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ABSTRACT

Image segmentation is one of the most critical tasks in medical imaging, which iden-

tifies target segments (e.g., organs, tissues, lesions, etc.) from images for ease of

analyzing. Among nearly all of the online segmentation challenges, deep learning

has shown great promise due to the invention of U-Net, a fully automated, end-to-

end neural architecture designed for segmentation tasks. Recent months have also

witnessed the wide success of a framework that was directly derived from U-Net ar-

chitecture, called nnU-Net (“no-new-net”). However, training nnU-Net from scratch

takes weeks to converge and suffers from unstable performance. To overcome the

two limitations, instead of training from scratch, transfer learning was employed to

nnU-Net by transferring generic image representation learned from massive images

to specific target tasks. Although the transfer learning paradigm has proven a signif-

icant performance gain in many classification tasks, its effectiveness of segmentation

tasks has yet to be sufficiently studied, especially in 3D medical image segmentation.

In this thesis, first, nnU-Net was pre-trained on large-scale chest CT scans (LUNA

2016), following the self-supervised learning approach introduced in Models Genesis.

Further, nnU-Net was fine-tuned on various target segmentation tasks through trans-

fer learning. The experiments on liver/liver tumor, lung tumor segmentation tasks

demonstrate a significantly improved and stabilized performance between fine-tuning

and learning nnU-Net from scratch. This performance gain is attributed to the scal-

able, generic, robust image representation learned from the consistent and recurring

anatomical structure embedded in medical images.
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Chapter 1

INTRODUCTION

1.1 Background

In past years, the increase in the number of digital images has attracted a lot of

researchers to make scientific discoveries. Most of these discoveries leverage Image

Processing to extract useful information from the image and utilize it in numerous

tasks. One of these tasks is Image Segmentation, a process to divide an image into

meaningful segments. In medical image analysis, these meaningful segments refer

to the biologically relevant structures like tumors, organs, etc., making it easier for

doctors in forming decisions. Therefore, developing superior methods for precise

segmentation has become a hotspot of research in the medical community. Most

of the online competitions thrive on finding these methods, either semi-automated

or automated. In recent years, deep learning has become the mainstream approach

to develop these methods. Within deep learning, Convolutional Neural Networks

(CNNs) have achieved higher performance and have become a backbone for tasks like

classification. With the help of downsampling in multiple steps, CNNs try to find the

unique features in order to classify an image. To further improve the performance,

various extensions of CNNs have been developed, like AlexNet, ResNet, DenseNet,

etc.

However, in image segmentation, each pixel should be assigned a class label in or-

der to detect the object of interest. This can be achieved with the help of upsampling

operations. To do so, Ronneberger et al. (2015) have proposed U-Net architecture

consisting of an encoder and decoder block. The encoder downsamples the image to

1



find the unique features while the decoder upsamples these features and localizes the

object of interest, resulting in a segmentation map.

In medical image analysis, U-Net, with 22,574 citations, has been the state-of-the-

art method for segmentation tasks, even though numerous variations of U-Net have

been developed to achieve better performance. Isensee et al. (2018) proposed the nnU-

Net (“no-new-net”) framework, based on U-Net architecture, surpassing most of the

existing approaches on 23 public datasets in medical image segmentation challenges.

The authors hypothesized that a “basic U-Net can outperform other architectures,

given that the corresponding pipeline is designed adequately” (Isensee et al., 2017a,

p. 2). To design the corresponding pipeline, the nnU-Net framework adapts to a

specific task based on dataset attributes. Further, a set of heuristic rules, combined

with hardware constraints, determine the exact network topology, patch size, batch

size, and image pre-processing. Despite the success of the nnU-Net framework, the

framework has its own hassles causing unstable performance. After the thorough

analysis of the framework, we observed the following disadvantages:

1. The framework utilizes learn from scratch strategy i.e. random initialization

of weights while training the tasks with a small dataset. Further, training a

specific task takes weeks to converge.

2. The framework formulates numerous specialized architectures due to the de-

pendency on a specific dataset.

The above limitations suppress the performance of the nnU-Net framework on a

specific task. To tackle the first limitations, we explored transfer learning. Further,

we approach the second limitation by utilizing deeper architecture, like UNet++, to

integrate into the nnU-Net framework.
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Transfer Learning is used to initialize the starting point of a neural network to be

trained on a specific task, with the parameters of a neural network already trained

on a similar task. In the real world, we do not learn everything from scratch, and

we instead utilize prior knowledge or what we know while learning new things. For

example, if someone knows how to play the flute, he/she may be able to play the

harmonica with little guidance. A similar concept has been used in the deep learning

paradigm.

The traditional method to train a neural network requires a large amount of

labeled data in order to achieve high performance. However, given the fact that data

annotation is costly, acquiring such a dataset is tough. This trade-off between the

amount of labeled data and performance can be bridged with the help of transfer

learning. Pan and Yang (2010) defined transfer learning as:

Given a source domain DS and learning task TS, a target domain DT and

learning task TT , transfer learning aims to help improve the learning of

the target predictive function fT(·) in DT using the knowledge in DS and

TS, where DS 6= DT or TS 6= TT (Pan and Yang, 2010, p. 3).

In the medical community, labeled data comes with high costs, while unlabelled

data is generated constantly and exists in a relatively higher volume. In order to

utilize the unlabelled data for the source task, we explored self-supervised learning.

Self-supervised methods assist in the learning of generic visual features from images

without utilizing human-annotated labels. This can be achieved with the help of

pseudo labels extracted based on the attributes of an image. These pseudo labels

help in learning the feature representation from unlabelled data, through training the

network to learn the objective functions of the proxy tasks. Moreover, the pseudo

labels provide supervision to the network from the data itself. The learned feature

3



representation carries good semantic or structural meanings, further helping in the

downstream task. Below are the advantages of transfer learning:

1. Even the reduced amount of data for the target task may provide good perfor-

mance.

2. Results in a more effective and accurate model for the task at hand.

Even though transfer learning has been shown to improve the model for a specific

task at hand, the disadvantage is the architecture depth for the target task. The

architecture depth is unknown and has to be fixed for weight transfer.

1.2 Research Question

The above limitations of transfer learning and the nnU-Net framework gave rise to

the following question: Can we enhance the performance of the nnU-Net framework

and make it more stable by advantageously integrating it with transfer learning? The

purpose of this work is based on answering this question. To do so, we started

exploring different tasks utilized in the nnU-Net framework. The nnU-Net framework

provides ten architectures for ten different tasks. With the source task and dataset

in mind, we chose a specific architecture from the nnU-Net framework (discussed in

the methodology section). Further, the nnU-Net framework determines numerous

specialized architectures, and based on this observation, we will also address the

following question: Can we utilize one single architecture to learn multi-scale image

features?

4



1.3 Hypothesis

Pre-trained ImageNet models, proposed by Deng et al. (2009), have provided a sig-

nificant boost in both natural and medical imaging applications. Further, Tajbakhsh

et al. (2016) confirmed that the use of pre-trained models with sufficient fine-tuning is

always equivalent to, or better than, training a model from scratch. While pre-trained

ImageNet models are supervised and based on 2D natural images, Zhou et al. (2019)

stated that for biomedical imaging applications, the models pre-trained on medical

images can yield a more powerful target model than the models pre-trained on nat-

ural images, preserving 3D anatomical information. Due to the lack of labeled data

in the medical community, Zhou et al. (2019) proposed a set of pre-trained models,

named Models Genesis, which learn representations from large-scale medical images

via self-supervision.

Based on the above exploration, we hypothesize that the performance of nnU-Net

can be boosted significantly in two ways:

1. By employing transfer learning to nnU-Net: by transferring generic image rep-

resentation learned from the massive images to a specific target task. To train

the target task, we utilized the starting point from Models Genesis based on

nnU-Net architecture.

2. By integrating an advanced segmentation architecture in the nnU-Net frame-

work. We utilized UNet++ proposed by Zhou et al. (2018) in this work.

Our hypothesis is supported by the set of results showcased in the experimentation

section.
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1.4 Terminology

We define terminologies referred in this document as follows:

1. Domain: A feature space and a marginal probability distribution of the whole

dataset define the domain. If two domains are similar enough, then they will

have similar feature spaces and similar marginal distributions.

2. Task: A label space i.e. class labels and a learned function from training

samples define a task. Different tasks may have different label spaces.

3. Human-annotated Labels: the ground truth labels defined by experts.

4. Pseudo Labels: defined from the data itself without any annotation cost.

5. Proxy Task: learns the predictive function using pseudo labels. The knowledge

gained is used for the similar tasks at hand.

6. Target Task: computer vision applications utilizing the knowledge from the

proxy task to evaluate the learned feature representations.

7. Downstream Task: computer vision applications utilizing human-annotated

labels to evaluate the learned feature representation from pre-trained models.

Downstream tasks may have less amount of training data.
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Chapter 2

RELATED WORKS

2.1 Image Segmentation

Convolutional neural networks (CNNs) have become the core interest in deep

learning for various problems, like image classification, speech recognition, etc. Due to

the recent advancements in computing resources and data, CNNs are emerging swiftly

within the computer vision community. Multiple variations of CNN’s are introduced,

like AlexNet, proposed by Krizhevsky et al. (2012); VGG-16, proposed by Simonyan

and Zisserman (2015); GoogLeNet, proposed by Szegedy et al. (2014); and ResNet,

proposed by He et al. (2015). The above variations demonstrate the importance of

depth in a neural network. However, these architectures typically serve the purpose

of classification on an image level, while the segmentation task requires classification

at the pixel level, in order to localize an object within an image. To overcome this

limitation, Ciresan et al. (2012) introduced a deep neural network to classify each

pixel in an image with the help of the sliding window approach. Further, Long et al.

(2015) proposed fully convolutional networks by replacing fully connected layers from

deep neural networks with convolutional layers in order to produce a heatmap. Due to

the low resolution of the output, in the fully convolutional networks, the segmentation

map became fuzzy. Therefore, Ronneberger et al. (2015) extended fully convolutional

networks by introducing upsampling layers in order to increase the resolution of the

output and proposed an encoder-decoder architecture named U-Net. To get the

segmentation map, the encoder extracts the features, then a decoder projects these

features to a higher resolution.
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U-Nets are widely used in medical image segmentation tasks because the intro-

duction of skip connections recover full spatial resolutions in the output. However,

U-Net architecture was introduced for medical image segmentation tasks in 2D while

most of the medical images consist of 3D volumes. To tackle this problem, Milletari

et al. (2016) introduced V-Net with residual blocks, in encoder and decoder, for 3D

medical image segmentation tasks. At the same time, Çiçek et al. (2016) proposed 3D

U-Net by replacing 2D operations in U-Net, with 3D operations, to segment the volu-

metric medical images. Further, multiple publications were introduced that required

specialized architecture and training schemes to achieve desired performance on a

specific dataset. Few of them are: (1) Isensee et al. (2017b) utilized and modified the

U-Net architecture to process large 3D input blocks for brain tumor segmentation, (2)

Isensee et al. (2017a) designed the architecture for cardiac disease assessment, (3) Li

et al. (2018) proposed H-DenseUNet for liver and liver tumor segmentation, (4) Oktay

et al. (2018) introduced Attention U-Net for pancreas segmentation. (5) Zhou et al.

(2018) proposed UNet+ and UNet++ architecture by redesigning the skip pathways

in the U-Net architecture to reduce the semantic gap between the encoder and decoder

features. To address this issue within the above publications, Isensee et al. (2018)

introduced the nnU-Net framework, which surpassed the existing approaches in the

Medical Segmentation Decathlon (2019) challenge. Based on dataset properties, the

framework decides the training scheme, such as input patch size, batch size, number

of pooling layers, etc. On another note, as discussed in the introduction section, the

nnU-Net framework has its own hassles. Further, we utilized the framework in this

work to overcome the limitations.
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2.2 Transfer Learning

We explored transfer learning to find the answer to the question discussed in

the introduction section. Deng et al. (2009) proposed pre-trained ImageNet models,

giving a significant boost in the performance of both natural and medical imaging

applications. Further, Tajbakhsh et al. (2016) confirmed that the use of pre-trained

models with sufficient fine-tuning will always be equivalent to or better than training

a model from scratch. However, the ImageNet dataset is large scale and contains

1.3 million labeled natural images annotated by humans. Additionally, ImageNet

models have been solved in 2D while the medical modalities like CT and MRI belong

to 3D imaging tasks. Due to this reason, 3D imaging tasks have to be solved in

2D to utilize pre-trained ImageNet models, hence losing 3D anatomical information.

Therefore, Carreira and Zisserman (2017) proposed I3D models, expanded in 3D,

pre-trained on Kinetics dataset based on the temporal video. Due to the domain gap

in temporal video and 3D medical images, Gibson et al. (2018) introduced model zoo

in NiftyNet for specific applications; Chen et al. (2019b) proposed Med3D pre-trained

models by jointly training eight annotated medical datasets. The above publications

require a large labeled dataset for pre-trained models. Acquiring such a large dataset

in medical images is expensive and time-consuming. To avoid this limitation, var-

ious self-supervised methods have been introduced. Zhang et al. (2016) introduced

a colorization proxy task where a grayscale image is mapped to color value output

using CNN architecture. In addition, Pathak et al. (2016) suggested context encoders

where encoder-decoder architecture reconstructs the missing region in an input image.

Further, Noroozi and Favaro (2017) put forward a method to learn visual represen-

tation by solving jigsaw puzzles in an unsupervised fashion. Similarly, Gidaris et al.

(2018) advanced unsupervised representation learning by predicting image rotations.

9



However, the above publications were based on the context of natural images, though

natural images are statistically different from medical images. Further for medical

applications, Ross et al. (2018) proposed colorization as a proxy task for colonoscopy

images; Chen et al. (2019a) designed image restoration as a proxy task, where small

windows within the image were shuffled for the model to learn the original image;

Zhuang et al. (2019) introduced the proxy task by recovering the refactored rubik’s

cube. These methods were developed individually for specific target tasks with limited

generalizability over multiple tasks.

To tackle this limitation, Zhou et al. (2019) proposed a self-supervised learning

method by utilizing the properties of medical images, namely, a collection of pre-

trained models called Generic Autodidactic Models, nicknamed Models Genesis. The

author, Zongwei Zhou, was presented the Young Scientist Award in 2019 by MICCAI,

the top conference in medical imaging, and MedIA best paper award. Zhou et al.

(2019) stated that “models pre-trained on medical images can yield a more powerful

target model than the models pre-trained on natural images”. Models Genesis is the

first pre-trained model for open science in medical images.
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Chapter 3

METHODOLOGY

To demonstrate the boost in the performance, we will be utilizing the pre-trained

models from Models Genesis in the nnU-Net framework. First, we will delve into a

briefing of the nnU-Net framework and Models Genesis.

3.1 The nnU-Net Framework: Adaptive Framework for Medical Image

Segmentation

The nnU-Net framework is an open-source algorithm that can be used out-of-the-

box for multiple segmentation tasks. The framework has been designed based on the

dataset properties for different segmentation tasks. The traditional approach (Figure

3.1) requires the knowledge of architecture and training parameters beforehand. In

contrast, the nnU-Net framework utilizes generic (standard) U-Net architecture and

determines training parameters based on the available knowledge of a specific dataset

in order to design the algorithm pipeline.

The framework is developed based on datasets provided by the Medical Segmenta-

tion Decathlon (2019) challenge. To determine the optimized pipeline, the framework

has been divided into multiple components as shown in Figure 3.2.

A brief description of individual components are depicted below:

1. Data Fingerprints: This component of the framework accumulates the dataset

properties like image size, image spacing, modality, class label, etc. Further,

the framework utilizes these attributes in the pre-processing steps.
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Figure 3.1: Traditional Approach where known hyper-parameters and fixed architec-
ture configuration is used, Irrelevant to dataset attributes.

Figure 3.2: Automated design of the nnU-Net Framework: Inferred parameters heuris-
tic rules operate on data fingerprint. Blueprint parameters and Inferred parameter
together make the input for network training. Three network architectures are trained
based on the input from the framework in a 5-fold cross-validation way. Empirical
parameters choose the optimal architecture based on the performance of validation
data.

2. Blueprint Parameters: The parameters decide the architecture template,

training schedule, and inference choices. The framework employs original U-

Net architecture proposed by Ronneberger et al. (2015) and Çiçek et al. (2016).

Large patch size is favored over batch size. The networks are trained for 1000

epochs with 250 iterations within each epoch. The Sum of cross-entropy and

dice loss is used as a loss function. In order to handle class imbalance, each
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batch includes one patch from the foreground class, and another one is randomly

sampled. Various data augmentation strategies are applied during training.

Within the inference step, the sliding window approach is used for prediction.

3. Inferred Parameters: An individual image, with its mean and standard devi-

ation, is normalized using z-score normalization, excluding CT images. For CT

images, 0.5 and 99.5 percentiles of the foreground pixels are clipped, followed by

the global normalization scheme, using standard deviation and the mean of the

whole dataset. To deal with heterogeneous voxel spacing, images are resampled

to the target spacing using either third-order spline, linear or nearest-neighbor

interpolation. The patch size is initialized as a median shape after resampling.

Based on the patch size, the architecture is configured by determining the num-

ber of downsampling layers (until the feature map reduced to 4 voxels). The

patch size and architecture topology is adjusted in an iterative process until the

GPU memory budget is met.

4. Empirical Parameters: The component ensembles and selects the best model

configuration. The framework uses a fivefold cross-validation strategy to train

individual configurations (2D U-Net, 3D U-Net, and 3D U-Net Cascade) and

selects either single or ensemble of two U-Net configurations. In post-processing,

the framework decides whether or not to remove all, but the largest connected

component.

Based on the results reported by Isensee et al. (2018), 3D U-Net is the favored

option for most of the tasks. In this work, we experimented and demonstrated per-

formance gain using 3D U-Net configuration from the nnU-Net framework alone.
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3.2 Models Genesis: A Self-supervised Framework for 3D Medical Image Analysis

Fine-tuning pre-trained ImageNet models have become the de facto standard in

classification and segmentation tasks. Even though they provide a boost in the per-

formance, they have the following limitations:

1. Use 2D images during training while, in medical imaging applications, most

of the images are 3D, and solving 3D imaging target tasks in 2D might lose

contextual information, resulting in low performance.

2. Are supervised and use a large amount of labeled data. In medical imaging

applications, acquiring such an amount of labeled data is expensive.

3. Are trained on natural images.

To tackle the above limitations, Zhou et al. (2019) proposed a set of pre-trained mod-

els named Models Genesis. Models Genesis learns the generic anatomical patterns

by utilizing a series of self-supervised strategies. As shown in Figure 3.3, the pre-

dictive function is trained to learn the reconstruction of the original image from the

transformed image using an encoder-decoder architecture.

Figure 3.3: The original image is transformed using distortion and cutout-based meth-
ods. The network learns the generic anatomical representation from the transformed
image by recovering the original image. The network is trained to minimize the L2
distance between the prediction and ground truth.
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The performance evaluation depicted in the paper shows the significance of Models

Genesis and its transferability beyond organs, diseases, and modalities in medical

imaging applications. In contrast with the ImageNet pre-trained models, Models

Genesis has the following advantages:

1. Are self-supervised and utilizes most of the unlabelled data without any human

annotation.

2. Solves 3D imaging tasks in 3D instead of 2D, preserving rich 3D anatomical

patterns.

3. Depicted in Zhou et al. (2019), the exceptional results show that the pre-trained

models on medical images are more favorable and positively influence the target

task as opposed to the pre-trained models on natural images.

In the training process of the proxy task, 3D patches from the image are extracted

to go through transformation strategies. The 3D patches extracted from the images

are used as the ground truth, while the transformed patches are used as the input

to the architecture for the reconstruction task. To learn the generic representations,

Models Genesis utilizes the below self-supervised transformation strategies:

1. Non-Linear Transformation: Utilizes Bezier curve as transformation func-

tion on the input patch. It enables the model to learn organ appearances and

intensity mapping.

2. Local pixel shuffling: Samples a random window from the patch and then

shuffles the pixels contained in it. This strategy helps the model to learn the

texture and edges.

3. Cutout methods: Implements outer-cutout and inner-cutout methods to learn

the context present in the patch. For outer-cutout, random windows of different
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sizes are superimposed together, followed by randomly assigning the pixel values

outside the window. Therefore, the outer-cutout learns the global geometry and

spatial layout of the organs in the patch. For inner-cutout, pixel values inside

the window are assigned with the constant value in order to learn the local

context of organs in the patch.

3.3 Integrating Models Genesis in the nnU-Net Framework

The nnU-Net framework is designed for 3D imaging tasks, while Models Genesis,

being a self-supervised learning method, has out-performed 3D models trained from

scratch. With the widespread success of the nnU-Net framework, we reproduced the

results on each task and found that the performance of the framework is unstable

due to the random initialization of weights. Based on the above observation, we

demonstrate that initializing the starting point of the nnU-Net architecture from

Models Genesis will boost the nnU-Net performance: especially for those applications

with limited annotation. This gain is attributed to learning representation from large-

scale medical images via self-supervision.

The nnU-Net framework trains three variations of architecture for each task i.e.

2D U-Net, 3D U-Net, and 3D U-Net Cascade as shown in Figure 3.2. Based on the

results reported by the author, 3D U-Net is the most favorable option for 3D imaging

tasks. Due to this reason, we utilized the 3D U-Net architecture, extracted from the

nnU-Net framework, and demonstrated that the performance can be enhanced by

fine-tuning Models Genesis for lung tumor, liver organ, and liver tumor segmentation

tasks. So far, our proxy task utilizes only the LUNA16 dataset, implying that Models

Genesis never sees any of the images from the target tasks. To learn the generic

representation in the proxy task, we first extracted the fixed-sized patches from the

LUNA16 dataset followed by z-score normalization based on the mean and standard
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deviation of the whole dataset. After pre-processing, we transformed the patches

using the transformation strategies of Models Genesis. The transformed patch is

then fed to the nnU-Net architecture in order to reconstruct the original patch. The

network is trained to minimize the L2 distance between the predicted patch X′ and

ground truth X (original patch without transformation).

L(X) = ||f(X ′)−X||22 (3.1)

When the network converged, we fine-tuned Models Genesis on the target task. The

training and the fine-tuning process are depicted in Figure 3.4. The main question

that arose was: What architecture configuration can we utilize to train Models Gene-

sis?. We further examine the details in the next section.

Figure 3.4: Using 3D U-Net architecture configuration from the nnU-Net Framework,
Models Genesis (top: Proxy Task) is trained. In the target task, we initialize the
starting point of the nnU-Net framework from Models Genesis.

The proxy task utilizes the LUNA16 dataset which was released with the motive

to develop computer algorithms for lung cancer screening. To find the optimal archi-

tecture to train our proxy task, we first explored the differences between the ten tasks

and their specific architectures (Figure 4.1). We observed that the Liver (Organ and

Tumor) and Lung Tumor segmentation tasks use the same configuration with five
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layers in the encoder, one layer in a bottleneck, and five layers in the decoder. Apart

from that, our proxy task dataset (LUNA16) provided by Setio et al. (2017) was

released with a similar motive as the lung tumor dataset provided by Medical Seg-

mentation Decathlon (2019) challenge. Due to this reason, we used the architecture

configuration of the lung tumor segmentation task which was the same as the liver

tumor segmentation task to train Models Genesis.

3.4 Advancing Segmentation Architecture in the nnU-Net Framework

Figure 3.5: 3D U-Net replaced by UNet++. The convolution blocks use the same
configuration of 3D U-Net architecture obtained from the liver and liver tumor seg-
mentation task pipeline in the nnU-Net framework.

The nnU-Net framework determines numerous specialized architectures based on

U-Net. Even though the framework shows promising results, no study has been done

to test the impact of other deep architectures. We demonstrate that, by integrat-

ing deeper architecture in the framework, the performance on the specific task is

enhanced. We demonstrated our hypothesis depicted in Figure 3.5, through refac-

toring the generic U-Net (Ronneberger et al. (2015)) architecture to UNet++ (Zhou

et al. (2018)) for the liver organ and tumor segmentation tasks. Skip pathways in

U-Net architecture connect the feature maps between encoder and decoder, directly

resulting in fusing semantically dissimilar features. To avoid this, Zhou et al. (2018)

proposed a deeply-supervised encoder-decoder network, where the encoder and de-

coder sub-networks are connected through a series of dense, nested skip pathways.
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The redesigned skip pathways reduce the semantic gap between the features of the

encoder and decoder sub-networks. We implemented UNet++, to learn multi-scale

image features, in the nnU-Net framework based on the liver organ and tumor seg-

mentation architecture configuration i.e. backbone with five layers in the encoder and

one layer in the bottleneck. Our experiment shows that integrating deeper architec-

ture can further boost the performance of a specific task. Utilizing a generic UNet++

architecture eliminates the need to ensemble numerous specialized architecture for a

specific task.
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Chapter 4

EXPERIMENTS AND RESULTS

4.1 Implementation

4.1.1 Dataset

In this work, we have utilized the datasets provided by Medical Segmentation

Decathlon (2019) in the target task. The challenge spans over ten datasets (Table 4.1)

belonging to different modalities. For our proxy task, we have utilized the LUNA16

dataset provided by Setio et al. (2017). This dataset spans over 888 Chest CT scans.

4.1.2 Architecture Differences Between Tasks

The framework configures ten 3D U-Net architectures for ten datasets (Fig. 4.1).

All the architectures utilize a generic template with two convolution blocks within

each layer. The difference in the architectures lies in the number of layers and the

kernels within each layer. Figure 4.1 shows that most of the architectures have five

layers in the encoder, one layer in a bottleneck, and five layers in the decoder. Hip-

pocampus dataset folows shallow architecture as depicted in Figure 4.1(a). Lung,

Liver, Brain, Heart, Pancreas, Hepatic vessel, Spleen, and Colon dataset follow same

depth in the architecture as determined by the nnU-Net framework (Figure 4.1(b)).

Even though they are similar, the prostate, pancreas, spleen, and colon differ in the

first layer itself. The architecture determined for the Prostate dataset is the deepest,

depicted in Figure 4.1(c). The architecture of the Brain Tumor Segmentation task
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Dataset Modalities Total Classes Number of Sam-

ples

Brain tumor MRI (T1, T1c,T2,

FLAIR)

3 484

Heart MRI 1 20

Liver CT 2 131

Hippocampus MRI 2 260

Prostate MRI(T2, ADC) 2 32

Lung CT 1 63

Pancreas CT 2 282

Hepatic Vessel CT 2 303

Spleen CT 1 41

Colon CT 1 126

Table 4.1: Properties of datasets provided by Medical Segmentation Decathlon (2019).

looks similar to lung and liver architecture, however, the difference lies in the modal-

ity of these two tasks. Additionally, the Brain Tumor segmentation task belongs to

the MRI domain and utilizes four modalities (T1, T1c, T2, and FLAIR) as input to

the U-Net architecture, while lung and liver tasks belong to the CT domain with one

modality in the input patch. Due to this reason, the transfer of weights in the first

layer from Models Genesis becomes impossible. Further, we will show the impact of

Models Genesis on all the target tasks.
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Figure 4.1: The depth of the architectures determined by the nnU-Net framework. (a)
Hippocampus architecture. (b) Brain. Heart, Liver, Lung, Pancreas, Hepatic vessel,
Spleen, and Colon architecture. (c) Prostate architecture. Note: All the architectures
are determined by the nnU-Net framework.

4.1.3 Proxy Task

We trained Models Genesis using the patches extracted from 445 CT scans of the

LUNA16 dataset and used 178 CT scans for validation. The remaining 265 scans

were used for testing purposes in order to evaluate Models Genesis. We used the

patch size of 64x64x32 as input to the 3D U-Net architecture. Note that, no human

annotation is utilized in our proxy task. The architecture configuration is derived

based on liver and lung datasets in the nnU-Net framework.

4.1.4 Target Tasks

The datasets in Table 4.1 correspond to the following segmentation tasks:

1. Brain Tumor Segmentation: The target task contains 484 training and 266

testing cases with the objective to segment 3 classes i.e. edema, active tumor,

and necrosis.

2. Heart Segmentation: This target task contains 20 training and 10 testing

cases with the objective to segment the left ventricle.
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3. Liver and Liver Tumor Segmentation: The target task contains 131 train-

ing and 70 testing cases with the objective to segment liver and liver tumors.

4. Hippocampus Segmentation: The target task contains 263 training and 131

testing cases with the objective to segment two neighbor small structures i.e.

anterior and posterior hippocampus.

5. Prostate Segmentation: The target task contains 32 training and 16 testing

cases with the objective to segment prostate central and peripheral zone.

6. Lung Tumor Segmentation: The target task contains 64 training and 32

testing cases with the objective to segment lung tumors.

7. Pancreas and Pancreas Cancer Segmentation: The target task contains

282 training and 139 testing cases with the objective to segment pancreas organ

and pancreas cancer.

8. Hepatic Vessel and Tumor Segmentation: The target task contains 303

training and 140 testing cases with the objective to segment hepatic vessels and

tumors.

9. Spleen Segmentation: The target task contains 41 training and 20 testing

cases with the objective to segment the spleen organ.

10. Colon Cancer Segmentation: The target task contains 126 training and 64

testing cases with the objective to segment colon cancer.

4.2 Hyper-parameters

In our proxy task, all the patches were normalized using z-score normalization

with a mean of -775.8 and a standard deviation of 251.9. These patches were then
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used as the input to 3D U-Net architecture. The mean squared error (L2 norm) was

used as the loss function. The stochastic gradient descent method was used as an

optimizer with a learning rate of 1e-1. The learning rate reduces by the use of a

learning rate scheduler if validation loss does not decrease after certain epochs. In

the target task, we used the same settings for the hyper-parameters as pre-defined by

the nnU-Net framework.

4.3 Models Genesis Results

Once the Models Genesis is trained, we evaluate it on the patches extracted from

the scans reserved for testing purposes. None of the patches from the test set are

seen by the model. Figure 4.2 shows the reconstructed patches by Models Genesis

and confirms that Models Genesis, indeed, learns the anatomical patterns from the

large-scale images via self-supervision.

4.4 Target Task Results

To evaluate our Models Genesis, we fine-tuned it on liver organ, liver tumor, and

lung tumor segmentation tasks via transfer learning. We fine-tuned all the layers

from encoder and decoder blocks in the above segmentation tasks. The weights were

transferred for all except the last layer from the pre-trained model. We compared

the fine-tuned Models Genesis results on the target tasks with training from scratch.

Table 4.2 and 4.3 shows the stable and enhanced results on liver and liver tumor

segmentation tasks. Further, Models Genesis achieved the first rank in the liver

tumor segmentation task on the challenge leaderboard.

Table 4.4 and 4.5 shows lung tumor segmentation performance using Models Gen-

esis and using random initialization. The enhanced performance highlights the sig-

nificance of Models Genesis and the prior knowledge injected into the target task.
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Figure 4.2: Qualitative results of Models Genesis on the test set. Once Models
Genesis is trained, we evaluate it on the test set using the patches reserved for testing
purposes.

Proxy Task Purpose Liver Tumor

Scratch Validation 96.19 63.37

Models Genesis Validation 96.19 65.52

Table 4.2: Liver and Liver Tumor Segmentation: Validation. Fine-tuning Models
Genesis outperforms the nnU-Net framework trained from scratch. Scores depicted
are Dice scores. Note: The best result is denoted in bold.
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Proxy Task Purpose Liver Tumor

Scratch Test 95.75 (Rank: 1) 75.97 (Rank: 5)

Models Genesis Test 95.72 (Rank: 2) 77.50 (Rank: 1)

Table 4.3: Liver and Liver Tumor Segmentation: Test Set. Fine-tuning Models
Genesis outperforms the nnU-Net framework trained from scratch. Scores depicted
are Dice scores. Note: The best result is denoted in bold. Rank resembles the
challenge leaderboard ranking.

Proxy Task Purpose Tumor

Scratch Validation 69.5 ± 1.13

Models Genesis Validation 71.8 ± 1.4

Table 4.4: Lung Tumor Segmentation: Validation Set. Fine-tuning Models Genesis
outperforms the nnU-Net framework trained from scratch. Scores depicted are Dice
scores. Note: The best result is denoted in bold.

Proxy Task Purpose Tumor

Scratch Test 73.97 (Rank: 5)

Models Genesis Test 74.54 (Rank: 3)

Table 4.5: Lung Tumor Segmentation: Test Set. Fine-tuning Models Genesis outper-
forms the nnU-Net framework trained from scratch. Scores depicted are Dice scores.
Note: The best result is denoted in bold. Rank resembles the challenge leaderboard
ranking.
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4.5 Qualitative Results of Target Task

As shown in Figure 4.3 and Figure 4.4, Models Genesis can effectively segment

and find the liver tumor and lung tumor region in the CT scans while the nnU-Net

framework standalone misses those regions or does not segment it efficiently.

Figure 4.3: Qualitative results of Liver and Liver Tumor Segmentation Task. Once
the Models Genesis is trained, we fine-tune it on the target task.

Figure 4.4: Qualitative results of Lung Tumor Segmentation Task. Once the Models
Genesis is trained, we fine-tune it on the target task.
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4.6 Results of UNet++ in the nnU-Net Framework

We replaced U-Net architecture in the nnU-Net framework with UNet++. For

implementation, we use the same kernel shapes and layers from liver architecture as

determined by the nnU-Net framework. Additionally, encoder-decoder sub-networks

were injected as depicted in Zhou et al. (2018). The architecture contains five layers

in the encoder, one layer in a bottleneck, and five layers in the decoder. The imple-

mentation is depicted in Figure 3.5. Table 4.6 shows the gained performance using

UNet++ architecture instead of U-Net in the nnU-Net framework. The U-Net++

branch refers to encode-decoder sub-network predictions (Figure 4.5). The perfor-

mance of UNet++ on the liver organ is similar to U-Net architecture while there is

a significant improvement in liver tumor scores. As the encoder-decoder sub-network

deepens the performance improves. In this way, UNet++ learns multi-scale image

features. This experiment demonstrates that using advanced segmentation architec-

ture in the nnU-Net framework can further improve the performance on s specific

task.

Figure 4.5: Multiple Branches of UNet++ Architecture. We compare individual
branches in our experiment with U-Net architecture in the nnU-Net framework.
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Experiment Branch Figure Liver Tumor

U-Net - - 96.18 63.37

UNet++ 1st branch 4.5(a) 89.96 38.03

UNet++ 2nd branch 4.5(b) 94.68 59.66

UNet++ 3rd branch 4.5(c) 95.78 65.83

UNet++ 4th branch 4.5(d) 96.03 66.02

UNet++ 5th branch 4.5(e) 96.11 66.25

Table 4.6: Liver and Liver Tumor Segmentation. The pipeline determined by the
nnU-Net framework is used in the experiments. The only difference is in segmentation
architecture. Training is done using random initialization of weights. Scores depicted
are Dice scores. Note: The best result is denoted in bold.
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4.7 Qualitative Results of UNet++ Integrated Into the nnU-Net Framework for

the Liver Tumor Segmentation Task

As shown in Figure 4.6, UNet++ architecture in the nnU-Net framework can

effectively segment and find the liver tumor region in the CT scans while U-Net

architecture in the nnU-Net framework misses those regions or does not segment it

efficiently.

Figure 4.6: Qualitative results of Liver Tumor Segmentation Task using UNet++ in
the nnU-Net framework. The results for UNet++ are based on the best branch i.e.
5th branch as depicted in Figure 4.5(e).
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Chapter 5

DISCUSSION

5.1 Target Task Results on the Other Datasets in CT Domain

Even though there was an architecture difference between Models Genesis and

the rest of the tasks belonging to the CT domain, we still evaluated the impact of

the weight transfer on them. Pancreas, Spleen, and Colon architecture’s first layer is

different from the architecture of our proxy task. Figure 5.1 shows that the target

task performance using the starting point from Models Genesis is similar to training

from scratch. The results show the importance of the initial layers of the pre-trained

model. Due to no weight transfer for them, the architecture trains similar to training

from scratch.

Figure 5.1: X-axis denotes Dice scores on the target task. We evaluated Models
Genesis trained using Lung architecture and the LUNA16 dataset on the target tasks.
The architecture of the target task is determined by the nnU-Net framework.
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5.2 Do We Still Need Multiple Architectures?

The multiple architectures determined by the nnU-Net framework make it impos-

sible to initialize the starting point from Models Genesis on the target task. Due

to the variations in the architecture, the prior knowledge gained by Models Genesis

comes to no use in the target task performance. Due to this, the following question

arises: Can we use a generic architecture for all the tasks?

As shown in the experiment section, the architecture of the target tasks in the CT

domain shares the same kernels in all, except the first layer. The above observation

implies that the proxy task architecture is close enough to the rest of the target

task architectures in the CT domain, however, the first layer difference contributes

more to the training from scratch. Hence, replacing the first layer in the target tasks

architecture with Models Genesis architecture will be required to utilize the prior

knowledge gained by Models Genesis. Further, integrating UNet++ in the nnU-Net

framework helps in learning the multi-scale image features and eliminates the need for

multiple architectures for a specific task. This implementation can be extended via

implementing UNet++ to learn multiple features to span across multiple tasks. In the

future, we will be working on this hypothesis in order to create a generic architecture

for multiple tasks, further utilizing the prior knowledge gained by the proxy task.

5.3 Cross Domain Transfer

Transfer learning positively influences the performance of the target task in the

similar domain with the similar architecture of the proxy task. We have trained our

proxy task using the LUNA16 dataset belonging to the CT domain. The trained

Models Genesis does not seem to provide significant improvement for the target tasks

in the MR domain.

32



Figure 5.2: X-axis denotes Dice scores on the target task. We evaluated Models
Genesis trained using Lung architecture and LUNA16 dataset on the target tasks,
belonging to the MR domain. The architecture of the target task is determined by
the nnU-Net framework.

Figure 5.2 shows that Models Genesis gives similar performance as training from

scratch. The Brain tumor dataset has four modalities in each MR scan which causes

the input patch for the architecture to have four sequences. On the other hand,

Models Genesis is trained using only one sequence based on the LUNA16 dataset.

Due to this reason, the weight transfer for the first layer does not initiate. The

initial layers of the pre-trained model make a considerable impact on the target task.

Hence, the architecture trains similar to the randomly initialized model. We found

similar observations for the Hippocampus segmentation task. The architecture for the

same is shallow with only three layers in the encoder and one layer in the bottleneck

while the Genesis architecture contains five layers in the encoder and one layer in the

bottleneck. This creates a huge difference in the architectures of proxy and target

tasks, leading to performance similar to training from scratch.

The other reason for no improvement is the domain difference between the proxy

task dataset (LUNA16) and the target task datasets. The LUNA16 dataset belongs

to the CT domain while the Brain tumor dataset belongs to the MR domain. Simi-

lar domain differences can be found in Heart, Hippocampus, and Prostate datasets.
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The significant domain difference requires a new Models Genesis trained on the MR

domain. However, CT images have a standard scale (Hounsfield Unit), while in MR

images, the variation in the scanners causes inconsistent tissue intensities. Due to

this reason, the non-linear transformation in Models Genesis does not work well with

MR images. Hence, future work is required to find the transformation strategy for

images in the MR domain.

5.4 Importance of the Normalization Strategy

The nnU-Net framework highly relies on the ground truth while building the

pipeline. The normalization strategy only collects the intensity values from fore-

ground region pixels in the raw scans. Based on the intensity values collected, the

framework applies z-score normalization on the individual scans. To reduce the use

of ground truth, we replaced the intensity clipping and z-score normalization strategy

of the nnU-Net framework with the intensity clip in the range of [-325,325], followed

by image normalization between [-1,1]. Further, we trained liver and liver tumor seg-

mentation tasks from scratch using the above strategy. Note: this experiment was

done as a proof of concept to evaluate the normalization strategy.

Normalization Liver Tumor

z-score 96.18 63.37

[−1, 1] 96.37 64.41

Table 5.1: Liver and Liver Tumor Segmentation. The only change while determining
the above results is in the pre-processing step. Intensity clipping and z-score normal-
ization, in the nnU-Net framework, are done based on the intensity values captured
from the foreground pixels. [-1,1] is done based on the clip between [-325,325] (no use
of ground truth). Scores depicted are Dice scores. Note: The best result is denoted
in bold.
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As shown in Table 5.1, the standard clipping of [-325,325] followed by the raw scan

scaling between [-1,1] does not affect the performance.
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Chapter 6

CONCLUSION

In this work, we addressed some of the limitations in the nnU-Net framework and the

ways to overcome them. First, we proposed the pre-trained model for the nnU-Net

framework in order to enhance the performance of the target tasks provided by the

Medical Segmentation Decathlon (2019) challenge. This work shows the importance

of transfer learning for tasks with limited data. We demonstrated that by fine-tuning

Models Genesis based on the architecture determined by the nnU-Net framework,

the performance of liver and lung tumor segmentation tasks, indeed, improved sig-

nificantly. This performance gain is attributed to the scalable, generic, robust image

representation learned from the consistent and recurring anatomical structure em-

bedded in medical images. Further, Models Genesis helped in achieving the first rank

in liver tumor segmentation task and third rank in lung tumor segmentation task.

Due to the outstanding performance of Models Genesis, we plan on using the same

architecture utilized by the proxy task for the target tasks with different architecture.

Additional experiments in the discussion section suggest utilizing transfer learning

within similar architecture and similar domains.

Second, we observed that introducing an advanced segmentation architecture,

like UNet++, improved the performance of the liver tumor segmentation task. This

eliminates the need for numerous specialized architectures, further eliminates the need

of ensembling multiple architectures. In future work, we plan on evaluating UNet++

as a generic architecture to learn the multiple features to span across multiple tasks.

Please refer APPENDIX A for codes and pre-trained nnU-Nets.
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APPENDIX A

CODE
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As open science, all codes and pre-trained nnU-Nets are available at https://
github.com/MrGiovanni/ModelsGenesis/tree/master/competition
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