
Reconfigurable High-Performance Computing of Sparse Linear Algebra

by

Erfan Bank Tavakoli

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved April 2024 by the
Graduate Supervisory Committee:

Fengbo Ren, Chair
Aviral Shrivastava

Deliang Fan
Hassan Ghasemzadeh

ARIZONA STATE UNIVERSITY

May 2024

ABSTRACT

This thesis presents novel software/hardware co-design methodologies aimed at

accelerating sparse linear algebra applications within the realm of High-Performance

Computing (HPC). The motivation stems from the limitations of conventional CPU-

and GPU-based solutions for sparse linear algebra, which are hindered by fixed

hardware architecture and memory hierarchy, frequent off-chip memory access, and

high energy consumption. In response, this work explores the deployment of Field-

Programmable Gate Arrays (FPGAs) and Application-Specific Integrated Circuits

(ASICs) to overcome these challenges through their customized nature, offering per-

formance and energy efficiency gains.

The scope of the thesis is divided into three main parts: firstly, it introduces

a framework that combines an FPGA computational kernel with a novel scheduling

algorithm running on a host processor for accelerating the supernodal multifrontal al-

gorithm for sparse Cholesky factorization. This approach minimizes off-chip memory

access and on-chip memory requirements by efficiently managing data dependencies

and enhancing data locality. Secondly, it presents FSpGEMM, an OpenCL-based

framework for accelerating general sparse matrix-matrix multiplication on FPGAs.

FSpGEMM exploits a new compressed sparse vector format (CSV) and a custom

buffering scheme tailored to Gustavson’s algorithm, significantly improving compu-

tational performance by optimizing memory access patterns. Additionally, a row

reordering technique is utilized to increase the data reuse enabled by the CSV for-

mat. Lastly, the thesis proposes an ASIC design for Sparse Tensor Core, which utilizes

a Hardware Merge Sorter to increase parallelism in processing units without compro-

mising operating frequency, offering a high-speed solution for sparse linear algebra

operations.

In summary, the thesis addresses the challenges of implementing sparse linear al-

i

gebra algorithms on FPGAs and ASICs, such as the complexity of data dependencies

and the need for efficient memory management. By proposing solutions that enhance

computational performance, reduce energy consumption, and improve the usability

of FPGAs and ASICs in HPC infrastructures, this work contributes to computa-

tional science, offering a pathway toward more efficient and sustainable computing

for complex, data-intensive applications.

ii

DEDICATION

To my mother, whose love and strength are the foundation of all my achievements.

iii

ACKNOWLEDGMENTS

I want to thank my supervisor, Dr. Fengbo Ren, for all his guidance and help

throughout my PhD and beyond. I’m also grateful for the unwavering support from

my family, without whom this wouldn’t have been possible.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . x

1 INTRODUCTION . 1

1.1 Motivation . 1

1.2 Scope of Work . 3

1.3 Accelerating Sparse Cholesky Factorization . 4

1.4 Accelerating Sparse General Matrix-Matrix Multiplication 6

1.5 Sparse Tensor Core . 7

2 RELATED WORK . 9

2.1 Cholesky Factorization . 9

2.1.1 Sparse Cholesky Factorization on CPUs and GPUs 9

2.1.2 Accelerating Sparse Cholesky Factorization on FPGAs 10

2.2 General Sparse Matrix-Matrix Multiplication . 10

2.2.1 Sparse Matrix Formats . 10

2.2.2 SpGEMM Algorithms . 11

2.2.3 Accelerating Dense GEMM on FPGAs . 13

2.2.4 Accelerating SpGEMM on FPGAs . 14

2.2.5 Accelerating SpGEMM on Application-specific Integrated

Circuits (ASICs) . 14

2.2.6 Accelerating SpGEMM on FPGAs . 15

2.2.7 GPU Implementations of SpGEMM . 16

2.2.8 SpGEMM in DNNs . 16

2.2.9 Reordering Algorithms . 17

3 ACCELERATING SPARSE CHOLESKY FACTORIZATION 18

v

3.1 Multifrontal Cholesky Factorization . 18

3.2 Framework Design . 20

3.2.1 Hardware Architecture of the FPGA Kernel 20

3.2.2 Scheduling Algorithm . 30

3.3 Evaluation . 32

3.3.1 Setup . 32

3.3.2 Experiment Results . 33

3.4 Conclusion . 38

4 ACCELERATING GENERAL SPARSE MATRIX-MATRIX MULTI-

PLICATION . 43

4.1 Compressed Sparse Vector (CSV) Format. 43

4.2 Framework Design . 45

4.2.1 Data Buffering Scheme . 46

4.2.2 Row Reordering Technique . 47

4.2.3 Host Program . 57

4.3 Evaluation . 58

4.3.1 Experiment Setup . 58

4.3.2 MAR Evaluation . 58

4.3.3 Experimental Results . 59

4.4 Conclusion . 65

5 SPARSE TENSOR CORE . 72

5.1 Hardware Merge Sorter . 72

5.2 Hardware Architecture . 74

5.2.1 Multiply and Merge Unit . 75

vi

CHAPTER Page

5.2.2 Addition Unit . 76

5.3 Data Flow . 77

5.4 Evaluation . 77

5.4.1 Experiment Setup . 77

5.4.2 Performance Comparison with the SOTA ASIC Design 79

Publications . 81

REFERENCES . 83

vii

CHAPTER Page

LIST OF TABLES

Table Page

3.1 Configuration Bits Of A Job. 24

3.2 The Required Size (Bits) For Each Storage Unit. 27

3.3 The Specification Of Matrices Chosen From The SuiteSparse Matrix

Collection. 40

3.4 Pecifications Of The CPU System, The GPU Device, And The FPGA

Board Used In The Evaluation. 40

3.5 Resource Utilization On Intel Stratix 10 GX With V L = 128, N = 4,

And M = 2. 41

3.6 Runtime (Second) Comparison Between The FPGA Implementation

Of FSCHOL And The CPU And GPU Implementations Of CHOLMOD. 41

3.7 Runtime (Second) Comparison Between The FPGA Implementation

Of FSCHOL And The Reference Work In [82]. 42

3.8 Energy Consumption (J) Comparison Between The FPGA Implemen-

tation Of FSCHOL And The CPU And GPU Implementations Of

CHOLMOD.. 42

4.1 Descriptions Of Data Structures aType, bType, And cType For Data

Transfer Via Channels QA, QB, And QC, Respectively. 67

4.2 The Specification Of The Commonly-Used Benchmark [90] And The

Extended Benchmark Used In The SOTA FPGA Work [49, 50]. 70

4.3 FSpGEMM-M2 Speedup Over SOTA FPGA Implementations In Terms

Of Execution Cycles. 71

5.1 The Specification Of The Commonly-Used Benchmark Used In The

SOTA SpGEMM Work [51]. 78

viii

5.2 The Performance (GOPS) Of Sparse Tensor Core Achieved On Com-

puting A× AT For The Commonly-Used Benchmarks. 80

ix

Table Page

LIST OF FIGURES

Figure Page

2.1 An Example For Calculating The First Row Of The Output Matrix

For SpGEMMUsing The Row-Wise Gustavson’s Method. The Colored

Elements Represent Nonzero Values, And The Thick Borders Highlight

The Rows Involved In The Computation. 13

3.1 The Factor Matrix Sparsity Pattern And Its Corresponding Elimina-

tion Trees. 19

3.2 The High-Level Block Diagram Of The Hardware Architecture. 23

3.3 The High-Level Block Diagram Of A PE. 24

3.4 An Example Of Extend-Add Operation. 26

3.5 The Output Of Scheduling Algorithm For The Supernodal Elimination

Tree In Figure 3.1c. The Time Increases From Bottom To Top. 32

3.6 Runtime Speedup Of The FPGA Implementation Of FSCHOL Over

The CPU And GPU Implementations Of CHOLMOD. The GPU Runs

With ECC Turned On At The Base Clock Speed. 35

3.7 Energy Consumption Reduction Of The FPGA Implementation Of

FSCHOL Compared To The CPU And GPU Implementations Of CHOLMOD.

The GPU Runs With ECC Turned On At The Base Clock Speed. 37

4.1 The Sparse Matrix Representation Using The CSR And CSV Formats.

Each CSV Vector Is In The Length Of The Number Of Computing

Units (2 Assumed In This Example). Transparent Lines Show The

Storage Order For Each Format. 43

x

4.2 (A) The Sparse Matrix A Is Represented Using The CSV Format.

Each Sparse Vector Is In The Length Of The Number Of Computing

Units (2 In This Example). The Order Of Sparse Vectors Shows The

Storage Layout. (B) The Similarity Graph For Rows Of Matrix A

Is Constructed Based On The Sparsity Pattern Along Columns. (C)

The Reordered Matrix Using The Row-Reordering Algorithm. Note

The Empty Rows Are Moved To The End Of The Matrix. The CSV

Representation Indicates Reduced Memory Access. 44

4.3 The Programming Flow Of OpenCL For FPGA. 46

4.4 Running Example Of Algorithm 3 For The Matrix In Fig. 4.2a. The

Path Generated At Each Step Denotes The Order Of Rows In The

Reordered Matrix AR. 50

4.5 The Corresponding Elements In (A) And (B) Are Color-Coded. (A)

An Example Of The Proposed Data Buffering Scheme. Circled Ele-

ments Show The CSV Vector And The Corresponding Row Of Matrix

B Being Processed. Each CSV Vector Is In The Length Of The Num-

ber Of Computing Units (2 CUs Assumed In This Example). (B)

The High-Level Block Diagram Of The Scalable Hardware Architec-

ture. Cores Are Compatible With High-Bandwidth Memory (HBM)

Or Traditional DDR-Based Memory Banks. 51

4.6 The High-Level Block Diagram Of A PE. 54

xi

Figure Page

4.7 Memory Access Reduction (MAR) Percentage With Respect To Dif-

ferent Input Matrices And The Number Of PEs. The Difference In

Sparsity Patterns Of The Input Matrices Results In The Difference In

MAR Percentage. The Dimensions Of Matrices Are Noted In Paren-

thesis. 59

4.8 Performance Speedup Achieved By The Row Reordering Technique For

The Commonly-Used Benchmark On FSpGEMM-M6. 61

4.9 Normalized Performance Comparison Of FSpGEMM-M6 Compared To

The SOTA GPU Implementation For The Complete Benchmark In

Terms Of Effective Runtime. 62

4.10 Energy Consumption Reduction Achieved Using FSpGEMM-M6 Com-

pared To The SOTA GPU Implementation For The Complete Bench-

mark. 62

5.1 Two Models Of E-Record Merge Logics With E = 4. 74

5.2 This Example Shows How ToMerge Two Sorted Lists {0, 2, 4, 6, 8, 10, 12, 14}

And {1, 3, 5, 7}, By Using A Method That Merges 4 Elements And

Feeds Backs Three Elements At Each Step. 75

5.3 High-Level Block Diagram Of The Sparse Tensor Core Hardware Ar-

chitecture. 76

5.4 The Block Diagrams Of (A) A Multiply And Merge Unit (MMU) And

(B) An Addition Unit (AU). 76

5.5 The Data Flow For Sparse Matrix-Matrix Multiplications In SpGEMM. 77

5.6 Performance Speedup Over Spada [51] For The Commonly-Used Bench-

mark. 80

xii

Figure Page

Chapter 1

INTRODUCTION

1.1 Motivation

High-Performance Computing, or HPC, is the use of powerful computer systems

and parallel processing techniques to solve complex computational problems that

require vast amounts of data and processing power. HPC is used in a variety of fields,

including scientific research, engineering, and finance, to simulate and model complex

systems, analyze large datasets, and solve optimization problems. HPC is a rapidly

evolving field, with continued advances in hardware and software enabling increasingly

complex and data-intensive applications [32]. Sparse linear algebra algorithms are

computational techniques for linear algebra problems that are optimized to handle

sparse data, where most of the values in a dataset are zero or empty. These algorithms

are designed to perform computations only on the non-zero values, thereby reducing

the computational load and memory requirements, which makes them faster and more

efficient than traditional algorithms [24, 46].

Nonetheless, the existing HPC solutions to sparse linear algebra applications based

on CPUs and GPUs suffer from very limited performance due to two primary reasons.

First, sparse algorithms (e.g., the multifrontal algorithms [55]) are recursive and have

complex data dependencies for sequentially updating the intermediate results from

previous iterations. For the sake of data locality and computational performance,

an algorithm-tailored buffering scheme for efficiently storing the intermediate results

must be employed for computing a sparse algorithm. Unfortunately, the deep memory

hierarchy and fixed hardware architecture of CPUs and GPUs can hardly be adapted

1

to efficiently implement such an algorithm-tailored buffering scheme. Consequently,

CPU- and GPU-based solutions suffer from poor cache locality and often require

frequent off-chip memory access for computing sparse algorithms, greatly limiting

their performance. Second, sparse algorithms involve complex operations (e.g., in-

verse square root) that are often computed using approximation algorithms (e.g., the

Newton-Raphson method [70]) that are also iterative and have strong loop-carried

data dependency. Unfortunately, the legacy hardware architectures of CPUs and

GPUs, while being able to exploit massive spatial parallelism, lack the capability

to exploit the temporal/pipeline parallelism that is critical to resolving such loop-

carried data dependency, which results in long loop initiation intervals causing fur-

ther reduced performance. In addition to the limited performance issue of CPU- and

GPU-based sparse algorithms solutions for HPC applications, these solutions suffer

from very high energy consumption due to high runtime (i.e., low performance) and

power consumption of CPUs and GPUs (e.g., 135 W thermal design power for Intel

Xeon Processor E5-2637 v3 and 250 W for NVIDIA V100 TENSOR CORE GPU).

The high energy consumption of CPUs and GPUs in HPC data centers has received

significant attention due to its high economic, environmental, and performance costs

[92].

As FPGAs are being deployed as an emerging accelerator in data centers [28, 71],

FPGA computing offers an alternative solution to accelerating sparse algorithms for

HPC applications. An FPGA is a farm of configurable hardware resources whose

functionality and interconnection can be redefined at run-time by programming its

configuration memory. A state-of-the-art FPGA carries an enormous amount of fine-

and coarse-grained logic, computation, memory, and I/O resources. Upon the re-

configuration of these resources, an FPGA can implement any custom hardware

architecture to accelerate algorithms with both performance and energy efficiency

2

gains [72, 29, 15]. Specifically, the fine-grained logic resources and the abundant on-

chip memory and register resources on FPGA devices can be used to implement the

customized buffering scheme tailored to a given sparse algorithm to allow efficient

storage of intermediate results and data movement among and within processing el-

ements (PEs) with no or reduced off-chip memory access [83, 88]. Furthermore, the

hardware flexibility of an FPGA allows its reconfigurable resources to compose not

only spatial but also temporal/pipeline parallelism both at a fine granularity and on

a massive scale to best resolve the complex loop-carried data dependency that exists

in sparse algorithms to minimize loop initiation intervals for improved performance

[57]. Furthermore, while providing higher performance for executing high-dependency

algorithms, FPGAs generally have lower power consumption than CPUs and GPUs,

which directly translates into lower energy consumption per task (higher energy effi-

ciency).

1.2 Scope of Work

The goal of this proposal is to present software/hardware co-design methodolo-

gies for accelerating sparse linear algebra applications, specifically identifying perfor-

mance bottlenecks in scientific computing using conventional HPC methods, address-

ing them using Application-Specific Integrated Circuits (ASIC) and FPGA designs,

and enabling easy integration and adoption of these designs into existing HPC infras-

tructures to improve their usability.

The first part of this proposal discusses a framework consisting of an FPGA ker-

nel implementing a throughput-optimized hardware architecture for accelerating the

supernodal multifrontal algorithm for sparse Cholesky factorization and a host pro-

gram implementing a novel scheduling algorithm for finding the optimal execution

order of supernodes computations for an elimination tree on the FPGA to eliminate

3

the need for off-chip memory access for storing intermediate results. Moreover, the

proposed scheduling algorithm minimizes on-chip memory requirements for buffering

intermediate results by resolving the dependency of parent nodes in an elimination

tree through temporal parallelism. In the second part, a new compressed sparse vec-

tor (CSV) format for representing sparse matrices and FSpGEMM, an OpenCL-based

HPC framework for accelerating general sparse matrix-matrix multiplication on FP-

GAs, are presented. The proposed FSpGEMM framework includes an FPGA kernel

implementing a throughput-optimized hardware architecture based on Gustavson’s

algorithm and a host program implementing pre-processing functions for converting

input matrices to the CSV format tailored for the proposed architecture. FSpGEMM

utilizes a new buffering scheme tailored to Gustavson’s algorithm. In the third part,

an ASIC design of a co-processor, namely Sparse Tensor Core, for accelerating sparse

linear algebra is proposed. Sparse Tensor Core includes throughput-optimized pro-

cessing units. The processing units adopt highly parallel Hardware Merge Sorters as

their main computation logic, enabling high-throughput computations.

1.3 Accelerating Sparse Cholesky Factorization

So far, there has been limited work for accelerating sparse Cholesky factorization

on FPGAs [82, 78]. The limitations of the existing work are three-fold. First, the

existing work adopts either the left-looking [78] or the multifrontal algorithm [82] in

their implementations. These algorithms are less optimized in terms of the memory

access and computational complexity than the supernodal multifrontal algorithm for

sparse Cholesky factorization [82, 55, 62]. Second, the existing work [78] based on

the multifrontal algorithm fails to provide a scheduling algorithm for ordering and

assigning the computation of different nodes in an elimination tree. The lack of a

scheduling algorithm ignores the dependency among different nodes in an elimination

4

tree, which inevitably demands frequent off-chip memory access and increases the size

of on-chip memory required to load and store intermediate results. Third, the FPGA

accelerator architecture proposed in [82] does not allow on-chip communication among

different PEs, which enforces a large amount of off-chip memory access to occur for

transferring intermediate results among PEs.

This chapter discusses FSCHOL, an OpenCL-based HPC framework for accelerat-

ing sparse Cholesky factorization on FPGAs. The proposed FSCHOL framework con-

sists of an FPGA kernel implementing an energy-efficient and throughput-optimized

hardware architecture and a host program implementing a novel scheduling algo-

rithm. I adopt the supernodal multifrontal algorithm [82, 55, 62] that requires much

less memory access and features lower computational complexity than the left-looking

and the multifrontal algorithm used in the existing work, which is critical to more

efficient hardware mapping and improved performance.

Moreover, I propose a memory-optimized scheduling algorithm for the host pro-

gram for provisioning the execution of the supernodal multifrontal Cholesky factor-

ization, and potentially all elimination-tree-based multifrontal methods, on an FPGA

device. The scheduling algorithm identifies the dependency among computation nodes

in an elimination tree and correspondingly arrange their computation order on the

FPGA device to avoid off-chip memory access as well as to minimize the on-chip mem-

ory requirements for storing intermediate results. This is the key to enabling data

locality, thereby improving both computational performance and energy efficiency.

Finally, the proposed OpenCL-based FPGA kernel architecture enables pipelined on-

chip transfers of intermediate results among PEs by utilizing FIFO channels and

eliminates undesired off-chip memory accesses by working in coordination with the

scheduling algorithm running on the host side.

5

1.4 Accelerating Sparse General Matrix-Matrix Multiplication

There has been limited research on enhancing SpGEMM performance on FPGAs

[53, 41, 33, 49]. Most of the existing works [53, 41, 33] adopt the inner product

algorithm [81] in their implementations. The inner product algorithm attempts to

compute all zero and nonzero output values. In the case of sparse matrices, there

are a considerable amount of computations that result in a zero output, consuming

clock cycles that can be spared with domain knowledge embedded into the architec-

ture. Additionally, the dot product operation between a row and a column of the

input matrices requires index matching, which further contributes to the overhead of

the SpGEMM algorithm. Therefore, the inner product algorithm is not suitable for

SpGEMM. Gustavson’s algorithm presents an alternative SpGEMM data flow, re-

solving the mentioned issues yet introducing irregular memory access patterns. The

existing implementation of Gustavson’s algorithm [49] relies on cache-based hardware

architecture to reuse the input matrix. However, when a row of the first input matrix

(referred to as matrix A for the rest of the dissertation) has many nonzeros in large

matrices, compute units require many rows of the second input matrix (matrix B),

resulting in thrashing the cache and incurring significant performance penalties.

Different from prior work, I adopt Gustavson’s algorithm to avoid zero output

computation and reduce the synchronization overhead of computing partial prod-

ucts. Benefiting from the hardware flexibility of FPGAs, I propose a custom buffer-

ing scheme tailored to Gustavson’s algorithm to improve the reuse of input matrices,

thus largely reducing the amount of memory access. The custom buffering scheme

is enabled by the proposed new Compressed Sparse Vector (CSV) format that trans-

forms the memory access pattern of input matrices from irregular to regular, which

improves memory bandwidth utilization and eliminates unnecessary memory stalls.

6

Also, a row reordering technique is proposed to rearrange rows of the input matrix to

increase data locality for more efficient buffering, leading to increased temporal hard-

ware resource utilization. Finally, I propose FSpGEMM, an OpenCL-based frame-

work for accelerating SpGEMM on FPGAs. The proposed FSpGEMM framework

consists of an FPGA OpenCL kernel implementing a throughput-optimized hardware

architecture and a host program implementing preprocessing functions for reorder-

ing input matrices and converting them to the CSV format tailored to the proposed

architecture. Overall, such synergies between the buffering scheme and Gustavson’s

algorithm, as well as between the CSV format and FSpGEMM as a result of the

co-design methodology, significantly improve the computational performance.

1.5 Sparse Tensor Core

Considerable research has been conducted on developing efficient hardware accel-

erators for sparse linear algebra computations [90, 51, 75, 79]. The main performance

bottleneck within processing elements of these accelerators arises from the merge

(i.e., addition) of sparse vectors (e.g., rows of a sparse matrix), with a computation

complexity of O(n2). This complexity is due to comparing all indices of one operand

(i.e., sparse vector) against all indices of the other operand. Recent studies have

introduced n-way (radix-n) merging, whereby n sparse vectors are added in parallel

[90, 75]. However, the processing elements experience long stalls until all n operands

have been retrieved from the main memory, a process reliant on the memory system.

As a result, the discrepancy between the memory system’s architecture and that of

the processing elements leads to low resource utilization and, ultimately, diminished

overall computational throughput.

Contrary to previous efforts, I propose the adoption of an E-record Hardware

Merge Sorter (HMS) [76, 77] within the processing elements of sparse linear algebra

7

hardware architectures. An E-record HMS needs the minimum number (i.e., 2) of

operands while providing E parallel outputs per clock cycle. This approach facil-

itates the advantages of parallel merging without necessitating E parallel memory

channels, thus achieving high utilization. Furthermore, I introduce the Sparse Tensor

Core, an ASIC design for accelerating SpGEMM operations within sparse linear alge-

bra. This co-processor is capable of executing highly parallel SpGEMM computations

and has the potential to be applied to other sparse linear algebra algorithms (e.g.,

sparse matrix-vector multiplication). Overall, the synergy between the memory sys-

tem and processing elements, alongside the co-design of hardware architecture with

the SpGEMM algorithm, markedly enhances computational performance.

8

Chapter 2

RELATED WORK

Three categories of works are seen in the previous papers: one related to the

computation of the Cholesky factorization, one targeting the general matrix-matrix

multiplication, and one discussing Algebraic Multigrid methods. In each category,

I discussed and categorized CPU-, GPU-, and FPGA-based designs for dense (if

applicable) and sparse algorithms.

2.1 Cholesky Factorization

2.1.1 Sparse Cholesky Factorization on CPUs and GPUs

cuSPARSE [2] is a popular CUDA sparse matrix library that can be used to ap-

proximate the sparse Cholesky factorization on Nvida GPUs. Since such an approxi-

mation algorithm is intrinsically different from the Supernodal Multifrontal algorithm

adopted in this work that exactly computes the sparse Cholesky factorization, cuS-

PARSE is not considered as a reference method for comparison in this proposal.

CHOLMOD [19] is a set of routines for factorizing sparse symmetric positive defi-

nite matrices for CPUs and GPUs [74] using multifrontal and supernodal multifrontal

sparse Cholesky factorization methods. Its supernodal Cholesky factorization pro-

vides highly optimized implementations relying on LAPACK and the Level-3 BLAS.

Recursive behavior of sparse Cholesky factorization algorithms and complex data

dependencies among nodes in an elimination tree result in frequent off-chip memory

access and poor cache locality. Moreover, complex iterative operations (e.g., inverse

square root) with strong loop-carried data dependency in sparse Cholesky factoriza-

tion algorithms lead to low temporal/pipeline parallelism. Therefore, running these

9

algorithms on CPUs and GPUs suffers low performance.

2.1.2 Accelerating Sparse Cholesky Factorization on FPGAs

The work in [78] and [82] are based on the left-looking and multifrontal Cholesky

factorization method. There is a major drawback in both of these works. The left-

looking and multifrontal algorithms need more memory access and have larger com-

putational complexity than the supernodal multifrontal algorithm [55]. Additionally,

the work in [82] requires a scheduling algorithm for assigning the computation of

nodes in an elimination tree to the FPGA accelerator. However, [82] did not provide

any scheduling algorithm, resulting in suboptimal ordering of different nodes and,

consequently frequent off-chip memory access. Moreover, their proposed hardware

architecture introduces a long access latency and high overhead to store and read

intermediate results to/from the off-chip memory. Since the work in [78] did not pro-

vide the runtime of their design, I compare the performance of FSCHOL with [82].

Neither of these two works provided power or energy consumption.

2.2 General Sparse Matrix-Matrix Multiplication

2.2.1 Sparse Matrix Formats

Figure 4.2 shows a compressed representation of a sparse matrix using Compressed

Sparse Row (CSR) format [16]. In this format, nonzero values of the sparse matrix are

laid out in the row-major orientation in the off-chip memory. The CSR format stores

a sparse matrix using three arrays V , COL INDEX, and ROW PTR representing

nonzero values and column index of the nonzero elements, and the pointer to the first

nonzero element in the first two arrays, respectively.

In Compressed Sparse Column (CSC) [16] format, the nonzero elements are stored

10

in the column-major orientation using three arrays V , ROW INDEX, and COL PTR

for nonzero values, row index, and the pointer to the start of each column.

These data formats are not tailored to a SpGEMM algorithm or hardware archi-

tecture. Hence, they are not efficient for specific methods or hardware designs, which

leads to a huge performance loss. Unlike the CSR or CSC formats, the new CSV

format makes the input data access in the proposed buffering scheme regular.

2.2.2 SpGEMM Algorithms

There are three main methods for computing SpGEMM: inner product, outer

product, and Gustavson’s method. The differences among the three methods are

twofold. First, these methods require different data formats for the input matrices to

acquire contiguous access to off-chip memory. Second, some methods avoid wasted

computations by calculating the nonzero elements of the output matrix.

The inner product algorithm [81] computes all the elements of the output matrix,

including zero elements. In SpGEMM, most of the output elements are nonzeros.

Additionally, computing each element involves a dot product operation, including

index matching and multiply-accumulate (MAC). Jamro et al. [41] identifies index

matching as a hardware-expensive and the most time-consuming operation of the

inner product method. Therefore, the inner product algorithm inevitably causes its

implementations to summer from both performance and energy consumption over-

heads.

The outer product algorithm [81] performs an outer product operation between a

column (row) of the first input matrix and row (column) of the second input matrix.

The result of each outer product operation is a large partial sum matrix with the same

dimensions as the input matrices. The number of partial sums produced is equal to

the number of rows of the input matrices that are often large. Therefore, buffering and

11

accessing partial sums requires off-chip memory access that incurs long access latency

and consumes high energy. Moreover, the addition of large partial sums suffers from

synchronization overhead. Consequently, the outer product algorithm suffers from

undesired performance and energy consumption overhead.

Figure 2.1 illustrates the row-wise Gustavson’s method for multiplying two sparse

matrices (A × B). In this method, each non-zero element in a row of the first input

matrix (e.g., A(i, j) where i and j are the row and column indices, respectively) is

multiplied by all non-zero elements of the corresponding row of the second input

matrix (e.g., B(j, :) where : is the slice operation), resulting in a intermediate row of

sparse partial products (e.g., Cj,temp(i, :)). The addition of the sparse partial products

from the multiplication of all nonzero elements in a row (e.g., the ith row) of the first

input matrix with the corresponding rows of the second input matrix results in a final

row of the output matrix (e.g., C(i, :) =
∑
j

Cj,temp(i, :)).

The addition of sparse partial products consists of two operations: sort and merge.

Each sparse row is represented by a vector of pairs (V AL,COL IND) representing

the actual value and the column index of the corresponding nonzero elements. The

rows are already sorted by COL IND. To add two sorted sparse vectors, the two

vectors are first sorted into a single vector based on COL IND. Then, V ALs of

consecutive elements are merged (i.e., added) with the same COL IND into a single

element.

The column-wise Gustavson’s method is similar to the row-wise one but with

rows and columns switched. Gustavson’s method does not require the hardware-

expensive index-matching operation among the elements of input matrices. Also,

in Gustavson’s method, the addition operation of sparse partial products has low

on-chip memory requirement and synchronization overhead. In contrast, since an

entire intermediate matrix is dealt with using off-chip memory in the outer product

12

×
+

=

Figure 2.1: An Example For Calculating The First Row Of The Output Matrix

For SpGEMM Using The Row-Wise Gustavson’s Method. The Colored Elements

Represent Nonzero Values, And The Thick Borders Highlight The Rows Involved In

The Computation.

method, utilizing Gustavson’s method results in both improved performance and

lower energy consumption. Therefore, I choose the row-wise Gustavson’s method to

develop FSpGEMM upon.

However, Gustavson’s method maintains sub-par reuse of the second input ma-

trix’s data due to the irregular access pattern of rows that are read from off-chip

memory. Such an access pattern is dependent on the order of non-zero column in-

dices in the rows of the first input matrix, making the caching policy or buffering

scheme for the second input matrix too complex and costly to implement.

2.2.3 Accelerating Dense GEMM on FPGAs

Parametrized FPGA implementations of dot-product and matrix-vector multipli-

cation kernels are presented in [44]. The work in [44] also compared the proposed

kernels with CPU and GPU implementations in terms of performance and energy effi-

ciency. FBLAS [26] proposes scalable, modular, and OpenCL-based implementations

of the Basic Linear Algebra Subprograms (BLAS) library to improve the reusability of

the FPGA kernels. This work on accelerating the BLAS library targets dense vectors

13

and matrices thus are not suitable nor efficient for accelerating SpGEMM.

2.2.4 Accelerating SpGEMM on FPGAs

The work in [53] and [41] proposes the design and implementation of the inner

product algorithm for SpGEMM. They study the performance and energy consump-

tion trade-off of the design by tuning the architectural parameters (i.e., the number

of PEs and the block size in blocking decomposition). Changing architectural pa-

rameters results in different FPGA resource utilization. FP-AMG [33] implemented

a SpGEMM kernel for the acceleration of Algebraic Multigrid Solvers on FPGAs. All

the existing FPGA-based works adopt the inner product method for SpGEMM, thus

suffering from undesired performance and energy consumption overheads due to the

costly index matching operation. Differently, I adopt Gustavson’s algorithm to elim-

inate expensive index matching operations, zero output computations, and storage

of large intermediate values resulting in significant performance and consequently,

energy efficiency improvements.

2.2.5 Accelerating SpGEMM on Application-specific Integrated Circuits (ASICs)

There has been some recent work on accelerating SpGEMM on ASICs using either

the outer product or Gustavson’s method. OuterSPACE [64], SpArch [91], and the

work in [66] utilize the outer product method. SpArch reduces the number of partial

output matrices by matrix condensing to mitigate the overheads of synchronization

and off-chip memory access. However, all these works still require off-chip mem-

ory access to store and retrieve intermediate results (i.e., partial output matrices).

MatRaptor [81] and GAMMA [90] use Gustavson’s method to accelerate SpGEMM.

Nonetheless, MatRaptor suffers from poor data reuse of the input matrices, leading

to unnecessary off-chip memory access for loading input matrices repetitively with

14

a large performance penalty. GAMMA suggests utilizing a cache-based structure to

reuse input matrix rows to simultaneously retrieve multiple rows from matrix B for

parallel merging. This process demands significant memory bandwidth to fetch data

and results in prolonged PE stalls in the event of a cache miss.

2.2.6 Accelerating SpGEMM on FPGAs

The work in [53] and [41] propose the design and implementation of the inner

product algorithm on FPGAs. They study the performance and energy consump-

tion trade-off by tuning the architectural parameters (i.e., the number of processing

elements, and the block size in the blocking decomposition). FP-AMG [33] imple-

mented a SpGEMM kernel for the acceleration of Algebraic Multigrid Solvers on

FPGAs. However, all these works adopt the inner product method for SpGEMM,

thus suffering from undesired performance and energy consumption overheads due to

the costly index matching operation. Differently, I adopt Gustavson’s algorithm to

eliminate expensive index-matching operations and zero output computations, result-

ing in significant performance and, consequently, energy efficiency improvements.

The work in [49] implements Gustavson’s algorithm on a cache-based architecture

for reducing bank conflicts on embedded FPGA devices, limiting the scalability and

the scope of their design to FPGAs with traditional DDR-based memory systems.

Additionally, even though the matrices are sparse, there are many non-zero elements

per each row of matrix A, and the sparsity pattern of the adjacent rows might be very

disjoint. In these cases, caching a large number of rows from matrix B is impossible

and leads to long-latency data fetch due to cache misses. However, I propose a

scalable hardware architecture compatible with an arbitrary memory system and

buffering scheme enabled by a new format and a row reordering technique to ensure

the locality of data.

15

2.2.7 GPU Implementations of SpGEMM

There have been many research approaches for the GPU acceleration of SpGEMM

over the past few years, including cuSPARSE [61], Cusp [22], nsparse [60], RMerge

[30], AC-SpGEMM [87], bhSparse [56], spECK [65], and TileSpGEMM [63]. Tile-

SpGEMM [63] proposed an algorithm for introducing sparsity to the tiled dense

GEMM and storing non-empty tiles in a sparse form. TileSpGEMM outperforms

other GPU implementations and is used as the reference GPU solution for compari-

son in this study.

2.2.8 SpGEMM in DNNs

Matrix-matrix multiplication is a crucial operation in deep neural networks (DNNs).

Sparsity can reduce memory and computation needs by leveraging data compression

techniques such as pruning in both weights and activations. The systolic array-based

designs proposed in [14] and [47] process convolutions by first transforming feature

maps into a matrix using the im2col technique [84], where the input feature map

matrix is dense, and the filter matrix is sparse, and the core operation is sparse

matrix-dense matrix multiplication. Differently, in our design, I assumed both in-

put matrices are sparse, which happens to be the case when input feature maps (or

activation values) are zero or close to zero.

SparseTIR [89] proposed a compilation abstraction for optimizing the GPU per-

formance of deep learning workloads, achieved through the construction of a com-

posable search space of formats and transformations. The work in [52] proposed a

sparse convolution flow in TVM to enhance the im2col plus GEMM implementation

of convolution for optimization coverage with different characteristics.

16

2.2.9 Reordering Algorithms

Previous research addressed memory access problems, including irregular row ac-

cesses, in SpGEMM and SpMV (sparse matrix-vector multiplication) algorithms, us-

ing preprocessing techniques such as tiling and reordering [42, 36, 69, 90]. An optimal

solution to these problems is NP-complete [69]. Therefore, these works adopted differ-

ent heuristics to find a feasible solution. Most approaches [42, 90, 69] are not runtime

efficient. The work in [48] adopted the ELL format for matrix representation, which

suffers from redundant calculations, and attempted to alleviate this issue by reor-

ganizing the data positions. The study conducted in [67] tested several reordering

methods, such as Approximate Minimum Degree [12], Distance function [68], Reverse

Cuthill–McKee [21], and METIS [43], to observe their impact on GPU performance.

Differently, our approach uses a novel sparse format without incurring any redun-

dant computations, and our proposed row reordering algorithm has a better runtime

complexity by using a more efficient heuristic and only considering the non-empty

rows.

17

Chapter 3

ACCELERATING SPARSE CHOLESKY FACTORIZATION

This chapter discusses FSCHOL which is an OpenCL-based HPC framework proposed

for accelerating sparse Cholesky factorization on FPGAs.

3.1 Multifrontal Cholesky Factorization

Cholesky factorization is an efficient method for decomposing a symmetric positive-

definite matrix (A) into the product of a lower triangular matrix and its transpose

(L × LT). In many real-life science and engineering applications, matrix A is sparse

[54]. One of the significant methods for sparse matrix factorization was introducing

the multifrontal Cholesky factorization [27].

The multifrontal method reorganizes the overall factorization of a sparse matrix

into a sequence of partial factorizations of smaller dense matrices [55]. The main

feature of the multifrontal method is that the update contributions from a factor

column i (L(: i)) to the remaining submatrix are computed and accumulated with

contributions from other factor columns before the updates are performed. Therefore,

this method reduces the number of memory accesses and operations comparing to left

or right-looking algorithms [82].

The main concepts in the multifrontal method are the elimination tree, frontal and

update matrices (denoted by F and U , respectively), and the extended-add operation.

The elimination tree of the matrix L is defined as a tree structure with n nodes such

that node P is the parent of node C if and only if the first subdiagonal nonzero

element at column C is located at row P . Figure 3.1a and 3.1b shows the nonzero

pattern of an example matrix L and its corresponding elimination tree, respectively.

18

FCHOL: Sparse Cholesky Factorization on FPGAs 5

a b c d e f g h i j k l m n o p
0 •
1 •
2 •
3 • •
4 •
5 •
6 • •
7 • • • • •
8 • • • •
9 • •
10 • •
11 • • • •
12 • • • •
13 • • • • •
14 • • • • • •
15 • • • • • • • • •

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9

(a) The nonzero (circles) pattern of matrix L.

p

j

14

15

n

o

a m

i k l

gc

h

e

d

b

f

9 13

0 12

8 10 11

7 3

4 2 6

5

1

(b) The elimination tree. Blue
nodes show the critical path.

p

j

14

15

n

o

a m

i k l

gc

h

e

d

b

f

9 13

0 12

8 10 11

7 3

4 2 6

5

1

(c) The elimination tree. Blue nodes
show the critical path.

Fig. 1: The factor matrix sparsity pattern and its corresponding elimination tree.

Figure 2b shows the supernodal elimination tree of Figure 1c. Algorithm 1
describes sparse Cholesky Factorization using the supernodal multifrontal method.
In Algorithm 1, notion nonzeros(V) is equivalent to the dense form (i.e., nonzero
elements) of sparse vector V . Also, notion ⊕ represents the extend-add operation

(a) The Nonzero (Circles) Pattern Of Ma-

trix L.

p

j

14

15

n

o

a m

i k l

gc

h

e

d

b

f

9 13

0 12

8 10 11

7 3

4 2 6

5

1

(b) The Elimination

Tree.

l, m, n, o, p

j

a

e c

i

d

k

f, g, h

24

5

6 8

9

b

0

1

3

7

(c) The Supern-

odal Elimination

Tree.

Figure 3.1: The Factor Matrix Sparsity Pattern And Its Corresponding Elimination

Trees.

If I define the critical path as the longest path of nodes from the first to the top level

of the elimination tree (e.g., colored nodes in Figure 3.1b), the number of nodes in

the critical path determines the maximum amount of dependency among nodes to be

resolved.

A practical improvement to the multifrontal method is the use of supenodes [55].

A supernode is a group of columns (i.e., nodes in the elimination tree) if they can

be treated as one computational unit in the course of sparse Cholesky factorization.

If I define the sparsity structure (i.e., nonzero patterns) of column j as Struct(L(:

, j)), the set of contiguous columns {j, j + 1, · · · , j + t} constitutes a supernode if

Struct(L(:, k)) = Struct(L(:, k+1))∪ {k} [62]. One can refer to [82] and [27] for the

detailed comparison on different sparse Cholesky factorization algorithms.

Figure 3.1c shows the supernodal elimination tree of Figure 3.1b. Algorithm 1

19

describes the sparse Cholesky factorization using the supernodal multifrontal method.

In Algorithm 1, notion nonzeros(V) is equivalent to the dense form (i.e., nonzero

elements) of sparse vector V . Also, notion ⊕ represents the extend-add operation

that adds two matrices with different dimensions by extending the smaller matrix

with zeros. Comparing the critical path of the two methods, the node dependency

is reduced. Moreover, Algorithm 1 introduces more parallelism in each outer loop

iteration. Additionally, since the update matrix is generated per supernode rather

than a node, the number of operations and memory accesses is reduced.

3.2 Framework Design

The FSCHOL framework consists of two parts: The FPGA kernel and the host

program running on the CPU. The kernel code implemented on the FPGA acceler-

ator performs computationally intensive tasks. On the host side, the OpenCL API

supports efficient management and scheduling of tasks running on the FPGA.

3.2.1 Hardware Architecture of the FPGA Kernel

Architectural Overview

Figure 5.3 shows a high-level block diagram of FSCHOL’s hardware architecture,

including five modules: two processing elements (PEs), one load, and two store mod-

ules. The PEs are responsible for computations, while load and store modules read

and write input and output data to/from off-chip memory, respectively. All mod-

ules process data in a pipelined and vectorized fashion. PEs are connected to load

and store modules via FIFO channels. Also, PEs utilize FIFOs to send and receive

intermediate results to/from each other. Separating load/store modules from PEs

and connecting them using a FIFO helps compensate for the difference between the

off-chip memory bandwidth and the data processing throughput.

20

Algorithm 1: The Supernodal Multifrontal Cholesky Factorization [55]

1 for each supernode S in increasing order of first column subscript do

2 Let S = {j, j + 1, · · · , j + t};

3 Let j + t, i1, · · · , ir be the locations of nonzero elements in L(:, j + t);

4 FS =



aj,j aj,j+1 · · · aj,j+t aj,i1 · · · aj,ir

aj+1,j aj+1,j+1 · · · aj+1,j+t aj+1,i1 · · · aj+1,ir

...
... · · · ...

... · · · ...

aj+t,j aj+t,j+1 · · · aj+t,j+t aj+t,i1 · · · aj+t,ir

ai1,j ai1,j+1 · · · ai1,j+t 0 · · · 0

...
... · · · ...

... · · · ...

air,j air,j+1 · · · air,j+t 0 · · · 0



;

5 nchildren := no. of children of S in supernodal elimination tree;

6 for C from 1 to nchildren do

7 FS = FS ⊕ U ; // update(S,C)

8 end

/* start of factorize(S) */

9 for i from 0 to t do

10 nonzeros(L(:, j + i)) = FS(i :, i)/
√
FS(i, i);

11 end

12 US = FS(t+ 2 :, t+ 2 :)−


li1,j+t

...

lir,j+t


[
li1,j+t · · · lir,j+c

]
;

/* end of factorize(S) */

13 end

21

When the data processing throughput does not match the available off-chip mem-

ory bandwidth, and loading and storing primary input and output data happen in

the same module that the data are being processed, the load and store operations

would be stalled for the computation units. When the depth of the FIFO channels is

optimized by the offline compiler, the load and store modules are able to continuously

read and write data from/to the off-chip memory and write and read them to/from the

channels, respectively. For each supernode, in addition to several consecutive columns

of input matrix A depending on the size of the supernode, a PE needs configuration

information on how to process the assigned supernode (job). The job information is

set by the scheduling algorithm in the host program. Therefore, channels QA and

Qjob are used to send the elements of matrix A and the job information, respectively.

Channel QP is used to send the Boolean elements of the pattern matrix to PEs for

the extend-add operation which the details are discussed in Section 3.2.1. Channel

QL sends the consecutive columns of factor matrix L of the corresponding processed

supernode from a PE to the store module. Channels QF transmit the intermediate

value of matrix F among PEs.

Load/Store Modules

Each load module iterates over the number of jobs that are assigned by the scheduling

algorithm. First, the load module sends a data structure containing the configuration

bits of the assigned job described in Table 3.1. When a supernode S is assigned to a

PE, S needs to be updated by all of its children according to lines 6-8 of Algorithm

1. Bit job.up determines whether S is updated by any of its children. If not, the load

module reads input data from off-chip memory and write them to QA to be consumed

by a PE. Store modules read the output data from PEs and send them to the off-chip

memory as soon as a vector of factor matrix L is ready.

22

O
ff

-c
h
ip

 M
em

o
ry

S
to

re
 K

e
rn

el

QP

QA

Qjob

L
o

ad
 1

PE 1
QLQL

Q
F

Q
F

QP

QA

Qjob

QP

QA

Qjob

L
o

ad
 2

PE 1
QLQL

Q
F

Q
F

Figure 3.2: The High-Level Block Diagram Of The Hardware Architecture.

Processing Element (PE)

Based on Algorithm 1, I define two major operations in each outer loop iteration:

update, and factorize. Operation update(S,C) (line 7 of Algorithm 1) updates the

frontal matrix of supernode S (FS) using the update matrix of its child supernode C

(UC). Operation factorize(S) (lines 9-12 of Algorithm 1) produces t+ 1 columns of

factor matrix L and the update matrix of supernode node S (US). Figure 4.6 shows

the high-level block diagram of each PE. Modules Vector Addition and Matrix Exten-

sion are responsible for operation update and modules Sqrt, Vector Division, Outer

Product, and Vector Subtraction perform operation factorize. For each scheduled

job, a PE performs one update and one factorize operation (depending on the update

status of FS) in a pipelined and vectorized fashion.

23

Table 3.1: Configuration Bits Of A Job.

Attribute Description Type

job.up supernode is partially up-

dated
Boolean

job.last c supernode is going to be up-

dated by its last child

job.F rd intermediate matrix F

should be read from inter-

module FIFO

job.F wr intermediate matrix F

should be written to inter-

module FIFO

job.U rd update matrix U should be

read from FIFO

QUQU

QFQF

QLQL

D
e
m

u
x

sqrt

Matrix Extension
M

u
x VL

VL-1

1

2

Vector Addition

Vector Division Outer Product

Vector Subtraction

D
e
m

u
x

M
u
x

M
u
x

U_rd

F_rd up

F_wr

last_c

MemU

0

QPQP

QAQA

QFQF

QF,PEQF,PE

VL

VL-1

1

2

VL

VL-1

1

2

VL

VL-1

1

2
÷

÷

÷

÷

Figure 3.3: The High-Level Block Diagram Of A PE.

When there is no available update matrix to update the frontal matrix of su-

pernode S, intermediate (i.e., partially updated) values of FS are stored to complete

the update process (the for loop at lines 9-11 of Algorithm 1) later. Storage units

24

for storing intermediate results inside each PE include RAM MemU for the update

matrix, FIFO channel QU for the extended matrix update matrix, and FIFO channel

QF,PE for the partially updated frontal matrix. Two inter-module FIFO channels

are used to send and receive the intermediate matrix F (QF) among PEs whenever

necessary.

For each job, PE starts by reading the configuration bits to control the multiplex-

ers. Vectors VU and VF are defined to represent a vector with size V L of matrices

F and U , respectively. If job.up is not set, node S is not updated by any of its

children, and its factor vector VF was not initialized with the values of matrix A as

described in line 4 of Algorithm 1. Therefore, vector VF is initialized by input data

from QA. If node S is already updated, depending on the value of job.F rd, VF reads

its value from QF or QF,PE. According to Table 3.1, if job.F rd is set, it shows that

the intermediate values of matrix F as the result of a previous update of supernode

S by one of its other children are stored at the inter-module FIFO QF,PE; otherwise

they are stored at intra-module FIFO QF . If node S does not have any child, there

is no update matrix to update node S. Therefore, Urd determines whether vector VU

should be initialized by zeros (when there is no child) or by the values stored at QU .

After loading vectors VU and VF with the corresponding values, they are added in

parallel, and the output is stored at VF .

After adding vectors VU and VF , a PE decides whether to store the results or

feed VF to the pipeline for the factorize(S) operation. As described in Table 3.1,

bit job.last c defines whether node S is ready to be factorized. If it is not set,

PE stores vector VF in FIFO QF or QF,PE depending on the value of job.F wr. If

it is set, the PE takes the square root of the first t + 1 diagonal elements of FS

(f1,1, f2,2, · · · , ft+1,t+1) and divides the superdiagonal elements of FS by the square

root value. The PE uses elements li1,j+t, li1,j+t, · · · , lir,j+c for the consequent outer

25

F =


f1,1 f1,2 f1,3

f2,1 f2,2 f2,3

f3,1 f3,2 f3,3

 , U =

u1,1 u1,2

u2,1 u2,2

 , P =


1 0 1

0 0 0

1 0 1



⇒ F ⊕ U =


f1,1+u1,1 f1,2 f1,3+u1,2

f2,1 f2,2 f2,3

f3,1+u2,1 f3,2 f3,3+u2,2


Figure 3.4: An Example Of Extend-Add Operation.

product operation. Moreover, update matrix US is computed as describe at line 10

of Algorithm 1 and stored in MemU .

Figure 3.4 shows an example of the extend operation at line 7 of Algorithm 1 and

how update matrix U is extended and stored on QU . The PE initializes an index

counter for MemU and a vector of elements to zeros, and loops over all elements of a

Boolean pattern matrix (P) received from FIFO channel QP . If an element of matrix

P is true, an element of the update matrix in MemU is stored to the vector location

indexed by the counter, and the index counter is increased by 1. Otherwise, the

corresponding element of the vector is skipped and kept as zero. Once V L iterations

have been passed, the vector is stored on QU .

OpenCL Implementation

FSCHOL takes advantage of the loop unrolling technique provided by OpenCL for

parallel implementation of vectorized operations. The PEs are implemented as au-

torun modules. An autorun module starts executing automatically and does not need

to be launched by a host. Therefore, the Intel OpenCL offline compiler for FPGA

does not need to generate the communication logic between the host and PEs, which

26

Table 3.2: The Required Size (Bits) For Each Storage Unit.

Unit Size

QU(2×)

[(N +M)× (N +M)× V L]× V L×WLQF (2×)

QF,PE(2×)

MemU(2×) [N × V L]× [N × V L]×WL

reduces logic utilization and enables additional performance optimizations [40]. How-

ever, load and store modules are launched explicitly by the host since they need to

access off-chip memory.

Most storage units are implemented as FIFO channels rather than RAMs, where

random access is not required. However, forMemU there is no choice other than using

RAMs. Although using shift registers would be more efficient in terms of hardware

complexity, the number of elements to be stored is unknown at the compile time and

depends on dimensions of FS. Additionally, no intermediate data is written and read

to/from off-chip memory.

As mentioned before, the datapath has V L single-precision floating-point numbers,

and the arithmetic submodules perform V L operations in parallel. Table 3.2 shows

the size of storage units for each PE. Dimensions of FIFOs and RAM blocks are

represtend as Depth ×Width and Rows × Columns, respetively. Parameter WL is

the word length of the data format (e.g., 32 bits for single-precision floating-point).

There are three tunable parameters: V L, N , andM . ParameterM andN are used

to scale the design to support arbitrary sizes for frontal and update matrices based on

the maximum supernode size (i.e., the maximum number of consecutive columns with

the same sparsity pattern) and the maximum number of nonzero elements among all

27

columns of the factor matrix, respectively. The total number of required DSPs for

the FPGA kernel with two PEs is equal to 7× V L+5. According to Table 3.2, total

required size for the storage units is (8N2 + 6M2 + 12M ×N)× V L2 ×WL bits.

Performance-optimized Model for Determining Design Parameters

It is important to provide a guideline to derive design parameters (V L, N , and M) to

minimize the runtime subject to the available on-chip resources and the characteristics

of the input matrices.

I formulate the runtime (R) as R = N
F×P×U

, where N , F , P , and U are the number

of floating-point operations (FLOPs) to factorize a matrix using Algorithm 1, the

clock frequency, the computational parallelism, and the spatial-temporal utilization

factor, respectively. U is a statistical metric that measures the average occupation (in

both space and time) of the available computation resources in a computing device

for performing the FLOPs of a given algorithm. Therefore, U is the average ratio

of effective computational parallelism per clock cycle ranging from 0 to 1. N is an

algorithmic parameter and depends on dimensions and the sparsity structure of the

input matrix. P is determined by the total number of utilized DSP units calculated

as 7× V L+ 5. Therefore, R can also be expressed as

R =
NOps

F × (7× V L+ 5)× U
=

α

7× V L+ 5
, (3.1)

where α =
NOps

F×U
is a empirical term that lumps the algorithm- and implementation-

specific terms NOps, F , and U . Note that α is introduced mainly to simply the formu-

lation and can be treated as a constant when determining the optimal architectural

parameters.

I define the constrained optimization problem as

minimize R(V L) =
α

7× V L+ 5

28

subject to f1(V L) ≤ C1,f2(V L,M,N) ≤ C2,

M = ⌈ C3

V L
⌉,N = ⌈ C4

V L
⌉,

(3.2)

where f1(V L) = 7 × V L + 5 and C1 are the total number of required and available

DSP blocks, respectively, f2(V L,M,N) = (8N2+6M2+12M ×N)×V L2×WL and

C2 are the total required and available RAM size, respectively, C3 is the maximum

supernode size (i.e., maximum number of consecutive columns of the factor matrix

with the same sparsity pattern), and C4 is the maximum number of nonzero elements

among all columns of the factor matrix. For the total available RAM size (C2) one

must consider a margin from the values reported in the FPGA device datasheet to

consider for RAM resources used for the glue and control logics.

Based on R(V L) = α
7×V L+5

, to minimize the runtime, V L should be maximized.

The constrained optimization problem defined as Equation 4.7 has an analytical so-

lution as following.

1. Derive the first constraint for V L from f1(V L) ≤ C1.

2. Derive the second constraint for V L by using M = ⌈ C3

V L
⌉ and N = ⌈ C4

V L
⌉ in

f2(V L,M,N) ≤ C2.

3. Now I have two ranges of values for V L. The maximum value of V L is deter-

mined from the tighter constraint.

4. Using calculated V L, the values of N and M are found from M = ⌈ C3

V L
⌉ and

N = ⌈ C4

V L
⌉.

29

3.2.2 Scheduling Algorithm

Concepts

The main challenges involved in co-designing the scheduling algorithm with the the

proposed hardware architecture for the FPGA kernel stem from two perspectives. On

the one hand, as the objective of the scheduling algorithm is to minimize the amount

of off-chip memory access on the FPGA device, the impact of workload scheduling

on the amount of off-chip memory access must be accurately modeled based on the

specific architecture of the FPGA kernel. On the other hand, the scheduling algorithm

needs to generic enough to be able to adapt to the FPGA kernel implementations in

various computational parallelism on different FPGA devices.

I propose and implement a scheduling algorithm that intelligently assigns the up-

date and factorization operations (update and factorize) to PEs to minimize on-chip

memory requirements with no off-chip memory access for the storage of intermedi-

ate results. The main goal of the algorithm is to pipeline the dependency among a

child supernode C and its parent supernode S to avoid storing the update matrix of

supernode C. Therefore, the algorithm assigns operation update(S,C) immediately

after operation factorize(C). In this order, when supernode C is factorized and

its update matrix is produced, the update matrix is consumed by supernode S at

the same PE to reduce the on-chip storage requirements and reduce communications

among different PEs. I provide the pseudo-code only for PE1 as it is the same for

PE2. Note that the algorithm works for both supernodal and potentially multifrontal

Cholesky factorization.

30

Details

In Algorithm 2, list nc is used to keep track of the number of children that each

supernode is already updated by. Line 3-6 works on supernodes with no child. Since

they do not have any dependency, it is only needed to initialize the frontal matrix

F with elements of the matrix A and immediately factorize the supernode. Once a

supernode with no dependency is factorized in a PE, its update matrix is ready to

update its parent supernode. Therefore, the supernode ID is pushed to PE’s queue.

Then, the supernode ID is popped from the queue, and the corresponding parent

supernode is updated. Suppose a supernode is updated by all of its children. In that

case, it is ready to be factorized, and the resulting update matrix is used for updating

the parent supernode in the consequent job assigned to this PE. Otherwise, the queue

would be empty, and the algorithm starts with lines 3-6. During this process, if a

parent supernode needs to be updated in a different PE than it was updated, the

configuration bits of the job assigned to the other PE is updated to let the PE know

that it has to send the intermediate frontal matrix to the inter-module FIFO (QF)

as shown by crossed-out functions in Figure 3.5.

The scheduling algorithm is implemented as a part of the host code. As an exam-

ple, I apply the algorithm to the elimination tree illustrated in Figure 3.1c. The or-

dered list of supernodes is T = [0, 4, 1, 2]. Lists P andNC are [7, 3, 5, 8, 5, 6, 9, 9, 9,−1]

and [0, 0, 0, 1, 0, 2, 1, 1, 1, 3], respectively. Value −1 in list P shows that the last node

is reached. The output of this example is shown in Figure 3.5.

31

update(9,8) factorize(9)

update(8,3) factorize(8) update(9,6) send(F9)

update(3,1) factorize(3) update(6,5) factorize(6)

update(1,-) factorize(1) update(5,2) factorize(5)

update(9,7) store(F9) update(2,-) factorize(2)

update(7,0) factorize(7) update(5,4) store(F5)

update(0,-) factorize(0) update(4,-) factorize(4)

PE1 PE2

Figure 3.5: The Output Of Scheduling Algorithm For The Supernodal Elimination

Tree In Figure 3.1c. The Time Increases From Bottom To Top.

3.3 Evaluation

3.3.1 Setup

I evaluate the performance and energy efficiency of FSCHOL in terms of runtime

(s) and energy consumption (J). To evaluate the design, I select a set of matrices

from the publicly available SuiteSparse Matrix Collection [25] (formerly known as the

University of Florida Sparse Matrix Collection), a set of sparse matrices in real ap-

plications. The characteristics of the matrices are summarized in Table 5.1 including

matrix dimensions (the number of rows and columns are equal), the density percent-

age calculated from No. of Nonzero Elements
Matrix Size

× 100, and the number of supernodes.

The data format in our design is single-precision floating-point (32-bit). I develop

and implement FSCHOL using Intel FPGA SDK for OpenCL with Quartus Prime

Pro 20.1. I compare FSCHOL with CPU and GPU versions of CHOLMOD [19].

As mentioned before, the supernodal multifrontal method decomposes the sparse

32

Cholesky factorization into a series of dense factorizations. These dense factorizations

rely on dense BLAS and LAPACK libraries. Therefore, to improve the performance

of the CHOLMOD library on CPU, I use Intel Math Kernel Library (Intel MKL) [86]

instead of single-threaded BLAS and LAPACK routines. Intel MKL is a set of highly

optimized, threaded, and vectorized math functions that maximize the performance

of Intel’s processors.

I measure the performance of the CPU implementation of CHOLMOD on a dual-

socket Intel Xeon E5-2637 v3 CPU [6] with an effective bandwidth of 51 GB/s per

socket, and the GPU implementation of CHOLMOD on an NVIDIA Tesla V100

GPU, one of the most powerful data center GPUs for accelerating HPC [9]. Our

work is evaluated on an Intel Stratix 10 GX FPGA Development Board [5]. Table 3.4

summarizes the specifications of the CPU system, the GPU device, and the FPGA

board used in the evaluation.

3.3.2 Experiment Results

Performance Comparison with CPU and GPU Implementations

The architectural parameters for implementing the FPGA kernel are V L = 128,

N = 4, and M = 2. The FPGA kernel runs at 236 MHz. Table 3.5 shows the

resource utilization for the implemented FPGA kernel.

Table 3.6 shows the performance comparison of FSCHOL in terms of runtime in

seconds with the GPU version of CHOLMOD and the CPU version of CHOLMOD en-

hanced with Intel MKL library for implementing the supernodal multifrontal Cholesky

factorization algorithm. The lower runtime shows higher performance. According

to Table 3.6, the CPU implementation outperforms the GPU version of CHOLMOD

since algorithms and applications with low arithmetic computation and complex mem-

33

ory handling are more efficient to be mapped on CPUs than on GPUs [28]. Also, the

GPU runs with the error correction code (ECC) turned on at the base clock speed.

One can further boost the GPU performance using a boost clock speed with ECC

turned off [1] at the cost of much higher power consumption and random bit errors. I

choose the base clock speed with ECC to evaluate the sustainable performance achiev-

able in a scientific computing environment. The GPU can not work at a boost clock

speed permanently or for a long time. Moreover, turning off ECC compromise the

results probabilistically where accurate results are necessary for scientific computing.

Figure 5.6 shows the performance improvement of FSCHOL over the CPU and

GPU implementations for corresponding the matrix. FSCHOL improves the perfor-

mance of CPU and GPU versions of CHOLMOD by 0.8×-29.4× and 3.7×-33.7×,

respectively. FSCHOL improves the performance on average by 5.5× and 9.7× over

CPU and GPU implementations, respectively. For matrices where FSCHOL is less

performant than the CPU implementation of CHOLMOD, the sparsity pattern is less

structured and there are too many supernodes that cause performance degradation,

while for matrices with a very structured sparsity pattern and a small number of

nonzero supernodes compared to the matrix dimension, FSCHOL significantly im-

proves the performance as the performance scales with the number of supernodes and

the matrix size.

Performance Comparison with the State-of-the-art FPGA Implementation

The work in [82] implemented the multifrontal Cholesky factorization algorithm on

a Xilinx Virtex-7FPGA VC709 evaluation board with a 28nm FPGA device [10].

Differently, FSCHOL is implemented on an Intel Stratix 10 GX FPGA development

board with a 14nm FPGA device [4]. For a fair comparison, I normalize the per-

formance numbers of [82] to the 14nm technology node using the scaling factor of

34

2
.7

×

0
.8

×

1
.4

×

0
.8

×

2
9

.4
×

3
.0

×

3
.6

×

1
.5

×

2
0

.2
×

3
.7

×

5
.9

×

6
.0

×

3
3

.7
×

4
.5

×

4
.0

×

3
.7

×

n
d

3
k

T
re

fe
th

en

sm
t

th
re

ad

p
d

b
1
H

Y
S

n
d

2
4
k

F
au

lt

E
m

il
ia

b
o

n
e0

1
0

CPU GPU
6
.3

×

5
.7

×

Figure 3.6: Runtime Speedup Of The FPGA Implementation Of FSCHOL Over The

CPU And GPU Implementations Of CHOLMOD. The GPU Runs With ECC Turned

On At The Base Clock Speed.

delay = 1/S, where S = 28/14nm, commonly used in the existing literature [73]. In

addition, the performance of the FSCHOL solution is evaluated based on the same

matrices used in the reference work [82].

Table 3.7 shows the performance comparison of FSCHOL in terms of normalized

runtime in seconds with the work in [82] for implementing the multifrontal Cholesky

factorization algorithm. The original performance results of [82] are also shown in Ta-

ble 3.7. Similarly, the lower runtime shows the higher performance, and the numbers

in parentheses show the performance improvement of FSCHOL with respect to the

corresponding matrix. The experimental results show that the proposed FSCHOL so-

lution outperforms the reference design in terms of performance on average by 11.7×

35

across the three different benchmarks.

The performance improvement of FSCHOL over the work in [82] is primarily due

to the elimination of off-chip memory access for buffering intermediate results as a

result of our software-hardware co-design methodology. Specifically, the scheduling

algorithm implemented in the host program is tailored to the proposed hardware

architecture of the FPGA kernel to offload the computational workloads of different

supernodes in an optimized order that maximizes the data reuse of intermediate

results, thus avoids unnecessary off-chip memory access.

Energy Efficiency Comparison with CPU and GPU Implementations

I measure the average power consumption of the Intel Stratix 10 GX development

board using the Power Monitor tool in the Board Test System (BTS) application

provided by Intel [39] during FPGA kernel execution. BTS measures the supply

voltage and the drawn current of the entire FPGA board by reads values from on-

board sensors.

For the power measurement of the CPU, I utilize likwid-powermeter tool from

Likwid [31] to access the Running Average Power Limit (RAPL) counters on the

Intel CPU. The RAPL interface is controlled through MSR registers [38]. For the

power measurement of the GPU, I utilize the POWER query option [7] of NVIDIA

System Management Interface (nvidia-smi) [8] tool.

Table 3.8 summarizes the energy consumption (J) of different implementations

calculated from multiplying the runtime (s) and the power consumption (W). Figure

3.7 show the energy consumption reduction factor of FSCHOL over the CPU and

GPU implementations for corresponding the matrix. FSCHOL reduces the energy

consumption of the CPU and GPU implementations on by 1.6×-54.7× and 8.5×-

92.1×, respectively. FSCHOL reduces the energy consumption on average by 10.3×

36

1
1
.8

×

5
.1

×

1
.6

×

2
.6

×

1
.6

×

5
4
.8

×

5
.6

×

6
.7

×

2
.7

×

3
6
.2

×

8
.5

×

1
0
.4

×

1
0
.7

×

1
0
.2

×

9
2
.1

×

1
4
.7

×

2
5
.3

×

1
4
.6

×

n
d
3

k

T
re

fe
th

e
n

sm
t

th
re

a
d

p
d
b

1
H

Y
S

n
d
2

4
k

F
au

lt
_
6

3
9

E
m

il
ia

_
9

2
3

b
o
n

e
0
1

0

CPU GPU

Figure 3.7: Energy Consumption Reduction Of The FPGA Implementation Of

FSCHOL Compared To The CPU And GPU Implementations Of CHOLMOD. The

GPU Runs With ECC Turned On At The Base Clock Speed.

and 24.7× over CPU and GPU implementations, respectively. Since the work in

[82] did not provide any result on power or energy consumption, I can not compare

FSCHOL in terms of energy consumption with [82].

37

3.4 Conclusion

In this chapter, I present FSCHOL, an OpenCL-based HPC framework for FPGA

acceleration of sparse Cholesky factorization. FSCHOL includes a deeply pipelined

and scalable FPGA kernel that accelerates supernodal multifrontal Cholesky factor-

ization algorithm and a scheduling algorithm for efficient assignment of computational

nodes for potentially all elimination-tree-based multifrontal methods.

I propose a performance-optimized model to derive architectural parameters for

the FPGA kernel subject to the available on-chip resources (DSPs and RAMs) and

input matrix characteristics (the maximum supernode size and the maximum number

of nonzero elements among all columns of the factor matrix) to map the design into

suitable data-center grade FPGAs.

The experimental results based on the Intel Stratix 10 GX FPGA development

board for accelerating the Cholesky factorization of a set of sparse matrices from

SuiteSparse Matrix Collection show on average one order of magnitude higher per-

formance and lower energy consumption compared to the state-of-the-art implemen-

tations of sparse Cholesky factorization on CPU, GPU, and the other FPGA work

[82].

38

Algorithm 2: The Scheduling Algorithm
Input: The list of (super)nodes with no child (T), the list of parents for each (super)node

(P), and the list of the no. of children of each (super)node (NC).

Output: The assignment of update and factorize operations to each PE.

1 initialize list nc to zeros to keep track of the no. children that updates each (super)node;

initialize Q1 and Q2 as empty to store the ready (super)node to be updated or factorized;

2 while the top (super)node is not factorized do

3 if Q1 is empty then

4 S = T [0];

5 assign update(S,−) to PE1;

6 remove T [0] from T;

7 p = P [S];

8 push(p,Q1);

9 else

10 S = pop(Q1);

11 indicate (super)node S is being updated;

12 indicate vector VU should be read from QU ;

13 if nc[S] is equal to zero then

14 if (super)node S was updated in this PE then

15 indicate vector VF should be read from QF,PE ;

16 else

17 indicate vector VF should be read from QF ;

18 update job bits of the other PE to write the intermediate vector VF to QF ;

19 end

20 end

21 nc[S] + +;

22 if nc[S] is equal to NC[S] then

23 assign(p[S]) to PE1;

24 push(S,Q1);

25 end

26 end

/* similar approach for PE2 */

27 end 39

Table 3.3: The Specification Of Matrices Chosen From The SuiteSparse Matrix Col-

lection.

Matrix #Supernodes #Rows Density (%)

nd3k 87 9,000 4.049

Trefethen 20000b 3,678 19,999 0.139

smt 856 25,710 0.567

thread 923 29,736 0.503

pdb1HYS 1,149 36,417 0.328

nd24k 625 72,000 0.554

Fault 639 30,305 638,802 0.007

Emilia 923 43,270 923,136 0.005

bone010 44,319 986,703 0.005

Table 3.4: Pecifications Of The CPU System, The GPU Device, And The FPGA

Board Used In The Evaluation.

Hardware Platform Specification

Intel Xeon E5-2637 v3

CPU

15M Cache, 3.50 GHz Clock Frequency, 4 Cores, 68

GB/s Memory Bandwidth

NVIDIA Tesla V100

GPU

16 GB HBM2, 640 Tensor Cores, 5120 CUDA

Cores, 1245-1380 MHz Clock Frequency, 900 GB/s

Memory Bandwidth

Intel Stratix 10 GX

FPGA Board

5760 DSPs, 229 Mb M20K, 15 Mb MLAB, 15 GB/s

Memory Bandwidth

40

Table 3.5: Resource Utilization On Intel Stratix 10 GX With V L = 128, N = 4, And

M = 2.

Resource ALUTs FFs RAMs DSPs

Utilization
315,858 634,846 6,844 901

17% 17% 58% 16 %

Table 3.6: Runtime (Second) Comparison Between The FPGA Implementation Of

FSCHOL And The CPU And GPU Implementations Of CHOLMOD.

Matrix
CHOLMOD

FSCHOL
CPU GPU#

nd3k 0.31 0.99 0.05

Trefethen 20000b 3.56 4.82 1.30

smt 0.26 1.84 0.31

thread 0.47 2.04 0.34

pdb1HYS 0.36 2.40 0.42

nd24k 10.49 12.02 0.36

Fault 639 33.00 49.26 10.89

Emilia 923 55.57 62.90 15.57

bone010 23.28 58.48 15.88

ECC on and base clock speed.

41

Table 3.7: Runtime (Second) Comparison Between The FPGA Implementation Of

FSCHOL And The Reference Work In [82].

Matrix [82] [82]# FSCHOL (Speedup)

nd3k 1.96 0.98 0.05 (19.6×)

Trefethen 20000b 3.94 1.97 1.30 (1.5×)

nd24k 10.12 5.06 0.36 (14.1×)

Technology scaling to 14nm: delay = 1/S where S = L/14nm.

Table 3.8: Energy Consumption (J) Comparison Between The FPGA Implementation

Of FSCHOL And The CPU And GPU Implementations Of CHOLMOD.

Matrix
CHOLMOD

FSCHOL
CPU GPU#

nd3k 13 39 1

Trefethen 20000b 146 244 29

smt 11 72 7

thread 19 80 8

pdb1HYS 15 95 9

nd24k 430 723 8

Fault 639 1353 3523 240

Emilia 923 2279 8665 342

bone010 954 5108 349

ECC on and base clock speed.

42

Figure 4.1: The Sparse Matrix Representation Using The CSR And CSV Formats.

Each CSV Vector Is In The Length Of The Number Of Computing Units (2 Assumed

In This Example). Transparent Lines Show The Storage Order For Each Format.

Chapter 4

ACCELERATING GENERAL SPARSE MATRIX-MATRIX MULTIPLICATION

This chapter explains the proposed approach for an OpenCL-based HPC framework

for accelerating general sparse matrix-matrix multiplication on FPGAs and a new

compressed sparse vector (CSV) format for representing sparse matrices.

4.1 Compressed Sparse Vector (CSV) Format

As GEMM and SpGEMM are primarily computed with spatial parallelism in

CPU, GPU, and most custom hardware accelerators, each row of input matrix A is

assigned to a different computation unit. Using Gustavson’s method, I read a vector

of nonzeros with the same column index from matrix A and read the corresponding

43

0 a b c

1 d e f

2

3 g h

4 i j

5

0

31

4

1
1 2

2

0 a b c

3 g h

1 d e f

4 i j

2

5

𝐴𝐴 ∈ ℝ𝑛𝑛×𝑚𝑚 𝐺𝐺 𝑉𝑉,𝐸𝐸 , 𝑉𝑉 = 𝑛𝑛

Similarity
Graph

𝐴𝐴𝑅𝑅 ∈ ℝ𝑛𝑛×𝑚𝑚

Row
Reordering

a b

d e

c

f

a b

g

c

h

d e

i

f

j

CSV Format CSV Format

(a) (b) (c)

g h

i j

𝑛𝑛𝑛𝑛(𝐴𝐴) = 9,𝑀𝑀𝑀𝑀𝑀𝑀(𝐵𝐵) = 10% 𝑛𝑛𝑣𝑣 𝐴𝐴 = 6,𝑀𝑀𝑀𝑀𝑀𝑀(𝐵𝐵) = 40%

Figure 4.2: (A) The Sparse Matrix A Is Represented Using The CSV Format. Each

Sparse Vector Is In The Length Of The Number Of Computing Units (2 In This Ex-

ample). The Order Of Sparse Vectors Shows The Storage Layout. (B) The Similarity

Graph For Rows Of Matrix A Is Constructed Based On The Sparsity Pattern Along

Columns. (C) The Reordered Matrix Using The Row-Reordering Algorithm. Note

The Empty Rows Are Moved To The End Of The Matrix. The CSV Representation

Indicates Reduced Memory Access.

row of matrix B for reuse among computation units (see Fig. 4.5a). Reading the

nonzero elements from multiple rows with the same column index A based on the

CSR format in a vector fashion (see Fig. 4.1) leads to a non-continuous memory

access pattern. The same problem exists for the column-wise Gustavson’s method

when reading multiple columns of the input matrix using the CSC format [16]. A

non-continuous memory access pattern results in a large performance penalty. Addi-

tionally, using the CSC and CSR formats for the row- and column-wise Gustavson’s

algorithms, respectively, requires having a very large lookup table (in the size of the

input matrix dimension) to keep track of the locations of the last nonzero entry read

from the input matrix, which is too costly to implement for large matrices. Different

formats have been used in literature for data compression and improving resource

utilization [35], such as Doubly Compressed Sparse Row (DCSR) [17], compressed

sparse blocks (CSB) [11], SELL-P [13], and ELLPACK-R [85]. However, they suffer

from the same issue mentioned above for the standard CSR format.

44

To address these issues, I propose the CSV format tailored to Gustavson’s algo-

rithm for storing input matrix A. The CSV format uses three attributes for repre-

senting each nonzero element: the value V AL, the row index ROW INDEX, and

the column index COL INDEX. Therefore, the location of the last nonzero entry

read from the input matrix is always clearly indicated with a pair of row and column

indices without needing a look-up table for storage. In addition, the nonzero elements

in the CSV format are stored in a new vector-major order (see Fig. 4.1), which is

a key difference from Compressed Sparse Row (CSR) or Compressed Sparse Column

(CSC) formats that adopt a row- or column-major order. Storing nonzero elements

in a vector-major order (that matches the number of computational units) is the key

to assuring a continuous memory access pattern, which improves both the memory

bandwidth utilization and computational performance.

4.2 Framework Design

The FSpGEMM framework consists of an FPGA kernel written in OpenCL and

a host program running on an FPGA accelerator and a host CPU, respectively, as

shown in Fig. 4.3. The kernel code implemented on the FPGA accelerator performs

the SpGEMM computation based on Gustavson’s algorithm. On the host side, I

provide the utility functions for preprocessing and storing raw matrix files in the CSV

format and the OpenCL API for provisioning tasks running on the FPGA accelerator.

FSpGEMM utilizes a two-fold method for reducing memory access to the global

memory: 1) a new buffering scheme enabled by the proposed CSV format and 2) a

row reordering technique as a preprocessing step.

45

Kernel Source
Code (.cl)

Offline Compiler
for OpenCL Kernels

Kernel Binary
(.aocx)

Host Code

Standard C
Compiler

Host Binary

PCIE

Figure 4.3: The Programming Flow Of OpenCL For FPGA.

4.2.1 Data Buffering Scheme

I consider the row-wise Gustavson’s method as the baseline algorithm. To improve

the data reuse of matrix B and reduce the amount of memory access, I propose to

process multiple rows of matrix A in parallel using multiple computing units (i.e.,

one row per computing unit) while sharing a row of matrix B among all computing

units (CUs). To this end, a CSV vector of nonzero values of matrix A is read. Based

on the column index of the vector, the corresponding row from matrix B is then read

and buffered in the on-chip memory. As a result, the access to the buffered row of

matrix B is reused for multiple rows of matrix A.

The example in Fig. 4.5a shows how the proposed data buffering scheme avoids

one round of memory access to the fifth (since the circled CSV vector is in the fifth

column of matrix A) row of matrix B by reusing this buffered row for all computing

units.

I define nv(A) and nnz(A) as the number of sparse vectors and nonzero elements in

46

matrix A, respectively (e.g., nnz(A) = 8 and nv(A) = 6 in Fig. 4.1). In Gustavson’s

algorithm, each nonzero element of matrix A is multiplied by a row of matrix B. Since

nonzero elements in a row of matrix B are stored consecutively in the global memory,

a row of matrix B is read in the burst mode in a single memory access. Therefore, I

define the total number of memory access to matrix B as the total number of nonzero

elements in matrix A (i.e., nnz(A)). Using our proposed data buffering scheme, for

each sparse vector in matrix A, one row (corresponding to one memory access) of

matrix B is read and reused. Therefore, there are nv(A)/nnz(A) memory accesses

to matrix B using our proposed data buffering scheme. Consequently, I define the

memory access reduction percentage for reading matrix B from the global memory

as

MAR(B) = (1− nv(A)

nnz(A)
)× 100, (4.1)

The proposed data buffering scheme can be implemented on all customizable hard-

ware (e.g., FPGA and ASIC devices). Also, it can potentially be applied to any

fixed-architecture device with a compatible memory hierarchy.

4.2.2 Row Reordering Technique

Despite Gustavson being a more efficient dataflow compared to inner- and outer-

product methods, it can suffer from high data traffic. To address this issue, the

proposed CSV format enables the reuse of rows of B when multiple nonzeros in A

share the same column index within adjacent rows of A. However, due to the lack

of structure in some nearby rows of A, which contain mostly disjoint sets of column

indices, the reuse of rows of B might be decreased. I propose to take advantage

of a tailored preprocessing algorithm to further increase data reuse. I developed a

row reordering technique that aims to position similar rows in terms of the sparsity

47

pattern next to each other.

Problem Formulation

I define the similarity score between sparse rows i and j (i.e., A[i] and A[j]) as:

score(Si, Sj) = |Si ∩ Sj|, (4.2)

where Si and Sj are the sets of column indices representing the sparse rows. I aim

to find an optimal row ordering for the n×m matrix A = (aij) to maximize the total

similarity scores between adjacent pairs of rows, i.e.,

maximize
n∑

i=2

score(SR
i−1, S

R
i), (4.3)

where SR
i is the set of column indices representing the sparse rows in the reordered

matrix AR.

Challenges

Computing the similarity between every pair of rows in a matrix becomes impractical

when dealing with a large number of rows and can surpass the memory capacity of a

regular computer and demand an extensive amount of computing cycles. Moreover,

the problem is NP-Complete [69], further emphasizing the need to rely on heuristics

for a feasible solution.

Solution

To address the mentioned memory and computational issues, I first construct a sparse

weighted graph G(V,E) where each vertex represents a row of the matrix and the

weight between two vertex is equal to the similarity score between corresponding rows.

Then, I perform a heuristic to find the longest path in the graph that visits each vertex

48

exactly once. Unlike [90, 42, 69], which considered all rows of the input matrix in

their approach, our approach only considers the non-empty rows. By defining r as

the number of non-empty rows (r ≤ n), I tackle the problem with a reduced set

of variables, leading to a more efficient outcome. It is crucial to observe that the

majority of the weights are zero because there is no similarity between most rows

due to the sparsity of the original matrix. The graph’s sparseness allows for an

efficient and practical solution. I employ a vertex insertion heuristic. The weight of

an edge connecting two vertices is determined by the number of columns where both

corresponding rows have a non-zero value, i.e.,

w(u, v) = |{i ∈ [1,m]|A[u][i] ̸= 0 and A[v][i] ̸= 0}| . (4.4)

Fig. 4.2b illustrates an example of graph construction. The matrix has 6 rows, while

the graph has only 4 vertices representing non-empty rows of the matrix. The weight

of edge (0, 3) is equal to 2 because columns 1 and 3 share nonzero elements among

rows 0 and 3. The heuristic starts from an arbitrary vertex and repeatedly selects

the farthest (i.e., largest weight) unvisited vertex as the next destination until all

vertices have been visited. I mark the visited nodes along the path to avoid cycles.

The procedure is described in Algorithm 3, where the output is the reordered matrix

(AR) and function maxPath is defined as:

maxPath(u, visited) = argmax
v∈V

w(u, v)

s.t. (u, v) ∈ E and visited[v] ̸= 1.

(4.5)

Fig. 5.2 depicts Algorithm 3 executing on the example graph illustrated in Fig.

4.2b. Fig. 4.2(c) displays the memory layout after applying the reordering algorithm.

Rows with similar sparsity patterns (i.e., rows 0 and 3, or rows 1 and 4) are placed

together. By comparing the number and density of sparse vectors in two cases,

the number of memory accesses is decreased from 9 to 6 . The time complexity

49

Initialization

𝑟𝑜𝑤𝐼𝑑𝑥 ← 0
𝑃 0 = 0

Iteration #1

𝑚𝑎𝑥𝑃𝑎𝑡ℎ 0 = 3
𝑃 1 = 3

Iteration #2

𝑚𝑎𝑥𝑃𝑎𝑡ℎ 3 = 1
𝑃 2 = 1

Iteration #3

𝑚𝑎𝑥𝑃𝑎𝑡ℎ 1 = 4
𝑃 3 = 4

0 0

3

2 0

31 1
2 0

31

4

1
2

2

Figure 4.4: Running Example Of Algorithm 3 For The Matrix In Fig. 4.2a. The Path

Generated At Each Step Denotes The Order Of Rows In The Reordered Matrix AR.

of Algorithm 3 is O(r × q2), where q is the average number of nonzeros per row

and column. Therefore, the runtime complexity increases linearly and quadratically

with the matrix dimension and density, respectively. The time complexities of the

reordering algorithms in [90] and [42] are O(n × log(n) × q2) and O(n × log(n)),

respectively. Since n ≫ q and n > r in sparse matrices, our algorithm significantly

outperforms them. Fig. 4.2a and Fig. 4.2c show MAR(B) calculated from Equation

4.1 before and after applying the row reordering technique, respectively.

Fig. 5.3 shows a high-level block diagram of the hardware architecture of the

FPGA design, including multiple processing cores. Each core is responsible for pro-

cessing a partition of matrix A represented in the CSV format and computes a par-

tition of the output matrix. Each core includes three types of modules: Processing

Element (PE), Load, and Store. The PEs are responsible for computing the nonzero

elements of the output matrix based on Gustavson’s algorithm. The Load and Store

modules inside each core connect to two memory channels and read and write input

and output data from and to the memory, as well as feed and receive data to and

from the PEs via FIFO channels, respectively. Separating the Load and Store mod-

ules from PEs and connecting them using FIFO channels facilitates the data flow

50

CU 1
CU 2

B
uffer

Global Memory Device

a b c

g h

d e f

i j

𝐴𝑅 ∈ ℝ𝑛×𝑚

𝐵 ∈ ℝ𝑚×𝑘

(a)

DRAM 1
DRAM 2

Core
1

…

DRAM 3
DRAM 4

DRAM 2M-1
DRAM 2M

Core
2

Core
M

Load M
odule

QA

QB

QA

QB

QA

QB

…

PE 1

PE 2

PE N

Store M
odule

QC

QC

QC

… …

(b)

Figure 4.5: The Corresponding Elements In (A) And (B) Are Color-Coded. (A) An

Example Of The Proposed Data Buffering Scheme. Circled Elements Show The CSV

Vector And The Corresponding Row Of Matrix B Being Processed. Each CSV Vec-

tor Is In The Length Of The Number Of Computing Units (2 CUs Assumed In This

Example). (B) The High-Level Block Diagram Of The Scalable Hardware Architec-

ture. Cores Are Compatible With High-Bandwidth Memory (HBM) Or Traditional

DDR-Based Memory Banks.

control for balancing the memory bandwidth and the data processing throughput by

PEs. The depth of the FIFO channels is optimized by the offline compiler such that

the Load and Store modules are able to continuously read and write data from and

to the memory, respectively, while pushing data throughout the module pipeline.

Each PE is responsible for calculating one row of the output matrix at a time.

Multiple PEs process multiple rows independently in parallel. Each PE receives a

nonzero scalar value of matrix A along with additional scheduling information through

a QA channel. Also, each PE gets nonzero values from the corresponding row of

matrix B from a QB channel. The output results are streamed to the Store module

via a QC channel.

The FPGA kernel in FSpGEMM includes two types of OpenCL kernels: 1) autorun

kernel, which starts executing automatically and does not need to be managed by a

host program, and 2) host-driven kernel. As the offline compiler provided by Intel

51

FPGA SDK for OpenCL does not need to implement any glue logic for communicating

with the host program, using autorun kernels reduces logic utilization and allows for

the mapping of more computation resources for improved performance[40]. The PEs

are autorun kernels, and the Load and Store modules are host-driven kernels since

they access the memory that must be allocated first by a host program. Overall,

the FPGA kernel is parameterized with two architectural parameters: N (number of

PEs) and M (number of cores), which allows users to balance the trade-off between

computational parallelism and FPGA resource usage.

Load and Store Modules

In FSpGEMM, matrix A and matrix B are represented by the CSV and the CSR

format, respectively. The Load module iterates over the total number of nonzero

elements in matrix A. In each iteration, the Load module first sends a data structure

(aType in Table 4.1) containing the value of a nonzero element of matrix A along

with the other attribute data using a QA channel. Specifically, eor indicates whether

the received nonzero element is the last one in the current row of matrix A. If so,

eor = True signals the PEs to finish the computations and reset to their initial states.

The Load module takes advantage of the CSV format and identifies the nonzero

elements of matrix A in the same sparse vector by comparing the column indices of

two consecutive nonzero elements. If the column index of the next nonzero element is

different from the column index of the current nonzero element (i.e., indicating it is

the last element of the sparse vector), the Load module buffers the nonzero element

of the corresponding row of matrix B and sends it to the PEs. The Load module also

calculates the number of nonzero elements in a row of matrix B (bType.size) that

the PEs need to expect from the Load module. Additionally, the row index of the

nonzero element from matrix A (aType.rowIdx) is sent to the PEs to determine the

52

row index of the output matrix.

Since the Load module reads a row of matrix B at a time, the data are read from

memory using the CSR format to enable contiguous and regular access. Each array of

matrix B is represented by the data structure bType (see Table 4.1) in which its array

members bType.val and bType.colIdx contain the values and the column indices of

the nonzero elements in a row of matrix B.

The Store module reads the computation results of the output matrix from the

PEs, including the nonzero value and its row and column indices. Since the valid

output values of different PEs are not necessarily produced at the same time, the FIFO

channels QC are used to facilitate the data flow control and assure data integrity.

Processing Elements (PEs)

Fig. 5.3 shows the high-level block diagram of a PE. Each PE is responsible for two

major operations for producing each row of the output matrix: 1) the element-wise

multiplication between a nonzero value of matrix A and a row of matrix B resulting

in a sparse partial row and 2) the addition of partial rows. These functionalities are

implemented by two main units: a merge unit for sorting and accumulating (SA)

partial rows and a memory unit implementing a double buffering scheme for efficient

storage of intermediate results.

Algorithm 4 describes the conventional (i.e., unoptimized) software-like imple-

mentation of the merge operation. Inputs are the scalar nonzero element from matrix

A (a), the array of nonzero elements from matrix B (bArr), the array of the current

partial row from the selected buffer (buf), and the number of nonzero elements in the

current partial row (bufCntr). In Loop 1, the unoptimized unit performs a scalar-

array multiplication and stores the new partial products in array cArr. Then, in

Loop 2, the unoptimized unit compares the column indices of two sparse rows stored

53

bufSel

QA

Buffer 0

Buffer 1

SA
Unit

QB

eor QC

Figure 4.6: The High-Level Block Diagram Of A PE.

in bArr.colIdx and buf.colIdx. Since the two arrays are already sorted, the smaller

column index is the smallest index in both arrays. The pointer for the array with the

smaller index will be increased by one. In the case that the indices from two arrays are

equal, the accumulation occurs where the current values from cArr.val and buf.val

are added. In Loops 3 and 4, the unit checks if there are any remaining elements in

the selected buffer and the new partial products array, respectively. Finally, Loop 5

outputs the new partial row.

In Algorithm 4, there are five loops for the conventional implementation of the

merge operation. Loop control structures have a significant overhead, so I propose

to combine the bodies of five loops into one fused loop to reduce the amount of

control structures needed to one, which saves the FPGA area while maintaining unit

throughput and reduces latency. Algorithm 5 describes the optimized implementation

of the proposed sort and accumulate (SA) unit.

I utilize a double-buffering technique to facilitate the fully pipelined addition of

cArr with buf . At any time, while buf is being read from one of the on-chip buffers

and added with cArr in the SA unit, the results of the addition operation are stored in

the other buffer. The data structure cType is used to store the temporary computed

output elements.

54

Listing 4.1: Snapshot of the primary sections of the host code, including OpenCL

APIs and preprocessing functions.

context = clCreateContext (. . .) ;

b i n a r y f i l e = getBoardBinaryFi le (. . .) ;

c lBuildProgram (. . .) ;

queue = clCreateCommandQueue (. . .) ;

l o ad k e rn e l = c lCreateKerne l (. . .) ;

s t o r e k e r n e l = c lCreateKerne l (. . .) ;

matrix = readMatrix (. . .) ;

r eo rde red matr ix = reo rde r (matrix) ;

mat buf = c lCrea t eBu f f e r (. . .) ;

c lEnqueueWriteBuffer (. . . , mat buf , . . .) ;

c lSetKerne lArg (. . .)

clEnqueueTask (queue , l oad ke rne l , . . .) ;

clEnqueueTask (queue , s t o r e k e r n e l , . . .) ;

c l F i n i s h ;

clEnqueueReadBuffer (. . .) ;

At the end of Algorithm 5, the double buffer selector signal (bufSel) is toggled

between 0 and 1. Whenever finished processing on the vector of matrix B, the PE

decides whether to store cType (see Table 4.1) in the other buffer or send the final

value to a QC channel based on the value of aType.eor (see Fig. 4.6).

55

Performance Optimization for Determining Architectural Parameters

I provide a guideline to derive the optimal architectural parameters (the number of

cores M and N PEs per core) for minimizing the runtime subject to the available

resources on a given FPGA device. I formulate the runtime (R) as R =
NOps

F×P×U
, where

NOps, F , P , and U are the number of floating-point operations to produce an output

matrix, the clock frequency, the computational parallelism, and the spatial-temporal

utilization factor, respectively. U is a statistical metric that measures, on average,

how busy the available computation resources are in a computing device (in both

space and time) for performing useful operations of a given algorithm. Thus, U is

defined as the ratio of effective computational parallelism per clock cycle on average

and ranges from 0 to 1 and can be calculated as SU ×TU , where SU and TU denote

spatial and temporal utilization, respectively. NOps is an algorithmic parameter and

depends on the dimensions and the sparsity pattern of input matrices. Computational

parallelism P is defined as the total available number of floating-point operations per

clock cycle by the FPGA device. Therefore, the total number of utilized DSP units

calculated as N ×M is equal to P × SU . Finally, R can also be expressed as

R =
NOps

F × P × SU × TU
=

NOps

F ×N ×M × TU
=

α

N ×M
, (4.6)

where NOps, F , and TU are lumped as α. I define the constrained optimization

problem as

minimize R(N,M) =
α

N ×M

subject to C(N,M) ≤ c,

(4.7)

where function C(N,M) = β×N×M and constant c are the total required and avail-

able logic resources, respectively, where β is a linear fitting parameter that captures

the proportionality of the actual logic resource usage over computational parallelism

56

that can be derived based on the logic resource usage reported by the offline compiler

given a target FPGA device.

Based on R(N,M) = α
N×M

, the runtime R is minimized when N and M are

maximized. Thus, the constrained optimization problem defined in Equation 4.7 has

an analytical solution that can be derived as follows.

1. SetN equal to the maximum sparse vector length where there is a linear memory

access reduction based on the MAR analysis introduced in section 4.2.1.

2. Choose M = 1 and run the offline compiler to derive the value of β × N from

C(N, 1).

3. Derive M from M = ⌊ c
β×N
⌋.

While the provided guideline is introduced to extract reasonable values for N and

M , one needs to note that scaling the design and architectural parameters at a certain

point might cause implementation failure due to routing congestion or significantly

reduce the clock frequency.

4.2.3 Host Program

The host program running on the CPU includes two major parts: preprocessing

utilities and OpenCL API functions. The utility functions read matrix A to reorder

and store it in the CSV format prior to the computation by the FPGA kernel. Note

that the preprocessing step only needs to be performed once. I have utilized OpenCL

API functions to create memory buffers, enqueue kernels, and read the results back

from the FPGA device, as summarized in Listing 4.1.

57

4.3 Evaluation

4.3.1 Experiment Setup

I evaluate the performance of FSpGEMM in terms of runtime (s) and the number

of execution clock cycles per SpGEMM computation. To evaluate the FSpGEMM

framework, I select two benchmarks of sparse matrices from the publicly-available

SuiteSparse Matrix Collection [25] (formerly known as the University of Florida

Sparse Matrix Collection), a collection of sparse matrices in real applications. One

benchmark includes the commonly-used matrices for evaluating SpGEMM research

in the literature [90], and the extended benchmark is used in the SOTA FPGA work

[49]. The specifications of the matrices are summarized in Table 5.1, including the

number of rows, the average number of nonzeros per row, and the density calcu-

lated as No. of Nonzeros
Matrix Size

. Our design adopts the single-precision floating-point (32-bit)

data format. I develop and implement FSpGEMM on the Bittware 520N-MX FPGA

board using Intel FPGA SDK for OpenCL with Quartus Prime Pro 20.1. I compare

FSpGEMM with SOTA FPGA and GPU implementations [49, 50, 63]. I measure the

runtime of the GPU implementation of TileSpGEMM [63] on an NVIDIA GeForce

RTX 3090 GPU as the same device is used in [63].

4.3.2 MAR Evaluation

As mentioned in Section 4.1, a naive implementation of Gustavson’s algorithm

suffers from poor data reuse when reading a random row of matrix B from global

memory. To address this issue, while processing multiple rows of matrix A in parallel

(i.e., each row in one PE), a row of matrix B is reused among all PEs. I calculate

the memory access reduction percentage (MAR %) using Equation 4.1 for a set of

matrices summarized in Table 5.1. Fig. 4.7 shows the MAR percentage that can be

58

0 10 20 30
No. of PEs

0

20

40

60

M
A

R
 (

%
)

poisson3Da (14K)

0 10 20 30
No. of PEs

0

20

40

60

M
A

R
 (

%
)

2cubes_sphere (101K)

0 10 20 30
No. of PEs

0

20

40

60

M
A

R
 (

%
)

filter3D (106K)

0 10 20 30
No. of PEs

0

20

40

60

M
A

R
 (

%
)

cage12 (130K)

0 10 20 30
No. of PEs

0

20

40

60

M
A

R
 (

%
)

scircuit (180K)

0 10 20 30
No. of PEs

0

20

40

60

M
A

R
 (

%
)

mac_econ_fwd500 (206K)

0 10 20 30
No. of PEs

0

20

40

60

M
A

R
 (

%
)

offshore (260K)

0 10 20 30
No. of PEs

0

20

40

60

M
A

R
 (

%
)

webbase-1M (1000K)

Figure 4.7: Memory Access Reduction (MAR) Percentage With Respect To Different

Input Matrices And The Number Of PEs. The Difference In Sparsity Patterns Of

The Input Matrices Results In The Difference In MAR Percentage. The Dimensions

Of Matrices Are Noted In Parenthesis.

achieved by the proposed data buffering scheme with respect to different matrices and

numbers of PEs. The results show that the amount of MAR that can be archived by

the proposed data buffering scheme monotonically improves as the number of PEs

increases. 1.7%-24.8%, 6.0%-38.6%, 15.9%-46.5%, 28.1%-51.3%, and 39.2%-54.0%

MAR can be achieved at the PE number of 2, 4, 8, 16, and 32, respectively, across

the selected sparse matrices. The improvement with increasing the number of PEs is

because a row of matrix B is buffered and shared for processing more rows of matrix

A. Thus, the amount of access to the row of matrix B is decreased.

4.3.3 Experimental Results

Using the proposed guideline for determining architectural parameters provided

in Section 22, I derive parameters N and M as follows:

• Derive maximum No. of PEs with linear MAR slope from Fig. 4.7 → N = 16.

59

• Since RAMs have the highest utilization among all resources, C(N,M) and

c = 5, 279 (based on the FPGA specification) are the total required and available

RAMs for Kernel System (as opposed to Static Partition), respectively.

• Choose N = 16 and M = 1→ C(16, 1) = β×N = 561 based on the utilization

report.

• M = ⌊ c
β×N
⌋ = ⌊5,279

561
⌋ = 9.

• N = 16 and M = 6 are the starting points of the design space exploration.

The offline compiler fails at M = 9. Therefore, I decrease M until I get the

highest performance atM = 6. I refer to this implementation as FSpGEMM-m6

throughout this section. FSpGEMM-m6 runs at 269 MHz.

Finally, the ALUTs, FFs, RAMs, MLABs, and DSPs utilization (usage) for FSpGEMM-

m6 are 46% (646,160), 47% (1,317,004), 72% (4,946), 4% (3,060), and 25% (978),

respectively.

Row Reordering Technique Evaluation

The row reordering technique jointly increases the reuse of matrix B and the hardware

resource utilization, resulting in performance improvement. Fig. 4.8 illustrates the

performance improvement achieved by the preprocessing step using the row reorder-

ing technique for the commonly-used benchmark running on FSpGEMM-m6. The

preprocessing technique improves the overall performance on average by 20.3%. Ac-

cording to Fig. 4.8, the preprocessing technique works better for matrices with large

dimensions, which is common in real-world applications. Typically, preprocessing a

matrix takes more time than performing SpGEMM on the same matrix. This means

that preprocessing is only worthwhile if matrix A is used frequently, which is true for

matrices found in the SuiteSparse Matrix Collection.

60

Figure 4.8: Performance Speedup Achieved By The Row Reordering Technique For

The Commonly-Used Benchmark On FSpGEMM-M6.

59.0%

17.8%

-0.8%

27.4%

5.4%
9.7% 7.1%

17.7%

52.2%

24.2%

4.2%

20.3%

Performance Comparison with SOTA FPGA Implementations

The SOTA FPGA implementation in [49] (GSCSp-om) uses four memory channels.

For a fair comparison, I utilize the same number of HBM channels (i.e., M = 2 with

two channels per core and N = 16), and I refer to this implementation as FSpGEMM-

m2. Table 4.3 details the comparison of FSpGEMM in terms of the number of exe-

cution clock cycles with the SOTA FPGA implementation for performing SpGEMM

computation. The number of execution cycles for FSpGEMM-m2 is calculated from

R× F , where R and F are the runtime and clock frequency, respectively.

Table 4.3 shows the runtime speedup achieved by FSpGEMM over SOTA FPGA

works [49, 50] with respect to the number of execution clock cycles for different sparse

matrices. The speedup over the highest-performance SOTA implementation [49] is up

61

Figure 4.9: Normalized Performance Comparison Of FSpGEMM-M6 Compared To

The SOTA GPU Implementation For The Complete Benchmark In Terms Of Effective

Runtime.

4.85×

0.77×

2.42×

0.58×0.33×

2.55×

5.42×

3.05×
3.54×

0.50×

4.89×

0.21×
0.62×

1.51×
0.85×

1.47×
1.92×

0.70×

2.00×

0.19×

1.92×

pa
t…

m
13
…

m
ar
...

sc
i…

ca
g…

2c
u…

of
f…

co
p…

fi
lt
…

m
ac
…

po
i…

ra
e…

cr
y…

s3
r…

t2
d…

na
s…

bc
s…

ca
v… ex
9

af
2…

A
vg
.

Figure 4.10: Energy Consumption Reduction Achieved Using FSpGEMM-M6 Com-

pared To The SOTA GPU Implementation For The Complete Benchmark.

3.37×

0.52×

1.65×

0.36×0.21×

1.70×

5.26×

2.70×
3.27×

0.32×

3.56×

0.13×0.40×
0.98×

0.54×
0.93×

1.23×

0.45×

1.30×

0.13×

1.45×

pa
t…

m
13
…

m
ar
...

sc
i…

ca
g…

2c
u…

of
f…

co
p…

fi
lt
…

m
ac
…

po
i…

ra
e…

cr
y…

s3
r…

t2
d…

na
s…

bc
s…

ca
v… ex
9

af
2…

A
vg
.

to 3.49× for matrix nasa2910 . On average, FSpGEMM achieves 2.23× higher per-

formance than the SOTA FPGA counterpart. It should be noted that such speedup

ratios are achieved without considering the actual runtime. Note that FSpGEMM-

62

m2 runs at 273 MHZ while the clock frequency reported at [49] is below 100 MHz,

leading to a much lower performance. The speedup mainly stems from the memory

access reduction due to the customized data buffer scheme tailored to Gustavson’s

algorithm, the improved memory bandwidth utilization as a result of the architec-

tural co-design with the proposed CSV format and row reordering preprocessing, and

the throughput-optimized hardware architecture tailored to the Gustavson’s algo-

rithm, all of which improves the overall utilization of the computation resources on

the FPGA at run time.

Note that similar to related work [90, 42], the row reordering algorithm is a pre-

processing step on the matrices. It is not part of the SpGEMM computation on the

FPGA device and should not be considered in the SpGEMM runtime evaluation. The

performance evaluation of the proposed row reordering algorithm and its comparison

to related work in terms of the asymptotic runtime complexity is provided in Section

4.2.2.

Performance Comparison with the SOTA GPU Implementation

Since the performance of SpGEMM is memory-bounded, a direct comparison of the

raw performance of the FPGA implementation on Bittware 520N-MX with 410 GB/s

memory bandwidth with a GPU implementation on an NVIDIA GeForce RTX 3090

GPU with 936 GB/s memory bandwidth can be misleading from an architectural

point of view. For a fair comparison, I compare the performance in the metrics

of effective runtime. Effective runtime is defined as the runtime normalized to the

memory bandwidth, which measures the effective performance of different computing

devices with respect to the same memory bandwidth (the GPU bandwidth in this

case).

Fig. 4.9 shows the effective runtime speedup achieved by FSpGEMM over the

63

GPU implementation with respect to different sparse matrices. On average, FSpGEMM

achieves 1.92× higher effective runtime than the GPU counterpart. It should be noted

that such speedup ratios are achieved at the condition that the FPGA implementa-

tion runs at a 5-15× lower clock frequency than the CPU and GPU implementations.

The speedup mainly stems from the off-chip memory access reduction due to the cus-

tomized data buffer scheme tailored to Gustavson’s algorithm, the improved memory

bandwidth utilization as a result of the architectural co-design with the proposed

CSV format, the temporal/pipeline parallelism offered by FPGAs for resolving the

strong data dependency in the Gustavson’s algorithm, and the throughput-optimized

hardware architecture tailored to the Gustavson’s algorithm, all of which improves the

overall spatial and temporal utilization of the computation resources on the FPGA

at run time.

Energy Efficiency Comparison with the SOTA GPU Implementation

I measure the average power consumption of the FPGA board using the monitor tool

in the Board Management Controller (BMC). BMC measures the supply voltage and

the drawn current of the entire FPGA board by reading values from onboard sensors.

For the power measurement of the GPU, I utilize the POWER query option of the

NVIDIA System Management Interface (nvidia-smi) tool.

The energy consumption (J) per SpGEMM computation of different implemen-

tations is calculated as the product of runtime (s) and average power consumption

(W). Fig. 4.10 shows the corresponding energy consumption reduction achieved by

the FPGA implementation. On average, FSpGEMM achieves 1.45× higher energy

efficiency than its GPU counterpart.

64

4.4 Conclusion

In this paper, I present FSpGEMM, an OpenCL-based framework for FPGA ac-

celeration of SpGEMM. FSpGEMM includes a deeply pipelined and scalable FPGA

kernel that accelerates the SpGEMM algorithm and a set of utility functions for the

preprocessing step and storing the input matrices with the proposed CSV format.

I introduce a performance-optimized model to derive architectural parameters

for the FPGA kernel subject to the available on-chip resources (DSPs and memory

blocks) to map the design into the arbitrary FPGAs. The experiment results based

on the Bittware 520N-MX FPGA board for accelerating SpGEMM of a set of sparse

matrices from the SuiteSparse Matrix Collection show higher performance compared

to SOTA implementation of SpGEMM on FPGA.

65

Algorithm 3: Similarity-Based Row Reordering Algorithm

Input: A, n, and r.

Output: AR.

1 initialize AR with n empty rows;

2 initialize G(V,E) with r vertices and no edges;

3 initialize hash table visited[][] for r vertices;

4 initialize permutation array P [] with size r;

5 for each non-empty row of A do

6 for u ∈ column indices of the row do

7 for v ∈ rows indices of column u and u ̸= v do

8 if (u, v) /∈ E then

9 E ← E ∪ (u, v);

10 w(u, v)← 0;

11 end

12 w(u, v)← w(u, v) + 1;

13 end

14 end

15 end

16 rowIdx← index of an arbitrary non-empty row of A;

17 visited[rowIdx]← 1;

18 P [0]← rowIdx;

19 AR[0]← A[rowIdx];

20 for i← 1 to r − 1 do

21 rowIdx← maxPath(P [i− 1], visited);

22 visited[rowIdx]← 1;

23 P [i]← rowIdx;

24 AR[i]← A[rowIdx];

25 end
66

Table 4.1: Descriptions Of Data Structures aType, bType, And cType For Data

Transfer Via Channels QA, QB, And QC, Respectively.

Field Description Type

aType

val nonzero value in A float

rowIdx row index of nonzero element in A uint

eor end of A’s row signal bool

bType

size no. of nonzeros in row of B uint

val array of nonzero values in row of B float[]

colIdx array of the column indices in row of B uint[]

cType

val nonzero value of C float

rowIdx row index of nonzero element in C uint

colIdx column index of nonzero element in C uint

67

Algorithm 4: Pseudo-Code For The Conventional Merge Operation.
Input: a, bArr[], buf [], and bufCntr.

Output: c and cCntr.

1 initialize bufPtr, bP tr, cCntr, pArr[], and cArr[] with zeros;

2 Loop 1: for i← 0 to b.size do

3 pArr[i] = a.val × bArr.val[i];

4 end

5 Loop 2: while bufPtr < bufCntr and bP tr < b.size do

6 if buf.colIdx[bufPtr] < bArr.colIdx[bP tr] then

7 cArr[cCntr].val← buf.val[bufPtr];

8 cArr[cCntr].colIdx← buf.colIdx[bufPtr];

9 bufPtr ← bufPtr + 1;

10 else if buf.colIdx[bufPtr] > bArr.colIdx[bP tr] then

11 cArr[cCntr].val← cArr[bP tr];

12 cArr[cCntr].colIdx← bArr.colIdx[bP tr];

13 bP tr ← bP tr + 1;

14 else

/* similar to lines 7-9 and 11-13 */

15 end

16 cCntr ← cCntr + 1;

17 end

18 Loop 3: for i← bufPtr to bufCntr do

/* similar to lines 7-9 */

19 end

20 Loop 4: for i← bP tr to b.size do

/* similar to lines 11-13 */

21 end

22 Loop 5: for i← 0 to cCntr do

23 c.val← cArr[i];

24 c.rowIdx = a.rowIdx;

25 write c to its output register;

26 end

27 write cCntr to its output register; 68

Algorithm 5: Pesudo-Code For The Proposed Optimized SA Unit.
Input: a, bArr[] and bufCntr.

Output: c, cCntr.

1 initialize bufPtr, bP tr, cCntr, and cTemp with zeros;

2 Fused Loop: while bufPtr < bufCntr or bP tr < b.size do

3 cTemp = a.val × bArr.val[bP tr];

4 if bufPtr < bufCntr and bP tr < b.size then

5 if buf.colIdx[bufPtr] < bArr.colIdx[bP tr] then

6 c.val← buf.val[bufPtr];

7 c.colIdx← buf.colIdx[bufPtr];

8 bufPtr ← bufPtr + 1;

9 else if buf.colIdx[bufPtr] > bArr.colIdx[bP tr] then

10 c.val← cTemp;

11 c.colIdx← bArr.colIdx[bP tr];

12 bP tr ← bP tr + 1;

13 else

/* similar to lines 6-8 and 10-12 */

14 end

15 else if bufPtr < bufCntr then

/* similar to lines 6-8 */

16 else

/* similar to lines 10-12 */

17 end

18 c.rowIdx = a.rowIdx;

19 write c to its output register;

20 cCntr ← cCntr + 1;

21 end

22 write cCntr to its output register;

69

Table 4.2: The Specification Of The Commonly-Used Benchmark [90] And The Ex-

tended Benchmark Used In The SOTA FPGA Work [49, 50].

Matrix No. of Rows NNZ/Row Density

Commonly-used Benchmark

patents main 240,547 2 0.0010%

webbase-1M 1,000,005 3 0.0003%

m133-b3 200,200 4 0.0020%

mario002 389,874 5 0.0014%

scircuit 170,998 6 0.0033%

cage12 130,228 16 0.0120%

2cubes sphere 101,492 16 0.0160%

offshore 259,789 16 0.0063%

cop20k A 121,192 22 0.0179%

filter3D 106,437 25 0.0239%

mac econ fwd500 206,500 6 0.0030%

Extended Benchmark

poisson3Da 13,514 26 0.19%

raefsky1 3,242 91 2.80%

crystk01 4,875 65 1.33%

s3rmt3m3 5,357 39 0.72%

t2dah a 11,445 15 0.13%

nasa2910 2,910 60 2.06%

bcsstk24 3,562 45 1.26%

cavity26 4,562 30 0.66%

ex9 3,363 30 0.88%

af23560 23,560 21 0.09%

70

Table 4.3: FSpGEMM-M2 Speedup Over SOTA FPGA Implementations In Terms

Of Execution Cycles.

Matrix
No. of Execution Cycles

FSpGEMM-m2
[50]

(Speedup×)

[49]

(Speedup×)

poisson3Da 16,645,660 19,878,983 (1.19) 16,638,816 (1.00)

raefsky1 21,288,307 27,458,639 (1.29) 25,658,832 (1.21)

crystk01 6,100,726 21,885,313 (3.59) 20,202,582 (3.31)

s3rmt3m3 2,831,289 8,628,745 (3.05) 8,411,161 (2.97)

t2dah a 2,304,309 5,582,450 (2.42) 5,354,111 (2.32)

nasa2910 3,359,772 12,797,230 (3.81) 11,731,798 (3.49)

bcsstk24 2,241,033 7,588,259 (3.39) 7,354,144 (3.28)

cavity26 5,491,883 6,632,677 (1.21) 6,012,791 (1.09)

ex9 1,368,700 4,011,290 (2.93) 3,790,519 (2.77)

af23560 16,661,103 15,408,694 (0.92) 13,979,280 (0.84)

Average 2.38× 2.23×

71

Chapter 5

SPARSE TENSOR CORE

This chapter presents the ASIC design of the Sparse Tensor Core co-processor for

accelerating sparse linear algebra.

5.1 Hardware Merge Sorter

Sorting is a key process in many applications, and researchers have worked on

making sorting faster for CPUs [37, 20] and GPUs [59, 23]. Recently, there’s also

been a focus on speeding up sorting using FPGAs [45, 18, 80, 58, 76, 77], which

can sort data faster than the optimized implementations on CPUs and GPUs. For

example, one FPGA-based sorter could sort data at 76.8 Gb/s [18], which is faster

than the 30 Gb/s or 50 Gb/s achieved by a multi-core processor [37, 20] or a GPU

[59, 23], respectively.

Most hardware sorters use a merge logic to combine two sorted lists into one, and

they are known as Hardware Merge Sorters (HMS). The simplest merge logic can

output one element at a time [45], and some designs can output two or more elements

per cycle, called E-record merge logic (where E is 2 or more). Each record is divided

into a key and data part, and sorting is based on comparing the keys.

There are two types of existing E-record merge logics, as shown in Figures 5.1a

and 5.1b. In these figures, R represents the bit width of the keys. The inputs are two

ordered lists A = {a0, a1, ..., an−1|a0 ≤ a1 ≤ ... ≤ an−1} and B = {b0, b1, ..., bm−1|b0 ≤

b1 ≤ ... ≤ bm−1}. The model in Figure 5.1a uses two groups of FIFOs, two input

controllers, and a merge logic. The two sorted lists A and B are stored in these FIFOs,

with the elements arranged as shown in Figure 5.1a. The merge logic combines two

72

lists and outputs the smallest E elements in order. For example, assuming certain

conditions for the elements, E specific entries marked in gray are removed from their

FIFOs. After this, the next E elements at the front of each FIFO group are not

in order and must be sorted again before they can be merged. Each input manager

rearranges records using an E × E crossbar and the gate levels go up as E gets

bigger, leading to a drop in frequency. Since the performance of an E-record merge

logic depends on the product of E and its operating frequency, this model makes it

hard to create an efficient HMS.

Previous studies [18, 58] have used the model in Figure 5.1b, which includes two

FIFOs, a selector logic, and a merge logic. The FIFOs keep sorted lists. To merge,

the selector checks the first record in each FIFO and picks the smaller one. Then, E

records from that FIFO go into the merge logic, which sorts and outputs them at the

rate of E records each cycle.

Figure 5.2 shows an example of the 4-record merge logic in the second model.

The two sorted input lists in this example are {0, 2, 4, 6, 8, 10, 12, 14} and {1, 3, 5, 7}.

I propose to append input lists with the largest possible value M . This enables the

consumption of the remaining elements in the last step without compromising func-

tionality since these values are easily discarded. In Figure 5.2, all feedback registers

are set to the lowest value. In the beginning, it compares the first element of two

FIFOs, and since 0 ≤ 1, the elements {2, 4, 6, 8} in the corresponding FIFOs are se-

lected. The logic sorts out eight elements, combines the four it was given with three

from the feedback registers, picks the four smallest ones, which should be {0, 0, 0, 0},

and then stores the bigger three ({2, 4, 6}) in the registers. In the next step, the first

elements from two FIFOs, 8 and 1, are compared, and the selector chooses which

FIFO to use. Therefore, four elements {1, 3, 5, 7} from the lower FIFO go into the

merge logic. Because in the previous step, elements {2, 4, 6} were fed back, the merge

73

logic gives out the smallest four elements {1, 2, 3, 4} and keeps the larger three ele-

ments {5, 6, 7} for later. In Step 3, a similar data flow repeats, but the selector picks

the first FIFO since the second one is empty. This merge logic path has 1 + log2E

groups of a multiplexer and a comparator.

Input
Manager

Input
Manager

… 𝑎! 𝑎"

… 𝑎# 𝑎$

… 𝑎% 𝑎&

… 𝑎' 𝑎(

FIFOs

… 𝑏! 𝑏"

… 𝑏# 𝑏$

… 𝑏% 𝑏&

… 𝑏' 𝑏(

FIFOs
Merge
Logic

𝑎!

𝑎"

𝑏!

𝑏"

R

(a)

… 𝑎! 𝑎"

… 𝑎# 𝑎$

… 𝑎% 𝑎&

… 𝑎' 𝑎(

FIFOs

… 𝑏! 𝑏"

… 𝑏# 𝑏$

… 𝑏% 𝑏&

… 𝑏' 𝑏(

FIFOs
Merge
Logic

Selector

≤

ER

R

(b)

Figure 5.1: Two Models Of E-Record Merge Logics With E = 4.

5.2 Hardware Architecture

Figure 5.3 shows the high-level block diagram of the hardware architecture of

Sparse Tensor Core, including Multiply and Marge Units (MMUs), Addition Units

(AUs), a high-bandwidth memory (HBM), and a banked cache. Each MMU and

AU is responsible for processing a partition of a sparse matrix and computing the

corresponding partition of the output matrix. HBM has N channels where each

channel is directly connected to a set-associate bank in the cache, and each bank is

connected to an MMU and an AU.

74

Selector

8 0

10 2

12 4

14 6

FIFOs

𝑀 1

𝑀 3

𝑀 5

𝑀 7

FIFOs

Merge
Logic≤

Sort
Logic

0

0

0

0
2
4
6

0
0
0
0

2
4
6 Selector

8

10

12

FIFOs

𝑀 1

𝑀 3

𝑀 5

𝑀 7

FIFOs

Merge
Logic≤

Sort
Logic

2

4

6

1
3
5
7

1
2
3
4

5
6
7

Step 1 Step 2

Selector

𝑀

𝑀

𝑀

𝑀

FIFOs

𝑀

𝑀

𝑀

𝑀

FIFOs

Merge
Logic≤

Sort
Logic

10

12

14

𝑀
𝑀
𝑀
𝑀

10
12
14
𝑀

𝑀
𝑀
𝑀Selector

8

10

12

FIFOs

𝑀

𝑀

𝑀

𝑀

FIFOs

Merge
Logic≤

Sort
Logic

5

6

7

8
10
12
14

5
6
7
8

10
12
14

Step 3 Step 4

14

14

Figure 5.2: This Example Shows How To Merge Two Sorted Lists

{0, 2, 4, 6, 8, 10, 12, 14} And {1, 3, 5, 7}, By Using A Method That Merges 4 El-

ements And Feeds Backs Three Elements At Each Step.

5.2.1 Multiply and Merge Unit

Figure 5.4a shows the block diagram of the hardware architecture of an MMU

consisting of an array of 8 parallel multipliers and an 8-record HMS. Each element is

a data pair with a value and an index field (i.e., (val, idx)). The incoming streams

are scalar elements x from the one input matrix, a vector of elements yi (0 ≤ i ≤ 7)

from the other input matrix, and a vector of elements zi (0 ≤ i ≤ 7) from partial

(intermediate) results. The output of the multiplier array is a vector of elements ŷi

75

Channel

Channel

Channel

…

Bank

Bank

Bank

HBM

…

Cache

Interconnect

MMU 1

MMU 2

MMU 𝑁

…

AU 1

AU 2

AU 𝑁

…

Figure 5.3: High-Level Block Diagram Of The Sparse Tensor Core Hardware Archi-

tecture.

Hardware
Merge Sorter

… …

…

𝑥
𝑦!
𝑦"

𝑦#

𝑤!
𝑤"

𝑤#
𝑧!
𝑧"

𝑧#

…
…

%𝑦!
%𝑦"

%𝑦#

(a)

…𝑤$%", 𝑤$, 𝑤$&"…

…𝑜$%", 𝑜$, 𝑜$&"…

(b)

Figure 5.4: The Block Diagrams Of (A) A Multiply And Merge Unit (MMU) And

(B) An Addition Unit (AU).

(0 ≤ i ≤ 7) such that

ŷi(val) = x(val)× yi(val)

ŷi(idx) = yi(idx)
. The HMS takes vectors ŷi and zi

and merges them based on their indices into a vector of 8 elements (wi) in parallel.

5.2.2 Addition Unit

Figure 5.4b shows the block diagram of the hardware architecture of an AU con-

sisting of a comparator and an adder. AUs are responsible for the summation of

76

=

×

+ ++

×× ×

×

Figure 5.5: The Data Flow For Sparse Matrix-Matrix Multiplications In SpGEMM.

elements with the same index. Since the elements are already sorted, a pairwise in-

dex comparison of neighboring elements is sufficient for combining all elements with

the same index.

5.3 Data Flow

Figure 5.5 shows the data flow for calculating one output row in SpGEMM. Map-

ping SpGEMM operations to Sparse Tensor Core is decomposed into two phases. In

phase one, the first input matrix is partitioned among N MMUs to generate N partial

sub-matrices. In phase two, each sub-matrix is passed through one AU to generate

rows of the output matrix.

5.4 Evaluation

5.4.1 Experiment Setup

I evaluate the performance of Sparse Tensor Core in terms of Giga Operations Per

Second (GOPS). I select a benchmark of sparse matrices from the publicly-available

SuiteSparse Matrix Collection [25] (formerly known as the University of Florida Sparse

Matrix Collection), a collection of sparse matrices in real applications. The bench-

mark includes the commonly used matrices for evaluating SpGEMM research in the

literature [51]. The specifications of the matrices are summarized in Table 5.1, in-

77

Table 5.1: The Specification Of The Commonly-Used Benchmark Used In The SOTA

SpGEMM Work [51].

Matrix #Rows #Columns Density

hugetrace-0010 12,057,441 12,057,441 2.48e-07

kkt power 2,063,494 2,063,494 3.00e-06

Hardesty2 929,901 303,645 1.42e-05

poisson-3Da 13,514 13,514 1.93e-03

raefsky3 21,200 21,200 3.31e-03

nemsemm1 3,945 75,352 3.54e-03

cari 400 1200 3.18e-01

lp fit2d 25 10,524 4.90e-01

cluding the number of rows and columns and the density calculated as No. of Nonzeros
Matrix Size

.

Our design adopts the double-precision floating-point (64-bit) data format. The RTL

for the MMUs and AUs was written and synthesized on the 45nm FreePDK45 stan-

dard cell library [3] using Synopsys Design Compiler, aiming for a target frequency

of 1GHz at 1.25V. I implemented a cycle-accurate simulator in Python to measure

the performance of Sparse Tensor Core, which meticulously simulates the interactions

among hardware components. The simulator utilizes pycachesim [34] to model the

cache and is multi-threaded to reduce the simulation time. I compare our design

with the SOTA ASIC design of SpGEMM (i.e., Spada [51]) with similar hardware

configurations for a fair comparison as described in Table 5.1.

78

MMU 16 MMUs @ 1GHz

AU 16 AUs @ 1GHz

Cache 2 MB: 16 banks, 128 sets, 16-ways, 64B line, LRU replacement policy

Main Memory 128 GB/s, 16 64-bit HBM channels, 8 GB/s/channel

5.4.2 Performance Comparison with the SOTA ASIC Design

Table 5.2 summarizes the performance of Sparse Tensor Core per SpGEMM op-

eration in terms of GOPS. Figure 5.6 shows the runtime speedup achieved by Sparse

Tensor Core over Spada [51] for different sparse matrices. The speedup for SpGEMM

is up to 4.10× for matrix cari. On average, Sparse Tensor Core achieves 2.10× higher

performance than the SOTA SpGEMM counterpart. The speedup mainly stems from

the parallel processing feature of the proposed MMUs, the improved memory band-

width as a result of fully utilizing the memory channel data width (8B) per memory

access and the throughput-optimized hardware architecture tailored to the SpGEMM

algorithm, all of which improves the overall utilization of the computation resources

at run time.

79

Table 5.2: The Performance (GOPS) Of Sparse Tensor Core Achieved On Computing

A× AT For The Commonly-Used Benchmarks.

Matrix GOPS

hugetrace-0010 6.43

kkt power 20.73

Hardesty2 34.68

poisson-3Da 22.74

raefsky3 71.63

nemsemm1 30.98

cari 111.89

lp fit2d 35.9

Figure 5.6: Performance Speedup Over Spada [51] For The Commonly-Used Bench-

mark.

1.61×
1.88×

1.14× 1.34×

2.15×

1.29×

4.10×

3.26×

2.10×

hu
ge
tra
ce
-00
01
0

kk
t_p
ow
er

Ha
rd
es
ty
2

po
iss
on
-3
Da

ra
efs
ky
3

ne
ms
em
m1 ca

ri

lp_
fit
2d

Av
er
ag
e

80

Publications

• Bank Tavakoli, E., Riera, M., Quraishi, M. H., & Ren, F. (2021, October).

FSCHOL: An OpenCL-based HPC Framework for Accelerating Sparse Cholesky

Factorization on FPGAs. In 2021 IEEE 33rd International Symposium on Com-

puter Architecture and High Performance Computing (SBAC-PAD) (pp. 209-

220). IEEE.

• Bank Tavakoli, E., Riera, M., Quraishi, M. H., & Ren, F. (2024). FSpGEMM:

A Framework for Accelerating Sparse General Matrix–Matrix Multiplication

Using Gustavson’s Algorithm on FPGAs. IEEE Transactions on Very Large

Scale Integration (VLSI) Systems.

• Quraishi, M. H., Bank Tavakoli, E., & Ren, F. (2021). A Survey of System

Architectures and Techniques for FPGA Virtualization. IEEE Transactions on

Parallel and Distributed Systems, 32(9), 2216-2230.

• Bank Tavakoli, E., Beygi, A., & Yao, X. (2022). RPkNN: An OpenCL-Based

FPGA Implementation of the Dimensionality-Reduced kNN Algorithm Using

Random Projection. IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, doi: 10.1109/TVLSI.2022.3147743.

• Huang, J., Sergin, N., Dua, A., Bank Tavakoli, E., Yan, H., Ren, F., & Ju, F.

(2020, September). Edge Computing Accelerated Defect Classification Based

81

on Deep Convolutional Neural Network With Application in Rolling Image In-

spection. In International Manufacturing Science and Engineering Conference

(Vol. 84263, p. V002T07A037). American Society of Mechanical Engineers.

• Yu, Z., Trindade, B. M., Green, M., Zhang, Z., Sneha, P., Bank Tavakoli,

E., ... & Ren, F. (2022, October). A Data-Driven Approach for Automated

Integrated Circuit Segmentation of Scan Electron Microscopy Images. In 2022

IEEE International Conference on Image Processing (ICIP) (pp. 2851-2855).

IEEE.

• Riera, M., Quraishi, M. H., Bank Tavakoli, E., & Ren, F. FLASH 1.0: A

Software Framework for Rapid Parallel Deployment and Enhancing Host Code

Portability in Heterogeneous Computing. Under Review.

• Riera, M., Bank Tavakoli, E., Quraishi, M. H., & Ren, F. HALO 1.0: A

Hardware-agnostic Accelerator Orchestration Framework for Enabling Hardware-

agnostic Programming with True Performance Portability for Heterogeneous

HPC. Under Review.

82

REFERENCES

[1] Cholmod, 2024.

[2] cusparse :: Cuda toolkit documentation, 2024.

[3] Freepdk45, 2024.

[4] Intel stratix 10 fpga features, 2024.

[5] Intel stratix 10 gx/sx product table, 2024.

[6] Intel xeon processor e5-2637 v3 83358, 2024.

[7] nvidia-smi documentation, 2024.

[8] Nvidia system management interface, 2024.

[9] Nvidia v100 tensor core gpu, 2024.

[10] Virtex-7 fpga family, 2024.

[11] Hasan Metin Aktulga, Aydin Buluç, Samuel Williams, and Chao Yang. Opti-
mizing sparse matrix-multiple vectors multiplication for nuclear configuration in-
teraction calculations. In 2014 IEEE 28th International Parallel and Distributed
Processing Symposium, pages 1213–1222. IEEE, 2014.

[12] Patrick R Amestoy, Timothy A Davis, and Iain S Duff. An approximate minimum
degree ordering algorithm. SIAM Journal on Matrix Analysis and Applications,
17(4):886–905, 1996.

[13] Hartwig Anzt, Stanimire Tomov, and Jack J Dongarra. Accelerating the lobpcg
method on gpus using a blocked sparse matrix vector product. In SpringSim
(HPS), pages 75–82, 2015.

[14] Bahar Asgari, Ramyad Hadidi, Hyesoon Kim, and Sudhakar Yalamanchili. Eri-
danus: Efficiently running inference of dnns using systolic arrays. Ieee micro,
39(5):46–54, 2019.

[15] Erfan Bank-Tavakoli, Seyed Abolfazl Ghasemzadeh, Mehdi Kamal, Ali Afzali-
Kusha, and Massoud Pedram. Polar: A pipelined/overlapped fpga-based lstm
accelerator. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
28(3):838–842, 2019.

[16] Aydin Buluç, Jeremy T Fineman, Matteo Frigo, John R Gilbert, and Charles E
Leiserson. Parallel sparse matrix-vector and matrix-transpose-vector multiplica-
tion using compressed sparse blocks. In Proceedings of the twenty-first annual
symposium on Parallelism in algorithms and architectures, pages 233–244, 2009.

83

[17] Aydin Buluc and John R Gilbert. On the representation and multiplication of
hypersparse matrices. In 2008 IEEE International Symposium on Parallel and
Distributed Processing, pages 1–11. IEEE, 2008.

[18] Jared Casper and Kunle Olukotun. Hardware acceleration of database oper-
ations. In Proceedings of the 2014 ACM/SIGDA international symposium on
Field-programmable gate arrays, pages 151–160, 2014.

[19] Yanqing Chen, Timothy A Davis, William W Hager, and Sivasankaran Raja-
manickam. Algorithm 887: Cholmod, supernodal sparse cholesky factorization
and update/downdate. ACM Transactions on Mathematical Software (TOMS),
35(3):1–14, 2008.

[20] Minsik Cho, Daniel Brand, Rajesh Bordawekar, Ulrich Finkler, Vincent Ku-
landaisamy, and Ruchir Puri. Paradis: an efficient parallel algorithm for in-place
radix sort. Proceedings of the VLDB Endowment, 8(12):1518–1529, 2015.

[21] Elizabeth Cuthill. Several strategies for reducing the bandwidth of matrices. In
Sparse Matrices and their Applications: Proceedings of a Symposium on Sparse
Matrices and Their Applications, held September 9–10, 1971, at the IBM Thomas
J. Watson Research Center, Yorktown Heights, New York, and sponsored by the
Office of Naval Research, the National Science Foundation, IBM World Trade
Corporation, and the IBM Research Mathematical Sciences Department., pages
157–166. Springer, 1972.

[22] Steven Dalton, Nathan Bell, Luke Olson, and Michael Garland. Cusp: Generic
parallel algorithms for sparse matrix and graph computations, 2014. Version
0.5.0.

[23] Andrew Davidson, David Tarjan, Michael Garland, and John D Owens. Efficient
parallel merge sort for fixed and variable length keys. IEEE, 2012.

[24] Timothy A Davis. Algorithm 1000: Suitesparse: Graphblas: Graph algorithms
in the language of sparse linear algebra. ACM Transactions on Mathematical
Software (TOMS), 45(4):1–25, 2019.

[25] Timothy A Davis and Yifan Hu. The university of florida sparse matrix collection.
ACM Transactions on Mathematical Software (TOMS), 38(1):1–25, 2011.

[26] Tiziano De Matteis, Johannes de Fine Licht, and Torsten Hoefler. Fblas: stream-
ing linear algebra on fpga. In SC20: International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, pages 1–13. IEEE, 2020.

[27] Iain S Duff and John K Reid. The multifrontal solution of indefinite sparse sym-
metric linear. ACM Transactions on Mathematical Software (TOMS), 9(3):302–
325, 1983.

[28] Fernando A Escobar, Xin Chang, and Carlos Valderrama. Suitability analysis
of fpgas for heterogeneous platforms in hpc. IEEE Transactions on Parallel and
Distributed Systems, 27(2):600–612, 2015.

84

[29] Mohammad Farhadi, Mehdi Ghasemi, and Yezhou Yang. A novel design of
adaptive and hierarchical convolutional neural networks using partial reconfigu-
ration on fpga. In 2019 IEEE High Performance Extreme Computing Conference
(HPEC), pages 1–7. IEEE, 2019.

[30] Felix Gremse, Andreas Hofter, Lars Ole Schwen, Fabian Kiessling, and Uwe
Naumann. Gpu-accelerated sparse matrix-matrix multiplication by iterative row
merging. SIAM Journal on Scientific Computing, 37(1):C54–C71, 2015.

[31] Thomas Gruber, Jan Eitzinger, Georg Hager, and Gerhard Wellein. Likwid 5:
Lightweight performance tools, 2019.

[32] Georg Hager and Gerhard Wellein. Introduction to high performance computing
for scientists and engineers. CRC Press, 2010.

[33] Pouya Haghi, Tong Geng, Anqi Guo, Tianqi Wang, and Martin Herbordt. Fp-
amg: Fpga-based acceleration framework for algebraic multigrid solvers. In
2020 IEEE 28th Annual International Symposium on Field-Programmable Cus-
tom Computing Machines (FCCM), pages 148–156. IEEE, 2020.

[34] Julian Hammer. pycachesim, 2015.

[35] Changwan Hong, Aravind Sukumaran-Rajam, Bortik Bandyopadhyay, Jinsung
Kim, Süreyya Emre Kurt, Israt Nisa, Shivani Sabhlok, Ümit V Çatalyürek, Srini-
vasan Parthasarathy, and P Sadayappan. Efficient sparse-matrix multi-vector
product on gpus. In Proceedings of the 27th International Symposium on High-
Performance Parallel and Distributed Computing, pages 66–79, 2018.

[36] Changwan Hong, Aravind Sukumaran-Rajam, Israt Nisa, Kunal Singh, and P Sa-
dayappan. Adaptive sparse tiling for sparse matrix multiplication. In Proceed-
ings of the 24th Symposium on Principles and Practice of Parallel Programming,
pages 300–314, 2019.

[37] Hiroshi Inoue and Kenjiro Taura. Simd-and cache-friendly algorithm for sorting
an array of structures. Proceedings of the VLDB Endowment, 8(11):1274–1285,
2015.

[38] Intel. Intel 64 and ia-32 architectures software developer’s manual: Volume 3,
2016.

[39] Intel. Intel stratix 10 gx fpga development kit user guide, 2020.

[40] Intel. Intel fpga sdk for opencl pro edition: Programming guide, 2022.

[41] Ernest Jamro, Kazimierz Wiatr, et al. The algorithms for fpga implementation
of sparse matrices multiplication. Computing and Informatics, 33(3):667–684,
2014.

85

[42] Peng Jiang, Changwan Hong, and Gagan Agrawal. A novel data transformation
and execution strategy for accelerating sparse matrix multiplication on gpus. In
Proceedings of the 25th ACM SIGPLAN symposium on principles and practice
of parallel programming, pages 376–388, 2020.

[43] George Karypis and Vipin Kumar. Metis: A software package for partitioning
unstructured graphs, partitioning meshes, and computing fill-reducing orderings
of sparse matrices, 1997.

[44] Srinidhi Kestur, John D Davis, and Oliver Williams. Blas comparison on fpga,
cpu and gpu. In 2010 IEEE computer society annual symposium on VLSI, pages
288–293. IEEE, 2010.

[45] Dirk Koch and Jim Torresen. Fpgasort: A high performance sorting architec-
ture exploiting run-time reconfiguration on fpgas for large problem sorting. In
Proceedings of the 19th ACM/SIGDA international symposium on Field pro-
grammable gate arrays, pages 45–54, 2011.

[46] Moritz Kreutzer, Jonas Thies, Melven Röhrig-Zöllner, Andreas Pieper, Faisal
Shahzad, Martin Galgon, Achim Basermann, Holger Fehske, Georg Hager, and
Gerhard Wellein. Ghost: building blocks for high performance sparse linear alge-
bra on heterogeneous systems. International Journal of Parallel Programming,
45:1046–1072, 2017.

[47] HT Kung, Bradley McDanel, and Sai Qian Zhang. Adaptive tiling: Applying
fixed-size systolic arrays to sparse convolutional neural networks. In 2018 24th In-
ternational Conference on Pattern Recognition (ICPR), pages 1006–1011. IEEE,
2018.

[48] Chao-Lin Lee, Chen-Ting Chao, Wei-Hsu Chu, Ming-Yu Hung, and Jenq-Kuen
Lee. Accelerating ai applications with sparse matrix compression in halide. Jour-
nal of Signal Processing Systems, 95(5):609–622, 2023.

[49] Shiqing Li, Shuo Huai, and Weichen Liu. An efficient gustavson-based sparse
matrix-matrix multiplication accelerator on embedded fpgas. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 2023.

[50] Shiqing Li and Weichen Liu. Accelerating gustavson-based spmm on embedded
fpgas with element-wise parallelism and access pattern-aware caches. In 2023
Design, Automation & Test in Europe Conference & Exhibition (DATE), pages
1–6. IEEE, 2023.

[51] Zhiyao Li, Jiaxiang Li, Taijie Chen, Dimin Niu, Hongzhong Zheng, Yuan Xie, and
Mingyu Gao. Spada: Accelerating sparse matrix multiplication with adaptive
dataflow. In Proceedings of the 28th ACM International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, Volume 2,
pages 747–761, 2023.

86

[52] Hui-Hsin Liao, Chao-Lin Lee, Jenq-Kuen Lee, Wei-Chih Lai, Ming-Yu Hung,
and Chung-Wen Huang. Support convolution of cnn with compression sparse
matrix multiplication flow in tvm. In 50th International Conference on Parallel
Processing Workshop, pages 1–7, 2021.

[53] Colin Yu Lin, Ngai Wong, and Hayden Kwok-Hay So. Design space exploration
for sparse matrix-matrix multiplication on fpgas. International Journal of Circuit
Theory and Applications, 41(2):205–219, 2013.

[54] George Lindfield and John Penny. Chapter 2 - linear equations and eigensys-
tems. In George Lindfield and John Penny, editors, Numerical Methods (Fourth
Edition), pages 73 – 156. Academic Press, fourth edition edition, 2019.

[55] Joseph WH Liu. The multifrontal method for sparse matrix solution: Theory
and practice. SIAM review, 34(1):82–109, 1992.

[56] Weifeng Liu and Brian Vinter. An efficient gpu general sparse matrix-matrix
multiplication for irregular data. In 2014 IEEE 28th International Parallel and
Distributed Processing Symposium, pages 370–381. IEEE, 2014.

[57] Dejan Marković and Robert W Brodersen. DSP architecture design essentials.
Springer Science & Business Media, 2012.

[58] Susumu Mashimo, Thiem Van Chu, and Kenji Kise. High-performance hardware
merge sorter. In 2017 IEEE 25th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), pages 1–8. IEEE, 2017.

[59] Duane Merrill and Andrew Grimshaw. High performance and scalable radix
sorting: A case study of implementing dynamic parallelism for gpu computing.
Parallel Processing Letters, 21(02):245–272, 2011.

[60] Yusuke Nagasaka, Akira Nukada, and Satoshi Matsuoka. High-performance and
memory-saving sparse general matrix-matrix multiplication for nvidia pascal gpu.
In 2017 46th International Conference on Parallel Processing (ICPP), pages 101–
110. IEEE, 2017.

[61] Maxim Naumov, L Chien, Philippe Vandermersch, and Ujval Kapasi. Cusparse
library. In GPU Technology Conference, 2010.

[62] Esmond G Ng and Barry W Peyton. Block sparse cholesky algorithms on
advanced uniprocessor computers. SIAM Journal on Scientific Computing,
14(5):1034–1056, 1993.

[63] Yuyao Niu, Zhengyang Lu, Haonan Ji, Shuhui Song, Zhou Jin, and Weifeng
Liu. Tilespgemm: A tiled algorithm for parallel sparse general matrix-matrix
multiplication on gpus. In Proceedings of the 27th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, pages 90–106, 2022.

87

[64] Subhankar Pal, Jonathan Beaumont, Dong-Hyeon Park, Aporva Amarnath, Siy-
ing Feng, Chaitali Chakrabarti, Hun-Seok Kim, David Blaauw, Trevor Mudge,
and Ronald Dreslinski. Outerspace: An outer product based sparse matrix mul-
tiplication accelerator. In 2018 IEEE International Symposium on High Perfor-
mance Computer Architecture (HPCA), pages 724–736. IEEE, 2018.

[65] Mathias Parger, Martin Winter, Daniel Mlakar, and Markus Steinberger. speck:
accelerating gpu sparse matrix-matrix multiplication through lightweight anal-
ysis. In Proceedings of the 25th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pages 362–375, 2020.

[66] Dong-Hyeon Park, Subhankar Pal, Siying Feng, Paul Gao, Jielun Tan, Austin
Rovinski, Shaolin Xie, Chun Zhao, Aporva Amarnath, Timothy Wesley, et al.
A 7.3 m output non-zeros/j, 11.7 m output non-zeros/gb reconfigurable sparse
matrix–matrix multiplication accelerator. IEEE Journal of Solid-State Circuits,
55(4):933–944, 2020.

[67] Juan C Pichel, Francisco F Rivera, Marcos Fernández, and Aurelio Rodŕıguez.
Optimization of sparse matrix–vector multiplication using reordering techniques
on gpus. Microprocessors and Microsystems, 36(2):65–77, 2012.

[68] Juan C Pichel, David E Singh, and Jesús Carretero. Reordering algorithms for
increasing locality on multicore processors. In 2008 10th IEEE International
Conference on High Performance Computing and Communications, pages 123–
130. IEEE, 2008.

[69] Ali Pinar and Michael T Heath. Improving performance of sparse matrix-vector
multiplication. In Proceedings of the 1999 ACM/IEEE conference on Supercom-
puting, pages 30–es, 1999.

[70] J-A Pineiro and Javier D Bruguera. High-speed double-precision computation
of reciprocal, division, square root, and inverse square root. IEEE Transactions
on Computers, 51(12):1377–1388, 2002.

[71] Masudul Hassan Quraishi, Erfan Bank Tavakoli, and Fengbo Ren. A survey
of system architectures and techniques for fpga virtualization. arXiv preprint
arXiv:2011.09073, 2020.

[72] Abid Rafique, George A Constantinides, and Nachiket Kapre. Communication
optimization of iterative sparse matrix-vector multiply on gpus and fpgas. IEEE
Transactions on Parallel and Distributed Systems, 26(1):24–34, 2014.

[73] Fengbo Ren and Dejan Marković. 18.5 a configurable 12-to-237ks/s 12.8 mw
sparse-approximation engine for mobile exg data aggregation. In 2015 IEEE In-
ternational Solid-State Circuits Conference-(ISSCC) Digest of Technical Papers,
pages 1–3. IEEE, 2015.

[74] SC Rennich, TA Davis, and P Vandermersch. Gpu acceleration of sparse matrix
factorization in cholmod. In GPU Technology Conference, 2014.

88

[75] Fazle Sadi, Joe Sweeney, Tze Meng Low, James C Hoe, Larry Pileggi, and Franz
Franchetti. Efficient spmv operation for large and highly sparse matrices us-
ing scalable multi-way merge parallelization. In Proceedings of the 52nd An-
nual IEEE/ACM International Symposium on Microarchitecture, pages 347–358,
2019.

[76] Makoto Saitoh, Elsayed A Elsayed, Thiem Van Chu, Susumu Mashimo, and
Kenji Kise. A high-performance and cost-effective hardware merge sorter with-
out feedback datapath. In 2018 IEEE 26th Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM), pages 197–204.
IEEE, 2018.

[77] Makoto Saitoh and Kenji Kise. Very massive hardware merge sorter. In 2018
International Conference on Field-Programmable Technology (FPT), pages 86–
93. IEEE, 2018.

[78] Mohammadreza Soltaniyeh, Richard P Martin, and Santosh Nagarakatte.
Synergistic cpu-fpga acceleration of sparse linear algebra. arXiv preprint
arXiv:2004.13907, 2020.

[79] Linghao Song, Yuze Chi, Licheng Guo, and Jason Cong. Serpens: A high band-
width memory based accelerator for general-purpose sparse matrix-vector multi-
plication. In Proceedings of the 59th ACM/IEEE Design Automation Conference,
pages 211–216, 2022.

[80] Wei Song, Dirk Koch, Mikel Luján, and Jim Garside. Parallel hardware
merge sorter. In 2016 IEEE 24th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), pages 95–102. IEEE,
2016.

[81] Nitish Srivastava, Hanchen Jin, Jie Liu, David Albonesi, and Zhiru Zhang. Ma-
traptor: A sparse-sparse matrix multiplication accelerator based on row-wise
product. In 2020 53rd Annual IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO), pages 766–780. IEEE, 2020.

[82] Yichun Sun, Hengzhu Liu, and Tong Zhou. Sparse cholesky factorization on fpga
using parameterized model. Mathematical Problems in Engineering, 2017, 2017.

[83] Russell Tessier and Wayne Burleson. Reconfigurable computing for digital signal
processing: A survey. Journal of VLSI signal processing systems for signal, image
and video technology, 28(1-2):7–27, 2001.

[84] Aravind Vasudevan, Andrew Anderson, and David Gregg. Parallel multi channel
convolution using general matrix multiplication. In 2017 IEEE 28th international
conference on application-specific systems, architectures and processors (ASAP),
pages 19–24. IEEE, 2017.

[85] Francisco Vazquez, G Ortega, José-Jesús Fernández, and Ester M Garzón. Im-
proving the performance of the sparse matrix vector product with gpus. In 2010
10th IEEE International Conference on Computer and Information Technology,
pages 1146–1151. IEEE, 2010.

89

[86] Endong Wang, Qing Zhang, Bo Shen, Guangyong Zhang, Xiaowei Lu, Qing Wu,
and Yajuan Wang. Intel math kernel library. In High-Performance Computing
on the Intel® Xeon Phi™, pages 167–188. Springer, 2014.

[87] Martin Winter, Daniel Mlakar, Rhaleb Zayer, Hans-Peter Seidel, and Markus
Steinberger. Adaptive sparse matrix-matrix multiplication on the gpu. In Pro-
ceedings of the 24th Symposium on Principles and Practice of Parallel Program-
ming, pages 68–81, 2019.

[88] Roger Woods, John McAllister, Gaye Lightbody, and Ying Yi. FPGA-based
implementation of signal processing systems. Wiley Online Library, 2017.

[89] Zihao Ye, Ruihang Lai, Junru Shao, Tianqi Chen, and Luis Ceze. Sparsetir:
Composable abstractions for sparse compilation in deep learning. In Proceedings
of the 28th ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems, Volume 3, pages 660–678, 2023.

[90] Guowei Zhang, Nithya Attaluri, Joel S Emer, and Daniel Sanchez. Gamma:
Leveraging gustavson’s algorithm to accelerate sparse matrix multiplication. In
Proceedings of the 26th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, pages 687–701, 2021.

[91] Zhekai Zhang, Hanrui Wang, Song Han, and William J Dally. Sparch: Efficient
architecture for sparse matrix multiplication. In 2020 IEEE International Sym-
posium on High Performance Computer Architecture (HPCA), pages 261–274.
IEEE, 2020.

[92] Zhou Zhou, Jemal H Abawajy, Fangmin Li, Zhigang Hu, Morshed U Chowdhury,
Abdulhameed Alelaiwi, and Keqin Li. Fine-grained energy consumption model of
servers based on task characteristics in cloud data center. IEEE access, 6:27080–
27090, 2017.

90

