)

is 3
12

= 25%, where 12 is the number of nodes in the network. Similarly, for k = 50% or

when the budget is 4, we can uniquely cover 7 nodes optimally, with 58.33% coverage,

and finally for k = 75%, we can cover 10 nodes optimally, with 83.33% coverage.

Similar results for the other datasets follow. Note that, for all the datasets considered,

the coverage % ≥ k. In other words, the benefits, in terms of the number of nodes

uniquely covered, outweighs the cost (budget). The average benefits for the costs

k = 25%, 50%, 75% are 30.96%, 58.04% and 82.42%.

Figure 23 illustrates the time taken by the optimal approach. Note that the

optimal solution computes the solution for the largest graph considered fairly quickly,

i.e., in a couple of minutes.

132

Figure 23. BCICS Computational Run Time

6.5 Conclusion and Future Directions

In this chapter we introduced a novel budget constrained version of the Identifying

Code problem, geared towards identifying sources of anomalies in water distribution

systems of large metropolitan cities. We provided an optimal solution for the problem

through ILP and proved that no approximate algorithm for the MSGC with 1/k

factor bound (k ≥ 1) can exist, unless P = NP . Conventionally, ILPs tend to be

computationally expensive, however, in our experimentation, computation times are

fairly small, even for graphs with more than 2300 nodes and 4800 edges. It took less

than a couple of minutes using GUROBI on an Intel i-9 processor with 128GB RAM.

Some of the future directions that could be examined in this domain are as follows:

133

• Game Theoretic Monitoring Strategies : As mentioned previously in the Human-

Human Interaction Networks chapter, the problem discussed in this chapter

could also be set up as a two-player game. This would dictate the movement of

the sensors in the network so that the attacker has difficulties in figuring out

the actual deployment locations and consequently failing in its attack.

• Robust BCICS Problem: Just as we discussed on a future robust Identifying

Code problem, there also is an equal need on a future robust BCICS problem.

The setting considered in this paper will fail to work if - (i) the sensor fails (due

to an attack or mechanical failure), or (ii) the transmitted data from the sensor

does not reach the control center.

134

Chapter 7

IDENTIFYING CODE PROBLEMS FOR RESTRICTED GRAPH CLASSES

7.1 Structural Health Monitoring

The Structural Health Monitoring (SHM) problem for critical infrastructures, such

as bridges, buildings, electric power equipments, using Wireless Sensor Networks

(WSNs), has received considerable attention in the research community in recent

years (Noel et al. 2017). Sensors placed in the deployment area have two functions:

(i) to sense a target function such as temperature, pressure, vibration, etc., and (ii)

to transmit the sensed data either directly or through multiple other sensor nodes

(which serves as relays) to the control station, for the analysis of the sensed data.

While the first function relates to coverage of the sensing region, the second function

relates to the connectivity aspects of the network formed by the sensors. The thrust

of this chapter is on the coverage aspects of the sensors distributed over a geographic

region. The sensors used for monitoring critical infrastructures may be accelerometers,

strain sensors, corrosion sensors, linear voltage differential transducers and optical

fiber transducers (Noel et al. 2017). Each of these sensors have a specific sensing range

associated with it. For example, seismic sensors are deployed to detect earthquakes

in regions of interest. All these sensors have certain sensitivity in the sense that

some are more sensitive than others, for instance, acceleration sensors may be able to

detect magnitude 1 earthquakes, within a few kilometers, whereas, highly sensitive

seismometers will be able to detect earthquakes in a much larger distance. Hence,

each of these sensors have a sensing range associated with it. A sensor can only

135

Figure 24. Structural Monitoring of Bridges

sense any abnormality if it happens within its sensing range, i.e., each sensor has

a coverage area associated it. The coverage aspect of sensor networks alone has

been studied extensively (Wang 2011; Cardei and Wu 2004). The survey paper on

Coverage Problems in Sensor Networks (Wang 2011), references close to two hundred

papers. Accordingly, a multitude of sensor coverage models, such as (i) Boolean Sector

Coverage Model, (ii) Boolean Disc Coverage Model, (iii) Attenuated Disc Coverage

Model, (iv) Truncated Attenuated Disc Models, (v) Estimation Coverage Models, etc.

have been studied by various research groups (Wang 2011).

Cardei and Wu in (Cardei and Wu 2004), classified coverage problems into three

broad classes, (i) Point Coverage, (ii) Area Coverage, and (iii) Barrier Coverage. While

136

in the area coverage problem, an entire area (in two or three dimensional space) has

to be sensed (monitored), in the point coverage problem, only a specified set of points

(points of interest) in two or three dimensional space, has to be monitored. Moreover,

oftentimes there are restrictions on the locations (in two or three dimensional space),

where the sensors can be deployed. These are the potential locations where the sensors

can be deployed, and these locations can be viewed as another set of specified points

(in a two or three dimensional space). For example, accelerometers cannot be deployed

in any arbitrary location, due to various constraints such as, cost of deployment, access

difficulty, property rights, etc.

One of the most frequently studied problems in this context is the Sensor Placement

Optimization (Kleinberg and Tardos 2006), whose goal is to find the smallest set of

locations (among the potential locations for sensor deployment), so that all the points

of interest can be sensed. In other words, every point of interest should be under the

coverage area of at least one deployed sensor. If a boolean disc coverage model (Wang

2011) is used for sensor coverage, the Sensor Placement Optimization problem can

be formulated as a Set Cover problem (Kleinberg and Tardos 2006) and a number of

studies using this model are available in the literature (Kleinberg and Tardos 2006).

Although a number of studies on sensor placement optimization problem follow

the set cover formulation to find a solution, it has a serious limitation on the accurate

identification of the location, where some abnormality is detected by one or more of the

deployed sensors. We illustrate this point with the help of an example. In Figure 25,

the ten red points (numbered from 1-10) indicate the points to be sensed (monitored),

the eight blue points (numbered from 11-18) indicate the potential locations where the

sensors can be deployed and the green circles (centered on each blue point) indicate

the coverage area of a sensor deployed at that blue point. In this example, it can

137

Figure 25. Potential Sensors and Sensing Locations

be verified that if sensors are deployed in locations 11, 13, 14, 16 and 17, all points

from 1 to 10 will be within the sensing range of at least one sensor. Specifically, the

points (1-10) covered (sensed) by the sensors 11, 13, 14, 16, 17 are shown in Table 27.

In Table 28, we present the sensors that are actually sensing the points 1-10, using

the Set Cover approach.

138

Figure 26. Bipartite Graph Corresponding to Potential Sensors and Sensing Locations

Sensor Points Sensor Points
Location Sensed Location Sensed

11 1 15 6, 8
12 1, 5 16 5, 8, 9
13 2, 4 17 6, 7, 10
14 3, 4, 7 18 10

Table 27. Points Covered by Each Sensor

Points Sensor Points Sensor
Sensed Location Sensed Location

1 11 6 17*
2 13 7 14, 17
3 14 8 16**
4 13, 14 9 16**
5 16** 10 17*

Table 28. Sensors Covering Each Point Following Set Cover

The serious limitation of the set cover based approach to optimal sensor placement

problem is that, it may fail to uniquely identify the point where an abnormality is

detected by the sensor. We elaborate this point with the results shown in Table 27

and Table 28. In this example, sensors were deployed at locations 11, 13, 14, 16, 17 and

this deployment ensured that all points to be sensed were within the coverage area of

at least one sensor. Suppose the control center has five indicator lamps A,B,C,D,E

corresponding to five sensors located at 11, 13, 14, 16, 17. If the sensor does not sense

139

Points Sensor Points Sensor
Sensed Location Sensed Location

1 12 6 15, 17
2 13 7 14,17
3 14 8 15, 16
4 13, 14 9 16
5 12, 16 10 17

Table 29. Sensors Covering Each Point Following Identifying Code

an abnormality at the point it is sensing, then the corresponding lamp is lit green.

If a sensor senses an abnormality at a point, then the corresponding lamp turns red.

From Table 28, it can be seen that points 6 and 10 are sensed by sensor 17 only, and

points 5, 8 and 9 are sensed by 16 only. The implication of this is that if lamp E

(corresponding to sensor 17) turns red, then it will not be possible to ascertain if the

abnormality was detected at point 6 or 10. Similarly, if lamp D (corresponding to

sensor 16) turns red, then it will not be possible to ascertain if the abnormality was

detected at point 5 or 8 or 9.

This limitation of failure to uniquely identify the point where abnormality is

detected by the sensor, can be overcome by deployment of additional sensors. In

this example, instead of deploying sensors at locations 11, 13, 14, 16, 17, if they were

deployed at locations 12, 13, 14, 15, 16, 17, then each point would have been sensed

in the way as shown in Table 29. It may be noticed that deployment of six sensors,

instead of five, avoids the problem of failure of unique identification of points where

abnormality is detected.

The mathematical foundation of computing the least number of sensors needed

for unique identification of points where abnormality is detected, is provided by

the concept of Identifying and Discriminating Codes (Karpovsky, Chakrabarty, and

Levitin 1998; Charbit et al. 2006). Since its introduction, these codes have been

140

studied fairly extensively for various classes of graphs. We show that the problem

of computing the least number of sensors needed for unique identification of points,

where abnormality is detected, for points in one-dimensional and two-dimensional

space is equivalent to computation of Minimum Discriminating Code Set (MDCS) of

Unit Interval Bigraph and Unit Disc Bigraph respectively. A major contribution of

this chapter is the development of a polynomial time algorithm for the MDCS problem

for Unit Interval Bigraphs. It may be noted that when the intervals associated with

the nodes of the graph are of arbitrary size, then the MDCS problem is NP-Complete

(Foucaud and Perarnau 2011). Computational complexity of related problems, such

as Identifying Code for Interval Graphs is NP-Complete, whereas it is still open for

Interval Graphs with unit length intervals (Bousquet et al. 2015).

7.1.1 Related Work

As noted earlier, sensor placement problems for monitoring critical infrastructures

have been studied extensively in the last few years (Li, Wang, Ni, et al. 2009; Bhuiyan

et al. 2014; Basu, Padhee, et al. 2018; Kim et al. 2007; Lynch and Loh 2006). A

particular example of health monitoring in civil infrastructures using wireless sensor

networks can be seen in (Kim et al. 2007), where the authors deployed sensors to

monitor the Golden Gate Bridge (Figure 27). In this application, both the points

to be monitored and the locations where the sensors can be deployed, lie on a single

line, as shown in Figure 27. Our study on accurate identification of the location

where abnormality is sensed, in which sensors and points of interest are located on

one line, is motivated by the study in (Kim et al. 2007). WSN based SHM system is

also deployed at the many bridges in China including the ZhengDian bridge (Noel

141

et al. 2017). Aside from bridges, SHM systems have also been deployed for monitoring

sports stadium, buildings and wind turbines (Noel et al. 2017).

Karpovsky et al. introduced the concept of Identifying Codes in (Karpovsky,

Chakrabarty, and Levitin 1998) and provided results for Identifying Codes for graphs

with specific topologies, such as binary cubes and trees. Using Identifying Codes,

Laifenfeld et al. studied joint monitoring and routing in wireless sensor networks, in

(Laifenfeld et al. 2009). Ray et al. studied location detection problem in emergency

sensor networks, using Identifying Codes (Ray et al. 2004). In this work, they also

introduced the concept of robust Identifying Codes to deal with faults in sensor

networks. They presented an algorithm for generating irreducible Identifying Codes in

polynomial time. It may be noted that irreducible Identifying Code is only a minimal

Identifying Code and may not be the minimum (or optimal) Identifying Code. In

contrast, we present an algorithm for construction of optimal Identifying Code for

the problem scenario, where the points of interest and potential locations for sensor

deployment, lies on a single line. Sen et al. studied monitoring terrorist networks

using Identifying Codes (Arunabha Sen et al. 2018).

Algorithms and complexity of computation of Identifying Codes for restricted class

of graphs such as, Interval and Permutation graphs, were studied in (Foucaud and

Perarnau 2011; Foucaud 2015). An approximation algorithm for the computation of

minimum Identifying Code for Interval graphs with a performance bound of six, was

presented in (Bousquet et al. 2015). A special case, where only a subset of nodes needs

a unique code, can be modeled with a bipartite graph, and this version of Identifying

Codes is called “Discriminating Codes” and was studied in (Charbit et al. 2006, 2006).

This special case is relevant for our study as, our problem formulation requires us

to find the unique signatures of all nodes of one side of bi-partition of a bipartite

142

graph, by selecting only a subset of the nodes in the other side of bi-partition. This

formulation corresponds directly to “Discriminating Codes”. However, the bipartite

graphs that appear in our formulation is not just any bipartite graph, but subsets of

bipartite graphs known as Interval Bigraphs and Unit Disc Bigraphs, corresponding

to our study of points being in one or two dimensional space respectively. (Müller

and Sereni 2009) presented a polynomial time algorithm for recognition of Interval

Bigraphs.

7.1.2 Problem Formulation

In Figure 25, the ten red points (numbered from 1-10) indicate the points to be

sensed (monitored), the eight blue points (numbered from 11-18) indicate the potential

locations where the sensors can be deployed and the green circles (centered on each

blue point) indicate the coverage area of a sensor deployed at that blue point. From

these set of red and blue points, we construct a graph using the following construction

rules: (i) Corresponding to each red point, we have a red node, (ii) Corresponding

to each blue point, we have a blue node and (iii) There is an edge between a blue

node and a red node, if and only if the corresponding red point is within the green

circle, centered at the corresponding blue point. The graph constructed from the

problem instance in Figure 25, is shown in Figure 26. Clearly, the graph constructed

by following the above construction rules will result in a Bipartite graph. However, a

pertinent question in this regard is whether any Bipartite graph can be constructed by

following the rules or the constructed graphs constitute only a subset of all Bipartite

graphs. In the following theorem, we prove that the constructed graphs constitute

only a subset of all Bipartite graphs.

143

In the following, we define a set of graphs that are relevant for this study.

Definition 7.1.1. Interval Bigraphs: An interval bigraph is an undirected bipartite

graph G = (V1∪V2, E), whose edge set is the intersection of the edge set of an interval

graph with vertex set V1 ∪ V2, and the edge set of a complete bipartite graph with

bi-partition V1 ∪ V2. A bipartite interval representation of an interval bigraph is given

by a bipartitioned set of intervals for its vertices, such that vertices are adjacent if

and only if the corresponding intervals intersect, and belong to opposite sides of the

bi-partition (Müller and Sereni 2009).

Definition 7.1.2. Unit Disc Bigraphs: A unit disc bigraph is an undirected bipartite

graph, whose edge set is the intersection of the edge sets of a unit disc graph and

the edge set of a complete bipartite graph on the same vertex set. A bipartite unit

disc representation of a unit disc bigraph is given by a bipartitioned set of circles for

its vertices, such that vertices are adjacent if and only if the corresponding circles

intersect and belong to opposite sides of the bi-partition.

Lemma 6. The number of distinct regions created by intersection of n circles on a

plane is at most n2 − n+ 2.

Proof. Proof by induction. If n = 1 there are two regions (one inside and the other

outside the circle), and the inductive hypothesis holds as n2 − n+ 2 = 1− 1 + 2 = 2.

Assume that the hypothesis is true as long as n ≤ m. If a new (m + 1)-th circle

is introduced, it can cross the old ones in at most 2m points. Each segment can

cut an existing region in two parts, adding 2m regions. Thus the maximum number

of regions after introduction of the for (m + 1)-th circle is m2 − m + 2 + 2m =

(m+ 1)2 − (m+ 1) + 2.

144

Theorem 7. The graphs constructed by following the above construction rules only

create a subset of all Bipartite graphs.

Proof. The theorem can be proven by showing that there exists at least one Bipartite

graph that cannot be constructed by following the construction rules.

Consider a Bipartite graph G = (V1 ∪ V2, E), where V1 ∪ V2 constitutes the

bipartition and cardinalities of V1 and V2 are n and 2n − 1 respectively. Each node in

V2 corresponds to a non-empty subset of the nodes in V1 and is connected by an edge

e ∈ E to those nodes.

Claim: Such a Bipartite graph cannot be constructed using the graph construction

rules given above. The reason such a graph cannot be constructed is the following.

The node sets V1 and V2 corresponding to two sets of points on a two dimensional

plane. Suppose that we refer to the set of points corresponding to the nodes in V1

as red points and the set of points corresponding to the nodes in V2 as blue points.

Suppose that we draw a unit radius circle with each red point as the center. Since

each node v ∈ V2 corresponds to a distinct non-empty subset of nodes of V1 and is

connected to this subset of nodes, in order to satisfy the graph construction rules, the

blue point corresponding to v ∈ V2 must be located in a distinct region created by

intersection of n circles corresponding to n red points. However, from Lemma 6 we

know that the number of distinct regions created by intersection of n circles on a plane

is at most n2 − n + 2. For existence of the graph G = (V1 ∪ V2, E), 2n − 1 distinct

regions are needed as the locations of the 2n − 1 blue points. As 2n − 1 > n2 − n+ 2

for n ≥ 4, the graph G = (V1 ∪ V2, E), such locations cannot be found when n ≥ 4

and hence the graph cannot be constructed using the graph construction rules given

above.

Theorem 8. The graph constructed from the two sets of points (red and blue) on a

145

two dimensional plane using the construction rules given above will be an Unit Disc

Bigraph.

Proof. Clearly, the graph constructed following the construction rules will be a bipartite

graph G = (V1 ∪ V2, E), where V1 is the set of nodes corresponding to the set of red

points and V2 is the set of nodes corresponding to the set of blue points. Suppose that

Gudg is a unit disc graph corresponding to the set of red and blue points, and Gcbp is

a complete bipartite graph with bi-partition V1 and V2. It can be easily verified that

G = (V1 ∪ V2, E) is the intersection of Gudg and Gcbp. If Gudg = (V1 ∪ V2, Eudg) and

Gcbp = (V1 ∪ V2, Ecbp), then G = (V1 ∪ V2, Eudg ∩ Ecbp).

Theorem 9. The graph constructed from the two sets of points (red and blue) on an

one dimensional plane using the construction rules given above will be an Interval

Bigraph.

Proof. As in Theorem 8, the graph constructed following the construction rules will be

a bipartite graph G = (V1∪V2, E). Suppose that Gig is an interval graph corresponding

to the set of red and blue points and Gcbp is a complete bipartite graph with bi-partition

V1 and V2. It can be easily verified that G = (V1 ∪ V2, E) is the intersection Gig and

Gcbp.

In this chapter, we focus on two deployment scenarios. In the first case, both

the points of interest and the potential sensor deployment locations are on a two

dimensional space (i.e., a plane). In the second case, they are located on an one

dimensional space (i.e., a line). The motivation for considering the scenario where

they are located on an one dimensional space comes from the fact that, in a large

number of structures (such as long spanning bridges), both the locations to be sensed

and the locations where sensors can be deployed, lie on a line. In a study undertaken

146

Figure 27. Golden Gate Wireless Sensor Network

by a University of California Berkeley team, a wireless sensor network (WSN) was

deployed for structural health monitoring (SHM) of the Golden Gate bridge, where the

sensors were placed on a line as shown in Figure 27. Similar efforts were undertaken

in China as reported in (Noel et al. 2017).

It may be recalled that the main objective of this study is, to determine the least

number of sensors and their locations, required for unique identification of the point

of interest, where abnormality is detected. It may be noted that, in this study we

focus our attention only to the scenario where abnormality (or failure) is restricted to

only one point. In this chapter, we do not consider multiple simultaneous failure.

It is clear from the discussion on the graph construction rules for the points

deployed in two or one dimensional spaces that, the corresponding graphs will be a

Unit Disc Bigraph and a Interval Bigraph respectively. It may be recalled that, the

MDCS Problem finds the smallest subset V ′
2 ⊆ V2, such that injection of colors at

these nodes, ensures that each node v ∈ V1, receives a unique color through seepage.

Thus, the objective of determining the least number of sensors required for unique

identification of the point of failure can be realized, by the computation of MDCS for

the Unit Disc Bigraph and Interval Bigraph, respectively.

147

Figure 28. Bipartite Graph Generated From One Dimensional Points

7.1.3 Problem Solution

In this section, we first present a dynamic programming based optimal algorithm,

for the computation of MDCS for points located in one dimensional space. We then

present an Integer Linear Program for the computation of the MDCS for points located

in two dimensional space.

7.1.3.1 One Dimensional Case

In this subsection, we provide a dynamic programming based algorithm to find

the optimal solution for the problem in one dimension. Given a set of red points

R = {r1, ...rn} and a set of blue points B = {b1, ..., bm} on a line, as shown in Figure 28,

148

the dynamic programming algorithm finds the smallest subset B′ ⊂ B, such that,

injection of colors at these points, assigns a unique color (atomic or composite) to

every red point in R through seepage. It may be recalled that the set of red points

correspond to the points of interest and the set of blue points are potential locations

for placement of sensors. The sensing range of a sensor is 1 unit, which implies that a

blue point bi ∈ B can sense all the red points within the interval bi − 1 to bi + 1. The

graph constructed from the set of points in Figure 28, following the graph construction

rules mentioned earlier, is shown in Figure 28.

We use the notation Rj to be the j−th prefix of R, i.e., Rj = {r1, ...rj}. Similarly,

Bi to be the i−th prefix of B, i.e., Bi = {b1, ...bi}. Since, the objective of this problem

is to assign a unique color to all elements of R by injecting colors at the fewest number

of elements of B, we refer to the R points as the problem space and B points as the

solution space. We use the notation Di,j to indicate the smallest (optimal) subset

of Bi that uniquely color all the elements of Rj. In case there are multiple subsets

B′
i ⊂ Bi that uniquely color all the elements of Rj, the subsets B′

i are lexicographically

ordered and for Di,j, we store the subset B′
i that appears last in the lexicographical

ordering. We build a m× n table row by row and at the end of the completion of the

table, the (m,n)-th entry provides the solution to the problem.

If no solution exists for problem space Rj with solution space Bi, we denote it by

setting Di,j = ∅. Prior to computation of Di,j, all elements of the table from rows 1

to i− 1 have been computed. Moreover, all elements in the i-th row from columns 1

to j − 1 have also been computed. Only j + 1 of these elements can be candidates for

Di,j.

• Case 1: Di−1,j, as this provides the smallest subset of Bi−1 that uniquely colors

all elements of Rj.

149

• Case 2: Di−1,j−1 ∪ bi, if Di−1,j−1 ̸= ∅ and bi uniquely colors rj. (Di−1,j−1 ̸= ∅

provides a non empty subset of Bi−1 that assigns unique colors to Rj−1. Since

bi uniquely colors rj, Di−1,j−1 together with bi, uniquely colors Rj).

• Case 3: Di,j′ , where Di,j′ uniquely colors Rj, and j′ is the value of j′′, such

that |Di,j′| is the smallest among all |Di,j′′|, 1 ≤ j′′ < j. (It may be noted that

Di,j′ guarantees unique color assignment to Rj′ with the smallest subset B′
i of

Bi. However, it is possible that for some structure of the graph, not only does

B′
i assign a unique coloring to Rj′ , but also it assigns a unique coloring to Rj,

where j′ < j. As such, this should be considered as a candidate for Di,j.)

It may be noted that while cases 1 and 2 produce one candidate each, case 3

produces 1 candidate out of j − 1 possible candidates, for Di,j.

With discussions above, Di,j can be expressed in the form of the following recurrence

relation,

Di,j = min(Set1, Set2, Set3) (7.1)

where, Set1, Set2, Set3 are defined as follows:

Set1 = Di−1,j

Set2 = min

Di−1,j−1 ∪ {bi}, if Di−1,j−1 ̸= ∅ and bi uniquely colors rj

∅, otherwise

Set3 = min

min∀j′<jDi,j′ , if Di,j′ assigns unique colors to Rj

∅, otherwise

150

Table Entry Comparison Result Color
D11 min(D01, D00 ∪ {b1}, D10) = min (∅, {b1}, ∅) {b1} [A, *, *, *, *]
D12 min(D02, D01 ∪ {b1}, D11) = min (∅, ∅, ∅) ∅ [*, *, *, *, *]
D13 min(D03, D02 ∪ {b1},min(D11, D12)) = min (∅, ∅, ∅) ∅ [*, *, *, *, *]
D14 min(D04, D03 ∪ {b1},min(D11, D12, D13)) = min (∅, ∅, ∅) ∅ [*, *, *, *, *]
D15 min(D05, D04 ∪ {b1},min(D11, D12, D13, D14)) = min (∅, ∅, ∅) ∅ [*, *, *, *, *]
D21 min(D11, D10 ∪ {b2}, D20) = min ({b1}, ∅, ∅) {b1} [A, *, *, *, *]
D22 min(D12, D11 ∪ {b2}, D21) = min (∅, {b1b2}, ∅) {b1b2} [A, AB, *, *, *]
D23 min(D13, D12 ∪ {b2},min(D21, D22)) = min (∅, ∅, ∅) ∅ [*, *, *, *, *]
D24 min(D14, D13 ∪ {b2},min(D21, D22, D23)) = min (∅, ∅, ∅) ∅ [*, *, *, *, *]
D25 min(D15, D14 ∪ {b2},min(D21, D22, D23, D24)) = min (∅, ∅, ∅) ∅ [*, *, *, *, *]
D31 min(D21, D20 ∪ {b3}, D30) = min ({b1}, ∅, ∅) {b1} [A, *, *, *, *]
D32 min(D22, D21 ∪ {b3}, D31) = min ({b1b2}, ∅, ∅) {b1b2} [A, AB, *, *, *]
D33 min(D23, D22 ∪ {b3},min(D31, D32)) = min (∅, {b1b2b3}, ∅) {b1b2b3} [A, AB, ABC, BC C]
D34 min(D24, D23 ∪ {b3},min(D31, D32, D33)) = min (∅, ∅, {b1b2b3}) {b1b2b3} [A, AB, ABC, BC, C]
D35 min(D25, D24 ∪ {b3},min(D31, D32, D33, D34)) = min (∅, ∅, {b1b2b3}) {b1b2b3} [A, AB, ABC, BC, C]

Table 30. Computation of the Entries of the Table

r1 r1r2 r1r2r3 r1r2r3r4 r1r2r3r4r5
b1 {b1} ∅ ∅ ∅ ∅
b1b2 {b1} {b1b2} ∅ ∅ ∅
b1b2b3 {b1} {b1b2} {b1b2b3} {b1b2b3} {b1b2b3}

Table 31. Table Entries For the Figure

In the following, we present an algorithm for MDCS computation for points in one

dimensional space, which is based on the recurrence relation given in Equation 7.1.

The algorithm builds a m× n table, where m and n represents the number of blue

and red points respectively, by filling out entries of the table row by row and column

by column.

Theorem 10. Algorithm 4 finds the optimal solution for the MDCS problem for the

points in one-dimensional space.

Proof. Di,j is the smallest subset B′
i of Bi that uniquely colors Rj. In Algorithm 4,

Di,j is computed as the minimum of three sets, Set1, Set2, Set3. One important

requirement for any candidate (i.e., a subset of Bi) to be considered as Di,j is that,

this subset has to uniquely color Rj.

151

Algorithm 4 MDCS Computation Algorithm (One Dimension)
1: Input: A set of red R = {r1, ..rn} and blue B = {b1, ..bm} points on a line
2: Output: The smallest subset B′ ⊆ B that uniquely colors R (Dm,n).
3: ∀i, j,Di,0 = D0,j = ∅
4: for i = 1 to m do
5: for j = 1 to n do
6: Set1 = D[i− 1, j]
7: if D[i− 1, j − 1] ̸= ∅ and bi uniquely colors rj then
8: Set2 = D[i− 1, j − 1] ∪ bi
9: else
10: Set2 = ∅
11: end if
12: count = 0, max = 1000000, idx = 0
13: for k = 1 to j - 1 do
14: if D[i, k] uniquely colors Rj then
15: count = count + |D[i, k]|
16: if |D[i, k]| < max then
17: max = |D[i, k]|
18: idx = k
19: end if
20: end if
21: end for
22: if count == 0 then
23: Set3 = ∅
24: else
25: Set3 = D[i, idx]
26: end if
27: Di,j = min(Set1, Set2, Set3)
28: end for
29: end for

1. The set Di−1,j uniquely colors Rj, using the smallest subset of Bi−1. Since Bi−1

is a subset of Bi, Di−1,j is a potential candidate for Di,j. This is captured in

Set1.

2. The set Di−1,j−1 uniquely colors Rj−1 using the smallest subset of Bi−1. However,

Di−1,j−1, in addition to uniquely coloring Rj−1, may or may not uniquely color

rj. If Di−1,j−1, in addition to uniquely coloring Rj−1, uniquely colors rj, then

problem reduces to Set1. However, if Di−1,j−1, does not uniquely color rj, but

augmentation of the set Di−1,j−1, with bi, enables rj to receive a unique color,

then this augmented set becomes a potential candidate for Di,j . This is captured

in Set2.

3. For all j′ < j, the set Di,j′ uniquely colors Rj′ , using the smallest subset

of Bi. However, Di,j′ , in addition to uniquely coloring Rj′ , may or may not

152

uniquely color Rj. Among the set of non-empty Di,j′ that uniquely colors Rj,

1 ≤ j′ ≤ j − 1, the one that has the smallest cardinality is a candidate for Di,j.

This is Set3.

Di,j is the smallest subset B′
i of Bi that uniquely colors Rj . 1, 2 and 3 correspond

to the following scenarios, (i) bi /∈ B′
i, B

′
i ⊂ Bi, (ii) bi ∈ B′

i, B
′
i ⊂ Bi, and (iii) bi may

or may not be ∈ B′
i, B

′
i ⊂ Bi, depending on whether it satisfies the required condition.

Accordingly, these three scenarios are exhaustive from which potential candidates for

Di,j must emerge. Since the algorithm examines all three sets, it is guaranteed to find

the optimal solution.

Lemma 11. MDCS problem for Unit Interval Bigraph generated from m blue points

and n red points has no solution in case n ≥ 2m.

Proof. There will be m intervals corresponding to m blue points. These intervals may

be overlapping with each other, creating a set of subintervals, as shown in Figure 28.

With m blue points, there can be at most 2m− 1 subintervals. If more than one red

point appears in one blue subinterval, then the corresponding red nodes will have

exactly identical neighborhood of blue nodes. Accordingly, these red nodes will be

“twins”. As noted earlier, the necessary and sufficient condition for a graph to have an

Identifying Code is that the graph should be “twin” free. If the number of red points

n is 2m or higher, by Pigeon Hole Principle, then at least one of the blue subintervals

must have more than one red point. Accordingly, the corresponding graph will have

“twins” and MDCS for the graph will not exist.

Theorem 12. Complexity of Algorithm 4 is O(m5).

Proof. The Algorithm 4 builds up a m×n table. The amount of computation involved

in filling out (i, j)-th entry of the table is O(j), as it has to compute the minimum of

153

the entries D[i, 1], ..., D[i, j − 1] and check if the red nodes in Rj received a unique

color. The computation involved in checking for uniqueness is O(n2). Accordingly,

the complexity of the algorithm is O(mnjn2). Since j ≤ n and n ≤ 2m − 1, the

complexity of the algorithm is O(m5), where m is the number of blue points, i.e., the

potential sensor locations.

Example: Figure 28 illustrates 5 red points and 3 blue points in one dimension

along with the corresponding bipartite graph. The solution to this problem, using

Algorithm 4, can be found in the entry D3,5 of Table 31.

Computational process through which the entries of Table 31 was found is shown

in Table 30. Algorithm 4 computes Di,j by finding minimum of the three sets

Set1, Set2, Set3. It may be noted that, in this example, all three sets (Set1, Set2, Set3)

were used for filling out the entries of Di,j for different values of i, j. Specifically,

the entries D2,1, D3,1, D3,2 were filled using Set1, D1,1, D2,2, D3,3 were filled using Set2,

and D3,4, D3,5 were filled using Set3. The last column of the Table 30 shows the color

assignments in the five red nodes r1, ..., r5. For example, corresponding to the entry

D1,1, when the node b1 is injected with a color, only the node r1 receives the color

through seepage from b1. Similarly, corresponding to the entry D3,2, when the nodes

b1, b2 are injected with two distinct colors (denoted by the alphabets A,B), the node r1

is colored A, whereas r2 receives AB. The symbol ∗ indicates that the corresponding

r point either did not receive a color or was outside the problem space at that stage.

7.1.3.2 Two Dimensional Case

In this subsection, we provide an Integer Linear Program (ILP) to find the optimal

solution for the problem in two dimensions. Given a set of red points R = {r1, r2, ..., rn}

154

and a set of blue points B = {b1, b2, ..., bm} on a two-dimensional plane, the Integer

Linear Program illustrated below, finds the smallest subset B′ ⊆ B. such that,

injection of colors at these points, assigns a unique color to every red point in R,

through seepage. It may be recalled that the construction of a graph from a set of

points, has been described in subsection 7.1.2.

Instance: G = (V1 ∪ V2, E), an undirected bipartite graph.

Problem : Find the smallest subset V ′
2 ⊆ V2, such that injection of colors at these

nodes, ensures that each node vi ∈ V1, receives a unique color (either atomic or

composite) through seepage.

We use the notation N(vi) to denote the neighborhood of vi, for any vi ∈ V1 ∪ V2.

Corresponding to each vi ∈ V2, we use an indicator variable xi,

xi =

1, if a color is injected at node vi,

0, otherwise

Objective Function: Minimize
∑

vi∈V2
xi

Coloring Constraint:
∑

vi∈N(vj)
xi ≥ 1, ∀vj ∈ V1

Unique Coloring Constraint:

∑
vi∈{N(vj)

⊕
N(vk)} xi ≥ 1, ∀vj, vk ∈ V1, vj ̸= vk

N(vj)
⊕

N(vk) denotes the Exclusive-OR of the node sets N(vj) and N(vk). It may

be noted that the objective function ensures that the fewest number of nodes in

V2 are assigned a color. The Coloring Constraint ensures that every node in V1

receives at least one color through seepage from the colors injected at nodes in V2.

155

A consequence of the Coloring Constraint is that, a node in V1 may receive more

than one color through seepage from the colors injected at nodes in V2. The Unique

Coloring Constraint ensures that, for every pair of nodes (vj, vk) in V1, at least one

node in the node set N(vj)
⊕

N(vk) ⊆ V2 is injected with a color. This guarantees

that vj and vk will not receive identical colors through the color seepage from the

nodes in V2.

7.1.4 Experimental Results

In this subsection, we evaluate the performance of the ILP for the 2D MDCS

problem. Conventionally, ILPs tend to be computationally expensive. However, we

show that for the 2D MDCS problem, the computation times are fairly small, even for

a graph with more than 64000 nodes and 155000 edges, it only took slightly more than

3 minutes. To simulate the performance, we generated random points on a 2D plane

and constructed graphs following the rules illustrated in subsection 7.1.2. Table 32

illustrates the details of the various graphs and the time taken for computation of B′.

The results were computed using the GUROBI Optimization package on an Intel i-5

with 32GB RAM.

7.2 Soccer Ball Graph Analysis

In this section, we study an event monitoring problem with satellites as sensors.

The events that we focus on may be environmental (drought/famine), social/political

(social unrest/war) or extreme events (earthquakes/tsunamis). Such events take place

in regions on the surface of the earth, where a region may be a continent, a country,

156

|Nodes| |Edges| |R| |B| |B′| Time(s)
45 105 5 40 3 0.06
89 187 7 82 4 0.60
170 276 14 156 10 1.59
422 1080 10 412 6 2.75
367 272 9 358 5 2.24
882 427 64 818 55 5.68
5927 3655 155 5772 106 25.18
64655 155339 8999 55656 6020 180.45

Table 32. 2D MDCS Computation Results

or a set of neighboring countries. The sensors that we envisage for monitoring such

events are satellites placed in orbits surrounding the earth. A satellite constellation

that can be deployed for such monitoring purposes is shown in Figure 29a. Examples

of such constellations include the Global Positioning System (GPS) for navigation, the

Iridium and Globalstar satellite telephony, and the Disaster Monitoring Constellation

(DMC) for remote sensing. In particular, DMC is designed to provide earth imaging

for disaster relief and was used extensively to monitor the impact of the Indian Ocean

Tsunami in December 2004, Hurricane Katrina in August 2005, and several other

floods, fires and disasters. The problem that we address in this paper is directly

relevant to the services being provided by organizations such as the DMC.

For modeling the Earth’s spherical structure, we use a soccer ball as a model of

the planet Earth. In technical terms, a standard soccer ball is a truncated icosahedron

with 12 pentagonal and 20 hexagonal patches (Kotschick 2006) (shown in Figure 29b

as black and white patches). We associate a patch on the surface of the ball with

a region on the surface of the Earth. Accordingly, in our model the surface of the

Earth is partitioned into 32 regions. We assume that the coverage area of a satellite

corresponds to a patch (region) and events are confined to a region. With such a

157

(a) Satellite Constellation Covering Earth (b) Truncated Icosahedron

(c) Graph with Identifying Code Set {v1, v2, v3, v4}

Figure 29. Satellites as Sensors and Soccer Ball as a Model of Planet Earth

158

framework, it is clear that with 32 satellites (one per region), all the 32 regions can

be effectively monitored. However, if we assume that the impact of an event in one

region will spill into the neighboring regions, and as such there will be indicators of

such events in neighboring regions, then a significantly lower number of satellites may

be sufficient for effective monitoring of all the regions. As an example of impact of

an event spilling over to neighboring regions, one can think of a situation where war

breaking out in one region can trigger an exodus of refugees to the neighboring regions.

As these sensors are expensive, one would like to deploy as few sensors as possible,

subject to the constraint that all the regions can be effectively monitored. In the

following, we discuss Identifying Codes (Karpovsky, Chakrabarty, and Levitin 1998)

that can be utilized for this purpose. In particular, we will show that 10 satellites are

sufficient to effectively monitor 32 regions in the sense that, if an event breaks out in

a region, that region can be uniquely identified. In fact there exists 26 different ways

of deploying 10 satellites that will achieve the effective monitoring task. Moreover, we

will establish that the effective monitoring task cannot be accomplished by deployment

of fewer than nine satellites.

The notion of Identifying Codes (Karpovsky, Chakrabarty, and Levitin 1998) has

been established as a useful concept for optimizing sensor deployment in multiple

domains. From the soccer ball (Figure 30a), we construct a graph (referred to as a

Soccer Ball Graph, SBG) where each of the 32 regions is represented as a node and

two nodes have an edge between them if the corresponding regions share a boundary.

The construction rules for the SBG are provided later and a two dimension layout of

the SBG is shown in Figure 30b. We establish that the upper and lower bounds of

the MICS problem for the SBG are 10 and nine respectively. Furthermore, we also es-

159

(a) Nodes Correspond-
ing to the Patches on
the Soccer Ball (b) Soccer Ball Graph

Figure 30. Soccer Ball and the Corresponding Graph

tablish that there exist at least 26 different Identifying Code Sets of size 10 in the SBG.

7.2.1 Problem Formulation

A Soccer Ball Graph (SBG) G = (V,E) is defined in the following way. The graph

comprises of 32 nodes and 90 edges. The 32 nodes correspond to 32 patches (20

hexagonal and 12 pentagonal) of the soccer ball and two nodes in the graph have

an edge between them if the corresponding patches share a boundary. A graph can

have different layouts on a two dimensional plane. We show one layout of the SBG in

Figure 30b where the nodes are labeled using a set of rules. The soccer ball, placed

on a two dimensional plane (as shown in Figure 30a), has a pentagonal patch on

top. There are six hexagonal patches adjacent to this pentagonal patch. We consider

a layering scheme, where the node corresponding to pentagonal patch on top is in

Layer 1 (L1), the six nodes corresponding to six hexagonal patches adjacent to the

160

pentagonal patch on top are in Layer 2 (L2) and so on. Following this layering scheme,

all 32 nodes can be assigned to six layers, L1 through L6, as shown in Figure 30b. In

this scheme, one node is assigned to L1, five nodes to L2, 10 nodes to L3, 10 nodes to

L4, five nodes to L5, and one node to L6. There is only one pentagonal node in layers

L1 and L6 and we refer to these two nodes as P1,1 and P6,1 respectively. There are five

hexagonal nodes in layers L2 and L5 and we refer to these nodes as H2,i, 1 ≤ i ≤ 5

and H5,i, 1 ≤ i ≤ 5 respectively. There are five hexagonal and five pentagonal nodes

in layers L3 and L4 and we refer to these nodes as Hi,j, i = 3, 4, 1 ≤ j ≤ 5 and

Pi,j, i = 3, 4, 1 ≤ j ≤ 5 respectively.

The vertex set V of the SBG, is divided into two subsets, a P (for Pentagon)

and H (for Hexagon), with 12 and 20 members respectively. It may be noted from

Figure 30b, that P -type nodes appear only on layers 1, 3, 4 and 6 and H-type nodes

appear only on layers 2, 3, 4 and 5. The SBG G = (V,E) = ((P ∪H), E) is formally

defined as follows:

P = {P1,1} ∪ {Pi,j, 3 ≤ i ≤ 4, 1 ≤ j ≤ 5} ∪ {P6,1} and H = {Hi,j, 2 ≤ i ≤ 5, 1 ≤

j ≤ 5}

The edge set E is divided into 17 subsets, i.e., E = ∪17
i=1Ei. Each subset is defined

in Table 33.

With the formal definition of the SBG complete, it may be observed that the

problem of determining the fewest number of satellites necessary to uniquely identify

the region (among 32 regions) where a significant event has taken place is equivalent

to computation of the Minimum Identifying Code Set problem for the SBG. Recall

that, utilizing our previously defined GCS approach, suppose that the node set V ′

is an ICS of a graph G = (V,E) and |V ′| = p. In this case if p distinct colors are

161

SBG Edge Construction
E1 = {(P1,1, H2,j), 1 ≤ j ≤ 5}
E2 = {(P6,1, H5,j), 1 ≤ j ≤ 5}

E3 = {(Hi,j, Hi,(j+1)mod 5), i = 2, i = 5, 1 ≤ j ≤ 5}
E4 = {(Hi,j, Pi,j), i = 3, 1 ≤ j ≤ 5}

E5 = {(Pi,j, Hi,(j+1)mod 5), i = 3, 1 ≤ j ≤ 5}
E6 = {(Hi,j, Pi,(j+1)mod 5), i = 4, 1 ≤ j ≤ 5}

E7 = {(Pi,j, Hi,j), i = 4, 1 ≤ j ≤ 5}
E8 = {(H2,j, H3,j), 1 ≤ j ≤ 5}

E9 = {(H2,j, P3,(j−1)mod 5), 1 ≤ j ≤ 5}
E10 = {(H2,j, P3,j), 1 ≤ j ≤ 5}
E11 = {(H3,j, P4,j), 1 ≤ j ≤ 5}

E12 = {(H3,j, H4,(j−1)mod 5), 1 ≤ j ≤ 5}
E13 = {(H3,j, H4,j), 1 ≤ j ≤ 5}
E14 = {(P3,j, H4,j), 1 ≤ j ≤ 5}
E15 = {(H4,j, H5,j), 1 ≤ j ≤ 5}
E16 = {(P4,j, H5,j), 1 ≤ j ≤ 5}

E17 = {(P4,j, H5,(j−1)mod 5), 1 ≤ j ≤ 5}

Table 33. Color assignment at nodes after seepage for Class IV ICS

injected to V ′ (one distinct atomic color to one node of V ′), then as by the definition

of ICS for all v ∈ V , if N+(v) ∩ V ′ is unique, all nodes of G = (V,E) will have a

unique color (either atomic or composite). Thus computation of MICS is equivalent

to solving the GCS problem.

7.2.2 Upper Bound of MICS of SBG

In this subsection, we first show that MICS of the SBG is at most 10 and there

exists at least 26 ICS of size 10.

Theorem 13. The MICS of SBG is at most 10.

Proof. Inject colors A,B,C,D,E to the nodes H2,j, 1 ≤ j ≤ 5 and colors

E,F,G,H, I, J to the nodes H5,j, 1 ≤ j ≤ 5. Injection of 10 different colors at

162

(a) Class IIA Motif Assignment I
(b) Class IIA Motif Assignment II (Assign-
ment I Shifted one Position to the Right)

Figure 31. Examples of Color Assignments using Motif IIA

these 10 nodes, will cause color seepage to all other nodes of SBG. The color seepage

will be constrained by the topological structure of the SBG. It may be verified that

because of the constraint imposed by the SBG structure, and the fact that seepage

takes place only to the neighbors of the node where a color is injected, the 32 nodes of

the SBG will have the color assignment shown in Table 34. In the entries of Table 34,

H2,1 : A
∗BE implies that the color A was injected at the node H2,1 and the colors B

and E seeped into the node H2,1, from the adjacent nodes H2,2 and H2,5, where the

colors B and E were injected. In general, if an alphabet A through E (representing

distinct colors), appears with a * as a part of a string attached to a node (such as

H2,1), it implies that the color was injected at that node. On the other hand, if an

alphabet appears without a * as a part of a string attached to a node, it implies that

the color seeped into that node from one of the adjacent nodes. It may be verified

that the color assignment to the nodes, as shown in Table 34 is unique (i.e, no two

nodes have the same color or strings assigned to them).

Theorem 14. At least 26 distinct size-10 ICSs of the SBG exist.

163

Node: Color Node: Color Node: Color Node: Color
P1,1: ABCDE H2,1: A∗BE H2,2: AB∗C H2,3: BC∗D
H2,4: CD∗E H2,5: DE∗A H3,1: A P3,1: AB
H3,2: B P3,2: BC H3,3 : C P3,3: CD
H3,4: D P3,4: DE H3,5 : E P3,5: AE
P4,1: JF H4,1: F P4,2 : FG H4,2: G
P4,3: GH H4,3: H P4,4 : HI H4,4: I
P4,5: IJ H4,5: J H5,1: JF ∗G H5,2: FG∗H
H5,3: GH∗I H5,4: HI∗J H5,5: IJ∗F P6,1: FGHIJ

Table 34. Color assignment at nodes after seepage in the SBG

Proof. The 26 different ways in which 10 colors can be injected into 10 nodes of the

SBG such that every node of the SBG receives a unique color can be divided into four

classes.

• Class I: Inject colors A,B,C,D,E to the nodes H2,j, 1 ≤ j ≤ 5 and colors

E,F,G,H, I, J to the nodes H5,j, 1 ≤ j ≤ 5. As shown in Table 34, such an injection

ensures that each of the 32 nodes of the SBG receives a unique color. It may be

observed that the node set where the colors are injected in this Class all have degree

six, corresponding to hexagonal patches on the surface of the soccer ball. Only one

ICS of the 26, belongs to Class I.

• Class II: The node set where the colors injected are in this Class is made up of six

nodes of degree five (corresponding to the pentagonal patches of the soccer ball) and

four nodes of degree six (corresponding to the hexagonal patches of the soccer ball).

This Class can be subdivided into two sub-classes and we will refer to them as Class

II-A and Class II-B respectively. As seen in Figure 30b, the SBG graph is somewhat

symmetric in the sense that the layers 4, 5 and 6 are close to being mirror images

of layers 1, 2 and 3. Because of this symmetry, the Class II-A color injections are

164

Node Color
P1,1 P c

1,1

H2,j P c
1,1P

c
3,j

H2,(j+1)mod 5 P c
1,1P

c
3,jP

c
3,(j+1)mod 5

H2,(j+2)mod 5 P c
1,1P

c
3,(j+1)mod 5

H2,(j+3)mod 5 P c
1,1H

c
3,(j+3)mod 5

H2,(j+4)mod 5 P c
1,1H

c
3,(j+4)mod 5

H3,j P c
3,jP

c
4,j

P3,j P c
3,j

H3,(j+1)mod 5 P c
3,jP

c
3,(j+1)mod 5P

c
4,(j+1)mod 5

P3,(j+1)mod 5 P c
3,(j+1)mod 5

H3,(j+2)mod 5 P c
3,(j+1)mod 5P

c
4,(j+2)mod 5

P3,(j+2)mod 5 Hc
3,(j+3)mod 5

H3,(j+3)mod 5 Hc
3,(j+3)mod 5H

c
4,(j+3)mod 5

P3,(j+3)mod 5 Hc
3,(j+3)mod 5H

c
4,(j+3)mod 5H

c
3,(j+4)mod 5

H3,(j+4)mod 5 Hc
3,(j+4)mod 5H

c
4,(j+3)mod 5

P3,(j+4)mod 5 Hc
4,(j+4)mod 5

P4,j P c
4,j

H4,j P c
3,jP

c
4,jP

c
4,(j+1)mod 5

P4,(j+1)mod 5 P c
4,(j+1)mod 5

H4,(j+1)mod 5 P c
3,(j+1)mod 5P

c
4,(j+1)mod 5P

c
4,(j+2)mod 5

P4,(j+2)mod 5 P c
4,(j+2)mod 5

H4,(j+2)mod 5 P c
4,(j+2)mod 5H

c
3,(j+3)mod 5

P4,(j+3)mod 5 Hc
3,(j+3)mod 5H

c
4,(j+3)mod 5H

c
5,(j+3)mod 5

H4,(j+3)mod 5 Hc
4,(j+3)mod 5H

c
3,(j+3)mod 5

Hc
3,(j+4)mod 5H

c
5,(j+3)mod 5

P4,(j+4)mod 5 Hc
4,(j+4)mod 5H

c
3,(j+3)mod 5H

c
5,(j+3)mod 5

H4,(j+4)mod 5 P c
4,jH

c
4,(j+4)mod 5

H5,j P c
4,jP

c
4,(j+1)mod 5

H5,(j+1)mod 5 P c
4,(j+1)mod 5P

c
4,(j+2)mod 5

H5,(j+2)mod 5 P c
4,(j+2)mod 5H

c
5,(j+3)mod 5

H5,(j+3)mod 5 Hc
5,(j+3)mod 5H

c
4,(j+3)mod 5

H5,(j+4)mod 5 P c
4,jH

c
5,(j+3)mod 5

P6,1 Hc
5,(j+3)mod 5

Table 35. Color assignment at nodes after seepage for Class II ICS

165

mirror images of the Class II-B color injection. Accordingly, in this section we will

focus our discussion primarily on Class II-A, as color injection for class II-B be can

be obtained easily from color injection in Class II-A. We introduce the notion of a

motif, and by motif we imply a set of either P-type (degree five) or H-type (degree six)

nodes. It will be clear from further discussion that the Class II-A solutions comprise

of one P-type motif and one H-type motif. These two motifs complement each other

to produce a solution together. The motif-pairs can be slid along the structure of the

SBG to produce a set of five solutions that make up the Class II-A. The five solutions

that make up the Class II-B can be constructed in a similar fashion.

For the ICS that belong to Class II, the P-type motif is made up of the

set of six nodes {P1,1, P3,j, P3,(j+1)mod 5, P4,j, P4,(j+1)mod 5, P4,(j+2)mod 5}. The H-type

motif that complements the P-type motif is made up of the set of four nodes

{H3,(j+3)mod 5, H3,(j+4)mod 5, H4,(j+3)mod 5, H5,(j+3)mod 5}. One complete solution (i.e.,

ICS) is obtained by choosing a value of j, 1 ≤ j ≤ 5. The Figure 31a and Figure 31b

show the solutions with j = 1 and j = 2 respectively. As shown in Figure 31, changing

the index j from 1 to 2, has the effect of sliding the motif along the structure of the

SBG. By changing j from 1 through 5 (i.e., sliding the motif 5 times), 5 different ICS

can be computed. The colors that will be associated with the nodes of the SBG, if

they are injected at the motif nodes, are shown in Table 35. The first column of the

table indicates the node and the second column provides the color assigned to that

node. For example, in row 3 of Table 35, the node H2,(j+1)mod 5 receives the colors

injected at motif nodes P1,1, P3,j, P3,(j+1)mod 5 and is denoted by P c
1,1P

c
3,jP

c
3,(j+1)mod 5.

It may be verified that every node of the SBG has a color associated with it and no

two nodes have the same color assignment.

• Class III: As in Class II, the Class III ICS is made up of six nodes of degree five

166

(a) Class IIIA Motif Assignment (b) Class IV Motif Assignment

Figure 32. Examples of Color Assignments using Motifs IIIA and IV

and four nodes of degree six. Moreover, this Class also can be subdivided into two

sub-classes and we will refer to them as Class III-A and Class III-B respectively. In

this section we will restrict our discussion on Class III-A, as color injection for Class

III-B can be obtained as a mirror image of Class III-A. It will be clear from further

discussion that, as in Class II, the Class III solutions also comprise of one P-type

motif and one H-type motif and they complement each other to produce a solution

together. As in Class II, the motif-pairs can be slid along the structure of the SBG to

produce a set of five solutions that make up the Class III-A. The five solutions that

make up the Class III-B can be constructed in a similar fashion.

The P-type motif is made up of the set of six nodes {P1,1, P3,j, P3,(j+1)mod 5,

P3,(j+2)mod 5, P3,(j+4)mod 5, P4,(j+1)mod 5}. As shown in Figure 32a, changing the index

j from 1 to 5, has the effect of sliding the motif along the structure of the SBG.

The H-type motif that complements the P-type motif is made up of the set of four

nodes {H4,(j+3)mod 5, H5,(j+2)mod 5, H5,(j+3)mod 5, H5,(j+4)mod 5}. One complete solution

is obtained by choosing a value of j, 1 ≤ j ≤ 5. By moving the P-type and H-type

motifs in tandem by changing the value of the index from 1 to 5, five different solutions

can be obtained. The colors that will be associated with the nodes of the SBG, if the

167

Node Color
P1,1 P c

1,1

H2,j P c
1,1P

c
3,jP

c
3,(j+4)mod 5

H2,(j+1)mod 5 P c
1,1P

c
3,jP

c
3,(j+1)mod 5

H2,(j+2)mod 5 P c
1,1P

c
3,(j+1)mod 5P

c
3,(j+2)mod 5

H2,(j+3)mod 5 P c
1,1P

c
3,(j+2)mod 5

H2,(j+4)mod 5 P c
1,1P

c
3,(j+4)mod 5

H3,j P c
3,jP

c
3,(j+4)mod 5

P3,j P c
3,j

H3,(j+1)mod 5 P c
3,jP

c
3,(j+1)mod 5P

c
4,(j+1)mod 5

P3,(j+1)mod 5 P c
3,(j+1)mod 5

H3,(j+2)mod 5 P c
3,(j+1)mod 5P

c
3,(j+2)mod 5

P3,(j+2)mod 5 P c
3,(j+2)mod 5

H3,(j+3)mod 5 P c
3,(j+2)mod 5H

c
4,(j+3)mod 5

P3,(j+3)mod 5 Hc
4,(j+3)mod 5

H3,(j+4)mod 5 Hc
4,(j+3)mod 5P

c
3,(j+4)mod 5

P3,(j+4)mod 5 P c
3,(j+4)mod 5

P4,j Hc
5,(j+4)mod 5

H4,j P c
4,(j+1)mod 5P

c
3,j

P4,(j+1)mod 5 P c
4,(j+1)mod 5

H4,(j+1)mod 5 P c
4,(j+1)mod 5P

c
3,(j+1)mod 5

P4,(j+2)mod 5 Hc
5,(j+2)mod 5

H4,(j+2)mod 5 P c
3,(j+2)mod 5H

c
5,(j+2)mod 5

P4,(j+3)mod 5 Hc
4,(j+3)mod 5H

c
5,(j+2)mod 5H

c
5,(j+3)mod 5

H4,(j+3)mod 5 Hc
4,(j+3)mod 5H

c
5,(j+3)mod 5

P4,(j+4)mod 5 Hc
4,(j+3)mod 5H

c
5,(j+3)mod 5H

c
5,(j+4)mod 5

H4,(j+4)mod 5 P c
3,(j+4)mod 5H

c
5,(j+4)mod 5

H5,j Hc
5,(j+4)mod 5P

c
4,(j+1)mod 5

H5,(j+1)mod 5 Hc
5,(j+2)mod 5P

c
4,(j+1)mod 5

H5,(j+2)mod 5 Hc
5,(j+2)mod 5H

c
5,(j+3)mod 5

H5,(j+3)mod 5 Hc
5,(j+3)mod 5H

c
5,(j+4)mod 5

Hc
5,(j+2)mod 5H

c
4,(j+3)mod 5

H5,(j+4)mod 5 Hc
5,(j+4)mod 5H

c
5,(j+3)mod 5

P6,1 Hc
5,(j+2)mod 5H

c
5,(j+3)mod 5H

c
5,(j+4)mod 5

Table 36. Color assignment at nodes after seepage for Class III ICS

168

they are injected at the motif nodes, are shown in Table 36. As seen earlier in Class

II, it may be verified that every node of the SBG has a color associated with it and no

two nodes have the same color assignment.

• Class IV: As in Class I, the Class IV ICS are made up of 10 nodes of degree six

(i.e., the nodes corresponding to hexagonal patches). This Class comprises of five ICS

and cannot be subdivided like in Classes II and III.

This class comprises of two H-type motifs made up of five hexagonal nodes each.

The first motif comprises of {H2,(j+1)mod 5, H2,(j+2)mod 5, H3,(j+1)mod 5, H3,(j+2)mod 5,

H4,(j+1)mod 5}. The other motif comprises of {H3,(j+4)mod 5, H4,(j+3)mod 5, H4,(j+4)mod 5,

H5,(j+3)mod 5, H5,(j+4)mod 5}. As shown in Figure 32b, changing the index j from 1 to

5, has the effect of sliding the motif along the structure of the SBG. One complete

solution is obtained by choosing a value of j, 1 ≤ j ≤ 5. By moving two H-type motifs

in tandem, changing the value of the index from 1 to 5, five different solutions can be

obtained. As in Classes II and III, if colors are injected at the motif nodes, then every

node of the SBG will have a color associated with it and no two nodes will have the

same color assignment. Due to similarity, we omit the corresponding color assignment

table.

This concludes proof of Theorem 14.

7.2.3 Lower Bound of MICS of SBG

In Figure 30b, we have provided a layered representation of the SBG, where 32

nodes of the SBG are placed in six layers, indicated by L1 through L6. The layers L1

through L3 constitute the top half of the SBG and the layers L4 through L6 constitute

169

the bottom half. As the two halves are symmetric, similar argument can be applied to

both of them.

Lemma 15. An MICS must select at least 4 nodes from each half. In other words, at

least 4 distinct colors need to be injected in each half.

Proof. We provide arguments for the top half of the SBG, and we first show that

three distinct colors are necessary to ensure that each node in top half receives a

distinct color (either through injection, seepage or combination of the two). Let’s

consider layers L1 and L2. No matter which nodes in bottom half are injected with

colors, these colors will not seep into the nodes in L1 and L2 (colors seep only to

adjacent nodes), coloring in bottom half nodes will not affect the colors associated

with nodes in L1 or L2. Since L1 and L2 have six nodes, six distinct colors need to be

associated with them. It can be easily verified that in the SBG, in order to ensure

distinct colors to each one of the six nodes in L1 and L2 at least three colors must

be injected to three nodes in the top half of the SBG. Clearly at least three nodes

must be selected from each half so that nodes in L1, L2, L5 and L6 receive distinct

colors. With injection of three colors, up to 23 − 1 = 7 colors (excluding an empty

combination) can be generated.

Next we show that three colors are not sufficient to color L1 and L2. WLOG, we

use alphabets {A,B,C} to represent three colors. As mentioned above, 7 distinct

colors can be generated with these three colors (three primary and four composite),

{A,B,C,AB,AC,BC,ABC}. Simple counting shows that each alphabet (color)

appears exactly 4 times. Suppose there is a proper injection using A,B,C that

ensures all nodes in L1 and L2 received distinct colors. Since seven distinct colors

can be generated with three primary colors, and L1 and L2 has only six nodes, it

implies that one of the seven colors (primary or composite) is not used while coloring

170

the nodes of L1 and L2. This implies that at least one of the alphabets A,B,C is

appearing three times instead of four in the alphabet strings (representing colors)

associated with the nodes of L1 and L2. WLOG we assume that color A is appearing

3 times. There are four possible locations for injection of color A in the top half of

the SBG. In the following, we examine them all.

1. A is injected on L1, i.e., at P1,1. A would then appear at all nodes in L1 and

L2, making its appearance six times, contradicting the assumption.

2. A is injected on L2, i.e., one of H2,i(1 ≤ i ≤ 5) nodes. Thus, A appears four

times (three nodes in L2 and one node in L1) contradicting the assumption.

3. A is injected on one of the hexagonal nodes L3, i.e., one of the H3,i, 1 ≤ i ≤ 5.

Since H3,i has only one neighbor in on L1 and L2 (H2,i), in this case A will

appear only on one node in L2, making its appearance one time, contradicting

the assumption.

4. A is injected on one of the pentagonal nodes L3, i.e., one of the P3,i, 1 ≤ i ≤ 5.

Since P3,i has only two neighbors in on L1 and L2 (H2,(i−1)mod 5 and H2,i), in

this case A will appear only on two nodes in L2, making its appearance two

times, contradicting the assumption.

As there is no location for injection of A, we can conclude that 3 colors are

inadequate to ensure that all nodes in L1 and L2 receive a unique color. Similar

arguments can be made for coloring of nodes in L5 and L6. Therefore the lower bound

of MICS for the SBG must be at least 4 + 4 = 8.

Lemma 16. MICS of the SBG is at least 9.

Proof. In GCS problem (which is equivalent to the MICS problem), each node is

assigned a color, which may be a primary or a composite color. A primary color

171

is indicated by one alphabet and a composite color by a string of alphabets. The

number of alphabets that appear in a string determines the length of that string. We

establish the lemma by providing arguments based on the sum of the length of strings

associated with each one of the 32 nodes of the SBG. We will refer to the sum of the

length of strings associated with each one of the 32 nodes of the SBG as “total string

length”.

We use the term “valid injection” to imply an injection of colors to the nodes that

ensures that all 32 nodes of the SBG receive a distinct color. Suppose there exists

more than one valid injections using eight colors. Among the set of all valid injections,

we consider the one whose total string length is minimum. The lower bound of the

total string length for a valid injection with eight colors is 56. This is true, as with

eight injected colors, at most eight nodes of the SBG can have associated strings of

length one, and the remaining 24 nodes must have strings of length at least two. Thus

the lower bound on the string length must be 8× 1 + 24× 2 = 56. The upper bound

on the total string length with injection of at most eight colors is also 56. This is

true for the following reason. If a color is injected on a hexagonal node, then it will

appear seven times (six neighbors and the node itself). Similarly for a pentagonal

node, the color will appear six times. Therefore, the upper bound of total string

length is 7× 8 = 56. It may be noted that the total string length is 56 if and only

if all colors are injected on hexagonal nodes. However, it is impossible to achieve a

valid injection by injecting eight colors only on hexagonal nodes. Consider the top

half of the SBG. In order to color nodes on L1, at least one color, say A, must be

injected on one node on L2. WLOG, we assume that A is injected on H2,i, 1 ≤ i ≤ 5.

We consider two scenarios:

1. No other color is injected at the nodes on L2. In this case, the other colors are

172

injected at three hexagonal nodes on L3. Because of injection of A at H2,i, after

seepage, all six adjacent nodes, P1,1, H2,(i−1)mod 5, H2,(i+1)mod 5, H3,(i−1)mod 5, P3,i,

H3,i, will have color A. In order ensure that all these nodes have distinct colors,

colors must be injected on H3,(i−1)mod 5, H3,i, H3,(i+1)mod 5. However, if such an

injection is made, the nodes H2,(i+2)mod 5 and H2,(i+3)mod 5 will not receive any

color. Accordingly, such an injection will not be a valid injection.

2. One or more colors are injected at the nodes on L2. Suppose a different color

B is injected at a node different from H2,i (where color A is injected). Due to

the SBG topology, no matter which node on L2 is injected with B, one node on

L2 and the node on L1 must have color AB after seepage. In order to ensure

distinct colors on these two nodes, a third color C must be injected on another

node. After injection of C, one of the two nodes that had the color AB before

injection of C, will have the color AB and the other will have ABC. However, if

one node has a string of length three, the lower bound of the total string length

can longer be 56. It has to be at least 57, thus exceeding the upper bound (56),

that is possible with injection of at most eight colors.

Theorem 17. The lower bound of MICS of the SBG is at least nine. In other words,

eight colors are insufficient to ensure that all nodes of the the SBG receives a distinct

color.

Proof. Follows from Lemmas 15 and 16.

173

7.3 Conclusion

In this chapter, we studied niche Identifying Code based sensor placement problems

for restricted graph classes, in one and two dimensional spaces for accurate identi-

fication of fault locations, as well as monitoring regions of the earth for anomalous

events. For one and two dimensional problems, we studied the concept of Identifying

Codes in a specialized class of graphs - Unit Interval Bigraphs and Unit Dics Bigraphs.

We presented a dynamic programming based approach to determine the optimal

solution in the one dimensional scenario. To the best of our knowledge, this is the first

polynomial time algorithm presented for the computation of MDCS for Unit Interval

Bigraphs, when their interval representations are given. Additionally, we presented an

Integer Linear Program for the two dimensional scenario, namely for the Unit Disc

Bigraphs.

Furthermore, we studied an event monitoring problem with satellites as sensors and

a soccer ball as a model of the planet Earth. We provided upper and lower bound of

the MICS problem where the difference between the bounds is just one, implying that

our solution is close to being optimal. It must be noted that, the regions (patches) on

the soccer ball are of regular shapes. In our future work, we plan to study regions with

irregular shapes, thereby relaxing the hexagonal and pentagonal region constraints.

174

Chapter 8

CONCLUSION

For all the uncertainty in the world, one thing is certain for sure - anomalies

manifest, in some form or the other, in complex networks. Therefore, it is fundamental

to not only design approaches which can quickly detect the presence of anomalies in

the network, but also, to identify the source(s) of anomalies in the network, so that

preventive measures can be implemented. Most of the approaches described in the

literature, deploy sensors in the complex network following the Set Cover approach.

Over the course of this thesis, we have shown how such approaches fail to uniquely

identify the source(s) of anomaly, and how the notion of Identifying Codes can be

effectively utilized to uniquely monitor the complex network.

We journeyed across four major domains namely, human-human interaction net-

works, critical infrastructure networks, online social networks and water distribution

networks, in regards to the problems addressed in this thesis. On this journey, we

have not only shown the effectiveness of Identifying Codes but also introduced highly

relevant problems, which had not been studied before, most notably, the Budget

Constrained Identifying Code problem presented in chapter 6, the scalable Identifying

Code problem presented in chapter 5, the Minimum Discriminating Code Set problem

in the presence of adversary in chapter 4, etc. The objective of this dissertation was

to bring attention to the idea of Identifying Codes and impress upon the research

community its applicability in the monitoring domain. That being said however,

following are some of the directions which may be examined and further pursued -

• Probabilistic Identifying Codes: As mentioned previously, one key assumption

175

made in our problem setup is that, when an individual (or a node) engages in

anomalous behavior, all of its neighbors become aware of it. Generally speaking,

this is a purely deterministic setting and may not be a valid assumption in the

real world. A probabilistic setting may be even more appropriate, where there

is a probability value associated with each edge in the network. These probabil-

ity values would indicate the probabilities of the signal (anomalous behavior)

reaching the neighbors of the node engaging in anomalous behavior. In other

words, the probabilistic setting is a more generalized version of the deterministic

setting. There has been some initial works on probabilistic Identifying Codes,

but these have mostly focused on random graphs (Frieze et al. 2007). In our

work, the graphs obtained from the respective domains, may not follow the

characteristics associated with random graphs. Therefore, a modification to

the definition of Identifying Codes is required as well as the development of

approaches to determine the minimum cardinality Identifying Code set.

• Generalization of Multiple Simultaneous Failures : In chapter 3, we introduced a

novel concept where two nodes could simultaneously become active in anomalous

behavior. For our approach to be applicable to the real world setting, it would be

interesting to develop algorithms for the scenario where k multiple simultaneously

activations can be effectively handled. In other words, this implies a need for

the development of a generalized approach to detect multiple simultaneous

activations as opposed to the much more restrictive approach presented in this

chapter.

• Budgeted Identifying and Discriminating Codes: Although we presented an

integer linear program to determine the optimal solution to the Budgeted

Identifying Code problem in chapter 6 and the guarantee of non-existence of

176

constant factor approximation algorithm, we left open the possibility of the

existence of a logarithmic factor approximation algorithm to this problem.

Additionally, the budgeted scenario was not addressed for the Discriminating

Code problem, discussed in chapter 4.

• Deep Learning for Identifying Codes : Over the past half decade, there has been

significant development of deep learning architectures to solve graph problems.

Architectures such as Graph Neural Networks (GNN) and Graph Convolutional

Neural Networks (GCNN) have been utilized to solve combinatorial graph

problems (Sato, Yamada, and Kashima 2019; Cappart et al. 2021). Furthermore,

(Sato, Yamada, and Kashima 2019) have even derived approximation bounds

for GNN based approaches for problems such as Dominating Set and Vertex

Cover. With more architectures focusing on solving combinatorial problems

coupled with the prowess of Graphical Processing Units (GPUs) and Tensor

Processing Units (TPUs), it is entirely feasible to model an architecture for the

Identifying Code problem, thereby utilizing GPUs and TPUs to solve larger

problem instances.

As a final remark in this dissertation, we would like to impress upon the readers,

the universality of our developed approaches. Our algorithms only focus on the

placement and not the actual development/manufacturing of the sensors. As evident

from the multiple application domains, by simply changing the type of the sensor, a

complex network operator can utilize our approach in another domain. For instance,

by changing the sensor type from law enforcement agents to PMUs, one may utilize

our approach in the critical infrastructure domain from the human-human interaction

domain.

177

REFERENCES

Adam, George A, Petr Smirnov, Anna Goldenberg, David Duvenaud, and Benjamin
Haibe-Kains. 2018. “Stochastic Combinatorial Ensembles for Defending Against
Adversarial Examples.” arXiv:1808.06645.

Anthopoulos, Leonidas G. 2017. “The smart city in practice.” In Understanding Smart
Cities: A Tool for Smart Government or an Industrial Trick?, 47–185. Springer.

Banerjee, Joydeep, Kaustav Basu, and Arunabha Sen. 2018a. “Analysing robustness
in intra-dependent and inter-dependent networks using a new model of interde-
pendency.” International Journal of Critical Infrastructures 14 (2): 156–181.

. 2018b. “On hardening problems in critical infrastructure systems.” Interna-
tional Journal of Critical Infrastructure Protection 23:49–67.

Banerjee, Joydeep, Anamitra Pal, Kaustav Basu, Malhar Padhee, and Arunabha Sen.
2017. “Finding K Contingency List in Power Networks using a New Model of
Dependency.” arXiv preprint arXiv:1705.07410.

Basu, Kaustav. 2019. “Identification of the Source (s) of Misinformation Propagation
Utilizing Identifying Codes.” In Companion Proceedings of The 2019 World Wide
Web Conference, 7–11.

Basu, Kaustav, Sandipan Choudhuri, Arunabha Sen, and Aniket Majumdar. 2018.
“Insights from statistical analysis of opioid data.” arXiv preprint arXiv:1805.05509.

Basu, Kaustav, Sanjana Dey, Subhas Nandy, and Arunabha Sen. 2019. “Sensor
Networks for Structural Health Monitoring of Critical Infrastructures Using
Identifying Codes.” In 2019 15th International Conference on the Design of
Reliable Communication Networks (DRCN), 43–50. IEEE.

Basu, Kaustav, Malhar Padhee, Sohini Roy, Anamitra Pal, Arunabha Sen, Matthew
Rhodes, and Brian Keel. 2018. “Health Monitoring of Critical Power System
Equipments Using Identifying Codes.” In International Conference on Critical
Information Infrastructures Security, 29–41. Springer.

Basu, Kaustav, and Arunabha Sen. 2019a. “Monitoring individuals in drug trafficking
organizations: a social network analysis.” In 2019 IEEE/ACM International
Conference on Advances in Social Networks Analysis and Mining (ASONAM),
480–483. IEEE.

178

Basu, Kaustav, and Arunabha Sen. 2019b. “On augmented identifying codes for
monitoring drug trafficking organizations.” In 2019 IEEE/ACM International
Conference on Advances in Social Networks Analysis and Mining (ASONAM),
1136–1139. IEEE.

. 2021a. “Epidemiological Model Independent Misinformation Source Identifica-
tion.”

. 2021b. “Identifying individuals associated with organized criminal networks:
a social network analysis.” Social Networks 64:42–54.

. 2022. “Sensor Network Design for Uniquely Identifying Sources of Contamina-
tion in Water Distribution Networks.”

Basu, Kaustav, Chenyang Zhou, Arunabha Sen, and Victoria Horan Goliber. 2018.
“A novel graph analytic approach to monitor terrorist networks.” In 2018 IEEE
International Conference on Social Computing & Networking (SocialCom), 1159–
1166. IEEE.

Becejac, Tamara, Payman Dehghanian, and Mladen Kezunovic. 2016. “Probabilistic
assessment of PMU integrity for planning of periodic maintenance and testing.”
In 2016 International Conference on Probabilistic Methods Applied to Power
Systems (PMAPS), 1–6. IEEE.

Bernstein, Leandra. 2017. “From France to the U.S. terrorists ’known to authorities’
carry out deadly attacks.” https://wjla.com/news/nation-world/terrorists-
known-to-authorities-carry-out-deadly-attacks.

Berzinji, Ala, Lisa Kaati, and Ahmed Rezine. 2012. “Detecting key players in terrorist
networks.” In 2012 European Intelligence and Security Informatics Conference,
297–302. IEEE.

Bhuiyan, Md Zakirul Alam, Guojun Wang, Jiannong Cao, and Jie Wu. 2014. “Sensor
placement with multiple objectives for structural health monitoring.” ACM
Transactions on Sensor Networks (TOSN) 10 (4): 1–45.

Bonacich, Phillip. 1972. “Factoring and weighting approaches to status scores and
clique identification.” Journal of mathematical sociology 2 (1): 113–120.

Borgatti, Stephen P. 2006. “Identifying sets of key players in a social network.”
Computational & Mathematical Organization Theory 12 (1): 21–34.

179

https://wjla.com/news/nation-world/terrorists-known-to-authorities-carry-out-deadly-attacks
https://wjla.com/news/nation-world/terrorists-known-to-authorities-carry-out-deadly-attacks

Bousquet, Nicolas, Aurélie Lagoutte, Zhentao Li, Aline Parreau, and Stéphan
Thomassé. 2015. “Identifying codes in hereditary classes of graphs and VC-
dimension.” SIAM Journal on Discrete Mathematics 29 (4): 2047–2064.

Brandes, Ulrik. 2001. “A faster algorithm for betweenness centrality.” Journal of
mathematical sociology 25 (2): 163–177.

Bright, David A, and Jordan J Delaney. 2013. “Evolution of a drug trafficking network:
Mapping changes in network structure and function across time.” Global Crime
14 (2-3): 238–260.

Bright, David A, Catherine Greenhill, Michael Reynolds, Alison Ritter, and Carlo
Morselli. 2015. “The use of actor-level attributes and centrality measures to
identify key actors: A case study of an Australian drug trafficking network.”
Journal of contemporary criminal justice 31 (3): 262–278.

Bright, David A, Caitlin E Hughes, and Jenny Chalmers. 2012. “Illuminating dark
networks: A social network analysis of an Australian drug trafficking syndicate.”
Crime, law and social change 57 (2): 151–176.

Cappart, Quentin, Didier Chételat, Elias Khalil, Andrea Lodi, Christopher Morris, and
Petar Veličković. 2021. “Combinatorial optimization and reasoning with graph
neural networks.” arXiv preprint arXiv:2102.09544.

Cardei, Mihaela, and Jie Wu. 2004. “Coverage in wireless sensor networks.” Handbook
of sensor networks 21:201–202.

. 2006. “Energy-efficient coverage problems in wireless ad-hoc sensor networks.”
Computer communications 29 (4): 413–420.

Carley, Kathleen M, Matthew Dombroski, Maksim Tsvetovat, Jeffrey Reminga,
Natasha Kamneva, et al. 2003. “Destabilizing dynamic covert networks.” In
Proceedings of the 8th international Command and Control Research and Tech-
nology Symposium. Citeseer.

Carley, Kathleen M, Ju-Sung Lee, and David Krackhardt. 2002. “Destabilizing net-
works.” Connections 24 (3): 79–92.

Carter, Kevin M, James F Riordan, and Hamed Okhravi. 2014. “A game theoretic
approach to strategy determination for dynamic platform defenses.” In Proceedings
of the first ACM workshop on moving target defense, 21–30.

180

Charbit, Emmanuel, Irene Charon, Gérard Cohen, and Olivier Hudry. 2006. “Dis-
criminating codes in bipartite graphs.” Electronic Notes in Discrete Mathematics
26:29–35.

Charbit, Emmanuel, Irène Charon, Gérard Cohen, Olivier Hudry, and Antoine Lobstein.
2008. “Discriminating codes in bipartite graphs: bounds, extremal cardinalities,
complexity.” Advances in Mathematics of Communications 2 (4): 403.

Charon, Irene, Gérard Cohen, Olivier Hudry, and Antoine Lobstein. 2008. “Discrimi-
nating codes in (bipartite) planar graphs.” European Journal of Combinatorics
29 (5): 1353–1364.

Charon, Irene, Iiro Honkala, Olivier Hudry, and Antoine Lobstein. 2007. “Structural
properties of twin-free graphs.” the electronic journal of combinatorics, R16–R16.

Charon, Irene, Olivier Hudry, and Antoine Lobstein. 2002. “Identifying and locating-
dominating codes: NP-completeness results for directed graphs.” IEEE Transac-
tions on Information Theory 48 (8): 2192–2200.

Charon, Irène, Olivier Hudry, and Antoine Lobstein. 2003. “Minimizing the size of
an identifying or locating-dominating code in a graph is NP-hard.” Theoretical
Computer Science 290 (3): 2109–2120.

Chatfield, Brycent, and Rami J Haddad. n.d. “Moving target defense intrusion de-
tection system for ipv6 based smart grid advanced metering infrastructure.” In
SoutheastCon 2017.

Choudhuri, Sandipan, Kaustav Basu, Kevin Thomas, and Arunabha Sen. 2019. “Pre-
dicting Future Opioid Incidences Today.” arXiv preprint arXiv:1906.08891.

Conitzer, Vincent, and Tuomas Sandholm. 2006. “Computing the optimal strategy to
commit to.” In Proceedings of the 7th ACM conference on Electronic commerce.

Cooper, Harry. 2016. “15,000 on French Terror Watchlist: Report.” https://www.
politico.eu/article/15000-on-french-terror-watchlist-report-radical-islamist/.

Deka, Deepjyoti, Ross Baldick, and Sriram Vishwanath. 2015. “Optimal data attacks
on power grids: Leveraging detection & measurement jamming.” In 2015 IEEE
International Conference on Smart Grid Communications. IEEE.

Deng, Ruilong, Gaoxi Xiao, Rongxing Lu, Hao Liang, and Athanasios V Vasilakos. 2016.
“False data injection on state estimation in power systems—Attacks, impacts, and
defense: A survey.” IEEE Transactions on Industrial Informatics 13 (2): 411–423.

181

https://www.politico.eu/article/15000-on-french-terror-watchlist-report-radical-islamist/
https://www.politico.eu/article/15000-on-french-terror-watchlist-report-radical-islamist/

Dong, Ming, Bolong Zheng, Nguyen Quoc Viet Hung, Han Su, and Guohui Li. 2019.
“Multiple Rumor Source Detection with Graph Convolutional Networks.” In Pro-
ceedings of the 28th ACM International Conference on Information and Knowledge
Management, 569–578.

Eliades, Demetrios G, and Marios M Polycarpou. 2009. “A fault diagnosis and security
framework for water systems.” IEEE Transactions on Control Systems Technology
18 (6): 1254–1265.

Farajtabar, Mehrdad, Jiachen Yang, Xiaojing Ye, Huan Xu, Rakshit Trivedi, Elias
Khalil, Shuang Li, Le Song, and Hongyuan Zha. 2017. “Fake news mitigation via
point process based intervention.” arXiv preprint arXiv:1703.07823.

Fooner, Michael. 1985. A Guide to Interpol: The International Criminal Police Orga-
nization in the United States. US Department of Justice, National Institute of
Justice Washington, DC.

Foucaud, Florent. 2015. “Decision and approximation complexity for identifying codes
and locating-dominating sets in restricted graph classes.” Journal of discrete
algorithms 31:48–68.

Foucaud, Florent, and Guillem Perarnau. 2011. “Bounds for identifying codes in terms
of degree parameters.” arXiv preprint arXiv:1103.3756.

Freeman, Linton C. 1978. “Centrality in social networks conceptual clarification.”
Social networks 1 (3): 215–239.

Frieze, Alan, Ryan Martin, Julien Moncel, Miklós Ruszinkó, and Cliff Smyth. 2007.
“Codes identifying sets of vertices in random networks.” Discrete Mathematics
307 (9-10): 1094–1107.

Fu, Julei, Ying Fan, Yang Wang, and Shouyang Wang. 2014. “Network analysis of
terrorist activities.” Journal of Systems Science and Complexity 27 (6): 1079–1094.

Gialampoukidis, Ilias, George Kalpakis, Theodora Tsikrika, Stefanos Vrochidis, and
Ioannis Kompatsiaris. 2016. “Key player identification in terrorism-related social
media networks using centrality measures.” In 2016 European Intelligence and
Security Informatics Conference (EISIC), 112–115. IEEE.

Gravier, Sylvain, Ralf Klasing, and Julien Moncel. 2008. “Hardness results and ap-
proximation algorithms for identifying codes and locating-dominating codes in
graphs.” Algorithmic Operations Research 3 (1): 43–50.

182

Gupta, Aditi, Hemank Lamba, Ponnurangam Kumaraguru, and Anupam Joshi. 2013.
“Faking sandy: characterizing and identifying fake images on twitter during
hurricane sandy.” In Proceedings of the 22nd international conference on World
Wide Web, 729–736. ACM.

Hancke, Gerhard P, Gerhard P Hancke Jr, et al. 2013. “The role of advanced sensing
in smart cities.” Sensors 13 (1): 393–425.

Hart, William E, and Regan Murray. 2010. “Review of sensor placement strategies for
contamination warning systems in drinking water distribution systems.” Journal
of Water Resources Planning and Management 136 (6): 611–619.

Heber, Anita. 2009. “The networks of drug offenders.” Trends in Organized Crime 12
(1): 1–20.

Hebrard, Emmanuel, Brahim Hnich, Barry O’Sullivan, and Toby Walsh. 2005. “Finding
diverse and similar solutions in constraint programming.” In AAAI, 5:372–377.

Hughes, Caitlin E, David A Bright, and Jenny Chalmers. 2017. “Social network
analysis of Australian poly-drug trafficking networks: How do drug traffickers
manage multiple illicit drugs?” Social Networks 51:135–147.

Interpol. n.d. “Organized Crime.” https://www.interpol.int/en/Crimes/Organized-
crime.

Jajodia, Sushil, Anup K Ghosh, Vipin Swarup, Cliff Wang, and X Sean Wang. 2011.
Moving target defense: creating asymmetric uncertainty for cyber threats. Vol. 54.
Springer Science & Business Media.

Jin, Zhiwei, Juan Cao, Han Guo, Yongdong Zhang, and Jiebo Luo. 2017. “Multimodal
fusion with recurrent neural networks for rumor detection on microblogs.” In
Proceedings of the 25th ACM international conference on Multimedia, 795–816.
ACM.

Jin, Zhiwei, Juan Cao, Yongdong Zhang, and Jiebo Luo. 2016. “News verification
by exploiting conflicting social viewpoints in microblogs.” In Thirtieth AAAI
Conference on Artificial Intelligence.

Jones, Kevin D, Anamitra Pal, and James S Thorp. 2014. “Methodology for performing
synchrophasor data conditioning and validation.” IEEE Transactions on Power
Systems 30 (3): 1121–1130.

183

https://www.interpol.int/en/Crimes/Organized-crime
https://www.interpol.int/en/Crimes/Organized-crime

Karnouskos, Stamatis. 2011. “Stuxnet worm impact on industrial cyber-physical system
security.” In Annual Conference of the IEEE Industrial Electronics Society.

Karpovsky, Mark G, Krishnendu Chakrabarty, and Lev B Levitin. 1998. “On a new
class of codes for identifying vertices in graphs.” IEEE transactions on information
theory 44 (2): 599–611.

Kauppinen, Ari, Tarja Pitkänen, Haider Al-Hello, Leena Maunula, Anna-Maria Hoka-
järvi, Ruska Rimhanen-Finne, and Ilkka T Miettinen. 2019. “Two drinking water
outbreaks caused by wastewater intrusion including sapovirus in Finland.” Inter-
national journal of environmental research and public health 16 (22): 4376.

Kentucky, University of. 2001. “Kentucky Water Resources Research Institute.” https:
//uknowledge.uky.edu/kwrri/.

Khattar, Dhruv, Jaipal Singh Goud, Manish Gupta, and Vasudeva Varma. 2019.
“MVAE: Multimodal Variational Autoencoder for Fake News Detection.” In The
World Wide Web Conference, 2915–2921. ACM.

Khuller, Samir, Anna Moss, and Joseph Seffi Naor. 1999. “The budgeted maximum
coverage problem.” Information processing letters 70 (1): 39–45.

Kim, Sukun, Shamim Pakzad, David Culler, James Demmel, Gregory Fenves, Steven
Glaser, and Martin Turon. 2007. “Health monitoring of civil infrastructures using
wireless sensor networks.” In Proceedings of the 6th international conference on
Information processing in sensor networks, 254–263.

Kleinberg, Jon, and Eva Tardos. 2006. Algorithm design. Pearson Education India.

Kotschick, Dieter. 2006. “The topology and combinatorics of soccer balls: when
mathematicians think about soccer balls, the number of possible designs quickly
multiplies.” American Scientist 94 (4): 350–357.

Krause, Andreas, Jure Leskovec, Carlos Guestrin, Jeanne VanBriesen, and Christos
Faloutsos. 2008. “Efficient sensor placement optimization for securing large water
distribution networks.” Journal of Water Resources Planning and Management
134 (6): 516–526.

Krebs, Valdis E. 2002. “Mapping networks of terrorist cells.” Connections 24 (3):
43–52.

Laifenfeld, Moshe, and Ari Trachtenberg. 2008. “Identifying codes and covering prob-
lems.” IEEE Transactions on Information Theory 54 (9): 3929–3950.

184

https://uknowledge.uky.edu/kwrri/
https://uknowledge.uky.edu/kwrri/

Laifenfeld, Moshe, Ari Trachtenberg, Reuven Cohen, and David Starobinski. 2009.
“Joint monitoring and routing in wireless sensor networks using robust identifying
codes.” Mobile Networks and Applications 14 (4): 415–432.

Law, King. 2013. “How Drug Dealers Get Caught.” https://www.robertkinglawfirm.
com/blog/2013/november/how-drug-dealers-get-caught/.

Lee, Byoung Ho, and Rolf A Deininger. 1992. “Optimal locations of monitoring stations
in water distribution system.” Journal of Environmental Engineering 118 (1):
4–16.

Leskovec, Jure, and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network
Dataset Collection. http://snap.stanford.edu/data, June.

Li, Bo, Dan Wang, Yiqing Ni, et al. 2009. “On the high quality sensor placement for
structural health monitoring.” In Proc. IEEE INFOCOM, 1–2. Citeseer.

Liang, Dieyan, Hong Shen, and Lin Chen. 2021. “Maximum Target Coverage Problem
in Mobile Wireless Sensor Networks.” Sensors 21 (1): 184.

Liebig, Jessica, and Asha Rao. 2014. “Identifying influential nodes in bipartite networks
using the clustering coefficient.” In 2014 Tenth International Conference on Signal-
Image Technology and Internet-Based Systems, 323–330. IEEE.

Lynch, Jerome P, and Kenneth J Loh. 2006. “A summary review of wireless sensors
and sensor networks for structural health monitoring.” Shock and Vibration Digest
38 (2): 91–130.

Mitchell, George J. 2007. “Report to the Commissioner of Baseball of an Independent
Investigation Into the Illegal Use of Steroids and Other Performance Enhancing
Substances by Players in Major League Baseball.” http://mlb.mlb.com/mlb/
news/mitchell/index.jsp.

Moncel, Julien. 2006. “On graphs on n vertices having an identifying code of cardinality
⌈log2(n+ 1)⌉.” Discrete Applied Mathematics 154 (14): 2032–2039.

Müller, Tobias, and J-S Sereni. 2009. “Identifying and locating–dominating codes in
(random) geometric networks.” Combinatorics, Probability and Computing 18 (6):
925–952.

Murthy, Cherukuri, K Ajay Varma, Diptendu Sinha Roy, and Dusmanta Kumar
Mohanta. 2014. “Reliability evaluation of phasor measurement unit using type-2
fuzzy set theory.” IEEE Systems Journal 8 (4): 1302–1309.

185

https://www.robertkinglawfirm.com/blog/2013/november/how-drug-dealers-get-caught/
https://www.robertkinglawfirm.com/blog/2013/november/how-drug-dealers-get-caught/
http://snap.stanford.edu/data
http://mlb.mlb.com/mlb/news/mitchell/index.jsp
http://mlb.mlb.com/mlb/news/mitchell/index.jsp

Nandanoori, Sai Pushpak, Soumya Kundu, Seemita Pal, Khushbu Agarwal, and
Sutanay Choudhury. 2020. “Model-Agnostic Algorithm for Real-Time Attack
Identification in Power Grid using Koopman Modes.” Arxiv 2007.11717.

Natarajan, Mangai. 2000. “Understanding the structure of a drug trafficking organiza-
tion: a conversational analysis.” Crime Prevention Studies 11:273–298.

. 2006. “Understanding the structure of a large heroin distribution network: A
quantitative analysis of qualitative data.” Journal of Quantitative Criminology
22 (2): 171–192.

News, Fox. 2016. “Crews battle massive transformer fire at Avondale SRP substation.”
https://www.fox10phoenix.com/news/crews-battle-massive-transformer-fire-
at-avondale-srp-substation.

Niu, Luyao, and Andrew Clark. 2019. “A Framework for Joint Attack Detection and
Control Under False Data Injection.” In International Conference on Decision
and Game Theory for Security, 352–363. Springer.

Noel, Adam B., Abderrazak Abdaoui, Tarek Elfouly, Mohamed Hossam Ahmed,
Ahmed Badawy, and Mohamed S. Shehata. 2017. “Structural Health Monitoring
Using Wireless Sensor Networks: A Comprehensive Survey.” IEEE Communica-
tions Surveys Tutorials 19 (3): 1403–1423. https://doi.org/10.1109/COMST.2017.
2691551.

Ostfeld, Avi, James G Uber, Elad Salomons, Jonathan W Berry, William E Hart,
Cindy A Phillips, Jean-Paul Watson, Gianluca Dorini, Philip Jonkergouw, Zoran
Kapelan, et al. 2008. “The battle of the water sensor networks (BWSN): A design
challenge for engineers and algorithms.” Journal of water resources planning and
management 134 (6): 556–568.

Padhee, Malhar, Joydeep Banerjee, Kaustav Basu, Sohini Roy, Anamitra Pal, and
Arunabha Sen. 2018. “A new model to analyze power system dependencies.” In
2018 IEEE Texas Power and Energy Conference (TPEC), 1–6. IEEE.

Padhee, Malhar, Reetam Sen Biswas, Anamitra Pal, Kaustav Basu, and Arunabha Sen.
2020. “Identifying Unique Power System Signatures for Determining Vulnerability
of Critical Power System Assets.” ACM SIGMETRICS Performance Evaluation
Review 47 (4): 8–11.

Pal, Anamitra, Chetan Mishra, Anil Kumar S Vullikanti, and SS Ravi. 2017. “General
optimal substation coverage algorithm for phasor measurement unit placement in
practical systems.” IET Generation, Transmission & Distribution 11 (2): 347–353.

186

https://www.fox10phoenix.com/news/crews-battle-massive-transformer-fire-at-avondale-srp-substation
https://www.fox10phoenix.com/news/crews-battle-massive-transformer-fire-at-avondale-srp-substation
https://doi.org/10.1109/COMST.2017.2691551
https://doi.org/10.1109/COMST.2017.2691551

Pal, Anamitra, Anil Kumar S Vullikanti, and Sekharipuram S Ravi. 2016. “A PMU
placement scheme considering realistic costs and modern trends in relaying.”
IEEE Transactions on Power Systems 32 (1): 552–561.

Paluch, Robert, Łukasz G Gajewski, Janusz A Hołyst, and Boleslaw K Szymanski.
2020. “Optimizing sensors placement in complex networks for localization of
hidden signal source: A review.” Future Generation Computer Systems 112:1070–
1092.

Paruchuri, Praveen, Jonathan P Pearce, Janusz Marecki, Milind Tambe, Fernando
Ordonez, and Sarit Kraus. 2008. “Playing games for security: An efficient exact
algorithm for solving Bayesian Stackelberg games.” In AAMAS, 2:895–902.

Potteiger, Bradley, Feiyang Cai, Abhishek Dubey, Xenofon Koutsoukos, and Zhenkai
Zhang. 2020. “Security in Mixed Time and Event Triggered Cyber-Physical
Systems using Moving Target Defense.” In IEEE International Symposium on
Real-Time Distributed Computing. IEEE.

Potthast, Martin, Johannes Kiesel, Kevin Reinartz, Janek Bevendorff, and Benno
Stein. 2017. “A stylometric inquiry into hyperpartisan and fake news.” arXiv
preprint arXiv:1702.05638.

Qi, Peng, Juan Cao, Tianyun Yang, Junbo Guo, and Jintao Li. 2019. “Exploit-
ing Multi-domain Visual Information for Fake News Detection.” arXiv preprint
arXiv:1908.04472.

Quadar, Nordine, Abdellah Chehri, Gwanggil Jeon, and Awais Ahmad. 2021. “Smart
water distribution system based on IoT networks, a critical review.” Human
Centred Intelligent Systems, 293–303.

Racz, Miklos Z, and Jacob Richey. 2020. “Rumor source detection with multiple
observations under adaptive diffusions.” IEEE Transactions on Network Science
and Engineering.

Ray, Saikat, David Starobinski, Ari Trachtenberg, and Rachanee Ungrangsi. 2004.
“Robust location detection with sensor networks.” IEEE Journal on Selected
Areas in Communications 22 (6): 1016–1025.

Ray, Saikat, Rachanee Ungrangsi, De Pellegrini, Ari Trachtenberg, and David Starobin-
ski. 2003. “Robust location detection in emergency sensor networks.” In IEEE
INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE Computer
and Communications Societies (IEEE Cat. No. 03CH37428), 2:1044–1053. IEEE.

187

Ressler, Steve. 2006. “Social network analysis as an approach to combat terrorism:
Past, present, and future research.” Homeland Security Affairs 2 (2).

Rossi, Ryan A., and Nesreen K. Ahmed. 2016. “An Interactive Data Repository with
Visual Analytics.” SIGKDD Explor. 17 (2): 37–41. http://networkrepository.com.

Salehi, Vahid, Ahmed Mohamed, Ali Mazloomzadeh, and Osama A Mohammed.
2012. “Laboratory-based smart power system, part II: Control, monitoring, and
protection.” IEEE Transactions on Smart Grid 3 (3): 1405–1417.

Sato, Ryoma, Makoto Yamada, and Hisashi Kashima. 2019. “Approximation ratios of
graph neural networks for combinatorial problems.” Advances in Neural Informa-
tion Processing Systems 32.

Sen, A, S Roy, K Basu, S Adeniye, S Choudhuri, and A Pal. 2021. “Optimal Cost
Network Design for Bounded Delay Data Transfer from PMU to Control Center.”
In 2021 IEEE Global Communications Conference (GLOBECOM), 1–6. IEEE.

Sen, Arunaba, Chenyang Zhou, Anisha Mazumder, Arun Das, Kaustav Basu, and
Krzysztof Walkowiak. 2020. “On the Number of Steiner Trees in a Graph.” In
2020 16th International Conference on the Design of Reliable Communication
Networks DRCN 2020, 1–5. IEEE.

Sen, Arunabha, and Kaustav Basu. 2019. “On connectivity of interdependent net-
works.” In 2019 IEEE Global Communications Conference (GLOBECOM), 1–6.
IEEE.

Sen, Arunabha, Sandipan Choudhuri, and Kaustav Basu. 2020. “Structural Dependency
Aware Service Chain Mapping for Network Function Virtualization.” In 2020 16th
International Conference on the Design of Reliable Communication Networks
DRCN 2020, 1–6. IEEE.

Sen, Arunabha, Victoria H Goliber, Kaustav Basu, Chenyang Zhou, and Sumitava
Ghosh. 2019. “On upper and lower bounds of identifying code set for soccer
ball graph with application to satellite deployment.” In Proceedings of the 20th
International Conference on Distributed Computing and Networking, 307–316.
ACM.

Sen, Arunabha, Victoria Horan Goliber, Chenyang Zhou, and Kaustav Basu. 2018.
“Terrorist Network Monitoring with Identifying Code.” In International Con-
ference on Social Computing, Behavioral-Cultural Modeling and Prediction and
Behavior Representation in Modeling and Simulation, 329–339. Springer.

188

http://networkrepository.com

Sengupta, Sailik, Kaustav Basu, Arunabha Sen, and Subbarao Kambhampati. 2020.
“Moving target defense for robust monitoring of electric grid transformers in
adversarial environments.” In International Conference on Decision and Game
Theory for Security, 241–253. Springer.

Sengupta, Sailik, Tathagata Chakraborti, and Subbarao Kambhampati. 2019. “MT-
Deep: Moving Target Defense to Boost the Security of Deep Neural Nets Against
Adversarial Attacks.” International Conference on Decision and Game Theory
for Security.

Sengupta, Sailik, Ankur Chowdhary, Dijiang Huang, and Subbarao Kambhampati.
2018. “Moving target defense for the placement of intrusion detection systems
in the cloud.” In International Conference on Decision and Game Theory for
Security, 326–345. Springer.

Sengupta, Sailik, Ankur Chowdhary, Abdulhakim Sabur, Adel Alshamrani, Dijiang
Huang, and Subbarao Kambhampati. 2020. “A survey of moving target defenses
for network security.” IEEE Communications Surveys & Tutorials.

Sengupta, Sailik, Satya Gautam Vadlamudi, Subbarao Kambhampati, Adam Doupé,
Ziming Zhao, Marthony Taguinod, and Gail-Joon Ahn. 2017. “A Game Theoretic
Approach to Strategy Generation for Moving Target Defense in Web Applications.”
In AAMAS, 178–186.

Shah, Devavrat, and Tauhid Zaman. 2011. “Rumors in a network: Who’s the culprit?”
IEEE Trans. on information theory 57 (8): 5163–5181.

Shi, Baoxu, and Tim Weninger. 2016. “Fact checking in heterogeneous information
networks.” In Proceedings of the 25th International Conference Companion on
World Wide Web, 101–102. International World Wide Web Conferences Steering
Committee.

Shu, Kai, Amy Sliva, Suhang Wang, Jiliang Tang, and Huan Liu. 2017. “Fake news de-
tection on social media: A data mining perspective.” ACM SIGKDD Explorations
Newsletter 19 (1): 22–36.

Shu, Kai, Suhang Wang, and Huan Liu. 2018. “Understanding user profiles on so-
cial media for fake news detection.” In 2018 IEEE Conference on Multimedia
Information Processing and Retrieval (MIPR), 430–435. IEEE.

Sinha, Arunesh, Thanh H Nguyen, Debarun Kar, Matthew Brown, Milind Tambe,
and Albert Xin Jiang. 2015. “From physical security to cybersecurity.” Journal
of Cybersecurity 1 (1): 19–35.

189

Spinelli, Brunella, L Elisa Celis, and Patrick Thiran. 2017. “A general framework for
sensor placement in source localization.” IEEE Transactions on Network Science
and Engineering 6 (2): 86–102.

Suomela, Jukka. 2007. “Approximability of identifying codes and locating–dominating
codes.” Information Processing Letters 103 (1): 28–33.

Tacchini, Eugenio, Gabriele Ballarin, Marco L Della Vedova, Stefano Moret, and
Luca de Alfaro. 2017. “Some like it hoax: Automated fake news detection in social
networks.” arXiv preprint arXiv:1704.07506.

Tan, Song, Debraj De, Wen-Zhan Song, Junjie Yang, and Sajal K Das. 2017. “Survey of
security advances in smart grid: A data driven approach.” IEEE Communications
S&T.

Tang, Wenchang. 2020. “Identifying misinformation and their sources in social net-
works.”

Team, Symantec. 2017. Dragonfly: Western energy sector targeted by sophisticated
attack group.

Tripathi, Abhishek, Hari Prabhat Gupta, Tanima Dutta, Rahul Mishra, KK Shukla,
and Satyabrat Jit. 2018. “Coverage and connectivity in WSNs: A survey, research
issues and challenges.” IEEE Access 6:26971–26992.

UCINET. 2022. “Covert Networks.” https://sites.google.com/site/ucinetsoftware/
datasets/covert-networks.

UNODC. 2018. “UNODC World Report.” https://www.unodc.org/wdr2018/en/
exsum.html.

. n.d. “Drug Trafficking.” https://www.unodc.org/unodc/en/drug-trafficking/.

Vazirani, Vijay V. 2013. Approximation algorithms. Springer Science & Business
Media.

Wang, Bang. 2011. “Coverage problems in sensor networks: A survey.” ACM Computing
Surveys (CSUR) 43 (4): 1–53.

Wang, Yaqing, Fenglong Ma, Zhiwei Jin, Ye Yuan, Guangxu Xun, Kishlay Jha, Lu
Su, and Jing Gao. 2018. “Eann: Event adversarial neural networks for multi-
modal fake news detection.” In Proceedings of the 24th acm sigkdd international
conference on knowledge discovery & data mining, 849–857. ACM.

190

https://sites.google.com/site/ucinetsoftware/datasets/covert-networks
https://sites.google.com/site/ucinetsoftware/datasets/covert-networks
https://www.unodc.org/wdr2018/en/exsum.html
https://www.unodc.org/wdr2018/en/exsum.html
https://www.unodc.org/unodc/en/drug-trafficking/

Wang, Zheng, Chaokun Wang, Jisheng Pei, and Xiaojun Ye. 2017. “Multiple source
detection without knowing the underlying propagation model.” In Thirty-First
AAAI Conference on Artificial Intelligence.

Wikipedia. 2022. “List of Terrorist Incidents in France.” https://en.wikipedia.org/
wiki/List_of_terrorist_incidents_in_France.

. n.d. “Metcalf Sniper Attack.” https://en.wikipedia.org/wiki/Metcalf_sniper_
attack.

Xiao, Ying, Christoforos Hadjicostis, and Krishnaiyan Thulasiraman. 2006. “The d-
identifying codes problem for vertex identification in graphs: probabilistic analysis
and an approximation algorithm.” In International Computing and Combinatorics
Conference, 284–298. Springer.

Yang, Shuo, Kai Shu, Suhang Wang, Renjie Gu, Fan Wu, and Huan Liu. 2019.
“Unsupervised fake news detection on social media: A generative approach.” In
Proceedings of 33rd AAAI Conference on Artificial Intelligence.

Zhou, Chenyang, Anisha Mazumder, Arun Das, Kaustav Basu, Navid Matin-
Moghaddam, Saharnaz Mehrani, and Arunabha Sen. 2018. “Relay node placement
under budget constraint.” In Proceedings of the 19th International Conference on
Distributed Computing and Networking, 1–11.

Zhou, Yousheng, Chujun Wu, Qingyi Zhu, Yong Xiang, and Seng W Loke. 2019.
“Rumor source detection in networks based on the SEIR model.” IEEE access
7:45240–45258.

Zhu, Kai, Zhen Chen, and Lei Ying. 2016. “Catch’em all: Locating multiple diffusion
sources in networks with partial observations.” arXiv preprint arXiv:1611.06963.

Zhu, Kai, and Lei Ying. 2014. “Information source detection in the SIR model: A
sample-path-based approach.” IEEE/ACM Transactions on Networking 24 (1):
408–421.

Zimmerman, Ray Daniel, Carlos Edmundo Murillo-Sánchez, and Robert John Thomas.
2010. “MATPOWER: Steady-state operations, planning, and analysis tools for
power systems research and education.” IEEE Transactions on power systems 26
(1): 12–19.

191

https://en.wikipedia.org/wiki/List_of_terrorist_incidents_in_France
https://en.wikipedia.org/wiki/List_of_terrorist_incidents_in_France
https://en.wikipedia.org/wiki/Metcalf_sniper_attack
https://en.wikipedia.org/wiki/Metcalf_sniper_attack

APPENDIX A

OTHER RESEARCH COLLABORATIONS

192

Apart from studying problems concerning monitoring of complex networks for
anomalous behavior, I was fortunate enough to collaborate with other researchers on
multiple problem statements. Here, in this appendix, I provide an overview of my
other contributions.

A.1 Interdicting Illicit Networks

The objective here was to design approaches in order apprehend traffickers traf-
ficking victims from other parts of United States to Las Vegas. Due to the lack of
real world data, we had to design approaches to determine the paths taken by the
traffickers between a source-destination pair, which would result in the least probability
of interdiction. Next, once such paths were computed for multiple source-destination
pairs, our approach was to determine the maximum payoffs for the law enforcement
agents, who were limited by an operational budget. Parameters such as, law enforce-
ment budget, traffickers budget (the trafficker might not want to spend more than $X
traveling between two cities), probabilities of interdiction, etc. were approximated
due to the lack of real world data.

A.2 Predict Future Opioid Overdose Incidences

In collaboration with the Arizona Health Care Cost Containment System (AHC-
CCS), we studied the effect of the Opioid epidemic in the state of Arizona. Opioids are
drugs given as pain relievers and it has been known to cause addiction in individuals.
We observed how the number of Opioid overdoses in the state kept increasing over the
past decade. The goal of this collaboration was to develop machine learning based
predictive tools in order to accurately predict future instances of Opioid overdoses,
such that, state and local government can allocate appropriate resources. We devel-
oped synthetic datasets, with Arizona characteristics (after discussions with third
party agencies), as real world data was difficult to procure due to various privacy
constraints. We not only showed how machine learning can be utilized for this task
but also showed that Twitter data can be used as a real time indicator of overdosing
incidences in the state. This is because, we observed a high correlation between the
number of tweets and Opioid overdosing and Opioid related deaths in the state.

A.3 Communication Network Design in Power Grids

Sensors, such as the Phasor Measurement Units (PMUs), deployed in the power
grid, must send data and communicate with local control centers, in order for the power

193

grid operator to monitor the operational behavior of the grid. This communication
is bounded by a delay value δ, which implies that the data must be received at the
control center within δ time units. This problem has been modeled as Rooted Delay
Constrained Spanning Tree problem and we have provided an optimal as well as a
heuristic, which performs almost as well as the optimal solution. Current work in this
domain include the scenario where there are multiple control centers present (instead
of one) as well as viewing the design of the communication network and placing the
sensors in the power grid as a multi-objective problem.

194

	Table of Contents
	List of Tables
	List of Figures
	Chapter
	1 Introduction
	2 Background
	3 Human-Human Interaction Networks
	4 Critical Infrastructure Networks
	5 Online Social Networks
	6 Water Distribution Networks
	7 Identifying Code Problems for Restricted Graph Classes
	8 Conclusion

	References
	Appendix
	A Other Research Collaborations

