
Compiler Design for Accelerating Applications on Coarse-Grained Reconfigurable

Architectures

by

Mahesh Balasubramanian

A Dissertation Presented in Partial Fulfillment
of the Requirement for the Degree

Doctor of Philosophy

Approved October 2021 by the
Graduate Supervisory Committee:

Aviral Shrivastava, Chair
Chaitali Chakrabarti

Fengbo Ren
Laura Pozzi

ARIZONA STATE UNIVERSITY

December 2021

ABSTRACT

Coarse-Grained Reconfigurable Arrays (CGRAs) are emerging accelerators that promise

low-power acceleration of compute-intensive loops in applications. The acceleration

achieved by CGRA relies on the efficient mapping of the compute-intensive loops

by the CGRA compiler onto the CGRA. The CGRA mapping problem, being NP-

complete, is performed in a two-step process, scheduling, and mapping.

The scheduling algorithm allocates timeslots to the nodes of the DFG, and the

mapping algorithm maps the scheduled nodes onto the PEs of the CGRA. On a map-

ping failure, the initiation interval (II) is increased, and a new schedule is obtained

for the increased II. Most previous mapping techniques use the Iterative Modulo

Scheduling algorithm (IMS) to find a schedule for a given II. Since IMS generates a

resource-constrained ASAP (as-soon-as-possible) scheduling, even with increased II,

it tends to generate a similar schedule that is not mappable and does not explore the

schedule space effectively. The problems encountered by IMS-based scheduling algo-

rithms are explored and an improved randomized scheduling algorithm for scheduling

of the application loop to be accelerated is proposed.

When encountering a mapping failure for a given schedule, existing mapping al-

gorithms either exit and retry the mapping anew, or recursively remove the previ-

ously mapped node to find a valid mapping (backtrack). Abandoning the mapping

is extreme, but even backtracking may not be the best choice, since the root of the

problem may not be the previous node. The challenges in existing algorithms are

systematically analyzed and a failure-aware mapping algorithm is presented.

The loops in general-purpose applications are often complicated loops, i.e., loops

with perfect and imperfect nests and loops with nested if-then-else’s (conditionals).

The existing hardware-software solutions to execute branches and conditions are in-

efficient. A co-design approach that efficiently executes complicated loops on CGRA

i

is proposed. The compiler transforms complex loops, maps them to the CGRA, and

lays them out in the memory in a specific manner, such that the hardware can fetch

and execute the instructions from the right path at runtime.

Finally, a CGRA compilation simulator open-source framework is presented. This

open-source CGRA simulation framework is based on LLVM and gem5 to extract the

loop, map them onto the CGRA architecture, and execute them as a co-processor to

an ARM CPU.

ii

To my parents, Balasubramanian & Rama,

to my wife, Shamini,

and to all my well-wishers.

iii

ACKNOWLEDGEMENT

I would like to thank my advisor Dr.Aviral Shrivastava, who has been a great mentor.

His support during my toughest times has helped me get through them and strive.

This thesis would not have been possible without his guidance.

I would like to thank Dr.Chaitali Chakrabarti, Dr.Fengbo Ren, and Dr.Laura

Pozzi, for supervising my thesis and for giving important ideas to develop my research

and fine-tune the thesis.

I am grateful for the summer internships at Lawrence Berkeley National Labo-

ratory (LBNL), where I had a chance to collaborate with Dr. Prabhat and Dr.Kris

Bouchard. Their inputs and mentorship shaped my research direction and this the-

sis. Thanks to all the people that I have met in Berkeley, especially, Brandon Cook,

Maximilian Dougherty, Pratik Sachdeva, Dr.Trevor Ruiz, and Dr.Sharmodeep Bhat-

tacharyya. A special thanks to Dr.Grzegorz Muszynski for his friendship and intel-

lectual discussions.

I would like to thank my lab mates, Shail Dave, Moslem Didehban, Dheeraj

Lokam, Edward Andert, Mohammadereza Mehrabian, and Mohammad Khayatian,

who have been great support and for providing a great research environment.

Finally, I would like to thank my family. My dad, who has been an emotional and

financial support for three decades. My mom, Rama, for her prayers. My in-laws,

Radhika and Rajaganesh, for believing in me. Most importantly, my wife, Shamini,

whose patience and love is unparalleled.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . ix

LIST OF FIGURES . xi

CHAPTER

1 INTRODUCTION . 1

2 BACKGROUND AND TERMINOLOGY . 8

2.1 Mapping a loop DFG onto the CGRA . 8

3 A LITERATURE SURVEY ON COMPILATION TECHNIQUES FOR

CGRA . 11

3.1 Background . 11

3.2 Classification of CGRA compiler techniques . 13

3.3 Mapping Algorithms . 15

3.3.1 Spatial Mapping . 15

3.3.2 Spatiotemporal Mapping . 18

3.4 Resource Utilization . 28

3.4.1 Data-Memory Aware Techniques . 28

3.4.2 Register-Aware Techniques . 31

3.5 Generalization . 34

3.5.1 Nested Loops . 34

3.5.2 Branch Aware – Loops with Conditionals 37

3.6 Multi-threading . 41

4 CRIMSON: A RANDOMIZED ITERATIVE MODULO SCHEDULING

APPROACH . 43

4.1 Background . 43

4.2 Motivating Example . 43

v

CHAPTER Page

4.3 Algorithm . 46

4.3.1 Computing Resource-Constrained ASAP and Resource-Constrained

ALAP . 47

4.3.2 Randomized Scheduling Algorithm . 48

4.3.3 Novel Feasibility Test . 51

4.3.4 Determining the λ value . 52

4.3.5 Running Example . 54

4.4 Results . 56

4.4.1 Performance Evaluation . 58

4.4.2 Scheduling time analysis between CRIMSON and IMS. 62

4.4.3 Trade-off analysis between scheduling time and II at differ-

ent λ values. 63

4.5 Chapter Summary . 63

5 PATHSEEKER: A FAST MAPPING ALGORITHM FOR CGRA 65

5.1 Background . 65

5.2 Motivating Example . 68

5.3 PathSeeker . 70

5.3.1 Mapping Algorithm . 74

5.3.2 Failure-Aware Mapping & Novel Timeslot Level Remapping . 74

5.3.3 Running Example . 80

5.4 Results . 82

5.4.1 Performance Evaluation . 83

5.4.2 Scalability Analysis . 86

5.5 Chapter Summary . 88

vi

CHAPTER Page

6 LASER: EFFICIENT METHOD FOR MAPPING CONDITIONAL LOOPS 89

6.1 Background . 89

6.1.1 Partial Predication incurs high overhead 90

6.2 LASER: Loop Acceleration By Selective Execution 91

6.2.1 Compiler Method . 94

6.2.2 Architecture Improvements . 97

6.3 Results . 98

6.3.1 Performance Evaluation . 99

6.3.2 Scalability Analysis . 100

6.4 Chapter Summary . 101

7 CASE STUDY: SCALING UNION OF INTERSECTIONS METHOD. . . 102

7.1 Background . 102

7.2 Methods . 105

7.2.1 Formal Statistical Description . 105

7.2.2 Model Selection and Model Estimation . 105

7.2.3 Distributed Constrained Convex Optimization by Alternat-

ing Direction Method of Multiplier . 106

7.2.4 UoILASSO Algorithm . 108

7.2.5 UoIV AR Algorithm . 111

7.3 Scaling UoILASSO and UoIV AR . 112

7.3.1 Challenges in achieving parallelism . 112

7.3.2 Randomized Data Distribution Design using HDF5 113

7.4 Results . 116

7.4.1 Performance and Scaling of UoILASSO . 117

vii

CHAPTER Page

7.4.2 Performance and Scaling of UoIV AR . 124

7.5 Application of UoIV AR to Real data sets . 128

7.6 Discussion . 130

8 CGRA COMPILATION AND SIMULATION FRAMEWORK 132

8.1 Background . 132

8.2 Overview of CCF . 133

8.3 LLVM Frontend . 134

8.4 Scheduling and Mapping . 136

8.5 Generating CGRA Machine Instruction . 137

8.5.1 Instruction Formats . 137

8.5.2 Managing Live-in and Live-out constants 142

8.6 gem5 based CGRA Architecture Model . 143

8.7 Challenges in Framework Development . 144

8.7.1 Challenges is LLVM framework . 144

8.7.2 Scheduling, Mapping, and Generating Instructions 147

8.7.3 Challenges in gem5 Development . 147

8.8 Discussion . 149

REFERENCES . 150

viii

LIST OF TABLES

Table Page

3.1 Classification of Compiler Techniques for CGRAs. 14

4.1 Benchmark Characteristics. 56

4.2 Performance (II) Comparison Between IMS-based RAMP and CRIM-

SON (CRIM.) for Sizes 4×4 and 5×5. “X” Denotes That There Was

No Mapping Obtained from RAMP. MII Denotes the Theoretical Min-

imum II. 58

4.3 Performance (II) Comparison Between IMS-based RAMP and CRIM-

SON (CRIM.) for Sizes 6×6 and 7×7. “X” Denotes That There Was

No Mapping Obtained from RAMP. MII Denotes the Theoretical Min-

imum II. 59

4.4 Performance (II) Comparison Between IMS-based RAMP and CRIM-

SON (CRIM.) for 8×8 CGRA. “X” Denotes That There Was No Map-

ping Obtained from RAMP. MII Denotes the Theoretical Minimum II. . 60

5.1 PathSeeker Has a Better Compilation Compared to Graphminor and

RAMP. NA Denotes the Loops for Which a Valid Mapping Was Not

Obtained Within the 100,000 Seconds Threshold. 81

5.2 Results Continued from Table 5.1 . 82

7.1 Performance Analysis Setup for UoILASSO and UoIV AR. 117

7.2 Randomized Data Distribution Design Improves the Data Read and

Distribution Time Compared to Conventional Distribution Method.

Beyond 1TB Data Set Size the Conventional Method’s Data Read Time

Crossed Beyond 5 Hours Whereas Randomized Data Distribution Read

Time Was Below 100 Seconds. 121

8.1 R-type Instruction Format for CGRA. 138

ix

Table Page

8.2 P-type Instruction Format for CGRA. 138

8.3 Input Multiplexer Selection for PEs. 139

8.4 Translation of LLVm IR Opcode to CCF Virtual Opcode. 140

8.5 Translation of CCF Virtual Opcode to CCF Machine Opcode. 141

x

LIST OF FIGURES

Figure Page

1.1 A 2-d Mesh 4×4 CGRA. 3

2.1 (A) DFG of an Application Loop. (B) a 1x4 CGRA Target Architec-

ture. (C) an IMS Schedule of Nodes of DFG. The X-axis Is the Modulo

Time. (D) a Mapping of the Scheduled Nodes on the Time-extended

CGRA (TEC). 8

3.1 (a) A 4×4 CGRA with simple 2D-mesh interconnect. Each PE consists

of an FU, muxes for data communication and Register Files to store

intermediate data or constants. PEs are connected to the data memory

and instruction memory. (b) a 4×4 CGRA with torus interconnect

network. (c) A 4×4 CGRA with 1-hop interconnect network. 12

3.2 (A) an Example Kernel Code (B) 3×2 CGRA Architecture. (C) DFG

of the Loop (D) Spatial Mapping of DFG onto 3×2 Architecture as

Shown in (B) Considering the Data Dependencies from the Original

DFG. A Routing Node ar (Dotted Edges) Is Added to Communicate

the Value of a to c. 16

3.3 (A) an Example Kernel Selected for Execution on CGRA (B) 2×2

CGRA Architecture. (C) DFG of the Loop with One Recurrent Edge

on Node a with Weight 1, (D) a Valid Spatiotemporal Mapping Con-

sidering the Data Dependencies. Next Iteration Can Begin in Time 3

Shown by Darker Nodes with II=2. 19

xi

Figure Page

3.4 (A) DFG of a Loop with Nodes a, b, e, f Memory Nodes (Load, Store

Operations) Denoted by Darker Shade. (B) 2×2 CGRA Architecture

with Double-bank Local Memory, (C) Mapping by Ems Causing Bank

Conflict, (D) Mapping by High Throughput Mapping Technique Re-

solving the Bank Conflict. 30

3.5 (A) Kernel Code (B) 2×2 CGRA Architecture. (C) Corresponding

DFG of the Loop (D) Utilization of Registers for Routing With II=2 . . 32

3.6 (A) a Simple Loop with If-then-else Conditional (B) a 2×2 CGRA

Target Architecture with 2 Registers in Each PE. (C) Partial Predica-

tion Adds Three Operation for e Inside If-then-else Statement, et for

If-path, ef for Else-path and S, a Select Operation to Select Between

If and Else Path Based on the Cmp Result (D) a Valid Mapping Obtain

With II=3 . 37

3.7 (A) a Simple Loop with If-then-else Conditional (B) a 2×2 CGRA

Target Architecture with 2 Registers in Each PE. (C) Psb Fuses the

If-path, Else-path and Select Operation from Partial Predication to

Form a Single e Operation. (D) a Valid Mapping Obtain with II=2,

Where Cmp Outcome Is Communicated to the Ifu. (E) to Facilitate

the Issue of Only the Correct Path, the Instruction Is Laid out in the

Instruction Memory. If the Cmp Is True Ifu Slot 2 Instructions Are

Issued and Executed Whereas If Cmp Is False Ifu Slot 2 Is Skipped and

Ifu Slot 3 Is Issued and Executed. 39

4.2 Overview of Scheduling and Mapping Workflow of Previous Techniques. 45

xii

Figure Page

4.1 (A) DFG of an Application Loop. (B) a 2x2 CGRA Target Architec-

ture. (C) Column 1 Shows the Nodes in the DFG and Column 2 Shows

an IMS Schedule for the Nodes at II=MII=3. (D) the Mapping Algo-

rithm Tries to Map the Nodes Scheduled, but Fails Due to Additional

Routing Nodes “r” Required to Route Nodes f and i. Failure to Find

a Valid Mapping, the II Is Increased to 4 and IMS Is Called Again to

Schedule the Nodes Based on the Workflow given in Figure 4.2. (E)

IMS Schedule for an Increased II (II=4). (F) Even at an Increased

II, the Mapping Algorithm Cannot Find a Valid Mapping Due to Re-

source Constraint at tI+1 Which Is Not Resolved at II=4 and Will Not

Be Resolved on Any Further Increase in II. 45

4.3 An Overview of CRIMSON Workflow, with Addition of Rc asap and

Rc alap Computation, Randomized Scheduling Algorithm, and a Fea-

sibility Test (Shaded Blocks in the Image Are the Proposed Methods). . 47

4.4 (A) the DFG of the Motivation Example. (B) a 2x2 CGRA Archi-

tecture. (C) for Each Node of the DFG, Resource Constrained Asap

(Column 2) and Resource Constrained Alap (Column 3) Is First Calcu-

lated. Then a Random Schedule Time Between Rc asap and Rc alap

Is Chosen for Each Node. A Valid Randomized Modulo Schedule Is

Shown in Column 4. (D) with CRIMSON Schedule a Valid Mapping

Is Achieved by the Mapping Algorithm At II=3. 53

xiii

Figure Page

4.5 (A) Scheduling Time Comparison of CRIMSON with IMS. (B) Schedul-

ing Time Vs. II Trade-off Trend for Stencil. (C) Scheduling Time Vs.

II Trade-off Trend for Hotspot3d. 62

5.1 (a) b Cannot Receive Values From A or Pass Values to C, Resulting in

a Failed Mapping. (B) B Is Unable to Pass Values to C, and (C) B Is

Unable to Receive From A. 67

5.2 (A) DFG of an Application Loop. (B) a 1×4 CGRA Target Architec-

ture. (C) Failure to Map Node 2 by Simulated Annealing, (D) Path-

Seeker Identifies the Problem and Remaps the Successor 4 and Finds a

Valid Mapping for Node 2 (E) Failure to Map Node 2 by Graphminor,

(F) PathSeeker Remaps Node 4 to pe2 to Find a Valid Mapping for 2. 69

5.3 a) B Fails Because the It Is Not Able to Receive Value from A or Pass

Value to C. (B) PathSeeker Identifies the Failure and Swaps B and E

in the Timeslot to Get a Valid Mapping. 78

5.4 II Comparison of PathSeeker with Graphminor (G-minor) and RAMP.

“x” In the Graph Denotes That There Was No Obtained for until the

Threshold Time. (A) Benchmark Loops from Rodinia, (B) Benchmark

Loops from Mibench and Parboil. 84

5.5 PathSeeker Is Able to Achieve a Valid Mapping for the All the 35 Loops

Considered Across Various Sizes of CGRA. 86

5.6 PathSeeker Achieves a Superior Mapping Quality (II Closer to MII)

Compared to RAMP. 86

5.7 PathSeeker Achieves a Mapping for All the Loops Across Various Sizes

of CGRA at a Lower Compilation Time. 87

xiv

Figure Page

6.1 (A) a Simple Loop to Be Accelerated on CGRA (B) Flattened 2×2

CGRA Where Each PE Has 2 Registers (C) a Loop with an If-then-

else (D) Data Flow Graph (DFG) of the Loop with Partial Predication

(E) Mapping of DFG on 2×2 CGRA With II=3. 90

6.2 (A) a Loop With Nested Conditional (B) DFG Using Partial Predica-

tion Results in 31 Nodes. Nodes h and g Represent Conditions x%i==1

and y%i==1. 91

6.3 (A) an Imperfectly Nested Loop with Cond1 and Cond2 Conditions (B)

Flattening Converts (a) into Single-level Loop with Conditionals with

New Cond3 and Cond4 . 92

6.4 (A) DFG Obtained from LASER-compiler for Loop of Fig 6.2. Nodes

from Multiple If-paths and Else-path to a Single Node. If Such Path Is

Absent, Balancing No-ops Are Added and a Node Such as ao Preserves

the Old Value. (B) 2×2 CGRA Where Each PE Has 2 Registers. (C)

Mapping with II = 4. (D) Instructions Are Selectively Issued During

the Execution of the Kernel. 93

6.5 LASER-Architecture to Accelerate Complex Loops. PEs Do Not Have

a Predicate Network. Branch Outcome Is Communicated to the Ifu to

Issue Instructions Selectively Based on the Path Taken at Runtime. . . . 97

6.6 LASER Reduces Nodes by 43.43% . 99

6.7 LASER Reduces Energy by 46% . 100

6.8 LASER Is a Scalable Solution With 40.91% Cumulative Geomean Re-

duction in II Compared to Partial Predication. 101

xv

Figure Page

7.1 (A) a Three-tier (T0, T1 and T2) Distribution Strategy for Random-

ized Distribution of Data Set Across the Number of Sample from the

Hdf5 Data File to the Cores of Knl. (B) Model Selection – Lasso Admm

Is Used to ‘solve’ and Intersection Operation Is Used as ‘reduce’ to

Select Family of Support Sj. (C) Data Randomization for Cross Val-

idation Where Tier2 Random Distribution Is Employed to Randomly

Reshuffle the Data. (D) Model Estimation – Ols Is Used to ‘solve’ and

Union Operation Is Used to ‘reduce’ to Get an Optimally Predictive

Model. 113

7.2 UoILASSO Runtime Number Using Intel-MKL Linear Algebra Library

With B1 = B2 = 5 and q = 8. 118

7.3 Exploiting PB and Pλ Parallelism by Increasing the Data Set and

ADMMCores by a Factor of 2. 119

7.4 Weak Scaling Plot of UoILASSO. The Problem Size per Node Was Kept

Fixed. 122

7.5 Tmin & Tmax Plot for UoILASSO. 123

7.6 Strong Scaling Plot of UoILASSO. The Problem Size Was Kept Fixed

At 1TB. 124

7.7 UoIV AR Single Node with B1 = B2 = 5 and q = 8. 125

7.8 Exploiting Algorithmic Parallelism of UoIV AR. 126

7.9 Weak Scaling Plot of UoIV AR in Logarithmic Scale. The Problem Size

per Node Was Kept Fixed. 127

7.10 Strong Scaling Plot of UoIV AR. The Problem Size Was Kept Fixed at

1TB. 128

xvi

Figure Page

7.11 Parameter Estimates of AV R(1) Model for First Differences of Weekly

Closes of 50 Randomly Chosen Companies on the S& P 500 Index

During 2013 and 2014. 129

8.1 The CGRA Compilation-simulation Framework. 133

8.2 (A) a Sample Loop Annotated with a Pragma in Basicmath Bench-

mark. (B) an Example IR of the Loop Annotated with a Pragma in

Basicmath Benchmark. 135

8.3 DFG of the Annotated Loop from Basicmath. 136

8.4 Scheduling and Mapping of the Annotated Loop on a 4×4 CGRA. 137

8.5 CPU+CGRA Model Based on Gem5’s Atomic Timing Model. 143

xvii

Chapter 1

INTRODUCTION

The advancement of the Internet and data collecting devices have increased the

demand for high-performance, low-power computing alternatives. All mobile devices

collect, process, and communicate data. Analyzing the collected data to extract mean-

ingful information is compute-intensive [1] and often limited by the thermal, power,

and resource constraints [2]. Efficiency in accelerating the compute-intensive sec-

tions is now being achieved through the use of custom accelerators, e.g., Application-

Specific Integrated Circuits (ASIC), spatial architectures like Eyeriss [3], DianNao [4],

EIE [5], MAERI [6], etc. for deep learning applications [7], NERO[8], SODA[9], As-

sociative Processor[10] for accelerating stencil computation, SODA[11] for Software

Defined Radio applications etc.

Due to the immense influx of the data, the performance of the application analyz-

ing the data is of utmost importance [12]. The existing compilers and architectures

exploit the data-level parallelism by vectorizing the applications. The resultant paral-

lel code generated, which is of the Single Instruction Multiple Data (SIMD) fashion,

is accelerated/streamed in vector units with variable width. Theoretically, as the

vector width increases, the speedup achieved by such SIMD vector units should be

proportional. But the speedup is restricted to highly parallel application, and many

of the application with control-flow divergence does not benefit much acceleration

from SIMD units [13].

The applications must be tuned to a particular architecture framework to achieve

maximum performance. [12]. Graphics Processing Units (GPU) are successful in ac-

celerating both graphics-based and general-purpose applications. Extensive research

1

is being carried out to handle the data-dependence and control-flow problem GPUs.

The downside of the GPU accelerator technology is the programmers’ ability to choose

the kernel from the application to be accelerated on the GPU and especially program

it for the hardware. OpenCL [14] and CUDA [15] are the widely used parallel-

languages for accelerating kernels on GPUs. So accelerating an application using the

GPU framework is not simple [16, 17, 18].

Along with the GPUs, Field Programmable Gate Arrays (FPGAs) are popular

in accelerating applications at low power. For power-critical systems, FPGAs have

been a promising accelerator solution. With the increasing use of data-centers and

edge computing devices, FPGAs have permeated into the domain-specific acceleration

like artificial intelligence, high-performance computing, etc. [19, 20]. Like GPUs,

FPGAs suffer from programmability issues where the programmers need to write

their applications in Hardware Descriptive Languages (HDL) [21].

Although custom accelerators can arguably achieve the highest acceleration effi-

ciency (performance/power), using them may result in poor code portability. If the

accelerator changes in the next generation of hardware, then the code-base needs to be

ported to the new accelerator technology. There has been a surge of application/domain-

specific accelerators like Eyeriss [3], Diannao [4], Marvel [22]. The compiler and

hardware are optimized for performance, power, area, and energy for a particular ap-

plication domain like Convolutional Neural Networks (CNN), Deep Neural Networks

(DNN), etc. As formulated in Marvel [22], the input application loops should have

the following constraints: (1) Perfectly nested without any conditional statements.

(2) Perfectly nested loops must not have any anti, flow, or output dependencies. (3)

Can be freely reordered for compiler optimizations like tiling, loop reordering, etc.

General-purpose applications have compute-intensive loops that do not conform to

these restrictions. Accelerating them is challenging as they may contain conditional

2

PE

PE
D

at
a

M
em

o
ry

PE

PE

Instruction Memory

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

FU

reg

Output To Neighbors

 Register
File

Data From Neighbors & Bus

Figure 1.1: A 2-d Mesh 4×4 CGRA.

statements that are arbitrarily nested, loop carried dependencies, etc.

FPGA or Field-Programmable Gate Arrays is the popular general-purpose ac-

celerator used. However, FPGAs achieve low efficiency in acceleration due to their

bit-level programmability [23]. CGRAs, on the other hand, provide high efficiency

at low power due to their word-level and arithmetic-operation level programmabil-

ity [24].

In a heterogeneous computing paradigm, where the CPU core is equipped with

vector processing and other accelerators, a single accelerator that can accelerator ma-

jority of the applications is still absent. The search for a generic accelerator that can

accelerate all application domains with decent quality and at low-power consumption

is the holy grail of the modern computing research. Coarse-grained Reconfigurable

Arrays (CGRA) is a promising candidate for generic accelerators that may be able

to accelerate a wide-range of applications with pretty good quality.

Figure 1.1 shows a 4x4 CGRA. A CGRA consists of a simple 2-D grid of Processing

Elements or PEs. Each PE contains Functional Units (FUs), which can receive

instructions from the instruction memory, compute arithmetic operations with the

data received from the data memory or the neighboring PEs. Each PE consists of

MUXes to select the inputs from its neighbors and a register file to store intermittent

3

data. The 4×4 CGRA shown in Figure 1.1, can perform 16 operations simultaneously,

making it highly parallel. The attractive feature about CGRA is that the hardware

is simple, and customizable since most of the effort for acceleration is shifted to the

compiler.

Previous CGRA designs have demonstrated high degrees of acceleration and high

power efficiency (performance/power) for signal processing applications. The ADRES [23]

experimentally showed the power-efficiency CGRAs to be 60 GOps/W using 32nm

technology. Good compilers are needed to obtain a good quality mapping of performance-

critical loops from applications from a wide variety of domains to demonstrate the

usefulness and applicability of CGRAs as a general-purpose accelerator. However,

existing state-of-the-art CGRA compilers still suffer from problems such as not find-

ing a mapping for a loop, achieving poor mapping (low performance) for a loop, and

yielding high compilation time.

The most common way to use CGRAs is to employ them as co-processors to

CPU cores or processors, to speed up and power-efficiently execute compute-intensive

applications – similar to GPUs. The compute-intensive loops of an application are

offloaded to CGRAs for parallel execution. The remaining un-parallel code section

is executed on the CPU core. CGRA compilers achieve this roughly in the following

steps: (i) identify the loops to be accelerated on the CGRA, (ii) extract and convert

the loops into a Data Flow Graph (DFG) honoring the data and control dependencies,

and (iii) schedule the nodes of the DFG onto a time extended CGRA, (iv) map the

nodes of the DFG onto the PEs for execution. The DFG is software pipelined onto the

CGRA graph, so the PEs can communicate the computed value to achieve a correct

execution in a parallel fashion. The earliest time at which the next iteration of the

loop can start in software pipelining is called the initiation interval (II).

Many techniques have been proposed to solve NP-complete[25] mapping problem

4

of CGRAs efficiently[26, 27, 28, 29, 25, 30, 31, 32]. A mapping failure can occur in the

mapping step due to the limited connectivity among the PEs of the CGRA. When

dependent operations are scheduled in non-contiguous timeslots, the value computed

by the source PE should be routed to the destination PE. This is commonly referred

to as the routing problem. One solution is to route the operands through the PEs in

the intermediate timeslots. Since routing and mapping attempts often fail, existing

CGRA mapping techniques have heavily focused on solving the problem encountered

in the mapping and routing step.

My thesis statement is: Effective compiler technology and co-design approach is

crucial in achieving efficient acceleration of applications on CGRAs.

This dissertation aims to explore and analyze the following problems when accel-

erating an application on CGRA:

• Randomized Scheduling Algorithm: Iterative Modulo Scheduling (IMS)

algorithm is widely used by the existing state-of-the-art CGRA mapping tech-

niques to schedule the application loops’ Data-Flow Graph (DFG) onto the

CGRA. The IMS-generated schedule does not change much, even when more

resources are added towards the bottom of the CGRA graph. The resource-

constrained ASAP schedule will be almost identical to the one obtained before,

and the extra resources are not used! As a result, the mapping algorithm keeps

on exploring the schedule space with the same schedule, and often no mapping

can be found, even after huge increases in the II. Hence, this creates a need for

an enhanced scheduling algorithm that explores the schedule space to increase

the mappability of the compute-intensive loops. The steps to mitigate this issue

is addressed in chapter 4.

5

• Failure-Aware Mapping Algorithm: The problem with existing mapping

techniques is that they do not investigate the reasons behind a mapping failure.

Many of the existing techniques abandon the current mapping and retry from

scratch every time they are unable to map a node. Some mapping techniques

use a more systematic method e.g., backtracking, to solve the problem. Back-

tracking recursively unmaps the last mapped node and then tries to obtain a

mapping. However, the order in which the backtracking algorithm unmaps the

nodes may not be efficient – in the sense that the problematic node may be very

deep in the backtracking stack. As a result, existing techniques may require a

long time to obtain a mapping or may fail to find a mapping in a limited time.

The only reason for a mapping failure in step (iv) is when there is no connec-

tion between the PE of the failed node and the PEs to which predecessors and

successors of the failed node are mapped. This issue can be solved by: changing

the mapping of the failed operation in its time slot, or changing the mapping of

the successor of the failed node, or by changing the mapping of the predecessor

of the failed node, and so on. The existing techniques are failure-unaware that

worsens the compilation time and sometimes the performance. A failure-aware

mapping algorithm is presented in chapter 5

• Efficient Mapping of Loops with Conditionals: Complicated loops like

nested loops and loops with arbitrary conditionals are hard to map by the

current compilers. Although full and partial predication can map arbitrarily

nested conditional loops, they suffer from poor performance and increasing DFG

size, respectively. Co-design approaches like Dual-Issue and PSB cannot map

nested loops due to their rigid hardware. A compiler-architecture co-design is

presented in chapter 6 to map and execute arbitrarily nested conditional loops.

6

• CGRA Compilation Simulation Framework: There is very few open-

source compiler simulator framework for CGRA in the research community.

The available frameworks like CGRA-ME [33] are restrictive (takes a lot of

compilation time) and not cycle-accurate. In chapter 8 we present a CGRA

compiler based on LLVM and CGRA architecture simulator based on gem5 for

accelerating various compute-intensive application loops.

7

Chapter 2

BACKGROUND AND TERMINOLOGY

2.1 Mapping a loop DFG onto the CGRA

0

1

Modulo
time

3
1 4

0
2

Time
Ti

Ti+1

Ti+2

PE1 PE2 PE3 PE4
0

1

r3

2

Ti+3

0

1 2

II = M
II = 2

1 2 43

4

3 r

4

(a)

(b)

(c) (d)

0

1

23

4

1

Figure 2.1: (A) DFG of an Application Loop. (B) a 1x4 CGRA Target Architecture.
(C) an IMS Schedule of Nodes of DFG. The X-axis Is the Modulo Time. (D) a
Mapping of the Scheduled Nodes on the Time-extended CGRA (TEC).

CGRA compilers, in general, first create the Data Flow Graph (DFG) D = (V,E)

of a compute-intensive loop, where V refers to the nodes of the loop and E refers to

the edges (data dependencies between nodes) in the graph. The constructed DFG is

then software pipelined using IMS[34], where each node is assigned a schedule time

at which it should be executed.

Fig 2.1(a) shows the DFG of a loop, and Fig 2.1(b) shows the target CGRA ar-

chitecture. The CGRA mapping process is usually divided into two phases, namely,

(i) scheduling phase, where the nodes of the DFG are allotted a timeslot for execu-

tion, and (ii) mapping phase, in which the nodes of the DFG are allotted a PE at

the scheduled timeslot where the node is executed honoring the data dependencies.

8

Most of the recent mapping algorithm uses Iterative Modulo Scheduling (IMS) [34] for

scheduling the nodes. The schedule of the DFG nodes is shown in Fig 2.1(c), consid-

ering the resource and the recurrence cycle constraints. IMS schedules the operations

at the theoretical minimum II. The theoretical minimum II (MII) is the maximum

of resource constraint minimum II (ResMII) and recurrent constraint minimum II

(RecMII), shown in Equation 2.1 and Equation 2.2, respectively.

ResMII =
Total nodes DFG

No of PEs
=

⌈
5

4

⌉
= 2 (2.1)

RecMII = No of Recurrent cycles = 1 (2.2)

MII = max(ResMII,RecMII) = max(2, 1) = 2. (2.3)

After computing the MII from Equation 2.3, IMS schedules the nodes of the

DFG for the MII. After scheduling, the nodes are then mapped onto the PEs of

CGRA such that the dependent operands can be routed from the PE on which the

source operation is mapped to the PE on which the destination operation is mapped

through either registers, memory, or paths in the CGRA graph. A register can be

used to route operands when the dependent operation is mapped to the same PE

as the source operation. Memory can be used to route operands, but that requires

inserting additional load and store instructions. A path is a sequence of edges and

nodes in the CGRA graph that connects two PEs. In the simplest case, a path is

just a single edge. For simplicity, the mapping shown in figure 2.1(d) uses only edges

to route dependencies. In this mapping, node 0 of iteration i is mapped to PE2

at time Ti, nodes 1 and 2 are mapped to PEs, PE1 and PE3 respectively, at Ti+1.

Similarly, nodes 3 and r of ith iteration are mapped in PE1 and PE3 respectively

at Ti+2. Node 4 of ith iteration is mapped at PE2 at Ti+3. We can observe that

9

node 0 of iteration (i+ 1)th in time Ti+2 (shown in green) is scheduled/pipelined even

before the completion of the ith iteration. In modulo scheduling, the interval in which

successive instructions can begin execution is called the Initiation Interval (II) [34].

II is considered the performance metric for DFG mapping onto CGRA, as the total

number of cycles required to execute a loop will be proportional to the II. Similarly,

nodes 1 and 2 of the (i+ 1)th iteration is scheduled along with node 4 of ith iteration

at time Ti+3. Modulo schedule repeats itself every II cycle, in this case, II=2. The

MII shown in Figure 2.1(d) is the theoretical minimum II that is possible for the given

DFG and the CGRA resources.

10

Chapter 3

A LITERATURE SURVEY ON COMPILATION TECHNIQUES FOR CGRA

3.1 Background

CGRAs exhibit a wide variety of architecture differing in size, functionality, inter-

connect, etc. Figure 3.1 shows three different CGRAs based on their PE connectivity.

Figure 3.1(a), (b) and (c) show mesh, torus and 1-hop CGRA interconnect variations.

[26] and [35] explain in detail various interconnections in CGRAs in their research.

In the literature, two of the most widely used PE configurations are, (i) homogeneous

and (ii) heterogeneous. In the homogeneous CGRA, all the PEs are designed to ex-

ecute all the operations, whereas in heterogeneous CGRA special PEs are used to

execute expensive operations.

Due to the flexibility of the PEs and interconnect topologies, there have been nu-

merous interconnect designs for CGRAs developed over the years. Likewise, CGRAs

exhibit a wide variety of designs based on the register file (RF)architectures, ex-

plained in detail in [26, 27, 36]. The categories include Local RF dedicated to each

PE, Global/Central RF shared by all PEs, Shared RF shared with four neighboring

PEs [29], etc. The RFs are not limited to the above-mentioned categories, and most

importantly, multiple RF configurations can be used in a CGRA. There have been

several implementation of CGRA architectures such as MorphoSys [37], MATRIX

[38], ADRES [26], RaPiD [39], HSRA [40], DRAA, RSPA, etc., for accelerating

compute-intensive sections of applications, predominantly loops. There has been an

increased interest in CGRA based data flow architectures in the bio-medical and ma-

chine learning domain. Samsung has been developing an in-house processor called

11

PE1

PE5

D
at

a
M

em
.

PE9

PE13

Instr. Mem.

PE2

PE6

PE10

PE14

PE3

PE7

PE11

PE15

PE4

PE8

PE12

PE16

FU

reg

Output Data

 Register
File

Input Data
PE1

PE5

D
at

a
M

em
.

PE9

PE13

Instr. Mem.

PE2

PE6

PE10

PE14

PE3

PE7

PE11

PE15

PE4

PE8

PE12

PE16

PE1

PE5

D
at

a
M

em
.

PE9

PE13

Instr. Mem.

PE2

PE6

PE10

PE14

PE3

PE7

PE11

PE15

PE4

PE8

PE12

PE16

(a) (b) (c)

Figure 3.1: (a) A 4×4 CGRA with simple 2D-mesh interconnect. Each PE consists
of an FU, muxes for data communication and Register Files to store intermediate
data or constants. PEs are connected to the data memory and instruction memory.
(b) a 4×4 CGRA with torus interconnect network. (c) A 4×4 CGRA with 1-hop
interconnect network.

Ultra-low Power Samsung Reconfigurable Processors (ULP-SRP) [41], especially for

biomedical applications like ECG monitoring, etc. Wave Computing Inc., [24] has

been developing CGRA based architectures for data-flow applications for machine

learning applications. Recent work from the Massachusetts Institute of Technol-

ogy (MIT) and NVIDIA called Eyeriss [42] uses CGRA like architecture for energy-

efficient Convolutional Neural Networks (CNN). These works are highly improving

the prospects CGRA like data-flow architectures in mainstream computing. In this

chapter, we will explore and categorize various general-purpose CGRA compilers, in

detail.

Previous research works like [43, 32] have shown that CGRAs, having a simpler

hardware compared to GPUs, can accelerate non-parallel loops in an energy efficient

manner. In CGRA most of the complexity in terms of reconfiguration is shifted to

the compiler, therefore the hardware is less complex. The efficiency and acceleration

of application by CGRAs, greatly rely on the mapping of application kernels by the

compiler onto the CGRA by better utilization the hardware resources available [44].

The CGRA compiler (i) identifies the compute-intensive loop, (ii) converts the kernel

12

into a data graph 1 , with V vertices/nodes, and E edges/dependences, (iii) Maps

the data graph onto the CGRA architecture (identifying which PEs should execute

which operation in which cycle for correct functionality) (iv) creates instructions for

PE functionality and (v) loads the instructions onto the configuration memory for PEs

for the correct functionality of the selected kernel. Some of the compilers developed

for CGRAs are DRESC compiler framework [26], REMUS [45] architecture and

compiler framework etc.

This survey analyzes in detail the various compiler techniques for accelerating

compute-intensive sections on CGRA. We also try to classify the compiler techniques

to understand the nature of each technique and the type and construct of loops that

they can accelerate. The classification provided in this chapter is just a research

guideline, and the categories can overlap for some techniques. For example, some

spatiotemporal mapping techniques can utilize registers for routing. In such cases,

we have categorized them in the section where the novelty of the approach seems to

fit. Each section starts with an overview of the problem definition, followed by a brief

explanation of each technique.

3.2 Classification of CGRA compiler techniques

The classification of CGRA compiler techniques is shown in Table 3.1. After

identifying the kernel to be accelerated, the compiler converts the kernel into a data

graph 2 and tries to map them onto the CGRA architecture. The mapping techniques

can further be sub-classified into spatial mapping techniques, like [44, 46, 47, 48] and

spatiotemporal mapping techniques. We further classify spatiotemporal mapping

1A data graph can be Data Flow Graph (DFG), Data Dependence Graph (DDG), Data Acyclic
Graph (DAG), Control Data-Flow Graph (CDFG) etc., depending on the compiler technique used.

2The data graph can be either a Data-flow graph (DFG), Data-Acylic Graph (DAG), Data-
dependence Graph (DDG), etc., depending on the implementation. We generally mention this
group as data graphs.

13

Classification Subcategories Approaches

Mapping Algorithms

Spatial Mapping [44, 46, 47, 48]

Spatiotemporal Mapping
Incremental [27, 28, 29, 49, 50]

Exploratory
[26, 51, 52]
[53, 54, 55]
[56, 57]

Graph-based
[25, 31]
[30, 58, 59]

Resource Utilization
Data-Memory Aware

[47, 48, 60]
[61, 62, 63]

Register Aware [31, 28, 64, 36]

Generalization
Nested Loops

[65, 66, 67, 68]
[69, 70, 71]
[44, 72]

Branch Aware
[73, 74, 75]
[76, 43, 77]
[78, 79]

Multi-threading [80, 81, 82]

Table 3.1: Classification of Compiler Techniques for CGRAs.

techniques into three categories namely, incremental techniques [27, 28, 83, 29, 84,

49, 34, 50], exploratory techniques [26, 51, 85, 86, 87, 56, 88, 52, 57] and graph based

techniques like [25, 30].

The second category, Resource Utilization, delves into the details of techniques

that intelligently use available CGRA architectural resources to better accelerate the

kernel. Based on the methods we came across, we categorize this section into (i) data-

memory aware techniques [60, 61, 62, 89] that try to better utilize the data-memory

connected to the CGRA architecture for better performance, and (ii) register-aware

techniques [64, 31, 90, 36] that utilize the register file (RF) architecture in the PEs or

have an external register file to route the data variables used for the loop execution.

There are different RF architectures explored in the CGRA community. Techniques

like [23, 27, 36] show various RF architectures for CGRA.

The third category, Generalization, includes compiler techniques that try to solve

14

the problem of accelerating application kernels having a more generalized problem

like that of nested loops and kernels with if-then-else conditional statements. We

sub-categorize Generalization into techniques for nested loops like [65, 66, 68, 72] and

branch-aware (loops with if-then-else) techniques like [76, 91, 92, 43, 77, 73, 78, 74].

The final category, Multi-threading, explains the techniques proposed in [80, 81, 82]

to solve the problem of accelerating multi-threaded kernels efficiently on CGRA.

3.3 Mapping Algorithms

The goal of mapping techniques is to find a valid mapping of the data graph of

the loop onto the PEs in space and time. Firstly, the loops in the target application

are identified by the compiler, which is then converted into a graph like a Data Flow

Graph D(Vi, Ei), where vertices or nodes (Vi) are the loop operations, and edges (Ei)

are the data dependencies [93]. Secondly, a resource graph is constructed C(Vc, Ec),

where Vc is the PE in the CGRA and Ec refers to the routing paths between the

PEs. This resource graph may be time extended (in the case of spatiotemporal

mapping) and not time extended (in the case of spatial mapping). Finally, finding

a valid mapping between graph D(Vi, Ei) to C(Vc, Ec) is the goal of the techniques

discussed in this section. Generally, existing mapping algorithms can be categorized

into spatial or spatiotemporal mapping techniques.

3.3.1 Spatial Mapping

Spatial Mapping techniques try to map the data graph onto the CGRA in space,

meaning the mapping for PEs is fixed throughout the kernel execution. If a node is

mapped to a PE, then that PE cannot be used by other nodes during the execution

of the loop. An example loop mapping is shown in Figure 3.2(a)-(d) . A simple loop

kernel to be accelerated and the 3× 2 CGRA architecture is shown in Figure 3.2(a)

15

1 2

4 3

a

bc

t
1

(a) (b) (c) (d)

5 6 d

a
r

e

t
2

t
2

t
2
t
3

t
3

t
4

for(i=0;i<10;i++)
{b = a * 2;
 c = a * b;
 d = b * 5;
 e = c * d;}

a

b

c

e

d

Figure 3.2: (A) an Example Kernel Code (B) 3×2 CGRA Architecture. (C) DFG
of the Loop (D) Spatial Mapping of DFG onto 3×2 Architecture as Shown in (B)
Considering the Data Dependencies from the Original DFG. A Routing Node ar
(Dotted Edges) Is Added to Communicate the Value of a to c.

and (b), respectively. The compiler first converts the loop kernel into a data graph

as shown in Figure 3.2(c), followed by a valid spatial mapping by the compiler with

II=4, as shown in Figure 3.2(d). At cycle time t1 operation a is executed followed by

ar and b operations at time t2. Nodes c and d are executed in time t3. Finally, node

e is executed at time t4. A routing node ar is introduced to communicate the value

of a to c via PE resources.

A drawing method algorithm Split & Push technique, based kernel mapping was

proposed in [44] called SPKM. The general idea of this method is to find a valid

spatial mapping by the recursive use of the Split&Push graph technique to map the

nodes of the Data Acyclic Graph (DAG) onto the CGRA. First, all the nodes of the

DAG are mapped to one PE, and the nodes are systematically moved to different

PEs by using a cut to separate the vertices into two distinct groups [44]. This step is

repeated until each PE gets a unique node of the DAG.

In [46], the kernel is first converted into data graph called the ”kernel tree” [46].

The algorithm analyzes the nodes that can be scheduled together on a PE. These

operations are clustered together to create a cluster graph. The clustered graph is

then scheduled and routed (laid-out) onto the CGRA architecture using an Integer

16

Linear Programming (ILP) [46].

A 2D spatial mapping algorithm considering memory interfaces was proposed in

[47]. The heuristic starts with a PE-operation tree (similar to a Data Flow Graph)

and then clusters the PE operations so that the clusters can be placed in each row

of the target DRAA [48] architecture of CGRA. During this placement the memory

operations placed in the row in less than or equal to the total memory buses allocated

for the row. For example, if there are only two memory ports in a row of CGRA, a

cluster can have a maximum of two memory operations. The cluster data transfer

is done via mapping them onto CGRA routing resources. A Brute-Force technique

is used to determine the vertical placements of individual node placements in the

row. The data transfers between clusters are placed closer to make the data trans-

fer between the rows easy. [48] builds on [47], with additional grouping of memory

operations that reads the same memory address, albeit at different iterations, called

the “alignable” nodes [48]. Due to this grouping, two additional constraints are in-

troduced to get a valid mapping. 1) The memory sharing alignable nodes should be

placed in the same row and 2) the difference of the pipeline stages of two alignable

nodes should be equal to the difference of iteration of their memory operations [48].

Analysis and Discussion: In spatial mapping, the configuration of the PEs

does not change throughout the execution. The key challenges in spatial mapping

algorithms are, 1) since there is no time-extended mapping (using the temporal di-

mension of PEs for mapping) all the nodes are mapped onto the CGRA architecture,

but only a few nodes are executed at a time 2) number of PEs in the CGRA should be

equal to or greater than the operations in the data graph. If the number of nodes of

the data graph is greater than the available resources, this mapping technique cannot

find a valid mapping.

17

3.3.2 Spatiotemporal Mapping

The techniques in this section overcome the resource availability problem of spatial

mapping by time extending the CGRA resources and mapping the nodes of the data

graph at a different time maintaining the data dependencies of the data graph, thus

mapping a data graph in space, and time.

The objective of spatiotemporal mapping techniques is to map the kernel data

graph to Time extended CGRA (TEC). To exploit the operation level (instruction-

level) parallelism of the data graph and to maximize resource utilization these tech-

niques overlap the consecutive iteration of the loop called Software pipelining. Initi-

ation Interval (II) is the time between consecutive iterations of the loop at the time

of mapping. For most of the techniques in this section, the performance metrics are

(II). Figure 3.3(a) shows a loop kernel to be mapped onto a 2×2 CGRA as shown

in Figure 3.3(b). Figure 3.3(c) shows a DFG of the loop kernel. Figure 3.3(d) shows

the Time-Extended CGRA and the mapping of the DFG honoring the data depen-

dencies with II=2, which means that for every two cycles a new loop iteration can

begin. The spatiotemporal mapping techniques are broadly classified into Incremen-

tal, Exploratory, and Graph-based methods based on the mapping style and heuristics

used to achieve valid mapping at lower II. Predominantly, the techniques employ two

major steps, (i) Scheduling and (ii) Place and Routing (P&R). In Scheduling. the

compiler tries to schedule the data graph nodes onto the TEC tags the timing for each

node. In the P&R stage, the compiler maps and routes the nodes onto the PEs. The

spatiotemporal mapping techniques are further classified into three sub-categories,

namely, Incremental, Exploratory, and Graph-based techniques.

18

for(a=0;a<10;a++)
{b = a * 2;
c = a * b;
d = b * 5;
e = c * d;}

(a)
1 R1

R2 2 R1
R2

4 R1
R2 3 R1

R2

(b)

a

b

c

e

a

b

c

e

d d

Time

1

3

4

2

II
=

 2

PE1 PE3 PE4PE2

(c) (d)

1

a

a

b a

Figure 3.3: (A) an Example Kernel Selected for Execution on CGRA (B) 2×2
CGRA Architecture. (C) DFG of the Loop with One Recurrent Edge on Node a with
Weight 1, (D) a Valid Spatiotemporal Mapping Considering the Data Dependencies.
Next Iteration Can Begin in Time 3 Shown by Darker Nodes with II=2.

Incremental Techniques:

The techniques in this category try to find a valid mapping by either node-centric

or edge-centric approaches. The heuristics start with the tightest II possible and

increase (Increment) the II until a valid mapping is found.

The modulo graph embedding technique was proposed in [27]. This technique

is a node-centric approach i.e., the nodes are placed in 3D schedule space which is

number of PEs ×II. The placement of nodes is based on the height of the order of

dependence. Subsequently, the placed nodes are then routed based on the affinity

values. Affinity value is the measure of the distance of the common consumer in the

DFG. To get a valid mapping, the skewed scheduling space approach is proposed

where a narrow but tall scheduling space is created. To improve the II and reduce

the compile-time, a more sophisticated approach using Edge-Centric approach, in-

troduced by [28], was called “Edge-Centric Modulo Scheduling” (EMS). Firstly, the

initial DFG is reduced by collapsing a few nodes (especially nodes with one source

or one destination). High fan-out edges are ignored and node clusters are created.

19

During scheduling edges are given priorities, for example, recurrent edges 3 are give

more priority, followed by simple edges, and high-fan out edges are given low prior-

ity. Then an integrated placement and routing function to get a valid mapping of

the kernel onto the CGRA architecture. In addition to traditional EMS, a technique

introduced by [94] uses a flattening-based approach to map DFGs onto CGRA of

stream graphs-based applications like StreamIt.

Recurrence cycles in the data graph pose a greater challenge in mapping. The

quality of mapping is affected greatly by the incremental techniques that we have

seen so far. To address this issue, a modulo mapping technique considering recur-

rence cycles was proposed in [29]. The technique starts by clustering the nodes of a

recurrence cycle into a single entity, thereby transforming the DFG into a data acyclic

graph. All the incoming nodes of this recurrence cluster are mapped before mapping

the recurrence cluster. In this way, the cluster that has all the incoming nodes to the

recurrent cluster is scheduled first. For P&R of the DAG onto the CGRA PEs, this

technique uses EMS [28] algorithm.

[49] proposed an efficient software-based Runtime Binary Translation Virtual Ma-

chine on LLVM-JIT compiler, which is a complete LLVM approach for mapping kernel

DFG. The application C code is converted into an intermediate representation (IR)

using clang. The framework has three main sections, (i) L1JIT, (ii) Monitor and,

(iii) L2JIT. L1JIT identifies the innermost of the applications and inserts calls to

the monitor function. The monitor function is a counter-based profiler, which checks

if the number of loops is less than a given threshold value, 50 in the experiments.

The loops beyond the threshold are executed in the host processor. After the mon-

itor stage, the L2JIT block is called. In the L2JIT block, the DFG of the kernel is

3Recurrence cycles or recurrent edges are formed when a set of operations in the DFG is dependent
on the result of the previous loop iteration.

20

extracted, and CGRA configurations are created using the EMS algorithm.

An interconnect-aware mapping algorithm was proposed in [50]. This algorithm

starts with extracting the Control-Data Flow Graph (CDFG) of the loop. Then

the available operation in the current cycle in Aavail list and list of PEs are stored

in a list called PElist, are created. The PElist and Aavail are then ordered using

operations cost Cop and connectivity cost of PE CPE, cost functions. The scheduling

algorithm maps from the lowest CPE followed by the routing algorithm, which checks

the availability of connection (route) between candidate operation to the candidate

PE in the current cycle. The operations in the PEList are scheduled and mapped

onto the PEs. The cycle is incremented, only if the list is exhausted [50].

Exploratory Techniques:

These techniques try to achieve a valid DFG onto a 3D CGRA schedule space using

complex algorithms (like Simulated annealing, genetic algorithm, etc.) to explore the

solution space and obtain a near-optimal mapping of the data graph onto the PEs.

DRESC compiler framework was proposed in [26] for their target ADRES CGRA

architecture. The technique starts with a Data Dependence Graph (DDG) and a

Modulo Resource Routing Graph (MRRG), which is identical to Time Extended

CGRA (TEC). The algorithm starts with an initial modulo scheduled mapping with

resource overuse. A cost function is proposed and the algorithm iteratively reduces

the resource overuse until the overuse is eliminated. Then a Simulated Annealing

based algorithm is used by exploring the solution space. For the first few notes, the

temperature function is high, meaning all the placement of the nodes is possible.

As the mapping progresses, there are fewer resources available for mapping, which

reduces the temperature function. Lower temperature makes the placement of the

nodes difficult. Technically, at the end of the simulated annealing cycle, a valid

21

optimal mapping should be achieved but, the compilation time (time to find a valid

mapping) increases drastically with the increase in the number of nodes in the DDG.

A modulo scheduling method was proposed in [51]. The heuristic initially uses

modulo scheduling to map the application graph (loop graph) onto the architecture

graph of CGRA. The architecture graph supports all the irregular interconnects in

the architectures. The heuristic then uses the Simulated Annealing technique to

relocate the vertices, aiming to reduce resource overuse. After relocating vertices, the

“Dijkstra’s Algorithm” (shortest path) [51] is used for rerouting. After relocation and

rerouting, the sum of resource overuse is calculated. The algorithm decides to make

the changes or revert the nodes and edges to the original state based on the overall

cost.

A Routing-Aware technique was presented by [88]. The technique starts with the

CDFG and uses List Scheduling to get the initial schedule by sorting from sink to

source. The vertices with the highest priorities are placed first. A graph of unmapped

vertices and edges is constructed. It uses Dijkstra’s algorithm (shortest path) to

map this graph onto the CGRA. To explore the solution space, the technique uses

Quantum-inspired Evolutionary Algorithm (QEA) [88]. QEA uses Seed, which is

the initial mapping by list schedule, and Fitness function, which is performance or

inverse of total latency. The solution is then given as a seed for the next generation.

An integrated kernel mapping and scheduling method was proposed in [52]. The

main goal of this method is to hide the delay of operations that has various latency.

Firstly, the DFG is expanded by inserting routing nodes to communicate and route the

data necessary for the consumer node. The expanded DFG is then mapped onto the

CGRA using an A* algorithm [95]. Redundant routing operations are then deleted.

Kernels that cannot be fit into the CGRA architecture are partitioned to get smaller

sub-kernels that are then mapped onto the CGRA. The sub-kernel creation is done

22

post-DFG step and a recursive partitioning algorithm is employed. To calculate the

cost of the schedule, a Slack Violation Table (SV T) is formed to keep track of the

timing violations, and a Modulo Resource Table (MRT) is formed to check resource

overuse [52]. A placement cost is calculated by adding MRT and SVT values. A

simulated annealing method is used to get a valid mapping. On encountering a failed

mapping, a lower performance mapping is tried.

A slack-based simulated annealing approach proposed in [53]. Firstly, the DFG

is expanded to incorporate all the routing nodes. Then, the operations are modulo

scheduled, and simulated annealing is used to find a mapping. Then, based on the

slack table the cost function for the cycle in a Time extended CGRA is taken. If

any cycle’s cost exceeds 100%, then without increasing the II best mapping is chosen.

If a mapping is not available, II is increased and mapping of the nodes is repeated.

EGRA [96] is used as the target architecture. The slack calculation for each operation

(mem, route, mult, ALUs) and percentage of a 1.37ns clock period based on 90nm

technology (1.37ns is the highest delay of mult) [53] were used for the mapping. These

values were specific to the architecture used and may not be applied to arbitrary

CGRA.

Techniques proposed in [54, 55], predominantly used for streaming-based/pipelined

spatiotemporal mapping, the CGRA is divided into columns and performs different

operations every cycle. For example, for a loop to be executed on CGRA with Load,

execute1, execute2, and store operations, Column1 of the CGRA Loads the data of

the first iteration in cycle 1, and in cycle 2 column 2 perform execute1, whereas

column 2 of loads data for the second iteration. First, a CDFG is generated for a

given application using SUIF2 [97] parser. Next, a loop unrolling is performed for

each column, the PEs in the column being a constraint. Scheduling and routing of

operations are done for one column because consecutive iterations can be performed

23

in the next columns. A Quantum-inspired evolutionary algorithm (QEA) is used for

mapping CDFG onto the CGRA target architecture. Resource constraints of a num-

ber of PEs and registers are given as inputs to the QEA algorithm. This approach

employs HLS techniques for loop-level parallelism. In addition, this technique relies

on the registers, Global and local, for routing data instead of having routing nodes.

The compilation of the technique is not mentioned in the paper and to the best of our

knowledge, it should be on the higher side compared to incremental methods because

of the exploratory nature of QEA. In addition to the previous approach, [54] an

optimal mapping step and an overall compiler design flow were added in [55]. A list

scheduling step was also added to QEA to make it faster than the traditional QEA

and the ILP based mapping. The application C code is split into two parts, (a) the

code segment for the processor (in this case RISC) and (b) a code segment for CGRA.

The code segment for CGRA is first converted into a CDFG by the compiler. The

compiler transforms the CDFG by adding dummy routing nodes for data forwarding.

Unwanted routing operations are then the candidates/routing nodes of the same PE

can be mapped on to the same PE.

Most of the compiler approaches use the application code or kernel code to pro-

duce a graph to be mapped on CGRA. Conversely, [56] uses an already compiled

binary code of the application. The application binary code, compiled to run on

any microprocessor, is first disassembled, and the kernels are extracted. The ker-

nels are then converted into a control data-flow graph (CDFG) using the SoCDAL

tool. This technique extracts the innermost kernel of any nested loop and kernels

with static/known trip count. The scheduling and P&R and performed by high-level

synthesis methods used in [88]. Post HLS, kernels with unknown trip counts or un-

supported instructions and kernels with low-performance gains are discarded by the

compiler.

24

An ILP based mapping algorithm was proposed in [57]. It is a highly flexible

framework that uses Gurobi solver [98] to solve the mapping problem. First, the loops

to be mapped, are converted into a Modulo Routing Resource Graph (MRRG). Next,

there are nine various constraints included for the ILP for the correct functionality of

CGRA. The ILP solver then tries to find a mapping, and it is not incremental, mean-

ing if the ILP could not find a valid mapping it exists. Compared to the simulated

annealing solver [57] was able to find a valid mapping for more loops.

Graph Based Techniques:

Graph-Based Techniques uses graph theory solutions to find a mapping of the data

graph onto the Time-Extended CGRA (TEC). EPIMap, an epimorphic mapping

solution, was proposed in [25]. Firstly, the ”Out-degree” constraint (i.e., number

of sibling nodes from a single parent node should be ≤ number of neighboring PEs

any given PE is connected) and if this is violated is EPIMap reroutes by inserting a

routing node or recomputes the parent operation. Secondly, EPIMap checks if a given

DFG is balanced. If an arc exists from nodes i → j and the nodes are scheduled at

time ti and tj respectively, and if (ti - tj) > 1 then the DFG is not balanced[25]. In

this case, an extra routing node is added to balance the DFG. Finally, the EPIMap

algorithm checks if the nodes at each height of DFG are less than the total number

of PEs is a non-time extended CGRA. If the DFG does not satisfy this condition,

the EPIMap finds nodes that can be moved, to the other level. Now a Minimum II

(MII) is calculated followed by the creation of Modulo DFG (MDFG)[25]. During

MDFG construction, all the above constraints should be satisfied, otherwise EPIMap

increases II until such a graph is achieved. EPIMap finds a “Maximum Common

Subgraph” (MCS) of MDFG and TEC for placement of the nodes. The isomorphic

condition check between the two graphs results in the valid mapping [25], and if

25

isomorphism does not hold, the MDFG must be changed until a valid mapping is

achieved. Similarly, a clique-based approach was proposed by [31] in which the

problem formulation for finding a mapping of a node onto the Data-Flow Graph is

converted to finding a constrained maximal clique [31] in the product graph of DFG

and TEC. The weight assigned to a node is the sum of out-edges’ weight originating

from the node. A mapping can be achieved by finding the maximal clique that has a

total weight less than the registers available [31].

[30] technique employs the concept of minor of a graph to find a valid mapping be-

tween the data graph and the Time extended CGRA. Firstly, the Minimum II (MII)

is obtained, which is a maximum of Resource II and Recurrence II. The algorithm

starts with mapping and checks whether the mapping M with SRG (Schedule and

Route Graph) is a minor of GII, which is Modulo Resource Routing Graph (MRRG)

extended up to II cycles. A function is used to check whether the current mapping

is a minor of the current GII. The algorithm generates all possible mappings of the

DFG with the GII. So if a mapping exists, GraphMinor will algorithm will be able

to find it. If the current mapping is not a minor of GII then the II is increased and

the mapping steps are repeated. This process is performed until a valid mapping is

obtained. Along with [99, 26] this technique uses path-sharing. i.e., sharing of same

edges with same sources.

Unlike other graph-based mapping algorithm methods, the configuration context

reduction method [58], uses sub-graph isomorphism and sub-graph reconfiguration

algorithms, to merge similar configurations or eliminate unnecessary ones. The tech-

nique starts with a DFG of the application and converting them into different sub-

graphs, called atomic-DFG, with no data dependency by the sub-graph isomorphism.

The independent atomic-DFGs are categorized, for example, atomic-DFGs in the

same category have the same DFG structure. The sub-graph recombination selects

26

congruent DFGs (kernels) from different categories and templates are extracted. The

number of templates means the number of configurations times required for CGRA

PEs and the number of congruent kernels means the loop count for the execution. The

mapping problem is of the DFGs onto the CGRA can be explained as constructing

the kernels by atomic-DFG. The REMUS [45], architecture and compiler framework,

was used for experiments.

A MapReduce-based mapping technique was introduced by [59] which uses MapRe-

duce, Geometric Programming problem [100], steps of segmenting (Mapper) and

merging (Reducer) to the CGRA DFG. The loop computing is segmented by un-

rolling, and the problem of finding optimal unroll factor is formulated using a convex

optimization problem. The performance is maximized for the memory bandwidth,

hardware specifications, and resource constraints. A tree-structured Reducer model

is used to merge the Mapper’s output and produce the final mapping. The tree

structure is used because it has the least critical path. Like the previous method,

REMUS [45], architecture and compiler framework, was used for experimentation on

six different variants of matrix multiplication.

Analysis and Discussion: The compilation time of spatiotemporal mapping

techniques is one of the key factors to be considered. Some incremental methods are

still considered to yield lower compilation time compared to the exploratory meth-

ods due to their simplicity. The cost metrics are different for different methods,

and the complexity of cost metrics calculation can increase the compilation time to

a greater extent, especially compilation time for exploratory methods are consid-

ered to be on the higher side since these techniques try to find an optimal mapping

with sophisticated algorithms. Even though temporal techniques are highly reconfig-

urable, meaning, the configuration of PE changes during the execution of the loop,

resource under-use is prevalent compared to spatial mapping. The advantages of

27

the spatiotemporal technique over spatial mapping technique are, 1) spatiotemporal

mapping has PEs available in the time dimension to map a node, whereas in spatial,

the first node alone has all the PEs for selecting during whereas the second node has

one less PE and so on, 2) complex dependency edges can be easily routed across the

cycles and 3) techniques for lowering the II and algorithms to find the best mapping

can yield a near-optimal mapping, but in most cases, the quality of such mapping is

inversely proportional to the compilation time of such algorithms.

3.4 Resource Utilization

The compiler methods discussed in this category focus mainly on utilizing the data

memory available in the CGRA and register files(RF) available in CGRA to improve

the mapping. They also identify the data communication overhead from the main

memory and efficiently use the register files in the CGRA architecture to minimize

the overhead. There are different types of register file architectures used in CGRAs

like local RF (RF available in each PE), shared RF (RF shared between a few PEs),

and Global RF (RF shared by all PEs). This category is one of the least explored in

CGRA research, mainly the RF techniques, because the compiler is more restricted

and depends greatly on the underlying RF architecture.

3.4.1 Data-Memory Aware Techniques

Managing data on CGRA memory, while executing loops is one of the important

aspects that need to be considered for two reasons 1) The local memory of CGRA

has to store all the data required for a particular cycle of the loop, and by design,

there is no hit/miss for these memories and 2) having a large local memory or bigger

cache is not preferred due to high complexity, power consumption and data transfer

rate. Moreover, it is impractical and costly to have a large number of reading/write

28

ports. The existing techniques in this area try to explain some of these features and

propose methods to handle these problems.

As described in the spatial mapping Section 3.3.1, the work by [47, 48], considers

memory operations during clustering. The criteria are that the number of memory

operations should be less than or equal to the number of reads/write ports per line

in the CGRA architecture. The nodes accessing the same addresses at different

iterations, known as alignable nodes, are mapped to the same row for efficient data

transfer from local memory.

A Data memory bandwidth Aware mapping technique is presented by [60]. This

technique primarily checks for Data Reuse Opportunity (DRO) on the DDG to create

a Reuse Graph. The compiler then maps the reuse graph on the CGRA architecture

using three cost constraints. During mapping, the compiler calculates the memory

access delay, routing delay, and interconnect delay. By efficiently performing memory

operations in parallel and routing the reused data and by minimizing interconnect

delays, [60] achieves better performance. Expanding on the concept of data reuse and

memory bandwidth use [61] proposed a technique to efficiently bank the data memory

and update the mapping to better utilize the bank distribution. A DFG of a loop

with memory operations is shown in Figure 3.4(a), and the CGRA architecture with

double-buffered data memory is shown in Figure 3.4(b). As shown in Figure 3.4(c),

naive mapping underutilized the bank distribution, whereas [61] utilizes the bank

distribution and maps nodes that access the same memory parts to the PEs accessing

the same bank.

A memory access optimization technique is presented in [62]. The DFG of the

application loop is transformed using load reduction where trailing memory operations

are removed, and the leading memory operation provides the data. The authors

claim that this can effectively reduce the load operations but, only RAR and RAW

29

a b

d

h f

j

1 R1
R2 Bank1

Bank2

Time Time

Bank1 Bank2 Bank1 Bank2A[i] B[i]

A[i+1]

c

g

i

e
B[i+1]

a b

dc

g e h f

i j

A[i], B[i+1] B[i], A[i+1]

a b

dc

g f h

j

e

i

A[i], A[i+1] B[i], B[i+1]

(a)

(b) (c) (d)

1

3

4

2

1

3

4

2

2 R1
R2

3 R1
R2 4 R1

R2
Data-Mem

Figure 3.4: (A) DFG of a Loop with Nodes a, b, e, f Memory Nodes (Load, Store
Operations) Denoted by Darker Shade. (B) 2×2 CGRA Architecture with Double-
bank Local Memory, (C) Mapping by Ems Causing Bank Conflict, (D) Mapping by
High Throughput Mapping Technique Resolving the Bank Conflict.

dependencies are considered for load reduction. Reuse edges are introduced in the

DFG from the leading memory nodes to the trailing memory node and are annotated

with reuse distance. Array Clustering is performed next, where the total number of

arrays in the DFG is extracted, and priorities are calculated [62]. Then the arrays

are mapped in decreasing order of priority with lower cluster cost [62]. Finally, the

optimized DFG is modulo scheduled onto CGRA considering the reuse edges in the

DFG.

A more intuitive way to solve more than one-cycle forward dependence edges in

the DFG is by using routing operation to route the dependence. But the performance

of using routing operation can deteriorate when the dependence becomes too large,

for example, a dependence with more than a few cycles can add more routing nodes

and can increase the II. To solve this problem, MEMMap [63] was proposed, which

uses CGRA’s local data memory to route the operations. For a dependence, src →

dest the src operation is stored into the memory in the next cycle of execution

and retrieve/loaded back from the memory one-cycle before the dest operation if

30

the dependence cycles are more than 3. Otherwise, MEMMap uses routing nodes.

Usually, load-store operations can be costly, i.e., it can take more cycles to execute

based on the data locality and data availability in CGRA’s data memory which is a

point worth investigating.

3.4.2 Register-Aware Techniques

Register-files (RF) in CGRA can be utilized to improve the acceleration by routing

intermediate values through them. The naive way of communicating the values is by

adding routing nodes, i.e., using PEs to route the values. There are only a few

compiler techniques that utilize the register files in CGRA, and it is an unexplored

area compared to some of the earlier sections covered in this survey. Figure 3.5 shows

REGIMap [31] mapping technique using register files in the PEs. The loop to be

accelerated is shown in Figure 3.5(a), and the 2×2 CGRA is shown in Figure 3.5(b).

The Data-Flow Graph of the loop is shown in Figure 3.5(c). The mapping of the DFG

on the CGRA architecture using the REGIMap mapping algorithm is illustrated in

Figure 3.5(d). REGIMap uses the register files inside the PEs to communicate the

data, improvement, over the naive methods that use PEs to route the values. In the

naive case (using PEs to route), the minimum II would be 3, but using REGIMap,

the II=2.

EMS [28] technique, explained in Section 3.3.2 allots register files during schedul-

ing. The main use of allotting register files in EMS is to avoid spilling and to enable

routing of operations through them.

Register-Aware application mapping algorithm was presented by [31]. The map-

ping is done in three steps. First, a compatibility graph P(VP ,EP) between the DFG

D(VD,ED) and TEC RII(VR,ER) is constructed. Second, the arcs are given weights

(a measure of a number registers to be used). Finally, DFG is mapped onto CGRA by

31

a0

for(a=0;a<50;a++)
{b = a - 1;
c = a / 2;
d = b - c;
e = d + 11;
f = c + e;}

(a)

1 R1
R2 2 R1

R2

4 R1
R2 3 R1

R2

(b)

a

b c

e

a

c

dd

e

Time

1

3

4

2

II
=

 2

PE1 PE3 PE4PE2

(c) (d)

1

a0 c
0 b

a0
a1

c
0

a0
a1

c
0

c
1

a

f a2
a1

c
0

c
1

f

c b

da5

Figure 3.5: (A) Kernel Code (B) 2×2 CGRA Architecture. (C) Corresponding DFG
of the Loop (D) Utilization of Registers for Routing With II=2

finding the maximum clique in the compatibility graph. Node weights are calculated,

which is the sum of the weight of outward arcs. REGIMap solves the placement of D

onto RII by finding the largest clique, whose summation of arc weights is less than

the total registers available.

URECA, [36], is a recently proposed compiler technique, which advocated the use

of unified register file architecture, which was previously proposed, in [101]. Ureca

manages both the recurring variables (variables repeatedly read and rewritten in the

loop iteration) and the non-recurring variables (read-only) in the same local unified

RF that has both rotating RF(to manage recurring variables) and non-rotating RF

(to manage read-only variables). The main contribution of URECA is the compiler

that allocates only required registers and divides the RF into a rotating part and a

non-rotating part using a value c (called “configuration boundary”). The read-only

variables are later loaded into the non-rotating RF, ensuring the correct execution of

the application. URECA is a versatile compiler solution and can be used with any

mapping technique.

Analysis and Discussion: Register file utilization is an intelligent way to ex-

tract good performance in spatiotemporal mapping algorithms. To the best of our

32

knowledge, there are no spatial mapping algorithms that utilize the register files avail-

able in the PEs for routing. A design space exploration is necessary to find the size,

connectivity, and ports required for the RF for better performance. The work pre-

sented in [90] tries to answer these questions by experimental methods. The RF

routing techniques like REGIMap, map the DFGs with a constraint that the source

and destination nodes should be scheduled more than one cycle apart, and the nodes

should be mapped to the same PE. Mapping the source and destination nodes to

the same PE, allows the value to be written into the RF by the source node and

read by the destination node at different cycles. Due to this restriction, only a few

dependencies are routed via RF, and other dependencies are routed via PEs.

The authors present that the 1) Global RF should be 12-16 registers 2) Global RF

should have maximum ports and be connected to as many PEs as possible and 3) for

Local RF, one read port, and one write port are sufficient for most of the application

but may vary with the application domains. A recent technique, Resource-Aware

Mapping (RAMP), was proposed in [32] to better utilize the CGRA resources, to

improve the mapping quality. The heuristic proposed systematically analyzes the

data dependence graph of the kernel application for better routing of the node of

the graph and changes the graph before the mapping stage. Having a heuristic for

resource utilization before the mapping stage not only guarantees a mapping but gives

a better quality mapping, compared to the state-of-the-art techniques. The routing

options explored by the compiler are i) Routing via PEs, ii) Routing via distributed

register files, iii) Routing via Memory, iv) using memory to load read-only operations,

and v) Re-computation [32]. At any given II, RAMP checks for these routing options

and increases the II only if none of the options are viable.

33

3.5 Generalization

The compiler techniques previously discussed can accelerate simple loops in an

application or the innermost loop of the nest. This section analyzes the compiler

techniques that can map the most frequently used loop constructs like nested loops

and loops with if-then-else (conditional) structures.

3.5.1 Nested Loops

[65] suggests that accelerating the innermost loop of the nest has a major drawback

because of the communication overhead imposed between the host processor and

the accelerator. Executing the outer loop+inner loop in the CGRA has a memory

constraint, as all the variables of the loop should be transferred to the CGRA memory.

An increase in the depth of the nested loop also poses many disadvantages.

[65] tries to solve the nested loop problem by both hardware and software meth-

ods. The authors provide an algorithm for sequential code execution on CGRA and

hardware modification like outer loop trip and sequential code execution counters

and some extra states for sequencing the outer loop. There are three architectures

proposed for executing the nested loops 1) Baseline - Inner loop pipelining + SW

outer loop (traditional) 2) Intermediate - Inner loop pipelining + HW Outerloop

(by the above hardware modifications) 3) Nested Loop Pipelining - Intermediate +

outer loop pipelining. The compiler forms “Epilog-Independent Configuration” (EIC)

and “Prolog-Independent Configuration” (PIC) regions [65]. By forming these inde-

pendent regions, multiple epilog-prolog pairs are obtained for seamless execution by

moving EIC and PIC configurations suitably. This rescheduling technique has a few

shortcomings like 1) there should be no data dependencies between EIC and PIC to

merge epilog-prolog, and 2) this method can be applied for two-level nested loops

34

only.

Flattening of loop kernels are presented in [66, 67] in which nested loops are

flattened to make a single loop and is executed in the CGRA. Loop flattening increases

the computation inside the loops. To reduce the overhead due to flattening, special

operations such as 1) nested iterators 2) extended accumulator 3) periodic store are

proposed. These special operators were proposed for design space exploration of

CGRA to improve data path reuse and utilization. Imperfectly nested loops can

be handled by guarding the statements in the outer loop by predication. If there

are sibling inner loops, predication-based guarding of outer loop statements is not

practical. Another way to handle imperfect nested loops is by loop fission, where the

outer loop statements are extracted into a separate loop when possible. This method

can also be applied to independent sibling loops. Loop fission is not possible when

there are dependencies between the inner loop and the outer loop. Execution resorts

to guarding outer loop statements by predication when such a transformation is not

possible.

Polyhedral model-based mapping technique was proposed in [68] to map two in-

nermost loops of a perfect nested loop structure. The iteration bounds of the two

innermost loops in a rectangular space are affine transformed into an iteration space

defined by a parallelogram. The new iteration domain in form of a parallelogram will

be tiled, and the resulting tiles will be executed on the processing elements of the

CGRA arranged in a 2-D array. The polyhedral model is restricted to 2-deep loops,

and the loops should be perfectly nested [68]. Imperfect loops are converted into a

perfectly nested loop, and then polyhedral technique [68] is employed. Improving

on [68], [71] proposed an affine transformation-based approach to mapping perfectly

nested loops (max depth of 2) and reducing communication and reconfiguration cost.

This was done by incorporating communication minimal transformation [102] to

35

reduce communication costs, and in a later stage, the compiler finds the trade-off

between reconfiguration and communication costs.

For mapping multi-level nested loops, a spatiotemporal mapping approach using

SPKM [44] is used in PolyMap, [103]. Firstly, the two-innermost loops of arbitrarily

nested loops are spatially mapped on the kernel by SPKM. The outer nests are then

mapped by time extension. Parallelism in the spatial mapping is by using loop tiling

methodology used in [68]. PolyMap also uses a Genetic Algorithm for search space

optimization for mapping the loop.

DNestMap [72], maps loops that are deeply nested. Employing a spatiotemporal

computing format, a beneficial code segment called (Mapping Units, MU) [72] is se-

lected from the Control Data Flow Graph (CDFG). The CGRA is spatially partitioned

to execute different nests of the loops. Subsequently, this partition is temporally time

extended, and the MU is mapped. Even though this may increase the II of an MU,

the authors claim that considering context switching overhead in conventional CGRA

(accelerating only the innermost loop), this technique provides acceleration at lower

energy.

Analysis and Discussion: The approaches discussed above are valid only for

two-level deep nested loops, and the iteration of the loops should be known a priori

(loops with unknown trip counts cannot be accelerated). Irregular memory accesses

of the loop nests can degrade the performance on CGRA. For example, in a tech-

nique that accelerates only one innermost loop, when the outer loop runs for more

iterations and the inner loop runs for just for few iterations, the memory transfer

is huge, and performance degradation is imminent. As mentioned earlier, memory

bandwidth, sequential codes in the outer loops, and inter-loop data dependencies are

some of the unexplored issues. DNestMap [72] tries to tackle this problem by having

a spatiotemporal execution model but, the CGRA resources may be limited to the

36

a

et ef

S

cmp

i
1

1 a b

a
a

b

a b

1

2

3

4

i

a

c c

a
a

b
b

5

eti

a i

II
 =

 3

bb
1

d d

ef
cmp

i

Sb

i

PE1 PE2

PE3PE4

for(i=0; i<1000; i++)

{

a[i] += 128;

b[i] += 256;

c = a[i]*100;

d = b[i] * 100;

if(i < 512)

e = c + 20;

else

e = d + 30;

}
(a)

(b)

(c) (d)

Figure 3.6: (A) a Simple Loop with If-then-else Conditional (B) a 2×2 CGRA
Target Architecture with 2 Registers in Each PE. (C) Partial Predication Adds Three
Operation for e Inside If-then-else Statement, et for If-path, ef for Else-path and S,
a Select Operation to Select Between If and Else Path Based on the Cmp Result (D)
a Valid Mapping Obtain With II=3

depth of the nests in the application, meaning this technique is not general enough

to accelerate arbitrarily nested loops.

3.5.2 Branch Aware – Loops with Conditionals

Along with nested loop structures, loops containing if-then-else are common in

applications. The underlying idea of the branches is that there is only one path (true

path or false path) that is executed in an iteration based on a condition. It is very

difficult to know the condition at compile-time, and it cannot be known until the

condition is resolved. Existing approaches in this section try to maps the loops of

the branches onto the CGRA architecture. A simple if-then-else code and a partial

prediction scheme DFG are shown in Figures 3.6(a)-(b). The S node is a select node

that selects either if-path or else-path values based on the branch outcome. The DFG

mapping is shown in Figure 3.6(c) with an II = 3 using Register-Aware mapping,

REGIMap. The three most commonly used techniques to map loops with conditional

statements are explained below.

37

Partial predication executes operations from both paths [77, 43] of conditional

branches and selects the correct-path 4 result at runtime based on the branch con-

dition value (predicate value) [75]. The S node represents the select operation that

selects between the final result of the if-path or else-path. [76] proposed an ISA

modification, a conditional move statement cmov, which was added to incorporate

partial predication technique into their compiler. In full predication, the operations

of both the path updating the same variable are mapped onto the same PE but at

different times. Unlike partial predication, the correct path is executed based on the

select signal (predicate). The full prediction scheme was discussed in [73, 74, 43].

The dual-issue scheme for CGRA was proposed in [76], in which two instructions

are issued simultaneously to the same PE, one from if-path and one from else-path.

These two instructions are packed into a single node during DFG formation, and

context creation is called packed nodes. One of the operations in the packed nodes

is selected in the runtime based on the predicate value. In the case of an unbalanced

path 5 , nops are added to balance the paths. The Branch Aware mapping [43]

developed compiler techniques for the dual-issue scheme.

Improving on the Dual-issue and partial predication methods, a“The Path Selec-

tion Based Acceleration of Conditionals in CGRAs” (PSB) proposed in [77]. Based

on the branch outcome, only the correct path instruction is issued by the Instruction

Fetch Unit (IFU) to the PEs. The various stages of PSB are shown in Figure 3.7.

Figure 3.7(a) shows the loop containing a simple if-then-else to be accelerated on a

2×2 CGRA architecture as shown in Figure 3.7(b). PSB compiler fuses the both the

conditional path operations in to fused nodes, denoted by e as shown in Figure 3.7(c)

[77]. Based on the cmp result, which is communicated to the Instruction Fetch Unit

4The if-path or the else-path instruction selected at runtime will be referred to as correct-path.

5Unbalanced paths are conditional statements where the instruction inside if- and else-paths are
not equal.

38

cmp

i
1

a
1

for(i=0; i<1000; i++)

{

a[i] += 128;

b[i] += 256;

c = a[i]*100;

d = b[i] * 100;

if(i < 512)

e = c + 20;

else

e = d + 30;

}

1

2

3

4

c

II
 =

 2

b
1

d

PE1 PE2

PE3PE4

TO IFU

e

a b

a
a

b

a
a

b
b

i

a

ci

a

ib

d cmp

b ie

Time

i c d cmp

a b et ir

a b ef ir

IF
U

 S
lo

ts

1

2

3

PE1 PE2 PE3 PE4

(a)

(b)

(c) (d) (e)

Figure 3.7: (A) a Simple Loop with If-then-else Conditional (B) a 2×2 CGRA
Target Architecture with 2 Registers in Each PE. (C) Psb Fuses the If-path, Else-
path and Select Operation from Partial Predication to Form a Single e Operation.
(D) a Valid Mapping Obtain with II=2, Where Cmp Outcome Is Communicated to
the Ifu. (E) to Facilitate the Issue of Only the Correct Path, the Instruction Is Laid
out in the Instruction Memory. If the Cmp Is True Ifu Slot 2 Instructions Are Issued
and Executed Whereas If Cmp Is False Ifu Slot 2 Is Skipped and Ifu Slot 3 Is Issued
and Executed.

(IFU), at runtime, only one correct operation is issued by the IFU. So either c or

d is executed at runtime. Figure 3.7(d) shows the mapping of the DFG onto the

CGRA architecture using the REGIMap mapping algorithm. This execution is made

possible by arranging the instructions conveniently in the instruction memory. PSB

requires balanced conditional paths for correct execution meaning, instructions inside

the true-path and false-path should be equal, and if not, nops are added to make

them balanced. Figure 3.7(e) shows the instruction memory layout, where slot 2 is

the if-path, and slot 3 is the false-path. Since there is only one instruction in the

conditions for the example, if the cmp is true, slot 2 instructions are issued, and slot

3 is skipped, and if the cmp is false, slot 2 is skipped and slot 3 is issued [77].

All the above methods add nops in case of unbalanced path of the conditionals [78].

The evaluator-executor method was proposed in [78] to overcome the unbalanced

paths. In this compiler technique, the loops are first converted into multiple smaller

39

loops, in general, two loops. The first loop is called the evaluator, which executes

the branch condition, and the second loop is called the executor, which executes the

branch. Now a Program Dependence Graph PDG is formed. This PDG is scheduled

and mapped using EMS [28] without using rotating registers.

A Trigger-based scheme was introduced by [79] which is a co-design approach for

accelerating nested if-then-else. The software technique converts the CDFG of the

loop into a ”Triggered Data Flow Graph (TDFG)” [79] with triggers as nodes with

Single Static Assignment (SSA) transformation. Data dependencies are transformed

to predicate dependencies using a heuristic algorithm proposed in this paper. Ad-

ditional Trigger resolution hardware is added for every PE to translate the trigger

signal, and a priority encoder [79] is added to select the appropriate trigger for the

instructions. The trigger instructions are programmer-coded, and the trigger resolu-

tion hardware chooses the instructions based on the predicate updates from the PE.

It is shown in [79] that this technique achieves the best performance (II) compared to

BRMap [43], partial predication, and SFP algorithms but has modest PE utilization

compared to partial predication and BRMap. The scalability of the approach is not

discussed.

To accelerate loops with arbitrarily nested conditionals, partial predication im-

poses high overhead in terms of increasing the number of nodes in DDG for each

operation in an if-path or an else-path, as shown in Figure3.6(c).

Analysis and Discussion: The existing co-design approaches in this section try

to improve the performance but have hardware and software overheads. There is a

trade-off between the hardware and software overheads for the co-design approaches.

The compiler requires more time analyzing the code for merging candidates, which

increases the compilation time. Executing the fused operations requires hardware

support. Partial Predication is better for accelerating smaller DFGs on larger CGRAs,

40

where there are enough resources for executing both paths. For larger DFGs partial

predication increases the number of nodes drastically, and approaches like LASER

can be effective. Reducing the II by co-design approaches is very effective in terms

of energy reduction. Even though there is a slight power overhead due to additional

hardware components for supporting branches, there is a reduction in the number of

cycles the loops execute by CGRA (lower II).

3.6 Multi-threading

In this section, we have discussed techniques proposed for accelerating multi-

threaded applications onto CGRA. For example, if a compiler finds a valid mapping

for thread T1 which takes p PEs, and if another thread T2 requires q PEs for mapping

and if p + q ≤ total number of PEs, the compiler can map both the threads onto

the CGRA for simultaneous execution and can maximize the performance [80].

Enabling Multi-threading on CGRA was proposed in [80]. This method starts by

dividing the CGRA PEs into pages containing a fixed number of PEs. First, the DFG

of an application, with no page restriction, is mapped with better utilization of PEs

on CGRA. When a new thread is invoked, the existing kernel is transformed to fit

into lesser pages and allocate the remaining free pages to the new thread. After the

completion of the new thread, if the old thread is still executing, it is expanded to its

original form to better utilize PEs again. During the dynamic page transformation,

the inter-page and inter-node dependencies are maintained [80]. The other constraints

addressed in this work are better utilization of register resources available in each PE

and data flow constraint to meet the data dependency between the nodes and the

pages while dynamically transforming the schedule.

The ‘Single-Graph Multiple Flows’ technique was introduced by [81]. This work

converts the multi-threaded application into a CDFG and balances the if and else

41

paths. Then these kernels are then mapped onto the CGRA like architecture called

Coarse-Grained Reconfigurable Fabric (CGRF) that is modified to pipeline the in-

structions of various threads of the kernels and introducing dynamic scheduling of the

instructions to achieve Simultaneous Multi-Threading (SMT). Apart from the com-

piler improvements, the hardware of the CGRF is also improved to enable the correct

execution of multi-threaded kernels. For the correctness of the computed results and

to prevent deadlock, the technique uses throttling and parallelism-based thread epoch

(TIDs) [81]. To hide the latency of the non-pipelined instructions, dedicated addi-

tional function units (compute units) [81] are used for pipelining the non-pipelined

instructions. It has also been shown that the modified CGRF architecture consumes

lesser energy compared to the general-purpose GPUs [81]. A later technique by intro-

duced [82] improved upon [81] for better inter-thread communication of intermediate

values during execution of kernel on CGRF.

42

Chapter 4

CRIMSON: A RANDOMIZED ITERATIVE MODULO SCHEDULING

APPROACH

4.1 Background

The CGRA mapping problem, being NP-complete, is performed in a two-step pro-

cess namely, scheduling and mapping. The scheduling algorithm allocates timeslots

to the nodes of the DFG, and the mapping algorithm maps the scheduled nodes onto

the PEs of the CGRA. On a mapping failure, the II is increased and a new schedule

is obtained for the increased II. Most previous mapping techniques use the Itera-

tive Modulo Scheduling algorithm (IMS) to find a schedule for a given II. Since IMS

generates a resource-constrained ASAP (as-soon-as-possible) scheduling, even with

increased II, it tends to generate a similar schedule that is not mappable. Therefore,

IMS does not explore the schedule space effectively. To address these issues, in this

chapter we propose CRIMSON, Compute-intensive loop acceleration by Randomized

Iterative Modulo Scheduling and Optimized Mapping technique that generates ran-

dom modulo schedules by exploring the schedule space, thereby creating different

modulo schedules at a given and increased II.

4.2 Motivating Example

Let us consider the DFG of loop to be mapped on a 2×2 CGRA, shown in Fig-

ure 4.1(a) and (b), respectively. Previous state-of-the-art techniques like RAMP, get

a schedule from IMS [34] before mapping the nodes. IMS starts by computing the

resource constrained minimum II (ResMII) and recurrence constrained minimum II

43

(RecMII) from the DFG and the architecture description. For the given example in

Figure 4.1, total nodes = 9 and total resources available = 4. The minimum II (MII)

is the maximum of RecMII and ResMII. Therefore for the above example, MII =

ResMII = d9/4e = 3. After computing the MII, IMS sets the priorities for each node.

Priority is a number assigned to each node, which is utilized during scheduling. Based

on the height of the node, from the given DFG, the deepest node is given the least

priority using depth-first search strategy. For the loop DFG given in Figure 4.1(a),

node e gets priority 0, nodes d and i get priority 1, nodes b, c, g, h get priority 2 and

finally a and f get priority 3. The nodes with higher priority number are scheduled

first with earliest start time. The modulo scheduling starts with II=MII for schedul-

ing the nodes. The CGRA is time-extended, II times and a modulo resource table

(MRT) is maintained to check for resource overuse for each timeslot. While trying

to schedule each node, resource conflicts are checked. If there is a resource conflict a

higher schedule time is tried. For the example DFG, the II=MII=3. Nodes a and f

are scheduled at modulo time 0 (0%3). Nodes b, c, g, and h are scheduled at modulo

time 1 (1%3) without any resource constraint because there are 4 resources(PEs) at

each modulo time. Nodes d and i are scheduled at modulo time 2 (2%3). Finally, e

is scheduled at modulo time 0 (3%3). The IMS schedule of nodes (shown in column

1 Figure 4.1(c)) at II = 3 is shown in Figure 4.1(c) column 2.

44

II++

IMS for given II
Add routing

nodes and mapValid Mapping
SuccessSuccess

Annotated C File DFG
Find minII with

resource and re-
currences

Fail

Figure 4.2: Overview of Scheduling and Mapping Workflow of Previous Techniques.

21

4 3

(a) (b)

Nodes IMS at
II = 3

a 0
b 1
c 1
d 2
e 0
f 0
g 1
h 1
i 2

a
b c
d
e

f
g h
i

(c) (e)

PE1 PE2 PE3 PE4

a f

b c g h

d i

r

Time

T

Ti+1

e

Ti+2

Ti+3

a e f
b c g h

d i

r

Time

T

Ti+1

Ti+2

(d)

Nodes IMS at
II = 4

a 0
b 1
c 1
d 2
e 3
f 0
g 1
h 1
i 2

(f)

PE1 PE2 PE3 PE4

Figure 4.1: (A) DFG of an Application Loop. (B) a 2x2 CGRA Target Architecture.
(C) Column 1 Shows the Nodes in the DFG and Column 2 Shows an IMS Schedule
for the Nodes at II=MII=3. (D) the Mapping Algorithm Tries to Map the Nodes
Scheduled, but Fails Due to Additional Routing Nodes “r” Required to Route Nodes
f and i. Failure to Find a Valid Mapping, the II Is Increased to 4 and IMS Is
Called Again to Schedule the Nodes Based on the Workflow given in Figure 4.2. (E)
IMS Schedule for an Increased II (II=4). (F) Even at an Increased II, the Mapping
Algorithm Cannot Find a Valid Mapping Due to Resource Constraint at tI+1 Which
Is Not Resolved at II=4 and Will Not Be Resolved on Any Further Increase in II.

With this prescribed schedule, mapping algorithms start to map the nodes, but

eventually find that a routing node needs to be added to route operation f and i.

Due to the unavailability of PEs in that timeslot a routing node cannot be added, as

shown in Figure 4.1(d). At this juncture, the mapping algorithm increases the II in

an effort to find a schedule that is mappable. On increasing the II from 3 to 4, the

IMS algorithm is invoked again to get a schedule. Since the priority calculation of

IMS is DFG-based, all the nodes get the same priority. Now, IMS algorithm starts

45

to schedule nodes based on the priorities for each node. Nodes a and f are scheduled

at modulo time 0 (0%4). Nodes b, c, g, and h are scheduled at modulo time 1 (1%4).

Nodes d and i are scheduled at modulo time 2 (2%4) and e is scheduled at modulo

time 3 (3%4). The IMS schedule for II=4 is shown in Figure 4.1(e) column 2. Again,

on failure to map, the mapping algorithm increases the II to 5. IMS repeats the

process of assigning priorities to the nodes and as seen in II=4, the priorities do not

change. Nodes a and f are scheduled at modulo time 0 (0%5). Nodes b, c, g, and h

are schedule at modulo time 1 (1%5). Nodes d and i are scheduled at modulo time 2

(2%5) and finally e is scheduled at modulo time 3 (3%5). On comparing the schedules

obtained for II=3, II=4, and II=5, it can be seen that only node e has a different

schedule time (from II=3 to II=4) and rest of the nodes have the same schedule.

Hence, with IMS, it can be seen that an increase in the II does not correspond to a

change in modulo schedule time of the nodes.

The algorithm keeps trying to find a valid mapping at higher II even when there

is a mapping failure at a given modulo schedule. This process keeps on repeating

endlessly. In the workflow of the previous techniques, as shown in Figure 4.2, after

finding the MinII and obtaining an IMS schedule, the mapping of the nodes begin

assuming that the schedule is mappable. There are no mechanism to statically and

systematically find the feasibility of the obtained schedule, which results in an infinite

loop between the scheduling and the mapping stages.

4.3 Algorithm

To alleviate the challenges posed by IMS and the previous mapping algorithms,

CRIMSON randomizes the schedule time of each node of the DFG by choosing a

time between RC ASAP and RC ALAP. Additionally, CRIMSON proposes a change

to the previous mapping algorithm workflow Figure 4.2 by performing a feasibility

46

Annotated C File

Create Ran-
domized IMS

RC ASAP and ALAP
Schedule for given II

Feasibiltity Test
Add routing

nodes and mapValid Mapping

DFG II = MII

II++

Fail > λ

Success

Success

SuccessSuccess

Fail

Fail
Fail

Find minII with
resource and re-

currences

Figure 4.3: An Overview of CRIMSON Workflow, with Addition of Rc asap and
Rc alap Computation, Randomized Scheduling Algorithm, and a Feasibility Test
(Shaded Blocks in the Image Are the Proposed Methods).

test before the actual mapping.

Figure 4.3 shows the modification to the traditional IMS-based workflow shown

in Figure 4.2. CRIMSON modifies the IMS-based mapping workflow by adding

RC ASAP and RC ALAP computation steps before finding a random schedule. The

“Create Randomized Schedule” block uses Algorithm 1 and Algorithm 2 to find a

random modulo schedule time. On a failure to find a schedule, “Create Random-

ized IMS” block is invoked λ times before increasing the II. When a random modulo

schedule is obtained, the feasibility test statically analyzes if the obtained random

schedule honors the resource constraints when routing nodes are added. If a schedule

is found to be infeasible due to possible resource overuse, a different modulo schedule

is tried for the same II. If the random schedule obtained is valid and feasible, then

the mapping algorithm is called to add routing nodes and map the scheduled DFG

onto the CGRA architecture.

4.3.1 Computing Resource-Constrained ASAP and Resource-Constrained ALAP

Algorithm 1 shows the CRIMSON’s randomized iterative modulo scheduling al-

gorithm. Lines 1-2 finds the RC ASAP from the Strongly Connected Components

47

(SCCs) 1 of the DFG. The RC ASAP is computed in Line 3 of Algorithm 1 as a

top-down, depth-first search approach, from the nodes that do not have any incom-

ing edges in the current iteration. After computation of RC ASAP, RC ALAP is

computed, starting from the nodes that do not have any outgoing edges in the cur-

rent iteration and in a bottom-up (reverse), depth-first search manner, in Line 4 of

Algorithm 1.

4.3.2 Randomized Scheduling Algorithm

After computing RC ASAP and RC ALAP, Algorithm 1 Line 5 populates the

unscheduled array whereas line 6 sets a boolean Scheduled operation to false for all

the nodes, which is used in Algorithm 2. For all the unscheduled sorted nodes in

the array, a random modulo timeslot is picked by honoring the resource constraints

maintained by MRT, in Line 10 of the Algorithm 1.

1Getting the list of SCCs ensures that the nodes in recurrence-cycles are scheduled first using
Sort SCC() function in Line 5.

48

Algorithm 1: Rand Iterative Mod Schedule (Input DFG D, CGRA CA, Input
II)

1: D’ ← D

2: SCCs ← Find List of Sccs(D′)

3: Find RC ASAP (II, Sccs, CA)

4: Find RC ALAP (II, Sccs, CA)

5: unscheduled ← Sort Sccs(Sccs)

6: Set Scheduled op false(unscheduled)

7: iter ← 0

8: while unscheduled size > 0 & iter < threshold do

9: operation ← unscheduled[0]

10: TimeSlot ← Find Random ModuloT ime(operation, CA)

11: if (schedule(nodes, T imeSlot)) then

12: scheduled ← nodes

13: else

14: return failure

15: end if

16: unscheduled ← Subtract(unscheduled, scheduled)

17: iter++

18: end while

19: if iter == threshold & unscheduled size > 0 then

20: return failure

21: end if

22: return success

The schedule() function in Line 11 of the Algorithm 1, schedules the node at cho-

sen random timeslot . This schedule function sets the schedule time of the current

operation and consecutively displaces the nodes that have resource conflicts. Pre-

viously scheduled nodes having a dependence conflicts with the current operation

are also displaced after updating the RC ASAP and RC ALAP based on the current

schedule operation. The displaced nodes are added to queue of unscheduled nodes.

Similar to the BudgetRatio in IMS [34], the iter is a high value. On a failure to find

49

a schedule, either due to unscheduled nodes lines 13-14 or if the iter value is greater

than a threshold (lines 17-18), the Algorithm 1 is invoked again. This is repeated λ

times before increasing the II, in an attempt to find a valid schedule. This λ value

is not reset for a particular II and used to control the failure due to unmappable

schedule or a failure in the mapping step.

Algorithm 2: Find Random ModuloT ime (Operation op, CGRA CA)

1: op ASAP ← get RC ASAP (op)

2: op ALAP ← get RC ALAP (op)

3: sched slot ← ∅
4: timeslots ← get all timeslots(op ASAP, op ALAP)

5: Randomize(timeslots)

6: while sched slot == ∅ & timeslots size > 0 do

7: currT ime← timeslots[0]

8: if ResourceConflict(op, currT ime, CA) then

9: timeslots ← Subtract(currT ime, timeslots)

10: continue

11: else

12: sched time← currT ime

13: end if

14: end while

15: if sched slot == ∅ then

16: if !Scheduled[op] || op ASAP > Prev Sched T ime[op] then

17: sched slot← op ASAP

18: else

19: sched slot← Prev Sched T ime[op] + 1

20: end if

21: end if

Algorithm 2 is called by CRIMSON’s randomized iterative modulo schedule

(Rand Iterative Mod Schedule) Algorithm 1 line 10, to find a random timeslot be-

tween RC ASAP and RC ALAP. The RC ASAP and RC ALAP for a given operation

50

is retrieved in lines 1-2 of Algorithm 2. Then, an array of timeslots is constructed

using the op ASAP and op ALAP , line 4 of Algorithm 2. The array holds all the

timeslots from op ASAP with an increasing value of 1 until op ALAP . If op ASAP

is equal to op ALAP then the array size is one with either ASAP or the ALAP time.

Each timeslot from the randomized array is checked for the resource constraint using

MRT. The first valid timeslot is returned as the modulo schedule time for the oper-

ation. Due to the resource conflict if a valid timeslot is not present, there are two

things to handle, (a) a timeslot for the operation should be chosen and (b) an already

scheduled operation from that timeslot should be displaced. Concern (a) in handled

in lines 13-17 of Algorithm 2 where if the nodes has not been scheduled previously,

op ASAP is chosen as the schedule, else the previous schedule time of the operation

is found and the modulo schedule time is computed using line 17. Concern (b) is

addressed in the schedule() function in Algorithm 1 line 11, explained earlier. The

methods addressing these concerns are similar to IMS implementation.

4.3.3 Novel Feasibility Test

Given a valid schedule, it may not be possible to map it because of two main

reasons: i) limited connectivity among the PE nodes, and ii) the need to map the

extra routing nodes that will be created as a result of scheduling. In a valid schedule

dependent operations may be scheduled in non-contiguous timeslots. When this is

the case, the operands need to be routed from the PE on which the source operand is

mapped, to the PE on which the destination operation is mapped. The operands can

be routed using a string of consecutive CGRA interconnections and PEs. These PEs

are referred to as routing PEs, and the operation that is mapped on these PEs (just

forward the operand from input to output) is called a routing operation. Because of

the addition of these routing nodes, the generated schedule may not be mappable.

51

Previous techniques assume that the schedule is mappable and spend a lot of time

searching for a mapping when none is available. In order to avoid wasting time in

exploring unmappable schedules, CRIMSON adds a conservative feasibility test to

prune schedules that can be proven to be unmappable.

The feasibility test examines the random schedule produced, and for each routing

resource that will be added in the future, it estimates the resource usage, considering

path-sharing [30]. The feasibility test checks if the total number of unique nodes

including the routing nodes per timeslot is less than or equal to the number of PEs

in that timeslot. schedule nodesi + routing nodesi <= PEsi, where i is the modulo

timeslot. This feasibility check is performed for all the II timeslots. The mapping al-

gorithm is invoked only for schedules that are feasible, unlike the previous approaches

such as RAMP [32], where the mapping algorithm is invoked even for infeasible sched-

ules. Since the time complexity of such mapping algorithms is high (time complexity

of RAMP is O(N8), where N = n∗m, and ‘n’ is the total nodes in the loop DFG, and

‘m’ is the size of the CGRA), invoking them for infeasible schedules is counter pro-

ductive. The feasibility test reduces the overhead incurred by the mapping algorithm

by pruning the infeasible schedules.

4.3.4 Determining the λ value

With every failure in the feasibility test a new schedule is obtained for a given II.

The number of times a schedule is obtained for a given II is controlled by the λ value.

The scheduling space that can be explored for a given II is calculated by the product

of the total nodes in the DFG, the size of the CGRA, and the II, given in Equation 4.1.

A brute force exploration of the schedule space is time consuming. Lower λ values

may increase the II prematurely, by superficial exploration of schedule space, whereas

higher λ values increase the compilation time, due to elaborate exploration of the

52

21

4 3

(a)

(b)

a

b c

d

e

f

g h

i

Nodes Res
Cons.
ASAP

Res
Cons.
ALAP

CRIMSON
Schedule

a 0 2 0
b 1 3 1
c 1 3 1
d 2 4 2
e 3 5 0
f 0 2 0
g 1 3 1
h 1 3 2
i 2 4 2

a e f

b c g

hd i

r

Time

T

Ti+1

PE1 PE2 PE3 PE4

Ti+2

(c) (d)

Figure 4.4: (A) the DFG of the Motivation Example. (B) a 2x2 CGRA Architecture.
(C) for Each Node of the DFG, Resource Constrained Asap (Column 2) and Resource
Constrained Alap (Column 3) Is First Calculated. Then a Random Schedule Time
Between Rc asap and Rc alap Is Chosen for Each Node. A Valid Randomized Modulo
Schedule Is Shown in Column 4. (D) with CRIMSON Schedule a Valid Mapping Is
Achieved by the Mapping Algorithm At II=3.

schedule space. Due to the randomness in the scheduling algorithm, a feasible schedule

may be obtained faster by chance even for a higher λ value. The λ value is computed

using,

λ = exploration factor × n×m× II (4.1)

where, ‘n’ is the total number of nodes in the loop DFG, ‘m’ is the size of the

CGRA and, exploration factor is the percentage of the schedule space that is to be

explored. The exploration factor is a user defined parameter. II is also one of the

parameters that determines the λ value in Equation 4.1, which means that a new λ is

computed for each II. When the II is increased, the scheduling space is also increased

therefore the scope of exploration gets broadened. A detailed discussion on the effects

of exploration factor on the scheduling time and II is given in Section 4.4.3.

53

4.3.5 Running Example

Figure 4.4 shows the working of CRIMSON’s randomized iterative modulo sched-

ule algorithm for the DFG and CGRA architecture shown in Figure 4.4(a)-(b) 2

. Instead of assigning a priority based on height like IMS, each node in DFG is

assigned two times namely, Resource Constrained As Soon As Possible (RC ASAP)

and Resource Constrained As Late As Possible (RC ALAP), which constitutes a good

lower and upper bound for scheduling [28]. Similar to IMS, CRIMSON maintains an

MRT to check for resource overuse during RC ASAP and RC ALAP assignment. The

RC ASAP is calculated from the nodes that does not have any incoming edges in the

current iteration. These nodes are allotted RC ASAP time as 0, which means, that

the earliest start time of these nodes is at time 0. Based on the outgoing nodes from

these start nodes and the delay of each operation, the RC ASAP of consecutive nodes

are computed in a depth-first manner (similar to IMS priority calculation). For the

DFG in analysis, nodes a and f are assigned the RC ASAP time as 0. Nodes b, c, g,

and h are assigned RC ASAP time as 1. Nodes d and i are assigned RC ASAP time 2

and node e is assigned RC ASAP time 3. The RC ASAP times of each node is shown

in Fig4.4(c) column 2. Next, starting from the last nodes of the DFG, i.e., nodes with-

out any outgoing nodes in the current iteration, the nodes are assigned RC ALAP in

a reverse depth-first search manner, using RC ALAP = RC ASAP + II − 1. This

ensures that RC ALAP >= RC ASAP . For the given DFG, e is assigned RC ALAP

time 5, node h is assigned 3. Nodes d and i are assigned RC ALAP time 4. Nodes b,

c and g are assigned RC ALAP time 3. Finally a and f are assigned RC ALAP time

2. The RC ALAP times of each node is shown in Fig4.4(c) column 3.

After computing the RC ASAP and RC ALAP, CRIMSON chooses a random

2The DFG and the architecture is the same as the motivation example Figure4.1(a)-(b)

54

time between RC ASAP and RC ALAP, to schedule the nodes. Like IMS, CRIMSON

maintains a Modulo Resource Table (MRT) to check for resource overuse in each II

modulo timeslot. After checking for resource constraints the modulo schedule time is

chosen for each node. This randomization of modulo schedule time creates flexibility

of movement for the nodes, which explores different modulo schedule spaces, thereby

increasing the chances of finding a valid mapping by the mapping algorithm. A

randomized modulo schedule for the example DFG is shown in Fig4.4(c) column 4, and

a valid mapping for the scheduled nodes is shown in Figure 4.4(d) at II=3. The loop

that was previously unmappable due to the restrictive scheduling of IMS Figure 4.1,

is now mappable at II=3 due to randomization in assigning modulo schedule time.

If we take a closer look at the RC ASAP and RC ALAP times shown in Fig4.4(c)

column 2 and 3, we can observe that there is a chance that the RC ASAP may

be the modulo schedule chosen for all the nodes, since assigning a modulo sched-

ule time for the nodes from RC ASAP and RC ALAP is randomized. As seen in

Figure 4.1(d)&(e), this schedule is not mappable. Unless there is a change to the

workflow, there is a chance that finding a schedule that is unmappable and increasing

the II to get a schedule process is repeated. To take care of this issue, CRIMSON

proposes changes to the previous IMS-based workflow by statistically computing the

feasibility of the scheduled nodes, prior to the mapping of the nodes. This makes

sure that if a schedule is not mappable, a different random schedule is tried again for

the same II. The number of times the mapping is tried for a given II is controlled by

a threshold factor λ. With induced randomization in mapping and changes to the

workflow, CRIMSON is able to achieve mapping of the application loops that were

previously unmappable by IMS-based mapping techniques.

55

Suites Loops #nodes #mem. nodes #edges

MiBench

bitcount 22 4 28
susan 31 8 35
sha 31 10 39

jpeg1 43 10 48
jpeg2 28 6 33

Rodinia

kmeans1 15 6 17
kmeans2 16 6 17
kmeans3 17 4 20
kmeans4 16 4 19
kmeans5 12 2 13

lud1 21 4 24
lud2 20 4 24

b+tree 13 2 13
streamcluster 16 4 19

nw 20 6 21
BFS 28 10 32

hotspot3D 76 20 96
backprop 39 16 44

Parboil

spmv 25 8 27
histo 18 4 20
sad1 25 4 30
sad2 19 4 20
sad3 12 4 12

stencil 69 16 94

Table 4.1: Benchmark Characteristics.

4.4 Results

Benchmarks: We profiled top three of the widely used benchmark suites namely,

MiBench [104], Rodinia [105], and Parboil [106]. The top performance-critical, non-

vectorizable loops 3 were chosen for the experiments. Loops that could not be

compiled or the loops that were memory bound were not considered. Experiments

were designed to consider only innermost loops so that a direct comparison with IMS

can be made. These benchmarks depict a wide variety of applications from security,

3Maximum up to 5 loops per benchmark, with each contributing >7% of the execution time of
the application when executed with standard inputs that are shipped with the benchmark suites.

56

telecomm etc. to parallel, high-perfomance computing (HPC) loops like spmv (sparse

matrix-vector product). These loops on average across all the benchmark loops,

corresponds to ≥50% of the total application execution time.

Compilation: For selecting the loops from the application and converting the

loops to the corresponding DFG, we used CCF [107] - CGRA Compilation Framework

(LLVM 4.0 [108] based). On top of the existing framework, to effectively compile the

loops with control-dependencies (If-Then-Else structures), we implemented partial

predication [76] as an LLVM pass, to convert the control-dependencies into data de-

pendencies. Partial Predication [76] can efficiently handle loops with nested if-else

structures. The loop characteristics are shown in Table 4.1 including the number

of nodes in the DFG (only computing nodes are included and constants that can

be passed in the immediate field of the ISA are excluded) and number of memory

(load/store) nodes. The CCF framework [107] produces DFG of the loop with sep-

arate address generation and actual load/store functionality. Furthermore, during

the addition of routing resources after scheduling, we have implemented path-sharing

technique proposed in GraphMinor [30]. Path-sharing can reduce the redundant

routing nodes added. We implemented CRIMSON as a pass in the CCF framework

including the λ value computation and the feasibility test. We also implemented the

IMS-based state-of-the-art RAMP [32] and GraphMinor [30] as a pass in CCF. Since,

RAMP has demonstrated equal or better results when compared to GraphMinor, we

compare CRIMSON against RAMP on of the IMS-based techniques. We compiled

the applications of the benchmark suites using optimization level 3 to avoid including

loops that can be vectorized by compiler optimizations. We considered 2D torus mesh

CGRA of sizes 4×4, 5×5, 6×6, 7×7, and 8×8.

57

Suites Loops
4x4 5x5

MII RAMP CRIM. MII RAMP CRIM.

MiBench

bitcount 3 3 3 3 3 3
susan 2 3 4 2 2 2
sha 3 3 4 2 X 3

jpeg1 3 X 6 2 X 4
jpeg2 2 X 5 2 X 3

Rodinia

kmeans1 2 2 2 2 2 2
kmeans2 2 2 2 2 2 2
kmeans3 2 2 2 2 2 2
kmeans4 2 2 2 2 2 2
kmeans5 2 2 2 2 2 2

lud1 2 2 2 2 2 2
lud2 2 2 2 2 2 2

b+tree 2 2 2 2 2 2
streamcluster 2 2 2 2 2 2

nw 3 3 3 2 3 2
BFS 2 2 3 2 2 3

hotspot3D 5 X 10 4 X 7
backprop 5 X 7 4 4 4

Parboil

spmv 3 3 3 2 2 2
histo 2 2 2 2 2 2
sad1 2 2 2 2 2 2
sad2 2 2 2 2 2 2
sad3 2 2 2 2 2 2

stencil 4 X 6 3 4 5

Table 4.2: Performance (II) Comparison Between IMS-based RAMP and CRIMSON
(CRIM.) for Sizes 4×4 and 5×5. “X” Denotes That There Was No Mapping Obtained
from RAMP. MII Denotes the Theoretical Minimum II.

4.4.1 Performance Evaluation

From Tables 4.2, 4.3 & 4.4, we can infer that for loops, jpeg1, jpeg2, hotspot3D,

backprop, and stencil, IMS-based state-of-the-art heuristic RAMP, was not able to

find a valid mapping for a 4×4 CGRA (denoted by “X” in Tables 4.2, 4.3 & 4.4).

From the motivating example Figure 4.1, IMS produces almost the same modulo

schedule time for most of the nodes for any increase in II. CRIMSON, on the other

hand, facilitates the exploration of different modulo scheduling times for nodes of

58

Suites Loops
6x6 7x7

MII RAMP CRIM. MII RAMP CRIM.

MiBench

bitcount 3 3 3 3 3 3
susan 2 2 2 2 2 2
sha 2 3 2 2 2 3

jpeg1 2 2 2 2 2 2
jpeg2 2 X 2 2 2 2

Rodinia

kmeans1 2 2 2 2 2 2
kmeans2 2 2 2 2 2 2
kmeans3 2 2 2 2 2 2
kmeans4 2 2 2 2 2 2
kmeans5 2 2 2 2 2 2

lud1 2 2 2 2 2 2
lud2 2 2 2 2 2 2

b+tree 2 2 2 2 2 2
streamcluster 2 2 2 2 2 2

nw 2 2 2 2 2 2
BFS 2 2 3 2 2 2

hotspot3D 4 X 7 3 X 6
backprop 3 3 3 3 3 3

Parboil

spmv 2 2 2 2 2 2
histo 2 2 2 2 2 2
sad1 2 2 2 2 2 2
sad2 2 2 2 2 2 2
sad3 2 2 2 2 2 2

stencil 3 3 3 3 3 4

Table 4.3: Performance (II) Comparison Between IMS-based RAMP and CRIMSON
(CRIM.) for Sizes 6×6 and 7×7. “X” Denotes That There Was No Mapping Obtained
from RAMP. MII Denotes the Theoretical Minimum II.

the DFG, resulting in a valid mapping. It is observed that even at a lower CGRA

size 4×4, CRIMSON was able to map these particular loops. From Tables 4.2, 4.3

& 4.4, when running on RAMP, loops that were not mappable on a 4×4 CGRA, were

eventually mapped when allocated enough resources. For example, stencil which was

unmappable by RAMP on a 4×4 CGRA was mapped on a 5×5 CGRA due to allo-

cation of additional resources. Therefore it can be said that the motivating example

can also be mapped when allocated enough resources. From the motivating example,

59

Suites Loops
8x8

MII RAMP CRIM.

MiBench

bitcount 3 3 3
susan 2 2 2
sha 2 2 4

jpeg1 2 2 2
jpeg2 2 2 2

Rodinia

kmeans1 2 2 2
kmeans2 2 2 2
kmeans3 2 2 2
kmeans4 2 2 2
kmeans5 2 2 2

lud1 2 2 2
lud2 2 2 2

b+tree 2 2 2
streamcluster 2 2 2

nw 2 2 2
BFS 2 2 3

hotspot3D 3 X 4
backprop 3 3 4

Parboil

spmv 2 2 2
histo 2 2 2
sad1 2 2 2
sad2 2 2 2
sad3 2 2 2

stencil 2 2 2

Table 4.4: Performance (II) Comparison Between IMS-based RAMP and CRIMSON
(CRIM.) for 8×8 CGRA. “X” Denotes That There Was No Mapping Obtained from
RAMP. MII Denotes the Theoretical Minimum II.

if Figure 4.1(b) CGRA architecture was a 3×3 CGRA, then the IMS-based map-

ping algorithm would have used the extra resources provided to route the operation

r. But this conclusion was not applicable to all the loops, meaning, loops such as

hotspot3D and jpeg2 were unable to find a valid mapping even when additional re-

sources were allocated. RAMP was not able to achieve a mapping even at 8×8 CGRA

for hotspot3D whereas RAMP was not able to achieve a mapping till 6×6 for jpeg2.

While RAMP is able to map most of the loops at a higher CGRA size, CRIMSON

60

with effective randomized modulo scheduling was able to map all the loops at size

4×4. Additionally, for sad1 and sad3 loops, for which GraphMinor was not able to

find a mapping, CRIMSON was able to achieve a mapping at 4×4 CGRA size.

From Tables 4.2, 4.3 & 4.4 we can observe that for loops mapped using RAMP, the

II obtained from CRIMSON was comparable to RAMP across five different CGRA

sizes ranging from 4×4 to 8×8. We can see an occasional spike in the II in CRIM-

SON for susan at 4×4 and stencil on 5×5, which is due to premature II increase by

CRIMSON based on the λ value. To emphasize, λ is the maximum number of ran-

domized schedules that are explored at the same II. A new schedule may be requested

(i) on a failure to find a randomized schedule, (ii) on a failure of the feasibility test

or, (iii) a failure to map. The λ value is not reset for a given II. After exhausting the

λ limit, the II is increased and a new RC ASAP and RC ALAP is computed along

with a new λ value. The λ value is computed by Equation 4.1 for each II. The λ

value is determined by the user defined exploration factor, which is the percentage of

schedule space to that should be explored. If the exploration factor is set too low,

less modulo schedules are explored per II, thereby making it difficult to obtain a valid

mapping and increasing the II prematurely. If the exploration factor is set too high

the time to obtained a valid schedule/mapping increases, which negatively affects the

compilation time of CRIMSON. Tables 4.2, 4.3 & 4.4 comprehensively conveys that

CRIMSON has a nearly identical performance compared to RAMP for all the loops

across different CGRA architectures that RAMP was able to map and CRIMSON is

better than RAMP by mapping the five loops that were not mappable by RAMP and

seven loops that were not mappable by GraphMinor on a 4×4 CGRA. The II obtained

from CRIMSON is not always equal to or better than state-of-the-art RAMP and is

dependent on the λ value.

61

1
10

100
1000

10000
100000

bi
tc

ou
nt

su
sa

n

sh
a

km
ea

ns
1

km
ea

ns
2

km
ea

ns
3

km
ea

ns
4

km
ea

ns
5

lu
d1

lu
d2

b+
tr

ee

st
re

am
cl

us
te

r

nw BF
S

sp
m

v

hi
st

o

sa
d1

sa
d2

sa
d3

G
eo

m
ea

n

MiBench Rodinia Parboil

Sc
he

du
lin

g
tim

e
(μ

s)

Benchmark Loops

IMS CRIMSON

(a)

2

4

6

8

0

100

200

300

400

0.005 0.01 0.05 0.1

II

CR
IM

SO
N

Sc
he

du
lin

g
Ti

m
e

(s
)

Exploration Factor Values

Scheduling Time II

(b)

4

6

8

10

12

50
100
150
200
250
300

0.005 0.01 0.05 0.1

II

CR
IM

SO
N

Sc
he

du
lin

g
Ti

m
e

(s
)

Exploration Factor Values

Scheduling Time II

(c)

Figure 4.5: (A) Scheduling Time Comparison of CRIMSON with IMS. (B) Schedul-
ing Time Vs. II Trade-off Trend for Stencil. (C) Scheduling Time Vs. II Trade-off
Trend for Hotspot3d.

4.4.2 Scheduling time analysis between CRIMSON and IMS.

The scheduling time for IMS [34] and CRIMSON are shown in Figure 4.5a, which is

reported based on the execution of both the algorithms on Intel-i7 running at 2.8GHz

with 16GB memory. As shown in Figure 4.5a, the x-axis is the scheduling time i.e,

time to obtain a valid schedule that is mappable, in µs (microseconds) and the y-axis

corresponds to the benchmark loops. The 19 benchmarks shown in Figure 4.5a are

those in which a mappable schedule was obtained by IMS. From Figure 4.5a, we can

see that the scheduling time of CRIMSON is slightly higher than that of IMS. This

is due to the additional computation of RC ASAP and RC ALAP, and the feasibility

test (Figure 4.3). For the loops shown, the exploration factor was kept at 0.005.

62

4.4.3 Trade-off analysis between scheduling time and II at different λ values.

From Equation 4.1, we can see that the λ value depends on the exploration factor.

This factor is defined as the percentage of modulo schedule space to be explored

when there is an infeasible schedule or a mapping failure. The exploration factor

was changed from 0.5% (0.005) to 10% (0.1) and the corresponding scheduling time

and II were recorded. The scheduling time numbers are recorded from executing

CRIMSON on Intel-i7 running at 2.8GHz and 16GB memory and the compilation

was performed for a 4×4 CGRA. A 4×4 CGRA was chosen because the II obtained

by CRIMSON was much greater than the MII and the effect of λ can be shown clearly.

In Figure 4.5b and Figure 4.5c, the left y-axis (primary axis) denotes the CRIMSON

scheduling time, in seconds, and the right y-axis (secondary axis) denotes the II

obtained. The x-axis denotes the different exploration factors. From Equation 4.1 it

is to be noted that as the exploration factor increases, the λ value increases. From

Figure 4.5b and Figure 4.5c, it is evident that as exploration factor increases the

CRIMSON scheduling time increases, due to elaborate exploration of the schedule

space at a given II. For lower value of the exploration factor, superficial exploration

of modulo schedule space prematurely increases the II but at lower scheduling time.

We can also note from Figure 4.5c at 0.1 that the above statement is not always true.

At 0.1 the II decreases with the decrease in the scheduling time because a feasible and

a mappable schedule was obtained earlier in the modulo schedule space exploration

due to the innate randomness of the CRIMSON scheduling algorithm.

4.5 Chapter Summary

This chapter presented some of the major challenges encountered in the state-

of-the-art mapping techniques with respect to scheduling and mapping of compute-

63

intensive loops onto the CGRA. The previous mapping techniques use IMS scheduling

that rarely showed a change in the modulo schedules for increased II, which obstructed

the mapping algorithm to map the application loops onto the CGRA architecture.

Additionally, previous mapping techniques assumed that the obtained IMS schedule

is mappable and started to map the scheduled nodes. On a failure to map, due to the

limited connectivity of the PEs or addition of routing nodes, the mapping algorithms

increase the II and call IMS again to get a schedule that almost never changes. To

mitigate these challenges, this paper introduced CRIMSON, that comprehensively

modeled RC-ASAP and RC-ALAP, picking a random modulo schedule time between

these upper and lower boundaries. CRIMSON generated different schedules, thereby

exploring different schedule spaces, on each invocation for a given or increased II.

CRIMSON also introduced a novel feasibility test that pruned schedules that are

unmappable. On evaluating the top 24 performance-critical loops from MiBench,

Rodinia and Parboil, CRIMSON was able to map 5 application loops that were un-

mappable by RAMP and 7 application loops that were unmappable by GraphMinor.

The II achieved by CRIMSON was comparable to the II achieved by RAMP for the

application loops that were mappable by RAMP.

64

Chapter 5

PATHSEEKER: A FAST MAPPING ALGORITHM FOR CGRA

5.1 Background

In order to achieve the high performance and highly power-efficient operation of

CGRAs good compilers are needed, which will be able to obtain a good quality map-

ping of performance-critical loops from applications. CGRA compilers can be clas-

sified into two categories: (1) Parallel-loop compilers, (2) Modulo Scheduling-based

compilers. The parallel-loop compilers like the ones for[3, 22] employ various compiler

optimizations to exploit the inherent spatial and temporal parallelization strategies

to map parallel loops of an application onto the PEs of the accelerator [22]. How-

ever, not all the compute-intensive loops of an application may be parallel, and those

can be accelerated through modulo scheduling-based compilers. Modulo-scheduling

based compilers accelerate the data flow graph of the loop body through the pipelining

present in the CGRAs using software pipelining [99, 25, 31, 30, 109, 32, 27, 28]. This

paper focuses on the modulo scheduling-based compiler techniques that can support

a wide variety of application loops.

One of the biggest limitations of the existing modulo scheduling-based state-of-

the-art CGRA mapping techniques is that, when trying to map loops onto the CGRA

if a mapping attempt fails, these techniques either discard the current mapping and

restart anew or backtrack to the previously mapped node. Techniques that restart do

not learn anything from the failure, and just blindly explore the mapping space. Even

the backtracking based approaches may not be effective, as they recursively unmap

the last mapped node, while the last node may not be the one that is making the

65

mapping infeasible. As a result, existing modulo scheduling-based state-of-the-art

CGRA mapping techniques are unable to map some performance-critical loops even

after 27 hours! This not only exacerbates the compilation time, but given reasonable

limits on compilation time, it also negatively impacts the quality of the mapping

achieved by these techniques.

To address these concerns, in this chapter, we present a novel mapping algorithm

- PathSeeker. First, instead of backtracking or restarting the mapping like the pre-

vious mapping methods, PathSeeker analyzes the predecessor and successor nodes to

find the reason behind the failed mapping. Second, PathSeeker explores local trans-

formations for the predecessor and successor of the failed node to achieve a valid

mapping. Finally, when local transformations do not yield a valid mapping, different

PE positions of the other nodes in the time-slot of the failed node, the predecessor,

and successor are iteratively explored, to find a valid mapping. We compare the map-

ping quality generated by PathSeeker to that of GraphMinor [30] and RAMP [32],

which are state-of-the-art mapping algorithms in backtracking and restart, respec-

tively. Experimental results on 35 application loops from the top three benchmark

suites, MiBench [104], Rodinia [105], and Parboil [106] show that (i) PathSeeker can

map all the 35 application loops on 4×4 CGRA, whereas GraphMinor and RAMP

were not able to map 20 and 5 loops, respectively, (ii) PathSeeker achieves a better

quality of mapping at lower compilation time with 550x and 10x compilation time

speedup over GraphMinor and RAMP respectively, (iii) PathSeeker scales well across

different sizes of CGRA.

A mapping failure can occur in mapping the scheduled onto the CGRA due to the

limited connectivity among the PEs of the CGRA, and because of the need to map

new routing nodes. Routing nodes occur when dependent operations are scheduled

in non-contiguous timeslots. Figure‘5.1, shows the common mapping failure due to

66

limited connectivity on CGRA. In the context of response to a mapping failure,

the existing mapping techniques can be classified into two categories, i) restart, and

ii) backtrack. Genetic algorithms, simulated annealing [26, 51], minimum common

subgraph (MCS) [25] or maximal clique [32, 31] based techniques can be classified

as restart. Minimum common subgraph and maximal clique techniques discard the

mapping on failure and simply search for another mapping. Simulated Annealing

techniques try random time and PE placements.

PE1 PE2 PE3 PE4

A

B

C

D

E

(b) (c)

Unavailable PEs Available PEs

PE1 PE2 PE3 PE4

A

B

C

D

E

(a)

PE1 PE2 PE3 PE4

A

B

C

D

E

Time

Ti-1

Ti

Ti+1

Figure 5.1: (a) b Cannot Receive Values From A or Pass Values to C, Resulting in
a Failed Mapping. (B) B Is Unable to Pass Values to C, and (C) B Is Unable to
Receive From A.

GraphMinor [30], RAMS [29], and BMS [110] perform backtracking on a mapping

failure. RAMS and BMS form clusters from the DFG and map the clusters one-by-

one. On a failure to map a node of the cluster, all the mapping of the current cluster

is discarded and the algorithms backtrack to previously mapped cluster. However,

GraphMinor maps the DFG by prioritizing nodes based on the critical path, one node

at a time. On a failure, GraphMinor, backtracks to previously mapped node in the

mapped order. Essentially, GraphMinor un-maps the last mapped node, and tries

again by mapping that node to a different place. If that does not work, it continues

to un-map the nodes in the reverse order in which they were mapped and keeps trying.

However, the last node mapped may not be the problematic node. Even if that last

67

node were re-mapped, it might not enable a valid mapping.

5.2 Motivating Example

In this section we will map a simple DFG on a simple CGRA using the existing

state-of-the-art techniques to illustrate how valid mapping opportunities may exist

near mapping failures that can be achieved by some local rearrangement of the map-

ping. From the set of restart techniques, we picked Simulated Annealing [26] and

RAMP [32], and from the set of backtracking techniques, we picked the GraphMi-

nor [30] for this illustration.

Simulated Annealing and RAMP: The DFG to be mapped is shown in

Fig. 5.2(a) and a 1×4 CGRA is shown Fig. 5.2(b). Simulated Annealing has an

integrated scheduling and mapping algorithm employing randomization in the selec-

tion of time and PE, which takes a long time to find a valid mapping [30, 110]. On

a failure to find a schedule and a PE, another random timeslot and PE are checked.

Even when the mapping is just a few steps away there is no systematic way to find

this out, so another random time and PE are chosen. For the example shown in

Fig. 5.2(c), node 2 cannot be mapped due to the unavailability of connected PEs. By

remapping node 4 from PE4 to PE3, a valid mapping for node 2 can be achieved.

But the Simulated Annealing algorithm tries random placements again and restarts

from the beginning. RAMP on the other hand tries to find a maximal clique (size of

the clique should be equal to the number of nodes in the DFG), and does not identify

or address the reason for failures. After a few restart attempts of finding different

routing options for the DFG in Fig. 5.2(a) RAMP will be able to find a maximal

clique. The maximal clique algorithm is time consuming, O(N8) [32, 111], where N

is a product of nodes in DFG and CGRA size. Restarting the algorithm on every

failure will possibly lead to longer compilation time.

68

(c)

Time
Ti

Ti+1

Ti+2

0 1

5 3

4

r

PE1 PE2 PE3 PE4

2

6 r

Time
Ti

Ti+1

Ti+2

0 1

5 3

4

r

PE1 PE2 PE3 PE4

2

6 r

Time
Ti

Ti+1

Ti+2

01

53

4

r

PE1 PE2 PE3 PE4

2

r 6

Time
Ti

Ti+1

Ti+2

01

53

4

r

PE1 PE2 PE3 PE4

2

r 6

(d) (e) (f)

0

2 5

4 6

1

3

1

1

(a) (b)

1 2 43

Figure 5.2: (A) DFG of an Application Loop. (B) a 1×4 CGRA Target Architecture.
(C) Failure to Map Node 2 by Simulated Annealing, (D) PathSeeker Identifies the
Problem and Remaps the Successor 4 and Finds a Valid Mapping for Node 2 (E)
Failure to Map Node 2 by Graphminor, (F) PathSeeker Remaps Node 4 to pe2 to
Find a Valid Mapping for 2.

GraphMinor: GraphMinor employs a backtracking approach, where on a map-

ping failure, the algorithm backtracks to previously mapped nodes and tries other

placements. In GraphMinor, the order in which the nodes are mapped plays an im-

portant role in determining the compilation time. GraphMinor sorts the nodes of the

DFG in the order of the critical-paths and cycles. Fig. 5.2(e) shows a mapping failure

of node 2 due to unavailability of connected PEs (connected resource for PE1 and

PE3 is PE2 that is occupied by r). GraphMinor backtracks to previously mapped

node 6, which does not affect the mapping of 2. After backtracking through all the

mapped nodes, GraphMinor reaches 4 wherein the actual problem lies. GraphMinor

fails to identify that the problem was one step away – remapping node 4 would have

fixed the mapping. Since the GraphMinor algorithm exhaustively explores the map-

ping search space, the compilation time increases exponentially with increase in DFG

size and the CGRA size.

As illustrated in the motivating example, even a simple loop takes a lot of compi-

lation to achieve a valid mapping, due to backtracking and restart mechanisms. Even

if we take into consideration that these techniques produces a valid mapping, chances

are it might not be a optimal mapping due to absence of failure-awareness. But these

techniques do not produce a mapping for many of the critical loops with an allocated

69

100,000 seconds. Given the NP-completeness nature of the mapping we will never

know if these techniques will produce a mapping within a finite time. The objective

of PathSeeker is to achieve a good quality mapping within a limited amount of time

for all the application loops considered across various sizes of CGRA.

Algorithm 3: Schedule And Map(DFG D, CGRA G)

1: (RecMII,ResMII)← Get MII(D,G)

2: MII ←Max(RecMII,ResMII)

3: II ←MII

4: while II ≤Max II do

5: Schedule(II)

6: GII ←MRRG(G, II)

7: D ← Update Routing Info(D)

8: list← CreateAdjacencyList(D)

9: α← search parameter ∗D nodes ∗G size ∗ II
10: while mappingAttempts ≤ α do

11: mappingAttempts = mappingAttempts+ 1

12: v ← Get End Nodes(D)

13: while all nodes visited(D) 6= true do

14: if PathSeeker(list, v.pop()) then

15: return success

16: end if

17: end while

18: end while

19: II = II + 1

20: end while

5.3 PathSeeker

An overview of the driver function, Schedule And Map() is shown in Algorithm 3.

First, lines 1-3 compute the minimum II by taking in the DFG and CGRA size as

inputs. The Schedule() function in line 5 schedules the nodes of the DFG at a

70

given II. Instead of having an as-soon-as-possible (ASAP) approach of IMS [34],

the Schedule() function employs a randomized iterative modulo scheduling, which

computes the resource constrained ASAP and ALAP for each node. This gives more

mobility for the nodes to be scheduled. Next, a Modulo Resource Routing Graph

(MRRG) and an adjacency list for Breadth First Search traversal is constructed in

lines 6 and 8, respectively. MRRG has been extensively used in previous techniques

like [26, 30, 32] etc. A simplified MRRG proposed in [30, 27] is used in PathSeeker.

An MRRG is a directed graph, G(V,E), extended II times, where V is the vertices

and E is the edges of the DFG. Each node, v∈V (GII) in MRRG is a tuple of (t, PE),

where t is the timeslot, obtained from the scheduling algorithm, and PE is the PE

resource at which the node v can be mapped. For e = (x, y)∈E(GII), is an edge

from x at (t,m) and y at (t + 1, n), then the edge is a connection between the two

CGRA resource m and n. Generally, CGRA PEs m and n are said to be connected

if node x at (t,m) is connected to node y at (t+ 1, n) where t ≥ 0. After the MRRG

creation, an adjacency list is created for reverse-BFS graph traversal. For each node

in the DFG, the adjacency list consists of the incoming nodes in the DFG. The graph

traversal starts from the DFG’s end nodes, i.e., nodes without any outgoing edges in

the current cycle. Subsequently, the PathSeeker algorithm is invoked in line 14 to

map the DFG.

For a given schedule, it may not be possible to find a valid mapping for a node

because of the following two reasons (i) current placement of predecessors and/or suc-

cessors may not have a connecting PE and (ii) if the predecessor and/or successor has

a connecting PE that may be occupied by other nodes. Based on these observations,

in order to find a valid mapping PathSeeker employs three stages of recovery, (i)

try different placement of predecessor and/or successors, (ii) try different placements

(remapping) of the nodes of the failed node’s timeslot and try different placements to

71

find a valid mapping, and (iii) remap the nodes in predecessor and successor times-

lots and try different placements for the predecessor and successor nodes until a valid

mapping is achieved. On failure to achieve a mapping after stage three, PathSeeker

tries a new random schedule again for a given II. Since PathSeeker maps the children

nodes first, it is easier for the parent nodes to find PEs connected to their children.

Line 9 computes α value that controls the number of times the PathSeeker algo-

rithm should be restarted on a failure from all the three recovery stages. The II is

incremented only if the mapping attempts reaches the α value. Until then different

possible mappings are tried for a given II.

72

Algorithm 4: PathSeeker(List AList, Node v)
1: queue← ∅
2: visited[v] = true

3: queue.push(v)

4: while queue 6= ∅ do

5: v = queue.front()

6: queue.pop(v)

7: if is already mapped(v) then

8: continue

9: end if

10: P ← Get Mapped Pred(v)

11: S ← Get Mapped Succ(v)

12: Γ← Get Connected PEs(v, P, S)

13: if Γ.size() = 1 then

14: PE ← Γ(0)

15: else if Γ.size() > 1 then

16: PE ← Γ(Rand(Γ.size())

17: else

18: if Localized Search(v, P, S) 6= true then

19: if Recovery Level One(v, P, S) 6= true then

20: if Recovery Level Two(v, P, S) 6= true then

21: return failure

22: end if

23: end if

24: end if

25: end if

26: SetMappablePositions(v,Γ)

27: SetCurrentPosition(v, PE)

28: for i in AList[v] do

29: if visited[i] 6= 0 then

30: visited[i] = true

31: queue.push(i)

32: end if

33: end for

34: end while

35: return success 73

5.3.1 Mapping Algorithm

The key contribution of PathSeeker is in its exploration and analysis the map-

ping failure in a systematic manner and the corrective course of actions it employs,

pertaining to the node that was unmappable. Like the previous techniques, Path-

Seeker employs the two-step approach of scheduling the nodes of the DFG onto the

time-extended CGRA followed by mapping (place and route) of the scheduled nodes

onto the PEs of the CGRA. To find a valid mapping for the failure scenarios shown

in Fig. 5.1(c)-(d), PathSeeker employs a three stage recovery process, (i) try differ-

ent placements for successor and/or predecessor of the failed node, (ii) try different

placements (remapping) for nodes in the failed node’s timeslot and re-mapping the

failed node, and (iii) remapping the nodes in successor and/or predecessor’s timeslots

and try different placements for the successor and predecessor nodes until a valid

mapping is achieved. On a failure to achieve a mapping after these three stages,

PathSeeker restarts the mapping process for a given II. To ensure an optimum map-

ping space exploration, the II is incremented only if the mapping attempts reaches α,

as explained in the following subsection. Unlike existing techniques that use IMS [34]

for scheduling the nodes, PathSeeker uses CRIMSON [112] to obtain a randomized

iterative modulo schedule of the DFG onto the time-extended CGRA.

5.3.2 Failure-Aware Mapping & Novel Timeslot Level Remapping

The PathSeeker algorithm is shown in Algorithm 4. The lines 10 and 11,

Get Mapped Pred() and Get Mapped Succ() routines, return only the predecessors

and successors of the current node that are already mapped. Get Connected PEs()

function, in line 12, returns all the possible free PEs that are connected to the mapped

predecessor and successors from the Modulo Resource Routing Graph (MRRG), used

74

in GraphMinor [30]. PathSeeker, starts the mapping in a reverse breadth-first search

graph traversal (using an adjacency list AList) to aid the mapping of predecessors

easily. This design decision was taken by analyzing the loops considered for the exper-

iments. Since the nodes are already scheduled to a timeslot before mapping, taking a

reverse breadth first search (BFS) approach will aid the mapping of predecessor node

with lesser mapping failures. On the contrary, when we analyzed the breadth first

search with predecessors mapped first followed by the successor nodes, due to the

random placement of the predecessors, there was a high chance that the predecessor

nodes are placed in non-connected PEs, which resulted in a successor node mapping

failure. Based on the size of the Γ from line 12, the placement for the node v is chosen.

For nodes where all the positions are possible a random position is obtained from line

16. After choosing a random position, all the possible placements i.e., Γ, and the

selected PE position are stored for recovery purposes by SetMappablePositions()

and SetCurrentPosition() routines, respectively in lines 26 and 27. An empty Γ

from line 12, means that there were no possible placements available for the node v.

At this juncture, PathSeeker employs a three-tier recovery approach to find a valid

placement for node v. In line 18, the Localized Search() routine is invoked. On a

failure of this routine, in line 19 Recovery Level One() routine is called. On a Level

One failure, Recovery Level Two() routine is employed, in line 20. The Level One

and Level Two routines use complex timeslot level remapping procedures to find a

valid mapping for node v. In an event of all three recovery failures, the PathSeeker

algorithm is restarted for the given II.

75

Algorithm 5: Localized Search(Node v, Predecessor P , Successor S)

1: timeslot← Get Modulo Schedule T ime(v)

2: mapped pred succ← P.size() + S.Size()

3: succ map set← ∅
4: pred map set← ∅
5: v pe← Get Free PEs(timeslot)

6: for i in v pe do

7: for j in S do

8: for k in P do

9: p pe← GetMappablePositions(k)

10: for kk in p pe do

11: if connectedPEs(i, kk, jj) then

12: Γ.insert(i)

13: succ map set.insert(k)

14: pred map set.insert(j)

15: store connected pes(i, kk, jj)

16: end if

17: end for

18: end for

19: end for

20: end for

21: if Γ.size() = 0 then

22: return false

23: end if

24: Update Γ and PE values

25: return success

Localized Search: As a first step in the recovery process to find a valid mapping,

PathSeeker invokes the Localized Search() algorithm shown in Algorithm 5. On a

failure to map a node the algorithm searches through the possible positions of the

predecessors and the successors to find a valid placement for the failed node. Lines

6-20 search through both predecessors’ and successors’ possible positions when there

76

are mapped predecessors and successors for the failed node. This localized search

routine does not modify any other nodes that are already mapped onto the CGRA.

The GetMappablePositions() function in lines 9 retrieves the possible PE positions.

On finding a successful connected PE, the PE position for node v (failure node) is

store into Γ array. A valid mapping is obtained for node v only if all the predecessors

and successors have a connected PE to v. Line 24 updates the predecessor nodes and

successor nodes, which is used to check if all the predecessors and successors were

able to successfully find a connected PE. On failure of this localized search (when Γ’s

size is 0), PathSeeker invokes the Recovery Level One() routine, from Algorithm 4,

line 19. Algorithm 5 lines 8 and 10 are modified when the failed node does not have

a predecessor mapped.

For the example error model showed in Figure 5.1(b) and Figure 5.1(c), the

Localized Search() algorithm collects all the mappable positions of the predeces-

sors (A) and the successors node (C) of the failed node (B), and iterates through all

the mappable position to until a valid mapping for failed node B is achieved. For

Figure 5.1(b), since the B is not able to pass the computed value to node C, the

alternate positions for node C are tried and eventually C is moved to PE3 for a valid

mapping. For Figure 5.1(c), since B is able to receive the value from the predecessor

A, node A is moved to PE2 or PE4 for a valid mapping of B.

This algorithm checks all the possible PE positions for all the successors and

predecessor of the failed node until a mapping is found. Since the initial mapping

is reverse-BFS, checking for successors followed by predecessors helps in finding the

mapping faster. The Localized Search() algorithm is particularly effective in finding

a valid mapping faster because rather than backtracking to the previous mapped node

that may or may not be directly related to the failed node, Localized Search() tries

find a valid mapping from the failed node’s perspective by moving the predecessor

77

PE1 PE2 PE3 PE4

A

B

C

D

E

Unavailable PEs Available PEs

Time

Ti-1

Ti

Ti+1

PE1 PE2 PE3 PE4

A

B

C

D

E

(a) (b)

Figure 5.3: a) B Fails Because the It Is Not Able to Receive Value from A or Pass
Value to C. (B) PathSeeker Identifies the Failure and Swaps B and E in the Timeslot
to Get a Valid Mapping.

and/or successor nodes of the failed node. On a failure to find a successful mapping

for the failed node, the successors’ and predecessors’ positions are reset before calling

the Level One recovery routine.

Recovery Level One: On a failure of localized search, the recovery Level One

routine is invoked. This routine employs the novel timeslot level remapping. The

remapping starts by collecting all the nodes mapped to current timeslot as that of

the failed node. Next, the remapping algorithm iterates over the mappable positions

of each node and remaps them. On remapping each node, the valid position for the

failed node is checked. This local rearrangement of the already mapped nodes to

the timeslot is the novelty of PathSeeker, and it helps to change the course of the

mapping. On a successful mapping of the failed node, the current remapping of the

nodes is finalized and their positions are updated.

The Level One recovery mechanism is illustrated in Figure 5.3. In Figure 5.3(a),

B is unable to receive or pass the values from A or C respectively, and localized

moving of C may not yield a valid mapping. In this scenario, Level One recovery

routine collects the nodes mapped B’s timeslot, i.e., and tries to move E until a valid

mapping is achieved. By swapping the PE positions B and E Level One routine find a

78

valid mapping. This rearrangement also honors all the data and control dependencies

for the nodes that are shuffled.

Recovery Level Two: On a failure of Level One recovery, Level Two recovery

routine is invoked. This routine is similar to Level One recovery, except Level Two

recovery remaps nodes that are mapped to the successor and predecessor timeslots,

Ti+1 and Ti−1, and checks for a valid mapping for the updated positions of successor

and predecessor nodes. On a failure from this recovery routine, the mapping can be

restarted for a given II. The remapping algorithm collects all the nodes mapped to

the current timeslot (T , timeslot of the failed node), the successor timeslot (Ti−1 of

the failed node), and the predecessor timeslot (Ti+1 of the failed node). Iterating

through the mappable nodes for each of the nodes in each timeslot, a valid mapping

position for the failed node is checked. On success, i.e., if a valid mapping for the

failed node is found, then the current position and the mappable positions for each

of the nodes are updated based on the new positions via SetMappablePositions

and SetCurrentPosition. This novel approach of predecessor and successor timeslot

level remapping aids in finding a mapping for the failed nodes, if there is a mapping

available by shifting around the already mapped nodes to a new position honoring

the data dependencies and connectivity. As far as we have explored, PathSeeker’s

timeslot level recovery mechanism is a novelty when comparing it to other popular

mapping algorithms employed for CGRAs. On a failure from the Level Two recovery,

the mapping can be restarted for a given II. This exploration is controlled by α

computed by; α = dsearch parameter × n × PEs × IIe where, n is the number of

nodes in DFG, PEs is the total number of PEs in CGRA, and search parameter

is the percentage of the mapping search space to be explored. Since a new α value

is computed for a given II, the exploration of search space is dependent on the loop

characteristics. The II is increased only when the number of restarts exceeds α.

79

The time complexity of the graph traversal is O(V +E) since PathSeeker uses an

adjacency list approach for reverse-breadth first search, where V and E are nodes and

edges of the DFG. The initial mapping of the nodes are randomized selections from

the list of PEs (line 16 of Algorithm 4). The time complexity of which is O(1). On

a failure to map a node, the time complexity of the Level Two recovery mechanism

is O(N3), where N is the product of nodes mapped to each timeslot and number of

mappable positions of the nodes.

5.3.3 Running Example

Fig. 5.2(d)&(f) shows the working of the PathSeeker technique on a failure to map

node 2. Fig. 5.2(c) shows failure to map node 2 by Simulated Annealing and Fig. 5.2(e)

shows the failure to map node 2 encountered by GraphMinor. For the failure in

Fig. 5.2(c), PathSeeker’s Localized Search function is invoked first which gets the

predecessors and successors of failed node 2, i.e., node 0 and node 4, respectively.

PathSeeker iterates through all the possible positions to find a valid mapping of the

successor, and consecutively the predecessor. There is just one possible position for

node 4, i.e., PE3, which meets all the dependencies. A valid mapping by PathSeeker

for this failure case is shown in Fig. 5.2(d). For the failure case shown in Fig. 5.2(e),

PathSeeker follows the same procedure. The possible positions for node 4 are PE1

and PE2. Since PE1 is the current position, PathSeeker tries PE2 which results

in a successful placement. A valid mapping by PathSeeker for this failure case is

shown in Fig. 5.2(f). It can be observed from Fig. 5.2(d) and (f) that PathSeeker’s

Localized Search does not modify the placements of other mapped nodes and instead

only explores within the existing mapping. In a hypothetical case where there is no

possible mapping available for node 2, Level One recovery routine will be called to

remap the nodes in timeslot Ti+1. On a failure to find a valid mapping from Level

80

Loops
G-Minor

(s)
RAMP

(s)
PathSeeker

(s)
bfs NA 100.64 2.76
backprop1 2.066 3.4 6.6
backprop2 NA 50.1 10.25
b+tree1 2.56 3.53 2.87
b+tree2 NA NA 2.61
kmeans1 1.54 3.23 4.41
kmeans2 297.9 2.53 4.45
lud1 NA 1.67 4.49
lud2 NA 2.43 3.02
streamcluster1 NA 8.45 11.67
streamcluster2 NA 11.83 16.25
nn1 6588.99 NA 2.42
nn2 1.26 1.05 2.69
particlefilter1 2.36 2.03 1.56
particlefilter2 NA 35.05 1.53
mri-gridding1 NA 3.01 1.58
mri-gridding2 NA 2.67 1.47

Table 5.1: PathSeeker Has a Better Compilation Compared to Graphminor and
RAMP. NA Denotes the Loops for Which a Valid Mapping Was Not Obtained Within
the 100,000 Seconds Threshold.

One recovery, Level Two recovery function will be called to remap the nodes in

timeslot Ti+2 and subsequently the nodes in timeslot Ti, which are the successor and

predecessor timeslots of node 2. While previous techniques explore the design space

on a node-by-node basis, PathSeeker’s Level One and Level Two recovery remaps all

the nodes in the timeslot of the failed node, its predecessors, and its successors until

a valid mapping is achieved.

81

Loops
G-Minor

(s)
RAMP

(s)
PathSeeker

(s)
myocyte1 NA 2.86 23.31
myocyte2 NA 66.84 2.95
srad1 1.55 1.414 1.31
srad2 3.88 3.44 1.54
bitcount 1.61 4.35 1.7
fft 1.0969 1.68 1.33
gsm NA 2224.52 115.61
patricia1 NA NA 0.9182
patricia2 NA NA 134.31
sha NA 32.89 5.93
basicmath 1.8591 NA 13.98
stringsearch1 NA 3.389 2.2
stringsearch2 NA 65.94 1.46
susan NA 49.04 16.56
spmv NA 32.48 2.66
histo 396.68 15.66 1.56
sad1 1857.57 8.28 33.8
sad2 12250.82 21.43 2.89

Table 5.2: Results Continued from Table 5.1

5.4 Results

We profiled applications from three widely used benchmark suites 1 MiBench [104],

Rodinia [105], and Parboil [106]. These benchmarks depict a wide variety of appli-

cation domains comprising of embedded system applications like automotive, indus-

try, office, network, security, and telecommunication, heterogeneous applications like

data mining, pattern recognition, image processing, graph algorithms, and high per-

formance computing application like spare matrix-dense vector multiplication (spmv)

. We have considered a total of 35 application loops from these benchmark suites

consisting of top two performance-critical loop from each application. We profiled

1Top two performance-critical loops were chosen from each application, with each contributing
> 7% of the execution time of the application when executed with standard inputs that were shipped
with the benchmark suites.

82

the loops for compute-intensive application and application that were memory inten-

sive (I/O bound) we not considered. In case of application with nested loops, only

the innermost loop was considered for acceleration. Additionally, the 35 loops con-

sidered for evaluation are not vectorizable, i.e., the acceleration achieved is beyond

vectorization (SIMD) like Intel’s AVX, ARM’s SVE etc. The extraction of loops

and converting them to Data Flow Graph (DFG) were performed using CCF [107],

an LLVM 4.0 [108] based CGRA compilation and simulation framework. Addition-

ally, we have implemented partial predication [76], for compiling if-then-else and

nested if-then-else structures efficiently. CCF framework [107] produces DFG of the

loop with separate address generation and actual load/store functionality. We have

also implemented path-sharing, proposed in GraphMinor [30], when adding routing

nodes, which can effectively reduce the overhead. We have implemented RAMP [32],

GraphMinor [30], and PathSeeker (proposed technique) mapping algorithms as a pass

in CCF. We compiled the application loops with optimization level 3, to avoid those

loops that are vectorizable by the compiler. We also scaled the three mapping algo-

rithms across five CGRA sizes, namely 4×4, 5×5, 6×6, 7×7, and 8×8 and analyzed

the scalability results.

5.4.1 Performance Evaluation

Fig.5.4a and Fig. 5.4b shows the performance comparison of PathSeeker with

GraphMinor and RAMP. The values were recorded by executing PathSeeker, RAMP

and GraphMinor on an Intel-i7 running at 2.8 GHz with 16 GB memory. A 4×4

CGRA was used for this experiment. The compilation time threshold was kept at

100,000 seconds. It can be infered from Fig.5.4a and Fig. 5.4b that PathSeeker, with

its novel remapping scheme was able to map all the 35 loops considered, whereas

GraphMinor and RAMP were not able to map 20 and 5 loops, respectively. The loops

83

X X X X X X X X X X X XX X0

2

4

6

In
it

ia
ti

o
n

 In
te

rv
al

 (
II

)

Rodinia

G-Minor RAMP PathSeeker X No Mapping Obtained

(a)

X X X X X X X XX X X0

4

8

12

16

MiBench Parboil

In
it

ia
ti

o
n

 In
te

rv
al

 (
II

) G-Minor RAMP PathSeeker X No Mapping Obtained

(b)

Figure 5.4: II Comparison of PathSeeker with Graphminor (G-minor) and RAMP.
“x” In the Graph Denotes That There Was No Obtained for until the Threshold
Time. (A) Benchmark Loops from Rodinia, (B) Benchmark Loops from Mibench
and Parboil.

for which a valid mapping cannot be obtained within 100,000 seconds are denoted by

“X” in the Fig. 5.4a and Fig. 5.4b.

The II obtained from GraphMinor and RAMP are not always optimal (lower II is

better). This can particularly be noted in loops such as kmeans2, nn1, histo and sad1

where GraphMinor had higher II, and particlefilter2, myocyte2, histo, and sad2 for

which RAMP had higher II. Considering the loops for which the GraphMinor has

obtained a valid mapping within 100,000 seconds, PathSeeker showed a 28% increase

in performance, i.e., lower II. Compared to RAMP, PathSeeker achieved a comparable

performance in all the loops and had better performance in five loops mentioned

above. Due to the novel routing strategy search to achieve a valid mapping, RAMP

had a better II for backprop2. When there is a mapping failure from all three recovery

schemes, a new random mapping is tried until the α value is exhausted, ensuring a

84

lower II. The II is increased only when the number of mapping tries exceeds α.

Table 5.1 and Table 5.2, shows the compilation time comparison of PathSeeker

with GraphMinor and RAMP. From Table 5.1 and Table 5.2 it can be observed

that exhaustive search space exploration and backtracking to the previously mapped

nodes, and exploring different routing options by restarting the mapping, increases

the compilation time drastically. For GraphMinor and RAMP, as the number of

CGRA resources increases, the compilation time increases exponentially. The expo-

nential compilation time increase for GraphMinor is due to the fact that, on a failure

to find a valid mapping, the backtracking algorithm reverts back to the previously

mapped nodes, un-maps the nodes and exhaustively remaps the previous node until

a valid mapping is achieved. With increase in the CGRA size, the mapping search

space also increases, thereby increasing the compilation time. In RAMP, given the

algorithmic time complexity, an increase in CGRA size increases the compilation

time drastically. PathSeeker’s initial randomized mapping and novel three-tier fail-

ure recovery approach, has resulted in a significant reduction in the compilation time

while achieving a valid mapping. PathSeeker was able to map all the loops on a 4×4

CGRA within a few tens of seconds. For the loops that were mappable within 100,000

seconds by the comparative techniques, PathSeeker achieved a 10x speedup over the

average compilation times of RAMP, and 420x speedup over average compilation time

of GraphMinor.

Due to the exhaustive search and arbitrary backtracking mechanism, we can ob-

serve that the II obtained from GraphMinor is not always optimal. The recovery

mechanism and reshuffling of the nodes connected to the failed nodes makes Path-

Seeker an effective mapping tool to map compute-intensive loops on to CGRA. For

example, from Fig. 5.4b sad1, we can see that the II achieved by PathSeeker is better

than GraphMinor. Analyzing this loop in detail we find that there were 43 mapping

85

0

10

20

30

40

4x4 5x5 6x6 7x7 8x8

N
o

. o
f

Lo
o

p
s

M
ap

p
ed

Sizes of CGRA

G-Minor RAMP PathSeeker

Figure 5.5: PathSeeker Is Able to Achieve a Valid Mapping for the All the 35 Loops
Considered Across Various Sizes of CGRA.

failures encountered, and 19 of those failures were rectified in the localized remapping

of the predecessor and successor nodes. Level One recovery was able to rectify 16 of

the errors by shuffling the nodes in the failed node’s timeslot and 11 of the errors were

rectified in Level Two recovery routine which employs novel timeslot level remapping.

There were 7 failures for which a valid mapping was not obtained from all the three

recovery stages and the mapping algorithm was restarted. The restarting is done for

the given II and not increased until the α value reached. The novel recovery mecha-

nism along with randomized placements within the given II ensured lower II for sad1

compared to GraphMinor.

5.4.2 Scalability Analysis

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

4x4 5x5 6x6 7x7 8x8

Q
u

al
it

y
o

f
M

ap
p

in
g

(M
II

/I
I)

Sizes of CGRA

RAMP PathSeeker

Figure 5.6: PathSeeker Achieves a Superior Mapping Quality (II Closer to MII)
Compared to RAMP.

86

We performed the scalability experiment for CGRA sizes of 5×5, 6×6, 7×7, and

8×8. Figure 5.5, shows the scalability of PathSeeker with respect to GraphMinor

and RAMP. We can observe that as the size of the CGRA increases the number loops

mappable by GraphMinor and RAMP reduces. PathSeeker, on the other hand, is able

to achieve a valid mapping for all the 35 loops considered. Due to the backtracking

mechanism, GraphMinor was not able to find a mapping within the threshold of

almost 75% of the loops. Figure 5.5 clearly shows that arbitrary backtracking to the

previously mapped nodes on encountering a mapping failure is clearly not a scalable

solution.

1

10

100

1000

4x4 5x5 6x6 7x7 8x8

A
ve

ra
ge

 C
o

m
p

ila
ti

o
n

Ti
m

e
(s

)

Sizes of CGRA

RAMP PathSeeker

Figure 5.7: PathSeeker Achieves a Mapping for All the Loops Across Various Sizes
of CGRA at a Lower Compilation Time.

The Minimum II (MII) is the minimum possible II that can be achieved for a

given loop DFG and the CGRA architecture. The quality of mapping of a mapping

algorithm is the ratio of MII/II, which indicates how close the obtained II is to the

MII. Figure 5.6, shows the quality of mapping of RAMP and PathSeeker across all

the five CGRA sizes. The mapping quality achieved by PathSeeker is better across

all the CGRA sizes, compared to RAMP. On a mapping failure, RAMP discards the

maximal clique obtained and restarts the mapping, usually at an increased II. This

accounts for the drop in mapping quality and increased compilation time.

Fig. 5.7, shows the scaling of average compilation times of RAMP and PathSeeker,

considering only the loops that were mappable by RAMP. The x-axis of Fig. 5.7 shows

87

the average compilation time across all the benchmark loops for which RAMP was

able to achieve a valid mapping, in log scale, and the y-axis shows the various sizes

of the CGRA. As shown in Fig. 5.7, the compilation time of RAMP increases expo-

nentially, due to the restart mechanism on encountering a failure and its algorithmic

complexity. In comparison, the compilation time of PathSeeker scales linearly, due

to the initial randomized placement of the nodes and localized modifications of the

mapping pertaining to the failed nodes.

5.5 Chapter Summary

This paper presented a novel CGRA mapping scheme, PathSeeker, that was able

to map all the loops in a smaller CGRA size, with better II and lower compilation

time. Existing techniques, such as GraphMinor and RAMP, resort to backtracking

to a previously mapped node or restarting the mapping process, when encountering

a mapping failure. This leads to a significant increase in the compilation time and

poor II. PathSeeker’s novelty lies in employing localized search strategies and time-

slot level remapping to rectify a mapping failure. PathSeeker was able to map all

the 5 top performance-critical loops across three widely used benchmark suite loops

on a 4×4 CGRA, whereas GraphMinor and RAMP were not able to map 20 and

5 loops on the same CGRA size, respectively. On comparing the loops that were

mappable by GraphMinor and RAMP, PathSeeker achieved a 28% lower II compared

to GraphMinor and 3% lower II compared to RAMP on a 4×4 CGRA. PathSeeker was

able to get a 420x and 10x compilation time improvement compared to GraphMinor

and RAMP, respectively.

88

Chapter 6

LASER: EFFICIENT METHOD FOR MAPPING CONDITIONAL LOOPS

6.1 Background

Previous compiler techniques such as [31, 28, 25] accelerate only the innermost

loop and fall short in accelerating rest of the loop nest which in turn has to be executed

on a core. The communication overhead also multiplies if the trip count of outer-loop

is higher. Existing techniques such as [65, 68] are restricted to handle only perfectly

nested loops with 2-level. On the other hand, flattening based approach of [66] is

promising but restricts the scalability because of its hardware-based solution with

modified PE architecture. Major techniques to accelerate loops with conditionals are

- (i) Full predication, (ii) Partial Predication, (iii) Dual-Issue and (iv) Path Selection

Based Mapping (PSB). Full and partial predication schemes requires predicated reg-

ister files and muxes to communicate the branch outcome. Full predication maps the

nodes from both the if- and else- path on the same PE, but at different time, so that

correct value is updated at the end of the execution [43]. Partial predication allows

execution of nodes from both paths simultaneously but correct outcome needs to be

selected through additional select node [76]. Dual issue schemes such as [43] fetches

instructions for both paths but executes instructions of only correct path based on

the branch condition, but requires additional mux in each PE to select the if-path

or else-path instructions and is applicable to single-level only. Path selection based

approach [77] selectively issues the instruction based on the branch outcome, but is

applicable to only single if-then-else. For nested-conditionals PSB relies on partial

predication. In this paper, we evaluate partial predication as it is the only technique

89

that can map loops with nested conditional at lower II.

for(i=0;i<10;i++)

{a = a + 1;

 b = b + 1;

 c = a*b;

 if (x%i == 1)

 d = c+1;

 else

 d = b+1; }

a

c

b i

cmp

dt df

d

1

1

2

3

4

Time PE1 PE2 PE3 PE4

a b i

cmpc

a b i

i

i

i

i

dt

df

df

df

cmp

d

II
=
3

(e) (f) (g)

for(a=0;a<10;a++)

{b = a + 10;

 c = a * 2;

 d = b / 4;

 e = d + c;}

(a)

a

b c

d

e

1

(c)

a

a

a

1

2

3

4

Time PE1 PE2 PE3 PE4

a

c

a

e

d

(d)

b

II
=
2

1
R1

R2 2
R1

R2

3
R1

R24
R1

R2

(b)

c

c

a

a

a

11

i

for(i=0;i<10;i++)

{a = a + 1;

 b = b + 1;

 c = a*b;

 if (x%i == 1)

 d = c+1;

 else

 d = b+1; }

a

c

b i

cmp

dt df

d

1

1

2

3

4

Time PE1 PE2 PE3 PE4

a b i

cmpc

a b i

i

i

i

i

dt

df

df

df

cmp

d

II
=
3

(e) (f) (g)

for(a=0;a<10;a++)

{b = a + 10;

 c = a * 2;

 d = b / 4;

 e = d + c;}

(a)

a

b c

d

e

1

(c)

a

a

a

1

2

3

4

Time PE1 PE2 PE3 PE4

a

c

a

e

d

(d)

b

II
=
2

1
R1

R2 2
R1

R2

3
R1

R24
R1

R2

(b)

c

c

a

a

a

11

i

for(i=0;i<10;i++)

{a = a + 1;

 b = b + 1;

 c = a*b;

 if (x%i == 1)

 d = c+1;

 else

 d = b+1; }

a

c

b i

cmp

dt df

d

1

1

2

3

4

Time PE1 PE2 PE3 PE4

a b i

cmpc

a b i

i

i

i

i

dt

df

df

df

cmp

d

II
=
3

(e) (f) (g)

for(a=0;a<10;a++)

{b = a + 10;

 c = a * 2;

 d = b / 4;

 e = d + c;}

(a)

a

b c

d

e

1

(c)

a

a

a

1

2

3

4

Time PE1 PE2 PE3 PE4

a

c

a

e

d

(d)

b

II
=
2

1
R1

R2 2
R1

R2

3
R1

R24
R1

R2

(b)

c

c

a

a

a

11

i

(a)

(b) (c) (d)

Figure 6.1: (A) a Simple Loop to Be Accelerated on CGRA (B) Flattened 2×2
CGRA Where Each PE Has 2 Registers (C) a Loop with an If-then-else (D) Data
Flow Graph (DFG) of the Loop with Partial Predication (E) Mapping of DFG on
2×2 CGRA With II=3.

6.1.1 Partial Predication incurs high overhead

In partial predication, the nodes of DFG from both true and false paths can be

mapped on different PEs and a select operation is required to choose the correct

outcome based on the condition evaluated. Fig 6.1(a) shows a simple loop with con-

ditional, while Fig 6.1(c) shows DFG using partial predication. Node cmp represents

condition x% i==1. Nodes dt and df are true and false paths of d and a selection

operation is added. Mapping of the DFG is shown in Fig 6.1(e) with II is 3. Due to

the additional nodes required by partial predication, if a variable is computed inside

the innermost nest of if-then-else, there is a corresponding node for operation inside

each if-path and an else-path and so is a selection. Applying partial predication on a

loop with nested conditional in Fig 6.2(a), we get DFG shown in Fig 6.2(b). Mapping

DFG on 2×2 CGRA yields II of 11! Partial predication method increases the number

of nodes in accelerating performance-critical loops with nested conditionals and the

90

1:for(i=0;i<10;i++){
2: if (x%i==1){d+=0;
3: if (y%i==1){
4: a+=0;
5: b+=0;
6: c+=0;}else{a=a+1;
7:
8:

 b=b+1;}}
else d=d+1; }

(a)

(b)

Figure 6.2: (A) a Loop With Nested Conditional (B) DFG Using Partial Predication
Results in 31 Nodes. Nodes h and g Represent Conditions x%i==1 and y%i==1.

nested loops from MiBench benchmark suite. Clearly, there is no technique that can

accelerate nested loops and nested conditionals with less overhead.

6.2 LASER: Loop Acceleration By Selective Execution

The compiler transforms arbitrary nested (perfect or imperfect) loops into a single

loop with nested conditional by loop flattening[66]. Fig 6.3 shows the transforma-

tion of a simple nested loop into a single-level loop with nested conditional. In some

91

special cases, nested loops cannot be converted into a single loop 1 . However, in

general, loop flattening is needed to convert a nested loop to a loop with conditional

statements. Executing branches on CGRA is challenging due to the lack of support

from the CGRA’s instruction fetch unit (IFU). The existing CGRA IFU issues in-

structions sequentially from the instruction memory and hence cannot jump memory

addresses in case of conditional operations. In LASER, we enhance the CGRA IFU

functionality to issue only the instructions of the correct path 2 at runtime. For

the correct-path instructions to be issued by the IFU, LASER compiler lays out the

program instruction in a specific way such that the IFU jumps to the exact memory

location of instruction of the correct-path and issue them at runtime.

for (;cond1;) {
/*statements*/
for (;cond2;) {
/*statements*/
}
/*statements*/

}

(a)

for (;cond3;) {
if(cond4) {
/*outer for-loop statements

and iterator calculations*/
}

else {
/* inner for-loop statements

and iterator calculations*/
} }

(b)

Figure 6.3: (A) an Imperfectly Nested Loop with Cond1 and Cond2 Conditions (B)
Flattening Converts (a) into Single-level Loop with Conditionals with New Cond3 and
Cond4

With this IFU support to issue correct-path instructions, if a variable c is updated

in both true and false path, mapping ct and cf on different PEs without a select

operation will lead to an incorrect execution. This is because the compiler generates

1If a loop contains sibling loops, flattening based approach may be impractical, so a loop fission
approach [66] should be used. We did not come across any compute-intensive loops that have sibling
loops, in our experiments.

2Either true-path or false-path based on the branch outcome at runtime.

92

instructions statically and since the correct-path executed is unknown at the static

time, the PE that will hold the correct value of c at the end of the execution is also

unknown. This discrepancy can lead to errors in the value of c at the end of program

execution. To overcome this, LASER compiler fuses the true-path operation and

false-path operation of the variable into a single node, 〈ct, cf〉. This single fused node

is mapped to only one PE of the CGRA and only one instruction (either true-path

or false-path) is issued at runtime by the IFU. After the execution of the instruction

the PE on which the fused node was mapped, holds the correct value of c. Similarly,

if a variable d is updated in only one path (only in true-path (dt) and not updated

in the false-path) the compiler creates a no-operation (nop) for the false path and

performs the fusing. The fused node will now have 〈dt, nop〉, which means that if

the branch condition is true dt is issued by IFU otherwise a nop is issued. LASER

compiler transforms complicated loops, maps them on to the CGRA architecture and

lays the instructions in the memory in a specific manner, such that the IFU can fetch

the instructions from correct-path at runtime.

PE1 PE2 PE3 PE4

1 d h idle b

2 dt g c a

3 att idle ctt btt

4 atf idle nop btf

5 df nop c a

6 ao idle co bo

7 nop idle nop nop

8 idle i idle ac

d

a b c

dt, df

att, atf

ao, nop

btt, btf

bo, nop

ctt, nop

co, nop

i1

h

(a)

(b)

1 2

34

g, nop

Time PE1 PE2 PE3 PE4

(c)

i

i b

dc i b

dc i cc bc

i

hd

a

b

cdt, df

btt, btf

bo, nop

att, atf

ao, nop
ctt, nop

co, nop

i

1

2

3

4

II =
 4

dc i cc bc
ac

5

g, nop

k2 = 1 for

innermost

condition g

k1 = 3 for

condition h

Path

selected

when h

is true

Path

selected

when h

is false

g = 1

g = 0

(d)

1

1

1

1

ac

Figure 6.4: (A) DFG Obtained from LASER-compiler for Loop of Fig 6.2. Nodes
from Multiple If-paths and Else-path to a Single Node. If Such Path Is Absent,
Balancing No-ops Are Added and a Node Such as ao Preserves the Old Value. (B)
2×2 CGRA Where Each PE Has 2 Registers. (C) Mapping with II = 4. (D)
Instructions Are Selectively Issued During the Execution of the Kernel.

93

6.2.1 Compiler Method

By evaluating the condition of a nest a priori and then mapping the true and false

path of the nest on to the same PE, LASER-compiler reduces the total number of

nodes created. For example, in the program of Fig 6.2(a), the assignments to the

variable a are inside a nested if-then-else (if-else inside another if-else). So, for a

conditional nest of two, four different assignments for variable a are possible. Corre-

sponding four nodes (or operations) are fused as a single node by LASER-compiler.

At runtime, correct instruction out of four possible instructions can be provided to

the PE to execute the operation from the nested conditional.

Our heuristic targets fusing nodes from different if-else paths pertaining to the

conditional nest. Pairing is done with operations from the innermost if-then-else

(i.e., one with highest conditional depth d). The unbalanced operations (i.e. one

path has more operations than the other) are paired with a no-op. For example, in

program of Fig 6.2(a), operations corresponding to variables a, b and c are fused first.

Hence, 〈att, atf〉 and 〈btt, btf〉 are fused nodes, as shown in Fig 6.4(a). Such pairing

is one-to-one with operations from both the paths. In our example, innermost if-

path has 3 operations compared to 2 operations inside respective else path. Hence,

the unbalanced operation ctt is fused with a no-op. Note that we do not need any

selection among the operations from if-path and else-path so, corresponding select

operations are eliminated during this DFG transformation. Once the operations of

the innermost conditional are fused (i.e. y%i == 1), operations from outer nests can

be fused iteratively. So, operations of the conditionals with nest depth of d − 1 can

be fused where d is the highest depth. Thus, we fuse all the operations associated

with the condition x%i == 1. The compiler iterates on the entire conditional nest

and produces DFG with the fused nodes as shown in Fig 6.4. Mapping can be then

94

obtained with mapping techniques such as [31, 28]. Mapping the DFG with the fused

nodes, obtained from LASER-compiler is like any other mapping with CGRAs. The

fused nodes can be also routed to satisfy data-dependency and necessary values are

stored in the register file 3 .

3In Fig 6.4(c) fused node 〈〈att, atf 〉, 〈ao, nop〉〉 is routed (named as ac) and the correct value of a
is also stored in a register of PE 4 for later usage.

Algorithm 6: FuseNodes (Input DFG D, Output DFG P)

1: d← getHighestConditionalDepth()

2: for i = d to 1 do

3: niif ← getLastNode(N i
if)

4: nielse ← getLastNode(N i
else)

5: while niif 6= NULL or nielse 6= NULL do

6: if niif ∈ N i
if and nielse ∈ N i

else then

7: fuse(niif , n
i
else)

8: else if niif ∈ N i
if and nielse == NULL then

9: fuse(niif , nop)

10: else if niif == NULL and nielse ∈ N i
else then

11: fuse(nop, nielse)

12: end if

13: niif ← getLastRemainingNode(N i
if)

14: nielse ← getLastRemainingNode(N i
else)

15: end while

16: for nij such that j = 0 to |N | do

17: if nji is an eligible select operation ∈ N j
other,3 input1(nji), input2(nji) =

mfused ∈Mfused then

18: Eliminatephi(n
j
i)

19: end if

20: end for

21: RemoveRedundantArcs(E)

22: PrunePredicateArcs(E)

23: end for

95

After obtaining the mapping for CGRA PEs, compiler generates instructions to

support the execution of conditional nest. One such layout of instructions for CGRA

PEs is shown in Fig 6.4(d). Instructions are grouped in particular manner so that

hardware can easily issue the needed instructions based on the condition evaluated.

Compiler associates k value with each of the conditional, which is simply number

of the CGRA instructions associated. For example, first condition h (x%i == 1)

is evaluated on PE2 which is associated k1=3 because maximum number of cycles

required to execute the if-path or the else-path for h are three. If this condition is true,

PEs should be given next three instructions from location 2– 4. In this case, PE2 is

issued another conditional g (y%i == 1). g is associated with k2=1 as all fused nodes

related to conditional g are mapped on PEs in a single cycle (time 4 in Fig 6.4(c)).

So, only one instruction for each of CGRA PEs is enough to execute either if or else-

path corresponding to g. If g is evaluated as false, k2=1 instruction will be skipped

at run-time. Once instructions from location 2–4 are issued, if-path corresponding to

h gets over and next k1=3 instructions are skipped, which corresponds to else-path

of the outer conditional h. Then, instruction at location 8 can be executed allowing

independent operations and kernel instructions executes from the location 1 again.

Before the architecture can support the execution in such fashion, it is the compiler’s

job to associate corresponding k values with CGRA instructions and to configure the

hardware correctly.

As shown in Algorithm 6, our heuristic first determines conditional with highest

nest depth and pairs the nodes from both if and else paths. Pairing can proceed

until there is an operation in if-path or else-path (line 5). If no such path exists

or if the number of nodes in either of the paths is unbalanced, we need to fuse the

nodes with no-ops (lines 8-11). Such assembling results in fused nodes after iterative

pairing (lines 3-15). While forming the DFG, compiler preserves the data dependen-

96

cies throughout such fusing. After all operations in if-and-else paths are paired for a

particular conditional (with any depth), eligible select operations are eliminated via

a phi elimination. Then the redundant edges are eliminated and predicate arcs are

pruned, which is shown at lines 16-22.

6.2.2 Architecture Improvements

LASER-compiler relies on Instruction Fetch Unit (IFU) support to jump to the

correct instruction in the instruction memory and issue only those instructions based

on the branch outcome. LASER-architecture is shown in Fig 6.5 which aids in selec-

MMUInterface with core
(code and data)

Instruction Fetch Unit

Branch
Outcome

Fetch
Signals

Instruction
Memory

Fetch Signal
Generator

16 x 32

Encoded
Fetch
Signal

Decoded
PE Configurations

Branch Outcome

From PEs

<PC, Predicate>

Conditional Look-aside
Buffer (CLB)

16 x 32

(From the conditional
instruction executed)

PC [K]

Instruction buffer

Condition
instructions and

offsets are loaded
into the buffer
when fetched.

Instruction Fetch Unit

MMU

16 x 1

Figure 6.5: LASER-Architecture to Accelerate Complex Loops. PEs Do Not Have a
Predicate Network. Branch Outcome Is Communicated to the Ifu to Issue Instructions
Selectively Based on the Path Taken at Runtime.

97

tively issuing the instructions throughout the loop execution. The IFU keeps track

of the all the conditions being evaluated in the loop. Once a PE encounters a condi-

tional node and evaluates the outcome, it communicates that to the instruction fetch

logic. Based on the information about the latest branch outcome, IFU can lookup

in conditional look-aside buffer (CLB) to determine the number of instructions (k)

associated with that condition. CLB keeps track of the information about PC of

the conditional instruction and corresponding k value. So, if the condition evaluated

is false, hardware can look-up for needed k value and IFU skips k instructions. To

correctly determine the ki value, the hardware maintains a state register which gets

incremented when a new conditional is evaluated. During execution of the path for

a conditional, corresponding cycle counter keeps incrementing by 1. Once the cycle

counter reaches the value ki, it means that all ki instructions for the path of condition

Ci is executed and now it should again execute the instructions from the path of the

higher condition nest.

6.3 Results

We profiled MiBench and extracted 12 compute-intensive loops which are nested

and/or have conditional nest. We implemented LASER-compiler in the DFG con-

struction stage to correctly fuse the nodes of the true and false paths. LASER-

compiler can be used with any mapping technique for mapping the nodes onto the

CGRA. We compare LASER with partial predication scheme – only viable approach

to map loops with nested conditionals. For evaluation, we used REGIMap [31] to

map the DFG obtained from LASER and partial predication. PEs perform fixed-

point operations with 1-cycle latency and have 4 local registers. The memory bus

is shared among PEs in a row. For load and store operations, two instructions are

executed, one generates the address and second loads/stores the data.

98

6.3.1 Performance Evaluation

Partial predication scheme requires three nodes to correctly execute an opera-

tion (true and false paths, and a selection) and increases total nodes to be mapped

drastically. In Fig 6.6 the vertical axis denotes the number of nodes normalized to

partial predication and the horizontal axis denotes various benchmarks. Due to fusing

of nodes and elimination of select operation, LASER reduces the nodes by 43.43%.

LASER achieves much better utilization with increase in depth of nested conditionals

and with increase in number of operations inside the nests e.g., susan corner has a

depth of 24, resulting in the geomean reduction of 64%, but gsm 2 shows very less

reduction, as it has only 2 operations in a conditional.

0

0.2

0.4

0.6

0.8

1

No
.	o

f	n
od

es
	n
or
m
al
ize

d	
to
	P
ar
tia

l	
Pr
ed

ic
at
io
n

Performance	of	LASER	normalized	to	Partial	Predication

56.57%

Figure 6.6: LASER Reduces Nodes by 43.43%

99

0

0.2

0.4

0.6

0.8

1

EN
ER

GY
	C
O
NS

UM
PT
IO
N	
NO

RM
AL
IZ
ED

	
TO

	PA
RI
TA
L	
PR

ED
IC
AT
IO
N

Average	Reduction	in	Energy	Consumption
Energy	Consumption	of	LASER	normalized	to	Partial	Predication

45.78%

Figure 6.7: LASER Reduces Energy by 46%

We implemented the RTL model of LASER-architecture shown in Fig 6.5, and for

comparison with partial predication a 4×4 CGRA with predicate network in each PE

was implemented. Both the models were synthesized in 32nm using RTL compiler.

The power is estimated by Cadence RTL power estimation tool. From the power

numbers obtained, we estimated the energy consumed (given in [109]) by LASER and

partial predication to accelerate the loops of MiBench benchmarks. Energy consumed

(nJ) is given by E = clock cycle × critical path delay(ns) × Power(W). Fig 6.7

shows that LASER consumes on an average 45.78% less energy compared to partial

predication.

6.3.2 Scalability Analysis

Fig 6.8 shows the comparison of II achieved with partial predication and LASER

for different CGRA sizes 4×4, 8×8 and 16×16. Compared to partial predication,

LASER has a geomean performance improvement of 42.79% on 4×4 CGRA. As the

size of CGRA increases to 8×8, the geomean II reduction for LASER was 38.05%,

100

0

0.2

0.4

0.6

0.8

1

m
ad

su
sa
n_

sm
oo

th
in
g

su
sa
n_

co
rn
er

su
sa
n_

ed
ge
s_
1

su
sa
n_

ed
ge
s_
2

su
sa
n_

th
in

jp
eg
_d

ec
od

e
ad
pc
m
_e
nc
od

in
g

ad
pc
m
_d

ec
od

in
g fft

gs
m
_1

gs
m
_2

Ge
om

ea
n

m
ad

su
sa
n_

sm
oo

th
in
g

su
sa
n_

co
rn
er

su
sa
n_

ed
ge
s_
1

su
sa
n_

ed
ge
s_
2

su
sa
n_

th
in

jp
eg
_d

ec
od

e
ad
pc
m
_e
nc
od

in
g

ad
pc
m
_d

ec
od

in
g fft

gs
m
_1

gs
m
_2

Ge
om

ea
n

m
ad

su
sa
n_

sm
oo

th
in
g

su
sa
n_

co
rn
er

su
sa
n_

ed
ge
s_
1

su
sa
n_

ed
ge
s_
2

su
sa
n_

th
in

jp
eg
_d

ec
od

e
ad
pc
m
_e
nc
od

in
g

ad
pc
m
_d

ec
od

in
g fft

gs
m
_1

gs
m
_2

Ge
om

ea
n

4x4 8x8 16x16

II	
no

rm
al
ize

d	r
o	
Pa
rt
ia
l	P
re
di
ca
tio

n

Performance	of	LASER	normalized	to	Partial	Predication

57.21% 61.95% 58.10%

Figure 6.8: LASER Is a Scalable Solution With 40.91% Cumulative Geomean Re-
duction in II Compared to Partial Predication.

compared to partial predication. For 16×16 CGRA the geomean II reduction is 41.9%.

LASER achieves consistent performance improvement with a cumulative geomean

reduction of 40.91% across all three configurations of CGRA.

6.4 Chapter Summary

To accelerate general purpose applications with computation bottlenecks as nested

loops and nested conditionals, CGRA should behave more like a general purpose

modern processor with operationally enhanced IFU, to issue only the correct instruc-

tion. State-of-the-art compilers impose a high overhead to accelerate loops with only

marginal performance improvement. We have presented LASER, a novel hardware-

software approach where, the improved compiler fuses the nodes of various paths of

the conditionals, and IFU issues selectively only correct instructions based on the

branch outcome. LASER exceeds the state-of-the-art partial predication in acceler-

ating complicated loops efficiently, with 43.43% node reduction and 40.91% better

performance.

101

Chapter 7

CASE STUDY: SCALING UNION OF INTERSECTIONS METHOD

7.1 Background

The growth of the Internet and social media applications has paved the way for

the development of highly sophisticated machine learning and statistical data analysis

tools. Further scientific data collection strategies have grown exponentially over the

years by innovation in the field of sensors and advanced data collection methods.

Many fields such as genetics, mass spectrometry, and neuroscience [113, 114, 115, 116]

now have the means of collecting big data through various devices and sensors [1]. In

particular, advanced recording devices created as part of the BRAIN Initiative enable

recording neural activities from hundreds to thousands of neurons for days at a time,

generating TeraBytes and in some cases, PetaBytes of time series data [117, 118].

A challenge in such data sets is to infer the causal network that generated the time

series data, and thus gain insight into scientific mechanisms of complex phenomena

[117, 118, 115, 116]. Similarly, one may wish to understand the causal influences

among companies from stock price time series [119].

Vector autoregressive (VAR) models are well suited for inference of Granger causal

networks from such high-dimensional, multi-variate observational time series data. In-

troduced for the analysis of econometric time series, Granger causality is the amount

of variance in one time series accounted for by the past of another time series [119].

Thus, from a statistical-machine learning perspective, the challenge of Granger causal-

ity is to accurately infer the existence (or not) and weight of directed edges between

nodes in the network from noisy time series observations of the nodes. Although VAR

102

models provide a flexible framework and are probabilistically tractable [120], scaling

VAR inference to massive data sets is a major challenge due to unfavorable scaling

of the problem size with the number of nodes or features in the network.

The Union of Intersections (UoI) framework developed in [121] is a powerful

statistical-machine learning framework which has natural algorithmic parallelism.

Methods based on UoI improve the selection of features (model selection) and es-

timation of the contribution of the selected features (model estimation). The main

mathematical innovations of UoI are 1) creating a family of potential model supports

through an intersection operation for a range of regularization parameters in model

selection, and 2) combining the above-computed supports with a union operation so

as to increase prediction accuracy on held out data in model estimation. Theoreti-

cal and extensive numerical evaluation of a sparse linear regression algorithm based

on UoI (UoILASSO) presented in [121] shows state of the art feature selection (low

false positives and low false negatives) and feature estimation (low-bias, low-variance)

compared with many regression algorithms (e.g., LASSO, SCAD and Ridge). This is

done without formulating a non-convex optimization problem. Similarly, the statis-

tical performance evaluation for the UoI implementation for VAR models, UoIV AR,

presented in [122], shows less bias and superior selection accuracy when compared to

LASSO and non-convex optimization method such as the minimax convex penalty

(MCP). Note that non-convex optimizations (as utilized in e.g., SCAD and MCP) are

extremely challenging for implementation in the multi-nodal distributed computing

paradigm [123]. In contrast, methods relying on convex optimization (e.g., UoILASSO

and UoIV AR) can utilize the Alternating Direction Methods of Multipliers (ADMM)

[124] for solving the constrained convex optimization in a distributed manner in a

multi-nodal computing environment. Thus, while our prior works establish the state-

of-the-art statistical properties of UoILASSO and UoIV AR, several challenges remain

103

in the application of these methods to large data sets.

In this section, we develop a scalable implementation of UoIV AR to infer Granger

causal networks from high dimensional time series data sets. UoIV AR builds upon

UoILASSO: thus, in order to better understand the scalability of UoIV AR, we start

by studying the scalability of LASSO-ADMM in UoILASSO, and then proceed to

UoIV AR. We reveal the computation, communication, input/output bottlenecks for

UoILASSO and UoIV AR, and develop solutions to mitigate them. To accommodate

the randomness required for bootstrap sampling used in UoI methods, we introduce a

Random Data Distribution strategy to efficiently manage data read and distribution

time from large data sets. We introduce distributed Kronecker product and vec-

torization strategies for UoIV AR. Above and beyond parallelization of optimization

through ADMM, we analyze both algorithms for natural parallelism and evaluate our

multi-node implementation. With high-dimensional synthetic data sets (1000 nodes

or features) we demonstrate the weak and strong scaling of each algorithm. Due to

the unfavorable scaling of the problem size with the number of nodes in the network

(≈ p3 for p nodes), it is rare to encounter VAR models with more than 50 nodes or

features. In the statistical literature on high-dimensional VAR modeling, numerical

experiments considered adequate to represent typical data applications are around

30 nodes, and larger-scale data applications are on the order of a few hundred nodes:

[125] used simulated data of 30 nodes and [126] used monthly home-price apprecia-

tion (HPA) data set with 352 nodes. Finally, we analyze a real world neurophysiology

data set of 192 neurons and a stock market data set (S&P 500 index in 2013-2014)

with 470 companies. Our scaling to 1000 nodes (1M parameters) reflects an ≈ 3-fold

increase in network scale (≈ 9 fold more parameters), while doing so in the context

of a superior inference algorithm.

104

7.2 Methods

7.2.1 Formal Statistical Description

Let us consider n samples of input data ((Y1, X1), ...,(Yn, Xn)) with univariate

response variable Y and p-dimensional predictor variable X. The linear regression

model for this input data is generated as:

Y = Xβ + ε (7.1)

where Y = (Y1, ..., Yn), X is a n×p design matrix; ε = (ε1, ..., εn) are random noise

terms with ε ∼ N(0, σ2In). Let S = {i : βi 6= 0} be the non-zero coefficient set of β.

The LASSO regression algorithm with penalization parameter λ > 0 minimizes

the following constrained convex optimization problem with respect to β:

β̂ = argminβ||Y −Xβ||2 + λ||β||1 (7.2)

Here, the first term on the right-hand side penalizes the error of the predictions, while

the second term penalizes the L1 norm of the parameter vector β, setting some values

of β to zero.

7.2.2 Model Selection and Model Estimation

For every bootstrap sample T k the LASSO estimates (jβ̂k) are computed (here,

using the Alternating Direction Method of Multipliers (ADMM)), see equation 7.6)

across different regularization parameter values, λj. For each bootstrap sample, the

support (Skj) are the non-zero values of the estimates calculated by LASSO-ADMM.

It is known [121] that the LASSO estimator is prone to false positives for a decrease

in penalizing parameter (λ): i.e., it includes more parameters than are in the model.

105

To mitigate this, in UoILASSO the support associated with a given λ, Sj is taken as

the intersection of the supports across bootstrap samples:

Sj =

B1⋂
k=1

Skj (7.3)

This is done for each value of (λ), creating a family of potential model supports

S = [S1, S2, ..., Sq].

A number B2 of bootstrap samples are used to compute the model estimates.

For each potential support from the model selection step (Algorithm 7 line 18), the

unbiased Ordinary Least Squares (OLS) estimator is used to estimate the associated

model from each of the B2 bootstrap samples. The algorithm then computes a Union

of supports by averaging the OLS estimates that optimize predictions, which reduces

variance and performs a union operation on the supports optimizing predictions. The

variable set post-union (averaging) can be represented as (approximately):

SUoI =

B2⋃
l=1

Sjl =

B2⋃
l=1

B1⋂
k=1

Skjl (7.4)

7.2.3 Distributed Constrained Convex Optimization by Alternating Direction

Method of Multiplier

The core calculations in both UoILASSO and UoIV AR involve solving a constrained

convex optimization problem (L1 regularized linear regression). Here, we use the

Alternating Direction Method Multiplier (ADMM)[124] to minimize the loss function

(Equation 7.2). LASSO-ADMM solves the dual problem in form of equation 7.5:

106

minimize f(x) + g(z)

subject to x− z = 0

where, f(x) = (1/2)||Y −Xβ||22;

g(z) = λ||β||1

(7.5)

where x ∈ IRn , z ∈ IRm, and f and g are convex. The LASSO-ADMM algorithm

consists of an x minimization, z minimization followed by a dual variable update.

The separation of minimization over x and z allows for the separate decomposition

of f and g. Here, x and z can be updated in sequential or alternating computations

which gives the name alternating direction. In the distributed ADMM algorithm, each

compute core is responsible for computation of its own objective (x) and constraint

(z) variables and its quadratic term (f(x)) is updated so that all the cores converge

to a common value of estimates. To ensure a good scalability, the ordinary least

squares (OLS) is implemented using LASSO-ADMM algorithm for model estimation

by setting regularization parameter λ to 0, thereby making g in equation 7.5 equal to

0.

107

Algorithm 7: UoILASSO (InputData(X, y) ∈ IRn×(p+1), λ ∈ IRq, B1, B2)

1: Model Selection

2: for k = 1 to B1 do

3: Generate bootstrap sample T k = (Xk
T , Y

k
T)

4: for λj ∈ λ do

5: Compute LASSO estimate jβ̂k from T k

6: Compute support Skj = {i} s.t jβ̂ki 6= 0

7: end for

8: end for

9: for j = 1 to q do

10: Compute Bootstrap-LASSO support

for λj : Sj =
B1⋂
k=1

Skj (as in equation 7.3)

11: end for

12: Model Estimation

13: for k = 1 to B2 do

14: Generate bootstrap samples for training and evaluation:

15: training T k = (Xk
T , Y

k
T)

16: evaluation Ek = (Xk
E, Y

k
E)

17: for j = 1 to q do

18: Compute OLS estimate β̂kSj
from T k

19: Compute loss on Ek : L(β̂kSj
, Ek)

20: end for

21: Compute best model for each bootstrap sample:

22: β̂kS = ˆβk
Sj

L(β̂kSj
, Ek)

23: end for

24: Compute averaged model estimates β̂∗ = 1
B2

B2∑
k=1

β̂kS (as in equation 7.4)

25: Return: β̂∗

7.2.4 UoILASSO Algorithm

A high-level overview of the UoILASSO algorithm, shown in Algorithm 7, consists

of two Map-Solve-Reduce steps (Figure 1). The algorithm takes multiple random

108

bootstrap subsamples of the input data (Map) and distributes it across different

computing cores. Next, LASSO and OLS (Solve) use the distributed data and solve

the convex optimization. The resultant estimates are then combined by intersection

and union operations (Reduce). The Reduce step in model selection performs a

feature compression by intersection operation of supports across bootstraps. The

Reduce step in model estimation performs a feature expansion by averaging (union

operation) the OLS estimates across different model supports.

109

Algorithm 8: UoIV AR (InputData(X1, . . . , XN)T ∈ IRN×p),
λ ∈ IRq, B1, B2)

1: Model Selection

2: for k = 1 to B1 do

3: Generate bootstrap sample T k = (Xk
T1, . . . , X

k
TN)

4: Construct (Yk
T ,X

k
T) (as in equations 7.7 - 7.8)

5: Construct Y k
T = vecYk

T and Xk
T = (I⊗Xk

T)

6: for λj ∈ λ do

7: Compute LASSO estimate jβ̂k from (Xk
T , Y

k
T)

8: Compute support Skj = {i} s.t jβ̂kj 6= 0

9: end for

10: end for

11: for j = 1 to q do

12: for λj : Sj =
B1⋂
k=1

Skj (as in equation 7.3, Compute Bootstrap-LASSO support)

13: end for

14: Model Estimation

15: for k = 1 to B2 do

16: training T k = (Xk
T1, . . . , X

k
TN) (Generate bootstrap samples for training and

evaluation)

17: evaluation Ek = (Xk
E1, . . . , X

k
EN)

18: Construct (Yk
T ,X

k
T) (as in equations 7.7 - 7.8)

19: Construct (Yk
E,X

k
E) (as in equations 7.7 - 7.8)

20: Construct Y k
T = vecYk

T and Xk
T = (I⊗Xk

T)

21: Construct Y k
E = vecYk

E and Xk
E = (I⊗Xk

E)

22: for j = 1 to q do

23: β̂kSj
from T k

24: Compute loss on Ek : L(β̂kSj
, Ek)(OLS estimate)

25: end for

26: Compute best model for each bootstrap sample:

27: β̂kS = ˆβk
Sj

L(β̂kSj
, Ek)

28: end for

29: Compute averaged model estimates

β̂∗ = 1
B2

B2∑
k=1

β̂kS (as in equation 7.4)

30: Partition β̂∗ and rearrange into (Â1, . . . , Âd) and µ̂

31: Return: (Â1, . . . , Âd) and µ̂
110

7.2.5 UoIV AR Algorithm

The UoILASSO implementation can be adapted to sparse estimation of vector

autoregressive model parameters from high-dimensional time series data. In this case

the input data is a vector time series {Xt}Nt=1 generated by a vector autoregressive

process of order d, V AR(d):

Xt =
d∑
j=1

AjXt−j + Ut (7.6)

where Xt ∈ Rp, the process has p-dimensional Gaussian disturbances Ut
iid∼ Np(0,Σ).

The stability of the process is expressed by the constraint det(I −
∑d

j=1Ajz
j) 6=

0 ∀ |z| ≤ 1.

Equation 7.6 provides a model for the data which can be written as a multivariate

least squares problem with correlated errors of the form Y = XB + E. In particular,

the response is the (N − d)× p matrix

Y = (XN , XN−1, . . . , Xd+1)
T (7.7)

and the regressors are lagged values represented in the (N − d)× (dp) matrix

X =

X ′N−1 X ′N−2 . . . X ′N−d

X ′N−2 X ′N−3 . . . X ′N−(d+1)

...
...

. . .
...

X ′d X ′d−1 . . . X ′1

(7.8)

and the coefficient matrix is B′ = (A1A2 . . . Ad). One estimation strategy is to vector-

ize the problem as shown in equation 7.9 and apply ordinary least squares to estimate

111

the entries of the Aj matrices.

vecY = (I⊗X) vecB + vecE (7.9)

Equation 7.9 then has the same form as equation 7.1. Noting this correspondence,

estimation with sparsity in high-dimensional time series can be accomplished by first

rearranging the multivariate least squares problem and then solving the LASSO prob-

lem (equation 7.2) for the resulting rearrangement.

The UoI implementation, shown as Algorithm 8, is consequently similar to UoILASSO,

but with a bootstrap method appropriate for capturing temporal dependence in the

input data (here, using a block bootstrap) and large matrix operations required to

obtain a problem of the form shown in equation 7.2. Aside from these modifications,

the Algorithm 8 is the same as UoILASSO Algorithm 7.

7.3 Scaling UoILASSO and UoIV AR

UoILASSO and UoIV AR exhibit a high degree of algorithmic parallelism. In each

of the model selection and model estimation steps, the bootstrap subsamples (B1 and

B2) can be parallelized, referred to as PB parallelization. Additionally, parallelization

over regularization parameters (λj) can be used (referred to as Pλ parallelization). An

important point to consider is that the model selection and model estimation must

occur in sequential order and cannot be parallelized.

7.3.1 Challenges in achieving parallelism

To achieve accuracy in selection and estimation, UoI-based methods utilize the

notion of stability to perturbations, in this case multiple random resampling of the

data. UoILASSO, in particular, requires random sub-samples generated from the data

112

Figure 7.1: (A) a Three-tier (T0, T1 and T2) Distribution Strategy for Randomized
Distribution of Data Set Across the Number of Sample from the Hdf5 Data File
to the Cores of Knl. (B) Model Selection – Lasso Admm Is Used to ‘solve’ and
Intersection Operation Is Used as ‘reduce’ to Select Family of Support Sj. (C) Data
Randomization for Cross Validation Where Tier2 Random Distribution Is Employed
to Randomly Reshuffle the Data. (D) Model Estimation – Ols Is Used to ‘solve’ and
Union Operation Is Used to ‘reduce’ to Get an Optimally Predictive Model.

set in selection and estimation Map steps (Figure 1). In our initial experiments we

have seen that repeated access to the data file in the file system takes a lot of data

access time, and dividing the data set into chunks for faster access reduces selection

and estimation accuracy [121]. Due to the smaller sized data set in UoIV AR (recall

that VAR problem scales ≈p3), the centralized distribution strategy was adopted to

distribute the data to compute cores. We found that the main challenge for UoIV AR

‘Map‘ is computing the Kronecker product and vectorization steps in a distributed

method. As far as we are aware of, there has been no prior methods to distribute the

Kronecker product computation and vectorization for VAR models.

7.3.2 Randomized Data Distribution Design using HDF5

We introduce randomized data distribution strategy for UoILASSO to improve the

data read time from the file system and reduce the data distribution time to the

compute cores. The synthetic data set matrices used in this evaluation have the

“Samples” in rows and “Features” in columns. The data set size is the problem size

for UoILASSO. We use HDF5 application program interface for data input/output.

HDF5 offers parallel reading of the input file, albeit in contiguous chunks. The library

113

does not provide a random reading of input data without reading the file multiple

times in a loop. To parallelize this operation, we introduce a novel randomized data

distribution technique. First, the data is read in parallel from the input file into

the computing cores in contiguous blocks. As shown in Figure 7.1, T0 or Tier0

is the source HDF5 file. The contiguous reading by all the processes is done in

T1, Tier1, using HDF5 hyperslabs [127]. Tier0 and Tier1 data distribution use an

underlying HDF5-parallel library for parallel accesses and hyperslab creation. By

creating hyperslabs, the application can read the data file and load them into the

memory space created on each compute core. After loading the data from the input

file, we employ MPI one-Sided communication to randomly distribute the subsamples

(T2, Tier2). The input data is distributed via row-wise block-striping to distribute

the samples. If N is the number of samples, p is the feature size, and B is the

number of cores, each core receives N
B

rows and p columns. Each core then solves the

constrained convex optimization problem using LASSO-ADMM (equation 7.5) and is

responsible for computing its own objective (x) and constraint (z), and the quadratic

term is updated to converge to a common value of estimates.

Since UoIV AR is a time series model, the input data for this algorithm exhibit

temporal dependence. To maintain this dependence, a block bootstrap approach

was adopted by randomly selecting time series blocks for every bootstrap subsample.

The Algorithm 8 lines 5 and 20-21, requires a column stacking vectorization step

to construct Y k
T and an identity Kronecker product step to construct Xk

T . In the

serial version of the algorithm a simple vectorization and Kronecker product functions

can be invoked, but in a distributed-memory parallel paradigm, this is not possible.

Unlike UoILASSO, the synthetic data sets for UoIV AR are relatively small (in order of

MegaBytes) and the problem is created in the Kronecker product and vectorization

(line 5) of Algorithm 8. The actual problem size increases in the order ≈ p3, where p

114

is the number of features. Due to the small size of the data, the T1 parallel reading

layer cannot be deployed. To overcome this issue, we have developed a distributed

Kronecker product and vectorization strategy using MPI one-sided communication

with the windows created by the n reader processes: a small number of processes

(usually equal to the number of samples based on the availability of resources) read

the data file in parallel and creates windows for MPI-One sided communication for

distributed Kronecker product and vectorization.

The Kronecker product (Algorithm 8 line 5, 20, 21) Xk
T = (I⊗Xk

T), is an identity

block diagonal matrix of Xk
T from equation 7.8. Similarly, vectorization of Y (Al-

gorithm 8 line 5, 20, 21), Y k
T = vecYk

T is from equation 7.7. Since Xk
T and Yk

T are

computed a priori , the cores holding these data structures create the MPI one-sided

communication windows for building (I⊗Xk
T) and vecYk

T . Since the LHS of equation

7.7 and 7.8 are the actual problem sizes (order of GBs and TBs), the communication

strategy does not require explicit computation of the equation 7.7 and 7.8 on the

computing cores. The main challenge is the increased communication time to create

such large matrices as there are few cores (10s to 100s) holding the actual matrices

to be distributed to hundreds of thousands of cores. This problem is quantitatively

explained in the Weak Scaling sub-section of UoIV AR, Section IV. Note that a conven-

tional method, like computing the Knocker product and vectorization in a single core

and distributing it to the other computing cores, is not possible due to the increased

space to store the data and limited availability of space per node. Like UoILASSO, post

Kronecker product and vectorization step, each core solves the convex optimization

problem in equation 7.5 in a distributed manner.

115

7.4 Results

The single node and multi-node runs for this paper were conducted on Cori

Knights Landing (KNL) supercomputer at NERSC. Cori KNL is a Cray XC40 su-

percomputer consisting of 9,688 nodes of 1.4 GHz Intel Xeon Phi processors with

a single socket 68 cores per node. The aggregated memory for a single node in

KNL is 16GB MCDRAM and a 96GB DDR. The UoILASSO and UoIV AR algorithms

were implemented in C++ using Eigen3 library [128] for linear algebra computations

and Intel-MKL library [129] for BLAS operations for UoILASSO to utilize the inbuilt

Single Instruction Multiple Data (SIMD) directives. The MPI framework was used for

parallelization and communication between the processes supported by OpenMP mul-

tithreading with OMP NUM THREADS as four, which showed better performance. The

performance analysis setup for UoILASSO and UoIV AR is shown in Table I. Related to

this, recently, the optimal configuration for executing neural networks (AlexNet) was

calculated in [130]. Although the model shown in [130] could potentially be applied

in our context by including the structure of the design matrix (e.g., columns X rows,

as well as sparse vs. dense) to find a theoretically better configuration, the practical

configuration depends on the realities of the hardware.

For all the evaluations in this paper, synthetic data sets ranging from 16GB to

8TB were generated for UoILASSO, and data sets that generate problem sizes of 16GB

to 8TB were generated for UoIV AR. The experiments were carried out in two phases,

Single Node performance and optimizations, and Multi-Node scaling. The feature

size for UoILASSO is kept a constant at 20,101 features across data sets to study

the effect of communication. For UoIV AR, the data set features range from 356 for

a 128GB problem size to 1000 features for 8TB problem size and the number of

samples are twice the size of the features. We evaluate the algorithms for single node

116

Performance

Analysis

Data

Size

(GB)

No. of

cores

(UoILASSO)

No.

of cores

(UoIV AR)

Single Node 16 68 68

Weak

Scaling

128 4,352 2,176

256 8,704 4,352

512 17,408 8,704

1024 34,816 17,408

2048 69,632 34,816

4096 139,264 69,632

8192 278,528 139,264

Strong

Scaling 1024

17,408 4,352

34,816 8,704

69,632 17,408

139,264 34,816

Table 7.1: Performance Analysis Setup for UoILASSO and UoIV AR.

performance, exploiting algorithmic parallelism and multi-node scaling experiments.

Due to limited resource availability of computing resource the multi-node scaling

runs were performed with no PB and Pλ parallelism and dedicating all the cores to

distributed LASSO-ADMM computation.

7.4.1 Performance and Scaling of UoILASSO

Single Node Performance

The focus of single node performance analysis is to identify the potential bottlenecks

in the program and optimize them. Post optimization, the performance improvement

is calculated using a performance roofline model for both the program and the archi-

tecture (Xeon Phi) on which the program is executed. A ≈ 16GB data set with five

selection and estimation bootstrap samples (B1 = B2 = 5) and eight regularization

parameters(q) were chosen for single node optimization of the implementation.

117

UoILASSO Single Node performance

Data I/O
Computation Total

0

50

100

150

200

250

300

350

400

450

500

Ti
m

e
(s

)

Communication
Distribution

Figure 7.2: UoILASSO Runtime Number Using Intel-MKL Linear Algebra Library
With B1 = B2 = 5 and q = 8.

Our initial analyses showed that the Matrix multiplication and Matrix-Vector

product in LASSO-ADMM function were the bottlenecks. Execution of these op-

erations showed very poor performance with native Eigen3 library on Cori KNL.

To alleviate the poor performance we implemented the BLAS operations for matrix

multiply and matrix-vector product using the Intel-MKL library. Figure 7.2 shows

the runtime for single node run. Almost 90% of the runtime is dominated by com-

putation and less than 10% by communication. All the MPI calls like MPI Bcast,

MPI Allreduce etc., constitute the communication bar as shown in the Figure 7.2.

More than 99% of the communication time comes from MPI Allreduce call used to

communicate the estimates by the distributed LASSO-ADMM function. MPI one-

sided calls for distribution of the data is shown as ‘Distribution’, while parallel-HDF5

data loading and output saving is shown as ‘Data I/O’. We analyzed the program

in detail with Intel Advisor [131] tool for the performance of various sections of the

code. The performance of matrix multiplication with Intel-MKL was 30.83 GFLOPS

118

Data size 16GB ADMM cores= 68

16x2 8x4 4x8 2x16
0

100

200

300

400

500

Ti
m

e
(s

)

Computation
Communication

Data size 32GB ADMM cores= 136

16x2 8x4 4x8 2x16
0

100

200

300

400

500

Ti
m

e
(s

)

Computation
Communication

PBxP
Data size 64GB ADMM cores= 272

16x2 8x4 4x8 2x16
PBxP

0

100

200

300

400

500

Ti
m

e
(s

)

Computation
Communication

16x2 8x4 4x8 2x16
PBxP

0

100

200

300

400

PBxP
Data size 128GB ADMM cores = 544
500

Ti
m

e
(s

)

Computation
Communication

Figure 7.3: Exploiting PB and Pλ Parallelism by Increasing the Data Set and
ADMMCores by a Factor of 2.

(Giga-Floating Point operations per second) with an arithmetic intensity (Floating

point operations per byte of data moved from memory) of 3.59 FLOPs/Byte and the

performance of matrix-vector multiplication was 1.12 GFLOPS with an arithmetic

intensity of 0.32 FLOPs/Byte. Both the BLAS operations were found to be DRAM

memory bound. The performance of the triangular solve function used by LASSO-

ADMM function for matrix decomposition was 0.011 GFLOPS with an arithmetic

intensity of 0.075 FLOPs/Byte.

119

Exploiting Algorithmic Parallelism

The innate algorithmic parallelism exhibited by the UoILASSO was exploited by having

bootstrap level (PB), regularization parameter level (Pλ) and ADMM computation

level parallelism. These runs were performed on lower end of data set spectrum, 16GB,

32GB, 64GB and 128GB with 2176, 4352, 8704 and 17,408 cores, respectively. The

PB × Pλ configuration used were 16×2, 8×4, 4×8 and 2×16 with B1 = B2 = q = 48

for all the runs. The data set size and the ADMMcores were doubled maintaining the

parallelization configurations. The runtime of the different configurations are shown

in Figure 7.3. Across various configurations the 2×16 has a better runtime. Also

across the data set runs we can see a slight increase in the communication time for

ADMMcores = 272 and ADMMcores = 544. This increase in the communication time

was accounted by the MPI Allreduce call from LASSO-ADMM implementation to

collectively converge at an estimate value.

Comparison of Randomized Data Distribution Design with Conventional

Distribution strategy

Conventional data distribution strategy involves reading from the data file by a single

core using serial HDF5 by creating hyperslabs. The traditional methodology has

three issues, namely: 1) it can read only a small chunk of data at a time, 2) it would

repeatedly open the data file to read the data completely, and 3) it cannot store the

loaded data due to limited space availability (aggregated memory of single KNL node

is 96GB, but the data set size is in order of 100s of GBs and TBs). We implemented the

conventional data distribution in C++ with serial HDF5 implementation. It should

be noted that for UoI algorithms, different random bootstraps of data are required

for model selection and model estimation steps (lines 3, and 14 of Algorithm 7).

120

Data
Size
(GB)

Conventional Method Randomized Data Distr.
Read
time (s)

Distr.
time
(s)

Read
time
(s)

Distr.
time
(s)

16 204.71 1.276 11.3191 0.33
128 1200.81 17.596 0.52 5.718
256 2204.52 36.46 1.46 2.62
512 5323.486 74.274 8.043 3.64
1024 11,732.48 158.016 8.781 3.774

Table 7.2: Randomized Data Distribution Design Improves the Data Read and
Distribution Time Compared to Conventional Distribution Method. Beyond 1TB
Data Set Size the Conventional Method’s Data Read Time Crossed Beyond 5 Hours
Whereas Randomized Data Distribution Read Time Was Below 100 Seconds.

The comparison of data read and distribution time between our Randomized Data

Distribution Design (contribution of this paper) and the conventional design is shown

in Table II. The number of cores used for runs in Table II is based on Table I. From

Table II, it is quantitatively evident that the data read time and distribution time for

the conventional method is a bottleneck because of the issues discussed above. From

Table II, it should be noted that the read time for the 16GB is higher than the larger

data sets because it was not striped into OSTs.

Multi-node Scaling

The multi-node scaling analysis is carried out for weak scaling and strong scaling

of UoILASSO implementation. Parallel reading of the input file becomes an issue

for multi-node scaling runs as 1000s of cores try to read the data in parallel. In

an unoptimized run, the read time takes 10s of minutes which can worsen with an

increase in the data size and the number of nodes. For large data sets, the HDF5

input files are stripped into different Object Storage Targets (OSTs), explained in

detail; in [132]. The files are stripped for 160 OSTs to achieve a faster reading time,

making the data read time of very large data sets to a few seconds.

121

UoILASSO Weak Scaling

128GB 256GB 512GB 2TB 4TB 8TB1TB
Dataset size

0

1000

2000

3000

4000

5000

6000

Ti
m

e
(s

)

Computation
Communication

Figure 7.4: Weak Scaling Plot of UoILASSO. The Problem Size per Node Was Kept
Fixed.

Weak Scaling: In weak scaling, the problem size associated with each compute

core stays constant and additional computing cores are added when the size of the in-

put data set increases. We maintain a factor of 2 for our weak scaling runs, meaning as

the data set size is doubled the number of cores were also doubled (refer Table 7.1).

Figure 7.4 shows the weak scaling of UoILASSO. Since matrix multiplication con-

tributes the most to the computation time, and since the problem size per compute

core is almost the same across different configurations, we find that computation

exhibits nearly ideal weak scaling with slight increase for 8TB. It is seen that the

communication time scales proportional to the increase in the core count. On further

analysis of the communication time, we find that the MPI Allreduce calls contributes

almost 99% of the communication time. The error modeling of one MPI Allreduce

call for all the data points used for weak scaling as shown in Figure 7.5. The feature

size of all the data sets is kept a constant at 20,101 features, so the array size for

122

128GB 256GB 512GB 2TB 4TB1TB
Dataset size

-0.5

0

0.5

1

1.5

Ti
m

e
(s

)

UoILASSO Tmin & Tmax plot for MPI_Allreduce
2

8TB

Figure 7.5: Tmin & Tmax Plot for UoILASSO.

MPI Allreduce communication is uniform across all the cores. The difference in Tmax

and Tmin for the MPI Allreduce indicates performance variability of communications.

However, despite this we observe good scalability. As future work we are evaluating

non-blocking MPI and asynchronous execution models to enable further scaling.

Strong Scaling: In strong scaling, the problem size to be analyzed is kept as

1TB and the number of computing cores is increased from 17,408 to 139,264 (refer

Table 7.1). Figure 7.6 shows the results of the strong scaling run. The computation

time shows a decreasing trend across different configurations due to the increase in

the number of cores for the same data set size. At 139,264 cores the computation

goes below expected computation strong scaling trend, the reason being that the

total size of the problem per core becomes small, which Intel-MKL library takes

advantage of the AVX512 extensions making the matrix multiplication computed per

core faster. The superlinear computation time can also be attributed to the reduced

DRAM accesses due to a smaller chunk of data distributed per core. As seen in the

weak scaling runs communication time increase with increasing number of cores, but

beyond 69,632 cores the LASSO-ADMM converges faster making the communication

123

UoILASSO Strong Scaling

17,408 34,816 69,632 139,264
No. of KNL cores

0

500

1000

1500

2000

2500

Ti
m

e
(s

)

Computation
Communication

Figure 7.6: Strong Scaling Plot of UoILASSO. The Problem Size Was Kept Fixed
At 1TB.

time almost equal to the ideal strong scaling.

7.4.2 Performance and Scaling of UoIV AR

Single Node Performance

The Algorithm 8 creates a high dimensional matrix by Kronecker product for each

bootstrap subsample. The resultant matrix has a block diagonal structure with high

sparsity. From Algorithm 8, if the input data is dense the sparsity of the problem

can be calculated as 1 − 1
p
, where p is the number of features of the input data set.

A problem size of ≈16GB with B1 = B2 = 5 and q = 8 and number of lambda

parameters q = 8 were chosen for single node optimization. For example, if a data

set has 95 features, the resultant matrix post Kronecker product has a sparsity of

98.94%. So it is intuitive to exploit this sparsity by utilizing sparse linear algebra

124

Figure 7.7: UoIV AR Single Node with B1 = B2 = 5 and q = 8.

libraries. Figure 7.7 shows the single node run of the UoIV AR implementation with

Eigen3 Sparse C++ LASSO-ADMM.

Figure 7.7 shows the runtime analysis for UoIV AR. Computation contributes 88%

of the total runtime. Due to the problem size explosion, communication time for

MPI AllReduce can be seen to increase. The distributed Kronecker product and

vectorization MPI calls are included in the distribution time constitutes more than

98% of the distribution time. UoIV AR implementation was also analyzed with the

Intel Advisor software for performance metrics. The performance of sparse matrix

multiplication was 1.08 GFLOPS with 0.15 arithmetic intensity and the performance

of matrix-vector multiplication was 2.08 GFLOPS/sec with 0.33 arithmetic intensity.

Exploiting Algorithmic Parallelism

The runs were carried out for problem set sizes of 16GB, 32GB, 64GB and 128GB.

The number of ADMMcores were doubled with doubling the problem size. The runs

were performed for B1 = B2 = 32 and q = 16. The computation dominates the

execution time, which decreases with increases in parallelism of Pλ as shown in the

Figure 7.8. It can also be noted that as the Pλ parallelism increases the Kronecker

125

16x2 8x4 4x8 2x16
PBxP

0

50

100

150

Problem size 16GB ADMM cores = 34
200

Ti
m

e
(s

)

Computation
Distr. Kron & Vec.
Communication

16x2 8x4 4x8 2x16
PBxP

0

50

100

150

Problem size 32GB ADMM cores = 68
200

Ti
m

e
(s

)

Computation
Distr. Kron & Vec.
Communication

16x2 8x4 4x8 2x16
PBxP

0

50

100

150

Problem size 64GB ADMM cores = 136
200

Ti
m

e
(s

)

Computation
Distr. Kron & Vec.
Communication

16x2 8x4 4x8 2x16
PBxP

0

50

100

150

Problem size 128GB ADMM cores = 272
200

Ti
m

e
(s

)

Computation
Distr. Kron & Vec.
Communication

Figure 7.8: Exploiting Algorithmic Parallelism of UoIV AR.

product and vectorization time increases. From Algorithm 8 (lines 5, 20 and 21) the

distributed Kronecker product and vectorization is done for each bootstrap, and thus

by reducing PB parallelization increases the distribution time across different problem

sets.

Multi-node Scaling

The data set size is very small for UoIV AR compared to the problem size that is

created during runtime. Unlike UoILASSO distribution strategy, only a few processes

read the actual data set in parallel and the distributed Kronecker product routine

builds the problem via MPI one-sided communication.

Weak Scaling: The weak scaling plot for UoIV AR is shown in the Figure 7.9

126

UoIVAR Weak Scaling

128GB 256GB 512GB 2TB 4TB 8TB1TB
Problem size

101

102

103

104

Ti
m

e
(s

)

Communication
Distr. Kron & Vec.
Computation

Figure 7.9: Weak Scaling Plot of UoIV AR in Logarithmic Scale. The Problem Size
per Node Was Kept Fixed.

for B1 = 30, B2 = 20, q = 20, with no PB or Pλ parallelization. The Y-Axis in Fig-

ure 7.9 is given in a log-scale to show logarithmic increase in the distribution time. It

can be seen that computation has almost ideal weak scaling, and the communication

time also increases with increase in core count as seen in UoILASSO. The distributed

Kronecker product and vectorization is proportional to the increase in the cores and

problem size. One of the main reasons for this trend is the cubical increase of the

problem size to the features of the input data set. Since only a few cores are responsi-

ble to read and distribute the data to thousands of computing cores during analysis,

there is a communication bottleneck between the reader cores and the computing

cores.

Strong Scaling: The strong scaling plot for UoIV AR is shown in the Figure 7.10.

Across increasing core sizes, computation time has an almost ideal strong scaling. The

127

UoIVAR Strong Scaling

4,352 8,704 17,408 34,816
No. of KNL cores

0

200

400

600

800

1000

1200

1400

Ti
m

e
(s

)

Communication
Distr. Kron & Vec.
Computation

Figure 7.10: Strong Scaling Plot of UoIV AR. The Problem Size Was Kept Fixed at
1TB.

reason for an ideal computation time and as discussed earlier, Sparse Eigen C++ is

used to compute the matrix-vector and matrix multiplication. Even though the com-

munication does not have an ideal scaling it minimally affects the total runtime of the

program. The distributed Kronecker product and vectorization scales exponentially

to the increase in the number of cores like the weak scaling.

7.5 Application of UoIV AR to Real data sets

We use a financial time series data set to illustrate a data analysis using UoIV AR

and to illustrate computing runtime for UoIV AR in a real application: the data are

daily closes on the S& P Index for the years 2013 - 2018. Two different subsets are used

to illustrate (i) Granger causality analysis using UoIV AR and (ii) computing runtime

with real data: a smaller subset was chosen for the Granger causality analysis to allow

easier interpretation of the results; and a larger subset for the runtime analysis was

128

Figure 7.11: Parameter Estimates of AV R(1) Model for First Differences of Weekly
Closes of 50 Randomly Chosen Companies on the S& P 500 Index During 2013 and
2014.

chosen to represent compute times representative of larger-scale applications.

For the Granger causality analysis, we randomly chose 50 companies on the index

in the years 2013 and 2014, aggregated the data to weekly closes, and took first dif-

ferences to obtain a plausibly stationary vector time series. A first-order V AR model

was then fit to the first differences using the UoIV AR algorithm with hyperparame-

ters B1 = 40, B2 = 5, selected to create a strong pressure toward sparse parameter

estimates. The matrix of parameter estimates is represented in Figure 7.11 as a di-

rected graph with nodes for each vector component (company), plotted with node

sizes proportional to node degree and labeled according to company ticker, and with

directed edges from node j to node i shown when the estimate of aij is nonzero, with

129

line thickness proportional to estimate magnitude. The result is quite sparse, with

fewer than 40 edges, and suggests a complex structure of dependence of Google on

a variety of other companies spanning several industry sectors. Thus, the UoIV AR

algorithm produces a highly interpretable output.

For the runtime analysis, we retained all 470 companies that were on the index

from January 2013 through December 2016, and performed the same aggregation and

differencing as in the example analysis for 195 samples. The problem size for this data

set is ≈80GB, and scaling it on 2,176 cores yielded a computation time of 376.87s, and

a total communication time of 4.74s. The Kronecker product and vectorization time

was found to be 16.409s. In Figure 7.11 the nodes in graph are vector components

and edges are nonzero parameter estimates. Our method identified very few edges

thereby showing the effective dependence of Google’s share price on other companies.

In addition to the financial data set, a single session non-human primate reaching

task data set [133] was analyzed using UoIV AR to illustrate computing runtime for

a neuroscience application. Monkey reaching behavioral tasks were recorded in [133]

with two monkey subjects. Some of the recorded data sets consist of spikes for both

the motor cortex (M1) and, the somatosensory cortex (S1) recordings for 192 elec-

trodes as features. The recorded spikes had 51111 samples recorded for one session.

In the VAR model, the data set created a problem size ≈ 1.3TB. The problem was

executed on 81,600 cores on Cori KNL. The computation and communication times

were found to be 96.9s and 1598.72s, respectively. The distribution time recorded

was 3034.4s.

7.6 Discussion

We found a trade-off between computation and communication in UoILASSO,

shown in Figure 7.4. When the data size per core increases the computation time

130

increases because the computation bottlenecks are BLAS gemm and gemv operations.

On the other hand for large data sets, the runtime of the code is determined by com-

munication via MPI Allreduce call, whereas the computation has a near ideal scaling.

Almost 98% of the communication time seen in weak and strong scaling is from model

selection module of the algorithm. This is due to the fact that the size of the prob-

lem solved in the model estimation module is greatly reduced relative to the model

selection module. To reduce the communication runtime, PB and Pλ parallelism can

be adopted as shown in Figure 7.3 based on availability of resources.

In contrast to UoILASSO, we found a trade-off between computation and distri-

bution in UoIV AR, as shown in Figure 7.9. For smaller problem sizes computation

dominates the program runtime and for larger problem sizes (especially for problem

sizes 2TB and above) distribution dominates the total program runtime. The rea-

son for this being the problem size explosion, where for a small input data size the

distributed Kronecker product and vectorization creates a large matrix. One of the

ways to avoid the problem is by utilizing PB parallelism. Another way to alleviate

this issue is by using communication avoiding algorithms and using local computa-

tion modules to create the matrix and then have a one-time communication to create

the large matrix. With our UoIV AR scaling analyses, we have implemented computa-

tions for the largest-scale VAR estimation problem (1,000 nodes, which corresponds

to 1,000,000 parameters) we are aware of.

131

Chapter 8

CGRA COMPILATION AND SIMULATION FRAMEWORK

8.1 Background

To test and prototype the effectiveness of the CGRA compilation methods pro-

posed so far, there has been few to no open-source CGRA simulation framework

available. A simulation framework like GPGPUSim [134] or gem5-gpu [135], that is

robust and versatile, can help researchers to have a hands-on experience with the func-

tionality of CGRA and prototype the application-level performance comparisons. The

CGRA Modelling and Simulation Framework (CGRA-ME) [], is a good exploratory

tool but is restrictive in mapping algorithms used (supports only Simulated Anneal-

ing) and does not have a cycle-accurate CGRA simulator.

Typically, for an application that needs to accelerate on CGRA, the CGRA com-

piler should, (i) extract the desired loop to be accelerated, (ii) convert the loop into

a Data Flow Graph (DFG), (iii) schedule the nodes of the DFG on a time extended

CGRA, (iv) map the nodes of the DFG onto the processing elements (PEs) for execu-

tion, and (v) generate instructions to be executed or the CGRA and insert appropriate

instructions for transferring the control between both Core and CGRA during the ap-

plication execution. The scheduling and mapping honor the data dependencies, and

the generated instructions should also support data dependencies in the graph to

ensure the correctness of the execution.

The CGRA hardware is simple, as shown in Figure 1.1, where the instruction

memory delivers instructions to the PEs at each cycle. For the example shown in

Figure 1.1, 16 instructions can be fetched and executed in parallel in each cycle. The

132

data memory is used to store and retrieve data. Each PE also contains a register files

(RFs) to store intermittent data computed during the loop execution. The PE also

contains arithmetic logic unit (ALU) that executes the instructions. The computed

value in each PE can be communicated to other connected PEs in the next cycle. In

the following section we will present the CGRA Compilation-simulation Framework

(CCF).

8.2 Overview of CCF

Annotated
app file

Loop Extraction DFG generation

Mapping on
Target CGRA

Generate
Machine

Instructions

Architectural
Simulation

Architecture Description (XML/CSV)

Figure 8.1: The CGRA Compilation-simulation Framework.

Figure 8.1 shows the overview of the CCF working. The CCF framework starts

with the annotated application file. Since CCF strives to achieve minimal interference

from the user, the user has to select the loop from the application file with a pragma

(#pragma CGRA) to the desired loop. The user also needs to specify the CGRA con-

figuration like the number of PEs in each row and column of the CGRA grid in the

architecture description file.

The CCF uses LLVM [108] to extract the loop annotated by the user and con-

vert the loop into a DFG. While extracting the loops, the LLVM passes also adds

control-transfer functions, which transfers the function from CPU to CGRA when

133

the program sequence comes to the loop, and control from CGRA to CPU when the

loop execution completes in CGRA. The CPU sections are compiled for ARM V7

architecture using arm gcc cross-compiler,

CCF contains C++ passes to schedule and map the generated DFG, and generate

instruction for the DFG mapped onto the CGRA. All these files have the user-defined

architecture description file as one of the inputs.

Finally, the generated instructions for CPU and CGRA are executed in the mi-

croprocessor architecture framework, gem5 [135].

8.3 LLVM Frontend

The CCF uses LLVM [108] as a frontend. The clang compiler converts the appli-

cation program file into an intermediate representation (IR). This IR is independent

of any instruction set and can be optimized thereafter. The clang has been modified

to recognize the pragma and tag the loop IR with CGRA.enable. A sample loop that

has been annotated with a pragma is shown in Figure 8.2a. This example shown is

for a loop in the basicmath application from the MiBench benchmark suite.

The tagged-IR is then passed to the DFG creator pass developed as a transforma-

tion pass in LLVM. An example IR with loop.llvm is shown in Figure 8.2b. The !5

tagged to the llvm.loop is further tagged to CGRA.enable. This DFG pass identifies

the loop from the IR and creates nodes and edges based on the instruction type and

data dependencies, respectively. Along with the instruction opcode, the node also

stores the type of the instruction, i.e., whether it is an integer or a floating-point

operation.

The partial predication [76] method for compiling if-then-else has also been imple-

mented. The partial predication method executes both the if-path and the else-path

of the control flow and selects the correct output based on the condition. Each load

134

(a) (b)

Figure 8.2: (A) a Sample Loop Annotated with a Pragma in Basicmath Benchmark.
(B) an Example IR of the Loop Annotated with a Pragma in Basicmath Benchmark.

and store instruction has two nodes in CCF, one for load/store address generation and

one to load/store the data. Loads take two cycles to access the memory and retrieve

the data from a memory location, whereas the store takes only one cycle to store the

value into a memory location. The select operations are denoted by diamond-shaped

nodes. The conditional input to the select nodes is denoted with the green edge.

The loads and stores are denoted by blue nodes and the memory dependencies (edge

between the load/store address nodes) is denoted as a dashed arrow. Inter-iteration

dependencies, i.e., if a value of a node is required by another node of the next cycle,

are denoted by red arrows with weight being the distance of the dependency.

135

Figure 8.3: DFG of the Annotated Loop from Basicmath.

8.4 Scheduling and Mapping

In CCF, we have implemented Iterative Modulo Scheduling [34] and CRIMSON [112]

for scheduling the DFG onto the CGRA architecture. The modulo scheduling algo-

rithms allot a timeslot to the nodes of the DFG, honoring the data dependencies.

Along with the scheduling algorithms we have also implemented mapping algorithms

like Simulated Annealing [26], GraphMinor [30], RAMP [32], and PathSeeker (pro-

posed in this thesis). Figure 8.4 shows the mapping of the annotated loop in basicmath

on a 4×4 CGRA.

136

Figure 8.4: Scheduling and Mapping of the Annotated Loop on a 4×4 CGRA.

8.5 Generating CGRA Machine Instruction

8.5.1 Instruction Formats

CCF’s CGRA instruction set has two formats (a) R-Type (regular instructions)

and (b) P-Type (special instructions) instructions. The R-type and P-type formats

are given in Table 8.1 and Table 8.2. The 27th bit, P, helps in selecting the format

of the instruction. The MSB 34-32 bits in both the format denotes the datatype of

the instruction. Currently, CCF supports integer and 32-bit single-precision floating-

point computations. Bits 31-28 represent the opcode. The IR to CCF Virtual opcode

conversion chart is shown in Table 8.4. The CCF Virtual Opcodes are used internally

137

by the CCF until the instruction generation state. Since CGRA ISA has only 4

bits for opcode another level of conversion from CCF Virtual Opcode to the CGRA

Machine Code is required. This conversion is presented in Table 8.5.

34-32 31-28 27 26-24 23-21 20-19 18-17 16-15 14 13 12 11-0

Datatype Opcode P LMux RMux R1 R2 RW WE AB DB Immediate

Table 8.1: R-type Instruction Format for CGRA.

34-32 31-28 27 26-24 23-21 20-19 18-17 16-15 14-12 11-0

Datatype Opcode P LMux RMux R1 R2 RP PMux Immediate

Table 8.2: P-type Instruction Format for CGRA.

The R-type instruction covers all the arithmetic instructions, as shown in Ta-

ble 8.5, whereas the P-type instructions cover special instructions like LDI, LDMI,

LDUI, Sel, address generator, etc. While loading large constants or addresses for

loop execution, the instruction generator loads these constants as a part of the im-

mediate of three instructions namely, LDI (Load Immediate), LDMI (Load Middle

Immediate), and LDUI (Load Upper Immediate), since these values are 32-bits and

the immediate bits are 12 for the instruction. These constants are stored to the RF

in the PE that will be using them as a part of the initialize cycle pre-prolog. The sel

instruction is the select instruction from partial predication that selects between two

paths based on a condition.

The 26-24 and 23-21 bits are input muxes for the instruction. The input to these

two muxes is from the neighboring PEs in the previous cycle. Table 8.3 shows the

selection of the muxes. These muxes are chosen based on the data dependencies from

the DFG.

R1 indicates the register number for input1 if LMux indicates register file as source

R2 indicates the register number for input2 if RMux indicates register file as source

138

RW indicates the register number of register file to which result should be written

WE determine whether the PE should write the result back to register file or not.

AB indicates asserting address bus for the memory access. DB indicates asserting

data bus for the memory access. Immediate defines the static constant value, which

can be supplied to the PE. For P-type instructions, PMux indicates the input source

for the predicated multiplexer of the PE, and RP indicates the register number for

input3, and PMux indicates the register file as source.

Source
0 Register
1 Left Neighbor
2 Right Neighbor
3 Upper Neighbor
4 Bottom Neighbor
5 Data Bus
6 Immediate
7 Self (Output Latch)

Table 8.3: Input Multiplexer Selection for PEs.

139

Opcode
#

LLVM
Opcode

VOPC

0 Add add
1 Sub sub
2 Mul mult
3 SDiv div
4 Shl shiftl
5 Ashr shiftr
6 And andop
7 Or orop
8 Xor xorop
9 ICMP SGT cmpSGT
10 ICMP EQ cmpEQ
11 ICMP NE cmpNEQ
12 ICMP SLT cmpSLT
13 ICMP SLE cmpSLEQ
14 ICMP SGE cmpSGEQ
15 ICMP UGT cmpUGT
16 ICMP ULT cmpULT
17 ICMP ULE cmpULEQ
18 ICMP UGE cmpUGEQ
19

Load
ld add

20 ld data
21

Store
st add

22 st data
23 reserved ld add cond
24 reserved ld data cond
25 special function loopctrl
26 Select cond select
27 Special function route
28 reserved llvm route
29 PHI select
30 ConstantIntVal constant
31 SRem rem
32 SExt sext
33 LShr shiftr logical
34 default rest

Table 8.4: Translation of LLVm IR Opcode to CCF Virtual Opcode.

140

Instruction Format Opcode # Machine Opcode VOPC

R-Type

0 Add
add

ld data
st data

1 Sub sub
2 Mult mult
3 AND andop
4 OR orop
5 XOR xorop
6 cgraASR shiftr
7 NOP -
8 cgraASL shiftl
9 Div div
10 Rem rem
11 LSHR shiftr logical
12 EQ cmpEQ
13 NEQ cmpNEQ

14 GT

cmpSGT
cmpSGEQ
cmpUGT

cmpUGEQ

15 LT

cmpSLT
cmpSLEQ
cmpULT

cmpULEQ

P-Type

0 setConfigBoundary -
1 LDI select
2 LDMI -
3 LDUI -
4 sel cond select
5 loopexit loopctrl

6 address generator
ld add
st add

7 NOP -
8 signExtend sext

9-15 Reserved -

Table 8.5: Translation of CCF Virtual Opcode to CCF Machine Opcode.

141

8.5.2 Managing Live-in and Live-out constants

Live-in values are input to the loop execution, for example, a dynamic iteration

count or a starting address of array access. These live-in values can be a constant

value or an address. The CCF’s instruction generator (IG) records the PE to which

the nodes using these live-in values are mapped. IG then loads the live-in values to RF

in the same PE using LDI, LDUI, and LDMI instructions as a part of initializing cycle

before the beginning of the loop execution on CGRA (prologue). Large constants that

cannot be passed as a part of the immediate field are similarly stored in the RF.

Live-out variables are loop output values. These values should be passed to the

CPU as these values can be used by the trailing CPU codes. As a part of the LLVM

pass, we identify the basicblock in which the live-out variables are used after the loop

and load those values appropriately to ensure correct execution. As a part of CGRA

loop execution, the instruction generator identifies the live-out value that needs to be

stored, the PE it is mapped. The address to which the value needs to be stored is

loaded to the RF before the prologue execution. After the loop execution (after the

epilogue) instruction generator generates a store address and stores value instructions

to store the value to the appropriate memory address. The store-address instruction

is mapped to the PE in which the address is loaded. The store-data instruction is

executed on the PE in which the value to be stored is computed.

142

8.6 gem5 based CGRA Architecture Model

ARM-based
CPU

Atomic
CGRA

Gem5 Memory Model

Execution
controlAtomic

SimpleCPU

readMem
writeMem
Updated from
static_inst

readMem
writeMem
Calls from PEs

Prolog
Kernel
Epilog

Figure 8.5: CPU+CGRA Model Based on Gem5’s Atomic Timing Model.

An ARM core along with a CGRA has been implemented as a part of gem5 [135]’s

CPU framework. The CPU codes are compiled for the ARMv7 processor and are

executed as a part of gem5’s ARM core. The instructions are divided into pre-prolog,

prolog, kernel, and epilog. These configurations are stored as a part of the CGRA

instruction memory space. When the program enters the loops portion execution, the

CPU triggers the CGRA. CGRA starts fetching the pre-prolog instructions from the

CGRA instruction space. The CGRA model implementation is shown in Figure 8.5.

The CPU core is based on an ARMV7 processor implemented in the atomic version

of gem5. After the CPU execution when the program flow is to execute the loop,

the control is transferred to CGRA, where the CGRA executes the prolog, kernel,

and epilog of the loop. After the completion of the epilog, the CGRA transfers

the execution control to the CPU to execute the remaining non-accelerated sections.

The execution of CPU+CGRA is performed using syscall emulation, SE mode, in

gem5.

The gem5-CGRA implementation has configurable CGRA X-dimension and Y-

dimension, and the execution directly accesses the user-defined architecture file. This

setup ensures a push-button solution once the user has annotated the application and

143

included the configuration file denoting the CGRA dimensions. The gem5-CGRA

models, PEs with integer ALU’s and single-precision floating points ALU’s in each

PE. Each PE contains an integer register file and a floating-point register file to aid

both computation models. Each PE also has an integer output latch and a floating-

point output latch to aid a complete floating computation.

8.7 Challenges in Framework Development

8.7.1 Challenges is LLVM framework

Traditionally, LLVM has been used to analyze and transform the sections of the

program like a function, loop, or module. In the CCF framework we have used LLVM

to:

• Identify the loop using pragma CGRA, from clang.

• Convert the loop section into a Data flow graph.

• Remove the loop from the execution and insert appropriate calling functions to

execute loop on the CGRA.

Pragmas are inserted by the user (pragma CGRA), for the loop to be executed on

CGRA. This was a challenging task as the pragma assertion and analysis is performed

by clang. If pragmas are not inserted, then all the loops in a program are converted

into a Data Flow Graph (DFG) as potential candidates for execution on CGRA due

to runOnLoop function in LLVM. We modified the clang source code in LLVM to tag

the pragma to the loop as a metadata. A simple metadata comparison for the CGRA

tag in runOnLoop will help us eliminate the loops that are not tagged with pragma.

With -O0 optimization the IR generated for the program are verbose and unop-

timized. The loops contain specific basicblock headers for if and else statements for

144

loops with conditionals. When migrating from -O0 to -O3, to apply all the com-

piler optimizations, we lose the header information. We currently analyze the branch

instructions in each basicblock in the loop to identify the dependency and create ad-

ditional select instructions to compute the nested if-else. We also create the proper

data dependencies between the compare and select instructions for correct execution.

Without this analysis loop with nested conditionals will not execute correctly.

For execution of wide variety of benchmark loops floating point datatype support

is required. This was very challenging due to the ISA limitation from previous versions

of CCF. We introduced a datatype analysis in DFG generation pass and created a

datatype attribute to each node. This also includes the explicit typecasting, i.e., while

loading a floating point data from memory location, the 32-bit address computation

is integer whereas the value loaded from that location is a floating point.

For supporting the LiveIn and LiveOut variables of the loop, we designed the

global variable (gVar) for data accesses and global pointer (gPtr) for array and pointer

accesses. The gVar and gPtr are global address accessible through symbol table in

ELF. We perform a data dependency analysis on the LiveIn and LiveOut variables

usage outside the loop basicblocks. For LiveIn variables we perform explicit stores of

the usage into the global variables/pointers for it be accessible by CGRA. For LiveOut

variables, CGRA epilog stores the computed values in the global variables/pointers,

which is later loaded into appropriate registers before its usage in the consecutive

basicblock (basicblocks after the loop execution).

Deleting the loop and inserting the correct functions for CGRA loop execution are

paramount for correct program execution. After converting the loop into the DFG,

the mapping step modulo schedules the DFG onto the CGRA architecture producing

Prolog, Kernel, and Epilog instructions for the loop. The loop in the main program

should be deleted and appropriate functions should be added to transfer the execution

145

flow from CPU to CGRA, and execute the loop on CGRA. We add two additional

functions for this support. CreateCGRA – This function initializes the appropriate

address spaces for the prolog, kernel, and epilog execution. accelerateOnCGRA –

This function first analyzes analyzes the instructions in prolog, kernel, and epilog

and sets the address spaces for the same. Then this function transfers the control

from CPU to CGRA. From the LLVM runOnLoop we need to delete the loop in the

LLVM IR and insert hooks to the above explained two functions.

Inlined functions pose a challenge in extracting the correct loop. The issue is

when a loop inside a function (other than main) is pragma tagged by the user and

the function is called from the main function, the LLVM IR generates two loop

instances, one inside the functional call and the other inside the main (due to inlining).

Both the loops are tagged with the pragma and will be converted into DFG by

the transformation pass. For example, let us consider a simple loop (with CGRA

pragma) to compute 2n where n is the user input value. This loop is inside a function

intpower(intn), and the main function calls the intout = power(7). LLVM inlines

the power function in main. So there are two loop instances in the LLVM IR, one

for the loop in power function basicblock and the other for the loop in the main

function. If we perform the DFG transformation first for the IR, there are two DFG

sets L1 (DFG for loop in power function) and L2 (DFG for loop in main function)

created. Then performing loop deletion from the IR deletes the loops in the main

function, but should call L2 for correct execution. L1 loop should not be called from

the program execution as it is not reachable from execution. Calling L1 inside the

main will not properly compute the LiveIn and LiveOut addresses, which will result

in incorrect results from the program. To overcome this issue, we integrated the DFG

generation and the loop deletion into a single pass. There are two advantages with

this methodology, (1) since we are analyzing the LLVM IR in a sequential fashion,

146

we know which loop is currently being converted into a DFG, and (2) based on the

execution flow, we can call only one loop for the correct execution.

8.7.2 Scheduling, Mapping, and Generating Instructions

The schedule and mapping of the DFG nodes, i.e., the timeslot in which a node

should be schedule and the PE in which the node execute is determined by the schedul-

ing and mapping algorithm. Since the instruction generation program is common to

the CCF workflow, integrating various mapping algorithms to map the DFG and cre-

ate correct intermediate files was a major issue. We have implemented four popular

mapping algorithms, defined by the user at compile time from CGRA config.txt file,

which produces correct intermediate file for CGRA instruction generation.

The previous version of the instruction generator was restrictive due to CGRA ISA

width of 32-bits. For executing of floating point operations, we expanded the ISA to 35

bits, with the 3 MSB bits denoting the datatype. We have added additional support

for P-type and R-type instructions. The improved 35-bits CGRA ISA instructions

are formatted as unsigned long type for proper reading from gem5.

8.7.3 Challenges in gem5 Development

The program to be executed after the LLVM transformation and instruction gen-

eration is compiled using arm-cross-compiler and executed on AtomicCGRA. Atom-

icCGRA simulates the execution of the program on an ARMv7 like core and a CGRA

(as coprocessor). A support was added to incorporate more CGRA sizes. We mod-

ified the CGRA execution flow to parameterize CGRA dimensions as variables and

multiple CGRA sizes were added to AtomicCGRA.py. Additional CGRA sizes can be

added by the users easily.

Our CGRA design has rowwise memory buses. The load address nodes mapped

147

to a row of CGRA triggers the load access by setting the address bus. The data,

accessed by the readMem function in gem5, is made available in the data bus of that

row so that load data node can access that value. The same functionality holds good

for writeMem function except the store data function stores the value via the data bus

of the row. We improved the readMem and writeMem accesses rowwise by including

status registers and allocating correct memory packets. An improvement to load the

floating point variable with explicit typecasting enables the proper loading of the

values.

Floating point execution unit with corresponding MUXes, output, and input wires

were added to each PE. CGRA instructions generated for floating point computation

are executed in the floating point execution unit. This added an additional level

of complexity in loading floating point constants. Integer constant values until the

value 212 could be sent as a part of instruction, because of 12-bits immediate support.

Integer constant greater than 212 are converted into 32 bit constants and loaded into

the registers of PE that is using this value with three instructions, LDi, LDMi, and

LDUi during the preprolog execution. LD-type CGRA instructions split the 32-bit

immediate values into 3 sets of 12 immediate each and accumulate them into an

integer register file in the corresponding PE. For floating point immediate value, we

cannot pass them via the immediate bits in the CGRA instructions. We implemented

a IEEE-754 single precision format and converted the floating point numbers into

sign, exponent, and mastissa. The sign, exponent, and the mantissa are then passed

as LDi, LDMi, LDUi and then recreated as a floating point number into a floating

pointer register. This enables correct execution of instructions using floating point

immediate values.

Arm-cross-compiler is used to compile the source program along with cgra.c

file, which includes the additional functions (CreateCGRA and accelerateOnCGRA) to

148

execute the loop. There is a size mismatch between the instruction generation, arm-

cross-compiler, and gem5 source code for unsigned long, which is the format of the

CGRA instructions. The unsigned long for instruction generation and gem5 source

files are 8-bytes, whereas arm-cross-compiler has unsigned long as 4-bytes size (This

happens for the current version of CCF. Please refer to the version document in

CCF GitHub). This mismatch leads to CGRA instruction not properly read and

interpreted by gem5. To tackle this problem the two functions in cgra.c has the

instructions in unsigned long long that is 8-bytes.

8.8 Discussion

We have presented a comprehensive CGRA compilation simulation framework in

this chapter. The following are some remarks on CCF:

• LLVM based loop extraction and Data-Flow graph conversion, along with par-

tial predication to compile arbitrary level if-then-else in the loop.

• Two scheduling algorithms and four mapping algorithms implemented.

• Libraries in CCF can easily be inherited to implement new mapping algorithms

by the user. CCF can enhance and accelerate CGRA research.

• Comprehensive CGRA ISA that covers almost all of the opcodes from LLVM.

Easily customizable ISA in CCF’s instruction generator.

• Gem5 based Core+CGRA architecture model. Easily scalable with precompiled

CGRA configurations.

149

REFERENCES

[1] National Research Council et al. Frontiers in massive data analysis. National
Academies Press, 2013.

[2] Andrew Crotty, Alex Galakatos, Kayhan Dursun, Tim Kraska, Ugur
Çetintemel, and Stanley B Zdonik. Tupleware:” big” data, big analytics, small
clusters. In CIDR, 2015.

[3] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. Eyeriss: A spatial architecture for
energy-efficient dataflow for convolutional neural networks. ACM SIGARCH
Computer Architecture News, 44(3):367–379, 2016.

[4] Yunji Chen, Tianshi Chen, Zhiwei Xu, Ninghui Sun, and Olivier Temam. Dian-
Nao family: energy-efficient hardware accelerators for machine learning. Com-
munications of the ACM, 59(11):105–112, 2016.

[5] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A
Horowitz, and William J Dally. EIE: Efficient inference engine on compressed
deep neural network. ACM SIGARCH Computer Architecture News, 44(3):243–
254, 2016.

[6] Hyoukjun Kwon, Ananda Samajdar, and Tushar Krishna. MAERI: Enabling
Flexible Dataflow Mapping over DNN accelerators via reconfigurable intercon-
nects. ACM SIGPLAN Notices, 53(2):461–475, 2018.

[7] Deep learning accelerators. \\https://en.wikipedia.org/wiki/Deep\
_learning_processor.

[8] Gagandeep Singh, Dionysios Diamantopoulos, Christoph Hagleitner, Juan
Gómez-Luna, Sander Stuijk, Onur Mutlu, and Henk Corporaal. Nero: A near
high-bandwidth memory stencil accelerator for weather prediction modeling,
2020. https://arxiv.org/pdf/2009.08241.pdf.

[9] Yuze Chi, Jason Cong, Peng Wei, and Peipei Zhou. Soda: Stencil with opti-
mized dataflow architecture. In 2018 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), pages 1–8, 2018.

[10] H. E. Yantır, A. M. Eltawil, and K. N. Salama. Efficient acceleration of stencil
applications through in-memory computing. 6(11):622. https://doi.org/10.
3390/mi11060622.

[11] Yuan Lin, Hyunseok Lee, Mark Woh, Yoav Harel, Scott Mahlke, Trevor Mudge,
Chaitali Chakrabarti, and Krisztian Flautner. Soda: A high-performance dsp
architecture for software-defined radio. IEEE Micro, 27(1):114–123, 2007.

[12] Ralf Karrenberg. Automatic SIMD vectorization of SSA-based control flow
graphs. Springer, 2015.

150

[13] Thomas Schaub, Simon Moll, Ralf Karrenberg, and Sebastian Hack. The impact
of the simd width on control-flow and memory divergence. ACM Transactions
on Architecture and Code Optimization (TACO), 11(4):1–25, 2015.

[14] John E Stone, David Gohara, and Guochun Shi. OpenCL: A parallel program-
ming standard for heterogeneous computing systems. Computing in science &
engineering, 12(3):66–73, 2010.

[15] Michael Garland, Scott Le Grand, John Nickolls, Joshua Anderson, Jim Hard-
wick, Scott Morton, Everett Phillips, Yao Zhang, and Vasily Volkov. Parallel
computing experiences with cuda. IEEE micro, 28(4):13–27, 2008.

[16] Cedric Nugteren. Improving the programmability of GPU architectures. PhD
thesis, Citeseer, 2014.

[17] Samuel H Fuller and Lynette I Millett. Computing performance: Game over or
next level? Computer, 44(1):31–38, 2011.

[18] Alexander S van Amesfoort, Ana Lucia Varbanescu, Henk J Sips, and Rob V
Van Nieuwpoort. Evaluating multi-core platforms for hpc data-intensive kernels.
In Proceedings of the 6th ACM conference on Computing frontiers, pages 207–
216, 2009.

[19] Yixing Li, Zichuan Liu, Kai Xu, Hao Yu, and Fengbo Ren. A gpu-outperforming
fpga accelerator architecture for binary convolutional neural networks. ACM
Journal on Emerging Technologies in Computing Systems (JETC), 14(2):1–16,
2018.

[20] Jiantao Qiu, Jie Wang, Song Yao, Kaiyuan Guo, Boxun Li, Erjin Zhou, Jincheng
Yu, Tianqi Tang, Ningyi Xu, Sen Song, et al. Going deeper with embedded
fpga platform for convolutional neural network. In Proceedings of the 2016
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
pages 26–35, 2016.

[21] David F Bacon, Rodric Rabbah, and Sunil Shukla. Fpga programming for the
masses. Communications of the ACM, 56(4):56–63, 2013.

[22] Prasanth Chatarasi, Hyoukjun Kwon, Natesh Raina, Saurabh Malik, Vaisakh
Haridas, Angshuman Parashar, Michael Pellauer, Tushar Krishna, and Vivek
Sarkar. Marvel: A data-centric compiler for dnn operators on spatial accelera-
tors. arXiv preprint arXiv:2002.07752, 2020.

[23] Frank Bouwens, Mladen Berekovic, Bjorn De Sutter, and Georgi Gaydadjiev.
Architecture enhancements for the adres coarse-grained reconfigurable array.
In International Conference on High-Performance Embedded Architectures and
Compilers, pages 66–81. Springer, 2008.

[24] Chris Nicol. A coarse grain reconfigurable array (cgra) for statically scheduled
data flow computing. Wave Computing White Paper, 2017.

151

[25] Mahdi Hamzeh, Aviral Shrivastava, and Sarma Vrudhula. EPIMap: using epi-
morphism to map applications on cgras. In Proceedings of the 49th Annual
Design Automation Conference, pages 1284–1291. ACM, 2012.

[26] B Mei, M Berekovic, and JY Mignolet. Adres & dresc: Architecture and com-
piler for coarse-grain reconfigurable processors. In Fine-and coarse-grain recon-
figurable computing, pages 255–297. Springer, 2007.

[27] Hyunchul Park, Kevin Fan, Manjunath Kudlur, and Scott Mahlke. Modulo
graph embedding: mapping applications onto coarse-grained reconfigurable ar-
chitectures. In Proceedings of the 2006 international conference on Compilers,
architecture and synthesis for embedded systems, pages 136–146. ACM, 2006.

[28] Hyunchul Park, Kevin Fan, Scott A Mahlke, Taewook Oh, Heeseok Kim, and
Hong-seok Kim. Edge-centric modulo scheduling for coarse-grained reconfig-
urable architectures. In Proceedings of the 17th international conference on
Parallel architectures and compilation techniques, pages 166–176. ACM, 2008.

[29] Taewook Oh, Bernhard Egger, Hyunchul Park, and Scott Mahlke. Recurrence
cycle aware modulo scheduling for coarse-grained reconfigurable architectures.
In ACM Sigplan Notices, volume 44, pages 21–30. ACM, 2009.

[30] Liang Chen and Tulika Mitra. Graph minor approach for application map-
ping on cgras. ACM Transactions on Reconfigurable Technology and Systems
(TRETS), 7(3):21, 2014.

[31] Mahdi Hamzeh, Aviral Shrivastava, and Sarma Vrudhula. REGIMap: Register-
aware application mapping on coarse-grained reconfigurable architectures
(cgras). In Proceedings of the 50th Annual Design Automation Conference,
page 18. ACM, 2013.

[32] Shail Dave, Mahesh Balasubramanian, and Aviral Shrivastava. RAMP:
resource-aware mapping for CGRAs. In Proceedings of the 55th Annual De-
sign Automation Conference (DAC), 2018.

[33] S Alexander Chin, Noriaki Sakamoto, Allan Rui, Jim Zhao, Jin Hee Kim, Yuko
Hara-Azumi, and Jason Anderson. Cgra-me: A unified framework for cgra
modelling and exploration. In 2017 IEEE 28th international conference on
application-specific systems, architectures and processors (ASAP), pages 184–
189. IEEE, 2017.

[34] B Ramakrishna Rau. Iterative modulo scheduling. International Journal of
Parallel Programming, 24(1), 1996.

[35] Jonghee W Yoon, Aviral Shrivastava, Sanghyun Park, Minwook Ahn, and Yun-
heung Paek. A graph drawing based spatial mapping algorithm for coarse-
grained reconfigurable architectures. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 17(11):1565–1578, 2009.

152

[36] Shail Dave, Mahesh Balasubramanian, and Aviral Shrivastava. Ureca: A com-
piler solution to manage unified register file for cgras. In Proceedings of the 21st
International Conference on Design Automation and Test in Europe (DATE),
2018.

[37] Hartej Singh, Ming-Hau Lee, Guangming Lu, Fadi J Kurdahi, Nader
Bagherzadeh, and Eliseu M Chaves Filho. Morphosys: an integrated reconfig-
urable system for data-parallel and computation-intensive applications. IEEE
transactions on computers, 49(5):465–481, 2000.

[38] Ethan Mirsky, Andre DeHon, et al. MATRIX: a reconfigurable computing
architecture with configurable instruction distribution and deployable resources.
In FCCM, volume 96, pages 17–19, 1996.

[39] Carl Ebeling, Darren C Cronquist, and Paul Franklin. Rapid—reconfigurable
pipelined datapath. In International Workshop on Field Programmable Logic
and Applications, pages 126–135. Springer, 1996.

[40] William Tsu, Kip Macy, Atul Joshi, Randy Huang, Norman Walker, Tony Tung,
Omid Rowhani, Varghese George, John Wawrzynek, and André DeHon. Hsra:
high-speed, hierarchical synchronous reconfigurable array. In Proceedings of the
1999 ACM/SIGDA seventh international symposium on Field programmable
gate arrays, pages 125–134. ACM, 1999.

[41] Changmoo Kim, Mookyoung Chung, Yeongon Cho, Mario Konijnenburg, Soo-
jung Ryu, and Jeongwook Kim. ULP-SRP: Ultra low power samsung reconfig-
urable processor for biomedical applications. In Field-Programmable Technology
(FPT), 2012 International Conference on, pages 329–334. IEEE, 2012.

[42] Yu-Hsin Chen, Tushar Krishna, Joel S Emer, and Vivienne Sze. Eyeriss: An
energy-efficient reconfigurable accelerator for deep convolutional neural net-
works. IEEE Journal of Solid-State Circuits, 52(1):127–138, 2017.

[43] Mahdi Hamzeh, Aviral Shrivastava, and Sarma Vrudhula. Branch-aware loop
mapping on cgras. In Design Automation Conference (DAC), 2014 51st
ACM/EDAC/IEEE, pages 1–6. IEEE, 2014.

[44] Jonghee W Yoon, Aviral Shrivastava, Sanghyun Park, Minwook Ahn, Reiley
Jeyapaul, and Yunheung Paek. Spkm: A novel graph drawing based algorithm
for application mapping onto coarse-grained reconfigurable architectures. In
Proceedings of the 2008 Asia and South Pacific Design Automation Conference,
pages 776–782. IEEE Computer Society Press, 2008.

[45] Min Zhu, Leibo Liu, Shouyi Yin, Yansheng Wang, Wenjie Wang, and Shaojun
Wei. A reconfigurable multi-processor soc for media applications. In Circuits
and Systems (ISCAS), Proceedings of 2010 IEEE International Symposium on,
pages 2011–2014. IEEE, 2010.

153

[46] Minwook Ahn, Jonghee W Yoon, Yunheung Paek, Yoonjin Kim, Mary Kiemb,
and Kiyoung Choi. A spatial mapping algorithm for heterogeneous coarse-
grained reconfigurable architectures. In Proceedings of the conference on Design,
automation and test in Europe: Proceedings, pages 363–368. European Design
and Automation Association, 2006.

[47] Jong-eun Lee, Kiyoung Choi, and Nikil D Dutt. An algorithm for mapping
loops onto coarse-grained reconfigurable architectures. In ACM Sigplan Notices,
volume 38, pages 183–188. ACM, 2003.

[48] Jongeun Lee, Kiyoung Choi, and Nikil D Dutt. Compilation approach for
coarse-grained reconfigurable architectures. 2003.

[49] Toan X Mai and Jongeun Lee. Efficient software-based runtime binary trans-
lation for coarse-grained reconfigurable architectures. In Parallel & Distributed
Processing Symposium Workshops (IPDPSW), 2014 IEEE International, pages
132–140. IEEE, 2014.

[50] Nikhil Bansal, Sumit Gupta, Nikil Dutt, Alex Nicolau, and Rajesh Gupta.
Interconnect-aware mapping of applications to coarse-grain reconfigurable ar-
chitectures. In Field Programmable Logic and Application, pages 891–899.
Springer, 2004.

[51] Akira Hatanaka and Nader Bagherzadeh. A modulo scheduling algorithm for
a coarse-grain reconfigurable array template. In Parallel and Distributed Pro-
cessing Symposium, 2007. IPDPS 2007. IEEE International, pages 1–8. IEEE,
2007.

[52] Giovanni Ansaloni, Kazuyuki Tanimura, Laura Pozzi, and Nikil Dutt. Inte-
grated kernel partitioning and scheduling for coarse-grained reconfigurable ar-
rays. Computer-Aided Design of Integrated Circuits and Systems, IEEE Trans-
actions on, 31(12):1803–1816, 2012.

[53] Giovanni Ansaloni, Laura Pozzi, Kazuyuki Tanimura, and Nikil Dutt. Slack-
aware scheduling on coarse grained reconfigurable arrays. In Design, Automa-
tion & Test in Europe Conference & Exhibition (DATE), 2011, pages 1–4. IEEE,
2011.

[54] Ganghee Lee, Kyungwook Chang, and Kiyoung Choi. Automatic mapping of
control-intensive kernels onto coarse-grained reconfigurable array architecture
with speculative execution. In Parallel & Distributed Processing, Workshops
and Phd Forum (IPDPSW), 2010 IEEE International Symposium on, pages
1–4. IEEE, 2010.

[55] Ganghee Lee, Kiyoung Choi, and Nikil D Dutt. Mapping multi-domain ap-
plications onto coarse-grained reconfigurable architectures. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 30(5):637–650,
2011.

154

[56] Jong Kyung Paek, Kiyoung Choi, and Jongeun Lee. Binary acceleration using
coarse-grained reconfigurable architecture. ACM SIGARCH Computer Archi-
tecture News, 38(4):33–39, 2010.

[57] S Alexander Chin and Jason H Anderson. An architecture-agnostic integer lin-
ear programming approach to cgra mapping. In 2018 55th ACM/ESDA/IEEE
Design Automation Conference (DAC), pages 1–6. IEEE, 2018.

[58] Shouyi Yin, Chongyong Yin, Leibo Liu, Min Zhu, and Shaojun Wei. Configu-
ration context reduction for coarse-grained reconfigurable architecture. IEICE
TRANSACTIONS on Information and Systems, 95(2):335–344, 2012.

[59] ShouYi Yin, ShengJia Shao, LeiBo Liu, and ShaoJun Wei. Mapreduce inspired
loop mapping for coarse-grained reconfigurable architecture. Science China
Information Sciences, 57(12):1–14, 2014.

[60] Gregory Dimitroulakos, Michalis D Galanis, and Costas E Goutis. Alleviating
the data memory bandwidth bottleneck in coarse-grained reconfigurable arrays.
In Application-Specific Systems, Architecture Processors, 2005. ASAP 2005.
16th IEEE International Conference on, pages 161–168. IEEE, 2005.

[61] Yongjoo Kim, Jongeun Lee, Aviral Shrivastava, Jonghee W Yoon, Doosan Cho,
and Yunheung Paek. High throughput data mapping for coarse-grained re-
configurable architectures. Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, 30(11):1599–1609, 2011.

[62] Yongjoo Kim, Jongeun Lee, Aviral Shrivastava, and Yunheung Paek. Memory
access optimization in compilation for coarse-grained reconfigurable architec-
tures. ACM Transactions on Design Automation of Electronic Systems (TO-
DAES), 16(4):42, 2011.

[63] Shouyi Yin, Xianqing Yao, Dajiang Liu, Leibo Liu, and Shaojun Wei. Memory-
aware loop mapping on coarse-grained reconfigurable architectures. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 24(5):1895–1908,
2016.

[64] Bjorn De Sutter, Paul Coene, Tom Vander Aa, and Bingfeng Mei. Placement-
and-routing-based register allocation for coarse-grained reconfigurable arrays.
In ACM Sigplan Notices, volume 43, pages 151–160. ACM, 2008.

[65] Yongjoo Kim, Jongeun Lee, Toan X Mai, and Yunheung Paek. Improving per-
formance of nested loops on reconfigurable array processors. ACM Transactions
on Architecture and Code Optimization (TACO), 8(4):32, 2012.

[66] Jongeun Lee, Seongseok Seo, Hongsik Lee, and Hyeon Uk Sim. Flattening-based
mapping of imperfect loop nests for cgras? In Hardware/Software Codesign and
System Synthesis (CODES+ ISSS), 2014 International Conference on, pages 1–
10. IEEE, 2014.

155

[67] Hyeonuk Sim, Hongsik Lee, Seongseok Seo, and Jongeun Lee. Mapping imper-
fect loops to coarse-grained reconfigurable architectures. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 35(7):1092–1104,
2016.

[68] Dajiang Liu, Shouyi Yin, Leibo Liu, and Shaojun Wei. Polyhedral model based
mapping optimization of loop nests for cgras. In Design Automation Conference
(DAC), 2013 50th ACM/EDAC/IEEE, pages 1–8. IEEE, 2013.

[69] Shouyi Yin, Dajiang Liu, Leibo Liu, Shaojun Wei, and Yike Guo. Joint affine
transformation and loop pipelining for mapping nested loop on cgras. In Pro-
ceedings of the 2015 Design, Automation & Test in Europe Conference & Exhi-
bition, pages 115–120. EDA Consortium, 2015.

[70] Shouyi Yin, Dajiang Liu, Yu Peng, Leibo Liu, and Shaojun Wei. Improving
nested loop pipelining on coarse-grained reconfigurable architectures. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 24(2):507–520,
2016.

[71] Dajiang Liu, Shouyi Yin, Leibo Liu, and Shaojun Wei. Affine transformations
for communication and reconfiguration optimization of loops on cgras. In Cir-
cuits and Systems (ISCAS), 2013 IEEE International Symposium on, pages
2541–2544. IEEE, 2013.

[72] Manupa Karunaratne, Cheng Tan, Aditi Kulkarni, Tulika Mitra, and Li-Shiuan
Peh. Dnestmap: mapping deeply-nested loops on ultra-low power cgras. In
Proceedings of the 55th Annual Design Automation Conference, page 129. ACM,
2018.

[73] Kyuseung Han, Kiyoung Choi, and Jongeun Lee. Compiling control-intensive
loops for cgras with state-based full predication. In Proceedings of the Con-
ference on Design, Automation and Test in Europe, pages 1579–1582. EDA
Consortium, 2013.

[74] Jihyun Ryoo, Kyuseung Han, and Kiyoung Choi. Leveraging parallelism in the
presence of control flow on cgras. In Design Automation Conference (ASP-
DAC), 2014 19th Asia and South Pacific, pages 285–291. IEEE, 2014.

[75] Kyungwook Chang and Kiyoung Choi. Mapping control intensive kernels onto
coarse-grained reconfigurable array architecture. In SoC Design Conference,
2008. ISOCC’08. International, volume 1, pages I–362. IEEE, 2008.

[76] Kyuseung Han, Junwhan Ahn, and Kiyoung Choi. Power-efficient predication
techniques for acceleration of control flow execution on cgra. ACM Transactions
on Architecture and Code Optimization (TACO), 10(2):8, 2013.

[77] ShriHari RajendranRadhika, Aviral Shrivastava, and Mahdi Hamzeh. Path
selection based acceleration of conditionals in cgras. In Proceedings of the 2015
Design, Automation & Test in Europe Conference & Exhibition, pages 121–126.
EDA Consortium, 2015.

156

[78] Yeonghun Jeong, Seongseok Seo, and Jongeun Lee. Evaluator-executor trans-
formation for efficient pipelining of loops with conditionals. ACM Transactions
on Architecture and Code Optimization (TACO), 10(4):62, 2013.

[79] Shouyi Yin, Pengcheng Zhou, Leibo Liu, and Shaojun Wei. Acceleration
of nested conditionals on cgras via trigger scheme. In Proceedings of the
IEEE/ACM International Conference on Computer-Aided Design, pages 597–
604. IEEE Press, 2015.

[80] Aviral Shrivastava, Jared Pager, Reiley Jeyapaul, Mahdi Hamzeh, and Sarma
Vrudhula. Enabling multithreading on cgras. In Parallel Processing (ICPP),
2011 International Conference on, pages 255–264. IEEE, 2011.

[81] Dani Voitsechov and Yoav Etsion. Single-graph multiple flows: Energy efficient
design alternative for gpgpus. In ACM SIGARCH computer architecture news,
volume 42, pages 205–216. IEEE Press, 2014.

[82] Dani Voitsechov and Yoav Etsion. Inter-thread communication in multi-
threaded, reconfigurable coarse-grain arrays. arXiv preprint arXiv:1801.05178,
2018.

[83] Ricardo Ferreira, Virginia Duarte, Waldir Meireles, Manuela Pereira, Luigi
Carro, and Simon Wong. A just-in-time modulo scheduling for virtual coarse-
grained reconfigurable architectures. In Embedded Computer Systems: Architec-
tures, Modeling, and Simulation (SAMOS XIII), 2013 International Conference
on, pages 188–195. IEEE, 2013.

[84] Yongjun Park, Hyunchul Park, and Scott Mahlke. Cgra express: accelerat-
ing execution using dynamic operation fusion. In Proceedings of the 2009 in-
ternational conference on Compilers, architecture, and synthesis for embedded
systems, pages 271–280. ACM, 2009.

[85] Rafael Maestre, Fadi J Kurdahi, Nader Bagherzadeh, Hartej Singh, Román
Hermida, and Milagros Fernández. Kernel scheduling in reconfigurable com-
puting. In Design, Automation and Test in Europe Conference and Exhibition
1999. Proceedings, pages 90–96. IEEE, 1999.

[86] Stephen Friedman, Allan Carroll, Brian Van Essen, Benjamin Ylvisaker, Carl
Ebeling, and Scott Hauck. Spr: an architecture-adaptive cgra mapping tool.
In Proceedings of the ACM/SIGDA international symposium on Field pro-
grammable gate arrays, pages 191–200. ACM, 2009.

[87] Jonghee W Yoon, Jongeun Lee, Sanghyun Park, Yongjoo Kim, Jinyong Lee,
Yunheung Paek, and Doosan Cho. Architecture customization of on-chip recon-
figurable accelerators. ACM Transactions on Design Automation of Electronic
Systems (TODAES), 18(4):52, 2013.

[88] Ganghee Lee, Seokhyun Lee, Kiyoung Choi, and Nikil Dutt. Routing-aware
application mapping considering steiner points for coarse-grained reconfigurable
architecture. In Reconfigurable computing: architectures, tools and applications,
pages 231–243. Springer, 2010.

157

[89] Yoonjin Kim, Ilhyun Park, Kiyoung Choi, and Yunheung Paek. Power-conscious
configuration cache structure and code mapping for coarse-grained reconfig-
urable architecture. In Proceedings of the 2006 international symposium on
Low power electronics and design, pages 310–315. ACM, 2006.

[90] Zion Kwok and Steven JE Wilton. Register file architecture optimization in
a coarse-grained reconfigurable architecture. In Field-Programmable Custom
Computing Machines, 2005. FCCM 2005. 13th Annual IEEE Symposium on,
pages 35–44. IEEE, 2005.

[91] Kyuseung Han, Jong Kyung Paek, and Kiyoung Choi. Acceleration of con-
trol flow on cgra using advanced predicated execution. In Field-Programmable
Technology (FPT), 2010 International Conference on, pages 429–432. IEEE,
2010.

[92] Ganghee Lee, Seokhyun Lee, and Kiyoung Choi. Automatic mapping of applica-
tion to coarse-grained reconfigurable architecture based on high-level synthesis
techniques. In SoC Design Conference, 2008. ISOCC’08. International, vol-
ume 1, pages I–395. IEEE, 2008.

[93] Dipal Saluja. Register file organization for coarse-grained reconfigurable ar-
chitectures: Compiler-microarchitecture perspective. Master’s thesis, Arizona
State University, 2014.

[94] Sangyun Oh, Hongsik Lee, and Jongeun Lee. Efficient execution of stream
graphs on coarse-grained reconfigurable architectures. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 36(12):1978–1988,
2017.

[95] Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the
heuristic determination of minimum cost paths. IEEE transactions on Systems
Science and Cybernetics, 4(2):100–107, 1968.

[96] Giovanni Ansaloni, Paolo Bonzini, and Laura Pozzi. EGRA: A coarse grained
reconfigurable architectural template. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 19(6):1062–1074, 2011.

[97] Gerald Aigner. An overview of the suif2 compiler infrastructure. http://suif.
stanford. edu/, 2000.

[98] Gurobi Optimization. Gurobi Optimizer. http://www.gurobi.com/, 2017.

[99] Bingfeng Mei, Serge Vernalde, Diederik Verkest, Hugo De Man, and Rudy
Lauwereins. Exploiting loop-level parallelism on coarse-grained reconfigurable
architectures using modulo scheduling. IEE Proceedings-Computers and Digital
Techniques, 150(5):255, 2003.

[100] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge
university press, 2004.

158

[101] Mahdi Hamzeh. Compiler and Architecture Design for Coarse-Grained Pro-
grammable Accelerators. Arizona State University, 2015.

[102] Uday Bondhugula, A Hartono, J Ramanujam, and P Sadayappan. Pluto: A
practical and fully automatic polyhedral program optimization system. In Pro-
ceedings of the ACM SIGPLAN 2008 Conference on Programming Language
Design and Implementation (PLDI 08), Tucson, AZ (June 2008). Citeseer,
2008.

[103] Dajiang Liu, Shouyi Yin, Yu Peng, Leibo Liu, and Shaojun Wei. Optimiz-
ing spatial mapping of nested loop for coarse-grained reconfigurable architec-
tures. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
23(11):2581–2594, 2015.

[104] Matthew Guthaus et al. Mibench: A free, commercially representative embed-
ded benchmark suite. In WWC, 2001.

[105] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W Sheaffer,
Sang-Ha Lee, and Kevin Skadron. Rodinia: A benchmark suite for heteroge-
neous computing. In 2009 IEEE international symposium on workload charac-
terization (IISWC), pages 44–54. Ieee, 2009.

[106] John A Stratton, Christopher Rodrigues, I-Jui Sung, Nady Obeid, Li-Wen
Chang, Nasser Anssari, Geng Daniel Liu, and Wen-mei W Hwu. Parboil: A
revised benchmark suite for scientific and commercial throughput computing.
Center for Reliable and High-Performance Computing, 127, 2012.

[107] Shail Dave and Aviral Shrivastava. Ccf: A cgra compilation framework. 2018.

[108] Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong
program analysis & transformation. In CGO, 2004.

[109] Manupa Karunaratne, Aditi Kulkarni Mohite, Tulika Mitra, and Li-Shiuan Peh.
HyCUBE: A CGRA with Reconfigurable Single-Cycle Multi-Hop Interconnect.
In Proceedings of the 54th Annual Design Automation Conference 2017, pages
1–6, 2017.

[110] Panagiotis Theocharis and Bjorn De Sutter. A bimodal scheduler for coarse-
grained reconfigurable arrays. ACM Transactions on Architecture and Code
Optimization (TACO), 13(2):1–26, 2016.

[111] Ashay Dharwadker. The clique algorithm, 2006.

[112] Mahesh Balasubramanian and Aviral Shrivastava. CRIMSON: Compute-
Intensive Loop Acceleration by Randomized Iterative Modulo Scheduling and
Optimized Mapping on CGRAs. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 39(11):3300–3310, 2020.

159

[113] Laura Astolfi, Febo Cincotti, Donatella Mattia, M Grazia Marciani, Luiz A
Baccala, Fabrizio de Vico Fallani, Serenella Salinari, Mauro Ursino, Melissa
Zavaglia, Lei Ding, et al. Comparison of different cortical connectivity estima-
tors for high-resolution eeg recordings. Human brain mapping, 28(2):143–157,
2007.

[114] Kendrick N Kay, Thomas Naselaris, Ryan J Prenger, and Jack L Gallant. Iden-
tifying natural images from human brain activity. Nature, 452(7185):352, 2008.

[115] Jonathan W Pillow, Jonathon Shlens, Liam Paninski, Alexander Sher, Alan M
Litke, EJ Chichilnisky, and Eero P Simoncelli. Spatio-temporal correlations
and visual signalling in a complete neuronal population. Nature, 454(7207):995,
2008.

[116] Kristofer E Bouchard, James B Aimone, Miyoung Chun, Thomas Dean, Michael
Denker, Markus Diesmann, David D Donofrio, Loren M Frank, Narayanan
Kasthuri, Chirstof Koch, et al. High-performance computing in neuroscience for
data-driven discovery, integration, and dissemination. Neuron, 92(3):628–631,
2016.

[117] Kristofer E. Bouchard et al. International neuroscience initiatives through the
lens of high-performance computing. Computer, 51(4):50–59, April 2018.

[118] Bijan Pesaran, Martin Vinck, Gaute T Einevoll, Anton Sirota, Pascal Fries,
Markus Siegel, Wilson Truccolo, Charles E Schroeder, and Ramesh Srinivasan.
Investigating large-scale brain dynamics using field potential recordings: anal-
ysis and interpretation. Nat Neurosci, 21(7):903–919, 2018.

[119] Clive WJ Granger. Investigating causal relations by econometric models and
cross-spectral methods. Econometrica: Journal of the Econometric Society,
pages 424–438, 1969.

[120] Helmut Lütkepohl. New introduction to multiple time series analysis. Springer
Science & Business Media, 2005.

[121] Kristofer E. Bouchard et al. Union of Intersections (UoI) for Interpretable Data
Driven Discovery and Prediction. In Advances in Neural Information Processing
Systems, pages 1078–1086, 2017.

[122] Trevor Ruiz, Mahesh Balasubramanian, Kristofer E Bouchard, and Sharmod-
eep Bhattacharyya. Sparse, low-bias, and scalable estimation of high dimen-
sional vector autoregressive models via union of intersections. arXiv preprint
arXiv:1908.11464, 2019.

[123] Pinghua Gong and Jieping Ye. Honor: Hybrid optimization for non-convex
regularized problems. In Advances in Neural Information Processing Systems,
pages 415–423, 2015.

[124] Stephen Boyd et al. Distributed optimization and statistical learning via the
alternating direction method of multipliers. Foundations and Trends® in Ma-
chine Learning, 3(1):1–122, 2011.

160

[125] Sumanta Basu and George Michailidis. Regularized estimation in sparse high-
dimensional time series models. Ann. Statist., 43(4):1535–1567, 08 2015.

[126] Jianqing Fan, Jinchi Lv, and Lei Qi. Sparse high-dimensional models in eco-
nomics. Annu. Rev. Econ., 3(1):291–317, 2011.

[127] Mike Folk et al. An overview of the HDF5 technology suite and its applications.
In Proceedings of the EDBT/ICDT 2011 Workshop on Array Databases, pages
36–47. ACM, 2011.

[128] Gaël Guennebaud, Benôıt Jacob, et al. Eigen v3. http://eigen.tuxfamily.org,
2010.

[129] Endong Wang et al. Intel Math Kernel Library. In High-Performance Comput-
ing on the Intel Xeon Phi™—, pages 167–188. Springer, 2014.

[130] Amir Gholami, Ariful Azad, Peter Jin, Kurt Keutzer, and Aydin Buluc. Inte-
grated model, batch, and domain parallelism in training neural networks. In
Proceedings of the 30th on Symposium on Parallelism in Algorithms and Archi-
tectures, pages 77–86. ACM, 2018.

[131] K O’Leary, I Gazizov, A Shinsel, R Belenov, Z Matveev, and D Petunin. Intel
Advisor Roofline Analysis: A New Way to Visualize Performance Optimization
Trade-offs. Intel Software: The Parallel Universe, 27:58–73, 2017.

[132] Mark Howison et al. Tuning HDF5 for lustre file systems. Technical report,
Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA (US),
2010.

[133] Joseph E O’Doherty, MMB Cardoso, JG Makin, and PN Sabes. Nonhuman
Primate Reaching with Multichannel Sensorimotor Cortex Electrophysiology.
Zenodo http://doi. org/10.5281/zenodo, 583331, 2017.

[134] Tor M Aamodt, Wilson WL Fung, I Singh, A El-Shafiey, J Kwa, T Hethering-
ton, A Gubran, A Boktor, T Rogers, A Bakhoda, et al. Gpgpu-sim 3. x manual,
2012.

[135] Jason Power, Joel Hestness, Marc S Orr, Mark D Hill, and David A Wood.
gem5-gpu: A heterogeneous cpu-gpu simulator. IEEE Computer Architecture
Letters, 14(1):34–36, 2015.

161

