
Analyzing, Understanding, and Improving Variable Name Prediction

in Decompiled Binary Code

by

Ati Priya Bajaj

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved April 2021 by the
Graduate Supervisory Committee:

Ruoyu Wang, Chair
Chitta Baral

Yan Shoshitaishvili

ARIZONA STATE UNIVERSITY

May 2021

ABSTRACT

Reverse engineers use decompilers to analyze binaries when their source code is

unavailable. A binary decompiler attempts to transform binary programs to their

corresponding high-level source code by recovering and inferring the information that

was lost during the compilation process. One type of information that is lost during

compilation is variable names, which are critical for reverse engineers to analyze and

understand programs. Traditional binary decompilers generally use automatically

generated, placeholder variable names that are meaningless or have little correlation

with their intended semantics. Having correct or meaningful variable names in decom-

piled code, instead of placeholder variable names, greatly increases the readability of

decompiled binary code. Decompiled Identifier Renaming Engine (DIRE) is a state-

of-the-art, deep-learning-based solution that automatically predicts variable names in

decompiled binary code. However, DIRE’s prediction result is far from perfect. The

first goal of this research project is to take a close look at the current state-of-the-art

solution for automated variable name prediction on decompilation output of binary

code, assess the prediction quality, and understand how the prediction result can be

improved. Then, as the second goal of this research project, I aim to improve the

prediction quality of variable names. With a thorough understanding of DIRE’s is-

sues, I focus on improving the quality of training data. This thesis proposes a novel

approach to improving the quality of the training data by normalizing variable names

and converting their abbreviated forms to their full forms. I implemented and eval-

uated the proposed approach on a data set of over 10k and 20k binaries and showed

improvements over DIRE.

i

ACKNOWLEDGMENTS

Every individual needs a positive environment to grow. This environment was pro-

vided to me by Fish, who is an awesome mentor. I am extremely grateful to him for

introducing me to the fascinating field of binary analysis, encouraging and support-

ing me throughout my Masters. From him, I learned what good research looks like.

I would like to thank my committee members Chitta and Yan for their invaluable

support and enthusiasm for my work. Lastly, I would like to thank my family and

friends for always being there for me and keeping up with my research.

ii

TABLE OF CONTENTS

Page

LIST OF TABLES . v

LIST OF FIGURES . vi

CHAPTER

1 INTRODUCTION . 1

2 BACKGROUND . 3

2.1 Compilation . 3

2.2 Disassembly of Binary Code . 4

2.3 Decompilation of Binary Code . 4

2.3.1 Decompilation Challenges . 5

3 EXISTING SOLUTIONS . 7

3.1 DEBIN . 7

3.2 DIRE . 7

3.2.1 DIRE’s Dataset . 8

4 IMPERFECT DIRE . 11

4.1 DIRE’s prediction . 12

4.2 DIRE is better at recognition than prediction . 14

4.3 Incorrect and Unnatural Prediction . 14

4.4 Implementation Issues . 17

5 IMPROVING TRAINING DATASET . 19

5.1 Observation . 19

5.2 Insight . 19

5.3 Improvements . 19

5.3.1 Unifying IDA-generated Variable Names 20

5.3.2 Converting abbreviations to their full forms 20

iii

CHAPTER Page

6 EVALUATION . 23

6.1 Experiments . 23

6.2 Evaluation Results . 24

6.3 Case Study . 25

7 LIMITATIONS . 26

8 FUTURE WORK . 27

9 CONCLUSION . 28

REFERENCES . 29

iv

LIST OF TABLES

Table Page

3.1 DIRE versus DEBIN. Data in this table comes from the DIRE pa-

per Lacomis et al. (2019a). 8

4.1 Total and unique count of variables and IDA-generated variables in

DIRE’s Dataset . 12

4.2 Top 15 Variables in DIRE’s Dataset . 14

4.3 Prediction accuracy of all the variables versus IDA-generated variables

when the function containing these variables were in training set versus

not in training set . 14

4.4 DIRE’s Incorrectly Predicted Variable Names . 15

4.5 DIRE’s Invalid Predicted Variable Names . 15

4.6 DIRE’s Unnatural Predicted Variable Names. 16

4.7 DIRE’s Incorrectly Predicted Variable Names . 16

5.1 Variable Transformation Based on Lookup . 21

5.2 Preprocessing Pipeline. First normalize variable names then convert

abbreviated variable names to their full form . 22

6.1 Comparison of Model’s accuracy on 1/16th data and 1/8th data of orig-

inal dataset . 25

v

LIST OF FIGURES

Figure Page

3.1 The relation between DIRE’s prediction accuracy and the number of

variables in a function. Generally, the more variables there are in a

function, the lower prediction accuracy there is. 9

3.2 Number of variables in functions that are in DIRE’s data set. 9

3.3 Accuracy versus functions versus the number of variables in each func-

tion. The variable name prediction accuracy decreases as the number

of variables in a function grows. 10

6.1 Accuracy Versus Size of Training Set. Accuracy increases with increase

in the size of training set Lacomis et al. (2019a) . 23

vi

Chapter 1

INTRODUCTION

Reverse engineering is the process of analyzing a program without access to the

source code. Reverse engineers greatly benefit from decompilers as they translate

binaries to a high-level language. Decompilers like Hex-Rays Cit (2019), and Ghidra

NSA (2019) try to use the associated debug symbols (if they exist) for reconstruction.

However, they fail to recover most of the rich source-level information, such as variable

names, data types, and structural information that is lost during compilation.

When analyzing Commercial off-the-shelf (COTS) binaries, finding vulnerabilities

Yakdan et al. (2015); Emmerik (2007); Brumley et al. (2013), patching bugs in legacy

software Emmerik (2007); Brumley et al. (2013), and performing malware research,

decompilers come in handy. Meaningful variable names would greatly enhance the

readability of the decompiled code and make the decompiled code easier to under-

stand for reverse engineers. Because variable names embed semantics inside, with

meaningful variable names, it is easy for a human analyst to infer the actual meaning

of the function where the variable is. For example, if there is a variable named “pass-

word” in decompiled code, a human analyst can naturally make the inference that

this variable is used to store passwords or password-related strings. Further, maybe

the function where this “password” variable belongs is related to authentication. In

conclusion, meaningful variable names in decompiled binary code helps human ana-

lysts with reverse engineering tasks by saving the amount of time and effort that is

required for understanding decompiled code.

Using deep learning approach, the state-of-the-art solution DIRE Lacomis et al.

(2019a) has pioneered in direction of predicting variable names in decompiled binary

1

code. In their approach, they rely on structural and lexical information of decompiled

binary code that is recovered from Hex-Rays. For structural information, DIRE uses

the internal AST representation of the decompiled binary. In addition, they created a

dataset of 164,632 unique x86-64 binaries generated from GitHub’s C projects. Their

results, however, after careful analysis, show that their dataset and predictions are

imperfect.

DIRE is an open-source project, which was really helpful in analysis. Approx-

imately half of their dataset has IDA generated variables, which are meaningless.

Moreover, the predicted variable names are not only incorrect but are also invalid

such as frac Q ? or ??. Another problem with DIRE is that it performs better on

functions that the model was trained on. Meaning, if the model has never seen a func-

tion before, the prediction accuracy drops to 17%. Further, it has an implementation

issue that inflates the accuracy of the model.

After a thorough understanding of their approach, I try to improve the quality of

their dataset with an aim to improve the accuracy of the model. The improvements

result from observations as a programmer and the insight that abbreviated variable

names are treated as different variables though they may be semantically the same.

The first improvement is an attempt to improve IDA-generated variables, which are

in large amounts in the dataset. The second improvement aims to have full form

of variable names instead of abbreviated variable names and normalize them. In

addition to the more meaningful variable names, these improvements will keep the

vocabulary small.

The next, step is to evaluate the proposed improvements. To evaluate the model,

I train three different models based on the two improvements, as well as a reference

model of DIRE. Keeping in mind the author’s study of the impact of the training

dataset on the accuracy, I train the models on 1/16th of data and 1/8th of data.

2

Chapter 2

BACKGROUND

Before jumping directly into the variable name prediction, let’s start with some

basics and understand how variable names are lost and recovered in the first place.

Any discussion about decompiled binary code would be incomplete without discussing

compilation.

2.1 Compilation

The Journey of C source code to a binary is a multi-step process. First comes the

preprocessor, which removes the comments marked by /* */ or // from the source

code. In the next step, it expands all header files (example: #include stdio.h) that

are specified in the beginning of the C file . The final step in preprocessing is replacing

the macros with their values (example: #define BUFFER SIZE 1024).

Compiling follows preprocessing; the compiler takes the expanded code and gen-

erates equivalent platform-specific assembly code. During this step, the compiler

performs various code optimizations.

At the third stage, assembly code is translated into relocatable machine code by

the Assembler Cit (1997). Assemblers assign memory locations to all instructions

and variables using offsets; there is also a list of unresolved references for the linker to

resolve. The final step of compilation is linking. Linker links together object files and

libraries to form an executable, assigning absolute memory locations and resolving

unresolved references.

3

2.2 Disassembly of Binary Code

The disassembler works in the opposite way to an assembler, converting the binary

code to assembly code. IDA and GNU Debugger (GDB) Cit (1986) are two widely

used disassemblers.

00001189 endbr64

0000118d push rbp

0000118e mov rbp, rsp

00001191 sub rsp, 0x20

00001195 mov rax, qword [fs:0x28]

0000119e mov qword [rbp-0x8], rax

000011a2 xor eax, eax

000011a4 lea rdi, [rel data_2004]

000011ab mov eax, 0x0

000011b0 call printf

Listing 1: Disassembled Code

2.3 Decompilation of Binary Code

The decompilation process is complex and challenging, as most of the information

from the source code is lost during compilation. A decompiler attempts to reverse

the compilation process, i.e. to convert the binary code into C-like code.

First, the binary code is disassembled to assembly code, which is then converted

to Intermediate Representation. The decompiler attempts to recover variable names,

types, and control flow structure by using program analysis. The decompiler produces

an Abstract Syntax Tree (AST), which is converted to a high-level source code.

4

__int64 __fastcall add_new_symbol(__int64 a1, const char

symname)

{

int v2; \/\/ ebx

char **v3; \/\/ rbp

__int64 result; \/\/ rax

*(_QWORD *)(a1 + 8)= realloc (*(void **)(a1 + 8) ,8LL

((_DWORD *)(a1 +16)+ 1));

v2 = *(_DWORD *)(a1 + 16);

v3 = (char **)(*(_QWORD *)(a1 + 8) + 8LL * v2);

v3 = strdup(symname);

result = a1;

*(_DWORD *)(a1 + 16) = v2 + 1;

return result;

}

Listing 2: Decompiled Code

Ghidra and Hex-Rays (often referred to as IDA) are widely used decompilers.

2.3.1 Decompilation Challenges

Compilation strips important information like variable names, data types, and

control flow structure so it is difficult for a decompiler to reconstruct this lost infor-

mation. As seen in the example of decompiled code (Listing 2), decompilers auto-

matically generate placeholder values for variable names such as v2 and a1. These

variable names make little sense and have little relationship with their intended mean-

5

ing. Having a meaningful variable name enhances the readability and usability of the

code.

6

Chapter 3

EXISTING SOLUTIONS

3.1 DEBIN

DEBIN He et al. (2018) predicts debug information in Stripped binaries. Using

machine learning, they train model on non stripped binaries and predict debugging

information like identifiers, types and names. DEBIN works in two stages. In the first

step, it predicts variable’s memory location, and then it predicts the variable for all

recovered memory locations. However, the locations of the predicted variables do not

match with their location in the original binary. DEBIN is no longer a state-of-the-art

solution.

3.2 DIRE

The current state-of-the-art solution is DIRE: Decompiled Identifier Renaming

Engine Lacomis et al. (2019a). DIRE uses deep learning, specifically encode-decoder

model to predict variable names in the decompiled binary code. DIRE relies on lexical

and structural information recovered by the decompiler. Recurrent Neural Networks

(RNNs) learn from input sequence, hence they are used by DIRE to extract lexical

information from the decompiled binary code in form of source tokens. For structural

information DIRE uses Abstract Syntax Trees (AST) from Hex-Rays decompiler. It

uses Gated-Graph Neural Networks (GNNs) for learning the structure. In their paper,

the authors of DIRE talk about their analysis of DEBIN. Since DIRE is considered

state-of-the-art, in my assessment, I will only focus on DIRE.

7

Accuracy DIRE (1%) DEBIN (1%) DIRE (3%) DEBIN (3%)

Overall 32.2% 2.4% 38.4% 3.9%

Body in Train 40% 3% 47.2% 4.8%

Body not in Train 5.3% 0.6% 8.6% 0.7%

Table 3.1: DIRE versus DEBIN. Data in this table comes from the DIRE paper La-
comis et al. (2019a).

As shown in Table 3.1, DIRE beats DEBIN in overall accuracy by roughly 30% if

the size of corpus is 1% and by 34% when the size of corpus was 2%.

3.2.1 DIRE’s Dataset

DIRE Lacomis et al. (2019a) open-sourced their dataset. For dataset creation,

they mined C source code from GitHub. Every function in the dataset has three

components. First is the tokenized code, where each variable name has unique VAR id.

Second is Abstract Syntax Tree (AST) with modified variable names. Third is a

lookup that maps this unique VAR id to IDA-given names and developer given names.

To create this mapping, the authors first decompile the binary normally and collect

IDA-given names. After the binary is decompiled they traverse AST and replace

variable references with unique place holder tokens. Using this modified AST they

generate decompiled code.

For developer given names, they decompile the binary once again, but this time

the binary has associated debug DWARF Eager (2012) information with it. A de-

compiler behaves differently when it decompiles a stripped binary versus binary with

debug information. First, the code structure may be different. Second, a decompiler

generates intermediate variables therefore, there can’t be complete mapping in IDA-

given names and developer given names. To overcome this challenge the authors,

8

identify each variable by their instruction offset and operations.

They mined open-source C GitHub repositories and collected 164,632 unique bina-

ries, which have 3,195,962 functions. They also open-sourced their pre-trained model,

the training and testing split used at the time of training.

Figure 3.1: The relation between DIRE’s prediction accuracy and the number of
variables in a function. Generally, the more variables there are in a function, the
lower prediction accuracy there is.

As shown in Figure 3.1, the x-axis represents the number of variables, while the y-

axis shows the accuracy of all functions with their corresponding numbers of variables.

The accuracy of the model decreases as the number of variables in a function increases.

Figure 3.2: Number of variables in functions that are in DIRE’s data set.

Y-axis represents the percentage of functions and x-axis represents the number of

9

variables in Figure 3.2. Functions that have up to 20 variables make 98.38% of the

data.

Figure 3.3: Accuracy versus functions versus the number of variables in each func-
tion. The variable name prediction accuracy decreases as the number of variables in
a function grows.

Figure 3.3 depicts how accuracy, number of variables, and functions are related to

each other. It shows a major portion of the dataset has functions with variables up

to 20. With an increase in the number of variables the accuracy decreases. Smaller

functions contribute significantly to the DIRE’s accuracy.

10

Chapter 4

IMPERFECT DIRE

I performed careful evaluation on DIRE’s results, and found four major issues that

are impacting DIRE’s variable name prediction performance, as listed below:

1. DIRE’s variable name predictions are mostly a direct result of how Hex-Rays

decompiler names not how humans name it. The predicted variable names are

v1, v2 or a1. These variables are all IDA-generated placeholders. A programmer

would give meaningful variable names like length rather than using v1 and v2.

Since the model is trained on decompiled code with IDA-generated variables, it

learns to predict IDA-generated names.

2. DIRE is better at recognizing functions than predicting variable names. If the

model is trained on a particular function, the accuracy of variable prediction

in such functions is higher than the accuracy of variable prediction in functions

that were not present in the training set.

3. In addition to incorrect variable names, DIRE predicts unnatural variable names.

These unnatural variable names are typically characters that are invalid as per

the naming convention of a variable.

4. DIRE has implementation issues that lead to inflated prediction accuracy. As

seen in decoder code, if the model fails to find a hypothesis or is unable to

predict variable names, they directly replace the predicted variable with the

original variable. They do not exclude these failed predictions when calculating

accuracy. Hence, the accuracy is higher than it is.

11

4.1 DIRE’s prediction

After taking a close look at the DIRE’s prediction results, it is clear that DIRE

predicts variable names as Hex-Rays decompiler not how humans would name them.

Using program analysis and heuristics, Hex-Rays attempts to recover data lost during

compilation, such as variable names, data types, and control flow structure. There-

fore, the variable names are anything that the decompiler could recover. As for the

rest of the variable names, the decompiler automatically generates placeholder names

like v1, v2, a1, etc.

Due to the fact that all the functions of the DIRE’s dataset are recovered from

Hex-Rays, they contain a significant number of variable names such as v1, v2, and a1.

A few variable names, such as result, i, and s, can also be recovered by Hex-Rays. The

programmer also uses these variable names. Therefore, it is difficult to differentiate

between variables generated by IDA and those given by a human. So I only consider

the variables like v1 and a1 as IDA generated. An example function from the DIRE’s

dataset is shown above.

The data shows that 53% of the total variables in DIRE’s training set are IDA

generated. Thus, when the deep learning model is trained on these variables, it learns

how IDA names variable. Hence, most of the variables in their prediction are v1, v2,

v3 etc.

Variable Total Unique

All 88M 172K

IDA-generated 47M 2613

Table 4.1: Total and unique count of variables and IDA-generated variables in
DIRE’s Dataset

12

__int64 __fastcall add_new_symbol(__int64 @@VAR_73@@a1@@

a1, const char *@@VAR_76@@a2@@ symname)

{

int @@VAR_74@@v2@@ v2;

char ** @@VAR_75@@v3@@ v3; \/\/ rbp

__int64 @@VAR_77@@result@@ result; \/\/ rax *(_QWORD

)(@@VAR_73@@a1@@ a1 + 8)= realloc ((void **)(

@@VAR_73@@a1@@ a1 + 8) ,8LL *(*(_DWORD *)(@@VAR_73@@a1@@

a1 +16)+ 1));

@@VAR_74@@v2@@ v2 = *(_DWORD *)(@@VAR_73@@a1@@ a1 + 16);

@@VAR_75@@v3@@ v3 = (char **)(*(_QWORD *)(@@VAR_73@@a1@@

a1 + 8) + 8LL * @@VAR_74@@v2@@ v2);

*@@VAR_75@@v3@@ v3 = strdup(@@VAR_76@@a2@@ symname);

@@VAR_77@@result@@ result = @@VAR_73@@a1@@ a1;

*(_DWORD *)(@@VAR_73@@a1@@ a1 + 16) = @@VAR_74@@v2@@ v2 +

1;

return @@VAR_77@@result@@ result;

}

Listing 3: DIRE’s function

13

Of the top 15 variables in the training set only result, i and s are the ones that are

not IDA generated.

result a1 v3 v4 v5 i v6 v2 a2 v7 v8 v9 v1 v10 s

Table 4.2: Top 15 Variables in DIRE’s Dataset

4.2 DIRE is better at recognition than prediction

Accuracy All Variables Without IDA-generated Variables

Overall 82% 43%

Function in training set 88% 48%

Function not in training set 41% 17%

Table 4.3: Prediction accuracy of all the variables versus IDA-generated variables
when the function containing these variables were in training set versus not in training
set

As seen in table 4.3, there is a clear disparity between the accuracy of DIRE when

the function is in the training set and when is not in the training set.

If I exclude the variable names generated by IDA and calculate DIRE’s accuracy

then it comes out to be even lower. It drops from 41% to 17% for functions that

are not in training set. This means, DIRE correctly predicted only 17% of the total

variables if it has not encountered that function before.

4.3 Incorrect and Unnatural Prediction

To evaluate the prediction of DIRE, I examined a sample of 1142 functions from

100 files. There were approximately 6k variables in the same.

14

15% of the total variables are incorrectly predicted. 20% of 1142 functions have

at least 1 incorrectly predicted variable. The variable names in red are incorrect

predictions.

Original Predicted

oldPredCity t

cityId px

result result

preCityId e

Table 4.4: DIRE’s Incorrectly Predicted Variable Names

Unnatural variable names account for 0.5% of all predicted variable names. They

are divided into three categories

• DIRE predicts invalid variable names which are or include ??, ??

Original Predicted

Z ??

Z ?? 1

buff buff2

a5 buff len

Original Predicted

v3 v3

frac Q7 frac Q ?

v4 v4

in in

Table 4.5: DIRE’s Invalid Predicted Variable Names

• Sometimes when DIRE predicts variable names, it keeps appending the same

word to the same variable name.

15

Original Predicted

i i

task 2 task 2

task6 task task task set

task7 task task task set1

task8 task task set2

Table 4.6: DIRE’s Unnatural Predicted Variable Names

• In many cases, the prediction results are mismatched among variables of the

same function.

For example, in table 4.7, the variable name src appears twice, and both the

times it is incorrectly predicted as ina and in. Variable dest is predicted as src.

The human analyst could end up making wrong decisions based solely on the

predicted variable.

Original Predicted

i cl 0a

ctx buffer

b cl 0b

cl 0a ctx

Original Predicted

destsize r

src ina

src in

destsize r

result dest

dest src

Table 4.7: DIRE’s Incorrectly Predicted Variable Names

16

if not hyps:

return identity renamings

print(f"Failed to found a hypothesis for function {ast

.compilation_unit}", file=sys.stderr)

variable_rename_result = dict()

for old_name in ast.variables:

variable_rename_result[old_name] = {'new_name ':

old_name ,'prob': 0.}

example_rename_results = [variable_rename_result]

Listing 4: Code Snippet from GitHub repository Lacomis et al. (2019b)

4.4 Implementation Issues

It is great that DIRE is open-sourced, making it easy for me to replicate their

results, verify my findings and evaluate any improvements. When DIRE fails to find

a hypothesis for the function and is unable to predict variable names, DIRE’s default

decoders copy original variable names to predicted variable names. These are likely

to be implementation mistakes. But a significant amount of original variable names

are IDA-generated so when these are directly used as predicted variables, it inflates

the accuracy.

Figures 3.1 and 3.2 shows the code snippets from their decoder where they directly

copy original variable (old name) to the predicted variable (new name)

17

for var_id , old_name in enumerate(ast.variables):

var_name_token_ids = hyp.variable_list[var_id]

if var_name_token_ids == [same_variable_id ,

end_of_variable_id]:

new_var_name = old_name

else:

new_var_name = self.vocab.target.subtoken_model.

decode_ids(var_name_token_ids)

Listing 5: Code Snippet from GitHub repository Lacomis et al. (2019c)

18

Chapter 5

IMPROVING TRAINING DATASET

The goal is to improve the quality of DIRE’s training dataset and then evaluate

the model’s performance. The improvements are based on a few observations and

insights of a programmer. About half of the variables in DIRE’s dataset are IDA-

generated, so the first improvement is unifying IDA-generated names. For the second

improvement, I will normalize the variables and convert abbreviated variable names

to their full forms.

5.1 Observation

• i, j, k are almost always used as loop counters.

• pos and position are semantically same but they are treated as two different

variables.

5.2 Insight

Different variable names may capture the same semantics. In the eyes of a progam-

mer addr and address or tot and total mean the same. But addr and address are treated

as two different variables.

5.3 Improvements

Based these observations and insights, I propose, a solution to improve the quality

of training data.

1. Unifying IDA-generated variable names

2. Converting abbreviations to their full forms

19

5.3.1 Unifying IDA-generated Variable Names

DIRE’s dataset has 53% IDA-generated variable names like v1, v2, and a1. For

unification, I replace all the aN with uniqueidaarg and vN with uniqueidavar. This

improvement reduces the size of the data set and vocabulary. This could help the

model to learn better.

5.3.2 Converting abbreviations to their full forms

The second improvement is normalizing variable names and mapping variable

name abbreviations to their full forms. To the best of my knowledge, this is the first

systematic approach to match variable name’s abbreviations with their full forms.

Intuitively when writing the code, we use prefixes for variable names like res for

result or tot for total . Alternatively, the variable name is shortened by stripping the

vowels, such as rsrcs for resources. Based on these insights I created a lookup that

maps abbreviations of variable names to their full forms.

Lookup Creation

1. Collected variable names from source code written by humans.

2. Created a universal lookup of abbreviations with all possible combinations of

prefixes and vowels stripped variables.

3. An abbreviation is considered valid only if it appears in the human-authored

source.

4. Further mapping of abbreviations and full forms is done by choosing the most

likely full form based on their occurrences in human source code.

20

Abbreviation Full Form

src source

len length

obj object

addr address

seq sequence

res result

Transform−−−−−−−−→

Original Improved

res result

src obj source object

seq len sequence length

addr num address number

Table 5.1: Variable Transformation Based on Lookup

Normalization

Normalization of variable names involves the following steps:

1. Converting variable names in different styles to snake case

• Example: dstSize → dst size

2. Striping numbers at the end of variable names

• Example: tmp1 → tmp

3. Stripping underscore from the variable names

• Example: value → value

4. Lemmanize variable names

• Example: bytes → byte

21

Original

srcDst

bytes

res1

Normalize−−−−−−−→

Normalized

src dst

byte

res

Transform−−−−−−−−→

Improved

source destination

byte

result

Table 5.2: Preprocessing Pipeline. First normalize variable names then convert
abbreviated variable names to their full form

22

Chapter 6

EVALUATION

In order to evaluate the proposed solution, I preprocessed DIRE’s dataset and

trained it using DIRE’s model.

6.1 Experiments

1. Model A: Normalize, map abbreviations and unify IDA-generated variable names

2. Model B: Normalize variable names and map abbreviations

3. Model C: Unify IDA-generated variable names

4. Reference Model: DIRE’s model

Figure 6.1: Accuracy Versus Size of Training Set. Accuracy increases with increase
in the size of training set Lacomis et al. (2019a)

23

The authors of DIRE discuss the impact of the size of the training set on accuracy.

As seen in the graph (Figure 6.1) Lacomis et al. (2019a), accuracy increases with

the increase in the size of the training set. Hence, for my analysis, I am using 1/16th

data and 1/8th data of the original dataset which would give me comparable results.

6.2 Evaluation Results

Figure 6.2, shows the accuracy of four models on two different size of dataset i.e.

1/16th data and 1/8th data of the original dataset. This evaluation is done on their

respective test splits that were created during training of each model.

For Model A, all the aN, and vN are converted to two high-frequency variable

names and the remaining variable names are normalized. Two high-frequency variable

names may have introduced a bias into the model, impacting accuracy. So, even after

increasing the size of the training set, there was no significant improvement in model’s

accuracy.

For Model B, I only normalize the variable names and IDA-generated variable

names remain unchanged. As shown in the data, normalization of variable names

leads to increased accuracy of the model, as it reduces the vocabulary without creating

bias. Thus, the model can learn better.

For Model C, I only replace IDA-generated variables aN and vN with uniqueidaarg,

and uniqueidavar respectively. This does result in a smaller vocabulary, but at the

expense of bias, so this model performs worse. The accuracy for Model C is only

40%.

The Reference Model is trained on the original dataset of DIRE to evaluate the

impact of the proposed improvement.

24

Model Accuracy (1/16th) Accuracy (1/8th)

Model A 45% 45%

Model B 70% 71.4%

Model C 40% 43%

Reference Model 51% 68%

Table 6.1: Comparison of Model’s accuracy on 1/16th data and 1/8th data of original
dataset

6.3 Case Study

Original Variable DIRE’s Prediction Improved Prediction

mac callback ptr mac list mac callback pointer

v2 v2 uniqueidavar

signum n signal time

v1 state uniqueidavar

pos val position

j v1 j

val flags value

offset mask offset

offset a2 offset

st fs st st fs

initialize p initialize p initialize p

DIRE’s Prediction: Original Dataset versus Improved Dataset

Figure 6.3 has some example predictions from DIRE’s reference model and Model

A. The variable names are more readable after training the model on improved

dataset.

25

Chapter 7

LIMITATIONS

When building any solution, there are almost always limiting factors that keep us

at bay from perfection. DIRE’s dataset has a humongous amount of IDA-generated

variables, which limits the scope of improvement. Moreover, the lookup is based on

certain assumptions that do not always fit different situations. Below are a few known

limitations of this work.

• The lookup is based on the insight that programmers use prefixes as variable

names and vowel stripped variable names. But the lookup does not include any

commonly used abbreviated variable names that do not fall under the above

assumptions. For example, packet is written as pkt or pointer as ptr.

• The full form of abbreviations are selected based on probability. For example,

strm can have two full forms stream or storm. Based on the probability of

their occurrences stream is a better fit than storm. This selection makes sense

from the point of view of computer science. But there are some cases that are

considered invalid. Based on probability the full form of abbreviation dst comes

out to be dust, but actual the full form is destination. Given that this mapping

is not under lookup’s assumption, it fails in similar situations. So the lookup

needs to be manually cleaned to remove invalid or inappropriate abbreviations.

• In the dataset of DIRE, the most important variables are v1, v2, v3, etc. Due

to their abundance and lack of meaning, the lookup procedure will be unable

to map or improve their meaning to a large extent.

26

Chapter 8

FUTURE WORK

The proposed improvements on DIRE’s dataset are mere syntax level improve-

ments. But the source code or variable names have more semantic meaning associ-

ated with them. None of the existing approaches targets variable name recovery at

its semantic level. Future directions for this research would be to explore more ways

of having semantically meaningful variable names. Here are two possible directions

to go in.

• Variable names like sum and addition are usually used for storing the result of

addition of two numbers. But these are considered two different variables, even

though their intended meaning is same. There is no existing solution that maps

variable names at such semantic level. It will be interesting to study and map

variable names that are synonyms.

• As mentioned in limitations, the lookup does not include the frequently used

abbreviations like ptr and pkt. There is no existing approach or a lookup that

can directly give you full forms of abbreviated variable names. There are tons

of such variable names. Having an auto-generated lookup for similar variables

will be interesting future work.

27

Chapter 9

CONCLUSION

After analyzing, understanding, and trying to improve variable names in the de-

compiled code, here are a few key takeaways.

• Model C performs the worst of the three Models, so it is not a good idea to unify

the IDA-generated variable names on DIRE’s original dataset. The two artificial

variable names uniqueidaarg and uniqueidavar are present in high frequency in

the preprocessed dataset. This can possibly be a source of bias, resulting in

inaccurate and biased predictions.

• Based on Model B’s accuracy, I can say that normalizing variable names is a

good idea since it has the highest accuracy among all models. However, the

effect of normalization may not be very apparent when unified IDA-generated

names are present in large quantities as shown by Model A’s accuracy.

• IDA-generated variables make up approximately 53% of the data set, probably

leading to a bias in training and making the predicted variable names IDA-like.

28

REFERENCES

“Gnu debugger”, https://www.gnu.org/software/gdb/ (1986).

“Compilers, assemblers, linkers, loaders: A short course”,
https://courses.cs.washington.edu/courses/cse378/97au/help/
compilation.html (1997).

“Hex-rays. the hex-rays decompiler.”, https://www.hex-rays.com/products
/decompiler (2019).

Brumley, D., J. Lee, E. J. Schwartz and M. Woo, “Native x86 decompila-
tion using semantics-preserving structural analysis and iterative control-flow
structuring”, in “22nd USENIX Security Symposium (USENIX Security
13)”, pp. 353–368 (USENIX Association, Washington, D.C., 2013), URL
https://www.usenix.org/conference/usenixsecurity13/technical-sessions
/presentation/schwartz.

Eager, M. J., “Introduction to the dwarf debugging format”,

Emmerik, M. J. V., Static Single Assignment for Decompilation, Ph.D. thesis, The
University of Queensland (2007).

He, J., P. Ivanov, P. Tsankov, V. Raychev and M. T. Vechev, “Debin:
Predicting debug information in stripped binaries”, in “Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2018, Toronto, ON, Canada, October 15-19, 2018”, edited by D. Lie,
M. Mannan, M. Backes and X. Wang, pp. 1667–1680 (ACM, 2018), URL
https://doi.org/10.1145/3243734.3243866.

Lacomis, J., P. Yin, E. J. Schwartz, M. Allamanis, C. L. Goues, G. Neubig and
B. Vasilescu, “DIRE: A neural approach to decompiled identifier naming”, CoRR
abs/1909.09029, URL http://arxiv.org/abs/1909.09029 (2019a).

Lacomis, J., P. Yin, E. J. Schwartz, M. Allamanis, C. L. Goues, G. Neu-
big and B. Vasilescu, “Dire: Decompiled identifier renaming engine”,
https://github.com/CMUSTRUDEL/DIRE/blob/master/DIRE/neural model/
model/attentional recurrent subtoken decoder.pyL254 (2019b).

Lacomis, J., P. Yin, E. J. Schwartz, M. Allamanis, C. L. Goues, G. Neu-
big and B. Vasilescu, “Dire: Decompiled identifier renaming engine”,
https://github.com/CMUSTRUDEL/DIRE/blob/master/DIRE/neural model/
model/attentional recurrent subtoken decoder.pyL284 (2019c).

NSA, “Ghidra. the ghidra decompiler.”, https://ghidra-sre.org/ (2019).

Yakdan, K., S. Eschweiler, E. Gerhards-Padilla and M. Smith, “No
more gotos: Decompilation using pattern-independent control-flow
structuring and semantics-preserving transformations”, in “Network
and Distributed System Security (NDSS), ISOC”, (2015), URL
http://www.internetsociety.org/sites/default/files/1142.pdf.

29

