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ABSTRACT

This work presents a thorough analysis of reconstruction of global wave fields (gov-

erned by the inhomogeneous wave equation and the Maxwell vector wave equation)

from sensor time series data of the wave field. Three major problems are considered.

First, an analysis of circumstances under which wave fields can be fully reconstructed

from a network of fixed-location sensors is presented. It is proven that, in many

cases, wave fields can be fully reconstructed from a single sensor, but that such re-

constructions can be sensitive to small perturbations in sensor placement. Generally,

multiple sensors are necessary. The next problem considered is how to obtain a

global approximation of an electromagnetic wave field in the presence of an amplify-

ing noisy current density from sensor time series data. This type of noise, described in

terms of a cylindrical Wiener process, creates a nonequilibrium system, derived from

Maxwell’s equations, where variance increases with time. In this noisy system, longer

observation times do not generally provide more accurate estimates of the field coeffi-

cients. The mean squared error of the estimates can be decomposed into a sum of the

squared bias and the variance. As the observation time τ increases, the bias decreases

as O(1/τ) but the variance increases as O(τ). The contrasting time scales imply the

existence of an “optimal” observing time (the bias-variance tradeoff). An iterative

algorithm is developed to construct global approximations of the electric field using

the optimal observing times. Lastly, the effect of sensor acceleration is considered.

When the sensor location is fixed, measurements of wave fields composed of plane

waves are almost periodic and so can be written in terms of a standard Fourier basis.

When the sensor is accelerating, the resulting time series is no longer almost periodic.

This phenomenon is related to the Doppler effect, where a time transformation must

be performed to obtain the frequency and amplitude information from the time series

data. To obtain frequency and amplitude information from accelerating sensor time
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series data in a general inhomogeneous medium, a randomized algorithm is presented.

The algorithm is analyzed and example wave fields are reconstructed.
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Chapter 1

INTRODUCTION

Waves are ubiquitous in nature with many important applications in science and

engineering today [3]. Waves occur in areas as diverse as geophysics [11], acoustics,

and electromagnetics [18, 31]. In their simplest form, waves are solutions to the wave

equation:

∂2u

∂t2
− c2(x)∆u = F (x, t) (1.1)

as is the case for acoustics where u represents pressure and c represents the wave

speed, and the simplest solutions are superpositions of plane waves:

u(x, t) =
∞∑
n=1

An exp(i(kn · x− ωnt)) (1.2)

where the angular frequency ω and wavenumber k are related by ω2 = c2|k|2, known as

the dispersion relation. Other types of waves can be differentiated from this simple

case in several ways: governing equations for wave phenomena can be nonlinear,

inhomogeneous, and have different dispersion relations.

In this dissertation, we consider acoustic and electromagnetic waves. For the

former, (1.1) is the governing equation. The latter is governed by Maxwell’s equations

and is vectorial. A wave equation for the electric field E can be obtained from

Faraday’s law of induction and Ampére’s law giving the Maxwell vector wave equation:

ϵ(x)
∂2E

∂t2
+∇×

(
[µ(x)]−1∇× E

)
= −∂J

∂t
(1.3)

where ϵ, µ, and J are the permittivity, permeability, and current density, respectively.
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For the general cases of (1.1) and (1.3), an explicit representation such as (1.2)

cannot be obtained. Instead, the wave field is written as

u(x, t) =
∞∑
n=1

An exp(−iωnt)Φn(x) (1.4)

where the functions Φn are the “features” of the problem. In the case of (1.1), Φn

are eigenfunctions of the weighted Laplace operator. For the Maxwell vector wave

equation (1.3), the functions Φn are replaced with the vector-valued eigenfunctions

Φn of the weighted curl-squared operator. The requirement of the features in both

cases is that they are mutually orthogonal. The features framework is general and

used in other areas such as machine learning and compressed sensing [29].

The primary question of interest in this work is whether wave fields such as (1.4)

can be fully reconstructed or approximated using time series data of the wave field:

Rs(t) := u(xs(t), t) (1.5)

obtained from a sensor. Here, xs(t) is the spatial trajectory of the sensor.

Consider the following simple reconstruction example. Suppose we want to con-

struct an approximation of the acoustic wave field u(x, t) of a human voice given by

(1.4) using a time series of observations Rs(t) = u(s, t) obtained from a sensor fixed

at the location s. The time series takes the form

Rs(t) =
∑
n

An exp (−iωnt) Φn(s) =
∑
n

Dn exp (−iωnt) (1.6)

where the frequencies of the human voice ωn are contained in a bounded range

[ωmin, ωmax] such as 300-3,000 Hz. Since this time series is almost periodic, the inner

product

(Rs(t), exp(−iωt)) := lim
τ→∞

1

τ

∫ τ

0

Rs(t) exp(iωt) dt (1.7)

2



can be used to obtain the frequencies ωn and coefficients Dn. The time series of the

wave field at another location s0 is then

Rs0(t) =
∑
n

Dn
Φn(s0)

Φn(s)
exp (−iωnt) .

This formula implicitly assumes that Φn(x) ̸= 0 at the sensor location x = s which

is a requirement of reconstruction.

This dissertation is organized as follows. In chapter 2, we consider a network of

fixed-location sensors and how the number of sensors affects wave field reconstruction.

In chapter 3, we consider reconstruction of the electric field from a fixed-location

sensor in the presence of a noisy current density. In terms of the Maxwell vector wave

equation, this amounts to additive noise:

∂J

∂t
:=

〈
∂J

∂t

〉
(x, t) +

√
Q
∂W
∂t

(1.8)

where ⟨·⟩ denotes the ensemble average and W is a cylindrical Wiener process. In

chapter 4, we consider the problem of wave field reconstruction from an accelerating

sensor. We make concluding remarks in chapter 5.
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Chapter 2

SENSOR PLACEMENT SENSITIVITY AND ROBUST RECONSTRUCTION OF

WAVE DYNAMICS FROM MULTIPLE SENSORS

2.1 Introduction

Wave propagation is a classical physical problem with wide application in electro-

magnetics, acoustics, and geo- and astrophysics. Of particular interest is to capture

data at a specific location to determine properties of the wave field. For example, in

wave gradiometry, sensor arrays are used to determine properties of seismic waves,

such as geometric spreading and horizontal slowness [35]. In 2013, the National Re-

search Council listed the deployment of small satellite constellations, which would

expand the use of multiple sensors to capture wave dynamics, as a priority for the

coming decade [8]. Data assimilation strategies have been developed to incorporate

both sensor data and physics phenomena in ionospheric modeling [16]. Kak et al. [32]

recently proved some necessary placement conditions to optimize the design of large

CubeSat constellations for low-orbit, “Internet of Things” communication networks.

Ma et al. [37] have evaluated statistical and physical models to predict the distribution

of electromagnetic waves in complex enclosures.

Advancements in sensor technology motivate the present study, which addresses

two main questions. First, under what conditions are multiple sensors required to

reconstruct solutions of the wave equation? Second, how do multiple sensors reduce

errors in the reconstructions? The mathematical tools we develop are more general

and apply to systems such as Maxwell’s equations; however, we illustrate the general

methodology on the forced wave equation. It is useful to characterize full solution
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reconstruction in terms of time series. Full solution reconstruction is equivalent to

time series reconstruction at every point in the spatial domain. Therefore, a useful

rephrasing of the stated problem is the following: how many sensors are required

to reconstruct a time series at every location? We prove three main results: (1)

time series from a single sensor can be used to reconstruct solutions to the wave

equation for a large class of problems but does not suffice for full reconstruction in

the general case. A proposed method that uses multiple sensors can provide full

reconstruction; (2) solution reconstruction from a single sensor is highly sensitive to

perturbations in sensor location; and (3) given n noisy sensors, the error in solution

reconstruction decreases as O(n−1/2). These results are mathematically rigorous and

provide necessary conditions for reconstruction of wave dynamics. We also present

numerical simulations to demonstrate the theory.

Our theoretical approach relies on the eigenfunctions of the weighted Laplace op-

erator. Although the use of eigenfunction expansions is classical, to our knowledge

its application to questions of sensor placement and wave field reconstruction is new.

Furthermore, there are interesting connections with some mathematical approaches

used in machine learning and compressed sensing. The latter case, as in [29], can be

described as choosing “features” {ψi} to model the data as u(x, t) =
∑
kiψi(x, t). The

features are orthogonal polynomials, and the coefficients ki are found by a regulariza-

tion procedure when the model contains more features than data points [10, 15, 45].

Data-driven features have been exploited to optimize the placement of sensors in

sparse networks for image and field reconstruction [40].

In the case of the wave equation, the features are ψi(x, t) = ϕi(x)hi(t), where ϕi

are eigenfunctions of the weighted Laplace operator, and the temporal features hi

uniquely identify the eigenfunctions. The key result in this framework is that the

solution can be fully reconstructed using data on a low-dimensional subspace of the
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space-time domain in Rd ×R, where d is the number of spatial dimensions. We show

how to reconstruct the solution of the wave equation from fixed-location sensors by

approximating the coefficients ki from sensor time series data. The eigenfunctions

depend on the physical domain and on the wave speed, which may vary by loca-

tion. For Maxwell’s equations, the features are vector fields that can be written in

terms of the eigenfunctions of the squared curl operator, weighted by the permittivity,

which capture the physics of electromagnetism. The effect of the vectorial nature of

Maxwell’s equations and fluctuations in properties of the medium have been discussed

in [38, 41, 48].

2.2 Problem Background

We begin by deriving the solution to the wave equation in terms of eigenfunctions

of the weighted Laplace operator−c2(x)∆, where c(x) is the spatially-dependent wave

speed. We use the wave equation throughout to illustrate the approach. The form of

the solution will then be used to reconstruct the wave dynamics from sensor data. In

particular, we consider the forced wave equation on an open bounded domain D in

Rd with initial conditions f and g and homogeneous boundary conditions:

(∂tt − c2(x)∆)u(x, t) = F (x, t), (2.1)

u(x, 0) = f(x), (2.2)

ut(x, 0) = g(x), (2.3)

u(x, t) = 0, x ∈ ∂D. (2.4)

The features ψi thus depend upon the properties of the medium. In this chapter, we

consider only the case of constant wave speed c for simplicity, but the methodology

is the same for spatially variable wave speed c(x). The method of eigenfunction

expansion can be used to obtain the solution u. We choose the solutions {ϕi} of the
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associated eigenvalue problem

−∆ϕ(x) = λϕ(x) (2.5)

ϕ(x) = 0, x ∈ ∂D (2.6)

which form an orthonormal basis on L2(D). In the case of variable wave speed

c = c(x), the eigenfunctions of the weighted Laplace operator are used instead. The

solution can then be represented as

u(x, t) =
∑
i

Ai(t)ϕi(x). (2.7)

Here and throughout, i and j represent multi-indices corresponding to the eigenfunc-

tions {ϕi}. One can solve for the coefficients Ai(t) using the initial conditions and

the forcing term. We write the forcing term in the same basis:

F (x, t) =
∑
i

F̂i(t)ϕi(x), F̂i(t) =

∫
D
F (x, t)ϕi(x) dx. (2.8)

By differentiating the solution term by term with respect to time, we obtain the set

of ordinary differential equations

d2Ai

dt2
+ c2λiAi = F̂i(t). (2.9)

The initial conditions and orthonormality of {ϕi} yield

Ai(0) =

∫
D
f(x)ϕi(x) dx = f̂i (2.10)

A′
i(0) =

∫
D
g(x)ϕi(x) dx = ĝi. (2.11)

By solving these initial value problems for each Ai, we obtain the solution to the wave

equation:

u(x, t) =
∑
i

Ai(t)ϕi(x) (2.12)

Ai(t) =f̂i cos
(
c
√
λi t
)
+

ĝi

c
√
λi

sin
(
c
√
λi t
)
+ FAi

(t), (2.13)
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where

FAi
(t) =

∫ t

0

F̂i(τ)

c
√
λi

sin
(
c
√
λi(t− τ)

)
dτ. (2.14)

The natural frequencies of the problem are c
√
λi.

2.3 Results: Sensor Solutions

We can now investigate the conditions under which the solution (2.12) can be

derived from a time series, Bs(t) = u(s, t), given by a fixed-location sensor located

at s ∈ D. We assume that the governing equation (i.e., the wave equation (2.1))

and the boundary conditions are known and that the initial conditions of the sys-

tem are desired. Reconstructing the initial conditions is equivalent in this case to

reconstructing the full solution, because the solution is uniquely determined from the

initial data. We will show result (1): time series from a single sensor can be used

to fully reconstruct the solution of wave equation for a large class of problems ; how-

ever, a single sensor does not suffice in general, and we provide a method for solution

reconstruction using multiple sensors. Sensor time series are typically nonperiodic

functions characterized by a countable set of frequencies.

The initial conditions can be written in the form

f(x) =
∑
i

f̂iϕi(x) (2.15)

g(x) =
∑
i

ĝiϕi(x), (2.16)

and we must recover the coefficients f̂i and ĝi. Because the general solution (2.12) is

a sum of terms of the form cos(c
√
λj t) and sin(c

√
λj t), and using the properties of

8



orthogonality in spaces of almost periodic functions [7, 24], we consider the constants

αj = lim
τ→∞

1

τ

∫ τ

0

Bs(t) cos
(
c
√
λj t
)
dt (2.17)

βj = lim
τ→∞

1

τ

∫ τ

0

Bs(t) sin
(
c
√
λj t
)
dt. (2.18)

Assuming that the spectrum of the solution is known, we compute

αj =
∑
i∈Iλj

ϕi(s)
f̂i
2

+ lim
τ→∞

1

τ

∫ τ

0

∑
i

ϕi(s)FAi
(t) cos

(
c
√
λj t
)
dt︸ ︷︷ ︸

Fαj

(2.19)

βj =
∑
i∈Iλj

ϕi(s)
ĝi

2c
√
λj

+ lim
τ→∞

1

τ

∫ τ

0

∑
i

ϕi(s)FAi
(t) sin

(
c
√
λj t
)
dt︸ ︷︷ ︸

Fβj

, (2.20)

where Iλj
= {i : λi = λj} is the set of multi-indices that correspond to the same

eigenvalue λj, and FAi
(t) is given by Eq. (2.14). The constants αj and βj are linear

combinations of the coefficients f̂i and ĝi. The spectrum of the solution needed to

compute αj and βj can be obtained by computing the eigenvalues of the operator ∆

on the domain D. The cardinality of Iλj
is the multiplicity mj of λj. In the simplest

case, every eigenvalue has multiplicity 1 and the coefficients f̂i and ĝi can be recovered

directly from Eqs. (2.19) and (2.20).

In the case where λj has multiplicity mj > 1, we instead use n = mj sensors

placed at spatial locations s1, . . . , sn. Assuming that the forcing terms Fαj
and Fβj

converge, the coefficients can be obtained by solving a linear system of the form

9



2


αs1
j − Fα

s1
j

...

αsn
j − Fαsn

j

 =


ϕi1(s1) . . . ϕimj

(s1)

...

ϕi1(sn) . . . ϕimj
(sn)



f̂i1
...

f̂imj

 . (2.21)

The above system can be written more succinctly as

αJ = ΦJ f̂J , (2.22)

and one can solve for the coefficients f̂J if and only if ΦJ is invertible. The coefficients

ĝJ can be obtained with the same matrix ΦJ .

The above analysis places a lower bound on the number of sensors required for

reconstruction. If the eigenvalue problem (2.5) has a maximum eigenvalue multiplic-

ity M , then the initial conditions f and g cannot be fully determined using fewer

than M fixed-location sensors.

As an illustration, consider the case of the rectangular domain D = [ 0, Lx] ×

[ 0, Ly]. The multiplicity of every eigenvalue is 1 unless the ratio Ly/Lx is rational. If

Ly/Lx = p/q for relatively prime integers p and q, then the eigenvalues become

λmn =

(
mπ

Lx

)2

+

(
qnπ

pLx

)2

(2.23)

and there are distinct multi-indices with the same eigenvalue, such as (m,n) = (q, pℓ)

and (qℓ, p) for ℓ = 1, 2, . . . . Thus, there exist eigenvalues of arbitrarily large multi-

plicity, which implies that arbitrary initial conditions cannot be derived from finitely

many sensors when Ly/Lx is rational. Otherwise, the condition for reconstruction re-

duces to the requirement that, for each i, there be a sensor at sk such that ϕi(sk) ̸= 0.

We now provide a numerical illustration of the effect of the domain shape on the

number of sensors required for solution reconstruction. Figure 2.1 shows the results
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of a simulation of Eqs. (2.1)–(2.4) on D1 = [ 0, π]× [ 0, 1] with the initial conditions

f(x) = exp
(
−30((x− π/2 + 0.5)2 + (y − 0.6)2)

)
(2.24)

g(x) = exp
(
−30((x− π/2 + 0.8)2 + (y − 0.3)2)

)
(2.25)

and forcing term

F (x, t) = 0.3 sin(x) sin(πy/Ly) cos(12t) (2.26)

assuming data from a single sensor located at (1.90, 0.66).

The initial conditions (2.24)–(2.25) are first normalized with respect to the L2

norm before each simulation. The forcing term (2.26) is chosen because it represents

a simple case of non-resonant forcing (discussed in subsection 2.3.2) and because it

is of comparable size to the initial conditions after normalization. We measure the

quality of the reconstruction using the relative L2(D) error in the initial condition as:(∫
D |fexact(x)− fapprox(x)|2 dx∫

D |fexact(x)|2 dx

)1/2

. (2.27)

Figure 2.1(a) shows a plot of Eq. (2.24), and Figure 2.1(b) shows the reconstruction,

whose relative L2(D1) error, Eq. (2.27), is 0.16. (One inherent limitation of this

simulation is that it has been done using floating-point arithmetic, which consists of

rational numbers.)

Next, we simulate the same problem and initial conditions, except that the domain

is now D2 = [ 0, π]× [ 0, π]. Figure 2.2(a) shows a plot of Eq. (2.24), and Fig. 2.2(b)–

(d) show the reconstruction using, respectively, one, two, and three sensors located

at (1.90, 2.07), (0.97, 3.02), and (1.68, 2.07). In this example, data from at least

two sensors are needed to reconstruct the initial condition (2.24) with comparable

accuracy to Figure 2.1. The key parameter is the ratio Lx/Ly, which is 1 in this

example and π in the previous one.
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Figure 2.1: Reconstruction of the initial condition (2.24) of problem (2.1)–(2.4)
with forcing (2.26) on the domain D = [ 0, π]× [ 0, 1]. The initial conditions are given
by Eqs. (2.24)–(2.25). (a) The exact initial condition. (b) Reconstruction using one
noiseless sensor at (1.90, 0.66). The relative error (2.27) is 0.16. The solution is well
approximated using data from one noiseless sensor on a rectangular domain whose
length ratio is irrational: r = Lx/Ly = π.

Finally, we illustrate the first example (domain D1, Figure 2.1) from a time

series perspective. Consider a sensor placed at s1 = (1.90, 0.66) and another at

s2 = (0.97, 0.96). (These locations have been chosen arbitrarily.) The blue curve in

Figure 2.3(a) shows the time series of the exact solution at s1, and the red curve shows

the time series of the solution at s1 as it has been reconstructed from data collected

at s2. Figure 2.3(b) shows the exact solution (blue) at s2 and its reconstruction (red)

at s1. In both cases, the reconstructed time series follows the exact one closely, but

with occasional small errors in amplitude. The results suggest that the wave dynam-

ics allow data from multiple sensors can be cross-checked for accuracy and perhaps

incorporated into an error detection and correction scheme.
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Figure 2.2: Reconstructions of the initial condition (2.24) of problem (2.1)–(2.4)
with forcing (2.26) on the domain D = [ 0, π]× [ 0, π]. The initial conditions are given
by Eqs. (2.24)–(2.25). (a) The exact initial condition. Reconstruction using (b) one
sensor, (c) two sensors, and (d) three sensors at representative locations using the
least squares solution from Eq. (2.51). The relative errors (2.27) are (b) 0.89, (c)
0.41, and (d) 0.33. The solution is poorly approximated using data from one sensor,
even in the absence of noise, on a domain with a rational ratio of domain lengths:
r = Lx/Ly = 1.
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Figure 2.3: Time series reconstructions using one sensor of the problem (2.1)–(2.4)
as in Figure 2.1. Sensors are placed at two representative locations: s1 = (1.90, 0.66)
and s2 = (0.97, 0.96). (a) Blue curve: the time series of the “exact” solution at s1.
Red curve: the time series of the reconstructed solution at s1 using the sensor at s2.
(b) Blue curve: the “exact” time series at s2. Red curve: the time series of the
reconstructed solution at s2 using the sensor at s1.

2.3.1 Reconstruction Errors with Respect to Sensor Position

An interesting question concerns the relationship between sensor position and

the error in the reconstruction of the initial condition (which, as mentioned above, is

equivalent in this problem to reconstructing the entire solution). The initial condition

(2.24) has a unique maximum at x0 = ((π − 1)/2, 0.6). Figure 2.4(a) shows the L2

relative error (as defined by (2.27)) as a function of distance from x0 on the domainD1;

Figure 2.4(c) is the same, except on the domain D2. No simple functional relationship

is apparent. Panels (b) and (d) show the L2 relative error on D1 and D2, respectively,

as a function of sensor position; the point x0 is shown as a red dot. Here a spatial

structure is evident in the relative L2 reconstruction error. If a sensor is located near

a node (i.e., a zero point) of an eigenfunction ϕi, then small errors in approximation,

which are inevitable in floating-point arithmetic, dominate the reconstruction error.
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Figure 2.4: Relative reconstruction error (2.27) against the distance from the sensor
to the peak of the initial condition. The problem simulated is as in Figure 2.1 for
(a)–(b) and as in Figure 2.2 for (c)–(d) with the color axis on (b) and (d) and the y
axis on (a) and (c) capped at 4. Panels (a) and (c) show that the two quantities are
not clearly correlated. In panels (a)–(b) reconstructions from sensors in about 27.3%
of locations had an L2(D) relative error below 1; no locations had L2 errors less than
in panels (c)–(d). Panels (b) and (d) display the error against the location of the
sensor; the red circle indicates the location of the initial peak.
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The nodes depend on the domain as well as the (weighted) Laplace operator, and their

structure, together with the frequencies of greatest interest, can be used to determine

a suitable arrangement of sensors. In these examples, a circular array of sensors may

be an effective way to reduce the reconstruction error, because the sensors will not all

lie near a node. Another strategy would be to place the sensors randomly throughout

the domain.

2.3.2 Remarks on Convergence

We now investigate the circumstances under which Fαj
and Fβj

converge (cf.

Eqs. (2.19)–(2.20)). Suppose that the forcing term is time periodic:

F (x, t) = F (x) cos(ωt) =
∑
i

F̂i(t)ϕi(x) (2.28)

where

F̂i(t) =

∫
D
F (x)ϕi(x) dx cos(ωt). (2.29)

We make the additional assumption that ω ̸= c
√
λi for any multi-index i to avoid

resonant frequencies. Using the relation∫ t

0

cos(ωs) sin
(
c
√
λi (t− s)

)
ds =

c
√
λi
(
cos(c

√
λi t)− cos(ωt)

)
ω2 − c2λi

(2.30)

and substituting the definitions of FAi
and F̂i from Eqs. (2.14) and (2.8) into Fαj

, we

obtain

Fαj
=
∑
i

ϕi(s)

∫
D F (x)ϕi(x)dx

ω2 − c2λi

× lim
τ→∞

1

τ

∫ τ

0

(
cos(c

√
λi t)− cos(ωt)

)
cos(c

√
λj t) dt

=
∑
i∈Iλj

1

2
ϕi(s) ·

∫
D F (x)ϕi(x)dx

ω2 − c2λi
. (2.31)
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Thus Fαj
converges. The forcing can be further generalized to a finite sum of the

form

F (x, t) =
n∑

k=1

F k(x) cos(ωkt), (2.32)

when each ωk is not a natural frequency c
√
λi.

2.3.3 Remarks on Small Damping

In the more general case where the wave equation includes damping, Eq. (2.1)

becomes

(∂tt + γ∂t − c2(x)∆)u(x, t) = F (x, t) (2.33)

where γ > 0 is the damping parameter. If the damping is sufficiently small, i.e.,

γ < 2c
√
λi for all i, then the solution is again of the form (2.12) with

Ai(t) =e
−γt/2

(
f̂i cos(ωit) +

1

ωi

[γ
2
f̂i + ĝi

]
sin(ωit)

)
(2.34)

where ωi =
√
c2λi − (γ/2)2. Therefore, if γ is sufficiently small, then the eigenvalue

perturbations are small, and the analysis becomes a regular perturbation problem;

approximating γ will result in only a small error. We can apply the transformation

B̃s(t) = eγt/2Bs(t) (2.35)

and the same analysis as above to B̃s with perturbed eigenvalues to obtain the co-

efficients f̂i and ĝi. (An analogous mathematical development has been presented

in [19, 46] to analyze plasmonic dynamics in the presence of damping.) The assump-

tion γ < 2c
√
λi for all i is essential to applying this method of reconstruction. If the

damping coefficient is above this threshold, then the damping dominates the wave

dynamics, making this problem similar to the heat equation, where reconstruction of

initial conditions from future data is an ill-posed problem.
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2.3.4 Sensor Placement Sensitivity

The discussion so far shows that, in many cases, a single sensor does not suffice

to reconstruct the solution. We now discuss result (2): solution reconstructions from

an individual sensor are sensitive to perturbations in sensor placement. Consider the

case of the interval domain D = [ 0, Lx]. The solutions of the eigenvalue problem (2.5)

are

λn =

(
nπ

Lx

)2

(2.36)

ϕn(x) =

(
2

Lx

)1/2

sin

(
nπx

Lx

)
. (2.37)

As discussed above, the coefficients of f and g can be determined from a single sensor

if and only if ϕn(s) ̸= 0 for all n. The zeros of the eigenfunction ϕn are x = (j/n)Lx,

j = 0, 1, . . . , n. Therefore, f and g can be determined from a single sensor located

at s provided that s is not in the dense subset B = Lx(Q) ∩ D of the domain, where

Lx(Q) is the set of rational multiples of Lx. Informally, we can regard B as the set

of “bad” locations for sensor placement.

Even though a solution can be reconstructed from a sensor located at s0 /∈ B, for

every ϵ > 0 there are infinitely many other locations s in an ϵ neighborhood of s0

from which a sensor at s cannot be used to reconstruct the solution. Although B has

Lebesgue measure zero, the placement of the sensor is sensitive. Furthermore, this

result can be extended to d dimensions by considering the zeros of the eigenfunctions

ϕi in the domain D =
∏d

k=1[ 0, Lk].

2.3.5 Truncation Error and Bounded Frequency Range

The above discussion shows that it is not practical to recover all possible frequen-

cies from a given set of sensors: the relevant eigenvalues may have arbitrarily large
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multiplicity, and arbitrarily small perturbations in sensor location can result in un-

recoverable frequencies. In practice, however, one is interested only in frequencies in

some bounded range [ωmin, ωmax]; that is, the solution has either a bounded spatial

frequency or a bounded temporal frequency. In the case of (2.5) with a d-dimensional

rectangular domain D, the bounded frequency range yields only finitely many eigen-

functions and eigenvalues, and the solution (2.12) reduces to a finite sum. Hence

there is a maximum multiplicity M of the set of relevant eigenvalues, and the set B

of bad sensor locations is no longer dense. However, B may still contain many points,

because an eigenfunction ϕn has n− 1 zeros on the interior of the domain in the one

dimensional case and infinitely many zeros in higher dimensions. Sensor placement

strategies should avoid locations s where ϕn(s) is close to 0.

In the previous sections, the full series expansion of the solution to the wave

equation is used, which involves infinitely many terms. In the simulations, the solution

series expansion is truncated. We now discuss the error induced by this truncation.

If the initial conditions f and g are in L2(D), then by the Parseval’s identity, the

sequences (f̂j) and (ĝj) are in ℓ2, i.e.,

∑
j

|f̂j|2 <∞,
∑
j

|ĝj|2 <∞ (2.38)

and so we are guaranteed that the truncation error tends to 0. The existence of a

solution is guaranteed if f ∈ H1
0 (D). If the initial conditions are in a Gevrey class,

then the Fourier coefficients tend to 0 exponentially fast. In fact, for any initial

conditions in a Gevrey class, the solution is guaranteed to belong to that Gevrey

class for all t > 0 [28].
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2.3.6 Analytical Estimate of Reconstruction Error

So far, we have assumed that parameters of the problem (2.1) are known exactly

and that sensors can observe for arbitrarily long times. Now suppose that the sensors

can observe only for a finite time τ , and that the lengths of the sides of the rectangular

domain are L̃i instead of Li. The actual eigenvalues are λ̃i instead of λi. Assuming

that |L̃i − Li| is sufficiently small so that λ̃i ̸= λj for i ̸= j, then

lim
τ→∞

1

τ

∫ τ

0

cos
(
c
√
λi t
)
cos

(
c

√
λ̃i t

)
dt = 0, (2.39)

which implies that αi = 0 for all i, and the solution cannot be reconstructed from an

infinite time series of sensor data using the relations in Eqs. (2.17)–(2.20). Instead,

let us consider the functions

αi(τ) =
1

τ

∫ τ

0

Bs(t) cos

(
c

√
λ̃i t

)
dt (2.40)

βi(τ) =
1

τ

∫ τ

0

Bs(t) sin

(
c

√
λ̃i t

)
dt (2.41)

and choose τ to be p complete periods of the frequency cλ̃
1/2
i for each i, i.e., τ =

p(2π)/cλ̃
1/2
i . If the frequency range of interest is [ωmin, ωmax], then the observed

sensor time series may be written as the finite sum

Bs(t) =
∑
i∈Λ

Ai(t)ϕi(s), (2.42)

where Λ is the set of relevant eigenfunction indices and Ai(t) is defined by (2.13).

The difference in the approximate Fourier coefficient f̃i and the “exact” one f̂i is

determined from the relation

2

ϕi(s)
αi(τ)− f̂i = (2f̂iEii − f̂i) +

∑
j∈Λ,i ̸=j

2
ϕj(s)

ϕi(s)
f̂jEij. (2.43)
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where Eij and Eii are given by Eqs. (2.45)–(2.46), below. The difference between the

approximate (ũ) and exact (u) reconstructed time series at the point x0 is

ũ(x0, t)− u(x0, t) =
∑
i∈Λ

[ 2

ϕ̃i(s)
αi(τ)ϕ̃i(x0) cos

(
c

√
λ̃i t

)
− f̂iϕi(x0) cos

(
c
√
λi t
) ]
. (2.44)

For further analysis, we consider the rectangular domain D = [ 0, L1] × [ 0, L2]. Let

ρk = L̃k/Lk, k = 1, 2 and let i be the multi-index i = (mi, ni). We interchange the

order of integration and (finite) summation in αj(τ) and βj(τ) and expand each term

in the sum as a Taylor series in (ρ1, ρ2) about (1, 1) to obtain

Eij =
1

τ

∫ τ

0

cos

(
c

√
λ̃i t

)
cos
(
c
√
λj t
)
dt =

−
√
λiλj

pπ(λi − λj)
sin

(
πp

√
λj
λi

)
cos

(
πp

√
λj
λi

)

+O

(
L̃1 − L1

L1

)
+O

(
L̃2 − L2

L2

)
(2.45)

when i ̸= j and

Eii =
1

τ

∫ τ

0

cos

(
c

√
λ̃i t

)
cos
(
c
√
λi t
)
dt =

1

2
+

n2
1L

2
2

4(m2
1L

2
1 + n2

1L
2
2)

· L̃1 − L1

L1

+
m2

1L
2
1

4(m2
1L

2
1 + n2

1L
2
2)

· L̃2 − L2

L2

+H.O.T. (2.46)

when i = j. (Here H.O.T. stands for higher-order terms.) This elementary calculation

shows that the reconstruction error approaches 0 only if p → ∞, L̃1 → L1 and

L̃2 → L2. To first order, the difference between the “true” and computed Fourier

coefficient for each i is proportional to the relative errors in the dimensions of the

domain and inversely proportional to the observing time:

f̃i − f̂i = O
(
1

p

)
+O

(
L̃1 − L1

L1

)
+O

(
L̃2 − L2

L2

)
. (2.47)

Higher-order Taylor series terms become too large to display and interpret.
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2.3.7 Error Decay Rate

Suppose we have a network of n noisy sensors at locations s1, . . . , sn. We now

derive result (3): If the time series from each sensor is contaminated with Gaussian

noise, then the error in the reconstructed solution decreases as O(n−1/2). Suppose that

the time series from the kth sensor is Bk(t) = µk(t) + ϵk(t), where µk(t) = u(sk, t)

is the “true” signal and ϵk(t) is Gaussian white noise. The series coefficients, αk
j , for

the kth sensor are given by (cf. Eqs. (2.17)–(2.20))

αk
j =

∑
i∈Iλj

ϕi(sk)
f̂i
2
+ Fαk

j

+ lim
τ→∞

1

τ

∫ τ

0

ϵk(t) cos
(
c
√
λj t
)
dt︸ ︷︷ ︸

ϵkj

, (2.48)

which for n sensors yields the linear system

2


α1
j − Fα1

j
− ϵ1j

...

αn
j − Fαn

j
− ϵnj

 =


ϕi1(s1) · · ·ϕimj

(s1)

...

ϕi1(sn) · · ·ϕimj
(sn)



f̂i1
...

f̂imj

 , (2.49)

where mj is the multiplicity of the eigenvalue λj. (We assume throughout that the

number of sensors, n, is at least as large as the largest multiplicity of any relevant

eigenvalue.) The system (2.49) may be written more succinctly as

α̃J = ΦJ f̂J where α̃J = αJ − 2ϵJ . (2.50)

In practice, each sensor time series is discrete and finite, as are the sampled noise

terms. We assume that ϵJ is distributed as Nn(0, σ
2I) for some σ > 0. The sys-

tem (2.49) is overdetermined when n > mj; standard least-squares theory implies

that the best linear unbiased estimate f̃J of fJ and its associated variance are, re-
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spectively,

f̃J = (ΦT
JΦJ)

−1ΦT
J α̃J (2.51)

σ2
J = E[(f̃J − fJ)(f̃J − fJ)

T | ΦJ ] = (ΦT
JΦJ)

−1σ2. (2.52)

We illustrate the case of approximating Fourier coefficients from n sensors with normal

data. If the sensor data [ϕi1(sk) · · ·ϕimj
(sk)] are distributed as N (0,Σ), then

(ΦT
JΦJ)

−1 ∼ W−1
mj

(Σ−1, n) (2.53)

where W−1 denotes the inverse Wishart distribution, and the law of iterated expec-

tation implies that the covariance of the estimator is

E
[
E[(f̃J − fJ)(f̃J − fJ)

T | ΦJ ]
]
=

Σ−1σ2

n−mj − 1
, (2.54)

which is O(n−1).

As a numerical illustration, we repeat the simulation discussed in the first example

(cf. Figure 2.1) with the initial condition (2.24). The first, second, and third sensors

are located at (1.90, 0.66), (0.97, 0.96), and (1.68, 0.66), and τ is chosen such that

ωminτ = 500 are used for reconstruction

B̃sk(t) = Bsk(t) + ϵk(t), k = 1, . . . , n (2.55)

on the domain D = [ 0, π] × [ 0, 1]. The Gaussian noise is ϵk(t) ∼ N (0, 2.02) where

ϵk(s) and ϵℓ(t) are independent if k ̸= ℓ or s ̸= t and Bsk(t) is the noiseless time

series. Figure 2.1(a) shows the exact initial condition (2.24), and 2.1(b) shows its

reconstruction using one noiseless sensor. Figures 2.5(a)–(b) show the effect of the

noise using one and three noisy sensors, respectively, using Eq. (2.51). The panels in

Figure 2.6 show time series reconstructions at representative locations in the domain

with one and five noisy sensors, respectively. Linear regression on the numerical data
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Figure 2.5: Reconstructions of the initial condition, Eq. (2.24), on the domain
D = [ 0, π]× [ 0, 1] as in Figure 2.1. (a) The effect of Gaussian noise ϵ(t) ∼ N (0, 2.02)
as in Eq. (2.55) on the reconstruction using one noisy sensor and (b) three noisy
sensors using the least squares solution from Eq. (2.51). The relative errors (2.27) are
(a) 2.90 and (b) 0.25. In the presence of noise, the solution can be well approximated
only with time series from multiple sensors.

shows that the relative error in the L2(D) norm of the initial condition decreases as

O(n−0.4963) for n sensors, in good agreement with the theory, as shown in Figure 2.7.

In Figure 2.8(a), the L2(D) reconstruction error increases roughly linearly with the

noise level σ. The error using one sensor is approximately 10 times higher than with

10 sensors and relative reconstruction error stays below 1.0 using 10 sensors for noise

as high as σ = 10. In Figure 2.8(b), the error decreases sharply with an increasing

number of periods p = τωmin of each frequency used in reconstruction.

When the eigenfunctions are sines and cosines, the Nyquist sampling theorem

provides necessary conditions under which Fourier coefficients can be estimated from

time series data: the sampling rate must be at least twice as fast as the highest relevant

frequency. Analogous criteria are expected to apply for more general eigenfunctions,

but we do not consider this question in further detail here.
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Figure 2.6: Reconstruction of wave equation time series (at a randomly chosen spa-
tial location) from noisy sensors using (a) one sensor and (b) five sensors, where the
noise in each sensor is ϵ(t) ∼ N (0, 2.02) as in Eq. (2.55). The solution is poorly
approximated using data from one sensor. Time series from additional sensors signif-
icantly improve the accuracy of reconstruction.

5 10 15 20 25
number of sensors

0.15

0.2

0.25

re
lat

iv
e L

2
 e

rr
or

Figure 2.7: The blue curve shows the relative error (2.27), as a function of the
number of randomly placed sensors n on a log-log scale, in the domain D = [ 0, π]×
[ 0, 1]. The red dashed line has a slope of −0.5, which is the theoretically predicted
value.
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Figure 2.8: The relative error (2.27) with respect to (a) noise level σ and (b) as a
function of the nondimensional parameter p = ωminτ where τ is observing time interval
used in equation (2.40) for the problem (2.1)–(2.4) as in Figure 2.1. Reconstruction
is obtained via Eq. (2.51).

2.4 Discussion and Future Work

We have explored many possibilities for full reconstruction of wave phenomena

from fixed-location sensors and shown that a large class of problems are recon-

structible from a single sensor, although the results are sensitive to the location of the

sensor in many cases. Multiple sensors provide more robust results. Often, only a few

sensors are needed for high-quality reconstructions: in the case of a square domain (as

in Figure 2.2) and the case of noisy sensor data (in Figure 2.1), three to five sensors

provide satisfactory results. The nodes of the eigenfunctions should be taken into

account in placement strategies for sensor networks. Our approach can be extended

to vectorial sensors for electric and magnetic fields using Maxwell’s equations and to

non-rectangular domains. In future work, we will consider this extension as well as

the effect of small nonlinearities.
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Chapter 3

OPTIMAL OBSERVATION TIME FOR SOLUTIONS TO THE STOCHASTIC

MAXWELL VECTOR WAVE EQUATION

3.1 Introduction

There has been a long history in applied dynamics of using time series embedding

methods to reconstruct a representation of the chaotic attractor of a dissipative pro-

cess, from which dynamical quantities like dimension and Lyapunov exponents can be

estimated, even in cases where the governing equations are not known exactly [1, 33].

Some recent efforts have focused on identifying the governing equations from time

series data including the high noise regime [39, 30, 14].

In this dissertation, we take a different point of view: suppose that we know

the dynamical equations (e.g., from physical laws) and are given a time series of

measurements from a sensor at a fixed location in space. How can we exploit the

dynamics governed by physical laws to analyze the signal? If noise is present, then

how long should measurements be taken to estimate dynamical parameters of interest,

and how accurate are the estimates? Can measurements at one location predict what

would be observed at another location?

Our focus here is on the Maxwell vector wave equation, where the electric field is

driven by a stochastic current density whose variance increases in time. One impor-

tant example of such a phenomenon is in the ionospheric electron layers (the Karman

D/E/F layers) around sunrise, when increasing solar radiation excites growing noisy

electric currents in the ionized environment [4, 16, 34]. (Near-earth satellites orbit in

the ionosphere, and so-called space weather affects their operations.) In such a case,
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we might know something about the current density, such as the average current or

the level of noise. In this chapter, we consider the problem of taking measurements at

a particular point for a limited interval of time and ask what information about the

electric field can be obtained from the observations. To be successful, of course, the

problem must be well posed. Indeed, in diffusive processes such as the heat equation

or the wave equation with a large damping coefficient, the dissipation leads to an ir-

reversible loss of information. We thus provide a detailed analysis of this problem for

a general class of wave-like processes without damping, of which the Maxwell vector

wave equation is our primary example.

The Maxwell vector wave equation admits a formal solution consisting of a linear

combination of eigenfunctions with time-dependent coefficients. From general PDE

theory, any time series of the electric field obtained at a given location in space is an

almost periodic function. In a given application, one is interested only in a bounded

range of frequencies within the electromagnetic spectrum (bandlimited signals), and

the dominant frequencies and corresponding eigenfunctions are finite in number. Now

consider a time series of measurements of the electric field at a fixed location in space.

One goal is to determine the time-dependent coefficients of the eigenfunctions from

the data. (In the simplest case, the eigenfunctions are sines and cosines, and the

coefficients can be obtained from a Fourier transform of the time series.) Then, since

the solution ansatz yields the dynamics at every point, sensor measurements at one

location can be used to predict the measurements at another location. In other words,

local data yields global information; we refer to this process as “reconstructing” the

electric field from the data [5]. This result also implies that the dynamics can be

exploited to provide the theoretical basis for an error detection and correction scheme

for a network of sensors.

Another goal, since the time series is noisy, is to estimate the mean squared error
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in the coefficients computed from the data and, therefore, to quantify the quality of

the global reconstruction of the electric field. We show that the mean squared error

can be decomposed as

MSE(τ) = [BIAS(τ)]2 +VAR(τ) ∼ [A/τ ]2 +Bτ, (3.1)

where τ is the duration of the sensor time series. Because the bias decreases with

time, but the variance increases with time, there is an “optimal” observing time that

minimizes the overall error. This so-called bias-variance tradeoff has been studied in

the context of signal processing [49], but our analysis traces its origin directly back

to Maxwell’s equations and the stochastic current density.

Our approach is general insofar as it does not require a homogeneous medium or

particular boundary conditions, as long as the eigenfunctions are orthogonal in an

appropriate sense (described in the next section). We also emphasize that we are not

considering an equilibrium system in which added energy is dissipated.

To our knowledge, our results are new to the field of dynamical time series analysis

in the following ways. First, we consider vectorial time series and vectorial solutions to

a hyperbolic partial differential equation. Second, if we know the dynamical equations

from physical or other considerations, then in some cases we can exploit the dynamics

to obtain global information from local data. Finally, we show that a bias-variance

tradeoff exists when the dynamics are driven by a stochastic, variance-increasing

process. The focus of our investigation is on time series measurements taken at a fixed

spatial location; the question of how to handle a moving sensor will be addressed in

the next chapter.

This chapter is organized as follows. In section 3.2, we formally introduce our

problem and derive the solution to the stochastic Maxwell vector wave equation; in

section 3.3, we analyze the behavior of this solution. The main results on optimal ob-
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servation time are presented in section 3.4, where we derive a closed-form expression

for the MSE (3.1) in terms of bias and variance showing that the MSE can be min-

imized. In section 3.5, we present an algorithm to minimize the MSE using optimal

observation times and the use of the algorithm is illustrated with an example recon-

struction. Finally, in concluding remarks, we mention an application of our results

for sensor networks in section 3.6.

3.2 Problem Setup

Using sensor data to detect and reconstruct vectorial electromagnetic waves prop-

agating in an inhomogeneous medium is an important physical problem with many

applications. Data assimilation techniques have been developed to incorporate sen-

sor data in modeling the ionosphere [16, 34] and techniques have been developed

to account for ionospheric inhomogeneities in synthetic aperture imaging [25]. In

[32], Kak et al. found sensor placement conditions to optimize CubeSat sensor net-

works. Often, sensor data is noisy and careful treatment is required to obtain the

noiseless signal. Dating back to classical work [51], noise in physical problems has

been treated rigorously in terms of stochastic processes. More recently, stochastic

noise has been extended to PDEs via Hilbert space theory [13, 21]. In particular,

stochastic wave-like phenomena have been studied in the context of the oscillator

ODE [27, 26, 50]. Stochastic processes can appear additively or multiplicatively in

these differential equations, meaning that either the source term, the frequency, or

the damping term is stochastic. Maxwell’s equations have been studied under the as-

sumption of stochastic current density [22, 36] or stochastic electric permittivity [31].

Inverse source problems for stochastic wave equations have been an active area of

research [20]. In these problems, properties of the source of the noise are determined

from final-time data.
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We consider additive noise in the form of a stochastic forcing term that can be

decomposed into a sum of the ensemble average forcing and a stochastic process

described in terms of a weighted cylindrical Wiener process (which is an infinite

dimensional generalization of a Wiener process and represents noise in space and

time). We derive our governing equation directly from Maxwell’s equations with

variable permittivity and permeability instead of the wave equation with variable

wave speed, because phenomena such as depolarization are absent in the scalar wave

equation formulation [48]. In this chapter, we assume that the variable permittivity

and permeability are known a priori, e.g., from standard profiles (see, for example,

[34] and references therein); they are not sources of uncertainty in the problem that

we consider here.

The problem we tackle is how to construct a global approximation of the ensemble

average (“noiseless”) electric field using time series measurements Rs(t) of the electric

field obtained from a sensor at a fixed spatial location s. The ensemble average field

takes the form

⟨E⟩(x, t) =
∑
n

(an cos(ωnt) + bn sin(ωnt))Φn(x) (3.2)

where ⟨·⟩ denotes the ensemble average. The functions Φn(x) can be regarded as

“features” of the problem. For the Maxwell vector wave equation, these features are

eigenfunctions of a weighted curl squared operator (described below), but the only

requirement of the analysis presented in this chapter is that the features be orthogo-

nal. Thus, different operators and boundary conditions can be substituted, provided

that the resulting eigenfunctions are orthogonal. The features framework is quite

general and is related to work in many areas such as machine learning, compressed

sensing, and randomized dynamic mode decomposition, e.g., [29, 17]. In our case,

the eigenfunction formulation provides a way to represent wave-like phenomena in a

32



variety of domains and media.

To construct the ensemble average electric field, the frequencies ωn (and other fre-

quency information such as the eigenfunctions Φn(x) and corresponding eigenvalues

λn) and the amplitudes an and bn need to be calculated from the sensor data. This

chapter focuses on the latter problem of approximating aj and bj once the eigenfunc-

tions and eigenvalues have already been computed. The frequency information can

be obtained in several ways, such as extracting the peaks of the amplitude spectrum

of the time series Rs(t) or computing the eigenfunctions and eigenvalues from a given

domain. In general, multiple sensors may be necessary to construct an approximation

of ⟨E⟩, which we discuss in section 3.4.

The noisy electric field E(x, t) is the solution to the stochastic Maxwell vector

wave equation

ϵ(x)
∂2E

∂t2
+∇×

(
[µ(x)]−1∇× E

)
= −∂J

∂t
(3.3)

∂J

∂t
:=

〈
∂J

∂t

〉
(x, t) +

√
Q
∂W
∂t

(3.4)

where J denotes the current density and
√
Q∂W

∂t
is the stochastic term described

below. The goal is to use the sensor time series data Rs(t) := E(s, t) at location

s to reconstruct the ensemble average sensor time series at any other location s̃

or, equivalently, to reconstruct the solution to the (deterministic) ensemble average

equation

ϵ(x)
∂2⟨E⟩
∂t2

+∇×
(
[µ(x)]−1∇× ⟨E⟩

)
= −

〈
∂J

∂t

〉
(x, t). (3.5)

To derive (3.5) directly from Maxwell’s equations (in SI units), first take the differ-

ential form of Faraday’s law of induction and Ampére’s law:

∇× ⟨E⟩ = −∂⟨B⟩
∂t

(3.6)

∇× ⟨H⟩ = ⟨J⟩+ ∂⟨D⟩
∂t

(3.7)

33



with the constitutive relations ⟨D⟩ = ϵ(x)⟨E⟩ and ⟨H⟩ = [µ(x)]−1⟨B⟩, and differenti-

ate Ampére’s law with respect to t:

∇×
(
[µ(x)]−1∂⟨B⟩

∂t

)
=

〈
∂J

∂t

〉
+ ϵ(x)

∂2⟨E⟩
∂t2

. (3.8)

Then, Faraday’s law implies

−∇×
(
[µ(x)]−1∇× ⟨E⟩

)
=

〈
∂J

∂t

〉
+ ϵ(x)

∂2⟨E⟩
∂t2

, (3.9)

and rearranging the terms, we obtain the Maxwell vector wave equation (3.5). The

spatial domain is Γ in R3 and the initial conditions are

E(x, 0) = f(x), x ∈ Γ (3.10)

∂E

∂t
(x, 0) = g(x), x ∈ Γ. (3.11)

To find the solution analytically, we consider the associated eigenvalue problem

∇×
(
[µ(x)]−1∇×Φ

)
− λϵ(x)Φ = 0. (3.12)

Since the curl operator is symmetric, the eigenfunctions form an orthonormal set in

L2(Γ;R3) with weight ϵ(x) up to suitable boundary conditions. We consider band

limited electromagnetic signals in this model; therefore, we use only the set of eigen-

functions {Φn} corresponding to positive eigenvalues {λn}, where the frequencies

ωn :=
√
λn are in the range [ωmin, ωmax] (in particular, we do not consider λ = 0

corresponding to eigenfunctions that are gradients of scalar functions, Φ = ∇f). We

can write solutions in the form

E(x, t) =
∑
n

An(t)Φn(x). (3.13)

The operator Q is a self-adjoint, trace-class operator defined by QΦn = σ2
nΦn with∑

n∈N σ
2
n <∞. We define a weighted Wiener process

√
QW in terms of the operator

34



Q and the cylindrical Wiener process W giving

√
Q
∂W
∂t

=
∑
n∈N

σn
∂Wn

∂t
ϵ(x)Φn (3.14)

where {Wn(t)} are independent Wiener processes in time and are measured in units

sec1/2, because the variance of a Wiener process scales linearly with time. The co-

efficients σn are measured in units NC−1sec−3/2. All the results that we present are

scaled appropriately so that the relevant quantities, such as the electric field, are of

order 1. For simplicity of notation, we define the forcing term F := ∂J/∂t. Write the

forcing ensemble average using the basis {Φn}:

⟨F⟩(x, t) =
∑
n∈N

F̂n(t)ϵ(x)Φn(x) (3.15)

F̂n(t) =

∫
Γ

ϵ(x)(⟨F⟩(x, t)/ϵ(x)) ·Φn(x) d
3x. (3.16)

Then using (3.3) and the orthonormality of the basis {Φn}, we obtain the sequence

of ODEs

A′′
n + λnAn = F̂n + σn

∂Wn

∂t
. (3.17)

To solve each ODE, rewrite it as a first-order system

A′
n,1 = An,2 (3.18)

A′
n,2 = −λnAn,1 + F̂n + σn

∂Wn

∂t
. (3.19)

Multiplying by dt, we obtain the standard representation

dAn(t) =MnAn(t)dt+ F̂n(t)dt+KndWn, (3.20)

where

Mn =

 0 1

−λn 0

 , F̂n(t) =

 0

F̂n(t)

 ,Kn =

 0

σn

 ,An =

An,1

An,2

 . (3.21)
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In the classical deterministic case, (3.20) is multiplied by e−Mnt:

e−MntdAn(t)− e−MntMnAn(t)dt = e−MntF̂n(t)dt+ e−MntKndWn (3.22)

and we rewrite the left hand side as d(e−MntAn(t)). To extend this notion to our

stochastic case, we use Itô’s formula. Consider the stochastic process

Y (t) = g(t, An,1, An,2) = e−Mnt

An,1

An,2

 . (3.23)

Itô’s formula gives

dY (t) = −Mne
−MntAndt+ e−MntdAn. (3.24)

Substitute (3.24) into (3.22):

d(e−MntAn(t)) = e−MntF̂n(t)dt+ e−MntKndWn(t) (3.25)

which gives

e−MntAn(t)− e−Mn0An(0) =

∫ t

0

e−MnrF̂n(r) dr +

∫ t

0

e−MnrKndWn(r). (3.26)

Using the stochastic integration by parts formula:∫ t

0

f(r)dWn(r) = f(t)Wn −
∫ t

0

Wn(r)df(r) (3.27)

with

f(r) = e−MnrKn and df(r) = −Mne
−MnrKndr, (3.28)

the stochastic solution is

An(t) = eMnt

[
An(0) +

∫ t

0

(
e−MnrF̂n(r) +Wn(r)Mne

−MnrKn

)
dr

]
(3.29)
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and the solution to (3.3) is

E(x, t) =
∑
n∈N

An(t)Φn(x) (3.30)

An(t) = f̂n cos(
√
λnt) +

ĝn√
λn

sin(
√
λnt) (3.31)

+

∫ t

0

1√
λn

sin(
√
λn(t− r))F̂n(r) + cos(

√
λn(t− r))σnWn(r) dr.

We use the Itô integral version of An(t) in second-moment calculations:

An(t) = f̂n cos(
√
λnt) +

ĝn√
λn

sin(
√
λnt) (3.32)

+

∫ t

0

1√
λn

sin(
√
λn(t− r))F̂n(r) dr +

∫ t

0

σn√
λn

sin(
√
λn(t− r)) dWn(r).

3.3 Analysis of the Stochastic Model

We now compute statistics of the solution and analyze its behavior. Since expec-

tation E is a linear operator, the mean solution is the deterministic solution:

E [E(x, t)] =
∑
n∈N

⟨An(t)⟩Φn(x) (3.33)

⟨An(t)⟩ = f̂n cos(
√
λnt) +

ĝn√
λn

sin(
√
λnt) +

∫ t

0

1√
λn

sin(
√
λn(t− r))F̂n(r) dr.

(3.34)
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We compute the covariance of the fields:

COV (E(x1, t1),E(x2, t2)) =
∑
n∈N

∑
m∈N

Φn(x1)Φ
T
m(x2) (3.35)

× E
[ ∫ t1

0

σn√
λn

sin(
√
λn(t1 − r)) dWn(r)

×
∫ t2

0

σm√
λm

sin(
√
λm(t2 − r)) dWm(r)

]
=
∑
n∈N

Φn(x1)Φ
T
n (x2)

σ2
n

λn

×
∫ t1∧t2

0

sin(
√
λn(t1 − r)) sin(

√
λn(t2 − r)) dr

=
∑
n∈N

Φn(x1)Φ
T
n (x2)

σ2
n

4λ
3/2
n

(
2
√
λnt1 ∧ t2 cos(

√
λn(t2 − t1))

− sin(
√
λn(2t1 ∧ t2 − t2 − t1))− sin(

√
λn(t1 + t2))

)
using the identity

E
[∫ t1

0

ϕ(r1) dWj(r1) ·
∫ t2

0

η(r2) dWj(r2)

]
=

∫ t1∧t2

0

ϕ(r)η(r) dr, (3.36)

where a ∧ b is the minimum of a and b. When x1 = x2 and t1 = t2 we obtain the

covariance of the components of the electric field:

COV [E(x, t)] =
∑
n∈N

Φn(x)Φ
T
n (x)

σ2
n

4λ
3/2
n

(
2
√
λnt− sin(2

√
λnt)

)
(3.37)

=
∑
n∈N

Φn(x)Φ
T
n (x)VAR[An(t)]

where

VAR[An(t)] =
σ2
n

4λ
3/2
n

(
2
√
λnt− sin(2

√
λnt)

)
. (3.38)

The variance of An(t) is displayed in Figure 3.3. From (3.37) we see that the variance

of the electric field grows linearly with time. To quantify the noise, we calculate the

signal-to-noise ratio. For a time series written as R(t) = D(t) + S(t) where D(t) is
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Figure 3.1: Variance of An(t) (3.38) where n corresponds to the eigenvalue λn = 4
and σn = 0.5. The simulated variance is in red and the exact variance obtained from
(3.38) is in blue.

the deterministic signal and S(t) is the stochastic noise, we define the signal-to-noise

ratio (SNR) to be

SNR = 10 log10 (PD/PS) (3.39)

where

PD(τ) =
1

τ

∫ τ

0

D2(t) dt (3.40)

PS(τ) =
1

τ

∫ τ

0

E[S2(t)] dt. (3.41)

Suppose we observe the one-frequency case:

E(x, t) = An(t)Φn(x), for some n ∈ N (3.42)

from a sensor at a fixed location s ∈ Γ and obtain the time series Rs(t). Further

suppose ⟨F⟩ = g = 0. The signal of Rs(t) is averaged over p = k2π periods (τ =
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k2π/
√
λn) to obtain the power of the signal and noise for the ith component:

PD = ϕ2
n,i(s)

f̂ 2
n

2
(3.43)

PS =
1

τ

∫ τ

0

ϕ2
n,i(s)

σ2
n

4λ
3/2
n

(
2
√
λnt− sin(2

√
λnt)

)
dt (3.44)

= ϕ2
n,i(s)

kπσ2
n

2λ
3/2
n

.

The corresponding SNR (in dB) is

SNR = 10 log10

(
λ
3/2
n f̂ 2

n

kπσ2
n

)
. (3.45)

Thus, we see from (3.45) that the noise eventually dominates the signal in the sensor

time series as k increases; in practice, however, this will happen only slowly if σn is

small. For the more general case of N frequencies, we can approximate for large τ :

PD =
∑
n

ϕ2
n,i(s)

f̂ 2
n

2
(3.46)

PS =
∑
n

1

τ

∫ τ

0

ϕ2
n,i(s)

σ2
n

4λ
3/2
n

(
2
√
λnt− sin(2

√
λnt)

)
dt (3.47)

=
∑
n

ϕ2
n,i(s)

σ2
n

4λ
3/2
n

1

τ

(√
λnτ

2 +
1

2
√
λn

cos(2
√
λnτ)−

1

2
√
λn

)
≈
∑
n

ϕ2
n,i(s)

σ2
n

4λn
τ.

The approximate signal-to-noise ratio is

SNR = 10 log10

( ∑
n ϕ

2
n,i(s)f̂

2
n∑

n ϕ
2
n,i(s)σ

2
n/2λn

)
− 10 log10 (τ) (3.48)

so SNR → ∞ as τ → 0.

Lastly, we observe that the expected energy stored in the electric field increases

linearly with time:

U =

∫
Γ

ϵ(x)

2
E [E · E] d3x (3.49)

=
1

2

[∑
n∈N

[⟨An(t)⟩]2 +
σ2
n

4λ
3/2
n

(
2
√
λnt− sin(2

√
λnt)

)]
.
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3.4 Analysis of Global Approximations

To construct an approximation of the ith component of the ensemble average

electric field at a spatial location s̃ using the time series Rs(t) of the electric field at

spatial location s, we first construct the ensemble average field at s:

⟨Rs,i(t)⟩ =
∑
n

cn cos(ωnt) + dn sin(ωnt) (3.50)

and then use the ansatz (3.2) to obtain the time series

⟨Rs̃,i(t)⟩ =
∑
n

Φn,i(̃s)

Φn,i(s)
cn cos(ωnt) +

Φn,i(̃s)

Φn,i(s)
dn sin(ωnt). (3.51)

To accomplish the first step, the dominant frequencies ωn are obtained from the peaks

of the amplitude spectrum of the time series Rs(t). Then, the coefficients cn and dn

are approximated using the frequencies ωn. Finally, the frequencies ωn are used to

identify the corresponding eigenfunctions Φn(x) and eigenvalues λn. The frequencies

can then be written as ωn =
√
λn and the coefficients can be written as cn = f̂nΦn,i(s)

and dn = ĝnΦn,i(s)/
√
λn. In general, identifying the eigenfunctionsΦn(x) may require

multiple sensors at different locations, which we briefly discuss in section 3.4.1.

In the remainder of this section, we fix an index j and focus on how to determine

the particular coefficients f̂j and ĝj associated with the frequency
√
λj from the

sensor time series data. In section 3.4.1, we analyze the estimates of f̂j and ĝj and the

associated mean squared errors (MSE) which can be expressed as sums of the squared

bias and variance. The MSE of a coefficient estimate is a function of the total length

τ of the time series, and we show that it can be minimized by deriving closed-form

expressions for the dominant terms. Finally, in section 3.4.2, we simulate the MSE of

the coefficient f̂j for the case of a two-frequency electric field to show how the MSE

depends on the relevant parameters of the problem and how the non-dominant terms

in the MSE affect the estimation. Throughout this section, j represents the index
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of the coefficients associated with the frequency of interest, n is a summation index,

and k is the index of another frequency in the series. In section 3.5, we consider the

problem of estimating all of the coefficients, not just the coefficients f̂j and ĝj.

3.4.1 Coefficient Estimation and MSE

First we describe how to estimate the coefficients f̂j and ĝj in the deterministic

case. Suppose that we observe the (deterministic) vector time series R0
s(t) at some

fixed location s in the domain Γ over the time interval 0 ≤ t ≤ τ . To obtain the

coefficients f̂j and ĝj associated with frequency
√
λj, the classical theory yields the

vectors

αj(τ) :=
1

τ

∫ τ

0

R0
s(t) cos(

√
λj t) dt (3.52)

=
∑
n

Φn(s)

(
f̂nDcc(τ ;

√
λn,
√
λj) +

ĝn√
λn
Dsc(τ ;

√
λn,
√
λj)

)
βj(τ) :=

1

τ

∫ τ

0

R0
s(t) sin(

√
λj t) dt (3.53)

=
∑
n

Φn(s)

(
f̂nDcs(τ ;

√
λn,
√
λj) +

ĝn√
λn
Dss(τ ;

√
λn,
√
λj)

)
where

Dcc(τ ;
√
λn,
√
λj) :=

1

τ

∫ τ

0

cos(
√
λn t) cos(

√
λj t) dt. (3.54)

The terms Dsc, Dcs, and Dss are defined similarly by replacing cosine with sine. In

the special limit case where τ → ∞, we obtain

lim
τ→∞

αj(τ) =
∑

n∈Iλj
Φn(s)

f̂n
2

(3.55)

lim
τ→∞

βj(τ) =
∑

n∈Iλj
Φn(s)

ĝn

2
√

λj
. (3.56)

The number of terms in each sum is the multiplicity of the eigenvalue λj of interest,

i.e., Iλj
= {n : λn = λj}. We can solve for the coefficients f̂n and ĝn in each system
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using a single sensor time series R0
s(t) only if every eigenvalue has multiplicity 1. We

thus obtain a result similar to the case of the wave equation as in [5]: the number of

sensors must be at least as large as the highest multiplicity of any eigenvalue. When

only one sensor is used, we also require Φn(s) ̸= 0 for every n.

In the analysis that follows, we consider the case where all eigenvalues have mul-

tiplicity 1, which occurs when all waves in the field E propagate in one direction. In

the general case where eigenvalues have higher multiplicity, multiple sensors can be

used together to construct the field (see [5]). Assuming that the sensor observes for

a finite time τ , the ith component of the sensor time series can be used to obtain the

approximation

f̂j ≈
αj,i(τ)

Φj,i(s)Dcc(τ ;
√
λj,
√
λj)

. (3.57)

Now suppose that the electric field E is the solution of the stochastic Maxwell

vector wave equation, (3.3)–(3.4) and we observe the time series Rs(t) = E(s, t) at

location s. In this case, the relations (3.55) and (3.56) represent stochastic processes,

and the mean squared error (MSE) in the coefficient estimator (3.57) can be decom-

posed into bias and variance components:

MSE(τ ; j) := E

(f̂j − αj,i(τ)

Φj,i(s)Dcc(τ ;
√
λj,
√
λj)

)2
 = [BIAS(τ ; j)]2 +VAR(τ ; j).

(3.58)

To better understand how the error in our estimate of f̂j depends on the observation

time τ , we derive closed-form expressions for the bias and variance terms. The analysis

is similar for ĝj.
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Bias of the Estimated Coefficients

We first compute the bias. Since each An(t) is a superposition of the deterministic

solution ⟨An(t)⟩ and terms containing Wn(t), we need only to compute expected

values of the latter terms. Since E[Wn(t)] = 0 for all t,

E
[
Sc(τ ;

√
λn,
√
λj)
]
= 0 (3.59)

where

Sc(τ ;
√
λn,
√
λj) :=

1

τ

∫ τ

0

(∫ t

0

cos(
√
λn(t− r))Wn(r) dr

)
cos(

√
λj t) dt (3.60)

and Ss is defined similarly by replacing the last cosine with sine. Thus, the bias is

simply the difference between f̂j and the estimator in (3.57) in the deterministic case:

BIAS(τ ; j) =
∑
n̸=j

Φn,i(s)

Φj,i(s)

(
f̂n
Dcc(τ ;

√
λn,
√
λj)

Dcc(τ ;
√
λj,
√
λj)

+
ĝn√
λn

Dsc(τ ;
√
λn,
√
λj)

Dcc(τ ;
√
λj,
√
λj)

)
(3.61)

+
ĝj√
λj

Dsc(τ ;
√
λj,
√
λj)

Dcc(τ ;
√
λj,
√
λj)

.

The terms Dcc and Dsc can be easily computed explicitly. For
√
λn ̸=

√
λj,

Dcc(τ ;
√
λn,
√
λj) =

1

2

(
sin((

√
λn +

√
λj)τ)

(
√
λn +

√
λj)τ

+
sin((

√
λn −

√
λj)τ)

(
√
λn −

√
λj)τ

)
(3.62)

and

Dcc(τ ;
√
λj,
√
λj) =

1

2

(
sin(2

√
λjτ)

2
√
λjτ

+ 1

)
. (3.63)

Resonant Variance of the Estimated Coefficients

The calculation of the variance is more complex, so we focus on computing the dom-

inant term of the variance, which is the resonant variance that we define below. We

utilize simulations of the MSE to understand the behavior of the nonresonant variance
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terms in section 3.4.2. In general, the variance can be written as

VAR(τ ; j) = E

∑
n

(
σnΦn,i(s)

Φj,i(s)Dcc(τ ;
√
λj,
√
λj)

Sc(τ ;
√
λn,
√
λj)

)2
 . (3.64)

The resonant term of the variance is

VARres(τ ; j) := E

( σj

Dcc(τ ;
√
λj,
√
λj)

Sc(τ ;
√
λj,
√
λj)

)2
 (3.65)

which is the variance for the one-frequency case (3.42) and can, for that case, be

written as

VARres(τ ; j) = VAR(τ ; j) =
VAR[αj,i(τ)]

(Φj,i(s)Dcc(τ ;
√
λj,
√
λj))2

. (3.66)

We thus find the covariance matrix of αj(τ) in the one-frequency case (3.42). Observe

that

COV

[
1

τ

∫ τ

0

Rs(t) cos(
√
λj t) dt

]
(3.67)

= Φj(s)Φ
T
j (s)E

[(
1

τ

∫ τ

0

∫ t

0

σj√
λj

sin(
√
λj(t− r)) dWj(r) cos(

√
λj t) dt

)2]

= Φj(s)Φ
T
j (s)

σ2
j

λjτ 2

∫ τ

0

∫ τ

0

E

[(∫ t1

0

sin(
√
λj(t1 − r1)) cos(

√
λj t1) dWj(r1)

)

×
(∫ t2

0

sin(
√
λj(t2 − r2)) cos(

√
λj t2) dWj(r2)

)]
dt1dt2.

We now use the trigonometric difference formula for sine and the identity (3.36) to

split the variance into four terms:

σ2
j

λjτ 2

∫ τ

0

∫ τ

0

∫ t1∧t2

0

(
sin(

√
λjt1) cos(

√
λjr) cos(

√
λjt1) (3.68)

− cos(
√
λjt1) sin(

√
λjr) cos(

√
λjt1)

)
×
(
sin(

√
λjt2) cos(

√
λjr) cos(

√
λjt2)

− cos(
√
λjt2) sin(

√
λjr) cos(

√
λjt2)

)
dr dt1 dt2.
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We obtain the covariance of αj(τ):

COV[αj(τ)] = Φj(s)Φ
T
j (s)

σ2
j

192λ
3/2
j

(
8λ

1/2
j τ + 12 sin(2

√
λjτ) (3.69)

− 12λ
−1/2
j τ−1 + 3λ−1

j τ−2 sin(4
√
λjτ)

)
.

By a similar computation, we obtain the covariance of βj(τ):

COV[βj(τ)] = Φj(s)Φ
T
j (s)

σ2
j

192λ
3/2
j

(
8λ

1/2
j τ − 12 sin(2

√
λjτ) + 36λ

−1/2
j τ−1 (3.70)

+ 24λ
−1/2
j τ−1 cos(2

√
λjτ)− 3λ−1

j τ−2 sin(4
√
λjτ)− 24λ−1

j τ−2 sin(2
√
λjτ)

)
.

Using τ = p/
√
λj, the covariance can be written in terms of periods:

COV[αj(p)] = Φj(s)Φ
T
j (s)

σ2
j

192λ
3/2
j

(
8p+ 12 sin(2p)− 12p−1 + 3p−2 sin(4p)

)
(3.71)

COV[βj(p)] = Φj(s)Φ
T
j (s)

σ2
j

192λ
3/2
j

(
8p− 12 sin(2p) + 36p−1 + 24p−1 cos(2p)

− 3p−2 sin(4p)− 24p−2 sin(2p)

)
. (3.72)

Similar to the covariance of the electric field E itself, the covariances of αj(τ) and

βj(τ) grow as O(τ).

3.4.2 The Two-Frequency Case

We now analyze the MSE (3.58) for the simplest model that contains all of the

relevant terms: bias, resonant variance, and nonresonant variance. The bias and

resonant variance have closed-form expressions, and we simulate the nonresonant

variance. The electric field is given by

E(x, t) =
∑

n∈{j,k}

Φn(x)

(
f̂n cos(

√
λnt) +

∫ t

0

cos(
√
λn(t− r))σnWn(r) dr

)
(3.73)
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Figure 3.2: (a) Mean squared error (MSE) (3.74) versus observation time τ with
σk = 0 for the two-frequency case (3.73). The simulated MSE is in blue and the exact
closed-form MSE is in red. (b) The squared bias (3.61) and variance (3.64) terms of

coefficient f̂j whose sum is the MSE (3.74).

and the MSE of the estimate of f̂j in this case is

MSE(τ ; j) = [BIAS(τ ; j)]2 (3.74)

+ E

(σjSc(τ ;
√
λj,
√
λj)

Dcc(τ ;
√
λj,
√
λj)

)2

+

(
σkΦk,i(s)Sc(τ ;

√
λk,
√
λj)

Φj,i(s)Dcc(τ ;
√
λj,
√
λj)

)2
 .

The MSE (3.74) is dominated by the squared bias term for small τ since the squared

bias term is O(τ−2) and is dominated by the resonant variance term as τ becomes

large since the resonant variance term is O(τ). So, although the error may decrease

initially, it grows as O(τ) for large τ . Figure 3.2, which displays a graph of the MSE

(3.74) with σk = 0, confirms this behavior. In this graph, the error decays initially,

reaches a minimum, and then increases approximately linearly with τ . The optimal

observation time for the sensor to reconstruct f̂j is at this minimum.

To plot the MSE (3.74) with σk ̸= 0, the nonresonant variance term

Sc(τ ;
√
λk,
√
λj) must be simulated numerically. In Figures 3.3-3.4, the MSE is com-

puted with σk ̸= 0 for a range of values for the parameters ωk − ωj, σj, and σk. In
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Figure 3.3: MSE (3.74) versus observation time τ as a function of the coefficients
σj and σk corresponding to the frequency of interest ωj and a secondary frequency
ωk. (a) MSE for σj fixed at 0.5 and various choices of σk. (b) MSE for σk fixed at 0.5

and various choices of σj. The coefficients are f̂j = 1 and f̂k = −1.

(3.3), σk is varied between 0.1 and 1 with very little change in either the error func-

tion or the optimal observation time (plotted in purple). The results suggest that the

behavior of the reconstruction error in the two-frequency case is dominated by the

squared bias and resonant variance terms. Figure 3.4 displays a case where no recon-

struction can be obtained without significant error. In the deterministic case, when

ωj and ωk are close together, longer observation times are required to differentiate the

two signals. In the stochastic model, however, shorter observation times are required

to obtain quality reconstructions. As a result of these two conflicting requirements,

the reconstruction error may be large for all observation times as shown in Figure

3.4.

3.5 Construction of Global Approximations Using Optimal Observation Times

The optimal observation time for each Fourier coefficient can be obtained by

minimizing the MSE from the previous section; however, the MSE for the Fourier
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Figure 3.4: (a) MSE (3.74) versus observation time τ as a function of the difference
ωk−ωj between the frequency of interest ωj and a secondary frequency ωk. The circles
indicate the minimum MSE for each curve. (b) The MSE (3.74) is a sum of three
terms: squared bias, resonant variance, and nonresonant variance. The squared bias
(3.61) and resonant variance (3.65) versus observation time τ are displayed for the
case where ωk−ωj = 0.1, corresponding to the top blue curve in (a). The coefficients

are f̂j = 1, f̂k = −1 and the noise levels are σj = 0.5, σk = 0.5.

coefficient f̂j depends on all of the other Fourier coefficients, and so the coefficients

must be solved for iteratively using Algorithm 1. To illustrate the effectiveness of this

method, we simulate the noisy sensor time series

Rs(t) =
∑
n

Φn(s)f̂n cos(
√
λnt) +

∑
m

Φm(s)

∫ t

0

cos(
√
λm(t− r))σmWm(r) dr,

(3.75)

construct a global approximation of the ensemble average electric field

⟨E⟩(x, t) =
∑
n

Φn(x)f̂n cos(
√
λnt) (3.76)

using Algorithm 1, and compare this result to the global approximation obtained

using a longer observation time of τf = 40. In this simulation, we consider a three-

frequency signal, i.e., n ranges over three values in (3.75) and (3.76), and the noise in

the sensor time series is represented by a sum over the first 20 frequencies, meaning

m ranges from 1 to 20 where the eigenvalues λm are ordered from smallest to largest.
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Algorithm 1 Optimal Observation Time for N frequencies

f̂k1 , ..., f̂kN = 1

for I = 1 : iter do

for j = 1 : N do

Simulate MSE(τ ; kj) (3.58) using f̂kn , n ̸= j

Compute the τ that minimizes MSE(τ ; kj) using f̂kn , n ̸= j

set f̂kj = αkj ,i(τ)/(Φkj ,i(s)Dcc(τ ;
√
λkj ,

√
λkj))

end for

end for

For simplicity and illustration purposes, we reconstruct the first component of the

ensemble average field ⟨E1⟩ at x = s to compare to the original sensor time series.

The eigenfunctions Φn(x) are obtained from the eigenvalue problem (3.12) for the

case of odd functions and with µ and ϵ constant.

Figure 3.5 displays the two approximations of ⟨E1⟩ at x = s from t = 0 to t = 40

alongside the ensemble average field ⟨E1⟩ and the original sensor time series Rs,1(t).

The L2([0, τf ]) relative error using the observation time τf = 40 is 26.1% and using

Algorithm 1 is 15.1%. This example shows that using optimal observation times

provides a better reconstruction of the ensemble average signal.

3.6 Conclusion

In this chapter, we consider the optimal observing time for obtaining global infor-

mation about electromagnetic waves from time series data obtained from a sensor at a

fixed spatial location. The data obtained from one sensor can be used to predict that

taken from another, and the results provide the theoretical basis for a cross-validation

or error-correction scheme for a network of sensors. We show how to estimate the

time-varying coefficients of the solution of the Maxwell vector wave equation from the
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Figure 3.5: (a) Approximations of the ensemble average electric field ⟨E1⟩ (3.76)
at x = s obtained from noisy sensor data (3.75) using optimal observation time
algorithm 1 (in red) and using the sensor time series data up to the time τf = 40 (in
yellow). The L2([0, τf ]) relative errors in these approximations are 15.1% and 26.1%
respectively. The ensemble average field ⟨E1⟩ is displayed in blue for comparison. (b)
The noisy sensor data (3.75) (in red) and the ensemble average electric field (3.76)
(in blue) at the location x = s.

time series and show that longer observation times do not in general provide more

accurate estimates. The bias and variance of the estimates are derived analytically

in important special cases. Although the bias decreases with time, the variance in-

creases with time, leading to an “optimal” observing time that depends in part on

the coefficients of interest. An iterative algorithm is presented to utilize the optimal

observing times in the general case of N frequencies, and the results of the algorithm

in a three-frequency example are compared to those obtained from longer observing

times.
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Chapter 4

RECONSTRUCTION OF WAVE DYNAMICS FROM ACCELERATING

SENSORS

4.1 Introduction

In this chapter, we consider the problem of reconstructing wave dynamics using

time series data obtained from a sensor moving along a general trajectory xs(t) in

space. The underlying waves propagate in an inhomogeneous medium and are gov-

erned by the wave equation:

∂2u

∂t2
− c2(x)∆u = 0 (4.1)

where c(x) is the variable wave speed. We observe the wave field from an accelerating

sensor which moves along the spatial trajectory xs(t) in some domain D giving the

time series Rs(t) = u(xs(t), t). The solution u is a scalar wave field and so it can

represent pressure, giving rise to acoustic waves, or a single component of the electric

field, giving rise electromagnetic waves. The solution u of (4.1) can be obtained by

solving the associated eigenvalue problem:

∆Φ + λc−2(x)Φ = 0. (4.2)

The eigenfunctions Φn of the Laplace operator form an orthonormal basis in L2(D)

with weight c−2(x). We can write solutions in the form:

u(x, t) =
∑
n

An(t)Φn(x) (4.3)

and solve the sequence of ODEs:

A′′
n + λnAn = 0. (4.4)
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The solution u can then be obtained from initial conditions:

u(x, 0) = g(x) (4.5)

∂u

∂t
(x, 0) = h(x) (4.6)

giving

u(x, t) =
∑
n

An(t)Φn(x) (4.7)

An(t) = ĝn cos(
√
λnt) +

ĥn√
λn

sin(
√
λnt). (4.8)

Alternatively, the solution can be written as the real part of

u(x, t) =
∑
n

Cn exp (−iωnt) Φn(x), Cn ∈ C (4.9)

where ωn =
√
λn is the angular frequency.

To understand the issues encountered in signal processing when the sensor is

accelerating, we consider a simple example. Suppose the sensor travels along the one

dimensional trajectory xs(t) = a0t
2 in a homogeneous medium. Since c is constant,

the solution can be written explicitly as

u(x, t) =
∑
n

Cn exp (i(knx− ωnt)) (4.10)

and the resulting sensor time series is

Rs(t) =
∑
n

Cn exp
(
i(kna0t

2 − ωnt)
)
. (4.11)

Standard Fourier analysis of almost periodic signals suggests that we should compute:

R̂s(ω) := lim
τ→∞

1

τ

∫ τ

0

Rs(t) exp (−iωt) dt. (4.12)

The space of almost periodic functions B can be defined as the closure of the trigono-

metric polynomials

f(t) =
m∑
k=1

Ak exp(iωkt) (4.13)
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with respect to the uniform norm ||f ||∞ = supt |f(t)|, [2]. The space B can be

metrized by the inner product

(f(t), g(t)) := lim
τ→∞

1

τ

∫ τ

0

f(t)g(t) dt (4.14)

and contains the uncountable orthonormal set of functions {exp(iωt) : ω ∈ R} which

makes B nonseparable. The closure of the trigonometric polynomials with respect

to the inner product (4.14) is a nonseparable Hilbert space containing B. For more

details on almost periodic functions see [2].

For an almost periodic signal R0(t), the transformation R̂0(ω) provides the coeffi-

cients of the signal and the relevant frequencies because the basis {exp (iωt) : ω ∈ R}

is orthogonal:

(exp (iω1t) , exp (iω2t)) = lim
τ→∞

1

τ

∫ τ

0

exp (iω1t) exp (−iω2t) dt = 1{ω1=ω2} (4.15)

where 1D is the indicator function for the set D. The signal Rs(t), however, is a

linear combination of functions of the form exp (i(ka0t
2 − ωt)). The inner product of

functions in the set {exp (iωt2) : ω ∈ R} can be computed in terms of the Fresnel

integral:

(exp
(
iω1t

2
)
, exp

(
iω2t

2
)
) = lim

τ→∞

1

τ

∫ τ

0

exp
(
iω1t

2
)
exp

(
−iω2t

2
)
dt (4.16)

= lim
τ→∞

1

τ

∫ τ

0

exp
(
i(ω1 − ω2)t

2
)
dt (4.17)

= lim
τ→∞

1

τ

1√
ω1 − ω2

Fr(
√
ω1 − ω2τ) (4.18)

= 1{ω1=ω2}. (4.19)

where

Fr(x) =

∫ x

0

exp
(
it2
)
dt (4.20)

=

√
π

8
(1 + i)erf

(
1− i√

2
x

)
(4.21)
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is the Fresnel integral which is used in optics to study diffraction [9]. Generally, for

the kernel κ(t) = (at+ b)2 + κ0 we can write

Frκ(x) =

∫ x

0

exp (iκ(t)) dt (4.22)

= exp (iκ0)

∫ ax+b

b

1

a
exp

(
ir2
)
dr (4.23)

=
exp (iκ0)

a
(Fr(ax+ b)− Fr(b)). (4.24)

For example, the time series Rs(t) can be written in terms of the kernels:

κn(t) =

(√
kna0t−

ωn

2
√
kna0

)2

− ω2
n

4kna0
. (4.25)

For the kernel κ(t) = (at+ b)2 + κ0 with a ̸= 0, we compute:

lim
τ→∞

1

τ
Frκ(τ) = lim

τ→∞

1

τ

exp (iκ0)

a
(Fr(aτ + b)− Fr(b)) = 0. (4.26)

Thus, the coefficients Cn are not recovered using R̂s(ω). Traditional Fourier methods

using the basis {exp(iωt) : ω ∈ R} cannot be used directly to analyze the time series

Rs(t). In the next section, we review the Doppler effect and describe a time transfor-

mation method that orthogonalizes the basis functions in special cases, allowing the

use of the Fourier transform with a nonuniform sampling method. In section 4.3, we

present a randomized algorithm to reconstruct the wave field u.

4.2 Reconstruction Using Time Transformations and the Doppler Effect

When the propagation medium is homogeneous, i.e., the wave speed c is inde-

pendent of x, explicit transformations can be used because the wave field u can be

written explicitly:

u(x, t) =

∫
R3

û(k) exp (i(k · x− ωt)) d3k. (4.27)
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If we consider solutions in the space of almost periodic functions, then the solution is

u(x, t) =
∑
n

Cn exp (i(kn · x− ωnt)) . (4.28)

When the waves propagate in the same direction k̂, the sensor time series is

Rs(t) =
∑
n

Cn exp (i(kn · xs(t)− ωnt)) =
∑
n

Cn exp
(
iωn(c

−1k̂ · xs(t)− t)
)

(4.29)

where c = ωn

|kn| . Thus, we can apply the transformation

t̃ = t− c−1k̂ · xs(t) (4.30)

to obtain the new time series

Rs(t̃) =
∑
n

Cn exp
(
−iωnt̃

)
. (4.31)

The Fourier transform can be readily applied to (4.31) to obtain the frequencies ωn

of the signal. For a discrete time series Rs(ti) with uniform sampling ti − ti−1 =

∆t, the transformed time series Rs(t̃i) will have nonuniform sampling; therefore, the

nonuniform fast Fourier transform has to be used to analyze the signal. If the velocity

of the sensor in the direction of wave propagation is less than the speed of the wave,

i.e., k̂ ·v(t) < c then the transformation (4.30) does not change the direction of time:

dt̃
dt
> 0. The effect of this time transformation method on the Fourier transform of

the signal is illustrated in Figure 4.1. In the left panel, the peaks of the spectrum

are blurred as a result of the accelerating sensor. This can be contrasted with the

spectrum of a constant velocity sensor, where the peaks are merely shifted. The

shifting of frequencies due to movement of the sensor is the well-studied Doppler

effect [47, 23]. In the right panel, the original frequencies are recovered.

This can be generalized to the case where the direction of propagation is un-

known or waves propagate in different directions. First, parameterize the direction of
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Figure 4.1: (left) The spectrum of a two frequency sensor time series Rs(t) given
by (4.29) where the sensor traverses a circle in the x1-x3 plane at a constant speed.
(right) The spectrum of the same time series after applying the time transformation
(4.30) to obtain (4.31). To obtain the spectrum in the right panel, a nonuniform FFT
is used.

propagation. For example, in a two dimensional case:

k̂(θ) = (cos(θ), sin(θ)), θ ∈ [0, 2π). (4.32)

Consider the collection of transformations:

t̃θ = t− 1

c
k̂(θ) · xs(t). (4.33)

Each transformation provides a new time series:

Rs(t̃θ) =
∑
n

Cn exp

(
iωn

(
1

c
k̂n · xs(t)−

1

c
k̂(θ) · xs(t)− t̃θ

))
(4.34)

and a corresponding Fourier transform. The resulting parameterized collection of

Fourier transforms is plotted in Figure 4.2. Notice that varying the direction of

propagation k̂ and varying the frequencies ω is equivalent to just varying k. When

k̂(θ) = k̂n, the frequency ωn becomes unblurred in the amplitude spectrum as in

Figure 4.1.
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Figure 4.2: Parameterized collection of amplitude spectra of a two frequency sensor
time series. For each fixed θ ∈ [0, 2π), the amplitude spectrum of (4.34) is plotted.
The first and second panel display the same information in polar and Cartesian co-
ordinates. The third panel displays the same plot as the first panel but zoomed in on
a small frequency range. Each frequency of the original signal creates a ring in the
second panel with its magnitude represented by the color in the plot. Each ring (in

the second panel) is thinnest when k̂(θ) is pointing in the direction of propagation

k̂n which can be seen most easily in the third panel.
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4.3 Randomized Algorithm

In the previous section, we outlined a method for reconstructing the field u from

accelerating sensors utilizing an explicit closed-form solution of the field. In this

section, we develop a method of reconstruction of u that only relies on the decom-

position of the field into eigenfunctions Φn of the weighted Laplace operator (4.9).

With this method, the eigenfunctions can be computed numerically, as opposed to

analytically as in the previous sections, and the medium can be inhomogeneous. In

particular, we consider a randomized algorithm. One of the primary advantages of

using a randomized algorithm is speed [42]. The sensor time series in this case is

Rs(t) =
N∑

n=1

Cn exp (−iωnt) Φn(xs(t)). (4.35)

Where N is the number of dominant frequencies in the wave field. In general, the

frequency information (the frequencies ωn and the eigenfunctions Φn) and the co-

efficients Cn are unknown; however, we can utilize the Fourier transform and the

maximum Doppler shift to obtain an initial bounded range of relevant frequencies.

4.3.1 The Doppler Window

For general spatially-varying media, a representation of the electric field cannot

be obtained except in special cases. We now consider general stratified media, rep-

resented by the wave speed c(x3), where an approximate explicit solution can be

obtained. To derive this approximate solution, we need to solve the eigenvalue prob-

lem (4.2) with wave speed c(x3). Writing Φ(x) = α(x1, x2)β(x3) separates (4.2) into

two eigenvalue problems:

∆α(x1, x2) + ξα(x1, x2) = 0 (4.36)

β′′(x3) + (c−2(x3)λ− ξ)β(x3) = 0. (4.37)
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If we consider solutions of the form β(x3) = exp (b(x3)) where b(x3) = br(x3)+ ibi(x3)

then we obtain a nonlinear ODE for b(x3):

b′′(x3) + (b′(x3))
2 + (c−2(x3)λ− ξ) = 0 (4.38)

that is an equation only in b′′ and b′ but not b. So, we instead consider the transfor-

mation

β(x3) = exp

(∫ x3

0

b(y) dy

)
(4.39)

and the ODE for b becomes the Riccati equation

b′(x3) = −k23(x3)− b2(x3) (4.40)

where

k23(x3) = c−2(x3)λ− ξ. (4.41)

We use the conditions at x3 = 0:

β(0) = 1 (4.42)

β′(0) = − k′3(0)

2k3(0)
+ ik3(0). (4.43)

If we assume the wave speed c(x3) is slowly varying, then the WKB approximation

can be used, reducing the Riccati equation (4.40) to

0 = −k23(x3)− b2(x3) (4.44)

since b′ << 1. This approximation method is similar to the Rytov approximation

β = exp(
∑

n ψn) [31, 43]. The first order approximation is thus

b(x3) = ±ik3(x3) = ±i
√
c−2(x3)λ− ξ (4.45)
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with derivative

b′(x3) = ±ik′3(x3) = ∓ic
′(x3)

c(x3)

c−2(x3)λ√
c−2(x3)λ− ξ

. (4.46)

To obtain a second approximation, substitute (4.46) into (4.40), obtaining an equation

that is quadratic in b. Thus, we use the quadratic formula and a binomial expansion:

b(x3) = ±
√

−k23(x3)∓ ik′3(x3) (4.47)

≈

(
± ik3(x3)±

ik′3(x3)

i2k3(x3)

)

≈ ± k′3(x3)

2k3(x3)
± ik3(x3).

To obtain the approximate solution β(x3) to our eigenvalue problem, recall the trans-

formation β(x3) = exp
(∫ x3

0
b(y) dy

)
. We obtain

β(x3) ≈
(
k3(x3)

k3(0)

)−1/2

exp

(
±i
∫ x3

0

k3(y) dy

)
. (4.48)

Therefore, the approximate wave field (in two dimensions) is

u(x, t) =
∑
n

Cn

(
kn,3(x3)

kn,3(0)

)−1/2

exp

(
i

(
kn,1x1 +

∫ x3

0

kn,3(y) dy − ωnt

))
. (4.49)

Notice that kn,3(x3) implicitly depends on ωn =
√
λn since kn,3(x3) =√

c−2(x3)λn − ξn.

The sensor time series Rs(t) along the trajectory xs(t), using the WKB approxi-

mation, is

Rs(t) =
∑
n

Cn

(
kn,3(x3(t))

kn,3(0)

)−1/2

exp

(
i

(
kn,1x1(t) +

∫ x3(t)

0

kn,3(y) dy − ωnt

))
(4.50)

=
∑
n

Cn exp (γn(t) + iηn(t)) (4.51)
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Figure 4.3: Comparison of simulated β(x3) to the WKB approximation of β(x3).
The curves are practically indistinguishable. On the left the real part of β is plotted
for both the simulated and WKB solution. Similarly, the imaginary part is plotted
on the right. The wave speed profile is c(x3) = c0 exp(γx3).

where

ηn(t) = kn,1x1(t) +

∫ x3(t)

0

kn,3(y) dy − ωnt. (4.52)

For simplicity, assume the sensor trajectory begins at the origin: xs(0) = 0. If we

apply the Fourier transform to this time series, the peaks of the amplitude spectrum

will be shifted as a result of the fact that ηn(t) ̸= −ωnt. Instead, the frequencies ω̃

given by the Fourier transform of exp (iηn(t)) will belong to some range (1− ζ−)ωn ≤

ω̃ ≤ (1 + ζ+)ωn. Observe

1− ζ− = 1− 1

ωnt

(
kn,1x1(t) +

∫ x3(t)

0

kn,3(y) dy

)
(4.53)

≥ 1− 1

ωnt

(
kn,1x1(t) + x3(t)k̃n,3(y)

)
(4.54)

≥ 1− |k̃n|
ωn

|x(t)|
t

(4.55)

≥ 1− ṽ

c̃
(4.56)

where k̃n,i and ṽ are the maximum values of kn,i(x3) and |v(t)| along the trajectory

xs(t) and c̃ is the minimum value of c(x3) along the trajectory. The calculation of
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ζ+ is similar. Thus, the peaks of the Fourier transform of the signal exp (iηn(t))

corresponding to the frequency ωn will appear in the Doppler window[(
1− ṽ

c̃

)
ωn,

(
1 +

ṽ

c̃

)
ωn

]
(4.57)

and we define the maximum shift ζ̃ := ṽ/c̃.

4.3.2 Randomized Algorithm

We now describe the randomized algorithm used to obtain the vector of complex

coefficients C = (C1, ..., CN) and the corresponding frequencies ω1, ..., ωN . In this

algorithm, we focus on wave fields where waves propagate in the same direction

k̂; however, the algorithm can be easily extended to waves propagating in different

directions. We are given a time series at the discrete times t1 = 0, ..., tN = τ :

Rs(tj) =
N∑

n=1

Cn exp (−iωntj) Φn(xs(tj)), j = 1, ..., J. (4.58)

We first apply the fast Fourier transform to {Rs(tj)}Jj=1 to obtain the frequencies ω̃m

where the peaks of the spectrum occur. From the analysis in the previous subsection,

we know that these frequencies will not be the frequencies of interest ωn. Instead,

the frequencies ω̃m belong to the band (4.57) around each ωn. Thus, the frequencies

of interest ωn belong to the set

Ω =
⋃
m

[(
1 + ζ̃

)−1

ω̃m,
(
1− ζ̃

)−1

ω̃m

]
. (4.59)

Now that we have identified a range of frequencies to consider for reconstruction

of the field, the randomized algorithm can be summarized as follows: (1) select N

frequencies from Ω uniformly at random:

ω1, ..., ωN ∼ Unif(Ω) (4.60)
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(to extend this algorithm to wave fields with arbitrary directions of propagation, the

directions of wave propagation will also need to be selected uniformly at random); (2)

simulate the corresponding eigenfunctions Φn(x) from (4.2); (3) construct the matrix

Mj,n = exp (−iωntj) Φn(x(tj)); (4.61)

(4) compute the least squares fit for the coefficients Cn:

C̃ = (MTM)−1MTR (4.62)

where Rj = Rs(tj); (5) repeat this process P times. Finally, select the resulting

estimated time series:

R̃s(tj) = (MC̃)j =
N∑

n=1

C̃n exp (−iωntj) Φn(xs(tj)), j = 1, ..., J (4.63)

with the lowest relative root mean squared error:

RMSE(τ) :=

(∑J
j=1(R̃j −Rj)

2∑J
j=1R

2
j

)1/2

. (4.64)

The resulting approximate wave field at any location xa is

Algorithm 2 Randomized Algorithm

for p = 1 : P do

for n = 1 : N do

sample ωn from Unif(Ω)

simulate solution Φn(x) of (4.2)

end for

construct the matrix M (4.61)

calculate least squares coefficients C̃ (4.62)

calculate relative RMSE (4.64)

end for
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u(xa, t) =
N∑

n=1

Ãn exp (−iωnt) (4.65)

where Ãn = C̃nΦn(xa).

4.4 Analysis of Algorithm and Examples

In this section, we illustrate the effectiveness of Algorithm 2 through two impor-

tant examples and we analyze the accuracy of the algorithm through simulations.

4.4.1 Examples

We look at two different sensor trajectories: acceleration in a straight line and

acceleration in a circle. We simulate the field

u(x, t) = C1 exp (−iω1t) Φ1(x) + C2 exp (−iω2t) Φ2(x) (4.66)

in the x1-x3 plane with the wave speed c(x3) = c0 exp(γx3) and generate the sensor

time series Rs(t) along a trajectory xs(t). The first trajectory xs(t) is a circle with

constant speed. The results of Algorithm 2 for this case are displayed in Figure 4.4.

In the top right panel, we see that the two frequencies ω1 and ω2 are blurred as a

result of the circular trajectory. For comparison, we also display the spectrum of the

time series obtained from a sensor at the fixed location xs(0):

R0(t) = C1 exp (−iω1t) Φ1(xs(0)) + C2 exp (−iω2t) Φ2(xs(0)). (4.67)

For the signalR0(t), the maximum Doppler shift is zero and so the exact frequencies ω1

and ω2 are trivially obtained from Algorithm 2. The bottom panel shows the resulting

time series of Algorithm 2 which is practically indistinguishable from the original

sensor time series. The second trajectory is a straight line with constant acceleration

shown in Figure 4.5. In this case, the peaks of the spectrum are blurred and shifted.
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Figure 4.4: Reconstruction of the two-frequency sensor time series Rs(t). (top left)
The sensor trajectory xs(t) in the x1-x3 plane. (top right) The single-sided amplitude
spectrum of the time series Rs(t). (bottom) The original time series Rs(t) in blue
and the reconstructed time series R̃s(t) using Algorithm 2 in red. Because the sensor
trajectory xs(t) is a circle, the two frequencies in the spectrum are blurred.

As in the first case, the approximate sensor time series R̃s(t) is similar to the original

time series Rs(t). More general smooth trajectories in two and three dimensions can

be generated using Bézier curves which are sums of Bernstein polynomials weighted

by control points in space [12, 44].

4.4.2 Analysis of Algorithm

Since Algorithm 2 selects the frequencies ω from Ω uniformly at random, the

accuracy of the algorithm can be described in terms of the probability of receiving a

successful result after P trials. Given a maximum acceptable relative RMSE E, the
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Figure 4.5: Reconstruction of the two-frequency sensor time series Rs(t). (top left)
The sensor trajectory xs(t) in the x1-x3 plane. (top right) The single-sided amplitude
spectrum of the time series Rs(t). (bottom) The original time series Rs(t) in blue
and the reconstructed time series R̃s(t) using Algorithm 2 in red. Because the sensor
trajectory xs(t) is a line, the two frequencies in the spectrum are blurred and shifted.

probability of success from one trial is simply the fraction of the frequencies in the

domain Ω that provide a relative RMSE less than E. If we call this fraction ΩE, then

the probability of success after P trials is

1− (1− ΩE)
P . (4.68)

Figure 4.6 shows how ΩE depends on the length τ of the time series Rs(t) and on

the maximum Doppler shift ζ̃. When ζ̃ is doubled in Figure 4.6, the fraction ΩE is

approximately halved.
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Figure 4.6: Relative RMSE as a function of the length τ of the time series Rs(t) used
for reconstruction. (top left) Relative RMSE is plotted against ω ∈ Ω for different
lengths τ of the time series Rs(t). (top right) The fraction of reconstructions from
the top left panel that have relative RMSE less than 20% as a function of the length
of the time series τ . The bottom two panels display the same information as the top
two panels but for a sensor moving at twice the speed. The sensor trajectory is a line
as in Figure 4.5.

4.5 Discussion and Future Work

In this work, we considered a random frequency algorithm to analyze and recon-

struct wave fields from an accelerating sensor moving in an inhomogeneous medium.

Obtaining the frequencies of a wave field from an accelerating frame of reference is,

in general, a difficult problem because the Fourier basis in an accelerating reference

frame is no longer orthogonal. The randomized algorithm we presented mitigates this

issue by limiting the scope of possible frequencies to consider and randomly sampling
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from this range until the desired error tolerance is reached. We also showed that

the algorithm works in practice by simulating several important examples. In future

work, we would like to tackle this issue with other methods such as the transformation

method we discussed in section 4.2 (applied in the context of inhomogeneous media)

or averaging methods.
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Chapter 5

CONCLUSION

In this dissertation, we have provided fundamental results for analyzing wave dy-

namics using the mathematical theory of hyperbolic PDEs and sensor data. We

investigated three major questions in chapters 2, 3, and 4 and presented several al-

gorithms to analyze time series data obtained from noisy sensors that observe wave

fields which are governed by the inhomogeneous wave equation and by the Maxwell

vector wave equation.

We first looked at how to approximate global wave field information (such as

frequencies and amplitudes of waves) from time series data obtained from a network

of fixed-location sensors. The wave field information was then used to construct an

approximate global wave field. We found that multiple sensors are usually required

to provide a global approximation of the wave field since the information obtained

from individual sensors is sensitive to perturbations in sensor location.

Next, we considered how to estimate the global electric field from a fixed-location

sensor in the presence of a stochastic current density. We showed that, as a result of

the bias-variance tradeoff, longer sensor observation times do not necessarily provide

a more accurate estimate of the electric field. We then showed how to obtain the

optimal observation time and how to utilize it to obtain a global estimate of the

electric field.

Lastly, we considered how to obtain global approximations of wave fields when

sensors are accelerating. Conventional Fourier analysis and data sampling methods

fail to provide accurate estimates of the frequency and amplitude information of the

underlying wave field in this case. We developed a new analytical approach and
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implemented a randomized algorithm to obtain the frequencies of the wave field and

a global representation thereof.

The work presented in this dissertation can be extended in several ways. For

accelerating sensors, the governing equations were assumed to be noiseless, so we

could consider how noise in the inhomogeneous wave equation would affect the global

approximations obtained from accelerating sensors. In future work, we will extend

this method to stochastic PDEs and further develop the theory of stochastic Maxwell’s

equations including weakly nonlinear regimes.
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APPENDIX A

COVARIANCE CALCULATIONS
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Covariance of αj and βj

In this section we provide more detail for the derivation of COV[αj(τ)]. As in
section 3.4.1, the covariance can be written as

COV

[
1

τ

∫ τ

0

Rs(t) cos(
√
λj t) dt

]
(A.1)

= Φj(s)Φ
T
j (s)E

[(
1

τ

∫ τ

0

∫ t

0

σj√
λj

sin(
√
λj(t− r)) dWj(r) cos(

√
λj t) dt

)2]

= Φj(s)Φ
T
j (s)

σ2
j

λjτ 2

∫ τ

0

∫ τ

0

E

[(∫ t1

0

sin(
√
λj(t1 − r1)) cos(

√
λj t1) dWj(r1)

)

×
(∫ t2

0

sin(
√
λj(t2 − r2)) cos(

√
λj t2) dWj(r2)

)]
dt1dt2.

We now use the trigonometric difference formula for sine and the identity (3.36) to
split the variance into four terms:

σ2
j

λjτ 2

∫ τ

0

∫ τ

0

∫ t1∧t2

0

(
sin(

√
λjt1) cos(

√
λjr) cos(

√
λjt1) (A.2)

− cos(
√
λjt1) sin(
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λjr) cos(

√
λjt1)
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×
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√
λjr) cos(

√
λjt2)

− cos(
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λjt2) sin(

√
λjr) cos(

√
λjt2)

)
dr dt1 dt2.

The first term of (A.2) is
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=
σ2
j
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)
dt1dt2. (A.4)
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Utilizing the symmetry of the double integral in t1 and t2, (A.4) becomes
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√
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)
dt1 (A.5)
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√
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(A.6)
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λjτ cos

(
4
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(A.7)

+ 9 sin
(
2
√
λjτ
)
− 24

√
λjτ cos

(
2
√
λjτ
)
+ 24

√
λjτ

)
.

The middle two terms of (A.2) are of the form
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× (1− cos2(
√
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Since this double integral is not symmetric in t1 and t2, we split (A.9) into two double
integrals:
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Finally, to obtain the sum of the middle two terms of (A.2), multiply (A.11) by −2
and integrate:
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The last term of (A.2) is
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Again utilizing the symmetry of the double integral in t1 and t2, (A.14) becomes
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Summing together (A.7), (A.12), and (A.17) we obtain the covariance of αj(τ):

COV[αj(τ)] = Φj(s)Φ
T
j (s)

σ2
j

192λ
3/2
j

(
8λ

1/2
j τ + 12 sin(2

√
λjτ)

− 12λ
−1/2
j τ−1 + 3λ−1

j τ−2 sin(4
√
λjτ)

)
. (A.18)
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By a similar computation, we obtain the covariance of βj(τ):

COV[βj(τ)] = Φj(s)Φ
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Using τ = p/
√
λj, the covariance can be written in terms of periods:
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CURL-SQUARED OPERATOR
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In this section, we discuss the curl-squared operator in detail. We seek the solu-
tions of the eigenvalue problem:

∇×
(
[µ(x)]−1∇×Φ

)
− λϵ(x)Φ = 0 (B.1)

on the domain Γ = [0, L1]× [0, L2]× [0, L3] ⊂ R3 with periodic boundary conditions.
We first prove that the curl operator is symmetric. Let u,v ∈ H1(Γ). We will use
the multidimensional integration by parts:∫

Γ

∂xi
uvdx =

∫
∂Γ

uvnidx−
∫
Γ

u∂xi
vdx (B.2)

where n = (n1, n2, n3) is the unit outward normal defined on the boundary ∂Γ.
Observe

⟨∇ × u,v⟩L2 =

∫
Γ

(∇× u) · vdx

=

∫
∂Γ

(u3v1n2 − u2v1n3 + u1v2n3 − u3v2n1 + u2v3n1 − u1v3n2)dx

−
∫
Γ

(u3∂x2v1 − u2∂x3v1 + u1∂x3v2 − u3∂x1v2 + u2∂x1v3 − u1∂x2v3)dx

=

∫
Γ

u · (∇× v) dx = ⟨u,∇× v⟩L2

since ui and vi are periodic for all i and so (uivjnk) |xk=0= −(uivjnk) |xk=Lk
. So all of

the boundary terms cancel and the curl operator is symmetric. Using (B.1) we obtain

(λk − λm)

∫
Γ

ϵ(x)Φk ·Φmdx = 0 (B.3)

which implies orthogonality with weight ϵ(x) whenever λk ̸= λm.

Eigenvector basis

To illustrate the form of the solutions to (B.1), we derive the eigenvector basis in
the homogeneous case: ϵ(x) = ϵ0. A natural function to consider when looking for
eigenvectors of an operator is with a function of the form eikx. Since our problem is
vectorial, we consider functions of the form

Φ(x) = veik·x, v,k ∈ R3. (B.4)

Observe

∇×Φ(x) = ieik·x

[−v2k3 + v3k2
v1k3 − v3k1
−v1k2 + v2k1

]
= ieik·x

[
0 −k3 k2
k3 0 k1
−k2 k1 0

]
v =: ieik·xAv. (B.5)
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Thus, Φ is an eigenfunction of the curl operator exactly when v is an eigenvector of
A. So, for every k ∈ R3, there is the skew-symmetric matrix

Ak =

[
0 −k3 k2
k3 0 −k1
−k2 k1 0

]
(B.6)

which has 3 eigenvectors vk,1,vk,2, and vk,3 with corresponding eigenvalues λk,1, λk,2,
and λk,3 such that

Φk,j(x) = vk,je
ik·x, j = 1, 2, 3 (B.7)

is an eigenfunction of the curl operator with eigenvalues iλk,1, iλk,2, and iλk,3. The
eigenfunctions as described satisfy the equation

∇×Φk,j(x) = iλk,jΦk,j(x). (B.8)

If Γ = [−π, π]3, then Φk,j ∈ L2(Γ;R3) exactly when k ∈ Z3. In this case, our
collection of eigenfunctions is

{Φk,j;k ∈ Z3}. (B.9)

Lastly, observe that

∇×∇× (Φ) = −eik·xA2v (B.10)

so that the eigenvalues of the curl-squared operator are exactly the squares of the
eigenvalues of the curl operator: the eigenfunctions are constructed as above but
with vk,j eigenvectors of the symmetric matrix A2

k and the eigenvalues are −λk,j
where λk,j are eigenvalues of A2

k.
The eigenvalues of Ak are

λ = ±i|k|, 0 (B.11)

with the respective eigenvectors−i|k|2 k21k2 − i|k|2 k32 − i|k|2 k2 k23 + k31k3 + k1 k
2
2k3 + k1 k

3
3

|k|22 k3k2 + i|k|2k31 + i|k|2k1 k22 + i|k|2k1 k23
−|k|22 (k21 + k22)

 (B.12)

i|k|2 k21k2 + i|k|2 k32 + i|k|2 k2 k23 + k31k3 + k1 k
2
2k3 + k1 k

3
3

|k|22 k3k2 − i|k|2k31 − i|k|2k1 k22 − i|k|2k1 k23
−|k|22 (k21 + k22)

 (B.13)

[
k1
k2
k3

]
. (B.14)

Notice that each component of the vector vk,j is zero for a nonzero k.
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Systems in Vol. 21 No. 4, published by the Society for Industrial and Applied Math-
ematics (SIAM).Copyright ©by SIAM. Unauthorized reproduction of this article is
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APPENDIX D

LINK TO CODE
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The code for the algorithms developed in this dissertation can be found at

https://github.com/BryceBarclay/Wave_Dynamics.git
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