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ABSTRACT

Balancing temporal shortages of renewable energy with natural gas for the genera-

tion of electricity is a challenge for dispatchers. This is compounded by the recent

proposal of blending cleanly-produced hydrogen into natural gas networks. To intro-

duce the concepts of gas flow, this thesis begins by linearizing the partial differential

equations (PDEs) that govern the flow of natural gas in a single pipe. The solution of

the linearized PDEs is used to investigate wave attenuation and characterize critical

operating regions where linearization is applicable. The nonlinear PDEs for a single

gas are extended to mixtures of gases with the addition of a PDE that governs the

conservation of composition. The gas mixture formulation is developed for general

gas networks that can inject or withdraw arbitrary time-varying mixtures of gases

into or from the network at arbitrarily specified nodes, while being influenced by

time-varying control actions of compressor units. The PDE formulation is discretized

in space to form a nonlinear control system of ordinary differential equations (ODEs),

which is used to prove that homogeneous mixtures are well-behaved and heteroge-

neous mixtures may be ill-behaved in the sense of monotone-ordering of solutions.

Numerical simulations are performed to compute interfaces that delimit monotone

and periodic system responses. The ODE system is used as the constraints of an

optimal control problem (OCP) to minimize the expended energy of compressors.

Moreover, the ODE system for the natural gas network is linearized and used as the

constraints of a linear OCP. The OCPs are digitally implemented as optimization

problems following the discretization of the time domain. The optimization problems

are applied to pipelines and small test networks. Some qualitative and computational

applications, including linearization error analysis and transient responses, are also

investigated.
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Chapter 1

INTRODUCTION

Natural gas pipeline systems are designed to transport natural gas hundreds and

even thousands of miles within and across the border lines of the United States from

production plants to customers. Natural gas is a fossil fuel composed mostly of

methane that is extracted from basins deep beneath the surface of the earth. There

are over two million miles of pipelines in the United States that transport trillions

of cubic feet of natural gas every year (see Figure 1.1 for an illustration). Friction

between flowing gas and pipeline walls causes the pressure of the gas to decrease

in the direction of transportation. As their name suggests, compressor stations are

integrated into the network to boost the pressure of the gas back to satisfactory

quality required for transportation and customer use. Compressor stations are large

mechanical facilities that consist of one or several compressor units depending on the

needs of the adjacent pipeline. There are over one thousand active compressor stations

in the United States gas network (Figure 1.1). Natural gas infrastructures consist of

other critical components such as regulators, valves, and sensor equipment. These

components primarily serve to ensure the safety of the operation. Regulators may be

turned on to reduce the pressure of the received gas, valves may be closed to redirect

gas from one pipeline to another, and sensing meters provide system operators with

recurrent pressure readings.

Natural gas is purchased primarily through daily contracts between the supplier

and the customer. Up until recent years, natural gas was almost entirely purchased

by local distribution companies (LDCs) for subsequent delivery to residences and

businesses. LDCs have their own sets of distribution pipelines that distribute much
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Figure 1.1: U.S. natural gas transportation infrastructure (Energy Information Ad-
ministration, Office of Oil & Gas, Natural Gas Division, Natural Gas Transportation
Information System (U.S. Energy Information Administration (2008))). The EIA has
determined that the informational map displays here do not raise security concerns,
based on the application of the federal geographic data committee’s Guidelines for
Providing Appropriate Access to Geospatial Data in Response to Security Concerns.

smaller volumes of natural gas over shorter distances and at much lower pressures

than transmission pipelines. Regulators may be used in transitioning natural gas from

transmission pipelines to distribution pipelines. During these early years, natural gas

was steadily withdrawn from the network with a predictable volume each day. Under

steady supply and withdrawal rates, the operation is independent of time and may

be modeled mathematically using simple algebraic equations. This is known as the

steady-state operation.

In the last 20 to 30 years, new emissions restrictions, along with the increased

supply of natural gas in the United States, have further expanded the application of

natural gas. In addition to LDCs, natural gas is now the primary source of energy used

to generate electricity. According to the U.S. Energy Information Administration,

natural gas currently accounts for 36% of total electric generation and is projected

to increase to 39% by the year 2050. Electric power generators withdraw natural gas
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from the network as a reliable energy source that balances temporary fluctuations of

unreliable sources such as wind and solar. Although wind and solar are sustainable

and renewable energy resources that are relatively cheaper than natural gas, they are

generally unpredictable and highly variable throughout the course of a day. Natural

gas is used for electric generation during time periods of shortages of these renewable

energy sources. Time-varying fluctuations in withdrawal caused by renewable energy

shortages induce time-varying flows in the natural gas transportation system, which

poses great challenges to system operators, existing technology, and the research

community. Mathematically, time-varying operations must be modeled with a system

of nonlinear partial differential equations (PDEs) in each pipeline with independent

variables being time and location along the pipe. The sets of PDEs for each pipe are

coupled together with nodal conservation laws to form the network operation, which

results in a large-scale system of nonlinear PDEs. This is known as the transient

operation; it is considerably more challenging than the steady-state case of algebraic

equations with algebraic coupling constraints.

The challenge of time-varying withdrawal is compounded with the transporta-

tion of not only natural gas but rather with heterogeneous mixtures of natural gas

and hydrogen. One of the benefits of hydrogen is that it reacts with oxygen during

combustion to form energy and release only water vapor if the hydrogen is cleanly

produced from low-carbon energy sources such as biomass, solar, wind, nuclear, or

fossil resources with carbon capture and storage. Studies indicate that mixtures of

natural gas containing 20% hydrogen by molar fraction may be safely transported

in natural gas pipelines and that these percentages of mixtures do not appear to

damage end-user appliances or compromise their performance (see e.g. Melaina et al.

(2013)). Thus, hydrogen could be transported through the existing infrastructure

and then separated, or the mixture could be used directly as an end-use fuel. How-
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ever, the unforeseen challenge of blending hydrogen with natural gas stems from their

significantly different physical and chemical properties. The density of natural gas

(primarily methane) is eight times as large as the density of hydrogen at room temper-

ature and atmospheric pressure. This implies that the velocity of hydrogen is larger

than that of natural gas at consistent flux rates. From a mathematical perspective,

the effect of blending hydrogen into natural gas pipelines requires an additional PDE

for each pipe to model the conservation of composition. This results in twice as many

density variables than the case of just pure natural gas.

In both the steady-state and transient operation, the operational expenses of

compressor units are so large that even a small improvement in their performance

could save a significant amount of money. Therefore, the actions of the compressor

units should be controlled according to the delivery requirements to minimize the

expenditure of compressor energy. This is mathematically formulated as a PDE-

constrained optimization problem. The objective is to minimize the amount of gas

that compressor energy, while being subjected to satisfying withdrawal contracts,

pressure limitations, and the physics of transporting mixtures of gases through the

network. Figure 1.1 suggests that the optimal operation of the entire U.S. natural gas

network is a task so great that the model requires simplification. The challenge, then,

is to develop a model that is capable of handling large networks, while demonstrating

the ability to accurately describe typical transient dynamics that occur in practice.

The development of a relatively simple and relatively accurate model is one of the

intentions of this thesis.

The remainder of this thesis is organized in detail as follows. A review of some

of the background on modeling natural gas systems, with a focus on theory and

computation, is presented in Chapter 2. In Chapter 3, we present the PDEs that

are commonly used to model the flow of natural gas in a transmission pipeline. In
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addition, this chapter details the linearization of these equations and derives the

solution of the linearized PDEs. This development is well-known in the field. Our

contribution involves the attenuation of waves propagating through the pipe. The

wave attenuation analysis leads to the characterization of critical curves in Chapter 4

that partition the boundary condition parameters (frequency and amplitude of waves)

into reliable and non-reliable operating regions. In addition, this chapter characterizes

another set of critical curves that partition the boundary condition parameters into

flow reversal and non-reversal regions. The minimum between the values of these

two critical curves may be used to represent a more practical operating region. In

particular, also in Chapter 4, we show that the level curves of the error between

the linear and nonlinear solutions over the space of boundary parameters (frequency

and amplitude of waves) are similar in geometrical shape to the practical critical

curves. Therefore, the critical curves can be used to estimate the maximal region

where linearization error is within a specified tolerance. To the best of the author’s

knowledge, the work presented in Chapter 4 has not been done before.

Chapter 5 introduces a simplified system of PDEs that govern sufficiently slow

dynamics of mixtures of gases in networks. This chapter extends a popular spatial

discretization scheme, originally developed for natural gas networks (Grundel et al.

(2013, 2014)), to discretize the gas mixture PDEs and obtain an ODE control system.

The development follows the approach taken in (Zlotnik et al. (2015a)) for pure nat-

ural gas. Chapter 5 also investigates transformations of flow variables to transform

one ODE system into equivalent ODE systems. Chapter 6 proves that the equiva-

lent ODE systems are monotone-ordered over the entire state and input space if the

concentration of hydrogen is homogeneous everywhere in the network. Moreover, it

is also proved that the ODE systems are not monotone-ordered, in general, over the

entire state and input space if the concentration is heterogeneous. The first result is
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an extension of the work done in (Zlotnik et al. (2016a); Misra et al. (2020)), where

they proved that the simplified pure natural gas ODE systems are monotone-ordered

(which would correspond to zero hydrogen concentration in our model). By the con-

tinuity of solutions with respect to inputs and initial conditions, we expect there to

be a nontrivial interface that partitions the input space (concentration frequency and

amplitude boundary conditions) into monotonic and non-monotonic regions (for each

fixed set of plant parameters, such as network topology, pipe lengths, etc). This inter-

face is investigated numerically in Chapter 6 for a pipeline with a specific set of plant

parameters. In addition, Chapter 6 uses numerical simulations to demonstrate that

certain pairs of frequencies and amplitudes of the sinusoidal concentration forcing

may generate a non-periodic solution of the ODE system.

The ODE system of the gas mixture is used in Chapter 7 as the constraints of

an optimal control problem that is developed to minimize the the amount of gas

that compressors consume during operation. This problem has received significant

attention for pure natural gas flows. However, to the author’s knowledge, there

are no results on the optimal control of transient flows of heterogeneous mixtures

of gases in pipelines or networks of pipelines. We derive a nonlinear optimization

program (NLP) by discretizing the time domain and using Euler’s approximation

for the time-derivative of the ODE system constraints. We apply the NLP for a

mixture of gases in a small test network in Chapter 7 to demonstrate that small

changes in gas concentration may create large changes in compressor activity and

pressure gradients. In addition, the optimal compressor solution is interpolated in

time and supplied to the ODE system to simulate the optimal trajectories of the

ODE system. The optimal simulation is compared to the much coarser discretized

optimization solution. Chapter 8 studies the optimization of transient flows of natural

gas in networks. This chapter focuses on the development of a linear time-invariant
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control system that may be used as the constraints of a linear optimization problem.

An analytical bound on the error between the solutions of the linear and nonlinear

systems is derived and verified computationally by plotting the error against the

size of the flow variation around the steady-state. Moreover, Chapter 8 investigates

the eigenvalues of the linear control system and compares them to the poles of the

transfer matrix that was derived in Chapter 3 for the attenuation of waves. The

approximation of the eigenvalues in a pipeline using the poles of the transfer matrix

may be reasonably accurate for single pipelines with certain parameters. To the best

of the author’s knowledge, this comparison has not been done before for ODE systems

that represent discretized PDEs of gas systems.

Chapter 9 presents some concluding remarks. Throughout this thesis, we try to

point out separations between our contributions and contributions from the works of

others. We also try to point out open questions resulting from our contributions.
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Chapter 2

BACKGROUND

The set of Euler equations is the most commonly used model to describe the flow

of natural gas in a transportation pipeline. The Euler equations consist of three

nonlinear PDEs that represent the conservation of mass, momentum, and energy

(Olds and Sage (1951); Stoner (1969); Issa and Spalding (1972); Wylie et al. (1974);

Fincham and Goldwater (1979); van Deen and Reintsema (1983)). The flow variables

are pressure, density, velocity, and temperature of the gas. This requires an equation

of state to achieve a closed system. An equation of state is an algebraic relation

between pressure, density, and temperature that enables the determination of any

one of these three variables from knowledge of the other two. The Euler equations,

coupled with the equation of state, collectively represent a closed system. There

are many equations of state that vary in accuracy and operational ranges in which

they apply (Modisette (2000)). The sensitivity of the equation of state to different

operating regions is investigated in (Chaczykowski (2009)).

The energy equation can be neglected when the flow is characterized to be isother-

mal. The thermal and isothermal models are compared in (Osiadacz and Chaczykowski

(2001)). It was demonstrated that a 50% variation in flow may introduce a 1% dif-

ference in the solutions of the two models when the temperature changes by 30◦

Celsius. When the flow is determined to be sufficiently slow, the inertia and kinetic

energy terms in the momentum equation may be neglected (Osiadacz and GburzyĹska

(2022); Herrán-González et al. (2009); Brouwer et al. (2011)). These simplifications,

one at a time, lead to a hyperbolic system and a parabolic system of semilinear PDEs.

In the latter case, the conservation of mass and momentum can be combined into a
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single nonlinear diffusion equation expressed in terms of pressure. The above sim-

plified models are used to reduce computational effort and provide insight into the

qualitative behavior of flow. Some analytical investigations arising from the simplified

PDEs include pressure sensitivity to time-varying withdrawal rates (Chertkov et al.

(2015)) and approximate solutions (Herty et al. (2010)).

The solution of the isothermal Euler equations has been shown to exist uniquely in

steady-state (Gugat et al. (2018); Ŕıos-Mercado et al. (2002)). A few specific solutions

were proven to be unique in (Gugat and Wintergerst (2018); Gugat and Ulbrich

(2017)). Additionally, the simplified parabolic system has been shown to satisfy

certain physically intuitive and conceptually valuable monotonicity properties (Misra

et al. (2020)), which imply uniqueness (assuming existence). Assuming existence

of the solution of the isothermal Euler equations, a Lyapunov function was used in

(Gugat et al. (2011); Gugat and Herty (2011)) to investigate exact controllability and

feedback stabilization. For sufficiently small flow variations, existence and uniqueness

of compressor actuation located midway between the inlet and outlet of a pipeline

is proven in (Gugat et al. (2011)). The actuation is defined by a feedback controller

that achieves, in finite time, a constant flux of gas through the compressor, while

remaining sufficiently close to the specified profiles of supply and withdrawal.

The Euler equations may have closed-form solutions for very specific initial and

boundary conditions. However, for general initial and boundary conditions, these

equations do not admit a closed form solution and are usually solved numerically

with the method of characteristics or finite volume and difference methods, includ-

ing Euler, Crank-Nicolson, and Lax-Wendroff (Poloni et al. (1987); Bender (1979);

Heath and Blunt (1968); Abbaspour and Chapman (2008)). The review in (Thorley

and Tiley (1987)) compares some of these methods and discusses experimental val-

idation. We refer the reader to (Zlotnik et al. (2017)) for a more recent validation
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experiment. A method using Riemann invariants is developed in (Grundel and Herty

(2020)) and compared to other finite volume methods that use midpoint and endpoint

approximations. There, the authors report a reduction of unphysical oscillations with

the Riemann invariants in comparison to the midpoint and endpoint methods. The

reader is referred to (Qiu et al. (2020)) for details on the finite volume method and to

(Stolwijk and Mehrmann (2018); Himpe et al. (2021)) for the midpoint and endpoint

methods.

Assuming that a solution exists for a given set of compressor control inputs, it is

nontrivial, even in steady-state, to design the control actions of compressors to mini-

mize the amount of fuel that they consume during operation. After discretizing the

pipelines in space, the resulting steady-state optimization problem is nonlinear, non-

convex, and was first solved in (Wong and Larson (1968a)) for a cascade connection

pipes and quickly extended to tree networks in (Wong and Larson (1968b)). Since

then, the optimization of compressor actuation in steady-state received significant at-

tention (Percell and Ryan (1987); Ŕıos-Mercado et al. (2002); Carter (1998); De Wolf

and Smeers (2000); Rachford and Carter (2000); Misra et al. (2015)). A model reduc-

tion method is employed in (Ŕıos-Mercado et al. (2002)) to improve the convergence

properties of the optimization problem. The number of unknown variables in the re-

duced optimization problem is usually between 2% and 20% of the original number of

unknown variables. It is shown in (Rı́os-Mercado et al. (2002)) that this percentage,

for their reduction method, is at most 2m/(l+n+m)×100%, wherem, n, and l are the

numbers of compressor stations, original network nodes, and pipelines, respectively.

We refer the reader to (Grundel et al. (2014)) for other methods of model reduction.

In (De Wolf and Smeers (2000)), the steady-state network optimization problem is

split into two subroutines. In the first routine, an approximate convex optimization

problem is obtained using piecewise linear connections. This approximation is shown
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to satisfy all of the optimization constraints except for one. The optimal solution from

the first routine is then used as a starting point for the full optimization problem.

In (Correa-Posada and Sanchez-Martin (2014)), a mixed-integer linear program (LP)

is developed for integrated optimization of electric power and natural gas networks

operating in steady-state.

The transient optimization problem in natural gas networks is considerably more

challenging than the associated steady-state problem, since the control actions of

compressors and flow variables may no longer be assumed to be constant values in

time. The number of optimization variables for the transient problem is N times

larger than the associated steady-state problem, where N is the number of samples

of the discretized time domain. As in the steady-state case, the goal is to design

control actions of compressors to minimize their fuel consumption or maximize the

economic value (Zlotnik et al. (2019)). As mentioned though, the optimal control

action will vary in time if the withdrawal profiles vary in time, so the steady-state

and transient optimization problems cannot be treated in the same way. Some of the

early studies regarding transient optimization can be found in (Ehrhardt and Stein-

bach (2005); Steinbach (2007); Domschke et al. (2011)) and references therein. In

these works, the Euler equations are discretized in space and time using first order

finite differences. A first-order finite difference method is used in (Liu et al. (2011))

for optimal coordinated scheduling of electric and natural gas networks. An alterna-

tive to finite differences is the pseudospectral method (Ruths et al. (2011)). It was

first derived for transient optimization in single pipelines (Zlotnik et al. (2015b)) and,

shortly after, extended to networks (Zlotnik et al. (2015a)). In these works, the space

domain is discretized using a finite volume method with a midpoint approximation

(Grundel et al. (2013)). The pseudospectral transient optimization model has been

subsequently used by its developers in a number of applications, including the opti-
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mal coordination of natural gas and electric power networks and the estimation of

parameters (Zlotnik et al. (2016b); Sundar and Zlotnik (2018)). An adaptive tran-

sient optimization model that switches between the isothermal Euler equations, the

simplified hyperbolic semilinear PDEs, and the steady-state equations is developed in

(Bales et al. (2009)). A review of some of the existing work in the optimization of nat-

ural gas networks may be found in (Ŕıos-Mercado and Borraz-Sánchez (2015)). More

details on modeling and optimization formulations may be found in (Herty (2007);

Benner et al. (2018); Herty (2008)).

Linearization of the Euler equations and its simplifications has been applied in a

number of studies. For details on linearizing Euler’s equations, the reader is referred

to (Hall et al. (1994); Hall and Crawley (1989)). Some benefits and limitations of

linearization are outlined in (Hennings (2018)). The nonlinear and linearized PDEs

are simulated in (Luongo (1986)) using finite differences, where a 25% reduction in

simulation time is reported. The accuracy of linearization is compared in (Wang

et al. (2015)) between four different, yet equivalent, representations of the PDEs, e.g.

using mass flux and density or using velocity and pressure, etc. Green’s functions are

used in (Beylin et al. (2020)) to form a linear optimization program, which is applied

on a gas network to demonstrate a reduction of optimization time by two orders of

magnitude in comparison to the nonlinear optimization program. A mixed-integer

linear programming approach based on piecewise linearization of the nonlinear terms

was developed in (Domschke et al. (2011)) for the optimal control of transient flows.

A similar linearization approach for the coupled gas network and electric power grid

is presented in (Sirvent et al. (2017)) for the case of steady-state gas flow. Piecewise

linearization requires the addition of discretization points to accurately interpolate

the nonlinear terms with linear segments, which could significantly increase the size

of the network.
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The dominant eigenmodes of the linearized equations are determined in (Behbahani-

Nejad and Shekari (2010)) and used to construct a reduced model. Linearization of

the Euler equations leads to a linear system of PDEs that may be solved in the

Laplace domain (Zecchin et al. (2009)) and written in terms of a transfer function

that maps specified inputs (boundary conditions/control actions) to outputs. The

transfer function was used to detect the location of leaks in (Reddy et al. (2011))

and to investigate the attenuation of waves in (Baker et al. (2021)). The transfer

function and some of its simplifications are analyzed in (Králik et al. (1984); Reddy

et al. (2006)). In (Alamian et al. (2012)), the transfer function is approximated in

the Laplace domain to first order in frequency and the approximate transfer function

is inverted into a state-space realization. Another state-space representation is de-

veloped in (Aalto (2008)), where dominant Hankel singular values are used to reduce

the transfer function and invert it back to state-space. We refer the reader to (Chen

(1984)) for more details of state-space representations of linear systems.

The background of modeling and computing natural gas transport operations, as

presented in this chapter, is far from complete, and does not begin to touch upon the

surface of many excellent contributions to the field. For more details, we refer the

reader to the references within the material mentioned here.
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Chapter 3

NATURAL GAS PIPELINE ANALYSIS

This chapter investigates sinusoidal operations in natural gas pipelines using a

transfer matrix. The flow equations for natural gas are presented in Section 3.1 and

the linearized equations are derived in Section 3.2. The linear equations are solved in

the frequency domain in Section 3.3. The transfer matrix that maps input variables

to output variables is derived in Section 3.4. Section 3.5 studies the attenuation and

amplification of waves. Much of this work, except for the results in Section 3.5, may

be found in other sources (see, e.g. Králik et al. (1984); Reddy et al. (2006); Zecchin

et al. (2009)). We refer the reader to our publication (Baker et al. (2021)) for more

details.

3.1 Flow Equations

Isothermal flow of natural gas through a horizontal transmission pipeline is mod-

eled with the one-dimensional isothermal Euler equations (Osiadacz (1984); Thorley

and Tiley (1987)),

∂tρ+ ∂x(ρu) = 0, (3.1a)

∂t(ρu) + ∂x(p+ ρu2) = − λ

2D
ρu|u|, (3.1b)

where u(t, x), p(t, x), and ρ(t, x) are the velocity, pressure, and density variables of

the gas, respectively. Here, t ∈ [0, T ] and x ∈ [0, ℓ], where T denotes the time

horizon and ℓ denotes the length of the pipe. The above PDE system describes

mass conservation (3.1a) and momentum conservation (3.1b). The dominant term in

the momentum equation (3.1b) is the phenomenological Darcy-Weisbach term that
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models momentum loss caused by turbulent friction, and is scaled by a dimensionless

parameter λ called the friction factor. The remaining parameters are the internal

pipe diameter D and the wave (sound) speed σ =
√
ZRT, where Z, R, and T

are the gas compressibility factor, specific gas constant, and absolute temperature,

respectively. We assume that gas pressure p and gas density ρ satisfy the ideal gas

equation of state p = σ2ρ with constant wave speed σ. While non-ideal modeling

is necessary in practice to correctly quantify flows at pressures used in large gas

transport pipelines (Srinivasan et al. (2022)), ideal gas modeling still qualitatively

captures the flow phenomenology. Extension to non-ideal gas modeling can be made

by applying appropriate nonlinear transforms (Gyrya and Zlotnik (2019)).

It is standard to use the per area mass flux φ = ρu. For slowly-varying boundary

conditions, the kinetic energy term ∂x(ρu
2) and the inertia term ∂t(ρu) in equation

(3.1b) may be omitted (Osiadacz (1984)). In this case, the flow equations in (3.1)

may be reduced to either a hyperbolic system or a parabolic system. In this chapter,

we consider the hyperbolic equation

∂tρ+ ∂xφ = 0, (3.2)

∂tφ+ σ2∂xρ = − λ

2D

φ|φ|
ρ
. (3.3)

The initial and boundary conditions associated with (3.2)-(3.3) are given by

ρ(0, x) = ϱ(x), φ(0, x) = ϕ(x), x ∈ [0, ℓ], (3.4)

ρ(t, 0) = ρ1(t), φ(t, 0) = φ1(t), t ∈ [0, T ], (3.5)

where ρ1 and φ1 dictate the rates of density and mass flux at inlet of the pipeline

(node 1). The initial condition in (3.4) is assumed to be the steady-state solution

defined by

ϕ(x) = φ, ϱ2(x) = ρ2 − λφ|φ|
σ2D

x, (3.6)
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where ρ = ρ1(0) and φ = φ1(0) are constants. We assume standard conditions for

well-posedness (Gugat et al. (2012)), and specifically that the boundary conditions are

smooth, slowly-varying, bounded in their respective domains, and compatible with

the initial conditions to ensure the existence of a smooth, slowly-varying, bounded

solution (Gugat and Herty (2011)).

3.2 Linear Flow Equations

It is convenient in the analysis of linearization to write density and flux as a

summation of steady-state and variation terms of the form

ρ(t, x) = ϱ(x) + ρe(t, x),

φ(t, x) = ϕ(x) + φe(t, x).
(3.7)

We substitute (3.7) into (3.2)-(3.3) to get the governing equations of the variation

variables, where the nonlinearity on the right hand side of (3.3) becomes

f(ρe, φe) =
λ

2D

(
ϕ|ϕ|
ϱ

− (ϕ+ φe)|ϕ+ φe|
ϱ+ ρe

)
. (3.8)

Making the following two approximations: i) the function f in (3.8) is approximated

with its linearization around the origin and ii) the coefficients of the linearization are

approximated using 1/ϱ(x) ≃ 1/ρ, we obtain the constant coefficient linear system

∂tρe + ∂xφe = 0, (3.9)

∂tφe + σ2∂xρe = αρe + βφe, (3.10)

with initial and boundary conditions

ρe(0, x) = 0, x ∈ [0, ℓ],

φe(0, x) = 0, x ∈ [0, ℓ],

ρe(t, 0) = ρ1(t)− ρ, t ∈ [0, T ],

φe(t, 0) = φ1(t)− φ, t ∈ [0, T ],

(3.11)
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where α and β are constant coefficients given by

α =
λφ|φ|
2Dρ2

, β = −λ|φ|
Dρ

. (3.12)

Here, we label the linearized variables with the same symbols as the nonlinear vari-

ables. From here onward, these symbols will always represent the flow variations of

the linear system. Therefore, we have the approximation

ρ(t, x) ≃ ϱ(x) + ρe(t, x),

φ(t, x) ≃ ϕ(x) + φe(t, x).
(3.13)

The class of linear systems in (3.9)-(3.11) is called amplified if α in (3.10) is defined

by (3.12). It is called unamplified if α in (3.10) is defined to be zero.

3.3 Laplace Domain Solution

The continuous-time Laplace transform of a function ψ(t, x) is defined by

Ψ(s, x) =

∫ ∞

0

ψ(t, x)e−stdt,

where s = r + jω is the Laplace frequency and j =
√
−1 is the imaginary unit.

Occasionally, we use the operator notation Ψ(s, x) = (Lψ)(s, x) to denote the Laplace

transform of the function ψ.

The Laplace transforms of the variation variables are defined by P (s, x) = (Lρe)(s, x)

and Φ(s, x) = (Lφe)(s, x). In this definition, the time interval [0, T ] is extended to

the nonnegative real numbers and the variation variables are extended with compact

support or with periodic extension with period T , depending upon the sought appli-

cation. Applying the Laplace transform to (3.9)-(3.10), we obtain the following set

of equations

sP + ∂xΦ = 0,

sΦ + σ2∂xP = αP + βΦ.
(3.14)

17



−

+

σ2P (x+∆x)

Φ(x+∆x)

+

−
(σ2 +∆xα)P (x)

Φ(x) |β|∆x jω∆x

jω∆x

Figure 3.1: Electric Circuit Representation of a Section of Pipeline.

The boundary conditions associated with (3.14) are given by

P (s, 0) = P1(s), Φ(s, 0) = Φ1(s), (3.15)

where P1(s) = L(ρ1(t)− ρ)(s) and Φ1(s) = L(φ1(t)−φ)(s). The equations in (3.14)-

(3.15) characterize the transient and sinusoidal responses in the Laplace domain.

Since the coefficients in (3.14) are constant, we can derive a solution analytically. We

first consider the following example.

Example. Suppose that a small section of pipe with a length of ∆x is represented

by the two-port network shown in Figure 3.1. The equations in (3.14) are obtained by

applying Kirchhoff’s circuit laws. The drop in density along the pipeline is considered

to be comparable to the voltage drop induced by the impedance of the circuit. The

conservation of current through a node in a power system is identical to the conser-

vation of flux through a node in a gas system. In this way, voltage and current in

electric transmission lines are thought to play similar roles to density and mass flux

in natural gas pipelines. It is seen in Figure 3.1 that |β| represents resistance and α

represents amplification of density. The amplification of density explains the previous

terminology. □

Similar to an electric line, define series impedance and characteristic impedance

for the gas pipeline, respectively, by

z(s) = s− β, zc(s) =

√
s− β

s
. (3.16)

It is relevant to note that both of these terms depend on β, but neither depend on α.

18



The equations in (3.14) are weakly coupled and can be decoupled by introducing

second-order derivatives

σ2∂xxP − α∂xP − szP = 0,

σ2∂xxΦ− α∂xΦ− szΦ = 0.
(3.17)

A solution of (3.17) is given by

P (s, x) = Ψ+e
µ+x +Ψ−e

µ−x, (3.18)

Φ(s, x) =
σ2

z
(µ−Ψ+e

µ+x + µ+Ψ−e
µ−x) , (3.19)

where µ± = α/(2σ2)±µ/σ2 and µ =
√
α2/4 + σ2sz. The complex exponential terms

eµ±x represent traveling waves that propagate in opposite directions along the length

of the pipe. The waves travel along the pipe with attenuation depending upon µ±

and the set of frequencies with which P1 and Φ1 in (3.15) are composed. Both of

the traveling waves eµ±x are physically relevant since the pipe has finite length and,

therefore, the waves are bounded. In general, it follows that Ψ+ and Ψ− are both

nonzero.

The coefficients Ψ± are uniquely determined by the boundary conditions. Evalu-

ating (3.18)-(3.19) at x = 0 and using (3.15) we obtain

Ψ± = ± µ±
µ+ − µ−

P1 ∓
zσ−2

µ+ − µ−
Φ1.

Substituting these coefficients into (3.18)-(3.19) gives an expression for P and Φ

explicitly in terms of P1 and Φ1 of the form

P =
µ+e

µ+x − µ−eµ−x

µ+ − µ−
P1 −

z

σ2

eµ+x − eµ−x

µ+ − µ−
Φ1, (3.20)

Φ = −se
µ+x − eµ−x

µ+ − µ−
P1 −

µ−eµ+x − µ+e
µ−x

µ+ − µ−
Φ1. (3.21)

These expressions define the solution of (3.14) for each x ∈ [0, ℓ].
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Example. We consider periodic solutions with s = jω. Suppose that the bound-

ary condition profiles in (3.11) are periodic with period T . Expanding into Fourier

series representations gives the expressions

ρe(t, 0) =
∞∑

k=−∞
ρke

jωkt, φe(t, 0) =
∞∑

k=−∞
φke

jωkt, (3.22)

where ωk = 2πk/T for each integer k. The Fourier coefficients are constants defined

in the usual way. Let δ(ω) be the impulse at ω = 0. The Fourier transforms of the

representations in (3.22) are the trains of impulses

P1(ω) =
∞∑

k=−∞
2πρkδ(ω − ωk), (3.23)

Φ1(ω) =
∞∑

k=−∞
2πφkδ(ω − ωk), (3.24)

where the areas of the impulses are proportional to the Fourier series coefficients of

the boundary conditions. Define

a(ω, x) =
µ+e

µ+x − µ−eµ−x

µ+ − µ−
, b(ω, x) = − z

σ2

eµ+x − eµ−x

µ+ − µ−
, (3.25)

c(ω, x) = −ye
µ+x − eµ−x

µ+ − µ−
, d(ω, x) = −µ−eµ+x − µ+e

µ−x

µ+ − µ−
. (3.26)

Taking inverse Fourier transforms in (3.20)-(3.21) and using the definition of the

impulse, we obtain the solution expression in the time domain given by

ρe(t, x) =
∑∞

k=−∞[a(ωk, x)ρk + b(ωk, x)φk]e
jωkt,

φe(t, x) =
∑∞

k=−∞[c(ωk, x)ρk + d(ωk, x)φk]e
jωkt.

(3.27)

The coefficients of the solution are weighted sums of the Fourier series coefficients in

(3.22), where the weights are equal to the samples of the coefficients in (3.20)-(3.21)

at equally spaced frequencies ω = ωk.

The harmonic component ejωnt is present in (3.27) if and only if it is present in

at least one of the Fourier series representations in (3.22). This is the principle of
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superposition in linear systems. We interpret this result as follows. A given frequency

component is present in density and mass flux along the entire pipe if and only if it is

present in either density or mass flux at the boundary of the pipe. It is evident from

(3.27) that the magnitude of the harmonic component ejωnt is altered according to

the magnitudes of the coefficients a, b, c, and d evaluated at the frequency ωn. This

is called wave attenuation. □

3.4 Transfer Matrix Representation

The transfer matrix maps input variables to output variables. The natural in-

put for a gas pipeline is the density at the inlet and the mass flux at the outlet of

the pipeline. Rearranging (3.20)-(3.21) for an unamplified pipeline, we obtain the

spatially-dependent transfer matrix representationP
Φ

 =

 cosh( γ
σ
(ℓ−x))

cosh( γ
σ
ℓ)

− zc
σ

sinh( γ
σ
x)

cosh( γ
σ
ℓ)

σ
zc

sinh( γ
σ
(ℓ−x))

cosh( γ
σ
ℓ)

cosh( γ
σ
x)

cosh( γ
σ
ℓ)


P1

Φ2

 , (3.28)

where P1(s) = P (s, 0) and Φ2(s) = Φ(s, ℓ). Evaluating the top equation of (3.28)

at x = ℓ and the bottom equation at x = 0 leads to the nodal transfer matrix

representation P2

Φ1

 =

 sech
(
γ ℓ
σ

)
− zc

σ
tanh

(
γ ℓ
σ

)
σ
zc
tanh

(
γ ℓ
σ

)
sech

(
γ ℓ
σ

)

P1

Φ2

 , (3.29)

where P2(s) = P (s, ℓ) and Φ1(s) = Φ(s, 0).

3.5 Wave Attenuation

As illustrated in the last example in Section 3.3, the attenuation of a wave in a

gas pipeline describes how the amplitude of the wave changes as the wave propagates

through the pipe. By the superposition principle of linear systems, the attenuation
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of each sinusoidal component of the wave is determined by the amplitude of its coef-

ficient within the solution, as in (3.27). Therefore, for the remainder of this chapter,

we assume that the boundary conditions are periodic and consider each harmonic

component separately. The boundary conditions are given by

ρe(t, 0) = κ1ρ sin(ω1t), φe(t, ℓ) = κ2φ sin(ω2t), (3.30)

where ωk are frequencies in radians per hour and κk are amplitude factors for k = 1, 2.

Example. The most natural operation of a gas pipeline is specified by constant

pressure or density at the inlet and variable mass flow at the outlet of the pipeline,

i.e. ω1 is zero and ω2 is a free parameter in (3.30). The Fourier transforms of the

boundary conditions in (3.30) are given by

P1 = 0, Φ2 = κ2φ
π

j
(δ(ω − ω2)− δ(ω + ω2)) .

Substituting these expressions into (3.29) results in

P2 = −zc
σ
tanh(γ ℓ

σ
)]Φ2, Φ1 = sech(γ ℓ

σ
)Φ2. (3.31)

The limits of the magnitudes of these expressions, as ω2 → ∞, are given by (Baker

et al. (2021))

|P2| →
1

σ
|Φ2|, |Φ1| → O(e−|β|ℓ/(2σ)) ≈ 0. (3.32)

The limiting expressions in (3.32) show that, as the frequency of flux at the outlet

increases, the amplitude of the flux at the inlet approaches zero, while the amplitude

of density at the outlet approaches the amplitude of flux at the outlet divided by the

speed of sound σ. We conclude that if mass flux withdrawal is characterized by high

frequency oscillation, the resulting oscillatory wave at the inlet will be damped out.

In pipeline operations, this is an important feature. In particular, high frequency
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demand oscillations are averaged out and there is no need to adjust supply rates at

the sending end of the pipe to match them. □

Example. An alternate mode of operation is specified by varying inlet density and

holding outlet mass flow constant. Intuitively, in networks of pipelines this operation

corresponds, e.g. to the spectral decomposition of pressure variations caused by

varying withdrawal in neighboring pipelines. In this case, ω1 is a free parameter and

ω2 is zero in (3.30). Following the calculations that lead to (3.31) we arrive at

P2 = sech(γ ℓ
σ
)P1, Φ1 =

σ

zc
tanh(γ ℓ

σ
)]P1. (3.33)

Taking the high frequency limits, we find

|P2| → O(e−|β|ℓ/(2σ)) ≈ 0, |Φ1| → σ|P1|. (3.34)

The limiting expressions in (3.34) show that as the frequency of inlet density increases,

the amplitude of outlet density approaches zero and the amplitude of the resulting

oscillation in the inlet flux approaches an amplitude of being σ times as large as

the amplitude of the inlet density. Therefore, at high frequency, the resulting flux

oscillations have amplitudes large enough to drive gas into the negative flow direction,

as the factor σ ∈ (300, 500) in (3.34) is large. □
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Chapter 4

NATURAL GAS PIPELINE APPLICATIONS

We use the results on wave attenuation from the previous chapter to investigate

several applications of natural gas flows in a pipeline. To the best of the author’s

knowledge, these applications of the transfer matrix have not been explored before in

natural gas pipelines. A reliable operating region is defined and derived in Section 4.1

and flow reversal waves is defined and derived in Section 4.2. The error resulting from

linearization is analyzed as a function of frequency and amplitude of the boundary

conditions in Section 4.3. The key result in this error analysis is that the level curves

of the error plot are similar in geometrical shape to the boundary of the reliable

operating region that avoids flow reversal. Therefore, the scaled boundary curves can

be used to estimate the maximal regions where linearization is applicable. Section

4.4 demonstrates the results using numerical simulations.

4.1 Reliable Operating Region

The solution of (3.2)-(3.5) is said to be reliable if the amplitude of ρ(t, ℓ) does not

exceed 0.1ρ. From Parseval’s theorem (Oppenheim et al. (1997)), the “boundary”

of this criterion is defined in the frequency domain by |P (jω, ℓ)| = 0.1ρ. Suppose ρ

and φ are positive in such a way that the steady-state in (3.6) is well-defined for all

x ∈ [0, ℓ]. We assume that the boundary conditions (of the linear and nonlinear PDEs

of variation variables) are periodic and consider each harmonic component separately.

As in (3.30), the boundary conditions are given by

ρe(t, 0) = κ1ρ sin(ω1t), φe(t, ℓ) = κ2φ sin(ω2t),
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where ωk are frequencies in radians per hour and κk are amplitude factors for k =

1, 2. We consider the following reliability question concerning the frequency ω2 and

amplitude factor κ2, corresponding to varying flux at the outlet of the pipe.

If density is constant at the inlet of the pipe (ω1 = 0 or κ1 = 0) and mass

flux varies at the outlet with frequency ω2 = 2πf2, what is the maximum

value of κ2 for which the amplitude of ρ(t, ℓ) is less than 0.1ρ?

Using (3.29) with |P1| = 0, |P2| = 0.1ρ, and |Φ2| = κ2φ, the solution of this problem

is given by

κ2 = κROR2 :=
0.1ρσ

φ|zc(ω2)|
|coth(γ(ω2)ℓ/σ)|. (4.1)

Since κROR2 is determined from the boundary of all such reliable solutions, it follows

that the pair ω2 and κ2 generates a reliable solution for all κ2 with 0 ≤ κ2 ≤ κROR2 .

We define the reliable operating region by

ROR2 = {(ω2, κ2) : 0 ≤ ω2 <∞ & 0 ≤ κ2 ≤ κROR2},

where κROR2 , defined in (4.1), is a function of ω2 and the flow parameters.

The top right side of Figure 4.1 depicts κROR2 as a function of ω2 for various

values of φ. The other parameter values are ℓ = 100 (km), D = 0.5 (m), λ = 0.011,

σ = 338.23 (m/s), and ρ = 56.817 (kg/m3) (Gyrya and Zlotnik (2019)). These

parameters are used for the remaining computations presented in this chapter. It is

evident from Figure 4.1 that the flux at the outlet may vary around its mean by more

than 100% (i.e., κ2 > 1 in (3.30)) and still satisfy the condition of being a reliable

solution (i.e., κ2 ≤ κROR2). For κ2 > 1, we assume that the pipeline is bidirectional

with the capability of delivering gas in both directions. In this case, there are time

intervals corresponding to the valleys of the sinusoid in (3.30) during which mass flux

is negative at the outlet, i.e. gas is injected back into the pipeline at the outlet.
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Figure 4.1: Top: (Left) Boundary of ROR1. (Right) Boundary of ROR2. Bottom:
Minimum between the boundary of the ROR and the flow reversal critical curve
(defined in Section 4.2).

A similar reliability question exists for variations in density at the inlet and con-

stant mass flux at the outlet. In particular, if flux is constant at the outlet of the pipe

and density varies at the inlet with frequency ω1 = 2πf1, what is the maximum value

of κ1, denoted by κROR1 , with which the amplitude of ρ(t, ℓ) is less than 0.1ρ? The hy-

perbolic expressions in (3.29) can be used to show that κROR1 increases exponentially

with increasing ω1. This is a consequence of high frequency wave attenuation. It is

clear that the linear system approximation is not applicable for such large amplitude

variations in density. However, for low frequencies, we may derive a solution in a

similar way as we did for κROR2 . In doing so, we define the reliable operating region

by

ROR1 = {(ω1, κ1) : 0 ≤ ω2 <∞ & 0 ≤ κ1 ≤ κROR1},

where κROR1 = min{0.1|cosh(γ(ω1)ℓ/σ)|, κmax
1 } and κmax

1 = 0.3 is a judicious bound.

In practice, the amplitude of pressure should be as close to zero as possible, so κmax
1 =

0.3 is reasonable for our purpose. The top left-hand side of Figure 4.1 depicts κROR1
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as a function of low frequency ω1 for various values of φ.

Although the curves on the top of Figure 4.1 represent the boundaries of the RORs,

the curves on the bottom are more feasible. The curves on the bottom of Figure 4.1

start to trace along the ROR curves for small frequencies until they reach a point

after which they trace what we call the flow reversal critical curves (FRCCs) (see

Section 4.2). An FRCC represents the boundary of a region that limits the solution

to flow in only one direction, i.e., the flux varies by less than 100% of its mean. The

key takeaways between the tops and bottoms of Figure 4.1 are summarized as follows.

First, the bottom left figure significantly damps the exponential growth of κROR1 . We,

therefore, expect the bottom region to be more appropriate for linearization than the

top region. Second, the curves on the bottom right figure increase as the frequency

increases, but they are bounded by unity for all φ, as expected by the definition of the

FRCC. The boundary curves of the bottom figures provide more appropriate regions

for linearization than the top figures since the flow variation is now limited to at most

100% of its mean.

4.2 Flow Reversal

There are many frequency and amplitude pairs in both regions ROR1 and ROR2

that can create flow reversal waves. A flow reversal occurs in sinusoidal operation

if the amplitude of φ(t∗, x∗), for some t∗ ∈ [0, T ] and x∗ ∈ [0, ℓ], is greater than the

steady-state mean value φ around which φ(t, x) oscillates. Using Parseval’s theorem,

we say that flow reverses direction at position x ∈ [0, ℓ] with frequency ω if |Φ(ω, x)| >

φ. If flow reverses direction with frequency ω, then the null point ξ ∈ [0, ℓ] is defined

by |Φ(ω, ξ)| = φ (assuming it exists). If no solution ξ exists, then one of two things

happen: either flow does not reverse direction or the flow reversal wave propagates

the entire length of the pipe approximately unattenuated.
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4.2.1 Flow Reversal Critical Curves

The FRCCs are defined to be the interfaces (in the (ω, κ) plane) above which the

corresponding flow solution reverses direction and below which it does not. Clearly,

if density is constant at the inlet and mass flux varies at the outlet according to the

boundary condition in (3.30), then the maximum value of the amplitude factor κ2

that avoids flow reversal must be κFRCC2 = 1 for all frequencies. That is, the pair

(ω2, κ2) generates a solution that does not change direction if 0 ≤ κ2 ≤ κFRCC2 = 1.

This is the trivial FRCC that provides the upper bound of unity on the bottom right

side of Figure 4.1. The nontrivial FRCC is posed as follows.

If flux is constant at the outlet and density varies at the inlet with frequency

ω1 = 2πf1, which value of κ1 with (ω1, κ1) ∈ ROR1 satisfies |Φ(ω1, 0)| =

φ?

The solution is given by κ1 = κFRCC1 = φ|zc||coth(γ(ω1)ℓ/σ)|/(σρ). For each value of

ω1, any value of κ1 < κFRCC1 with (ω1, κ1) ∈ ROR1 will result in a reliable operation

that avoids flow reversal at the inlet, i.e. pullback, and any value of κ1 > κFRCC1 with

(ω1, κ1) ∈ ROR1 will result in a reliable pullback operation. Thus, for a given set

of pipeline parameters, the pair (ω1, κFRCC1) defines the FRCC. The minimum value,

min(κFRCC1 , κROR1), is plotted as a function of ω1 on the bottom left-hand side of

Figure 4.1. The FRCC improves the judicious choice of limiting κmax
1 ≤ 0.3 for high

frequencies in the definition of ROR1.

4.2.2 Null Points

If flow reversal exists, we may investigate the existence and location of the null

point. We consider the following question.
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Figure 4.2: Left: Inlet-generated null point ξ1. Right: Outlet-generated null point
ξ2 for various amplitude factors.

If density is constant at the inlet and flux varies at the outlet with frequency

ω2 = 2πf2 and amplitude factor κ2 ≥ 1 with (ω2, κ2) ∈ ROR2, which value

of ξ2 ∈ [0, ℓ] satisfies |Φ(ω2, ξ2)| = φ?

The null point ξ2 is plotted on the right-hand side of Figure 4.2 as a function of f2 for

various values of κ2. Figure 4.2 shows that there is essentially a jump in the location

of the null point near f2 = 0.5 for φ = 100 and near f2 = 0.2 for φ = 300. In general,

the faster that flux oscillates at the outlet, the closer the null point is to the outlet.

This result is a consequence of the attenuation of high frequency waves. For φ = 100,

the null point ξ2 will be located within 20 km from the outlet of the 100 km pipeline

if f2 > 5. For φ = 300, the null point will be located within 20 km from the outlet

if f2 > 1 . This suggests that smaller means of flux require higher frequencies than

larger means to have null points within 20 km from the outlet.

The behavior of the null point for low and high frequencies can be investigated

with asymptotic expansions. Taking magnitudes of the bottom equation in (3.28),
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applying the boundary conditions |P1|=0 and Φ2 = κ2φ, and using the definition of

the null point |Φ| = φ, we obtain the description of the null point as a function of ω2,

κ2, and the other pipeline parameters as

|cosh (γℓ/σ) |
κ2

= |cosh (γξ2/σ) |.

For large ω2, this equation can be approximated with | exp (γξ2/σ)| = | exp (γℓ/σ)|/κ2,

from which we obtain ξ2 = [ℓ − σ ln(κ2)/|γ|]. For κ2 = 1, we recover the constant

blue curve ξ2 = ℓ = 100 km in Figure 4.2 described by the trivial FRCC. The lack

of attenuation of low frequency waves suggests that, for small ω2, the reversal wave

will propagate from the outlet to almost the inlet of the pipe, i.e., the null point

ξ2, if it exists, should be close to zero for low frequency excitation. Therefore, for

small ω2, we use a second order Taylor series expansion around ξ2 = 0 to obtain the

approximate representation 1 + |γξ2/σ|2/2 = |cosh (γℓ/σ) |/κ2, from which it follows

that ξ2 = σ (2|cosh(γℓ/σ)|/κ2 − 2)1/2 /|γ|. The resulting square-root approximation

indicates that the null point of a flow reversal wave does not exist if ω2 and κ2 > 1

are such that |cosh(γ(jω2)ℓ/σ)| < κ2 with (ω2, κ2) ∈ ROR2. This conclusion is

evident from the right-hand-side of Figure 4.2, where the values ξ2(ω2) do not exist

for sufficiently small ω2. We conclude that for sufficiently small frequency, the flow

reversal wave will propagate through the entire pipe practically unattenuated and

flow reversal at the outlet will reach the inlet, so long as the operation is reliable.

As a final observation of asymptotic analysis, since |cosh(γ(jω2)ℓ/σ)| → 1 as ℓ → 0,

it follows that flow reversal waves propagate the entire length of a sufficiently small

pipe, as expected.

We now present the contrasting problem of pullback.

If flux is constant at the outlet and density varies at the inlet with frequency

ω1 = 2πf1 and amplitude factor κ1 such that |Φ(ω1, 0)| > φ and (ω1, κ1) ∈
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ROR1, which value of ξ1 ∈ [0, ℓ] satisfies |Φ(ω1, ξ1)| = φ?

The null point ξ1 is plotted as a function of f1 on the left-hand side of Figure 4.2 for

various values of κ1. The curves indicate that flow reversal waves generated at the

inlet may propagate to nearly 10 km from the outlet. Recalling that the outlet flux

is constant, it is clear that a pullback wave cannot propagate along the entire length

of the pipeline, in contrast to above pushback waves.

4.3 Linearization Error Analysis

Define ρlin(t, x) and φlin(t, x) to be the solutions of the linear equations that come

from linearizing (3.2)-(3.3) around the steady-state solution (Baker et al. (2021)).

The error of linearization is measured with the metric

max

(
max
t,x

∣∣∣∣ρ(t, x)− ρlin(t, x)

ρ

∣∣∣∣ ,max
t,x

∣∣∣∣φ(t, x)− φlin(t, x)

φ

∣∣∣∣) . (4.2)

The error is shown as a color map on the left side of Figure 4.3 as a function of

frequency and amplitude of the sinusoidal boundary condition. The top left side of

Figure 4.3 is the error resulting from varying density at the inlet and the bottom left

side of Figure 4.3 is the error resulting form varying flux at the outlet. The figure also

displays the critical curves that were investigated in Figure 4.1 (for the same pipeline

parameters, particularly φ = 200). These error plots indicate that the level curves

of the error plots trace along parts of the critical curves. This leads us to conclude

that the critical curves can be scaled in a meaningful way to reduce the linearization

error and obtain an estimate on the maximal operating region where linearization is

applicable.

Instead of scaling the entire critical curves to reduce the error, the left side of

Figure 4.3 suggests that only parts of each of these curves need to be scaled. The top

right side of Figure 4.3 plots the linearization error as a function of (f1, κ1), where
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Figure 4.3: (Left) Top: Color map of the error in (4.2) as a function of (f1, κ1).
Bottom: Color map of the error as a function of (f2, κ2). The curve on the top
is the value min(κFRCC1 , κROR1) that was depicted on the bottom of Figure 4.1 for
φ = 200, which we label here as ROR1∩FRCC for simplicity, and similarly for the
bottom curve. (Right) Top: Error in (4.2) plotted as a function of (f1, κ1), where
κ1 = min(rκFRCC1 , κROR1) for r = 1, .75, .5. Bottom: Error as a function of (f2, κ2),
where κ2 = min(κFRCC2 , rκROR2) for r = 1, .75, .5.

κ1 = min(κROR1 , rκFRCC1) for r = 1, 0.75, and 0.5. In this case, we scale only the

FRCC part of the critical curve by a factor of r. What does this mean physically?

The value r = 1 limits the flux to vary by no more than 100% of its mean and the

value r = 0.5 limits flux to vary by no more than 50%. Since r did not scale the

ROR part of the critical curve, the density at the outlet is still allowed to vary by

up to 10% of ρ, as defined in ROR1. The bottom right side of Figure 4.3 plots the

linearization error as a function of (f2, κ2), where κ2 = min(rκROR2 , κFRCC2) for r = 1,

0.75, and 0.5. In this case, we scale only the ROR part of the critical curve. The

value κ2 = rκROR2 means that the density wave at the outlet varies by at most 10r%

of ρ, while the flux can still vary by up to 100% of its mean. These scales can be used

to obtain an estimate of the maximal region where linearization has an error of less

than a specified percentage of the steady-state values. For example, if we need the

error to be within 5%, Figure 4.3 suggests that we should limit the flow variations to
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within 50% of the steady-state solution.

4.4 Examples

We present a few examples to illustrate the applications of RORs, FRCCs, and null

points. Our first example illustrates operations on the nontrivial FRCC. Suppose that

flux at the outlet is constant and equal to φ = 100 and density at the inlet varies with

frequency f1 = 0.1 (cyc/hr). The value of κ1 on the ROR1 curve for this frequency is

κROR1 = 0.1376. The value of κ1 on the FRCC curve for this frequency is κFRCC1 =

0.1034.
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Figure 4.4: Simulation of solu-
tions on the nontrivial FRCC.

Since κFRCC1 ≤ κROR1 , the pair (0.1, 0.1034) rep-

resents a reliable operation. The top of Figure 4.4

simulates the operation (0.1, 0.1034) for T = 10

hr. As designed, the left-hand-side shows that

flow reversal at the inlet is just avoided, while

the right-hand-side shows that density fluctuates

by no more than 10% of ρ = 56.817, confirming

reliability. As expected for small frequency, the error between the solutions of the

nonlinear and linearized flow equations is relatively small, even for this 100% variation

of flux at the inlet.

The bottom of Figure 4.4 simulates an operation for T = 3 hr with φ = 300 and

f1 = 1 (cyc/hr). The amplitude factor on the nontrivial FRCC for this frequency is

κFRCC1 = 0.1282. The pair (1, 0.1282) is beneath the yellow curve on the top left-hand

side of Figure 4.1, so our results suggest that this operation is reliable. The bottom

left-hand side of Figure 4.4 shows that the linear solution avoids pullback, as expected,

but the nonlinear solution does have some pullback. This discrepancy is a consequence

of the larger error for high frequency waves with large amplitudes. The steady-state
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profile of density in (3.6) decreases downstream to the value ϱ(ℓ) = 38.6967. Although

linearization is less appropriate for this operation, we still see that the variations in

density at the outlet are within 10% of ρ = 56.817 for both the linear and nonlinear

solutions, again confirming the reliability. This example illustrates the importance to

scale the critical curves to reduce the error to within a smaller percentage.

The next example demonstrates the null points ξ1 and ξ2 for two reliable flow rever-

sals. We first consider the outlet-generated flow reversal null point ξ2, for which den-

sity at the inlet is constant and flux at the outlet varies with a frequency of ω2 and am-

plitude factor κ2. The top left-hand-side of Figure 4.5 simulates an operation for T =

4 hr with φ = 100, f2 = 0.25, and κ2 = 1.2. Since κ2 > 1, flow reversal exists at the

outlet.

Figure 4.5: Simulation of
null points. Only the nonlin-
ear solution is plotted.

The operation is reliable since the pair (0.25, 1.2) is

beneath the blue curve on the top right-hand side of

Figure 4.1. Note also that the frequency f2 = 0.25

is to the left of the red curve on the top right-hand

side of Figure 4.2, indicating that the null point does

not exist. The top of Figure 4.5 indeed shows that

the reversed flow at the outlet propagates the entire

length of the pipeline. We now consider ξ1, for which flux at the outlet is constant

and density at the inlet varies with a frequency of ω1 and amplitude factor κ1. The

bottom of Figure 4.5 simulates an operation for T = 1 hr with φ = 100, f1 = 1, and

κ1 = 0.2. The top left-hand side of Figure 4.2 suggests that the null point exists and

equals ξ1 = 86.89.
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Chapter 5

GAS MIXTURE DYNAMICS IN NETWORKS

This chapter presents a mathematical formulation to model the transportation of

mixtures of gases through pipeline networks. The PDEs that govern heterogeneous

mixtures of hydrogen and natural gas are presented in Section 5.1. In Section 5.2, the

PDE system is discretized with a finite volume method in space to obtain a nonlinear

control system of ODEs. Section 5.3 presents a derivation of equivalent ODE systems

in terms of other state variables of interest. The discretization method presented

here has received significant attention by others for the case of natural gas flows in

networks (Grundel et al. (2013); Stolwijk and Mehrmann (2018); Himpe et al. (2021)).

Our advancement is the extension of the discretization method from pure natural gas

systems to gas mixture systems.

5.1 Flow Equations

Graph-theoretic notation will be used to define flows throughout a network of

pipelines. A gas transport network is modeled as a connected and directed graph

(E ,V) consisting of edges E = {1, . . . , E} and nodes V = {1, . . . , V }, where E and

V denote the numbers of edges and nodes, respectively. It is assumed that the ele-

ments of these sets are ordered according to their integer labels. The edges represent

pipelines and the nodes represent junctions or stations where gas can be injected

into or withdrawn from the network. From here onward, we use the terms edge and

pipeline interchangeably. The symbol k is reserved for identifying edges in E and

the symbols i and j are reserved for identifying nodes in V . The graph is directed

by assigning a positive flow direction along each edge. It is assumed that gas phys-
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ically flows in only the direction of positive flow, so that the mass flow and velocity

values of the gas are positive quantities everywhere in the network. The notation

k : i 7→ j means that edge k ∈ E is directed from node i ∈ V to node j ∈ V . For each

node j ∈ V , we define (potentially empty) incoming and outgoing sets of pipelines by

7→j = {k ∈ E|k : i 7→ j} and j7→ = {k ∈ E|k : j 7→ i}, respectively.

Natural gas is mostly composed of methane (75-99% molar fraction), ethane (1-

15%), propane (1-10%), n-butane (0-2%), and isobutene (0-1%). The molecular

weight and density of methane at room temperature and atmospheric pressure is

16.04 (g/mol) and 0.657 (kg/m3). The ratio of the molecular weights of ethane to

the primary component methane is 1.874. The ratio of the molecular weights of the

components of natural gas is as large as 3.623. However, the ratio of the molecular

weight of methane to hydrogen is 15.915 (an even larger for the other components of

natural gas). Therefore, although natural gas is already a mixture of several gases,

the properties of these constituent gases are relatively similar to allow for the ap-

proximation of natural gas dynamics. However, if a significant amount of hydrogen

is blended into the network, there needs to be an additional dynamic equation that

models the composition of natural gas and hydrogen. Although we focus primarily on

blending two gases in a network of pipelines, the following derivation can be extended

to mixtures of more than two gases.

There are several approaches to define the flow of a mixture of gases (see, e.g.,

Chaczykowski et al. (2018); Subani et al. (2015); Kazi et al. (2022)). We follow

the approach taken in (Chaczykowski et al. (2018)). The key advancement in our

presentation is the development of a control system model that includes time-varying

activity of compressor control actions to account for time-varying injections and with-

drawals of constituent gases. For each pipe k ∈ E , we define partial pressures p
(1)
k

and p
(2)
k ; partial densities ρ

(1)
k and ρ

(2)
k ; partial mass fluxes φ

(1)
k and φ

(2)
k ; and mass
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fractions η
(1)
k and η

(2)
k , where

η
(m)
k =

ρ
(m)
k

ρ
(1)
k + ρ

(2)
k

=
φ
(m)
k

φ
(1)
k + φ

(2)
k

. (5.1)

We assume that total density ρk and total flux φk are related to their constituent

counterparts by the mass fraction given by

ρ
(m)
k = η

(m)
k ρk, φ

(m)
k = η

(m)
k φk. (5.2)

Since (η
(1)
k + η

(2)
k ) = 1, it follows from the above definitions that ρk = (ρ

(1)
k + ρ

(2)
k )

and φk = (φ
(1)
k + φ

(2)
k ). From here onward, superscripts “(1)” and “(2)” will always

be used to identify the correspondence of variables to natural gas and hydrogen,

respectively. In general, all of the above variables depend on time t ∈ [0, T ] and axial

location x ∈ [0, ℓk], where T is the time horizon and ℓk is the length of the pipe k ∈ E .

We assume that the equation of state is ideal for both gases, i.e., partial pressure is

ideally related to partial density by the relation p
(m)
k = σ2

mρ
(m)
k , where σ1 and σ2 are

the sound speeds of natural gas and hydrogen, respectively. The total pressure of the

mixture is defined to be the summation of partial pressures given by

pk = p
(1)
k + p

(2)
k = σ2

1ρ
(1)
k + σ2

2ρ
(2)
k =

(
σ2
1η

(1)
k + σ2

2η
(2)
k

)
ρk = σ2ρk.

The outcomes from this relation deserve attention. First, the ideal gas law for the con-

stituent gases demonstrates that the local wave speed σ of the mixture depends on the

local concentration of the gases according to σ(t, x; k) =

√
σ2
1η

(1)
k (t, x) + σ2

2η
(2)
k (t, x).

Second, it follows that the total and partial pressure variables are not related by sim-

ple scaling with the mass fraction, in contrast to total density and total flux that are

related by (5.2), since, in general, p
(m)
k = σ2

mρ
(m)
k = η

(m)
k σ2

mρk ̸= η
(m)
k σ2ρk = η

(m)
k pk.

The pressure variables are related to one another through the volumetric concentra-

tion defined by

ν
(m)
k =

σ2
mρ

(m)
k

σ2
1ρ

(1)
k + σ2

2ρ
(2)
k

=
σ2
mη

(m)
k

σ2
1η

(1)
k + σ2

2η
(2)
k

.
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In particular, p
(m)
k = ν

(m)
k pk. From here onward, we use the terms mass fraction

and concentration interchangeably. We specifically refer to volumetric concentration

where that quantity is examined.

The propagation of either concentration quantity η
(m)
k can be modeled by the

convection-diffusion equation in which the diffusion terms can be omitted (Chaczykowski

et al. (2018)). Similarly to (Chaczykowski et al. (2018)), we extend the Euler equa-

tions in (3.1a)-(3.1b) to include concentration tracking. Doing this for each k ∈ E

leads to the system

∂tη
(m)
k +

(
φk

ρk

)
∂xη

(m)
k = 0, (5.3)

∂tρk + ∂xφk = 0, (5.4)

∂tφk + ∂x

(
pk +

φk|φk|
ρk

)
= − λk

2Dk

φk|φk|
ρk

. (5.5)

Here, Dk and λk are the diameter and friction factor of the pipeline. In this for-

mulation, (5.3) is defined for either m = 1 or m = 2. Since η
(1)
k = (1 − η

(2)
k ), it

follows that both η
(1)
k and η

(2)
k satisfy (5.3) if and only if one of these variables do.

In (5.3)-(5.5), we are explicitly governing total pressure, total density, total mass

flux, and concentration of the mixture, under the assumption of the ideal equation of

state. For convenience, we reformulate (5.3)-(5.4) into an equivalent system that has

a symmetrical appearance. For m = 1 and m = 2, we compute

∂tρ
(m)
k + ∂xφ

(m)
k = ∂t

(
η
(m)
k ρk

)
+ ∂x

(
η
(m)
k φk

)
=

(
ρk∂tη

(m)
k + φk∂xη

(m)
k

)
+ η

(m)
k (∂tρk + ∂xφk) .

If the two equations in (5.3)-(5.4) for either m = 1 or m = 2 are satisfied, then the

above sequence of equations shows that (∂tρ
(m)
k + ∂xφ

(m)
k ) = 0 for both m = 1 and

m = 2. Conversely, suppose that (∂tρ
(m)
k + ∂xφ

(m)
k ) = 0 for both m = 1 and m = 2.

Adding these two equations and using the relation (η
(1)
k +η

(2)
k ) = 1 with the definition
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(5.2) shows that (∂tρk + ∂xφk) = 0. Thus, the above sequence of equations reduces

to (5.3). Using (5.1)-(5.2) and the equation of state pk(t, x) = (σ(t, x; k))2ρk(t, x), we

obtain the equivalent system of equations

∂tρ
(m)
k + ∂x

(
ρ
(m)
k

ρ
(1)
k + ρ

(2)
k

φk

)
= 0, (5.6)

∂tφk + ∂x

(
σ2
1ρ

(1)
k + σ2

2ρ
(2)
k +

φ2
k

ρ
(1)
k + ρ

(2)
k

)
= − λk

2Dk

φk|φk|
ρ
(1)
k + ρ

(2)
k

, (5.7)

where (5.6) is defined for both m = 1 and m = 2. We assume, for simplicity of

exposition, that the boundary conditions are sufficiently slowly time-varying so that

the inertia and kinetic energy terms may be removed from the momentum equation

(Sundar and Zlotnik (2018); Misra et al. (2020)). Moving forward, for each k ∈ E ,

we assume that the dynamics of the mixture are governed by

∂tρ
(m)
k + ∂x

(
ρ
(m)
k

ρ
(1)
k + ρ

(2)
k

φk

)
= 0, (5.8)

∂x

(
σ2
1ρ

(1)
k + σ2

2ρ
(2)
k

)
= − λk

2Dk

φk|φk|
ρ
(1)
k + ρ

(2)
k

. (5.9)

Compressor and regulator stations are critical components that actuate the flow of

gas throughout the network and reduce pressure in the direction of flow, respectively.

For convenience, we assume that a compressor is located at the inlet and a regulator is

located at the outlet of each pipeline, where inlet and outlet are defined with respect

to the oriented positive flow direction. For each pipeline k ∈ E , compression and

regulation are modeled with multiplicative control variables µ
k
(t) ≥ 1 and µk(t) ≥ 1,

respectively. For example, the pressure of gas leaving a compressor unit is µ
k
(t) times

larger than the pressure of gas entering the unit.

The boundary conditions for a mixture of gases allow for more degrees of free-

dom than those for a single gas, and are formulated here to enable definition of a

range of potential scenarios. All of the flow quantities defined in this paragraph are,
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in general, time-varying, but we omit time-dependence for readability. The network

nodes are partitioned into slack nodes Vs ⊂ V and non-slack nodes Vd ⊂ V . Slack

nodes are assumed to be ordered in V before non-slack nodes, so that i < j for all

i ∈ Vs and j ∈ Vd. A mixture of gas is injected into the network at each slack node

i ∈ Vs. The boundary conditions at the slack nodes i ∈ Vs are defined by specifying

individual densities s
(1)
i and s

(2)
i . Alternatively, pressure (ps)i and concentration α

(m)
i

may be specified at slack nodes i ∈ Vs. The relations (ps)i = (σ2
1s

(1)
i + σ2

2s
(2)
i ) and

α
(m)
i = s

(m)
i /(s

(1)
i + s

(2)
i ) can then be used to determine the corresponding densities

that will achieve the specified pressures and concentrations. Non-slack nodes are par-

titioned into injection nodes Vq ⊂ Vd and withdrawal nodes Vw ⊂ Vd. We order the

non-slack nodes Vd with injection nodes enumerated before withdrawal nodes, so that

i < j for all i ∈ Vq and j ∈ Vw. A mixture is withdrawn from the network at each

withdrawal node j ∈ Vw with boundary conditions specified by mass outflow wj ≥ 0.

At each injection node j ∈ Vq, a mixture is injected into the network with boundary

conditions specified by both the mass inflow qj, with qj ≥ 0, and the concentration

β
(m)
j . Although a mass inflow is specified at each injection node j ∈ Vq with concen-

tration β
(m)
j , this does not, in general, imply that the concentration flowing from node

j into outgoing edges is equal to β
(m)
j , because the nodal concentration is a mixture

of flows entering node j either by injection or from incoming pipelines. Boundary

condition designations are illustrated using each of the two alternative specifications

at the slack node for a single pipeline and small example network in Figure 5.1.

Individual density and concentration variables are unknown at non-slack nodes

and are denoted by ρ
(m)
j and η

(m)
j = ρ

(m)
j /(ρ

(1)
j + ρ

(2)
j ), respectively, for each j ∈ Vd.

All of the nodal quantities in this study are identified with bold symbols. Inlet

and outlet edge variables are defined by attaching underlines below and overlines

above the associated edge variables, respectively. For example, φ
k
(t) = φk(t, 0) and
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Figure 5.1: Configuration of the boundary conditions. (Left) A single pipeline
k : i 7→ j with i ∈ Vs and j ∈ Vw. (Right) A small network defined by j ∈ Vw,
k1 : i1 7→ j with i1 ∈ Vs, and k2 : i2 7→ j with i2 ∈ Vq.

φk(t) = φk(t, ℓk). Define the cross-sectional area of edge k ∈ E by χk = πD2
k/4. The

boundary conditions for the flow of the mixture are defined for m = 1 and m = 2 by

ρ(m)

k
= µ

k
s
(m)
i , ρ

(m)
k = µkρ

(m)
j , (5.10)

ρ(m)

k
= µ

k
ρ
(m)
i , ρ

(m)
k = µkρ

(m)
j , (5.11)

γ
(m)
j dj =

∑
k∈ 7→j

χkη
(m)
k φk −

∑
k∈j 7→

χkη
(m)

k
φ
k
, (5.12)

where (5.10) is defined for k : i 7→ j with i ∈ Vs, (5.11) is defined for k : i 7→ j with

i, j ∈ Vd, and (5.12) is defined for j ∈ Vd with the condition that γ
(m)
j dj = η

(m)
j wj

if j ∈ Vw and γ
(m)
j dj = −β(m)

j qj if j ∈ Vq. The initial condition of partial density is

assumed to be a steady-state solution given for all k ∈ E and x ∈ [0, ℓk] by

ρ
(m)
k (0, x) = ϱ

(m)
k (x). (5.13)

The steady-state solution is defined to be the time-invariant solution of the system

in (5.8)-(5.12) when the boundary condition profiles are time-invariant (i.e. equal to

the initial values of the time-varying boundary profiles). More details on the initial

condition for the discretized system are provided in the following section. Mass flux is
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not initially specified because it is uniquely determined from partial densities due to

the simplifying assumption that momentum is dominated by friction. Alternatively,

we may also consider periodic temporal constraints defined by

ρ
(m)
k (0, x) = ρ

(m)
k (T, x). (5.14)

Periodicity in time requires the parameters s(m)(t), w(t), q, µ
k
(t), and µk(t) to be

periodic with period T . The flow of the mixture of gases in the network is defined by

the initial-boundary value system of PDEs (5.8)-(5.12) with (5.13) or with (5.14).

5.2 Spatial Discretization

To analyze the initial boundary value system of PDEs (5.8)-(5.13) on the graph

(E ,V), we have developed a process of discretization, which includes a refinement of

the graph, approximation of the PDE system by an ODE system using a finite volume

approach, and a reformulation in terms of variable vectors and parameter matrices.

The vectors include variables that represent the states and boundary parameters, and

the matrices incorporate network model parameters, the incidence structure of the

graph, and the values of the control variables.

A refinement (Ê , V̂) of the graph (E ,V) is created by adding auxiliary nodes to V

in order to subdivide the edges of E so that ℓk ≤ ℓ for all k ∈ Ê , where ℓ ≤ 10 (km)

is sufficiently small (Grundel et al. (2013)). The refined graph inherits the prescribed

orientation of the parent graph. Assuming sufficiently fine network refinement, the

relative difference of the density variables of adjacent nodes in the solution to the

IBVP (5.8)-(5.13) can be made arbitrarily small in magnitude because of continuity

of the solution to the system given well-posed conditions (Gugat et al. (2012)). We

assume for all k ∈ Ê that∣∣∣ρ(m)
k − ρ(m)

k

∣∣∣
ρ
(m)
k

< ϵ,

∣∣∣ρ(m)
k − ρ(m)

k

∣∣∣
ρ
(m)
k

< ϵ, (5.15)
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where 0 ≤ ϵ≪ 1. The proofs on monotone-ordering in the next chapter only require

ϵ ≤ 1. We assume that the graph has been sufficiently refined to satisfy (5.15) and

that the hats may be omitted moving forward.

The approximation of the PDE system with an ODE system is obtained by apply-

ing a finite volume approximation method on each refined pipeline segment that was

originally developed in (Grundel et al. (2014)) for natural gas systems. We extend

this approximation method in this work to account for the mixture of gases. The

system of ODEs is obtained by integrating the dynamic equations in (5.8)-(5.9) along

the length of each refined pipeline segment so that∫ ℓ

0

∂tρ
(m)dx = −

∫ ℓ

0

∂x

(
ρ(m)

ρ(1) + ρ(2)
φ

)
dx,∫ ℓ

0

∂x
(
σ2
1ρ

(1) + σ2
2ρ

(2)
)
dx = − λ

2D

∫ ℓ

0

φ|φ|
ρ(1) + ρ(2)

dx,

where edge subscripts have been removed for readability. The above integrals of space

derivatives are evaluated using the fundamental theorem of calculus. The remaining

integrals may be approximated using various methods. Two such methods used for

natural gas networks are the midpoint and endpoint approximations (Stolwijk and

Mehrmann (2018); Himpe et al. (2021)). We adopt the endpoint method to approx-

imate pipeline density with outlet density and pipeline flux with inlet flux. These

approximations are independent of the spatial variable and may be factored out of

the above integrals. The integral equations become

ℓρ̇
(m)

= η(m)φ− η(m)φ, (5.16)

2∑
n=1

σ2
n

(
ρ(n) − ρ(n)

)
= − λℓ

2D

φ
∣∣φ∣∣

ρ(1) + ρ(2)
, (5.17)

where a dot above a variable represents the time-derivative of the variable.

We now write the discretized system in matrix-vector form. Although our ap-

proach is similar to the one in (Zlotnik et al. (2015b)), the extension to a mixture of
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gases is nontrivial. Define E × E diagonal matrices L and X with diagonal entries

Lkk = ℓk and Xkk = χk. Define the time-varying (transposed) incidence matrix M of

size E × V componentwise by

Mkj =


µk(t), edge k ∈7→ j enters node j,

−µ
k
(t), edge k ∈ j7→ leaves node j,

0, else.

(5.18)

Define the E × Vs submatrix Ms of M by the removal of columns i ∈ Vd, the

E × (V − Vs) submatrix Md of M by the removal of columns i ∈ Vs, and the pos-

itive and negative parts of Md by Md and Md so that Md = (Md + Md)/2 and

|Md| = (Md − Md)/2, where Vs denotes the number of slack nodes and |A| de-

notes the componentwise absolute value of a matrix A. Define the signed matrices

Qd =sign(Md), Qd =sign(Md), Qd
=sign(Md), and similarly for Ms. These signed

matrices are well-defined by the lower-bound constraints on compression and regu-

lation. Define the Vd × Vd identity matrix I, the Vd × Vq submatrix Iq of I by the

removal of columns j ∈ Vw, and the Vd×Vd matrix Iw by replacing columns j ∈ Vq of

I with the zero vector. Here, Vd and Vq denote the numbers of non-slack nodes and

non-slack injection nodes, respectively.

Define inlet and outlet edge mass flux vectors by φ = (φ
1
, . . . , φ

E
)T and φ =

(φ1, . . . , φE)
T , and similarly for inlet and outlet edge concentrations η and η. More-

over, define the vectors ρ(m) = (ρ
(m)
Vs+1, . . . ,ρ

(m)
Vd

)T , α(m) = (α
(m)
1 , . . . ,α

(m)
Vs

)T , and

β(m) = (β
(m)
Vs+1, . . . ,β

(m)
Vq

)T , where the subscripts of the vector components are indexed

according to the node labels in V . Similarly, define the vectors η(m) = (η
(m)
Vs+1, . . . ,η

(m)
Vd

)T

and d = (dVs+1, . . . ,dVd
)T . Recall that the components of d are positive for those cor-

responding to non-slack withdrawal nodes and negative for non-slack injection nodes.
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Define the function f : RE × RE → RE component-wise for k ∈ E by

fk(y, z) = −sign(zk)Λk |ykzk|1/2 , (5.19)

where Λk =
√
2Dk/(λkℓk). This function is used to express φ in (5.17) in terms of

density and its spatial derivative so that we may eliminate flux from the dynamic

equations. Using the function in (5.19), the discretized flow in (5.16)-(5.17) together

with the boundary conditions in (5.10)-(5.12) may be expressed in matrix-vector form

as

LMdρ̇
(m) = η(m) ⊙ F − η(m) ⊙ φ, (5.20)

γ(m) ⊙ d = Q
T

dX
(
η(m) ⊙ φ

)
+QT

d
X
(
η(m) ⊙ F

)
, (5.21)

where ⊙ is the Hadamard product and

F = f

(
Md

(
ρ(1) + ρ(2)

)
,
∑
m

σ2
m

(
Mss

(m) +Mdρ
(m)
))

. (5.22)

The Hadamard product of two vectors x ∈ RN and y ∈ RN is defined to be the

vector (a⊙ b) ∈ RN with components (a⊙ b)n = anbn for n = 1, . . . , N . In the above

derivation, we assume that regulators vary slowly so that the time derivative of Md

is insignificant, justifying its removal from (5.20). The discretized system in (5.20)-

(5.21) is a set of ordinary differential algebraic equations (DAEs) (Griepentrog and

März (1986)). The tractability index (Himpe et al. (2021)) of the DAE quantifies the

complexity of transforming it to an ODE. It is shown in (Banagaaya et al. (2022)) that

the tractability index of (5.20)-(5.21) is equal to one if every pipeline incident to a

slack node is directed away from the slack node. Let us now write the DAE as an ODE.

Multiplying both sides of (5.20) on the left by Q
T

dX and using (5.21), we may combine

(5.20) and (5.21) to form the equation Q
T

dXLMdρ̇
(m) = [QT

dX(η(m)⊙F )−γ(m)⊙d],

where we have used Qd = (Q
d
+ Qd). By writing edge concentrations in terms of
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nodal concentrations, and nodal concentrations in terms of concentrations of flows

into the nodes, the system in (5.20)-(5.21) may be written for m = 1, 2 as

Rρ̇(m) = QT
dX

((
|Q

s
|α(m) + |Q

d
|η(m)

)
⊙ F

)
−
(
Iqβ

(m) + Iwη
(m)
)
⊙ d, (5.23)

where R = Q
T

dXLMd. The system in (5.23) will be called the partial density system

of ODEs. Each row k of Md contains exactly one nonzero component given by

Mkj = µk for k ∈7→j. Using the additional fact that X and L are diagonal, it can be

shown that the mass matrix R on the left-hand-side of (5.23) is diagonal with positive

diagonal components given by rj =
∑

k∈ 7→j χkℓkµk for j ∈ Vd. Therefore, the matrix

R may readily be inverted to obtain a nonlinear control system in the usual, although

complicated, ODE form. The initial condition in (5.13), sampled at the refined nodes

of the network, denoted by ϱ(m), is the time-invariant solution of the system in (5.23)

with d = d(0), α(m) = α(m)(0), and β(m) = β(m)(0). Depending on which temporal

conditions we consider, the initial condition of (5.23) is defined by either

ρ(m)(0) = ϱ(m) or ρ(m)(0) = ρ(m)(T ). (5.24)

We now present a result on the discretization method. Proposition 1 below shows

that the discretized system in (5.23) approaches the continuous system in (5.8)-(5.9)

in a single pipeline as the distance between adjacent nodes of the refined pipeline

approaches zero.

Proposition 1. Consider a single pipeline of length ℓ, and refine its graph as

a chain connection of E segments of uniform length ∆ℓ = ℓ/E, diameter D, and

friction factor λ. Suppose the gas mixture is supplied to the pipeline at only the

inlet Vs = {1} with boundary conditions as in (5.10)-(5.12) and withdrawn from only

the outlet so that wj = 0 for j ̸= E + 1. Suppose for simplicity that there are no

compressors or regulators. Then the resulting system in (5.23) is a consistent spatial

discretization of (5.8)-(5.12).
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Proof. The matrix Md is the E × E identity matrix, Md is the E × E lower

off-diagonal matrix with nonzero entries (Md)n+1,n = −1, and Q
s
is an E × 1 unit

vector with one nonzero entry given by (Q
s
)1 = −1. For the intermediate segment

n : n 7→ (n+ 1) with 2 ≤ n ≤ E − 1, the associated dynamics in (5.23) are given by

ρ̇
(m)
n+1 +

1

∆ℓ

(
η
(m)
n+1φn+1

− η(m)
n φ

n

)
= 0

1

∆ℓ

2∑
m=1

σ2
m

(
ρ
(m)
n+1 − ρ(m)

n

)
= − λ

2D

φ
n
|φ

n
|

ρ
(1)
n+1 + ρ

(2)
n+1

.

Taking the limit ∆ℓ → 0, the above equations approach the dynamics in (5.8)-(5.9).

Similarly, as ∆ℓ → 0, it can be shown that the first and last segments of the pipe

reduce to the dynamics (5.8)-(5.9) with boundary conditions (5.10)-(5.12). □

5.3 Equivalent Systems

The system in (5.23) is expressed in terms of partial densities at non-slack nodes.

Equivalent systems expressed in terms of other variables of interest may be derived

from (5.23) using appropriate transformations. This should come with no surprise

since we have already performed a transformation in the continuous case going from

(5.3)-(5.5) to (5.6)-(5.7). In fact, such transformations exist even for pure natural

gas equations. For example, the equations of natural gas flow may be expressed in

terms of pressure and velocity, in terms of density and mass flux, or in terms of

their dimensionless quantities, ect. Define vectors ρ, p, ν(m), and E of nodal values

for density, pressure, volumetric concentration, and energy, respectively, at non-slack
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nodes by

ρ = ρ(1) + ρ(2), (5.25)

p = σ2
1ρ

(1) + σ2
2ρ

(2), (5.26)

ν(m) =
σ2
mρ

(m)

σ2
1ρ

(1) + σ2
2ρ

(2)
, (5.27)

E = (|QT

d |Xφ)⊙
(
r(1)η(1) + r(2)η(2)

)
, (5.28)

where r(1) = 44.2 (MJ/kg) and r(2) = 141.8 (MJ/kg) are calorific values of natural

gas and hydrogen, respectively. Equivalent systems may be expressed in terms of

any two vector variables from the set {ρ(m),η(m),ν(m),ρ,p,E}, excluding pairs from

the subset {η(1),η(2),ν(1),ν(2)} because variables in the latter subset would reduce to

constant vectors in the case of homogeneous mixtures. The choice of which equivalent

system to use may depend on the sought application, although some systems have

better conditioning with fewer nonlinear operations than others. Define localized

sound speed vectors a = (σ2
1α

(1) + σ2
2α

(2))1/2 and b = (σ2
1β

(1) + σ2
2β

(2))1/2, where the

square-root is applied component-wise. In general, these may be time-varying speeds.

The transformation from partial densities to total density and pressure is obtained by

superimposing (5.23) for m = 1, 2 to obtain an equation for ρ̇ and linearly combining

(5.23) for m = 1, 2 with coefficients σ2
1 and σ2

2 to obtain an equation for ṗ. In the

first case, we have

R
(
ρ̇(1) + ρ̇(2)

)
= QT

dX
((

|Q
s
|
(
α(1) +α(2)

)
+ |Q

d
|
(
η(1) + η(2)

))
⊙ F

)
−
(
Iq
(
β(1) + β(2)

)
+ Iw

(
η(1) + η(2)

))
⊙ d.

The above summations of concentration vectors are equal to vectors of ones of the

appropriate dimensions. The matrix [|Q
s
| |Q

d
|] is the “outgoing submatrix” of the

incidence matrix, where each row of [|Q
s
| |Q

d
|] is a standard unit vector in Euclidean

space. Therefore, the products |Q
s
|(α(1) +α(2)) and |Q

d
|(η(1) +η(2)) are also vectors
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of ones of appropriate dimensions. Likewise, the vector in the Hadamard product

with d is also a vector of ones. In the second case, we have

R
(
σ2
1ρ̇

(1) + σ2
2ρ̇

(2)
)

= QT
dX

((
|Q

s
|
(
σ2
1α

(1) + σ2
2α

(2)
)
+ |Q

d
|
(
σ2
1η

(1) + σ2
2η

(2)
))

⊙ F
)

−
(
Iq
(
σ2
1β

(1) + σ2
2β

(2)
)
+ Iw

(
σ2
1η

(1) + σ2
2η

(2)
))

⊙ d.

Since p = c2 ⊙ ρ, where c = (σ2
1η

(1) + σ2
2η

(2))1/2, it follows that the vector (σ2
1η

(1) +

σ2
2η

(2)) is equal to the componentwise vector division p/ρ. Using the above defini-

tions, we obtain the equivalent system

Rρ̇ = QT
dXF − d, (5.29)

Rṗ = QT
dX

((
|Q

s
|a2 + |Q

d
|p
ρ

)
⊙ F

)
−
(
Iqb

2 + Iw
p

ρ

)
⊙ d, (5.30)

where F = f(Mdρ,Msps+Mdp). The system in (5.29)-(5.30) will be called the total

density and pressure system of ODEs. We do not derive other equivalent systems.

Instead, we compute the solution of the partial density system of ODEs numerically,

and, thereafter, obtain the other variables of interest by subsequently applying the

appropriate transformations.

The coupled systems split into isolated subsystems when the mixture is homoge-

neous. Suppose that η(m), hence c, are constant vectors. Using the relation p = c2⊙ρ,

the above system of total density and pressure decouples into the two isolated sub-

systems

Rρ̇ = QT
dXf

(
Mdρ,Ms

(
a2 ⊙ ρs

)
+Md

(
c2 ⊙ ρ

))
− d (5.31)

and

Rṗ = QT
dX

((
|Q

s
|a2 + |Q

d
|c2
)
⊙ f

(
Md

p

c2
,Msps +Mdp

))
−
(
Iqb

2 + Iwc
2
)
⊙ d, (5.32)

49



where ρs is the nodal density vector at the supply nodes (boundary condition profile)

defined by ps = a
2⊙ρs. The system in (5.31) is called the isolated total density system

of ODEs and the system in (5.32) is called the isolated total pressure system. These

two isolated systems ought to be equivalent to one another through the transformation

p = c2⊙ρ. This is to say that the solution ρ of (5.31) and the solution p of (5.32) must

be linearly related by p = c2 ⊙ ρ for constant vector c2. We do not present rigorous

definitions and proofs of conditions on α(m), β(m), q, w, and network topology that

would result in η(m) being constant and the two isolated subsystems being equivalent.
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Chapter 6

MONOTONIC AND PERIODIC OPERATING REGIONS

This chapter investigates system properties that may lead to monotonicity and

periodicity of solutions. Section 6.1 presents definitions and a theorem concerning

monotone-ordering of solutions. Section 6.1.1 contains a proof that each of the

equivalent systems from the previous chapter have monotonic solutions if the con-

centration is constant. In Section 6.1.2, we prove that the solutions are, in gen-

eral, non-monotonic if the concentration is heterogeneous. Section 6.2 illustrates the

non-monotonic results using numerical simulations of flows through a small network.

Moreover, that section illustrates that certain types of equivalent systems may have

more desirable monotone system behavior than others in certain operating regimes.

Sections 6.3.1 and 6.3.2 numerically compute the monotonic and periodic interfaces

for flow in a single pipeline with certain pipeline parameters.

6.1 Monotonicity

The monotonicity of solutions to flows of a homogeneous gas through an actuated

transport network was examined as a means to reduce the complexity of optimiza-

tion and optimal control of natural gas networks in the presence of uncertainty (Misra

et al. (2020)). Here, we examine how such concepts can be extended to the trans-

port of inhomogeneous gas mixtures, and specifically to characterize the extent and

variability of hydrogen blending into a natural gas pipeline that is acceptable in the

sense of maintaining monotone-ordering of solutions. We first present some analytical

results before proceeding with numerical simulations in the next section.

A nonlinear input-to-state initial-value system of ODEs may be generally ex-
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pressed as

ẋ = g(x, u, d), x(0) = y, (6.1)

where x(t) ∈ X ⊂ Rn is the state vector, u(t) ∈ U ⊂ Rm is the control input

vector, and d(t) ∈ D ⊂ Rr is the parameter input vector defined for t ∈ [0, T ]. It is

assumed that the subsets X , U , and D are compact and convex and that the function

g : X × U ×D → X is Lipschitz in X × U ×D.

Definitions: For a given piecewise-continuous control input u(t) ⊂ U , suppose

that two independent state solutions {x1(t), x2(t)} ⊂ X exist (and are thus unique be-

cause g is Lipschitz) with corresponding initial conditions {y1, y2} ⊂ X and piecewise-

continuous parameter inputs {d1(t), d2(t)} ⊂ D for t ∈ [0, T ]. For the given control

input u(t), the system (6.1) is said to be monotone-ordered with respect to d(t) if

x1(t) ≤ x2(t) for t ∈ [0, T ] whenever y1 ≤ y2 and d1(t) ≤ d2(t), where inequalities for

vectors are taken componentwise. In this case, the solution states x1 and x2 are said

to be monotone-ordered. For simplicity, we say that a monotone-ordered system and

a set of monotone-ordered solutions are monotone, monotonic, and have the property

of monotonicity. An n×n matrix A is called Metzler if all of its off-diagonal elements

are non-negative, i.e. Aij ≥ 0 for all i ̸= j. An n×m matrix is called non-negative if

all of its entries are non-negative.

Theorem 1 (Monotonicity) (Angeli and Sontag (2003); Hirsch and Smith

(2006)): The nonlinear system in (6.1) is monotone if and only if the Jacobian matri-

ces ∂g/∂x and ∂g/∂d are, respectively, Metzler and non-negative almost everywhere

in X × U ×D.

6.1.1 Homogeneous Concentration

In this subsection, our goal is to prove that the solutions of the equivalent sys-

tems in Section 5.3 are monotone-ordered if the concentration is constant. We first
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reformulate the systems in terms of the definitions of monotonicity presented above.

In steady-state (Misra et al. (2020)), the pressure p increases componentwise with

decreasing withdrawal w ≥ 0 and with increasing injection −q ≤ 0. In reference to

(6.1), we assume that all non-slack nodes are injection nodes and define the input

parameter d ∈ D by d = (ps,d) = (ps,−q). Moreover, we assume that the flow is

always in the positive orientation of the directed graph and that the concentration

vector is constant in such a way that the coupled system in (5.29)-(5.30) reduces to

the isolated systems in (5.31)-(5.32). Before we state our result, let us first recall

some definitions.

Recall that X is diagonal with components Xkk = χk for k ∈ E ; that R is diagonal

with components Rjj = rj =
∑

k∈7→j χkℓkµk for j ∈ Vd; that Q
T
d maps edge vectors

ψ ∈ RE to non-slack node vectors by (QT
dψ)j = (

∑
k:i 7→j ψk −

∑
k:j 7→i ψk) for j ∈ Vd;

and that fk(y, z) = −sign(zk)Λk

√
|ykzk|. The system dynamics in (5.32) are rewritten

here for simplicity:

Rṗ = QT
dX

((
|Q

s
|a2 + |Q

d
|c2
)
⊙ f

(
Md

p

c2
,Msps +Mdp

))
+ b2 ⊙ q.

The k-th component of (Mdp/c
2) with k : i 7→ j is given by (Mdp/c

2)k = µkpj/c
2
j .

The k-th component of (Msps +Mdp) with k : i 7→ j is given by (Msps +Mdp)k =

(µkpj − µ
k
pi). Since the flow is in the positive direction, it follows from (5.9) that

µkpj(t) < µ
k
pi(t) for all t ∈ [0, T ] and i, j ∈ V with k : i 7→ j. Thus, the sign and

absolute value operations in the definition of the components of f are unnecessary.

It follows that the j-th state dynamics in (5.32) for j ∈ Vd may be written as

rjṗj =
∑
k:i 7→j

σ2
i χkΛk

cj

(
µkpj

(
µ
k
pi − µkpj

))1/2
(6.2)

−
∑
k:j 7→i

c2jχkΛk

ci

(
µkpi

(
µ
k
pj − µkpi

))1/2
+ b2jqj, (6.3)
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where pi = (ps)i and σ
2
i = a2

i if i ∈ Vs, whereas σ
2
i = c2i if i ∈ Vd. It is clear from

this expanded form that the function on the right-hand-side of (5.32) is continuously

differentiable (hence Lipschitz) in the state and input variables over the domain of

positive flow and pressure.

Proposition 2 (Monotonicity of Total Pressure and Density): Assume

that i) all non-slack nodes are injection nodes; ii) gas flows only in the positive direc-

tion through each edge according to its orientation in the network graph; iii) pressure

is positive in each node; and iv) (5.15) is satisfied. Suppose that the concentration

vector η(2) is constant, that the isolated subsystems in (5.31)-(5.32) are equivalent,

and that there exist two state solutions p1, p2 of the system in (5.32) with respective

initial conditions π1, π2, slack pressures (ps)1, (ps)2, and non-slack injection flows q1,

q2 for a given fixed set of control inputs {µ, µ}. Here, the vector subscripts denote the

first and second solutions and not the refined nodes. If π1 ≤ π2, (ps)1(t) ≤ (ps)2(t),

and q1(t) ≥ q2(t) componentwise for all t ∈ [0, T ], then p1(t) ≤ p2(t). Consequently,

ρ1(t) ≤ ρ2(t), where ρ1 and ρ2 are the corresponding total density solutions.

Proof: Throughout this proof, the state and input subscripts correspond to the

nodes of the refined graph. In reference to Theorem 1, we first show that the state

Jacobian matrix is Metzler, i.e., ∂ṗj/∂pi is non-negative for all i, j ∈ Vd with i ̸= j.

If i and j are non-adjacent with i ̸= j, then clearly ∂ṗj/∂pi = 0. Suppose that i and

j are adjacent with k : j 7→ i. Substituting (5.10)-(5.11) into (5.15) and using the

relation between pressure and partial densities, it can be shown that (µkpi−µ
k
pj) >

−µkpi. Thus, the Jacobian component

∂ṗj
∂pi

=
c2jχkΛkµk(2µkpi − µ

k
pj)

2rjci(µkpi(µk
pj − µkpi))

1/2
(6.4)

is positive. Suppose that i and j are adjacent with k : i 7→ j. Then

∂ṗj
∂pi

=
σ2

i χkΛkµk
µkpj

2rjcj(µkpj(µk
pi − µkpj))

1/2
> 0. (6.5)
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Because j ∈ Vd is arbitrary, it follows that the state Jacobian matrix is Metzler. We

now show that the parameter Jacobian matrix is non-negative. The above compu-

tation can be extended to show that ∂ṗj/∂(ps)i is non-negative for i ∈ Vs. With

respect to mass inflow parameters, the Jacobian components ∂ṗj/∂qi = b
2
j/rjδi,j are

non-negative (δi,j is the Kronecker delta). We conclude from Theorem 1 that the sys-

tem in (5.32) is monotone. Because pj = c
2
jρj for j ∈ Vd, it follows that the isolated

total density system is monotone as well. □

Corollary (Monotonicity of Equivalent Systems): Assume that the condi-

tions hold from Proposition 2. Then ρ
(m)
1 (t) ≤ ρ(m)

2 (t) componentwise for all t ∈ [0, T ],

where ρ
(m)
1 and ρ

(m)
2 are the partial densities of the two solutions.

Proof: By Proposition 2, we have ρ
(m)
1 = η(m) ⊙ ρ1 ≤ η(m) ⊙ ρ2 = ρ

(m)
2 . □

6.1.2 Heterogeneous Concentration

In the case of general heterogeneous mixtures, the concentration input vectors

α(m) and β(m) may be time-varying. Therefore, the parameter input space D must

be extended to include vectors of the form d = (ps,−q,α(m),β(m)). We have the

following result.

Proposition 3 (Non-Monotonicity of Total Pressure and Density): As-

sume that i) all non-slack nodes are injection nodes; ii) gas flows only in the positive

direction through each edge according to its orientation in the network graph; and

iii) pressure and density are positive in each node. Suppose that, for a given fixed

set of control inputs {µ, µ}, there exist two state solutions (ρ,p)1, (ρ,p)2 of the sys-

tem in (5.29)-(5.30) with respective initial conditions (ϱ,π)1, (ϱ,π)2, slack inputs

(ρs,ps)1, (ρs,ps)2, and non-slack mass inflows q1, q2 that satisfy (ϱ,π)1 ≤ (ϱ,π)2,

(ρs(t),ps(t))1 ≤ (ρs(t),ps(t))2, and q1(t) ≥ q2(t) componentwise for all t ∈ [0, T ]. If

η(m)(t) is time-varying, then, in general, (ρ(t),p(t))1 ̸≤ (ρ(t),p(t))2 component-wise
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for all t ∈ [0, T ].

Proof: Throughout this proof, the state and input subscripts correspond to the

nodes of the refined graph. From Theorem 1, it suffices to show that one component

of the state Jacobian matrix is negative. The j-th nodal pressure dynamics in (5.30)

may be written as

rjṗj =
∑
k:i 7→j

σ2
i χkΛk

(
µkρj

(
µ
k
pi − µkpj

))1/2
(6.6)

−
∑
k:j 7→i

pj
ρj

χkΛk

(
µkρi

(
µ
k
pj − µkpi

))1/2
+ b2jqj, (6.7)

where pi = (ps)i, ρi = (ρs)i, and σ
2
i = a2

i if i ∈ Vs, and σ
2
i = pi/ρi if i ∈ Vd.

By adding a refined edge to the graph if necessary, we assume that there is an edge

k′ : i′ 7→ j with i′ ∈ Vd. The Jacobian component corresponding to ρi′ is given by

∂ṗj
∂ρi′

= −χk′Λk′

rj

pi′

ρ2
i′

(
µk′ρj

(
µ
k′
pi′ − µk′pj

))1/2
,

which is negative. It follows from Theorem 1 that the system in (5.29)-(5.30) is not

monotone, regardless of (5.15). □

6.2 Network Example

We use numerical simulations to examine how time-varying heterogeneity of a

transported mixture affects flow dynamics throughout a network and compare equiv-

alent system variables. The simulations are performed for a test network that was

used in a previous study (Gyrya and Zlotnik (2019)), in which the authors presented a

staggered grid discretization method for the numerical solution of homogeneous nat-

ural gas pipeline flow. The configuration and dimensions of the network are shown in

Figure 6.1. The dark blue node is a slack node at which pressure and concentration are

specified, the black, maroon, and cyan nodes are non-slack withdrawal nodes, and the

green node is a non-slack injection node. The sound speeds are chosen to be σ1 = 377
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Figure 6.1: Network configuration (not to scale). The triangles represent compressor
stations. Pipeline dimensions between nodes: blue to black (20 Km), black to green
(70 Km), green to maroon (10 Km), black to maroon (60 Km), and maroon to cyan
(80 Km). The pipelines have uniform diameter (.9144 M) and friction factor (.01),
except for the black to maroon pipeline that has diameter (.635 M) and friction factor
(.015).

(m/s) and σ2 = 2.8σ1. We simulate several examples to illustrate that some physi-

cal quantities exhibit fewer crossings than others in certain operating regimes, given

ordered boundary parameters. These examples provide insight into which equivalent

system may be more useful for a particular operating regime. Figures 6.2-6.3 show

the solutions of four different examples. Two solutions corresponding to monotone-

ordered boundary conditions are simulated for each example. We now describe the

results of each simulation.

On the left side of Figure 6.2, total pressure, density, and energy solutions at

the non-slack nodes do not overlap, but the mass and volumetric concentrations

do overlap. The solutions on the right side of Figure 6.2 have the same boundary

conditions as those on the left except for the supply pressure. By doubling the supply

pressure, the total density now overlaps at each non-slack node but the pressure and

energy still do not overlap. In Figure 6.3, the blue node injects pure natural gas and

the green node injects pure hydrogen with a varying mass inflow profile. As seen

on the left side of Figure 6.3, the pressure and energy solutions at each node do not
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Figure 6.2: (Left) Two solutions (solid lines vs. dots) at the color-coordinated net-
work nodes in Figure 6.1. The boundary conditions for both solutions are (ps)blue = 5

MPa, α
(2)
blue(t) = 0.01(1+sin(4πt/T )), β

(2)
green(t) = 0.125(1+sin(12πt/T )), qgreen(t) = 3

(kg/s), wblack(t) = 60(1 − sin(6πt/T )) (kg/s), µred = 1.0678, µ
yellow

= 1.0140, and

µ
purple

= 1.0734, where T = 60 (hr). The boundary condition that differs between the

two solutions is wcyan(t) = 110 (kg/s) (solid lines) and wcyan(t) = 130 (kg/s) (dots).
(Right) Same boundary conditions except for (ps)blue = 10 (MPa).

overlap. However, a close examination shows that the density solutions do overlap

at every node upstream from the point of hydrogen injection. The concentration

solutions overlap at only the cyan node. The right side of Figure 6.3 injects gas

at the supply node with double the pressure as that on the left side, but all other

boundary conditions remain the same. This increase in supply pressure forces the

pressure, density, and energy solutions to overlap at all of the non-slack nodes. The

concentrations overlap at every node upstream the node of hydrogen injection. At

nodes downstream the injection of hydrogen, the concentration of hydrogen is zero, as

it ought to be. The solutions in Figure 6.3 may not be realistic in the current operation
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Figure 6.3: (Left) The boundary conditions for the two solutions are (ps)blue = 5

(MPa), α
(2)
blue(t) = 0, β

(2)
green(t) = 1, qgreen(t) = 9(1 + sin(6πt/T )) (kg/s), wblack(t) =

100(1 − sin(6πt/T )) (kg/s), µred = 1.1096, µ
yellow

= 1.0057, and µ
purple

= 1.1301,

where T = 80 (hr). The other boundary condition is wcyan(t) = 130 (kg/s) (solid
lines) and wcyan(t) = 150 (kg/s) (dots). (Right) Same boundary conditions except
for (ps)blue = 10 (MPa).

of natural gas pipelines because the concentration of hydrogen reaches very high

levels. However, these figures indicate that the solutions may behave erratically if the

pipelines are manufactured to deliver up to 20-30% of hydrogen by mass. In particular,

the solution variables may have large gradient surges in small time intervals.

The five edges of the network are discretized into 240 refined edges with ℓk = 1

(km) for all k ∈ Ê . Although one kilometer is sufficiently fine to demonstrate non-

monotonicity for slowly-varying concentrations, a much smaller discretization size is

required to accurately simulate rapidly-varying concentrations. We note that even

the slowly-varying solutions in Figures 6.2-6.3 show noticeable convergence as the

discretization size is decreased from 1 (km) to 100 (m). For small discretization
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lengths (ℓk ≤ 100 (m)), the overlap between the solutions in these figures may be

more pronounced.

6.3 Phase Interfaces

Proposition 3 shows that the total pressure and density system of ODEs is not

monotone-ordered over the entire input region D = (ps,−q,α(m),β(m)). However,

by Proposition 2, its Corollary, and the continuity of solutions with respect to ini-

tial conditions and inputs (Khalil (2002)), for a given set of plant parameters, the

non-isolated total pressure and density system of ODEs is expected to be monotone-

ordered over a certain sub-region D0 ⊂ D that consists of concentration vectors that

are uniformly close to a constant concentration vector. Moreover, again by continu-

ity, monotonicity is expected to hold for slow variations in concentration with large

amplitudes. This suggests that there may be a nontrivial monotonic interface (MI)

that partitions the concentration boundary conditions (hence D) into monotonic and

non-monotonic phase regions for each equivalent system variable. We analyze the MI

numerically for a single pipeline. In the remainder of this section, we consider a single

pipeline with concentration and pressure specified at the inlet of the pipeline (node

1) and with mass outflow specified at the outlet (node 2). The pipeline parameters

and boundary conditions that do not change are ℓ = 50 km, D = 0.5 m, λ = 0.11,

and ps = 7 MPa. We denote the concentration of hydrogen at the inlet slack node

by α1(t) = α
(2)
1 (t) and specify it to be

α1(t) = α1 (1 + κ sin(2πω∗t)) , (6.8)

where κ is the amplitude factor of the sinusoid, ω∗ is its frequency in cycles per hour,

and α1 is the mean concentration profile around which the sinusoid oscillates. Here,

the subscript is with respect to the node number.
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6.3.1 Monotonic Interface

We consider the following question.

What is the interface (ω∗, κ∗) in the (ω∗, κ) plane below and above which

the solution is monotonic and non-monotonic, respectively?

The MI is computed for each flow variable using numerical simulations. In addition

to the boundary conditions that are specified at the beginning of this section, this

subsection uses σ1 = 377 (m/s), σ2 = 2.8σ1, and α1 = 0.02. For each (ω∗, κ) in (6.8),

we compute three solutions corresponding to three monotone-ordered mass outflows

w2 = φπ(D/2)2 (kg/s), where φ = 120, 140, and 160 (kg/m2s). The region in the

(ω∗, κ) plane defined by 0 ≤ ω∗ ≤ 2 and 0 ≤ κ ≤ 1 is discretized into a 21×41 grid of

discrete pairs. We numerically simulate the three solutions for each pair of boundary

condition parameters on this grid. In particular, for each discrete ω∗, we compute the

three solutions for each discrete κ with until we achieve the lower bound κ = κ∗(ω∗) at

which at least two of the three solutions overlap. The MI curves for several equivalent

system variables are depicted in Figure 6.4. The region below the MI curve is called

the monotone operating region (MOR). Figure 6.4 shows that the MORs for hydrogen

density, natural gas density, total density, energy, and pressure are nested increasing

sets with the hydrogen density MOR being the smallest set and the pressure MOR

being the largest. For time-varying concentration profiles, Figure 6.4 suggests that

the pressure and energy equivalent system should be used if monotonicity properties

are important to the formulation. This is the conclusion that we arrived at in Section

6.2. Of the five examples from Section 6.2, only Figure 6.2 considered time-variations

in concentration. Figure 6.2 used two sinusoidal forcing frequencies, 0.1 (cyc/hr) and

0.033 (cyc/hr), each with unity amplitude factors κ = 1. Recall that in those figures,

only the pressure and energy solutions did not overlap. This observation agrees with
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the MIs in Figure 6.4, where the operating point (ω∗ = 0.1, κ = 1) is above all of the

MIs except for the pressure and energy MIs. For a more accurate comparison, the

MIs ought to be recomputed with 5 and 10 (MPa) slack pressures instead of the 7

(MPa) that was used to compute the MIs in Figure 6.4.

0 0.5 1 1.5 2

0.2

0.4

0.6

0.8

1
Monotonic Interface

Figure 6.4: Monotonic interfaces.

As ω∗ increases from ω∗ = 0 to ω∗ = 2

(cyc/hr), the MI curves qualitatively de-

crease from unity to a lower bound, flat-

ten out, and then increase. The fact

that the amplitude factor generally in-

creases along the MI as ω∗ increases be-

yond ω∗ = 0.75 is a robustness feature of

monotonicity to high frequency uncertainty. This property appears to be a conse-

quence of wave attenuation in gas pipelines that was covered in the previous chap-

ter. In particular, the gas pipeline demonstrates low-pass filtering characteristics

with which the amplitudes of high frequency travelling waves are significantly atten-

uated over short distances, and, therefore, the likelihood of the solutions overlapping

decreases as the high frequency waves increase in frequency. If the concentration

of hydrogen injected into the network contains a small variation of high frequency

uncertainty, then the MIs suggest that this uncertainty typically will not cause an

otherwise theoretically monotonic operation to become non-monotonic.

6.3.2 Periodic Interface

In this section, we demonstrate that non-periodic solutions may emerge from

sinusoidal concentration boundary conditions. To study periodic solutions, we must

simulate solutions over large time intervals of up to 400 hours. In addition, we will

consider large and fast variations in concentration. This requires an extremely fine
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spatial discretization size for the simple endpoint discretization method. The large

time interval and small discretization size is difficult to implement digitally. Therefore,

in our study of periodic solutions, instead of using the endpoint discretization method,

we discretize the pipeline at the (translated) nodes of Chebyshev polynomials for

which exponential convergence properties are obtained (e.g., see Ascher and Greif

(2011)). We briefly outline the method here. Consider a single pipeline of length ℓ,

diameter D, and friction factor λ with axial variable x ∈ [0, ℓ]. Discretize the interval

[0, ℓ] with the (N +1) discretization points xi = ℓ/2(1− cos(iπ/N)) for i = 0, . . . , N .

Define the sampled variables ρ
(m)
i (t) = ρ(m)(t, xi) and φi(t) = φ(t, xi). It follows

from interpolating the values of ρ
(m)
i (t) at the points xi using Lagrange polynomials

of order N that (e.g., see Ascher and Greif (2011))

∂xρ
(m)(t, xi) ≈Dρ(m)

i (t), Dij =



n∑
n=0
n̸=j

1
xj−xn

, i = j,

1
xj−xi

n∏
n=0
n̸=i,j

xi−xn

xj−xn
i ̸= j.

(6.9)

The discretized PDEs in (5.8)-(5.9) become

ρ̇(m) +D

(
ρ(m)

ρ(1) + ρ(2)
⊙φ

)
= 0, (6.10)

D
(
σ2
1ρ

(1) + σ2
2ρ

(2)
)

= − λ

2D

φ⊙ |φ|
ρ(1) + ρ(2)

. (6.11)

The boundary conditions are incorporated into the discretized equations by replacing

ρ
(m)
0 (t) = s

(m)
0 (t) and φN(t) = wN(t)/(0.25πD

2). This ODE system is implemented

in Matlab using the function ode15s.

To introduce the transition to non-periodic phenomena, Figure 6.5 shows three

examples that share the same boundary conditions with the exception of different

frequencies ω∗ and amplitude factors κ of the sinusoidal concentration profile in (6.8).

The top of the three figures depict the pressure solutions at the outlet of the pipeline
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Figure 6.5: Pipeline solution with boundary conditions w2(t) = 75π(D/2)2 (kg/s).
(Left) ω∗ = 0.25 and κ = 1.0 with P = 0.12. (Middle) ω∗ = 0.1 and κ = 0.98 with
P = 0.1. (Right) ω∗ = 0.6 and κ = 0.9 with P = 1.49.

for t ∈ [rT, T ] with 0.7 ≤ r ≤ 0.95, where T = 400 hr. The tail-ends of the solutions

are used to bypass the initial transient responses that are not included here in the

analysis of periodic orbits. We see that the solutions on the left and middle sides

of the figure approach periodic orbits and that the solution on the right side does

not appear to do so. The pressure on the left side has twice as many local minima

than the inlet concentration over the time interval [0.95T, T ]. The additional local

minima correspond to the inner loop of the periodic orbit. The pressure in the

middle solution has the same number of local minima as the inlet concentration over

the interval [0.75T, T ], but has twice the period. These examples demonstrate that

periodic solutions may even be incoherent in the following sense. From the laws of

fluid dynamics, gas pressure should decrease with decreasing density under constant

temperature and volume. However, the phase space diagrams in Figure 6.5 contain

small time intervals and their periodic repetitions during which density decreases

while pressure increases. The solutions in this section are computed with sound

speeds σ1 = 338.38 m/s, σ2 = 4σ1, and mean hydrogen mass concentration α1 = 0.2.

The frequency responses of each solution are also depicted in Figure 6.5 using the

discrete Fourier transform (DFT) (Oppenheim et al. (2001)). The DFT is defined

below in (6.12). The dominant frequency mode in the solution appears at the forcing
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frequency ωn = ω∗ in Figure 6.5. The generated frequency modes in the left, middle

and right sides of Figure 6.5 appear, respectively, at integer multiples of ω∗, at half

the values of the integer multiples of ω∗, and in a continuous distribution. These

observations inspire a quantitative measure of periodicity in terms of the frequency

response of the solution. This is the approach taken in (Tziperman et al. (1994))

for the transition to what they term “chaotic” responses in oceanic wind bursts. We

define a sequence of evenly-spaced samples of the tail-end of the outlet pressure by

p2[k] = p2((0.8+k/N)T ) for k = 0, . . . , 0.2N , where N is equal to the number of time

steps in the numerical solution over the interval [0, T ]. For such a sampled sequence

ψ[k] its normalized DFT is defined as

{Fψ}[ωn] =

∑0.2N
k=0 ψ[k]e

−j2πωnk

maxωn

∣∣∣∑0.2N
k=0 ψ[k]e

−j2πωnk

∣∣∣ , (6.12)

where ωn = n/(0.2T ) (cyc/hr) are the sampling frequencies for n = 0, . . . , 0.2N . The

measure of periodicity is defined by the average power spectrum given by

P =
1

0.2N + 1

0.2N∑
n=0

|{F(p2 − π2)}[ωn]|2 × 100, (6.13)

where π2 = p2(0) is the initial steady-state value of pressure at the outlet of the

pipeline. The shifted pressure in the power spectrum is used to suppress the zero

frequency component of the initial state.

The power spectrum P is depicted in a color map as a function of (ω∗, κ) on the

left side of Figure 6.6, where ω∗ is the forcing frequency and κ is its amplitude factor

given in (6.8). This figure has been obtained numerically as follows. Similarly to

the way that we have computed the MIs, the region in the (ω∗, κ) plane defined by

0 ≤ ω∗ ≤ 2 and 0.5 ≤ κ ≤ 1 is discretized into a 31 × 15 grid of discrete pairs.

For each frequency and amplitude factor of the forcing concentration on this grid,

we numerically simulate the solution in the pipeline for 400 hours. We then compute
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Figure 6.6: (Left) Color map of the power spectrum P in (6.13) as a function of
(ω∗, κ) in (6.8). The boundary conditions are α1 = 0.2 and w2(t) = 75. The coloring
depicts the minimum between 1 and P in (6.13). (Right) Phase operating regions
that separate periodic and monotonic (P&M), periodic and not monotonic (P&¬M),
and neither periodic nor monotonic (¬P&¬M).

the DFT and power spectrum of the sampled solution, as defined above. This gives

the discrete set of quantified values depicted on the left side of Figure 6.6. The

periodic interface (PI) in this figure is the set of operating points below or above

which the solution does or does not visually approach a periodic orbit. For each ω∗,

the parameter κ is increased from κ = 0 to κ = κ∗(ω∗), where κ∗(ω∗) is the upper

bound on κ below which the tail-end of the solution (p2(t),ρ2(t)) traces a closed orbit.

Figure 6.6 shows that the power spectrum measure and the visual periodic interface

are in reasonable agreement.

We now compare the MI and the PI of the pressure variable with α1 = 0.2. These

interfaces separate the phase regions from periodic and monotonic, to periodic and

non-monotonic, to non-periodic and non-monotonic as shown on the right side of

Figure 6.6. Note that the pressure MI in Figure 6.6 is different from the pressure

MI in Figure 6.4 due to the different mean concentration α1. Figure 6.6 shows that

the interfaces are equal for ω∗ < 0.2. As the frequency increases from ω∗ = 0.2 to
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ω∗ = 0.5, the value of κ on the MI decreases. As the frequency increases from ω∗ = 0.3

to ω∗ = 0.5, the value of κ on the PI decreases. The interfaces are roughly constant

over the frequency range 0.5 < ω∗ < 0.9. As frequency increases from ω∗ = 1, both of

the interfaces generally increase. However, the PI shows a more significant increase in

its accent over this frequency range than the MI. More importantly, the MI is never

above the PI over the entire frequency range, so that the monotonic operating region

is a subset of the periodic operating region. This suggests that monotonic solutions

may eventually approach periodic orbits for certain plant parameters, which leads

to some open questions. Can the MI, PI, or both be characterized or approximated

analytically in terms of the set of plant parameters? Is the heterogeneous gas mixture

system chaotic (Devaney (2021))? We present these questions here to inspire future

work, but do not pursue them in this thesis.
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Chapter 7

OPTIMAL CONTROL OF HETEROGENEOUS MIXTURES

This chapter uses the ODE control system from Chapter 5 as the constraints of

an optimal control problem. The goal is to design control actions of compressor units

to minimize the their expended energy during operation while satisfying the delivery

and physical flow requirements. The OCP is formulated in Section 7.1 as an ODE-

constrained optimization problem. The time interval is discretized into evenly-space

sampling times in Section 7.2 and the derivative term in the ODE system constraints

is approximated using Euler’s method. This allows us to implement the nonlinear

optimization program digitally in Matlab. We demonstrate the methodology on a

small test network in Section 7.3. The optimal control problem has received significant

attention by others for the case of natural gas flows (see, e.g. Zlotnik et al. (2015a);

Sundar and Zlotnik (2018)). The key advancement of our work is the extension of the

OCP from transient flows of natural gas in networks to transient flows of mixtures of

natural gas and hydrogen in networks.

7.1 Formulation

The actions of compressors and regulators, defined by the function values µ
k
(t)

and µk(t), are designed to minimize the energy expended by their respective units.

Because pressure down-regulation does not consume considerable energy, its propor-

tion of total energy used for operating a pipeline may be neglected. The total energy

required for compression is given by

J =
∑
k∈E

∫ T

0

ck|φk
(t)|
(
(µ

k
(t))(ν−1)/ν − 1

)
dt, (7.1)
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where ck is related to the efficiency of the compressor µ
k
and ν is the isentropic

exponent (Marić et al. (2005)) (which is assumed to be a weighted average of those of

natural gas and hydrogen with weights equal to their respective mean concentration

injections). Most compressors run using gas drawn from the pipeline itself, and

the operational cost is the value of that gas. However, the flow model presented

here does not include withdrawing from the pipeline at the compressor stations so

that, effectively, the cost of operation may be considered as the equivalent cost of

electrical or another type of energy that does not affect the pipeline flow. Gas network

operators require pressure and compression to be within satisfactory limitations to

ensure the safety of transportation and the quality of gas delivered to customers.

These limitations are modeled for the discretized system in (5.23) for all k ∈ E with

inequality constraints of the form

pmin ≤ σ2
1ρ

(1) + σ2
2ρ

(2) ≤ pmax, 1 ≤ µ
k
, µk ≤ 2, (7.2)

where pmin and pmax are specified bounds on pressure (inequalities are taken compo-

nentwise). The optimal control problem is defined by

min J ≜ compressor energy in (7.1),

s.t. dynamic constraints: (5.23),

temporal constraints: (5.24),

inequality constraints: (7.2).

(7.3)

The decision variables are partial densities, mass fluxes, compressor ratios, and reg-

ulator ratios throughout the network.
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7.2 Implementation

The OCP in (7.3) may be generally expressed as

min
x(t),u(t)

∫ T

0

J (x(t), u(t))dt (7.4a)

s.t. R
d

dt
[R(m)x(t)] = f (m)(x(t), u(t), d(t)), (7.4b)

x(0) = x0 or x(0) = x(T ), (7.4c)

l.b. ≤ (x(t), u(t)) ≤ u.b., (7.4d)

where x = (ρ(1),ρ(2), φ)T is the state, u = ({µ
k
, µk})T is the control, and d =

(s(1), s(2),w)T is a fixed (potentially time-varying) vector of parameters. In the above

problem, R = (Q
T

dXLMd) and R
(m) is a row selector matrix that maps x into ρ(m).

The symbols l.b. and u.b. represent vector bounds that constrain the components of

the state and input vectors, where the inequalities are applied componentwise. The

nonlinear program is obtained by discretizing the time interval [0, T ] into N subin-

tervals (tn, tn+1), for n = 0, . . . , (N − 1), where the sampling times are defined by

tn = nT/N , in the case of the steady-state initial condition. In the case of peri-

odic temporal constraints, the interval [0, T ) is discretized into N subintervals with

equally-spaced collocation points tn = nT/N for n = 0, . . . , (N − 1).

The vector-valued functions x(t), u(t), and d(t) are sampled to form finite se-

quences of discrete vector-values x[n] = x(tn), u[n] = u(tn), and d[n] = d(tn), for

n = 0, . . . , N . The integral in the objective function is approximated using the left-

endpoint integration method, resulting in∫ T

0

J (x(t), u(t))dt ≈
N−1∑
n=0

T

N
F(x[n], u[n]).

The time derivative of x(t), for t ∈ (tn, tn+1), is approximated with Euler’s method

ẋ(t) ≈ x[n+ 1]− x[n]

T/N
.
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The nonlinear and linear programs are then defined by

min
x[n],u[n]

N−1∑
n=0

T

N
J (x[n], u[n]) (7.5a)

s.t. RR(m)(x[n+ 1]− x[n]) =
T

N
f (m)(x[n], u[n], d[n]), (7.5b)

x[0] = x0 or x[0] = x[N ], (7.5c)

l.b. ≤ (x[n], u[n]) ≤ u.b., (7.5d)

where (7.5b) is defined for n = 0, . . . , (N − 1) and (7.5d) is defined for n = 1, . . . , N .

Solution of the NLP in (7.5) is implemented in Matlab with the interior-point

algorithm using the function fmincon, and is evaluated on a MacBook Air 8-core

CPU with 8GB of unified memory. The gradient of the objective and Jacobian of the

constraints are supplied to the function for improved performance. The Hessian of

the Lagrangian function is set to the default finite-difference approximation. Optimal

control of compression and regulation is obtained from the optimal solution U =

U∗. The optimized time-series for compressors and regulators, and any specified

parameters, are linearly interpolated to provide control functions to the ODEs (5.23)

The system is simulated in Matlab using the function ode15s for validation of the

solution and an improved prediction of pressure and mass flux. The steady-state

solution is used as the starting point for optimization, and the initial state of the

optimal solution is used as the initial condition for simulation. In the following, we

distinguish between the solution of the optimization problem (7.5) and the solution of

the ODEs (5.23) that are driven by optimal compression and regulation. We consider

this comparison an important validation of the presented optimal control scheme,

because feasibility of the coarsly discretized physical system in the optimal solution

of the NLP (7.5) does not necessarily guarantee that the control solution obtained

by solving (7.5) results in that same physical solution in a simulation with controlled

error. For the case studies in the next section, the two solutions are compared using
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Figure 7.1: (Left) Top: Configuration of the network. Pipeline dimensions: blue
to purple = 50 Km, purple to cyan = 30 Km, purple to green = 20 Km, and green
to cyan Is 30 Km. Bottom: Withdrawal flow profiles, color-coded to correspond to
associated nodes. The network has two compressors, indicated by triangles, located
at the start and end of the pipe directed from blue to purple. (Right) Left column:
Hydrogen concentration profiles at the supply node. Right column: Corresponding
optimal compressor responses.

the average L2 norm of the relative difference given by

1

Ê

∑
k∈Ê

 1

T

∫ T

0

(
2
φ
k
(t)− ϕ

k
(t)

φ
k
(t) + ϕ

k
(t)

)2

dt

1/2

× 100, (7.6)

where φ
k
is the optimized flux in edge k ∈ Ê , ϕ

k
is the simulated flux, and Ê is the

number of refined edges in Ê . In addition, the maximum absolute relative difference

is also documented as

max
k∈Ê

(
max
t∈[0,T ]

∣∣∣∣∣2φk
(t)− ϕ

k
(t)

φ
k
(t) + ϕ

k
(t)

∣∣∣∣∣
)

× 100. (7.7)

Similar metrics are used for the difference between optimized and simulated pressure

trajectories.
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7.3 Example

The optimal control algorithm is demonstrated on a cyclic network whose config-

uration and dimensions are shown on the top left side of Figure 7.1. Optimization

of gas flows in cyclic networks are typically more difficult to solve than non-cyclic

networks (RIO (2006)). We create a refined network with a uniform discretization

length of ℓk = 10 km for all k ∈ Ê . The diameters and friction factors of the refined

pipelines are uniform and equal to Dk = 0.5 m and λk = 0.011 for all k ∈ Ê . The

speeds of sounds of the gases are σ1 = 338.38 m/s and σ2 = 4σ1. We use N = 20

time steps with ν = 1.28 and compressor efficiency values c1 = c5 = D4
k/T in (7.1).

The minimum and maximum pressures in (7.2) are pmin
j = 5 MPa and pmax

j = 12

MPa for all j ∈ V̂w. Discretization results in 780 optimization variables, 740 equality

constraints, and 520 inequality constraints in the NLP (7.5).

The purple, green, and cyan nodes in the network graph on the left side of Figure

7.1 represent stations where gas is withdrawn with color-coordinated flow profiles

depicted below. The red and yellow triangles represent two compressor stations whose

time-dependent operations are optimized in a model-predictive manner. The blue

node is the supply station for a mixture of natural gas and hydrogen with a fixed

pressure of (ps)blue = 5 MPa that is immediately boosted by the red compressor

station. We demonstrate three solutions for this network, each of which are subject

to the same above boundary conditions but differ in the injected concentration of

hydrogen at the supply node. The left column on the right side of Figure 7.1 depicts

the specified hydrogen concentration profiles at the supply node for the three solutions

and the right column shows the associated results for optimal compression ratios of

the two color-coordinated compressor stations. The total compressor energy values

in as defined in equation (7.1) are J = 0.787, J = 0.824, and J = 0.860 (non-
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Figure 7.2: (Left) Left column: Optimized pressure at refined withdrawal nodes
driven by the respective concentration profiles from Figure 7.1. Right column: Simu-
lated pressure at refined withdrawal nodes driven by inlet concentration and optimal
compression profiles from Figure 7.1. The average L2 norm of the relative difference
in pressures, using the metric (7.6), are approximately 0.769%, 0.770%, and 0.769%
for the top, middle, and bottom Rows. The maximum relative difference in pressures,
using the metric (7.7), are approximately 2.154%, 2.038%, and 1.971% for the top,
middle, and bottom rows. The combined computational times for optimization and
simulation are approximately 10.0 S, 8.0 S, and 7.7 S for the top, middle, and bottom
rows, respectively. (Right) Left column: Optimized mass flux in refined edges driven
by the respective concentration profiles from Figure 7.1. Right column: Simulated
mass flux in refined edges driven by inlet concentration and optimal compression
profiles from Figure 7.1. The L2 relative difference metric values using (7.6) are ap-
proximately 3.994%, 4.608%, and 5.258% for the top, middle, and bottom rows. The
maximum relative difference values using metric (7.7) are approximately 12.967%,
16.713%, and 21.509%, respectively.

dimensionalized units) corresponding to the optimal compression ratios given on the

right side of Figure 7.1 from top to bottom, respectively. The left and right sides of

Figure 7.2 depict pressure and mass flux solutions, respectively, where the left columns

show the optimized solutions and the right columns show the validating simulation.

The results demonstrate that minor variations in hydrogen concentration may have

substantial effects on pressure and compressor activity. In particular, the pressure

trajectories in Figure 7.2 increase by approximately 2 MPa from t = 0 to t = 8 hours

for a fixed 10% hydrogen injection, while the change is approximately 3.5 MPa when
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the hydrogen injection concentration slowly varies from 8% to 12% over the 24 hour

time horizon. Observe that because this concentration is defined as the mass fraction,

the volume fraction here is actually over 30%, and exhibits variations of up to 10%. A

detailed analysis of how hydrogen blending impacts energy transport capacity of gas

pipeline networks is outside the scope of this study, in which we focus on modeling

flow dynamics and demonstrating our optimal control approach.

We now describe an open question. The monotone-ordering properties of equiva-

lent systems from the previous chapter suggest that certain equivalent systems may

have better behavior in the sense of monotone-ordering than others in certain oper-

ating regions. The question we ask is whether certain equivalent systems are better

suited for optimization purposes of gas mixtures than others? We expect the answer

to be affirmative, as this is true even for pure natural gas networks as well. In partic-

ular, pressure and velocity values have different orders of magnitude, so the variables

are usually transformed into nondimensional variables (Zlotnik et al. (2015b)). This

is an equivalent transformation.
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Chapter 8

LINEAR CONTROL SYSTEM

This chapter combines some of the features from Chapters 3 and 7. Our central

objective is to develop a linear time-invariant control system, primarily to improve

the performance of optimizing gas flows in networks. The linear system is derived in

a way that can be utilized for the design of feedback controllers and the investigation

of asymptotic stability and transient responses. We touch upon each of these applica-

tions. This chapter considers only natural gas flows in networks, but we believe that

the formulation can be extended to mixtures of gases. In Section 8.1, the isolated to-

tal density system of ODEs for a homogeneous mixture is reduced to an ODE system

that models pure natural gas with zero hydrogen concentration. The linear system

and linear program are derived in Section 8.2. In Section 8.3, the eigenvalues of the

state matrix of the finite-dimensional linear control system are compared to the poles

of the previously-studied irrational transfer matrix from Chapter 3 to gain insight

into the transient behavior of the system. Section 8.4 demonstrates the performance

of the nonlinear and linear programs for the test network that we used previously in

Chapter 6. The error between the solutions of the two programs is analyzed compu-

tationally and analytically in Section 8.5. The analytical error bound is derived using

a Lyapunov function associated with the asymptotically stable state matrix.

8.1 System Reduction to Natural Gas

In this chapter we change our notation slightly. Underlines and overlines are no

longer used for the evaluations of flow variables at the inlets and outlets of pipelines.

Instead, inlet and outlet edge variables are defined by attaching superscripts “0” and
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“ℓ,” respectively, to the associated edge variables. For example, φ0
k(t) = φk(t, 0)

and φℓ
k(t) = φk(t, ℓk). Correspondingly, the previous notation for the matrix Qd is

replaced with Qℓ
d. From here onward, overlines are used exclusively to denote the

steady-state solution of (5.23). We also assume that the network does not contain

any regulators. Compressor variables are now denoted by µk(t) for k ∈ C, where

C ⊂ E is the set of edges that “contain” a compressor (at the inlet of the edge).

If the network contains only natural gas, then the input and state variables α(2),

β(2), η(2), and ρ(2) in (5.23) are equal to zero vectors. In this case, the system in

(5.23) (or similarly in (5.31)) reduces to

(ITXLI)ρ̇(1) =
(
QTXφ−w

)
, (8.1)

0 = −σ2L−1
(
Mρ(1) +Ns(1)

)
−K

φ⊙ |φ|
Iρ(1)

, (8.2)

where we use the notation I = Qℓ
d, M =Md, and N =Ms. The matrix K is diagonal

with entries Kkk = λk/(2Dk) for k ∈ E . The above system consists of only one

state equation corresponding to the one nonzero density state vector ρ(1) and the

one nonzero input vector s(1). For simplicity, we denote these variables by ρ and

s. Lastly, to simplify the analysis, we include inertia in the momentum equation.

Therefore, the system in (8.1)-(8.2) becomes (Himpe et al. (2021))

ρ̇ = (ITXLI)−1
(
QTXφ−w

)
, (8.3)

φ̇ = −σ2L−1 (Mρ+Ns)−K
φ⊙ |φ|
Iρ

. (8.4)

As previously discussed, the mass matrix (ITXLI) is diagonal with positive diagonal

components given by (ITXLI)jj =
∑

k∈ 7→j χkℓk for j ∈ Vw. Therefore, the matrix

(ITXLI) may be easily inverted to obtain the traditional control system presented

above. The state variables are densities ρ at withdrawal nodes and fluxes φ at the

inlets of the edges. The compressor actuators are contained in the matrices M and
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N . The other matrices are known and constant. The steady-state initial condition in

(5.24) is the solution of

QTXφ = w, σ2
(
Mρ+Ns

)
= −LKφ⊙ |φ|

Iρ
, (8.5)

where s = s(0) and w = w(0). Overlines attached to state variables, actuation ma-

trices, and parameters are used to denote a time-invariant steady-state solution. We

assume that M , N , φ, and ρ are optimally determined to minimize compressor en-

ergy, as in (7.1), while satisfying flow requirements in (8.5) and inequality constraints,

as in (7.2). The initial condition of the system in (8.3)-(8.4) is defined to be

ρ(0) = ρ, φ(0) = φ. (8.6)

8.2 Linear System and Linear OCP

In this section, we use classical linearization techniques to derive a linear system

that models the flow of gas in the network. Flow variables, compressor actuators, and

time-varying supply and withdrawal profiles in (8.3)-(8.4) are first written in terms of

variations around their steady-state counterparts. The system of variations is given

by

ρ̇ = (ITXLI)−1
(
QTXφ−w

)
, (8.7)

φ̇ = −σ2L−1
(
Mρ+Mρ+Mρ+Ns+Ns+Ns

)
+K

(
φ⊙ |φ|
Iρ

− (φ+ φ)⊙ |φ+ φ|
I (ρ+ ρ)

)
. (8.8)

The variation variables are expressed with the same symbols as their original coun-

terparts. The system of variations in (8.7)-(8.8) is equivalent to the original system

in (8.3)-(8.4), where the equivalence relation is represented as a translation of the

equilibrium from the origin to the steady-state solution. A similar translation was

performed in the continuous case for a single pipeline back in Chapter 3.
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We first rewrite the control input products Mρ and Ns in (8.8) into the standard

form of a linear system. For k ∈ i7→ ∩ C with i ∈ Vs, the only nonzero entries of

N are Nki = −µk, where µk is the variation around the steady-state compressor µk.

Likewise, for k ∈ i7→ with i ∈ Vw, only the (k, i) entries of M are nonzero. Define

the C-dimensional vector µ = ({µk}k∈C), where C is the cardinality of C. Define the

matrix P componentwise by

P ki =


si, if edge k ∈ i7→ leaves node i ∈ Vs,

ρi, if edge k ∈ i7→ leaves node i ∈ Vw,

0, otherwise,

and the E × C submatrix B of P by the removal of every column i of P for which

k ∈ i7→ with k ̸∈ C. Then we have −(Mρ + Ns) = Bµ. Define the E × E diagonal

matrices α and β that result in linearizing the nonlinear frictional term in (8.8) by

α = Kdiag

(
φ⊙ |φ|
Iρ2

)
, β = −2Kdiag

( |φ|
Iρ

)
. (8.9)

These matrices are interpreted as the extensions of the scalars in (3.12) from the

pipeline to the network. The difference is that this linearization does not perform

the constant-coefficient approximation that was needed in Chapter 3 to derive an

analytical solution of the PDEs. Instead, the diagonal components of the matrices α

and β are the samples of the spatially-dependent coefficients at the discretized nodes

and edges of the refined network. Linearizing (8.7)-(8.8) in ρ, φ, µ, s, and w around

the origin gives the linear time-invariant system

˙ρ
φ

 = A

ρ
φ

+Bµ+W

 s
w

 , (8.10)
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where the state, input, and disturbance matrices are given in block matrix form by

A =

 0 (ITXLI)−1QTX

αI − σ2L−1M β


and

B = σ2L−1B, W =

 0 −(ITXLI)−1

−σ2L−1N 0

 .
The entries with zeros denote zero matrices of appropriate dimensions. The initial

condition of (8.10) is given by

ρ(0) = 0, φ(0) = 0. (8.11)

The initial-value system in (8.10)-(8.11) describes the gas dynamics for all vari-

ations around the steady-state that are confined to a region in which linearization

is applicable. In subsequent sections, we will analyze this applicable linearization

region. Linearizing (7.1) around the steady-state gives the linear objective

Jlin =
∑
k∈C

ck

∫ T

0

φk(t)
(
(µk(t))

(ν−1)/ν − 1
)
+
ν − 1

ν
|φk|µν

kµk(t)dt. (8.12)

The inequality constraints in (7.2) are linear in the state and input. Translating these

inequalities from the steady-state to the origin results in

pmin
j ≤ σ2

(
ρj + ρj

)
≤ pmax

j , 1 ≤ µk + µk ≤ 2. (8.13)

The linear reduced optimal control model is given by

min Jlin ≜ compressor energy in (8.12),

s.t. dynamic constraints: (8.10),

temporal constraints: (8.11),

inequality constraints: (8.13).

(8.14)
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Figure 8.1: Computational time of the NLP as a function of the number of refined
nodes of a single pipeline. The parameters are ℓ = 100 (km), D = 1 (m), λ = 0.01,
and σ = 377 (m/s).

This OCP is discretized in time at the same sampling times in exactly the same way

we have done in Section 7.2. The nonlinear and linear optimization programs can

both be initialized with the steady-state solution (translated to the origin) defined by

x[0] = 0 and u[0] = 0. However, the performance of the nonlinear program is improved

by first solving the linear program using the steady-state initializer and then using

the optimal solution of the linear program as the initializer for the nonlinear program.

Figure 8.1 depicts the optimization time of the nonlinear program as a function of

the number of refined nodes of a pipeline. The computational time of the nonlinear

program using the linearized solution as the initial point of optimization shows a

reduction of about 50% for the pipeline that we consider here. It will be determined

in future work whether this improvement holds in more general situations.

Although the linear program may be used to reduce the computational time of

the nonlinear program, the computational time may still be too large for operators to

timely determine intra-day adjustments. Instead of performing real-time calculations
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Figure 8.2: Eigenvalues (∗) of A and poles (◦) of G(s) for a single pipeline with 30
refined edges. The pipeline parameters are ℓ = 100 (km), D = 0.75 (m), λ = 0.01,
and σ = 377 (m/s).

of compressor actions, numerous linear and nonlinear optimization routines may be

performed offline in advance and the results may be stored for subsequent calculations.

In particular, a bank of optimal controller actions may be stored depending on the

particular withdrawal contract and used thereafter for the current operation planning.

8.3 Transient Response

Although the gas network is physically stable because of frictional effects that

strongly dissipate kinetic energy, a quantitative analysis of the eigenvalues of the

state matrix A is beneficial for the design of controllers and the analysis of transient

and frequency responses. However, a closed-form representation of the eigenvalues

may not exist for even the simplest of networks, such as a refined pipeline. We first

provide a result that characterizes the “center of gravity” of the eigenvalues of A.

82



Proposition 4. Let {ζm}E+Vw
m=1 be the set of eigenvalues of A in (8.10), where E

and Vw are the cardinalities of E and Vw. Then

E+Vw∑
m=1

ζm = −
E∑

k=1

λkφk

Dk(Iρ)k
. (8.15)

Proof. The trace formula for the sum of the eigenvalues of the matrix A gives

E+Vw∑
m=1

ζm =
E∑

k=1

βkk.

The result follows from (8.9). □

The center of gravity of the eigenvalues of A is the average value given by c =∑E+Vw

m=1 ζm/(E + Vw). Proposition 1 shows that the center of gravity depends on β,

but not on α.

The left and right sides of Figure 8.2 depict the eigenvalues of A for a single

pipeline with two different mass outflow boundary conditions. The figure also depicts

a subset of poles of the irrational transfer matrix in (3.29), which we denote by G(s).

Although the eigenvalues of A and poles of G(s) are, in general, not equal, the poles

have a simple closed formula that can be used with caution to gain insight into the

structure of the eigenvalues of A. The poles of G(s) are given by

ζ±m =
β

2
± j

√(πσ
2ℓ

)2
(2m+ 1)2 −

(
β

2

)2

(8.16)

form = 0, 1, . . . , where β is a scalar approximation of the diagonal elements of β. The

poles of G(s) in Figure 8.2 are constructed using the average value β =
∑E

k=1 βkk/E

in (8.16). From Proposition 1, it can be shown that this average value of the diagonal

elements of β results in β = [(E + Vw)/E]c. In the case of a single pipeline with one

supply node, this result simplifies to β = 2c (since E = Vw). Thus, the imaginary

asymptote of the poles of G(s) intersects the real axis at the center of gravity of the

eigenvalues of A for this average choice of β. This is demonstrated in Figure 8.2,

where the poles and eigenvalues gravitate toward the imaginary asymptote c = β/2.
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All of the poles of G(s) have negative real parts, irrespective of the pipeline pa-

rameters, because the diagonal elements of β are always negative. This observation

agrees with the physical stability of the system. However, the time response may vary

significantly for different parameter values. The settling time ts is defined to be the

time elapsed from the application of an ideal instantaneous step input to the time at

which the system has entered and will remain within a specified percent error of the

final state. The settling time of a transient input depends largely on the real parts

of one or more of the eigenvalues of A. For our purpose, we approximate the settling

time by ts = 1/min |Re(λm)|. We investigate how the settling time changes as the

parameters of the pipeline vary for two cases.

1. Varying ℓ. First, assume that ℓ < πσ/|β|. In this case, all of the poles

of G(s) lie on the asymptote c = β/2 and the settling time is approximated

with ts = 1/|c|. Second, assume that ℓ > πσ/|β|. In this case, there are

at least two purely real poles, the largest of all of which is given by ζ+1 =

[β/2 +
√

(β/2)2 − (πσ/2ℓ)2]. As ℓ increases without bound, the number of

purely real poles of G(s) increases without bound and ζ+1 increases toward the

origin of the complex plane. This indicates that the settling time ts = 1/|ζ+1 |

increases as ℓ increases, and that the system will never settle everywhere in the

theoretical case of an infinitely long pipeline.

2. Varying φ. For a single pipeline, the values φk for k ∈ E in (8.15) are all the

same value, which we denote by φ. The poles of G(s) are given by

ζ±m = − λ|φ|
2DE

E∑
k=1

1

(Iρ)k
± j

√√√√(πσ
2ℓ

)2
(2m+ 1)2 −

(
λ|φ|
2DE

E∑
k=1

1

(Iρ)k

)2

.

As |φ| → 0, it is clear that all of the poles, hence the center of gravity, approach

the imaginary axis of the complex plane. Thus, as |φ| → 0, the friction term in
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the state equations goes to zero and the variations are undamped waves, leading

to an infinite settling time. As |φ| theoretically increases without bound, the

center of gravity c decreases without bound along the real axis of the complex

plane. The decrease of the center of gravity as |w|, hence |φ|, increases is

illustrated in Figure 8.2.

Figure 8.2 suggests that some of the eigenvalues and transient characteristics of

the state matrix may be approximated using a subset of poles of the irrational transfer

matrix. This approximation appears to be more applicable for single pipelines that

have steady-state mass flow magnitudes of less than 300 (kg/s). We are currently

looking into how the eigenvalues of the state matrix are affected by the topology of

the network and whether a subset of poles of several transfer functions associated

with several individual pipelines may be used to approximate the eigenvalues of the

state matrix associated with a connected network structure. As an example, the

eigenvalues of the state matrix associated with the network in Figure 8.3 appear to

have multiple imaginary asymptotes. We are looking into whether the locations of

these asymptotes and the number of eigenvalues gravitating along the asymptotes are

related to average values of the parts of β associated with each of the five edges of

the network.

8.4 Network Example

The solutions of the nonlinear and linear optimal control problems are examined

for the test network that was used previously in Chapter 6 for the monotonicity

experiments. We display the network again, along with the boundary conditions we

now impose, here on the left side of Figure 8.3. The dark blue node is the only

supply node, with pressure specified to be 5 (MPa). The five edges of the network

are discretized into 48 refined edges, so that ℓk = 5 (km) for all k ∈ Ê . The size of the

85



state matrix A is 95×95 and the size of the input matrix B is 95×3. The time interval

[0, T ] is discretized into 24 subintervals using 25 evenly-spaced time samples. This

results in 2,450 optimization variables for both the nonlinear and linearized programs.

The optimal solutions of the nonlinear and linearized programs are shown on the

right side of Figure 8.3, where the solutions are translated back to non-variation

variables by adding their associated steady-state components. Figure 8.3 shows that

the linear program performs reasonably well at deciding the optimal solution for these

boundary conditions. The percent relative error between the nonlinear and linearized

solutions are 1.54% in pressure, 0.57% in mass flux, and 2.3% in compression, where

the percent relative error of pressure between the nonlinear solution pnon and the

linearized solution plin is defined by the expression

max
j∈Vw,t∈[0,T ]

( |(pnon)j(t)− (plin)j(t)|
pj

)
× 100. (8.17)

The percent relative error in mass flux and compression are defined similarly.

8.5 Linearization Error Analysis

If w, s, and µ are time-invariant, then the initial-value systems in (8.7)-(8.8) and

(8.10) are undisturbed and unforced, in the sense that the solutions of these systems

remain at the origin for all time. Assuming that the eigenvalues of A have negative

real parts, the origin of the linear and nonlinear systems is an asymptotically and

a locally asymptotically stable equilibrium point, respectively. In this section, we

assume that s = 0 and µ = 0, which is common for gas pipelines in practice.

Proposition 5. Suppose that the real parts of the eigenvalues of A are negative,

that µ = 0, s = 0, and φk > 0 for all k ∈ E . If the solution of (8.7)-(8.8) satisfies

|ρj| ≤ κρj for all j ∈ Vw and |φk| ≤ κφk for all k ∈ E with κ ∈ (0, κmax) and κmax < 1
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Figure 8.3: (Left) Top: Network configuration. Bottom left: Mass outflow profiles
at the color-coordinated nodes. Bottom right: Eigenvalues of the state matrix A
associated with the network. (Right) Optimal nodal pressures, mass flows at the
inlets of the edges, and the compressor actions. Pressure and compressor actions
are color-coordinated with the nodes and compressor stations of the network to the
left. Solid lines represent the nonlinear solution and marker symbols represent the
linearized solution.

sufficiently small, then there exists positive constants a, b, and r such that

∥e∥ ≤ r

(
κ3

(1− κ)2
a+ κ2b

)
, (8.18)

where e = [(ρ, φ)− (ρlin, φlin)] and ∥e∥ is the Euclidean norm of the vector e. Here

(ρ, φ) is the solution of (8.7)-(8.8) and (ρlin, φlin) is the solution of (8.10).

Proof. The proof is based on standard Lyapunov arguments and we provide a

brief outline here (see, e.g. Khalil (2002) for more examples). Assume that (ρ, φ)

satisfies (8.7)-(8.8) and that (ρlin, φlin) satisfies (8.10) under the conditions stated in

Proposition 5. Define the error vector e = [(ρ, φ)− (ρlin, φlin)].

Since µ = 0, it follows that M = 0 and N = 0. The function f(ρ, φ,w) on the

right-hand side of (8.7)-(8.8) may be uniquely written as f(ρ, φ,w) = F (ρ, φ)+W̃w,
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where W̃ is defined to be the second block column of W as

W̃ =

−(ITXLI)−1

0

 .
The error satisfies

ė =


ρ̇
φ̇

−

ρ̇lin

φ̇lin




= F (ρ, φ) + W̃w − A

ρlin

φlin

− W̃w

= Ae+ F (ρ, φ)− A

ρ
φ


= Ae+ (∂F (ρ∗, φ∗)− A)

ρ
φ

 , (8.19)

where we have used the mean-value theorem to replace F by

F (ρ, φ) = F (0, 0) + ∂F (ρ∗, φ∗)

ρ
φ

 ,
for some point (ρ∗, φ∗) on the line segment connecting (ρ, φ) to the origin. In the

above equation, F (0, 0) = 0 and the symbol ∂F (ρ∗, φ∗) represents the Jacobian ma-

trix of the vector-valued function F evaluated at the point (ρ∗, φ∗). Therefore, the

dynamics of e are represented as a perturbed linear system with a nonvanishing per-

turbation term.

The difference between the Jacobians in (8.19) is given by

∂F (ρ∗, φ∗)− A =

 0 0

(α∗ − α)I β∗ − β
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where α and β are defined in (8.9) and

α∗ = Kdiag

(
(φ∗ + φ)⊙ |φ∗ + φ|

I (ρ∗ + ρ)2

)
, (8.20)

β∗ = −2Kdiag

( |φ∗ + φ|
I (ρ∗ + ρ)

)
. (8.21)

The matrices K, α, α∗, β, and β∗ are all diagonal. The k-th diagonal entries of the

matrices (α∗ − α) and (β∗ − β) with k : i 7→ j are given by

(α∗
kk − αkk) = Kkk

(
(φ∗

k + φk)|φ∗
k + φk|(

ρ∗
j + ρj

)2 − φk|φk|
ρ2
j

)
,

(β∗
kk − βkk) = Kkk

(
−2|φ∗

k + φk|
ρ∗
j + ρj

+
2|φk|
ρj

)
.

Since |ρj| ≤ κρj and |φk| ≤ κφk, it can be shown with elementary inequalities that

∥α∗ − α∥ ≤ 2κ2

(1− κ)2
∥α∥, ∥β∗ − β∥ ≤ 2κ∥β∥,

where the norm of a matrix is defined to be the induced Euclidean norm. It then

follows from the inequality ∥(ρ, φ)∥ ≤ κ(∥ρ∥+ ∥φ∥) that

∥(∂F (ρ∗, φ∗)− A)(ρ, φ)T∥

≤ κ
(
∥α∗ − α∥∥I∥+ ∥β∗ − β∥

)
(∥ρ∥+ ∥φ∥)

≤ κ3

(1− κ)2
a+ κ2b,

where a = 2∥α∥∥I∥(∥ρ∥+ ∥φ∥) and b = 2∥β∥(∥ρ∥+ ∥φ∥).

Since the eigenvalues of A have negative real parts, we may define the Lyapunov

function V (e) = eTRe, where R is a positive definite and symmetric matrix that

satisfies the Lyapunov equation (ATR + RA) = −I. The time derivative of V (e)

along the trajectories of (8.19) is bounded by V̇ (e) ≤ (−∥e∥2 + L∥e∥), where L =

2∥R∥(aκ3/(1 − κ)2 + bκ2). Define Z(e) =
√
V (e). Since R is symmetric, it has

real eigenvalues. It follows from Rayleigh’s quotient that λ1∥e∥2 ≤ V (e) ≤ λ2∥e∥2,
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where λ1 and λ2 are the minimum and maximum eigenvalues of R. For V (e) > 0,

Ż(e) ≤ (− 1
2λ2
Z(e) + L

2
√
λ1
). By the comparison lemma,

Z(t) ≤ L

2
√
λ1

∫ t

0

e−(t−τ)/2λ2dτ ≤ λ2L√
λ1
.

It can be shown that the above inequality also holds for V = 0 Khalil (2002).

The proposition then follows from ∥e∥ ≤
√
V/λ1 ≤ λ2L/λ1 with r = 2∥R∥λ2/λ1.

Throughout this proof, we assume that κ ≤ κmax to ensure that the nonlinear solu-

tion is well-defined. □

The bound in (8.18) provides a rate by which the norm of the error changes in

terms of the size of the variation around the steady-state. If κ = 0, then ∥e∥ = 0,

as expected, since the solutions of the linear and nonlinear systems are undisturbed

and remain in equilibrium at the origin. As κ increases from κ = 0 to κ = κmax, the

norm of the error increases. Intuitively, if the variation in density ρj approaches the

negative of ρj for some j ∈ Vw (i.e., κ → 1), then the magnitude of the nonlinear

term in (8.8) increases without bound. This increase without bound is captured in

the ratio on the right-hand-side of (8.18). However, the solution of the linear system

is bounded due to the global asymptotic stability of the equilibrium of the linear

system. Although the bound in (8.18) provides intuition about the size of the error,

it is derived using conservative bounds, and, therefore, its quantitative bounds may

be impractical for real gas systems.

To improve the error estimate, we use numerical optimization to analyze the

error as a function of the size of the withdrawal variation. In particular, a series

of optimization routines are performed on the single pipeline that was introduced

in Section 8.3. The pipeline parameters are shown in Figure 8.2. The boundary

conditions are constant 5 (MPa) pressure at the inlet of the pipeline and varying
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Figure 8.4: Percent relative error (as in (8.17)) as a function of percent flow variation
(100κ) as defined in (8.22).

mass outflow profiles at the outlet given by

wout(t) = 200 (1 + κ step(t− T/4)− κ step(t− 3T/4)) , (8.22)

where 0 ≤ κ ≤ 1 and step(t) = 0.5tanh(7.2t). Here, t ∈ [0, T ] is in units of hours

and T = 24 (hr). The percent relative error in pressure, mass flux, and compression

between the solutions of the nonlinear and linearized optimal control problems are

depicted in Figure 8.4 as a function of 100κ (percent flow variation).
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Chapter 9

CONCLUSION

This thesis investigated several topics that may arise in the flow of natural gas

in pipelines and networks of pipelines. We began our study with the attenuation

of natural gas waves propagating through a pipe. The results enabled us to derive

critical curves that partition the boundary condition parameters (frequency and am-

plitude of waves) into a practical operating region and its complement. We used

numerical simulations to demonstrate that the level curves of the error between the

linear and nonlinear solutions over the space of boundary parameters may be similar

in geometrical shape to these practical critical curves. This observation allowed us

to estimate the maximal region (in the space of boundary parameters) where the

resulting linearization error is within a specified tolerance.

After studying natural gas flows in a single pipe, we moved to mixtures of natural

gas and hydrogen in general networks of pipelines. We extended a control system

model for natural gas networks to one that models heterogeneous mixtures of natural

gas and hydrogen in pipeline networks. The motivation to develop such a control

system originates from recent proposals to utilize the existing natural gas infrastruc-

ture to transport mixtures of natural gas and hydrogen with the intention of reducing

harmful carbon dioxide emissions from end users (Raju et al. (2022)). Our control

system is formulated for general networks so that it can be applied to real pipeline

systems that operate time-variations of compressor and regulator units, supply sta-

tions that inject gas into the network with concentrated pressure, and flow stations

that withdraw or inject concentrated mass flow from or into the network at nodes

specified by the user. The nonlinear partial differential equation formulation is dis-
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cretized using a popular finite volume method for natural gas systems to obtain a

nonlinear control system of ODEs. The ODE system was proved to be monotonic for

constant concentration vectors and to be non-monotonic, in general, for time-varying

concentration vectors. The continuity of solutions with respect to initial conditions

and inputs suggests that there is a nontrivial curve, called interface, in the space of

boundary condition concentration parameters (frequency and amplitude) that parti-

tions that space into a monotonic and non-monotonic operating regions. The mono-

tonic interface was analyzed numerically and the results were illustrated on a test

network.

While analyzing the transition across the monotonic interface, we observed with

numerical simulations that a non-periodic solution may result from certain frequency

and amplitude pairs of the concentration boundary condition profile. Similarly to the

way we computed the monotonic interface, we used numerical simulations to compute

the periodic interface that partitions the boundary parameter space into solutions that

approach periodic orbits and solutions that do not. The numerical transition from

periodic to non-periodic responses may be an indication that the gas mixture system

is chaotic (Devaney (2021); Eckmann and Ruelle (1985)). As to whether the system

is chaotic remains to be proven. An assertion may enable a gas pipeline system

designer to determine limitations on operating the network to be able to reliably

predict the future evolution of the operation. As our simulations suggest, operations

outside even the monotone operating region may create surges with large pressure,

energy, and concentration gradients. The monotonic interface analysis indicates that

sufficiently slow variation in concentration about a small constant profile gives the

operation a chance to maintain monotonicity and prevent large and rapid pressure

transients from occurring. The relatively nice behavior of slow variations suggests

that hydrogen should be gradually blended into natural gas pipeline networks. The

93



acceptable ramping rates depend on the structure of the network and should be

determined through numerous simulations.

The ODE control system was used to model the distributed flow of mixtures of two

gases with different physical properties through general pipeline networks with time-

varying injections, withdrawals, and control actions of compressors. The discretized

model is proved to be a consistent approximation of the original PDE system and is

used as the dynamic constraints of an optimal control problem. The optimal solution

tells us how the compressor activity profiles should be designed with respect to time

to meet the requirements of time-varying delivery profiles and pressure limitations in

such a way that the expended energy of compressors is minimized. The optimal con-

trol problem is implemented after time discretization using a nonlinear program and

is validated by interpolating the optimal solution with respect to time and using the

interpolated function to perform a numerical simulation of the ODE control system.

The developed control system model and computational optimal control scheme may

be used to solve a variety of problem formulations for gas transport networks. For

example, the objective function could be modified to reflect the economic value of

pipeline transport, in terms of natural gas and hydrogen flow provided by suppliers,

and energy received by consumers. Including a price of carbon emissions mitigation,

due to replacement of natural gas with hydrogen, could indicate optimal locations for

integrating hydrogen supplies.

This thesis concluded with a study of pure natural gas operations in general

pipeline networks that combined different aspects from linearization and optimal con-

trol. The nonlinear ODE control system for homogeneous gas mixtures was reduced

to the natural gas system. The resulting ODE control system was linearized around

its steady-state solution to obtain a traditional linear time-invariant control system.

The eigenvalues of the linear state matrix for a single pipe were computed numer-
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ically and compared to a subset of poles of the irrational transfer matrix that was

previously used to study wave attenuation. The simple closed-form representation of

the poles was used to analyze the transient behavior of the system, including the set-

tling time associated with an instantaneous change in the input variables. Similarly

to our development of the optimal control of gas mixture dynamics, we use the pure

natural gas model as the dynamic constraints of the OCP. Although this has received

significant attention in the literature, there has not been much work in comparing

the linear and nonlinear OCPs. One motivation of our work is to reduce the com-

putational cost of optimizing nonlinear gas dynamics in large networks to meet the

unpredictable and highly variable demand from electric generators. The linear and

corresponding nonlinear OCPs are compared for examples in a single pipeline and a

small test network. Our numerical computations demonstrate approximately a 50%

reduction in computation time of the nonlinear OCP if the solution of the linear OCP

is used as the initialization point of the nonlinear OCP. This result was demonstrated

on a single pipeline for specific time-varying boundary conditions. More work needs

to be done to establish computational reduction time in more general settings. We

also derived an analytical bound on the error between the solutions of the linear and

nonlinear OCPs and verified the bound computationally by plotting the error against

the size of the flow variation around the steady-state. In a pipeline with sufficiently

slow variations, our numerical simulations demonstrate that the linear solution of

the OCP is uniformly within 5% of the nonlinear solution for up to 100% variations

in demand. Potential applications may include using the linear system to model

the transient dynamics or using adaptive switching between the linear and nonlinear

models to reduce the computational time of optimizing gas dynamics in the extension

from small test networks to big infrastructures.
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A framework for natural gas pipelines is developed in a context similar to the theory of electric
transmission lines. The system of semi-linear partial differential equations describing the time-dependent
flow of natural gas is linearized around the steady-state flow. Additional approximations lead to a constant
coefficient linear system that is equivalent to an electrical circuit that is analytically solvable and admits
an ABCD matrix representation of input and output. The sinusoidal steady-state operation of natural gas
pipelines is analysed including the distortion of waves. It is shown that the timing of the propagation of
phases and other events is accurately represented in the approximation. The quantitative accuracy for flux
and gas density of the approximation depending on different operating scenarios and depending on the
frequency of the disturbances is documented.

Keywords: gas-pipeline, transfer function, Equivalent Circuit.

1. Introduction

Natural gas infrastructures are extremely complex operating systems composed of transmission
pipelines that transmit natural gas hundreds of kilometers across state lines and sometimes even across
the country. They include processing and supply stations, withdrawal stations and other essential
components such as compressors, regulators and valves that are monitored and controlled by control
station operators. Natural gas is purchased primarily through daily contracts between supplier and
customer. Up until recent years, natural gas was almost entirely purchased by local distribution
companies (LDCs) with the purpose of subsequent delivery to residences and businesses for their regular
use. LDCs have their own set of distribution pipelines that distribute smaller volumes of natural gas over
shorter distances and at much lower pressures than transmission pipelines. The withdrawal rate of natural
gas by LDCs is steady and predictable on the daily market. Under steady supply and demand rates, the
transmission of natural gas from supply to withdrawal stations is in a steady state independent of time
(see Misra et al., 2014; Wu et al., 2000). Mathematically, the steady state flow is described by simple
algebraic equations.

In the past 20 years, new emissions restrictions along with the increased supply of natural gas in
the USA have further expanded the application of natural gas. In addition to LDCs, natural gas is now

© The Author(s) 2021. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. This is an Open
Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which
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the primary source of electric power generation in the USA. According to the US Energy Information
Administration, natural gas currently accounts for 34% of total electricity generation and is expected to
increase to 39% by 2050. The natural gas infrastructure is consequently faced with two major challenges.
First, in addition to natural gas, the electric grid relies on other sources of energy for electric power
generation, such as wind and solar. These secondary sources are unpredictable and highly variable and
the variations have immediate impacts on daily natural gas withdrawal. To analyse the time-dependent
pipeline operation, the transmission of natural gas should be modeled with a system of nonlinear
partial differential equations (PDEs) that depend on both time and location along the pipe. Second,
as has become evident in the Texas winter storm of February 2021, the natural gas and electric power
infrastructures are incredibly reliant on one another and both need increasingly close communication
and coordination.

Since most gas-powered generators have little or no associated gas storage facility, changes in the
electric grid lead to gas withdrawal rates that change with time presenting a new challenge for both
system operators and the research community. Much of the current literature focuses on the optimization
of compressor settings with which potential objectives are minimizing market costs or load shedding
(see Wong & Larson, 1968; Zlotnik et al., 2015). Compounding this problem is one of particular interest
in which the electric power operations are included in the optimization problem (as in Li et al., 2008;
Zlotnik et al., 2016). The exact solutions of these large-scale optimization problems are impossible to
obtain since the flow of gas in each pipe is modeled with a system of nonlinear PDEs and the flow
through each node connecting two or more pipes is incorporated with mass conservation laws.

Although numerical solutions to the flow equations are able to serve many meaningful objectives,
there is a limit into the depth of the analysis. To gain insight into natural gas operations and to provide
a warm startup for the optimization problem, approximate analytical solutions in the time domain have
been developed. One approach involves a simplification of the nonlinear PDEs, followed by asymptotic
analysis of the natural gas variables (Herty et al., 2010). Another approach is to linearize the nonlinear
PDEs, apply the Laplace transform and approximate the resulting transfer functions so that the inverse
Laplace transforms exist in standard Laplace transform tables (e.g. Alamian et al., 2012; Reddy et al.,
2006). The accuracy of the approximation of the transfer function was investigated in Králik et al.
(1984). The accuracy of the linearization of nonlinear gas flow equations was investigated in Luongo
et al. (1986) and Wang et al. (2015).

In light of the close coordination between natural gas and electric power infrastructures, we represent
the gas pipeline as an equivalent electric circuit leading to an ABCD matrix representation of gas
flow between input and output (see Ke & Ti, 2000, for an electrical analogy). The ABCD matrix
representation is obtained by linearizing the nonlinear terms in the PDE around the steady-state flow
and applying the Fourier transform to the resulting linear PDEs. The primary intention of this paper is
analysing distortion of sinusoidal waves in gas pipelines using the ABCD matrix. We also analyse the
accuracy of the linearized PDEs for sinusoidal and step boundary conditions.

The rest of this paper is organized in the following way. Section 2 introduces the PDEs that drive
the flow of natural gas in a pipeline. Constant coefficient linearized gas flow equations are derived
in Section 3 and these equations are solved in the frequency domain in Section 4. The ABCD matrix
relation between supply and withdrawal rates is derived in Section 5. It will be shown that wave
distortion and optimal gas operations depend on the ABCD matrix coefficients; these are analysed in
Section 6. Section 7 analyses the distortion of waves composed of low- and high-frequency components.
Section 8 illustrates the accuracy of the linearized PDEs with a variety of different boundary conditions.
Throughout the paper, several examples are provided which serve to demonstrate additional properties
of natural gas pipelines. A conclusion and an appendix are provided in Sections 9 and Appendix A.
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ANALYSIS OF A MODEL OF A NATURAL GAS PIPELINE 3

2. Natural gas flow equations in a pipeline

The transmission of natural gas in a pipeline is described mathematically with the one-dimensional
isothermal Euler equations with friction. A common simplification is given by the semi-linear PDEs
(see Herty et al., 2010; Thorley & Tiley, 1987; Zlotnik et al., 2015)

∂tρ + ∂xϕ = 0, (2.1)

∂tϕ + σ 2∂xρ = − λ

2D

ϕ|ϕ|
ρ

− g sin θρ. (2.2)

The time and space variables are t ∈ [0, T] and x ∈ [0, L] and the flow variables are mass flux ϕ(t, x)
and density ρ(t, x), where T is the time horizon and L is the length of the pipe. The parameters are
diameter D, inclination angle θ , friction factor λ and gravitational acceleration g. It is assumed that
p = σ 2ρ and σ 2 = ZRT, where p(t, x) is the pressure and σ is the speed of sound. Here, Z, R,
and T are gas compressibility factor, ideal gas constant and constant temperature, respectively. The
linear proportionality between density and pressure is known as the equation of state. The variables and
parameters are measured in SI units and these units are generally suppressed in our exposition.

The initial state of the natural gas pipeline is determined by the final state of the previous operating
day, which will be described shortly. Until stated otherwise, the boundary conditions are assumed to be
specified at the sending end of the pipeline. The initial and boundary conditions associated with (2.1)
and (2.2) are given by

ρ(0, x) = ρ0(x), ϕ(0, x) = ϕ0(x), x ∈ [0, L], (2.3)

ρ(t, 0) = ρs(t), ϕ(t, 0) = ϕs(t), t ∈ [0, T], (2.4)

where ρs and ϕs are known functions that dictate the rates of density and mass flux at the sending end
of the pipeline. The solution, ρ and ϕ, of (2.1)–(2.4) is generally dependent on time due to the boundary
conditions in (2.4). We assume that the solution is unique and exists for all t ∈ [0, T] and x ∈ [0, L].
We refer the reader to Barbu & Korman (1993) for a general method of existence and uniqueness of
solutions of PDEs and to Gugat & Herty (2011) for results for gas pipelines.

The initial condition in (2.3) is assumed to be the steady-state solution ρ0 and ϕ0, defined by the set
of ordinary differential equations

dϕ0

dx
= 0, σ 2 dρ0

dx
= − λ

2D

ϕ0|ϕ0|
ρ0

− g sin θρ0, (2.5)

with boundary conditions

ρ0(0) = ρ, ϕ0(0) = ϕ, (2.6)

where ρ and ϕ are constants. For a horizontal pipe (θ = 0) the steady-state solution is

ϕ0(x) = ϕ, ρ2
0(x) = ρ2 − λϕ|ϕ|

σ 2D
x. (2.7)
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For inclined and declined pipes (θ �= 0) mass flux remains the same and density is given by

ρ2
0(x) = ρ2e

− 2g sin θ

σ2 x + λϕ|ϕ|
2Dg sin θ

(
e
− 2g sin θ

σ2 x − 1

)
. (2.8)

In fact, (2.8) reduces to (2.7) in the limit θ → 0 using l’Hopital’s rule and writing

(
e
− 2g sin θ

σ2 x − 1

)
≈

− 2g sin θ

σ 2 x. The steady-state solution explicitly shows the drop in density in the direction of flow in
non-decreasing pipes due to friction and gravity.

3. Linearized equations of natural gas flow

Our objective is to analyse the transmission of natural gas that is initially in steady-state for time-
dependent boundary conditions. It is convenient to write density and flux as steady state and perturbation
components of the form

ρ(t, x) = ρ0(x) + ρe(t, x),
ϕ(t, x) = ϕ0(x) + ϕe(t, x).

(3.1)

We substitute (3.1) into (2.1) and (2.2) and use (2.5) to get the governing equations of the perturbation
variables. The resulting nonlinearity on the right-hand side of (2.2) is given by

f (ρe, ϕe) = λ

2D

(
ϕ0|ϕ0|

ρ0
− (ϕ0 + ϕe)|ϕ0 + ϕe|

ρ0 + ρe

)
. (3.2)

Making the following two approximations: (i) the function f in (3.2) is approximated with its
linearization around the origin and (ii) the coefficients of the linearization are approximated using
1/ρ0 � 1/ρ, we obtain the constant coefficient linear system of PDEs

∂tρe + ∂xϕe = 0, (3.3)

∂tϕe + σ 2∂xρe = αρe + βϕe, (3.4)

with initial and boundary conditions

ρe(0, x) = 0, x ∈ [0, L],
ϕe(0, x) = 0, x ∈ [0, L],
ρe(t, 0) = ρs(t) − ρ, t ∈ [0, T],
ϕe(t, 0) = ϕs(t) − ϕ, t ∈ [0, T],

(3.5)

where α and β are constant coefficients given by

α = λϕ|ϕ|
2Dρ2

− g sin θ , β = −λ|ϕ|
Dρ

. (3.6)
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Here, we label the linearized perturbation variables with the same symbols as the nonlinear perturbation
variables. From here onward, these symbols will always represent the perturbation variables of the linear
system. Therefore, we have the approximation

ρ(t, x) � ρ0(x) + ρe(t, x),
ϕ(t, x) � ϕ0(x) + ϕe(t, x).

(3.7)

Note that for constant boundary conditions given by ρs(t) = ρ and ϕs(t) = ϕ, the steady state of ρe and
ϕe is zero. Thus, ρe can become negative and the requirement of ρ > 0 transforms to ρe > −ρ0.

In Section 8, the accuracy of the approximation in (3.7) is illustrated with numerical examples. We
do not pursue analytical results on the accuracy of the approximation. Instead, we discuss how the error
of the approximation depends on the two assumptions made above. We note how the accuracy may be
improved by removing approximation (ii), which leads to the constant coefficients in the linear PDE.
However, this mild improvement in the accuracy comes at the expense of an unsolvable system of PDEs.
The coefficients must be constant to derive an analytical solution.

In Appendix A, we demonstrate that the term involving α in (3.4) can typically be omitted for the
dimensionless equations describing the flow of natural gas in horizontal pipelines. While this is not
necessarily true for the dimensional equations, setting α = 0 allows comparisons with electrical power
lines and simplifies the algebra. This observation leads to the following definitions. The class of linear
systems in (3.3)–(3.5) is called amplified if α in (3.4) is defined by (3.6). It is called unamplified if α in
(3.4) is defined to be zero. Until stated otherwise, the systems are assumed to be amplified.

4. Natural gas pipelines in the sinusoidal steady state

The perturbation variables can be further decomposed into transient and sinusoidal responses. In this
section, we investigate the sinusoidal response of the perturbation, which is governed by the linear
PDEs and the boundary conditions. The initial conditions in (3.5) effect the transient response but not the
sinusoidal response and are therefore disregarded in this section. This approach is analogous to the sinu-
soidal steady-state operation of voltage and current in electric transmission lines (see, e.g. Glover et al.,
2012). The continuous-time Fourier transform of a function f (t, x) and its inverse are defined by

F(ω, x) =
∫ ∞

−∞
f (t, x)e−jωt dt, f (t, x) = 1

2π

∫ ∞

−∞
F(ω, x)ejωt dω,

where ω is the frequency. Occasionally, we will use operator notation F(ω, x) = (Ff )(ω, x) and
f (t, x) = (F−1F)(t, x) to denote the analysis and synthesis pair.

We define the Fourier transforms of the perturbation variables by P(ω, x) = (F ρe)(ω, x) and
Φ(ω, x) = (F ϕe)(ω, x). In this definition, the time interval [0, T] is extended to the entire real line and
the perturbation variables are extended in time by periodic repetition with period T . We abuse notation
and use the same symbols for the extended functions. Applying the Fourier transform to the driving
equations in (3.3) and (3.4) and using Fourier transform properties, we obtain the spatial dynamics in
the frequency domain given by

jωP + ∂xΦ = 0,
jωΦ + σ 2∂xP = αP + βΦ.

(4.1)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

atrm
/article/5/1/tnab002/6421330 by guest on 18 April 2023

109



6 L. BAKER ET AL.

Fig. 1. Circuit representation of a section of pipeline.

The boundary conditions associated with (4.1) are given by

P(ω, 0) = Ps(ω), Φ(ω, 0) = Φs(ω), (4.2)

where Ps(ω) = F(ρs(t) − ρ)(ω) and Φs(ω) = F(ϕs(t) − ϕ)(ω). The equations in (4.1) and (4.2)
characterize the sinusoidal response in the frequency domain. Since the coefficients in (4.1) are constant,
we can derive a solution. Before proceeding in this quest, it is instructive to represent a section
of pipeline as an electric circuit with linear circuit elements and use the circuit to draw insightful
comparisons between gas systems and electric transmission lines. This is the subject of the following
example.

Example 4.1 Suppose that a small section of pipe with a length of Δx is represented by the two-port
network shown in Fig. 1. The equations in (4.1) are obtained by applying Kirchhoff’s circuit laws. The
drop in density along the pipeline is considered to be comparable to the voltage drop induced by the
impedance of the circuit. The conservation of current through a node in a power system is identical to
the conservation of flux through a node in a gas system. In this way, voltage and current in electric
transmission lines are thought to play similar roles to density and mass flux in natural gas pipelines. It is
seen in Fig. 1 that |β| represents resistance and α represents amplification of density. The amplification
of density explains the previous terminology.

We define shunt admittance, series impedance and characteristic impedance for the gas pipeline,
respectively, by

y = jω, z = jω − β, zc = √
z/y. (4.3)

Two of these quantities depend on β but none depend on α.
The driving equations in (4.1) are weakly coupled and can be decoupled by introducing second-order

derivatives

σ 2∂xxP − α∂xP − yzP = 0,
σ 2∂xxΦ − α∂xΦ − yzΦ = 0.

(4.4)

A solution of (4.4) is given by

P(ω, x) = Ψ+eμ+x + Ψ−eμ−x, (4.5)
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Φ(ω, x) = σ 2

z

(
μ−Ψ+eμ+x + μ+Ψ−eμ−x) , (4.6)

where μ± = α/(2σ 2) ± μ/σ 2 and μ = √
α2/4 + σ 2yz. The complex exponential terms eμ±x represent

traveling waves that propagate in opposite directions along the length of the pipe. The waves travel along
the pipe with distortion depending upon μ± and the set of frequencies with which Ps and Φs in (4.2) are
composed. We emphasize that both of the traveling waves eμ±x are physically relevant since the pipe
has finite length and, therefore, the waves are bounded. In general, it follows that Ψ+ and Ψ− are both
nonzero.

The coefficients Ψ± are uniquely determined by the boundary conditions. Evaluating (4.5) and (4.6)
at x = 0 and using (4.2), we obtain

Ψ± = ± μ±
μ+ − μ−

Ps ∓ zσ−2

μ+ − μ−
Φs.

Substituting these coefficients into (4.5) and (4.6) gives an expression for P and Φ explicitly in terms of
Ps and Φs of the form

P = μ+eμ+x − μ−eμ−x

μ+ − μ−
Ps − z

σ 2

eμ+x − eμ−x

μ+ − μ−
Φs, (4.7)

Φ = −y
eμ+x − eμ−x

μ+ − μ−
Ps − μ−eμ+x − μ+eμ−x

μ+ − μ−
Φs. (4.8)

These expressions define the solution of (4.1) for each x ∈ [0, L].

Example 4.2 Suppose that the periodic extensions of the boundary conditions of the perturbation
variables given by (3.5) are continuous and periodic with period T . In this case, they can be expanded
into Fourier series representations of the form

ρe(t, 0) =
∞∑

k=−∞
ρkejωkt, ϕe(t, 0) =

∞∑

k=−∞
ϕkejωkt, (4.9)

where ωk = 2πk/T for each integer k. The Fourier coefficients are constants defined in the usual way.
Let δ(ω) be the Dirac delta function or impulse at ω = 0. The Fourier transforms of the representations
in (4.9) are the trains of impulses

Ps(ω) =
∞∑

k=−∞
2πρkδ(ω − ωk), (4.10)

Φs(ω) =
∞∑

k=−∞
2πϕkδ(ω − ωk), (4.11)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

atrm
/article/5/1/tnab002/6421330 by guest on 18 April 2023

111



8 L. BAKER ET AL.

where the area of each impulse is proportional to the Fourier series coefficients of the boundary
conditions. Define

a = μ+eμ+x − μ−eμ−x

μ+ − μ−
, b = − z

σ 2

eμ+x − eμ−x

μ+ − μ−
, (4.12)

c = −y
eμ+x − eμ−x

μ+ − μ−
, d = −μ−eμ+x − μ+eμ−x

μ+ − μ−
. (4.13)

Taking inverse Fourier transforms in (4.7) and (4.8) and using the definition of the impulse, we obtain
the solution expression in the time domain given by

ρe(t, x) = ∑∞
k=−∞[a(ωk, x)ρk + b(ωk, x)ϕk]ejωkt,

ϕe(t, x) = ∑∞
k=−∞[c(ωk, x)ρk + d(ωk, x)ϕk]ejωkt.

(4.14)

The Fourier series coefficients of the solution in (4.14) are weighted sums of the Fourier series
coefficients in (4.9), where the weights are equal to samples of the coefficients in (4.7) and (4.8) at
equally spaced frequencies ω = ωk.

The harmonic component ejωnt is present in (4.14) if and only if it is present in at least one of
the Fourier series representations in (4.9). This is the principle of superposition in linear systems. We
interpret this result as follows. A given frequency component is present in density and mass flux along
the entire pipe if and only if it is present in either density or mass flux at the boundary of the pipe.
It is evident from (4.14) that the magnitudes of the harmonic components are altered according to the
magnitudes of the corresponding coefficients. This is known as amplitude distortion.

5. ABCD matrix representation

The sending and receiving ends of a natural gas pipeline are assumed to represent the locations of supply
and withdrawal stations. A linear relation between density and mass flux at these stations provides
immediate information on wave distortion, whether the supply rate can meet the required demand, and
operation settings with which optimal gas delivery is achieved. This linear relation is called the ABCD
matrix representation. The ABCD matrix has as its input flows at the sending end, Ps and Φs, and as its
output flows at the receiving end, Pr and Φr, where Pr(ω) = P(ω, L) and Φr(ω) = Φ(ω, L). Evaluating
P(ω, x) and Φ(ω, x) in (4.7) and (4.8) at x = L, we obtain the desired representation

[
Pr
Φr

]
=

[
A B
C D

] [
Ps
Φs

]
, (5.1)

where the ABCD matrix is given by

[
A B
C D

]
=

⎡
⎣

μ+eμ+L−μ−eμ−L

μ+−μ− − z
σ 2

eμ+L−eμ−L

μ+−μ−
−y eμ+L−eμ−L

μ+−μ− −μ−eμ+L−μ+eμ−L

μ+−μ−

⎤
⎦ . (5.2)
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ANALYSIS OF A MODEL OF A NATURAL GAS PIPELINE 9

A simpler expression of the ABCD matrix is obtained by assuming that the gas pipeline is unamplified.
With the assumption α = 0, we find μ± = ±γ /σ and

[
A B
C D

]
=

[
cosh

(
γ L

σ

) − zc
σ

sinh
(
γ L

σ

)

− σ
zc

sinh
(
γ L

σ

)
cosh

(
γ L

σ

)
]

, (5.3)

where we have defined the propagation factor γ = √
yz.

Note: The ABCD matrix of an unamplified natural gas pipeline is fundamentally identical to the
ABCD matrix corresponding to an electric transmission line Glover et al. (2012). This is not surprising
since, for α = 0 as discussed in Fig. 1 the unamplified gas pipeline is identical to a transmission line.

6. Magnitudes of the ABCD matrix coefficients for the unamplified pipeline

We assume that the natural gas system is unamplified and study the coefficients in (5.3). We write a
complex-valued function H in polar coordinates as H(ω) = |H(ω)|ejθH(ω), where |H| is the magnitude
and θH is the phase of H.

It can be shown that the real and imaginary parts of the ABCD matrix coefficients are either odd or
even with respect to ω. We restrict our attention to ω � 0 and derive expressions for the magnitudes of
each ABCD coefficient in (5.3) separately. Since A = D for an unamplified pipeline, we consider only
the components of A, B and C.

Defining γ = γ+ + jγ−, where

γ± = 1√
2

[√
ω4 + β2ω2 ∓ ω2

] 1
2

(6.1)

and using hyperbolic trigonometric identities, we get

|A|2 = cosh2(γ+ L
σ
) − sin2(γ− L

σ
),

|B|2 =
√

1+β2/ω2

σ 2 (sinh2(γ+ L
σ
) + sin2(γ− L

σ
)),

|C|2 = σ 2√
1+β2/ω2

(sinh2(γ+ L
σ
) + sin2(γ− L

σ
)).

(6.2)

The properties of the ABCD coefficients can be understood by taking the limits L → 0, L � 1 and
ω → 0, ω � 1 in (6.2). For instance, as L → 0 the ABCD matrix becomes the identity matrix as it
should. For large ω, γ+ → |β|/2 and γ− → ω. If, in addition, |β|L/(2σ) � 1 then |cosh(|β|L/2σ)| ≈
|sinh(|β|L/2σ)| = K(L) � 1 and therefore

|A|2 ≈ K(L), |B|2 ≈ 1

σ 2 K(L), |C|2 ≈ σ 2K(L). (6.3)

For small ω with large and finite L, we get

|A|2 ≈ 1 + β2L

6σ

4

ω2 + O(ω3), |B|2 ≈ |β|L2

σ 4 + O(ω), |C|2 ≈ L2ω2 + O(ω3). (6.4)
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10 L. BAKER ET AL.

Fig. 2. Magnitudes of the ABCD matrix in limiting cases as a function of the forcing frequency f in revolutions per hour, i.e.
ω = 2π f /3600. (a) shows the limit ω → 0 for large and finite L, Equation (6.4). Here, |A| → 1, |B| approaches a nonzero
constant and C approaches zero linearly with ω; (b) shows the limits for large ω and large L, Equation (6.3). Note that σ ≈ 3 · 102

and |B| ≈ |A|
σ , |C| ≈ σ |A| for large ω.

The magnitudes of the ABCD coefficients are depicted in Fig. 2 for a pipe with a length of 100
kilometers confirming the above limits. The other pipeline parameters are associated with Example 8.1
of Section 8.

7. Distortion in natural gas pipelines

Transmission of natural gas from a supply station located at the sending end of the pipe to a withdrawal
station located at the receiving end suggests that boundary conditions should be split in the sense that
density is specified at the sending end and mass flux is specified at the receiving end. Thus, we replace
the boundary condition (2.4) by

ρ(t, 0) = ρs(t), ϕ(t, L) = ϕr(t), t ∈ [0, T], (7.1)

where ρs(t) and ϕr(t) are the specified time-dependent rates of supply and demand. The boundary
conditions of the linear systems in (3.3)–(3.5) are adjusted accordingly. This reflects the fact that
the linear operator in (3.3)–(3.5) corresponds to a second-order wave equation that has forwards and
backwards characteristics requiring boundary conditions at both ends (see, e.g. Grundel & Herty, 2020,
and the references therein). We note that α and β in (3.6) remain unchanged. From here onward, it is
assumed that natural gas operations are governed by (2.1)–(2.3) and (7.1).
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A direct representation of input and output is obtained by rearranging (5.1) in the form

[
Pr
Φs

]
=

[
sech

(
γ L

σ

) − zc
σ

tanh
(
γ L

σ

)
σ
zc

tanh
(
γ L

σ

)
sech

(
γ L

σ

)
] [

Ps
Φr

]
, (7.2)

where we have used the fact that AD − BC = cosh2(γ L
σ
) − sinh2(γ L

σ
) = 1.

In this section, we discuss the distortion of waves in natural gas pipelines, i.e. we determine the
changes of the magnitudes of the input Ps and Φr as they transmit along the pipe. Specifically, we are
interested in the magnitudes of the output Pr and Φs as a function of the input. We observe that if the
boundary conditions in (7.1) are given by the steady-state solution, i.e. ρs(t) = ρ and ϕr(t) = ϕ, there is
no perturbation at the boundaries and therefore there is zero distortion for constant supply and demand
rates.

Example 7.1 The most natural mode of operation for natural gas pipelines is constant supply and
temporally varying demand. Since we again focus on the linearized equation, we decompose the time
varying demand into its Fourier components and choose sinusoidal boundary conditions. The pipeline
parameters are L = 100 km, D = 0.5m, λ = 0.011 and θ = 0. Boundary conditions in (7.1) are given
by

ρs(t) = ρ, ϕr(t) = ϕ[1 + 0.1 sin(ωkt)], (7.3)

where ωk = 2πk/T with the time scale T = 12 hrs, leading to boundary conditions for the linearized
equations of the form

ρe(t, 0) = 0, ϕe(t, L) = 0.1ϕ sin(ωkt). (7.4)

By linearity of the Fourier transform and the definition of the impulse, the Fourier transforms of the
boundary conditions in (7.4) are given by Ps = 0, Φr = 0.1ϕ π

j [δ(ω − ωk) − δ(ω + ωk)]. Substituting
these into (7.2), we obtain

Pr = − zc

σ
tanh(γ L

σ
)]Φr, Φs = sech(γ L

σ
)Φr. (7.5)

Taking limits of the magnitudes of these expressions as ωk → ∞ gives

|Pr| → 1

σ
|Φr|, |Φs| → O(e−|β|L/(2σ)) ≈ 0. (7.6)

The limiting expressions in (7.6) show that, as the oscillation frequency of ϕe(t, L) increases, the
amplitude of ϕe(t, 0) approaches zero and the amplitude of ρe(t, L) approaches the amplitude of ϕe(t, L)

divided by the speed of sound σ . We conclude that if mass flux withdrawal at the receiving end is
characterized by high frequency oscillations, the resultant oscillatory wave at the sending end of the pipe
has been damped out. In pipeline operations, this is an important feature. In particular, high frequency
demand oscillations are averaged out and there is no need to adjust supply rates at the sending end of the
pipe to match them. This is illustrated in Fig. 3 where we observe that for high frequency demand, the
amplitude of mass flux at the sending end approaches zero and the amplitude of density at the receiving
end approaches the amplitude of mass flux at the receiving end divided by the speed of sound.
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12 L. BAKER ET AL.

Fig. 3. Top row: sending flux for the full nonlinear equation (ϕ(t, 0), black solid line) and the linearized approximation
(ϕl(t, 0; α = 0), red dashed line). Bottom row: the corresponding receiving densities (ρ(t, L), black solid line) and the
linearized approximation (ρl(t, L; α = 0), red dashed line) for different frequencies. The boundary conditions are ρs = ρ and
ϕr = ϕ[1 + 0.1 sin(ωkt)], where ωk is indicated in the subfigures. This figure is associated with Example 7.1 that corresponds to
variable demand in a very large pipeline (L = 100 km).

Example 7.2 An alternate mode of pipeline operation is sinusoidally varying supply and constant
withdrawal. This corresponds, e.g. to the spectral decomposition of supply perturbations caused from
time-dependent withdrawal in neighboring segments of the pipeline. Hence, boundary conditions in
(7.1) are given by

ρs(t) = ρ[1 + 0.1 sin(ωkt)], ϕr(t) = ϕ, (7.7)

Following the calculations that lead to (7.5), we arrive at

Pr = sech(γ L
σ
)Ps, Φs = σ

zc
tanh(γ L

σ
)]Ps. (7.8)

Taking again the high frequency limits, we find

|Pr| → O(e−|β|L/(2σ)) ≈ 0, |Φs| → σ |Ps|. (7.9)

The limiting expressions in (7.9) show that as the frequency of ρ(t, 0) increases, the amplitude of
ρ(t, L) approaches zero and the amplitude of the resulting oscillation in ϕ(t, 0) approaches the amplitude
of ρ(t, 0) multiplied by the speed of sound σ . At high frequency, the resulting sending flux oscillations
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ANALYSIS OF A MODEL OF A NATURAL GAS PIPELINE 13

Fig. 4. Depicted are sending flux ϕ(t, 0), ϕl(t, 0; α = 0) (solid, dashed) and receiving density [ρ(t, L) + d], ρl(t, L; α = 0) (solid,
dashed). The boundary conditions are ρs = ρ[1 + 0.1 sin(ωkt)] and ϕr = ϕ, where ωk is indicated in the subfigures. This figure
is associated with Example 7.2 that corresponds to variable supply in a very large pipeline (L = 100 km).

have amplitudes large enough to drive gas into the negative flow direction, as the factor σ ≈ 3 · 102

in (7.9) is large. This conclusion is confirmed by the simulations in Fig. 4. In Fig. 4, the amplitude
of the sending flux approaches the amplitude of the sending density times the speed of sound and the
amplitude of the receiving density approaches zero as ωk increases.

8. Accuracy of amplified and unamplified pipelines

The linear constant coefficient system in (7.2) allows us to determine distortion of waves with a
relatively simple theory of ABCD matrix coefficients. It is based on two approximations: we linearize
the nonlinear source terms in (2.1) and (2.2) and we approximate the spatially dependent steady-state
profile (2.8) by a constant. An additional approximation is made when we consider the unamplified
pipeline and set α = 0 in the linearized equation. In this section, we discuss the resulting errors. Define

ρl(t, x; α) = ρ0(x) + ρe(t, x; α),

ϕl(t, x; α) = ϕ0(x) + ϕe(t, x; α),

where α is specified or set equal to zero to distinguish between an amplified or unamplified pipeline,
respectively. The accuracy of the approximation in (3.7) is analysed numerically by solving the fully
nonlinear equations (2.1) and (2.2) comparing ρ with ρl and ϕ with ϕl for different pipeline parameters
and operational conditions.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

atrm
/article/5/1/tnab002/6421330 by guest on 18 April 2023

117



14 L. BAKER ET AL.

Table 1 Maximal pointwise relative error between the simulation of the nonlinear system and the
linearized and unamplified system for Experiment 7.1 displayed in Fig. 3

Errors Transient flux Steady-state flux Transient density Steady-state density

ωk = 20π/12 0.0062 0.0046 0.0046 0.0033
ωk = 50π/12 0.0028 0.0014 0.0027 0.0020
ωk = 200π/12 4.2192e-04 5.1695e-05 0.0012 9.4740e-04

Table 2 Maximal pointwise relative error between the simulation of the nonlinear system and the
linearized and unamplified system for Experiment 7.2 displayed in Fig. 4

Errors Transient flux Steady-state flux Transient density Steady-state density

ωk = 20π/12 0.1689 0.0960 0.0207 0.0058
ωk = 50π/12 0.4673 0.2943 0.0322 0.0013
ωk = 200π/12 0.6540 0.4087 0.0543 4.9123e-04

We begin by studying the errors from Example 7.1 that has a constant supply and a variable demand.
Figure 3 shows a comparison of the transients for the nonlinear solution and the linearized unamplified
solution. The top row shows the transient time evolution of the sending flux ϕ(t, 0) while the bottom row
shows the same for the receiving density ρ(t, L) for low, medium and high frequency demand variations,
respectively.

We observe two important facts: since the hyperbolic equations with the linear and the nonlinear
source terms have the same characteristics, the wave speed is the same for both equations and hence
their phases are identical. In particular, the linear equation correctly predicts the arrival times of maxima
and minima of the perturbations at the other end of the pipeline. Secondly, while the ABCD analysis
is valid only for the steady-state operation, the transient behavior of both simulations is very close.
Table 1 shows the maximal relative error for the transient determined via these simulations (first column
for the sending flux and third column for the receiving density) and for the steady-state part (second
column for the sending flux and fourth column for the receiving density) determined by comparisons
of the nonlinear simulation and the analytic results due to the ABCD matrix analysis. They are of order
O(10−3) or smaller.

The dual Experiment 7.2 has a constant demand (flux) and a variable sending density. Figure 4 top
row shows ϕ(t, 0) while Fig. 4 bottom row shows ρ(t, L) for low, medium and high frequency demand
variations, respectively.

We observe two qualitative issues for the comparison of the transient simulations: (i) the linearized
model matches the nonlinear simulation much better for the sending flux (top row) than for the receiving
density (bottom row); (ii) for middle- and high-frequency perturbations the flux becomes negative
indicating flow reversals. Table 2 displays the transient and steady-state error analysis as in Table 1
for the sending flux and the receiving density. It is interesting to note that while the density errors are
still small, order O(10−3) for the steady state and O(10−2) for the transients, the errors for the flux are
of order O(10−1).

Switching from steady-state Fourier analysis to time-dependent boundary conditions we study four
cases. Some of these experiments can be found in Gyrya & Zlotnik (2019) and are described here.

Example 8.1 The common parameters of all the cases are λ = 0.011, θ = 0 and σ = 338.23 m/s.
All examples refer to the typical model for pipeline operation, i.e. a variable density at the supply side
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Fig. 5. Depicted are sending flux ϕ(t, 0), ϕl(t, 0), ϕl(t, 0; α = 0) (solid, dotted, dashed) and receiving density ρ(t, L), ρl(t, L),
ρl(t, L; α = 0) (solid, dotted, dashed). The associated examples are indicated in the subfigures.

ρs(t) and a variable demand given by ϕr(t) at the end of the pipeline. The experiments differ in the time
horizon, the length of the pipeline, and the type of time-dependent boundary conditions.

1. We set L = 100 m and D = 0.1 m and consider the steady-state values ρ = 0.003×56.817 kg/m3

and ϕ = 0.003 × 289 kg/sm2. For the following boundary conditions with a 12-hr time evolution

ρs(t) = ρ[1 + 0.1 sin(π/2t)], ϕr(t) = ϕ[1 + 0.1 sin(π/3t)], (8.1)

the rates of density supply and flux demand vary slowly with a period of 4 hrs and 6 hrs,
respectively. Figure 5(a) shows that the sending flux has period T = 6, while Fig. 5b shows
that the receiving density has period T = 4 corresponding to the forcing frequencies of flux and
density, respectively. This is consistent with the realization that the ABCD matrix becomes the
identity for small L, indicating that the pipeline is too short to allow for perturbations of flux and
density to mix.

2. The second experiment changes the diameter to D = 0.5 m, the length to L = 100 km and the
steady-state values to ρ = 56.817 kg/m3 and ϕ = 289 kg/sm2. The time-dependent boundary
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16 L. BAKER ET AL.

conditions are the same as before but with the new steady-state constants. Figure 5(c,d) shows
that flux and density perturbations superimpose the frequency components of both boundary
terms.

3. We now consider a medium length pipe with L = 20 km, D = 0.9144 m and steady-state values
ρ = 56.812 kg/m3 and ϕ = 1200 kg/sm2. The boundary condition models a partial closing and
opening of a valve. To this end, we define the ‘box’ function box(t) = [u(t−0.33)−u(t−0.66)],
where t ∈ [0, 1] is measured in hours and u is the unit step defined by u(t) = 0 for t < 0 and
u(t) = 1 for t � 0. Specifically, the boundary conditions are given by

ρs(t) = ρ ϕr(t) = ϕ[1 − 0.5box(t)]. (8.2)

4. For the same pipeline, we change the time-dependent boundary conditions to

ρs(t) = ρ[1 + 0.1 sin(π/3t)], (8.3)

ϕr(t) = 0.1ϕ sin(π/2t) + ϕ[1 − 0.5box(t)]. (8.4)

For Examples 8.1.1 to 8.1.4, Figs 5 and 6 show the sending flux ϕ(0, t) and the receiving density
ρ(L, t) for the fully nonlinear simulations (solid black line), the linearized simulation (dotted black line)
and the unamplified model (red dashed line), respectively. As discussed previously, the time of specific
events (maxima, minima, perturbations) is resolved exactly by both linear approximations, since the
characteristics of all three hyperbolic equations are the same. The relative error of these simulations are
typically of the order O(10−3) for Example 8.1.2 but rise to O(10−1) for the large boundary variations
of Example 8.1.3.

9. Conclusion

Starting from the standard equations for gas pipeline flows, we derived approximations based on three
steps: we linearize the equations around their steady state, leading to a linear PDE with space-dependent
coefficients and source terms in density and flux. We approximate the coefficients by constants and show
that the density-dependent source term can be neglected for typical gas pipeline flows. The resulting
constant coefficient linear PDE is equivalent to an electrical circuit and can be analysed by Fourier
decompositions leading to an input–output relationship between flows and densities at the start and end
of the pipeline. This allows us to analytically solve the typical gas pipeline problem that determines the
density at the end of the pipeline and the flow at the beginning of the pipeline, given the density at the
beginning of the pipeline and the required flow at the end. The analytic formulation allows us insight that
is not available through simulation experiments of the nonlinear pipeline equations. Specifically, since
the hyperbolic wave equations for the nonlinear and the linear source terms have the same differential
operator, they share identical characteristics. Thus, the timing of any event, e.g. demand reductions or
other perturbations of the system propagates along the characteristics in the same way for both models
and can hence most easily be followed with the linear wave equation.

We show via simulations that the error between the full nonlinear simulation and the approximate
linear models is in most cases small. We also find that the constant coefficient linear model has low
error for the case of temporarily varying demand and constant supply representing the important case
of fluctuating demand due to changes of renewable power generation. Specifically, for long pipelines
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Fig. 6. Depicted are sending flux ϕ(t, 0), ϕl(t, 0), ϕl(t, 0; α = 0) (solid, dotted, dashed) and receiving density ρ(t, L), ρl(t, L),
ρl(t, L; α = 0) (solid, dotted, dashed). Experiment 8.1.3 corresponds to constant sending density and time-varying receiving flow,
whereas Experiment 8.1.4 has time-dependent boundary conditions at both ends of the pipeline. Both experiments are for the
same, large pipeline.

and large frequencies the perturbations are damped by a factor 1/σ , with σ the speed of sound. In
contrast, experiments with constant withdrawal and temporarily varying supply is qualitatively still
modeled correctly by the linear model but quantitatively has larger errors due to two factors: (i) flow
reversals for larger frequencies and (ii) the fact that perturbations are multiplied by σ and hence the
oscillations in the flux become of order O(102).

Frequency based error analysis shows that in particular high frequency perturbations of the
demand are damped along the pipeline and hence may be neglected at the supply end for longer
pipelines. We show that for short pipelines, perturbations in the flow and in the density will not mix
significantly. Depending on the frequency of the perturbations, mixing will exceed a threshold at a
critical length. Similarly, based on the analytical understanding of the linearized equations, we can
determine the approximate position of flow reversals along a pipeline, given the size and frequency of
the perturbations. In a subsequent paper, we will discuss the safe operating limits of a pipeline that
avoids flow reversals based on these understandings in more detail (Baker et al., 2021).
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18 L. BAKER ET AL.

As an additional next step, we will extend this analysis to network flows. Having a good
understanding of the error behavior will allow us in future work to use the tools of linear control and
systems theory to develop robust control algorithms to optimally operate pipeline networks.
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A. Appendix

To get a dimensionless form of the pipeline equations, we perform the following transformations
t̂ = t/(�/σ), x̂ = x/�, ρ̂ = ρ/�, ϕ̂ = ϕ/(σ�), where � and � are nominal length and density
resulting in

∂t̂ρ̂ + ∂x̂ϕ̂ = 0 (A.1)

∂t̂ϕ̂ + ∂x̂ρ̂ = − λ�

2D

ϕ̂|ϕ̂|
ρ̂

− g� sin θ

σ 2
ρ̂ (A.2)

with corresponding initial and boundary conditions. As a result, for a horizontal pipeline, the source
terms in the linearized equations become

α̂ = λ�

2D

¯̂ϕ| ¯̂ϕ|
¯̂ρ2

, β̂ = −λ�

D

| ¯̂ϕ|
¯̂ρ ,

where ¯̂ρ and ¯̂ϕ are the boundary conditions for the steady-state solutions of (A.1) and (A.2). Thus,
α̂/β̂ = (1/σ)(α/β) = −ϕ/(2σρ). This ratio is independent of the length, diameter and friction content
of the pipe. In Experiments 1 and 3 from Example 8.1, we have α̂/β̂ = 0.0075 and α̂/β̂ = 0.0312,
respectively. Since σ = 338 we get that α̂/β̂ = O(10−2) and thus α̂ can mostly be ignored for horizontal
pipes.
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Optimal Control of Transient Flows in Pipeline Networks with
Heterogeneous Mixtures of Hydrogen and Natural Gas

Luke Baker1, Saif R. Kazi2, Rodrigo B. Platte1, and Anatoly Zlotnik2

Abstract— We formulate a control system model for the
distributed flow of mixtures of highly heterogeneous gases
through large-scale pipeline networks with time-varying in-
jections of constituents, withdrawals, and control actions of
compressors. This study is motivated by the proposed blending
of clean hydrogen into natural gas pipelines as an interim
means to reducing end use carbon emissions while utilizing
existing infrastructure for its planned lifetime. We reformulate
the partial differential equations for gas dynamics on pipelines
and balance conditions at junctions using lumped elements to a
sparse nonlinear differential algebraic equation system. Our key
advance is modeling the mixing of constituents in time through-
out the network, which requires doubling the state space needed
for a single gas and increases numerical ill-conditioning. The
reduced model is shown to be a consistent approximation of
the original system, which we use as the dynamic constraints
in a model-predictive optimal control problem for minimizing
the energy expended by applying time-varying compressor
operating profiles to guarantee time-varying delivery profiles
subject to system pressure limits. The optimal control problem
is implemented after time discretization using a nonlinear
program, with validation of the results done using a transient
simulation. We demonstrate the methodology for a small test
network, and discuss scalability and potential applications.

I. INTRODUCTION

Transportation of natural gas through networks of large-
scale transmission pipelines has been studied in steady-state
[1], [2], [3], [4], [5] and transient [6], [7], [8] operations
with applications to the optimal control of compressor ac-
tuators. In steady-state, the flow of gas in the network is
balanced, so that inflows from processing plants and supply
stations and outflows from withdrawal stations sum to zero.
Steady-state pipeline flows are described using simple time-
invariant algebraic equations that relate pressure drop in
the direction of flow to mass flow along each pipeline.
In the transient regime, computational complexity increases
significantly because the flow in each pipeline cannot be
modeled with simple algebraic equations but rather requires
a system of nonlinear partial differential equations (PDEs)
[9], [10]. Model reduction methods have been proposed to
reduce the complexity of optimizing gas flows in networks

*This study was supported by the U.S. Department of Energy’s Advanced
Grid Modeling (AGM) project “Dynamical Modeling, Estimation, and
Optimal Control of Electrical Grid-Natural Gas Transmission Systems”.
Research conducted at Los Alamos National Laboratory is done under
the auspices of the National Nuclear Security Administration of the U.S.
Department of Energy under Contract No. 89233218CNA000001.

1Luke Baker and Rodrigo Platte are with the School of Mathematical
and Statistical Sciences at Arizona State University, Tempe, Arizona, 85281;
{lsbaker1,rplatte}@asu.edu.

2Saif Kazi and Anatoly Zlotnik are in the Applied Mathematics & Plasma
Physics Group at Los Alamos National Laboratory, Los Alamos, New
Mexico, 87545; {skazi,azlotnik}@lanl.gov.

[11], [12]. Although natural gas is projected to be a primary
fuel source through the year 2050 [13], worldwide economies
have invested in transitioning from fossil fuels such as natural
gas to more sustainable resources. Hydrogen is a potential
candidate, which, because it does not produce carbon dioxide
when burned, is considered to have the potential to address
climate change [14]. Natural gas pipeline operation and
management protocols may be modified to transport mixtures
of natural gas and hydrogen. Recent studies indicate that
natural gas pipelines can safely and effectively transport
mixtures of up to 20% hydrogen [15], [16]. However, the
complexity of modeling steady-state and transient flows, and
thus designing and operating pipelines, is compounded with
the injection of hydrogen [17], [18].

Natural gas and hydrogen have significantly different
physical and chemical properties. Hydrogen is less dense
than natural gas, and the speed of sound through hydrogen is
roughly four times as large as that of natural gas. Viscosity,
velocity, density, pressure, and energy of the gas mixture
all vary with varying hydrogen concentration [19], [20], and
these directly affect the transportation of the mixture [21].
Numerical simulations have been performed to demonstrate
various effects on steady-state and transient-state flows of
mixtures of hydrogen and natural gas in pipeline networks
[22], [23], [24], [25], [26], [27], [28]. The method of
characteristics was used in the numerical simulation of
transient flows on cycle networks with homogeneous flow
mixtures [25]. Another recent study investigates gas compo-
sition tracking using a moving grid method and an implicit
backward difference method [23]. It was shown that both
methods of tracking perform well, but the implicit difference
method may lose some finer detail in the response due to nu-
merical diffusion. A finite element method using COMSOL
Multiphysics was also developed [26]. This study considers
the effects of hydrogen concentration on the compressibility
factor of the mixture and its relation with pressure. Moreover,
there the authors demonstrate that pressure may exceed
pipeline limitations in the transient evolution of flow and
that the likelihood of this happening increases proportionally
with increasing hydrogen concentration.

In contrast to pure natural gas, few studies have exam-
ined optimization of steady-state and transient operations
of mixtures of hydrogen and natural gas in networks. To
our knowledge, there are no results on the optimal control
of transient flows of heterogeneous mixtures of gases in
pipelines or networks of pipelines. Optimal control of com-
pressor actuators for transport of pure natural gas typically
seeks to minimize the cost of running compressors while
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being subjected to PDE flow dynamics, nodal pressure and
nodal flow balance constraints, and inequality box constraints
that limit the pressure throughout the network [29]. Other
formulations may use an objective function that maximizes
economic value [30]. When transients are sufficiently slow,
a friction-dominated approximation may be made [31], and
this was shown to be valid in the regime of normal pipeline
operations [32]. We use friction-dominated modeling to sim-
plify the reduced modeling in the heterogeneous gas setting.

In this study, we formulate a control system model
for transporting heterogeneous mixtures of gases through
pipeline networks of general form, and extend optimal
control problems for gas pipeline flow to this setting. Our
key advance is modeling the mixing of constituents in time
throughout the network, which requires doubling the state
space needed for a single gas and increases numerical ill-
conditioning. This enables the formulation and solution of
optimal control problems in which constituent gases may
be injected at different points in the network at varying
concentrations, e.g., the addition of 100% hydrogen at certain
nodes. An algorithm is implemented to obtain solutions, and
the results are demonstrated on a small test network that
includes a cycle.

The remainder of the manuscript is organized as follows.
The governing equations for the flow of mixtures of gases
in a network are presented in Section II. In Section III,
an endpoint discretization method is employed to reduce
the system of PDEs to a system of ordinary differential
equations (ODEs). There, we show that the discretization
method is consistent and results in the equations for natural
gas only in the case of zero hydrogen injection, and yields
the steady-state equations when supply and withdrawal are
held constant. Section IV describes time-discretization of
the optimal control problem that yields a nonlinear program
(NLP). The NLP is solved for a test network in Section V,
and we discuss applications in Section VI.

II. NETWORK FLOW CONTROL FORMULATION

We begin by defining notation that will be used in the
study. A gas network is modeled as a connected and directed
graph (E ,V) consisting of edges (pipelines) E = {1, . . . , E}
and nodes (junctions) V = {1, 2, . . . , V }, where E and V
denote the cardinalities of the sets. It is assumed that the
nodes and edges are ordered within their sets according to
their integer labels. The symbol k is conserved for identifying
edges in E and the symbols i and j are conserved for
identifying nodes in V . Supply nodes Vs ⊂ V and withdrawal
nodes Vw ⊂ V are assumed to be disjoint sets that partition
V , i.e., Vs ∪ Vw = V and Vs ∩ Vw = ∅. It is assumed that
supply nodes are ordered in V before withdrawal nodes so
that i < j for all i ∈ Vs and j ∈ Vw. The graph is directed
by judiciously assigning a positive flow direction along each
edge. It is assumed that gas physically flows in only the
direction of positive flow so that the mass flux and velocity of
the gas are positive quantities. The notation k : i 7→ j means
that edge k ∈ E is directed from node i ∈ V to node j ∈ V .
For each node j ∈ V , we define (potentially empty) incoming

and outgoing sets of pipelines by 7→j = {k ∈ E|k : i 7→ j}
and j 7→ = {k ∈ E|k : j 7→ i}, respectively.

The transportation of the mixture of hydrogen and natural
gas is modeled as a simplification of the isothermal Euler
equations. For each pipe k ∈ E , the flow variables are
natural gas density ρ

(1)
k (t, x), hydrogen density ρ

(2)
k (t, x),

and mass flux ϕk(t, x) of the mixture, with t ∈ [0, T ]
and x ∈ [0, `k], where T denotes the time horizon and `k
denotes the length of the pipe. Assuming zero inclination
and sufficiently slow transients, the flow through edge k is
governed by the friction-dominated PDEs

∂tρ
(m)
k + ∂x

ρ
(m)
k

ρ
(1)
k + ρ

(2)
k

ϕk

)
= 0, (1)

∂x

(
σ2
1ρ

(1)
k + σ2

2ρ
(2)
k

)
= − λk

2Dk

ϕk|ϕk|
ρ
(1)
k + ρ

(2)
k

,(2)

where (1) is defined for each component m = 1, 2. The
parameters are diameter Dk, friction factor λk, speed of
sound through natural gas σ1, and speed of sound through
hydrogen gas σ2. In the above dynamic equations, the
compressibility factors of the gasses are assumed to be
constants so that the equations of states are ideally given
by p(m)

k = σ2
mρ

(m)
k , where p(m)

k is the partial pressure. The
summation of partial pressures results in the equation of state
pk = (σ2

1η
(1)
k + σ2

2η
(2)
k )ρk, where pk = (p

(1)
k + p

(2)
k ) is

the total pressure, ρk = (ρ
(1)
k + ρ

(2)
k ) is the total density,

η
(1)
k = ρ

(1)
k /ρk is the concentration of natural gas, and

η
(2)
k = ρ

(2)
k /ρk is the concentration of hydrogen. Superscripts

1 and 2 on a gas variable are conserved for identifying natural
gas and hydrogen variables, respectively.

Friction forces between the interior wall of a pipe and
gas flowing through it cause pressure to decrease in the
direction of flow, as reflected in the momentum equation
(2). Compressor stations receive gas at low pressure and
reduce its volume to increase its pressure to levels required
for transportation and customer contracts. In addition to
compressors, regulators are installed to reduce the pressure
of the received gas to within limits that are compatible
with lower pressure distribution systems. For convenience,
we assume that a compressor is located at the inlet and
a regulator is located at the outlet of each pipeline with
respect to the prescribed positive flow direction. For each
pipeline k ∈ E , compression and regulation are modeled
with time-varying multiplicative compressor ratio µ

k
(t) ≥ 1

and regulator ratio µk(t) ≥ 1.
Natural gas and hydrogen are injected into the network

at each supply node i ∈ Vs with specified time-varying
profiles of natural gas density s(1)i (t) and hydrogen density
s
(2)
i (t). The concentration of gases m = 1, 2 at supply

nodes are denoted by γ(m)
i (t) = s

(m)
i /(s

(1)
i + s

(2)
i ). Gas is

withdrawn downstream at each withdrawal node j ∈ Vw with
specified time-varying mass flux wj(t). For m = 1, 2 and
all j ∈ Vw, define nodal density variables ρ(m)

j (t) and nodal
concentration variables η(m)

j (t). All of the nodal quantities
in this work are identified with bold symbols. Inlet and outlet
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edge variables are defined by attaching underlines below and
overlines above the associated edge variables, respectively.
For example, ϕ

k
(t) = ϕk(t, 0) and ϕk(t) = ϕk(t, `k). The

boundary conditions for the flow of the mixture are defined
for m = 1, 2 by

ρ(m)
k

= µ
k
s
(m)
i , ρ

(m)
k = µkρ

(m)
j , (3)

ρ(m)
k

= µ
k
ρ
(m)
i , ρ

(m)
k = µkρ

(m)
j , (4)

η
(m)
j wj =

∑
k∈ 7→j

η
(m)
k ϕk −

∑
k∈j7→

η(m)
k

ϕ
k
, (5)

where (3) is defined for k : i 7→ j with i ∈ Vs, (4) is defined
for k : i 7→ j with i ∈ Vw, and (5) is defined for j ∈ Vw. The
conditions in (3)-(4) represent the effects of compression and
regulation, and the conditions in (5) represent the conserva-
tion of mass flow of each constituent through withdrawal
nodes. It is assumed that the final operating state returns to
its initial state, resulting in periodic temporal constraints

ρ
(m)
k (0, x) = ρ

(m)
k (T, x) (6)

for all k ∈ E and x ∈ [0, `k]. Periodicity in time requires the
parameters s(m)

i (t), wj(t), µ
k
(t), and µk(t) to be periodic

with period T . We assume that the boundary conditions are
smooth, slowly-varying, and ly bounded in their respective
domains to ensure the existence of a smooth, slowly-varying,
bounded solution. The flow of the mixture of gases in the
network is defined by the initial-boundary value system of
PDEs (1)-(6).

Gas network operators require pressure, compression, and
regulation to be within satisfactory limitations to ensure the
safety of transportation and the quality of gas delivered to
customers. These limitations are modeled for all k ∈ E with
inequality constraints of the form

pmin
k ≤ σ2

1ρ
(1)
k + σ2

2ρ
(2)
k ≤ pmax

k , 1 ≤ µ
k
, µk ≤ 2, (7)

where pmin
k and pmax

k are specified bounds on pressure for
each pipeline k ∈ E . Compression µ

k
and regulation µk are

the control actuators in the network that are designed to min-
imize total consumption. Since regulation does not consume
considerable energy, its contribution may be omitted. The
total energy required for compression is given by

J =
∑
k∈E

∫ T

0

ck|ϕk(t)|
(

(µ
k
(t))(ν−1)/ν − 1

)
dt, (8)

where ck is related to the efficiency of the compressor µ
k

and ν is the isentropic exponent [33] (which is assumed to
be a weighted average of those of natural gas and hydrogen
with weights equal to their respective mean concentration
injections). The continuous optimal control problem is

min J , compressor energy in (8),
s.t. dynamic constraints: (1)-(2),

boundary conditions: (3)-(5),
temporal constraints: (6),
inequality constraints: (7).

(9)

The decision variables are partial densities, mass fluxes,
compressor ratios, and regulator ratios.

III. NETWORK FLOW CONTROL DISCRETIZATION

The intial-boundary value system of PDEs from the previ-
ous section will be discretized in space to obtain an initial-
value system of ODEs. Discretization will be formalized by
refining the graph of the gas network. A graph refinement
(Ê , V̂) of the graph (E ,V) is made by adding auxiliary nodes
to V that subdivide the edges of E so that `k ≤ ` for all
k ∈ Ê , where ` is sufficiently small, i.e., ∼ 2-10 km [12]. The
refined graph inherits the prescribed direction of the parent
graph. For sufficiently fine network refinement, the relative
difference of the flow variables between adjacent nodes is
small in magnitude by continuity of the flow variables. We
assume that the graph has been sufficiently refined and that
the hats may be omitted moving forward.

The system of ODEs is obtained by integrating the dy-
namic equations in (1)-(2) along the length of each refined
pipeline segment so that∫ `

0

∂tρ
(m)dx = −

∫ `

0

∂x

(
ρ(m)

ρ(1) + ρ(2)
ϕ

)
dx,∫ `

0

∂x

(
σ2
1ρ

(1) + σ2
2ρ

(2)
)
dx = − λ

2D

∫ `

0

ϕ|ϕ|
ρ(1) + ρ(2)

dx,

where edge subscripts have been removed for readability.
The above integrals of space derivatives are evaluated using
the fundamental theorem of calculus. The remaining integrals
are evaluated by approximating pipeline density with outlet
density and pipeline flux with inlet flux. These approxima-
tions are independent of x and may be factored out of the
integrals. The above equations become

`ρ̇(m) = η(m)ϕ− η(m)ϕ, (10)
2∑

n=1

σ2
n

(
ρ(n) − ρ(n)

)
= − λ`

2D

ϕ
∣∣ϕ∣∣

ρ(1) + ρ(2)
, (11)

where a dot above a variable represents the time-derivative of
the variable. We now write the discretized system in matrix
form. Define the E × E diagonal matrices L and K with
diagonal entries Lkk = `k and Kkk = λk/(2Dk). Define
the time-varying (transposed) incidence matrix M of size
E × V componentwise by

Mki =


µk(t), edge k ∈7→ i enters node i,
−µ

k
(t), edge k ∈ i7→ leaves node i,

0, else.
(12)

Define the E × r submatrix Ms of M by the removal of
columns i ∈ Vw, the E × (V − r) submatrix Mw of M
by the removal of columns i ∈ Vs, and the positive and
negative parts of Mw by Mw and Mw so that Mw = (Mw+
Mw)/2 and |Mw| = (Mw −Mw)/2, where r denotes the
number of supply nodes and |A| denotes the componentwise
absolute value of a matrix A. Define the signed matrices
Qw =sign(Mw), Qw =sign(Mw), Q

w
=sign(Mw), and

similarly for Ms. These signed matrices are well-defined by
the inequalities in (7).
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Define inlet and outlet edge mass flux vectors by ϕ =
(ϕ

1
, . . . , ϕ

E
)T and ϕ = (ϕ1, . . . , ϕE)T , and similarly for in-

let and outlet edge concentrations. Moreover, define the vec-
tors ρ(m) = (ρ

(m)
r+1, . . . ,ρ

(m)
V )T , η(m) = (η

(m)
r+1, . . . ,η

(m)
V )T ,

and γ(m) = (γ
(m)
1 , . . . ,γ

(m)
r )T , where the subscripts of

the entries are indexed according to the node labels in
V . Applying the above matrix definitions, the discretized
equations in (10)-(11) together with the boundary conditions
in (3)-(5) become

LMwρ̇
(m) = η(m) � ϕ− η(m) � ϕ, (13)

2∑
m=1

σ2
m

(
Mwρ

(m) +Mss
(m)
)

= −
LK(ϕ� |ϕ|)

Mw(ρ(1) + ρ(2))
, (14)

η(m) �w = Q
T

w

(
η(m) � ϕ

)
+QT

w

(
η(m) � ϕ

)
, (15)

where � is the Hadamard product, and the ratio of vectors
on the right-hand-side of (14) is understood to be componen-
twise. It is assumed that regulators vary slowly so that the
time derivative of Mw is insignificant, justifying its removal
from (13). Multiplying both sides of (13) on the left by Q

T

w

and using (15), we may combine (13) and (15) to form the
equation Q

T

wLMwρ̇
(m) = [QTw(η(m)�ϕ)−η(m)�w], where

we have used Qw = (Q
w

+Qw). By the definitions of supply
and withdrawal concentrations, the above equations become

Q
T

wLMwρ̇
(m) = QTw[(|Q

w
|η(m) + |Q

s
|γ(m))� ϕ]

−η(m) �w, (16)
2∑

m=1

σ2
m

(
Mwρ

(m) +Mss
(m)
)

= −
LK(ϕ� |ϕ|)

Mw(ρ(1) + ρ(2))
. (17)

Periodic temporal constraints in (6) reduce to

ρ(m)(0) = ρ(m)(T ). (18)

Pressure, compression, and regulation inequality constraints
in (7) reduce to

pmin
j ≤ σ2

1ρ
(1)
j + σ2

2ρ
(2)
j ≤ pmax

j , 1 ≤ µ
k
, µk ≤ 2, (19)

where pmin
j and pmax

j are specified bounds for each node
j ∈ Vw. The reduced-model optimal control problem is
formulated as

min J , compressor energy in (8),
s.t. dynamic constraints: (16)-(17),

temporal constraints: (18),
inequality constraints: (19).

(20)

We now present several results on the discretization
method. Proposition 1 below shows that the discretized
system in (16)-(17) approaches the continuous system in
(1)-(2) in a single pipeline as the distance between adjacent
nodes of the refined pipeline approaches zero. Proposition
2 shows that the number of density variables in (16)-(17)
reduces to half this number for homogeneous mixtures.
Moreover, there we show that the discretized system reduces
to the steady-state equations in the time-invariant setting.

Proposition 1. Consider a single pipeline of length `, and
refine its graph as a chain connection of E segments of

uniform length ∆` = `/E, diameter D, and friction factor
λ. Suppose the gas mixture is supplied to the pipeline at
the inlet Vs = {1} with boundary conditions as in (3) and
withdrawn from only the outlet so that wj = 0 for j 6=
E + 1. Suppose for simplicity that there are no compressors
or regulators. Then the resulting system in (16)-(17) is a
consistent spatial discretization of (1)-(5).

Proof. The matrix Mw is the E ×E identity matrix, Mw

is the E×E lower off-diagonal matrix with nonzero entries
(Mw)n+1,n = −1, and Q

s
is an E × 1 unit vector with one

nonzero entry given by (Q
s
)1 = −1. For the intermediate

segment n : n 7→ (n+1) with 2 ≤ n ≤ E−1, the associated
dynamics in (16)-(17) are given by

ρ̇
(m)
n+1 +

1

∆`

(
η
(m)
n+1ϕn+1

− η(m)
n ϕ

n

)
= 0

1

∆`

2∑
m=1

σ2
m

(
ρ
(m)
n+1 − ρ(m)

n

)
=− λ

2D

ϕ
n
|ϕ
n
|

ρ
(1)
n+1 + ρ

(2)
n+1

.

Taking the limit ∆`→ 0, the above equations approach the
dynamics in (1)-(2). Similarly, as ∆`→ 0, it can be shown
that the first and last segments of the pipe reduce to the
dynamics (1)-(2) with boundary conditions (3)-(5). �

Proposition 2. The network system in (16)-(17) reduces to
a system with total density as the only density variable if the
concentration of hydrogen at supply nodes is time-invariant.
If the concentration of hydrogen is zero at supply nodes, then
the system reduces further to the pure natural gas equations.
If supply concentration, supply pressure, and withdrawal flux
are time-invariant, yielding a time-invariant solution, then the
system in (16)-(17) reduces to the steady-state balance laws.

Proof. If γ(m) is constant, then η(m) is constant as well.
Define γ(2) = γ and η(2) = η, where γ and η are
constant vectors. For constant concentration injection, the
relation (σ2

1ρ
(1) + σ2

2ρ
(2)) = a2 � ρ holds, where ρ =

(ρ(1) + ρ(2)) is total density, a = (σ2
1(1 − η) + σ2

2η)1/2

is a constant vector, and the square-root is understood to
be componentwise. Moreover, (σ2

1s
(1) + σ2

2s
(2)) = b2 � s,

where s = (s(1) + s(2)) and b = (σ2
1(1 − γ) + σ2

2γ)1/2.
Superimposing (16) for m = 1, 2 results in

Q
T

wLMwρ̇ = QTwϕ−w, (21)

Mw

(
a2 � ρ

)
+Ms

(
b2 � s

)
= −

LK(ϕ� |ϕ|)
Mwρ

. (22)

If γ = 0, then η = 0 and the above equations reduce to the
single gas endpoint discretization method with a = b = σ1
[34]. If w, γ(2), s, and ρ are constant, then the system (21)-
(22) reduces to the Weymouth equations for a mixture of
gases [5]. �
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IV. IMPLEMENTATION

The optimal control problem in (20) may be expressed as

min

∫ T

0

F(x(t), u(t))dt (23a)

s.t. F
d

dt
[R(m)x(t)] = f (m)(x(t), u(t), p(t)), (23b)

e(x(T ), x(0), u(T ), u(0)) = 0, (23c)
q(x(t), u(t)) ≥ 0, (23d)

where x = (ρ(1),ρ(2), ϕ)T is the state, u = ({µ
k
, µk})T is

the control, and p = (s(1), s(2),w)T is a fixed (potentially
time-varying) vector of parameters. The function e repre-
sents temporal periodic constraints, q represents inequality
constraints, R(m) is a row selector matrix that maps x into
ρ(m), and F = Q

T

wLMw. A nonlinear program is obtained
by discretizing the time interval [0, T ) into N subintervals
with equally-spaced collocation points tn = (n−1)T/N for
n = 1, . . . , N .

The vector-valued functions x(t), u(t), and p(t) are inter-
polated with piecewise-linear vector-valued functions x̂(t),
û(t), and p̂(t), respectively. For n = 1, . . . , N , the function
x̂(t) is defined for t ∈ [tn, tn+1) by

x̂(t) = x(tn) +
x(tn+1)− x(tn)

T/N
(t− tn),

where x(tN+1) = x(t1) by the assumption of periodicity.
The functions û(t) and p̂(t) are defined similarly. The
integral in the objective function is approximated using the
trapezoidal rule, resulting in∫ T

0

F(x(t), u(t))dt ≈
N∑
n=1

T

N
F(x̂(tn), û(tn)).

The time derivative of R(m)x(t) is approximated using the
finite difference d/dt[R(m)x(t)] ≈ N/T (R(m)x(tn+1) −
R(m)x(tn)). Define the N × N differentiation matrix D
componentwise by Dn,n = −T/N , Dn,n+1 = T/N , and
DN,1 = T/N . The differentiation matrix includes a periodic
constraint to the vector on which it operates. Define the
stacked state vector X = (x̂(t1), . . . , x̂(tN ))T , input U =
(û(t1), . . . , û(tN ))T , parameter P = (p̂(t1), . . . , p̂(tN ))T ,
and extend D, F , R(m), and all of the other matrices using
Kronecker products with identity matrices of appropriate
dimensions. Then the nonlinear program may be written as

min
N∑
n=1

T

N
F(XnX,UnU) (24a)

s.t. FDR(m)XnX = f (m)(XnX,UnU,PnP ),

m = 1, 2, n = 1, . . . , N, (24b)
q(XnX,UnU) ≥ 0, n = 1, . . . , N, (24c)

where Xn, Un, and Pn are row selector matrices that satisfy
XnX = x̂(tn), UnU = û(tn), and PnP = p̂(tn) for n =
1, . . . , N .

0 5 10 15 20
0

50

100

Fig. 1. Top: Configuration of the network. Pipeline dimensions: dark blue
to purple = 50 km, purple to light blue = 30 km, purple to green = 20 km,
and green to light blue is 30 km. Bottom: Withdrawal flow profiles.

The NLP in (24) is performed on a MacBook Air 8-core
CPU with 8GB of unified memory, and is implemented in
Matlab with the interior-point algorithm using the function
fmincon. The gradient of the objective and Jacobian of
the constraints are supplied to the function for improved
performance. The Hessian of the Lagrangian function is
set to the default finite-difference approximation. Optimal
control of compression and regulation is obtained from the
optimal solution U = U∗. Optimal compressors, regulators,
and specified parameters are supplied to the ODEs (16)-
(17) and simulated in Matlab using the function ode15s for
validation of the solution and an improved prediction of
pressure and mass flux. The steady-state solution is used
as the starting point for optimization, and the initial state
of the optimal solution is used as the initial condition for
simulation. In the following, we distinguish between the
solution of the optimization problem (24) and the solution of
the ODEs (16)-(17) that are driven by optimal compression
and regulation. The two solutions are compared using the
average L2 norm of the relative difference given by

1

Ê

∑
k∈Ê

 1

T

∫ T

0

2
ϕ
k
(t)− φ

k
(t)

ϕ
k
(t) + φ

k
(t)

)2

dt

1/2

× 100, (25)

where ϕ
k

is the optimized flux in edge k ∈ Ê , φ
k

is the
simulated flux, and Ê is the cardinality of Ê . In addition, the
maximum absolute relative difference is also documented as

max
k∈Ê

max
t∈[0,T ]

∣∣∣∣∣2ϕk(t)− φ
k
(t)

ϕ
k
(t) + φ

k
(t)

∣∣∣∣∣
)
× 100. (26)

Similar metrics are used for the difference between optimized
and simulated pressure trajectories.

V. CASE STUDY

The optimal control algorithm is demonstrated on a cyclic
network whose configuration and dimensions are shown
on the top of Fig. 1. The refined network has a uniform
discretization length of `k = 10 km for all k ∈ Ê . The
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Fig. 2. Left column: Hydrogen concentration profiles at the supply node.
Right column: Corresponding optimal compressor responses.

diameters and friction factors of the refined pipelines are
uniform and equal to Dk = 0.5 m and λk = 0.011 for all
k ∈ Ê . The speeds of sounds of the gases are σ1 = 338.38
m/s and σ2 = 4σ1. We use N = 20 time steps with
ν = 1.28 and c1 = c5 = D4

k/T in (8). The minimum
and maximum pressures in (19) are pmin

j = 5 MPa and
pmax
j = 12 MPa for all j ∈ V̂w. Discretization results in

780 optimization variables, 740 equality constraints, and 520
inequality constraints in the NLP (24).

The purple, green, and light blue nodes in the network
graph in Figure 1 represent stations where gas is withdrawn
with color-coordinated flow profiles depicted on the bottom
of Fig. 1. The red and yellow objects represent two compres-
sor stations whose time-dependent operations are optimized
in a model-predictive setting. The dark blue node is the
supply station for a mixture of natural gas and hydrogen with
a fixed pressure of 5 MPa that is immediately boosted by the
red compressor station. We demonstrate three solutions for
this network, each of which are subject to the same above
boundary conditions but differ in the injected concentration
of hydrogen at the supply node. The left column of Fig. 2
depicts the specified hydrogen concentration profiles at the
supply node for the three solutions and the right column
shows the associated results for optimal compression of
the two color-coordinated compressor stations. The total
compressor energy values in (8) for the optimal compressors
in Fig. 2 are J = 0.787, J = 0.824, and J = 0.860 (non-
dimensionalized units) from top to bottom. Figs. 3 and 4
depict pressure and mass flux solutions, respectively, where
the left-hand-side columns depict the optimized solutions and
the right-hand-side columns depict the validating simulation.
The results demonstrate that slight increases in hydrogen
concentration may have substantial effects on pressure and
compressor activity. In particular, the pressure gradients in
Fig. 3 from t = 0 to t = 8 hr are approximately 2 MPa for
a fixed 10% hydrogen injection and approximately 3.5 MPa
for a slowly-varying hydrogen injection from 10% to 12%
hydrogen.
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Fig. 3. Left column: Optimized pressure at refined withdrawal nodes
driven by the respective concentration profiles from Fig. 2. Right column:
Simulated pressure at refined withdrawal nodes driven by inlet concentration
and optimal compression profiles from Fig. 2. The average L2 norm of the
relative difference in pressures, using the metric (25), are approximately
0.769%, 0.770%, and 0.769% for the top, middle, and bottom rows.
The maximum relative difference in pressures, using the metric (26), are
approximately 2.154%, 2.038%, and 1.971% for the top, middle, and bottom
rows. The combined computational times for optimization and simulation
are approximately 10.0 s, 8.0 s, and 7.7 s for the top, middle, and bottom
rows, respectively.
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Fig. 4. Left column: Optimized mass flux in refined edges driven by the
respective concentration profiles from Fig. 2. Right column: Simulated mass
flux in refined edges driven by inlet concentration and optimal compression
profiles from Fig. 2. The L2 relative difference metric values using (25)
are approximately 3.994%, 4.608%, and 5.258% for the top, middle, and
bottom rows. The maximum relative difference values using metric (26) are
approximately 12.967%, 16.713%, and 21.509%, respectively.

VI. CONCLUSIONS

We synthesized a control system model for the distributed
flow of mixtures of two gases with different physical proper-
ties through large-scale pipeline networks with time-varying
injections, withdrawals, and control actions of compressors.
The motivation is to develop analysis methods to evaluate
recent proposals for blending of clean hydrogen into natural
gas pipelines as an interim means for carbon emissions
reduction that allows utilization of existing infrastructure
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for its planned lifetime. The partial differential equations
for gas dynamics on pipelines and balance conditions at
junctions are approximated using lumped elements to a
sparse nonlinear differential algebraic equation system. In
contrast to previously published results, we model the mixing
of constituents in time throughout the network. The optimal
control technique we develop is able to rapidly produce
validated solutions, even though representing dynamics of
the gas mixture requires doubling the state space with
respect to models for a single gas, and worsens numerical
conditioning. We show that the reduced model is a consistent
approximation of the original system, use it as the dynamic
constraints in a model-predictive optimal control method for
minimizing the energy expended by applying time-varying
compressor operating profiles to guarantee time-varying de-
livery profiles subject to system pressure limits. The optimal
control problem is implemented after time discretization
using a nonlinear program, with validation of the results done
using a transient simulation.

The developed control system model and computational
optimal control scheme can be used to solve a variety
of problem formulations for gas transport networks. The
objective function could be modified to reflect the economic
value of pipeline transport, in terms of natural gas and
hydrogen flow provided by suppliers, and energy received by
consumers. Including a price of carbon emissions mitigation
due to replacement of natural gas with hydrogen could
indicate optimal locations for integrating hydrogen supplies.
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[33] I. Marić, A. Galovic, and T. Smuc, “Calculation of natural gas
isentropic exponent,” Flow Measurement and Instrumentation, vol. 16,
pp. 13–20, 03 2005.

[34] C. Himpe, S. Grundel, and P. Benner, “Model order reduction for gas
and energy networks,” Journal of Mathematics in Industry, vol. 11,
no. 1, pp. 1–46, 2021.

130



Transitions from Monotonicity to Chaos in Gas Mixture Dynamics
in Pipeline Networks

Luke S. Baker,1, 2 Saif R. Kazi,2, 3 and Anatoly Zlotnik2

1School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ
2Applied Mathematics and Plasma Physics, Los Alamos National Laboratory, Los Alamos, NM∗

3Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM
(Dated: April 3, 2023)

The blending of hydrogen generated using clean energy into natural gas pipeline networks is
proposed in order to utilize existing energy systems for their planned lifetime while reducing their
reliance on fossil fuels. We formulate a system of partial differential equations (PDEs) that govern
the flow dynamics of mixtures of gases in pipeline networks under the influence of time-varying
compressor and regulator control actions. The formulation is derived for general gas networks
that can inject or withdraw arbitrary time-varying mixtures of gases into or from the network at
arbitrarily specified nodes. The PDE formulation is discretized in space to form a nonlinear control
system which is used to prove that homogeneous mixtures are well-behaved and heterogeneous
mixtures may be ill-behaved in the sense of monotone-ordering of solutions. We use numerical
simulations to compute interfaces that delimit periodic and monotone system responses and show
that any solution in the monotonic operating region eventually approaches a periodic orbit. Our
results are demonstrated for examples of a single pipeline and a small test network.

I. INTRODUCTION

Although natural gas is projected to be a primary fuel
source through the year 2050 [1], societies worldwide are
investing intensively to transition from fossil fuels such
as natural gas and coal to more sustainable and cleaner
resources. In particular, hydrogen is an energy carrier
that can be cleanly produced [2] and can address climate
change because it does not produce carbon dioxide or
other harmful emissions when it is burned. Several qual-
ities of hydrogen make it an attractive fuel option for a
variety of applications that include transportation and
high temperature manufacturing. Hydrogen can also be
used to power turbines, which can potentially be used
for aviation and electric power production. Hydrogen
can be produced directly from fossil fuels, biomass, or
direct electrolysis, by splitting water into its constituent
components of hydrogen and oxygen. After hydrogen is
produced, it can be transported to end users economi-
cally by dedicated pipeline systems.

Recent studies have proposed that natural gas
pipelines can safely transport mixtures of up to 20% hy-
drogen or more by volume [3, 4]. Thus, hydrogen could be
transported through the existing infrastructure and then
separated, or the mixture could be used directly as an
end-use fuel. Because the physical and chemical proper-
ties of hydrogen and natural gas (primarily methane) dif-
fer significantly, the mass and energy transport dynamics
of inhomogeneous mixtures of these constituent gases are
considerably more complex than for a homogeneous gas
[5]. The mathematical modeling of such mixtures is also
considerably more challenging than what has tradition-
ally been done for gas pipelines [6]. The introduction

∗ Electronic address: {lsbaker,skazi,azlotnik}@lanl.gov

of substantial proportions of much lighter hydrogen into
natural gas pipelines requires much closer spacing of gas
compressors, and this relationship has been characterized
in an empirical study [7]. Additionally, the pressure and
flow dynamics in gas networks have been proven to sat-
isfy certain physically intuitive and conceptually valuable
monotonicity properties [8], which must be re-examined
in the presence of inhomogeneous gas mixing.

The physical complexities of blending hydrogen in nat-
ural gas pipelines present several mathematical chal-
lenges. First, additional state variables are needed to
account for changes in mass fraction, which affect total
density, energy content, and flow dynamics. Modeling
the flow of a homogeneous gas on a network requires
partial differential equations (PDEs) for mass and mo-
mentum conservation on each pipe, and a linear mass
flow balance equation at each network junction. Adding
a second gas requires the addition of another PDE on
each pipe and a bilinear nodal balance equation at each
junction to account for conservation of composition. This
more than doubles the state space of the continuous
model. Moreover, the faster wave speed corresponding
to the lower density of hydrogen worsens the numerical
ill-conditioning of the dynamic model. Such issues have
been highlighted by the numerical simulations of hydro-
gen and natural gas flows in pipelines [7, 9–16].

One recent study has demonstrated conditions under
which pipeline pressures may exceed allowable upper lim-
its, and that the likelihood of this occurrence increases
proportionally with increasing hydrogen concentration
[13]. Another study examined the effects of hydrogen
blending on the detection and estimation of leaks [16],
and demonstrated that the amount of leak discharge in-
creases as the concentration of hydrogen increases. A
moving grid method and an implicit backward difference
method for tracking gas concentration were both shown
to perform well but the implicit difference method may
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lose some finer detail due to numerical diffusion [10]. The
method of characteristics was also applied for the numer-
ical simulation of transient flows on cyclic networks with
homogeneous flow mixtures [12]. Modeling networks of
pipelines with composition tracking was the focus of an-
other recent study [7], although this model does not in-
clude control actions of compressor units. In general,
these models demonstrate a simulation capability or sen-
sitivity study for a specific network. Addressing chal-
lenging design, operational, and economic issues in the
pipeline transport of gas mixtures will require minimal
and generalizable mathematical models that adequately
describe the relevant physics, as well as comprehensive
characterizations of their properties.

The scope of the present study is threefold. First, we
extend general control system models for gas pipeline
networks [17] to account for heterogeneous mixtures of
hydrogen and natural gas. The state variables are flows,
partial densities, and pressures throughout the network,
and the control variables are the actions of compressor
and regulator units. Control actions may be designed
to minimize fuel consumption [18–20] or maximize eco-
nomic value [21]. The PDE control system of the mix-
ture is discretized in space using an endpoint lumped-
element method [22] and written in matrix form as a
finite-dimensional control system of nonlinear ordinary
differential equations (ODEs). Second, we prove that so-
lutions to initial boundary value problems (IBVPs) of a
gas mixture have certain monotone ordering properties
if the concentration is homogeneous but, in general, do
not have these properties if the concentration is hetero-
geneous. The homogeneous monotonicity result general-
izes the pure natural gas monotonicity result for obtain-
ing control formulations that are robust to uncertainty
in pressure and withdrawal profiles [8, 23]. Third, we
demonstrate that an IBVP solution may be chaotic, in
the sense that a time-periodic boundary condition can
generate a non-periodic solution composed of a continu-
ous distribution of frequency modes. Numerical simula-
tions are used to characterize flow solution behavior in
a phase space of periodic forcing functions and identify
boundaries between the regions of periodic and mono-
tonic, periodic and non-monotonic, and non-periodic and
non-monotonic solution behavior. Transitions through
such fluid mixing phase regions were observed in oceanic
wind bursts [24, 25] and in flame combustion of hydro-
gen and air mixtures [26, 27]. The nested transition
through phase regions shows that every solution in the
monotonic phase region eventually approaches a periodic
orbit, which can be used to reliably estimate the dynam-
ics of mixtures. Simulation-based analysis such as that
presented here could be used to evaluate appropriate lim-
itations on blending of hydrogen into existing natural gas
pipeline networks.

The rest of this paper is organized as follows. The
PDEs that govern heterogeneous mixtures of hydrogen
and natural gas are presented in Section II. In Section
III, the PDE system is discretized in space to obtain a

system of ODEs. Section IV presents the derivation of
equivalent ODE systems in terms of other state variables
of interest. Section V contains a proof that each of the
equivalent systems have monotonic solutions if the con-
centration is homogeneous, as well as a proof that the
solutions are, in general, non-monotonic if the concen-
tration is heterogeneous. Section VI illustrates the non-
monotonic results using numerical simulations of flows
through a small test network that contains a loop, and
which was examined in a previous study [28]. Moreover,
that section illustrates that certain types of equivalent
systems may have more desirable monotone system be-
havior than others in certain operating regimes. Sections
VIII and IX compute the monotonic and periodic inter-
faces for flow in a single pipeline, and Section X provides
concluding remarks and an outlook for future work.

II. GAS NETWORK MODELING

A gas transport network is modeled as a connected and
directed graph (E ,V) consisting of edges E = {1, . . . , E}
and nodes V = {1, . . . , V }, where E and V denote the
numbers of edges and nodes, respectively. It is assumed
that the elements of these sets are ordered according to
their integer labels. The edges represent pipelines and
the nodes represent junctions or stations where gas can
be injected into or withdrawn from the network. The
symbol k is reserved for identifying edges in E and the
symbols i and j are reserved for identifying nodes in V.
The graph is directed by assigning a positive flow direc-
tion along each edge. It is assumed that gas physically
flows in only the direction of positive flow, so that the
mass flow and velocity values of the gas are positive quan-
tities everywhere in the network. The notation k : i 7→ j
means that edge k ∈ E is directed from node i ∈ V to
node j ∈ V. For each node j ∈ V, we define (poten-
tially empty) incoming and outgoing sets of pipelines by

7→j = {k ∈ E|k : i 7→ j} and j7→ = {k ∈ E|k : j 7→ i},
respectively.

A. Modeling Physical Flow in a Pipe

Compressible flow of a homogeneous ideal gas through
a pipe is described using the one-dimensional isothermal
Euler equations [29],

∂tρ+ ∂x(ρu) = 0, (1a)

∂t(ρu) + ∂x(p+ ρu2) = − λ

2D
ρu|u| − ρg ∂h

∂x
, (1b)

p = ρZRT = σ2ρ, (1c)

where u(t, x), p(t, x), and ρ(t, x) are gas velocity, pres-
sure, and density variables, respectively. Here, t ∈ [0, T ]
and x ∈ [0, `], where T denotes the time horizon and
` denotes the length of the pipe. The symbols ∂t and
∂x denote the differential operators with respect to time
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t and location x, respectively. The above system de-
scribes mass conservation (1a), momentum conservation
(1b), and the gas equation of state (1c). The variable h
represents the elevation of the pipe. The dominant term
in the momentum equation (1b) is the phenomenolog-
ical Darcy-Weisbach term that models momentum loss
caused by turbulent friction, and is scaled by a dimen-
sionless parameter λ called the friction factor. The re-
maining parameters are the internal pipe diameter D, the
wave (sound) speed σ =

√
ZRT in the gas, and the grav-

itational acceleration g, where Z, R, and T are the gas
compressibility factor, specific gas constant, and abso-
lute temperature, respectively. Here, we assume that gas
pressure p and gas density ρ satisfy the ideal gas equa-
tion of state (1c) with constant wave speed σ. While
non-ideal modeling is necessary in practice to correctly
quantify flows at pressures used in large gas transport
pipelines, ideal gas modeling still qualitatively captures
the flow phenomenology, so we use it for simplicity of
exposition. Extension to non-ideal gas modeling can be
made by applying appropriate nonlinear transforms [28].

It is standard to use the per area mass flux ϕ = ρu,
and assume that gas flow is an isothermal process, that
flow is turbulent and has high Reynolds number, and
that the flow is adiabatic, i.e. there is no heat exchange
with ground [30]. For slowly varying boundary condi-
tions, the kinetic energy term ∂x(ρu2) and the inertia
term ∂t(ρu) in equation (1b) may be omitted [29]. With
these assumptions, and given no elevation changes, the
equations (1) can be reduced to

∂tρ+ ∂xϕ = 0, (2a)

σ2∂xρ = − λ

2D

ϕ|ϕ|
ρ

. (2b)

where ρ and ϕ denote density and mass flux (in per-area
units). The above equations have been used in several
previous studies [8, 31], and we refer the reader there for
further justifications. Here, we extend these equations
to the case of a mixture of two constituent gases, whose
partial densities, partial flows, and mass fractions are de-
noted by ρ(1) and ρ(2), ϕ(1) and ϕ(2), and η(1) and η(2),
respectively, where η(m) ≡ ρ(m)/(ρ(1) + ρ(2)) = ρ(m)/ρ.
From here onward, we use the terms mass fraction and
concentration interchangeably, and specifically refer to
volumetric concentration where that quantity is exam-
ined. The propagation of either concentration quantity
η(m) can then be modeled by the convection-diffusion
equation with diffusion terms omitted [10], i.e.,

∂tη
(m) +

ϕ

ρ
∂xη

(m) = 0. (2c)

The local wave speed of the mixture will then depend on
the local concentration according to σ2 = η(1)σ2

1 +η(2)σ2
2 ,

which is equivalent to σ2ρ = σ2
1ρ

(1) + σ2
2ρ

(2). Hence-
forth, superscripts “(1)” and “(2)” identify correspon-
dence of variables to natural gas and hydrogen, respec-
tively. Next, we reformulate equations (2a)-(2c) into a

more convenient form, and add nodal compatibility con-
ditions to define the dynamics of the flow mixture on a
network.

B. Gas Mixture Dynamics on a Network

With the above assumptions, the flow dynamics
through the level pipeline k ∈ E is modeled with the
friction-dominated PDEs

∂tρ
(m)
k + ∂x

(
ρ
(m)
k

ρ
(1)
k + ρ

(2)
k

ϕk

)
= 0, (3)

∂x

(
σ2
1ρ

(1)
k + σ2

2ρ
(2)
k

)
= − λk

2Dk

ϕk|ϕk|
ρ
(1)
k + ρ

(2)
k

, (4)

where Eq. (3) is defined for both m = 1 and m = 2. We
leave it as an exercise for the reader to verify that Eqs.
(3)-(4) defined in terms of partial densities ρ(1) and ρ(2)

and total flow ϕ are equivalent to Eq. (2) defined in terms
of total density ρ, total flow ϕ, and one concentration
variable η(2). The parameters are wave speeds σ1 and σ2
in natural gas and hydrogen, respectively, and diameter
Dk, length `k, and friction factor λk corresponding to the
pipeline k ∈ E .

Compressor and regulator stations are critical compo-
nents that actuate the flow of gas throughout the network
and reduce pressure in the direction of flow, respectively.
For convenience, we assume that a compressor is located
at the inlet and a regulator is located at the outlet of each
pipeline, where inlet and outlet are defined with respect
to the oriented positive flow direction. For each pipeline
k ∈ E , compression and regulation are modeled with mul-
tiplicative control variables µ

k
(t) ≥ 1 and µk(t) ≥ 1, re-

spectively. For example, the pressure of gas leaving a
compressor unit is µ

k
(t) times larger than the pressure

of gas entering the unit.
The boundary conditions for a mixture of gases allow

for more degrees of freedom than those for a single gas,
and are formulated here to enable definition of a range of
potential scenarios. All of the flow quantities defined in
this paragraph are, in general, time-varying, but we omit
time-dependence for readability. The network nodes are
partitioned into slack nodes Vs ⊂ V and non-slack nodes
Vd ⊂ V. Slack nodes are assumed to be ordered in V
before non-slack nodes, so that i < j for all i ∈ Vs and
j ∈ Vd. A mixture of gas is injected into the network
at each slack node i ∈ Vs. The boundary conditions
at the slack nodes i ∈ Vs are defined by specifying in-

dividual densities s
(1)
i and s

(2)
i . Alternatively, pressure

(ps)i and concentration α
(m)
i may be specified at slack

nodes i ∈ Vs. The relations (ps)i = (σ2
1s

(1)
i + σ2

2s
(2)
i )

and α
(m)
i = s

(m)
i /(s

(1)
i + s

(2)
i ) can then be used to de-

termine the corresponding densities that will achieve the
specified pressures and concentrations. Non-slack nodes
are partitioned into injection nodes Vq ⊂ Vd and with-
drawal nodes Vw ⊂ Vd. We order the non-slack nodes
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Figure 1. Configuration of the boundary conditions. Here,
j ∈ Vw, k1 : i1 7→ j with i1 ∈ Vs, and k2 : i2 7→ j with
i2 ∈ Vq.

Vd with injection nodes enumerated before withdrawal
nodes, so that i < j for all i ∈ Vq and j ∈ Vw. A mixture
is withdrawn from the network at each withdrawal node
j ∈ Vw with boundary conditions specified by mass out-
flow wj ≥ 0. At each injection node j ∈ Vq, a mixture
is injected into the network with boundary conditions
specified by both the mass inflow qj , with qj ≥ 0, and

the concentration β
(m)
j . Although a mass inflow is spec-

ified at each injection node j ∈ Vq with concentration

β
(m)
j , this does not, in general, imply that the concen-

tration flowing from node j into outgoing edges is equal

to β
(m)
j , because the nodal concentration is a mixture

of flows entering node j either by injection or from in-
coming pipelines. Boundary condition designations are
illustrated for a small example network in Fig. 1.

Individual density and concentration variables are un-

known at non-slack nodes and are denoted by ρ
(m)
j and

η
(m)
j = ρ

(m)
j /(ρ

(1)
j + ρ

(2)
j ), respectively, for each j ∈ Vd.

All of the nodal quantities in this study are identified
with bold symbols. Inlet and outlet edge variables are de-
fined by attaching underlines below and overlines above
the associated edge variables, respectively. For example,
ϕ
k
(t) = ϕk(t, 0) and ϕk(t) = ϕk(t, `k). Define the cross-

sectional area of edge k ∈ E by χk = πD2
k/4. The bound-

ary conditions for the flow of the mixture are defined for
m = 1 and m = 2 by

ρ(m)
k

= µ
k
s
(m)
i , ρ

(m)
k = µkρ

(m)
j , (5)

ρ(m)
k

= µ
k
ρ
(m)
i , ρ

(m)
k = µkρ

(m)
j , (6)

γ
(m)
j dj =

∑
k∈ 7→j

χkη
(m)
k ϕk −

∑
k∈j 7→

χkη
(m)
k

ϕ
k
, (7)

where Eq. (5) is defined for k : i 7→ j with i ∈ Vs,
Eq. (6) is defined for k : i 7→ j with i, j ∈ Vd, and
Eq. (7) is defined for j ∈ Vd with the condition that

γ
(m)
j dj = η

(m)
j wj if j ∈ Vw and γ

(m)
j dj = −β(m)

j qj if
j ∈ Vq. The initial condition of partial density is assumed
to be a steady-state solution given for all k ∈ E and

x ∈ [0, `k] by

ρ
(m)
k (0, x) = %

(m)
k (x). (8)

The steady-state solution is defined to be the time-
invariant solution of the system in Eqs. (3)-(7) when
the boundary condition profiles are time-invariant (i.e.
equal to the initial values of the time-varying bound-
ary profiles). More details on the initial condition for
the discretized system are provided in the following sec-
tion. Mass flux is not initially specified because it is
uniquely determined from the density. We assume stan-
dard conditions for well-posedness [32], and specifically
that the boundary conditions are smooth, slowly-varying,
bounded in their respective domains, and compatible
with the initial conditions to ensure the existence of a
smooth, slowly-varying, bounded solution. The flow of
the mixture of gases in the network is defined by the
initial-boundary value system of PDEs defined by equa-
tions (3)-(8).

III. SPATIAL DISCRETIZATION

To analyze the system of PDEs (3)-(8) on the graph
(E ,V), we have developed a process of discretization,
which includes a refinement of the graph, approxima-
tion of the PDE system by an ODE system using a fi-
nite volume approach, and a reformulation in terms of
variable vectors and parameter matrices. The vectors in-
clude variables that represent the states and boundary
parameters, and the matrices incorporate network model
parameters, the incidence structure of the graph, and the
control values.

Graph Refinement: A refinement (Ê , V̂) of the graph
(E ,V) is created by adding auxiliary nodes to V in order

to subdivide the edges of E so that `k ≤ ` for all k ∈ Ê ,
where ` is sufficiently small [33]. Henceforth we assume
that ` ≤ 1 km, and will use that threshold for compu-
tational studies as well. The refined graph inherits the
prescribed orientation of the parent graph. Assuming
sufficiently fine network refinement, the relative differ-
ence of the density variables of adjacent nodes in the so-
lution to the IBVP (3)-(8) can be made arbitrarily small
in magnitude because of continuity of the solution to the
system given well-posed conditions [32]. We assume for

all k ∈ Ê that∣∣∣ρ(m)
k − ρ(m)

k

∣∣∣
ρ
(m)
k

< ε,

∣∣∣ρ(m)
k − ρ(m)

k

∣∣∣
ρ
(m)
k

< ε, (9)

where 0 ≤ ε� 1. The proofs that follow only require ε ≤
1. We assume that the graph has been sufficiently refined
to satisfy Eq. (9) and that the hats may be omitted
moving forward.

Finite Volume Approximation: The system of
ODEs is obtained by integrating the dynamic equations
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in (3)-(4) along the length of each refined pipeline seg-
ment so that∫ `

0

∂tρ
(m)dx = −

∫ `

0

∂x

(
ρ(m)

ρ(1) + ρ(2)
ϕ

)
dx,∫ `

0

∂x

(
σ2
1ρ

(1) + σ2
2ρ

(2)
)
dx = − λ

2D

∫ `

0

ϕ|ϕ|
ρ(1) + ρ(2)

dx,

where edge subscripts have been removed for readability.
The above integrals of space derivatives are evaluated us-
ing the fundamental theorem of calculus. The remaining
integrals are evaluated by approximating pipeline den-
sity with outlet density and pipeline flux with inlet flux.
These approximations are independent of x and may be
factored out of the integrals. The above equations be-
come

`ρ̇
(m)

= η(m)ϕ− η(m)ϕ, (10)

2∑
n=1

σ2
n

(
ρ(n) − ρ(n)

)
= − λ`

2D

ϕ
∣∣ϕ∣∣

ρ(1) + ρ(2)
, (11)

where a dot above a variable represents the time-
derivative of the variable.

Matrix Form: We now write the discretized system
in matrix-vector form. Define E × E diagonal matrices
L and X with diagonal entries Lkk = `k and Xkk = χk.
Define the time-varying (transposed) incidence matrix M
of size E × V componentwise by

Mkj =


µk(t), edge k ∈7→ j enters node j,

−µ
k
(t), edge k ∈ j 7→ leaves node j,

0, else.

(12)

Define the E × Vs submatrix Ms of M by the removal
of columns i ∈ Vd, the E × (V − Vs) submatrix Md

of M by the removal of columns i ∈ Vs, and the posi-
tive and negative parts of Md by Md and Md so that
Md = (Md + Md)/2 and |Md| = (Md −Md)/2, where
Vs denotes the number of slack nodes and |A| denotes
the componentwise absolute value of a matrix A. De-
fine the signed matrices Qd =sign(Md), Qd =sign(Md),
Q
d

=sign(Md), and similarly for Ms. These signed ma-
trices are well-defined by the lower-bound constraints on
compression and regulation. Define the Vd × Vd identity
matrix I, the Vd×Vq submatrix Iq of I by the removal of
columns j ∈ Vw, and the Vd × Vd matrix Iw by replacing
columns j ∈ Vq of I with the zero vector. Here, Vd and
Vq denote the numbers of non-slack nodes and non-slack
injection nodes, respectively.

Define inlet and outlet edge mass flux vectors by ϕ =

(ϕ
1
, . . . , ϕ

E
)T and ϕ = (ϕ1, . . . , ϕE)T , and similarly for

inlet and outlet edge concentrations η and η. Moreover,

define the vectors ρ(m) = (ρ
(m)
Vs+1, . . . ,ρ

(m)
Vd

)T , α(m) =

(α
(m)
1 , . . . ,α

(m)
Vs

)T , and β(m) = (β
(m)
Vs+1, . . . ,β

(m)
Vq

)T ,

where the subscripts of the vector components are in-
dexed according to the node labels in V. Similarly, de-

fine the vectors η(m) = (η
(m)
Vs+1, . . . ,η

(m)
Vd

)T and d =

(dVs+1, . . . ,dVd
)T . Recall that the components of d are

positive for those corresponding to non-slack withdrawal
nodes and negative for non-slack injection nodes. De-
fine the function f : RE ×RE → RE component-wise for
k ∈ E by

fk(y, z) = −sign(zk)Λk |ykzk|1/2 , (13)

where Λk =
√

2Dk/(λk`k). This function is used to
express ϕ in Eq. (11) in terms of density and its spa-
tial derivative so that we may eliminate flux from the
dynamic equations. Using the function in Eq. (13),
the discretized flow in Eqs. (10)-(11) together with the
boundary conditions in Eqs. (5)-(7) may be expressed in
matrix-vector form as

LMdρ̇
(m) = η(m) � F − η(m) � ϕ, (14)

γ(m) � d = Q
T

dX
(
η(m) � ϕ

)
+QT

d
X
(
η(m) � F

)
, (15)

where � is the Hadamard product and

F =f Md(ρ
(1)+ρ(2)),

∑
m

σ2
m(Mss

(m)+Mdρ
(m))

)
. (16)

It is assumed that regulators vary slowly so that the time
derivative of Md is insignificant, justifying its removal
from Eq. (10). Multiplying both sides of Eq. (10) on the

left by Q
T

dX and using Eq. (11), we may combine Eq.

(10) and Eq. (11) to form the equation Q
T

dXLMdρ̇
(m) =

[QTdX(η(m) � F )− γ(m) � d], where we have used Qd =

(Q
d

+ Qd). By writing edge concentrations in terms of
nodal concentrations, and nodal concentrations in terms
of concentrations of flows into the nodes, the system in
Eqs. (10)-(11) may be written for m = 1, 2 as

Rρ̇(m) = QTdX
((
|Q

s
|α(m) + |Q

d
|η(m)

)
� F

)
−
(
Iqβ

(m) + Iwη
(m)
)
� d, (17)

where R = Q
T

dXLMd. The system in Eq. (17) will be
called the partial density system of ODEs. Each row k
of Md contains exactly one nonzero component given by
Mkj = µk for k ∈7→j. Using the additional fact that X
and L are diagonal, it can be shown that the mass matrix
R on the left-hand-side of Eq. (17) is diagonal with pos-
itive diagonal components given by rj =

∑
k∈ 7→j χk`kµk

for j ∈ Vd. Therefore, the matrix R may readily be in-
verted to obtain a nonlinear control system in the usual,
although complicated, ODE form. The initial condition
in Eq. (8), sampled at the refined nodes of the network,
is the time-invariant solution of the system in Eq. (17)
with d = d(0), α(m) = α(m)(0), and β(m) = β(m)(0).
We assume that this steady-state solution is the initial
condition of the partial density system.
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IV. EQUIVALENT SYSTEMS

The system in Eq. (17) is expressed in terms of par-
tial densities at non-slack nodes. Equivalent systems ex-
pressed in terms of other variables of interest may be de-
rived from Eq. (17) using appropriate transformations.
One such transformation has been performed in the con-
tinuous case going from Eqs. (2a)-(2c) to Eqs. (3)-(4).
In fact, such transformations exist even for pure natural
gas systems. For example, the equations of natural gas
flow may be expressed in terms of pressure and velocity,
in terms of density and mass flux, or in terms of their
dimensionless quantities. Define vectors ρ, p, ν(m), and
E of nodal values for density, pressure, volumetric con-
centration, and energy, respectively, at non-slack nodes
by

ρ = ρ(1) + ρ(2), (18)

p = σ2
1ρ

(1) + σ2
2ρ

(2), (19)

ν(m) =
σ2
mρ

(m)

σ2
1ρ

(1) + σ2
2ρ

(2)
, (20)

E = (|QTd |Xϕ)�
(
r(1)η(1) + r(2)η(2)

)
, (21)

where r(1) = 44.2 (MJ/kg) and r(2) = 141.8 (MJ/kg).
Equivalent systems may be expressed in terms of any two
vector variables from the set {ρ(m),η(m),ν(m),ρ,p,E},
excluding pairs from the subset {η(1),η(2),ν(1),ν(2)} be-
cause variables in the latter subset would reduce to
constant vectors in the case of homogeneous mixtures.
The choice of which equivalent system to use may de-
pend on the sought application, although some systems
have better conditioning with fewer nonlinear opera-
tions than others. Define (potentially time-varying) gen-
eralized sound speeds a = (σ2

1α
(1) + α2

2α
(2))1/2 and

b = (σ2
1β

(1) + σ2
2β

(2))1/2, where the square-root is ap-
plied component-wise. The transformation from partial
densities to total density and pressure is obtained by su-
perimposing Eq. (17) for m = 1, 2 to obtain an equa-
tion for ρ̇ and linearly combining Eq. (17) for m = 1, 2
with coefficients σ2

1 and σ2
2 to obtain an equation for ṗ.

This transformation is linear, invertible, and produces
the equations

Rρ̇ = QTdXF − d, (22)

Rṗ = QTdX

((
|Q

s
|a2 + |Q

d
|p
ρ

)
� F

)
−
(
Iqb

2 + Iw
p

ρ

)
� d, (23)

where F = f(Mdρ,Msps + Mdp). The system in Eqs.
(22)-(23) will be called the total density and pressure sys-
tem of ODEs. We do not derive other equivalent systems.
Instead, we compute the solution of the partial density
system of ODEs numerically, and, thereafter, obtain the
other variables of interest by subsequently applying the
appropriate transformations.

If η(m) is a constant vector, then the system of total
density and pressure decouples into two isolated subsys-
tems that are equivalent to one another because, for con-
stant concentration, p = c2 � ρ, where c = (σ2

1η
(1) +

σ2
2η

(2))1/2 is a constant vector. In particular, the total
density and pressure system in Eqs. (22)-(23) reduces by
half its dimension to the isolated system

Rṗ = QTdX
((
|Q

s
|a2 + |Q

d
|c2
)

� f
(
Md

p

c2
,Msps +Mdp

))
−
(
Iqb

2 + Iwc
2
)
� d. (24)

The system in Eq. (24) is called the isolated total pres-
sure system of ODEs. Equivalent isolated subsystems
expressed in terms of one vector variable from the set
{ρ(m),ρ,E} may be derived. Each isolated subsystem is
applicable if and only if the concentration vector η(m) is
constant. Rigorous definitions and proofs of conditions
on α(m), β(m), q, and w that would result in η(m) being
constant are outside the scope of this study.

V. MONOTONICITY

The monotonicity of solutions to flows of a homoge-
neous gas through an actuated transport network was
examined as a means to reduce the complexity of opti-
mization and optimal control of natural gas networks in
the presence of uncertainty [8]. Here, we examine how
such concepts can be extended to the transport of inho-
mogeneous gas mixtures, and specifically to characterize
the extent and variability of hydrogen blending into a
natural gas pipeline that is acceptable. We first present
some analytical results before proceeding with numerical
simulations in the next section.

A nonlinear input-to-state initial-value system of
ODEs may be generally expressed as

ẋ = g(x, u, d), x(0) = y, (25)

where x(t) ∈ X ⊂ Rn is the state vector, u(t) ∈ U ⊂
Rm is the control input vector, and d(t) ∈ D ⊂ Rr is
the parameter input vector defined for t ∈ [0, T ]. It is
assumed that the subsets X , U , and D are compact and
convex and that the function g : X × U × D → X is
Lipschitz in X × U ×D.

Definitions: Suppose that two independent state so-
lutions {x1(t), x2(t)} ⊂ X exist (and are thus unique be-
cause g is Lipschitz) with initial conditions {y1, y2} ⊂ X ,
and which correspond to the piecewise-continuous con-
trol inputs {u1(t), u2(t)} ⊂ U and piecewise-continuous
parameter inputs {d1(t), d2(t)} ⊂ D for t ∈ [0, T ]. For
the given set of control inputs, the system (25) is said to
be monotone-ordered with respect to d(t) if x1(t) ≤ x2(t)
for t ∈ [0, T ] whenever y1 ≤ y2 and d1(t) ≤ d2(t),
where inequalities for vectors are taken componentwise.
In this case, the solution states x1 and x2 are said to
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be monotone-ordered. For simplicity, we say that a
monotone-ordered system and a set of monotone-ordered
solutions are monotone, monotonic, and have the prop-
erty of monotonicity. An n × n matrix A is called Met-
zler if all of its off-diagonal elements are non-negative,
i.e. Aij ≥ 0 for all i 6= j. An n × m matrix is called
non-negative if all of its entries are non-negative.

Theorem 1 (Monotonicity) [34, 35]: The nonlin-
ear system in Eq. (25) is monotone if and only if the Jaco-
bian matrices ∂g/∂x and ∂g/∂d are, respectively, Metzler
and non-negative almost everywhere in X × U ×D.

A. Homogeneous Concentration

The equivalent systems described in Section IV are first
reformulated in terms of the monotone system definitions
above. In steady-state [8], the pressure p increases com-
ponentwise with decreasing withdrawal w ≥ 0 and with
increasing injection −q ≤ 0. In reference to Eq. (25), we
assume that all non-slack nodes are injection nodes and
define the input parameter by d = {ps,d} = {ps,−q}.

Proposition 1 (Monotonicity of Total Pressure
and Density): Assume that i) all non-slack nodes are
injection nodes; ii) gas flows only in the positive direc-
tion through each edge according to its orientation in
the network graph; iii) pressure is positive in each node;
and iv) Eq. (9) is satisfied. Suppose that the concentra-
tion vector η(2) is constant and that there exist two state
solutions p1, p2 of the system in Eq. (24) with respec-
tive initial conditions π1, π2, slack pressures (ps)1, (ps)2,
and non-slack injection flows q1, q2 for a given fixed set
of control inputs {µ, µ}. Here, the vector subscripts de-
note the first and second solutions and not the refined
nodes. If π1 ≤ π2, (ps)1(t) ≤ (ps)2(t), and q1(t) ≥ q2(t)
componentwise for all t ∈ [0, T ], then p1(t) ≤ p2(t). Con-
sequently, ρ1(t) ≤ ρ2(t), where ρ1 and ρ2 are the total
densities of the two solutions.

Proof: Throughout this proof, the state and input
subscripts correspond to the nodes of the refined graph.
Because flow is in the positive oriented direction, it fol-
lows from Eq. (4) that µ

k
pi(t) > µkpj(t) for all i, j ∈ V

with k : i 7→ j. Thus, the sign and absolute value op-
erations in Eq. (13) are unnecessary. The j-th state
dynamics in Eq. (24) for j ∈ Vd may be written as

rj ṗj =
∑
k:i 7→j

σ2
i χkΛk
cj

(
µkpj

(
µ
k
pi − µkpj

))1/2
−
∑
k:j 7→i

c2jχkΛk

ci

(
µkpi

(
µ
k
pj − µkpi

))1/2
(26)

+ b2jqj ,

where pi = (ps)i and σ2
i = a2

i if i ∈ Vs, whereas σ2
i = c2i

if i ∈ Vd. It is clear from this expanded form that the
function on the right-hand-side of Eq. (24) is contin-
uously differentiable (hence Lipschitz) in the state and

input variables over the domain of positive flow and pres-
sure. In reference to Theorem 1, we first show that the
state Jacobian matrix is Metzler, i.e., ∂ṗj/∂pi is non-
negative for all i, j ∈ Vd with i 6= j. If i and j are
non-adjacent with i 6= j, then clearly ∂ṗj/∂pi = 0. Sup-
pose that i and j are adjacent with k : j 7→ i. Substi-
tuting Eqs. (5)-(6) into Eq. (9) and using the relation
between pressure and partial densities, it can be shown
that (µkpi − µkpj) > −µkpi. Thus, the Jacobian com-
ponent

∂ṗj
∂pi

=
c2jχkΛkµk(2µkpi − µkpj)

2rjci(µkpi(µkpj − µkpi))1/2
(27)

is positive. Suppose that i and j are adjacent with k :
i 7→ j. Then

∂ṗj
∂pi

=
σ2
i χkΛkµkµkpj

2rjcj(µkpj(µkpi − µkpj))1/2
> 0. (28)

Because j ∈ Vd is arbitrary, it follows that the state Jaco-
bian matrix is Metzler. We now show that the parameter
Jacobian matrix is non-negative. The above computation
can be extended to show that ∂ṗj/∂(ps)i is non-negative
for i ∈ Vs. With respect to mass inflow parameters,
the Jacobian components ∂ṗj/∂qi = b2j/rjδi,j are non-
negative (δi,j is the Kronecker delta). We conclude from
Theorem 1 that the system in Eq. (24) is monotone. Be-
cause pj = c2jρj for j ∈ Vd, it follows that the isolated
total density system is monotone as well. �

Corollary 1 (Monotonicity of Equivalent Sys-
tems): Assume that the conditions hold from Proposi-

tion 1. Then ρ
(m)
1 (t) ≤ ρ

(m)
2 (t) componentwise for all

t ∈ [0, T ], where ρ
(m)
1 and ρ

(m)
2 are the partial densities

of the two solutions.
Proof: The mass fraction η(m) is constant, therefore

it follows from Proposition 1 that ρ
(m)
1 = η(m) � ρ1 ≤

η(m) � ρ2 = ρ
(m)
2 . �

B. Heterogeneous Concentration

Proposition 2 (Non-Monotonicity of Total Pres-
sure and Density): Assume that i) all non-slack nodes
are injection nodes; ii) gas flows only in the positive direc-
tion through each edge according to its orientation in the
network graph; and iii) pressure and density are positive
in each node. Suppose that, for a given fixed set of con-
trol inputs {µ, µ}, there exist two state solutions (ρ,p)1,
(ρ,p)2 of the system in Eqs. (22)-(23) with respective
initial conditions (%,π)1, (%,π)2, slack inputs (ρs,ps)1,
(ρs,ps)2, and non-slack mass inflows q1, q2 that sat-
isfy (%,π)1 ≤ (%,π)2, (ρs(t),ps(t))1 ≤ (ρs(t),ps(t))2,
and q1(t) ≥ q2(t) componentwise for all t ∈ [0, T ]. If
η(m)(t) is time-varying, then, in general, (ρ(t),p(t))1 6≤
(ρ(t),p(t))2 component-wise for all t ∈ [0, T ].

Proof: Throughout this proof, the state and input
subscripts correspond to the nodes of the refined graph.
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Figure 2. Network configuration (not to scale). The triangles
represent compressor stations. Pipeline dimensions between
nodes: blue to black (20 km), black to green (70 km), green
to maroon (10 km), black to maroon (60 km), maroon to cyan
(80 km). The pipelines have uniform diameter (0.9144 m) and
friction factor (0.01), except for the black to maroon pipeline
that has diameter (0.635 m) and friction factor (0.015).

From Theorem 1, it suffices to show that one component
of the state Jacobian matrix is negative. The j-th nodal
pressure dynamics in Eq. (23) may be written as

rj ṗj =
∑
k:i 7→j

σ2
i χkΛk

(
µkρj

(
µ
k
pi − µkpj

))1/2
−
∑
k:j 7→i

pj
ρj
χkΛk

(
µkρi

(
µ
k
pj − µkpi

))1/2
(29)

+ b2jqj ,

where pi = (ps)i, ρi = (ρs)i, and σ2
i = a2

i if i ∈ Vs,
and σ2

i = pi/ρi if i ∈ Vd. By adding a refined edge
to the graph if necessary, we assume that there is an
edge k′ : i′ 7→ j with i′ ∈ Vd. The Jacobian component
corresponding to ρi′ is given by

∂ṗj
∂ρi′

= −χk′Λk′
rj

pi′

ρ2i′

(
µk′ρj

(
µ
k′
pi′ − µk′pj

))1/2
,

which is negative. It follows from Theorem 1 that the
system in Eqs. (22)-(23) is not monotone, regardlesss of
Eq. (9). �

VI. NETWORK CASE STUDY

We use numerical simulations to examine how time-
varying heterogeneity of a transported mixture affects
flow dynamics throughout a network and compare equiv-
alent system variables. The simulations are performed for
a test network that was used in a previous study [28], in
which the authors presented a staggered grid discretiza-
tion method for the numerical solution of homogeneous
natural gas pipeline flow. We refer the reader to the
Appendix in which we show the results of our implemen-
tation of the IBVP posed in the former study in order to
verify that we obtain the same solution when no hydro-
gen is present. The configuration and dimensions of the
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Figure 3. Two solutions (solid lines vs. dots) at the color-
coordinated network nodes in Fig. 2. From top to bottom,
the depicted nodal solutions are total pressure (MPa), total
density (kg/m3), total energy (GJ/s), concentration by mass,
and concentration by volume. The boundary conditions for

both solutions are (ps)blue = 5 MPa, α
(2)
blue(t) = 0.01(1 +

sin(4πt/T )), β
(2)
green(t) = 0.125(1 + sin(12πt/T )), qgreen(t) = 3

(kg/s), wblack(t) = 60(1− sin(6πt/T )) (kg/s), µred = 1.0678,
µ
yellow

= 1.0140, and µ
purple

= 1.0734, where T = 60 hrs. The

boundary condition that differs between the two solutions is
wcyan(t) = 110 (kg/s) (solid lines) and wcyan(t) = 130 (kg/s)
(dots).

network are shown in Fig. 2. The dark blue node is a
slack node at which pressure and concentration are spec-
ified, the black, maroon, and cyan nodes are non-slack
withdrawal nodes, and the green node is a non-slack in-
jection node. The sound speeds are chosen to be σ1 = 377
(m/s) and σ2 = 2.8σ1. We simulate several examples to
illustrate that some physical quantities may exhibit fewer
crossings than others in certain operating regimes, given
ordered boundary parameters. These examples provide
insight into which equivalent system may be more useful
for a particular operating regime. Figs. 3-7 show the
solutions of five different examples. Two solutions corre-
sponding to monotone-ordered boundary conditions are
simulated for each example. We now describe the simu-
lation results for each example.

In Fig. 3, total pressure, density, and energy solutions
at the non-slack nodes do not overlap, but the mass and
volumetric concentrations do overlap. The solutions in
Fig. 4 have the same boundary conditions as those in
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Figure 4. Same boundary conditions as in Fig. 3 except for
(ps)blue = 10 (MPa).

Fig. 3 except for the supply pressure. By doubling the
supply pressure, the total density now overlaps at each
non-slack node but the pressure and energy still do not
overlap. In Figs. 5 and 6, the blue node injects pure nat-
ural gas and the green node injects pure hydrogen with a
varying mass inflow profile. As seen in Fig. 5, the pres-
sure and energy solutions at each node do not overlap.
However, a close examination shows that the density so-
lutions do overlap at every node upstream from the point
of hydrogen injection. The concentration solutions over-
lap at only the cyan node. In Fig. 6, the supply pressure
is increased to double the supply pressure in Fig. 5, but
all other boundary conditions remain the same. This in-
crease in supply pressure forces the pressure, density, and
energy solutions to overlap at all of the non-slack nodes.
The concentrations overlap at every node upstream the
node of hydrogen injection. At nodes downstream the
injection of hydrogen, the concentration of hydrogen is
zero, as it ought to be. The solutions in Figs. 5 and
6 may not be realistic in the current operation of natu-
ral gas pipelines because the concentration of hydrogen
reaches very high levels. However, these figures indicate
that the solutions may behave erratically if the pipelines
are manufactured to deliver significant amounts of hy-
drogen. In particular, all of the solution variables show
large gradient surges in small time intervals.

The simulation in Fig. 7 demonstrates that pressure,
density, and energy solutions may overlap even if the con-
centration solutions do not, where density overlaps only
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Figure 5. The boundary conditions for the two solutions are

(ps)blue = 5 (MPa), α
(2)
blue(t) = 0, β

(2)
green(t) = 1, qgreen(t) =

9(1 + sin(6πt/T )) (kg/s), wblack(t) = 100(1 − sin(6πt/T ))
(kg/s), µred = 1.1096, µ

yellow
= 1.0057, and µ

purple
=

1.1301, where T = 80 hrs. The other boundary condition is
wcyan(t) = 130 (kg/s) (solid lines) and wcyan(t) = 150 (kg/s)
(dots).

upstream the point of hydrogen injection. The difference
between the solid line and dotted solutions in Fig. 7 is
that the solid line represents the solution of pure natu-
ral gas and the other solution has a small injection of
hydrogen at the green non-slack node. The concentra-
tion variables between the two solutions cannot overlap
in this case because one of the examples corresponds to
zero hydrogen concentration.

The five edges of the network are discretized into 240
refined edges with `k = 1 (km) for all k ∈ Ê . Although
one kilometer is sufficiently fine to demonstrate non-
monotonicity for slowly-varying concentrations, a much
smaller discretization size is required to accurately sim-
ulate rapidly-varying concentrations. We note that even
the slowly-varying solutions in Figs. 3-7 show notice-
able convergence as the discretization size is decreased
from 1 (km) to 100 (m). For small discretization lengths
(`k ≤ 100 (m)), the overlap between the solutions in Figs.
3-7 may be more pronounced.

VII. PHASE INTERFACES

Proposition 2 shows that the total pressure and den-
sity system of ODEs is not monotone-ordered over the
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Figure 6. Same boundary conditions as in Fig. 5 except for
(ps)blue = 10 (MPa).

entire input region D = (ps,−q,α(m),β(m)). However,
by Proposition 1, its Corollary, and the continuity of so-
lutions with respect to initial conditions and inputs [36],
for a given set of plant parameters, the non-isolated total
pressure and density system of ODEs is expected to be
monotone-ordered over a certain sub-region D0 ⊂ D that
consists of concentration vectors that are uniformly close
to a constant concentration vector. Moreover, again by
continuity, monotonicity is expected to hold for slow vari-
ations in concentration with large amplitudes. This sug-
gests that there may be a nontrivial monotonic interface
(MI) that partitions the concentration boundary condi-
tions (hence D) into monotonic and non-monotonic phase
regions for each equivalent system variable. We analyze
the MI numerically for a single pipeline. The interface
analysis presented in the following sections considers a
single pipeline with concentration and pressure specified
at the inlet of the pipeline (node 1) and with mass outflow
specified at the outlet (node 2). The pipeline parameters
and boundary conditions that do not change are ` = 50
km, D = 0.5 m, λ = 0.11, and ps = 7 MPa. We denote
the concentration of hydrogen at the inlet slack node by

α1(t) = α
(2)
1 (t) and specify it to be

α1(t) = α1 (1 + κ sin(2πω∗t)) , (30)

where κ is the amplitude factor of the sinusoid, ω∗ is its
frequency in cycles per hour, and α1 is the mean concen-
tration profile around which the sinusoid oscillates. Here,
the subscript is with respect to the node number.
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Figure 7. The boundary conditions for the two solutions are

(ps)blue = 11 (MPa), α
(2)
blue(t) = 0, β

(2)
green(t) = 1, wblack(t) =

100(1−sin(6πt/T )) (kg/s), wcyan(t) = 130(1+0.5 sin(6πt/T ))
(kg/s), µred = 1.0240, µ

yellow
= 1.0029, and µ

purple
=

1.0199, where T = 80 hrs. The other boundary condition
is qgreen(t) = 0 (kg/s) (solid lines) and qgreen(t) = 2 (kg/s)
(dots).

VIII. MONOTONIC INTERFACE

We consider the following question.

What is the interface (ω∗, κ∗) in the (ω∗, κ)
plane below and above which the solution is
monotonic and non-monotonic, respectively?

The MI is computed for each flow variable using nu-
merical simulations. In addition to the boundary con-
ditions that are specified at the beginning of this section,
this subsection uses σ1 = 377 (m/s), σ2 = 2.8σ1, and
α1 = 0.02. For each (ω∗, κ) in Eq. (30), we compute
three solutions corresponding to three monotone-ordered
mass outflows w2 = ϕπ(D/2)2 (kg/s), where ϕ = 120,
140, and 160 (kg/m2s). The region in the (ω∗, κ) plane
defined by 0 ≤ ω∗ ≤ 2 and 0 ≤ κ ≤ 1 is discretized
into a 21 × 41 grid of discrete pairs. We numerically
simulate the three solutions for each pair of boundary
condition parameters on this grid. In particular, for each
discrete ω∗, we compute the three solutions for each dis-
crete κ with until we achieve the lower bound κ = κ∗(ω∗)
at which at least two of the three solutions overlap. The
interpolated MI curves for several equivalent system vari-
ables are depicted in Fig. 8. The region below the MI

140



11

0 0.5 1 1.5 2

0.2

0.4

0.6

0.8

1
Monotonic Interface

Figure 8. Monotonic interfaces (ω∗, κ∗) in the (ω∗, κ) plane.

curve is called the monotone operating region (MOR).
Fig. 8 shows that the MORs for hydrogen density, nat-
ural gas density, total density, energy, and pressure are
nested increasing sets with the hydrogen density MOR
being the smallest set and the pressure MOR being the
largest. For time-varying concentration profiles, Fig. 8
suggests that the pressure and energy equivalent system
should be used if monotonicity properties are important
to the formulation. This is the conclusion that we ar-
rived at in Section VI. Of the five examples from Section
VI, only Figs. 3-4 consider time-variations in concentra-
tion. Figs. 3-4 used two sinusoidal forcing frequencies,
0.1 (cyc/hr) and 0.033 (cyc/hr), each with unity ampli-
tude factors κ = 1. Recall that in those figures, only
the pressure and energy solutions did not overlap. This
observation agrees with the MIs in Fig. 8, where the op-
erating point (ω∗ = 0.1, κ = 1) is above all of the MIs
except for the pressure and energy MIs. For a more ac-
curate comparison, the MIs ought to be recomputed with
5 and 10 (MPa) slack pressures instead of the 7 (MPa)
that was used to compute the MIs in Fig. 8.

As ω∗ increases from ω∗ = 0 to ω∗ = 2 (cyc/hr), the
MI curves qualitatively decrease from unity to a lower
bound, flatten out, and then increase. The fact that the
amplitude factor generally increases along the MI as ω∗
increases beyond ω∗ = 0.75 is a robustness feature of
monotonicity to high frequency uncertainty. This prop-
erty appears to be a consequence of wave attenuation in
gas pipelines [37]. In particular, the gas pipeline demon-
strates low-pass filtering characteristics with which the
amplitudes of high frequency travelling waves are signif-
icantly attenuated over short distances, and, therefore,
the likelihood of the solutions overlapping decreases as
the high frequency waves increase in frequency. If the
concentration of hydrogen injected into the network con-
tains a small variation of high frequency uncertainty, then
the MIs demonstrate that this uncertainty typically will
not cause an otherwise theoretically monotonic operation
to become non-monotonic.

IX. PERIODIC INTERFACE

In this section, we demonstrate that non-periodic solu-
tions may emerge from sinusoidal concentration bound-
ary conditions. To study periodic solutions numerically,
we must simulate solutions over large time intervals of
up to 400 hours. In addition, we will consider large
and fast variations in concentration. This requires an
extremely fine spatial discretization size for the simple
endpoint discretization method. The large time inter-
val and small spatial discretization size is difficult to im-
plement digitally. Therefore, in our study of periodic
solutions, instead of using the endpoint discretization
method, we discretize the pipeline at the (translated)
nodes of Chebyshev polynomials for which exponential
convergence properties are obtained (e.g., see [38]). We
briefly outline the method in the Appendix. The results
in this section are performed in the single 50 km pipeline
that was used previously to study the MI. However, the
parameters that change are σ1 = 338.38 (m/s), σ2 = 4σ1,
and α1 = 0.2 in Eq. (30).

To introduce the transition to non-periodic phenom-
ena, Figs. 9-11 show three examples that share the same
boundary conditions with the exception of different fre-
quencies ω∗ and amplitude factors κ of the sinusoidal con-
centration profile in Eq. (30). The top of the three figures
depict the pressure solutions at the outlet of the pipeline
for t ∈ [rT, T ] with 0.7 ≤ r ≤ 0.95, where T = 400 hr.
The tail-ends of the solutions are used to bypass the ini-
tial transient responses that are not included here in the
analysis of periodic orbits. The bottom left-hand-sides
of Figures 9-11 show the phase space diagrams of outlet
density and outlet pressure during the tail-ends of the
operations. We see that the solutions in Figs. 9 and 10
approach periodic orbits and that the solution in Fig. 11
does not appear to do so. The pressure in Fig. 9 has twice
as many local minima than the inlet concentration over
the time interval [0.95T, T ]. The additional local minima
correspond to the inner loop of the periodic orbit. The
pressure in Fig. 10 has the same number of local minima
as the inlet concentration over the interval [0.75T, T ], but
has twice the period. These examples demonstrate that
periodic solutions may even be incoherent in the follow-
ing sense. From the laws of fluid dynamics, gas pressure
should decrease with decreasing density under constant
temperature and volume. However, the phase space di-
agram in Fig. 9 contains three small time intervals and
their periodic repetitions during which density decreases
while pressure increases, and the phase space diagram in
Fig. 10 contains two such time intervals. The solutions in
this section are computed with sound speeds σ1 = 338.38
m/s, σ2 = 4σ1, and mean hydrogen mass concentration
α1 = 0.2.

The frequency responses of the outlet pressures are de-
picted on the bottom right-hand-sides of Figs. 9-11 us-
ing the discrete Fourier transform (DFT) [39]. The DFT
is defined below in Eq. (31). The dominant frequency
mode in the solution appears at the forcing frequency
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Figure 9. Pipeline solution with boundary conditions q2(t) =
75π(D/2)2 (kg/s), ω∗ = 0.25, and κ = 1.0. The periodicity
measure is P = 0.12.
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Figure 10. Pipeline solution with boundary conditions q2(t) =
75π(D/2)2 (kg/s), ω∗ = 0.1, and κ = 0.98. The periodicity
measure is P = 0.1.

ωn = ω∗ in Figs. 9-11. The generated frequency modes
in Fig. 9 appear at integer multiples of ω∗. This behav-
ior is the most familiar to pure natural gas operations
[37]. The generated frequency modes in Fig. 10 appear
at half the values of the integer multiples of ω∗. This be-
havior is indicative of period-doubling bifurcations [40]
at the forcing frequency ω∗ = 0.1 as the amplitude factor
κ increases. We note that this period-doubling behavior
is more easily seen with greater pressure. The pressure
in Fig. 11 appears to form a continuous distribution of
generated frequency modes. These observations inspire
a quantitative measure of periodicity in terms of the fre-
quency response of the solution. This is the approach
taken in [24] for the transition to chaotic responses in
oceanic wind bursts. We define a sequence of evenly-
spaced samples of the tail-end of the outlet pressure by
p2[k] = p2((0.8+k/N)T ) for k = 0, . . . , 0.2N , where N is
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Figure 11. Pipeline solution with boundary conditions q2(t) =
75π(D/2)2 (kg/s), ω∗ = 0.6, and κ = 0.9. The periodicity
measure is P = 1.49.

equal to the number of time steps in the numerical solu-
tion over the interval [0, T ]. For such a sampled sequence

[k] its normalized DFT is defined as

{Fψ}[ωn] =

∑0.2N
k=0 [k]e−j2πωnk

maxωn

∣∣∣∑0.2N
k=0 [k]e−j2πωnk

∣∣∣ , (31)

where j is the imaginary unit and ωn = n/(0.2T )
(cyc/hr) are the sampling frequencies for n =
0, . . . , 0.2N . The measure of periodicity is defined by
the average power spectrum given by

P =
1

0.2N + 1

0.2N∑
n=0

|{F(p2 − π2)}[ωn]|2 × 100, (32)

where π2 = p2(0) is the initial steady-state value of pres-
sure at the outlet of the pipeline. The shifted pressure
in the power spectrum is used to suppress the zero fre-
quency component of the initial state.

The power spectrum P is depicted in a color map as a
function of (ω∗, κ) in Fig. 12, where ω∗ is the forcing fre-
quency and κ is its amplitude factor given in (30). This
figure has been obtained numerically as follows. Simi-
larly to the way that we have computed the MIs, the
region in the (ω∗, κ) plane defined by 0 ≤ ω∗ ≤ 2 and
0.5 ≤ κ ≤ 1 is discretized into a 31 × 15 grid of discrete
pairs. For each frequency and amplitude factor of the
forcing concentration on this grid, we numerically simu-
late the solution in the pipeline for 400 hours. We then
compute the DFT and power spectrum of the sampled
solution, as defined above. This gives the discrete set
of quantified values depicted in Figure 12. The periodic
interface (PI) in Fig. 12 is the set of operating points be-
low or above which the solution does or does not visually
approach a periodic orbit. For each ω∗, the parameter κ
is increased from κ = 0 to κ = κ∗(ω∗), where κ∗(ω∗) is
the upper bound on κ below which the tail-end of the so-
lution (p2(t),ρ2(t)) traces a closed orbit. Fig. 12 shows
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Figure 12. Color map of the power spectrum P in (32) as
a function of (ω∗, κ) in (30). The boundary conditions are
α1 = 0.2 and q2(t) = 75. In this figure, we plot the minimum
between 1 and P in Eq. (32).
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Figure 13. Phase operating regions that separate periodic and
monotonic (P&M), periodic and not monotonic (P&¬M),
and neither periodic nor monotonic (¬P&¬M). Same bound-
ary conditions as those in Fig. 12.

that the power spectrum measure and the visual periodic
interface are in reasonable agreement.

We now compare the MI and the PI of the pressure
variable with α1 = 0.2. These interfaces separate the
phase regions from periodic and monotonic, to periodic
and non-monotonic, to non-periodic and non-monotonic
as shown in Fig. 13. Note that the pressure MI in Fig.
13 is different from the pressure MI in Fig. 8 due to
the different mean concentration α1. Fig. 13 shows that
the interfaces are equal for ω∗ < 0.2. As the frequency
increases from ω∗ = 0.2 to ω∗ = 0.5, the value of κ on the
MI decreases. As the frequency increases from ω∗ = 0.3
to ω∗ = 0.5, the value of κ on the PI decreases. The
interfaces are roughly constant over the frequency range

0.5 < ω∗ < 0.9. As frequency increases from ω∗ = 1,
both of the interfaces generally increase. However, the
PI shows a more significant increase in its accent over
this frequency range than the MI. More importantly, the
MI is never above the PI over the entire frequency range,
so that the monotonic operating region is a subset of the
periodic operating region. This suggests that monotonic
solutions may eventually approach periodic orbits.

X. CONCLUSIONS

We developed a model for transporting heterogeneous
mixtures of natural gas and hydrogen through pipeline
networks. The formulation may be applied to real
pipeline systems that operate time-variations of compres-
sor and regulator units, supply stations that inject gas
into the network with concentrated pressure, and flow
stations that withdraw or inject concentrated mass flow
from or into the network. The nonlinear partial differ-
ential equation formulation is discretized using a lumped
element method to obtain a nonlinear input-to-state sys-
tem which was proved to be monotonic for constant con-
centration vectors and to be non-monotonic, in general,
for time-varying concentration vectors. The interface
of the transition from monotonic to non-monotonic re-
sponse to sinusoidal variation of concentration, called the
monotonic interface, was analyzed numerically and the
results were illustrated on a test network.

This paper also demonstrates that a non-periodic so-
lution may emerge from a sinusoidal variation in con-
centration at the boundary. The periodic interface was
analyzed numerically and compared with the monotonic
interface. Characterizing the monotonic interface and pe-
riodic interface may enable a gas pipeline system designer
to determine limitations on operating the network safely
and predictably given blending of heterogeneous gases.
Operations outside the monotone operating region may
create surges with large pressure, energy, and concentra-
tion gradients, which do not occur in flows of a homo-
geneous gas. The monotonic interface analysis indicates
that sufficiently slow variation in concentration about a
constant profile will likely maintain monotonicity of or-
dered solutions in overall system pressures, and prevent
large, rapid pressure transients. Such conditions are crit-
ical to maintain a physical flow regime with behavior that
is intuitive for pipeline control room operators. This sug-
gests that hydrogen may be blended into a natural gas
pipeline network as long as injection rates are changed
only gradually. The acceptable ramping rates depend
significantly on the structure of the network, and would
have to be determined through numerous simulations.
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Appendix A: Model Comparison

The interested reader is referred to [28] for a model
comparison of homogeneous gas flow in the network
shown in Fig. 2. Using the same initial and boundary
conditions as used in the previous study, we recover the
same solution, up to machine precision, with our mixed
gas model. Our solution is shown in Fig. 14.
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Figure 14. Model comparison (see Fig. 11 in [28]).

Appendix B: Chebyshev Spectral Differentiation

Consider a single pipeline of length `, diameter D, and
friction factor λ with axial variable x ∈ [0, `]. Discretize
the interval [0, `] with the (N + 1) discretization points
xi = `/2(1−cos(iπ/N)) for i = 0, . . . , N . Define the sam-

pled variables ρ
(m)
i (t) = ρ(m)(t, xi) and ϕi(t) = ϕ(t, xi).

It follows from interpolating the values of ρ
(m)
i (t) at the

points xi using Lagrange polynomials of order N that
(e.g., see [38])

∂xρ
(m)(t, xi) ≈Dρ(m)

i (t), (B1)

where

Dij =



n∑
n=0
n6=j

1
xj−xn

, i = j,

1
xj−xi

n∏
n=0
n6=i,j

xi−xn

xj−xn
i 6= j.

(B2)

The discretized PDEs in (3)-(4) become

ρ̇(m) +D

(
ρ(m)

ρ(1) + ρ(2)
�ϕ

)
= 0, (B3)

D
(
σ2
1ρ

(1) + σ2
2ρ

(2)
)

= − λ

2D

ϕ� |ϕ|
ρ(1) + ρ(2)

.(B4)

The boundary conditions are incorporated into the dis-

cretized equations by replacing ρ
(m)
0 (t) = s

(m)
0 (t) and

ϕN (t) = wN (t)/(0.25πD2).
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